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Abstract

This thesis investigates the dynamics and potential application of D-brane systems in Type

II String Theory. In the first section we investigate the dynamics of a single brane in the

NS5-brane ring geometry, and further develop the tachyon-radion correspondance which

maps dynamical brane solutions to open string tachyon condensation on unstable branes.

We show that the resulting Geometrical Tachyon exhibits many of the properties of the

open string tachyon.

In the second section we investigate the dynamics of N coincident Dp-branes in various

brane backgrounds. This involves the use of matrix degrees of freedom and non-commutative

geometries known as fuzzy spheres. We study the collapse of these fuzzy spheres inDp-brane

and NS5-brane backgrounds, before generalising the results. We also examine the D1−D3

intersection in a general background, from the macroscopic and microscopic viewpoints.

This section closes with the microscopic description of (p, q) strings in the Warped Deformed

Conifold. We calculate the tension spectrum and find agreement with the macroscopic

solution in the limit of large flux. Using the finite q prescription for the Myers action, we

conjecture a form for the string tension when there are a finite number of D-strings.

The final section emphasises the cosmological aspects of such dynamics. We being by

using the Geometrical Tachyon as a toy model of tachyonic inflation. We then construct a

hybrid inflation scenario using the Geometrical Tachyon coupled to the open string tachyon.

Both models compare well to the experimental data. Finally we develop a new model of

DBI inflation using multiple branes at the IR tip of a warped throat. We study the theory in

the large N limit and show how it is similar to the single brane models. We then extend the

analysis to the case of finite N , which we expect to be more phenomenologically viable. In

the large N limit we find that inflation is possible, but the amplitude of gravitational waves

is large. This is not the case in the finite N limit, which can allow for small perturbations

unusual levels of non-gaussianities making it a testable prediction of string theory.
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CHAPTER 1

INTRODUCTION.

Despite the many advances made in theoretical physics over the last half-century, there still

remains a fundamental problem - namely the reconciliation of Quantum Mechanics (QM)

with General Relativity (GR). These two great paradigms of theoretical physics underpin

virtually all our current understanding of the universe around us, but seem almost totally

incompatible. This is problematic if our goal is to develop a fully unified theory of physics

which describes everything in the universe. Indeed unification has proven to be important

in theoretical particle physics ever since it was first realised that electricity and magnetism

were two descriptions of the same force, namely electro-magnetism (EM). Later it was

demonstrated how to combine the Weak nuclear force with the force of EM into the so-

called Electro-Weak (EW) force, and most theorists are confident that there is also a Grand

Unified Theory (GUT) which unifies the EW and Strong nuclear forces. However the

remaining known force of nature, gravity, stubbornly refuses to be unified with the other

forces - lacking a consistent quantum mechanical description. This problem has potentially

been resolved through the formulation of string theory [10].

The basic idea of string theory is to give up on the notion of point particles, instead the

fundamental objects of the theory become strings. These strings are vanishingly small with

a size somewhere around the Planck length, which is lp ∼ 1.6 × 10−35m. The length of the

string is denoted by ls, and an important parameter in the theory is given by α′ = l2s . Just

like strings on a guitar, these strings can vibrate at different frequencies with each frequency

corresponding to a different fundamental particle to an observer located at some distance

from the string. The strings come in essentially two varieties, open strings and closed

strings and it was shown that upon quantisation the closed string gave rise to a massless

spin-two particle which we identify as the graviton. Thus a quantum theory of gravity

emerges naturally within the string theory picture. However there is a price to pay for this

description. The original version of the theory, the bosonic string, contained no fermions

and was only perturbatively consistent if the dimension of space-time was d = 25+1. Once

fermionic degrees of freedom were included, the string became the superstring to reflect the

fact that it was supersymmetric. However the superstring was only consistently defined

in d = 9 + 1 space-time dimensions, still far removed from the D = 3 + 1 dimensions

we observe in our universe. Moreover it was shown that the theory was not unique, in

fact there were five different superstring theories which were all related to one another via

a set of non-perturbative dualities [13]. This fact led to the discovery of an even higher
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dimensional theory known only as M-theory, which exists in D = 10 + 1. Fortunately this

theory is expected to be unique and has become the focal point for constructing a Theory

of Everything (TOE).

One of the many interesting aspects of these non-perturbative dualities relating the

different superstring theories was the discovery of higher-dimensional objects known as

branes. These objects had in fact been discovered within the context of supergravity some

years before [10, 11], but it was only within the confines of superstring theory that a real

understanding of these objects was possible. We will be interested in the so called type II

superstring theories for the majority of this thesis, which are closed string theories, and we

will sketch out the origins of these branes in flat ten-dimensional space-time.

String theory contains many antisymmetric gauge fields. Now, it is a general rule that

in d space-time dimensions a gauge field can have at most d/2 − 1 antisymmetric indices.

The reason is that the corresponding field strength is written (in the notation of differential

geometry) as

F = dA (1.1)

for an [n] form gauge field, where the operator d maps [n] forms to [n+ 1] forms. Now field

strengths with more than d/2 indices are in fact related to field strengths with less indices

through contraction with the epsilon tensor. This is known as Hodge duality and implies

that

F(n) = ∗F(d−n). (1.2)

For example let us consider a three-form field strength in d = 4. By contracting the three

form indices with the four-dimensional epsilon tensor we see that it is dual to a one-form

field strength. i.e F(3) = ∗4F(1). This implies that the two-form gauge field is dual to

a scalar. The benefit of using differential form notation is that the antisymmetric field

strength F is independent of any metric 1. What does this all mean? It seems natural to

integrate the antisymmetric gauge fields over some [n] cycle. In the case of a one-form we

find
∫

A =

∫

Aµdx
µ =

∫

Aµ

(

dxµ

dτ

)

dτ (1.3)

which implies that the integral of Aµ is equivalent to the integral of the gauge field contracted

with the tangent vector of a curve parameterised by xµ(τ). This effectively means that we

are contracting the gauge field with the world-line of a particle, where the world-line is

parameterised by τ . This is exactly the prescription for describing a charged particle in

standard Quantum Mechanics. If the gauge field has [n] indices, then the extension is

obvious. We contract the gauge field with tangent vectors representing some n-dimensional

surface, and then integrate over the coordinates of that surface, This can be interpreted as

some world-volume rather than a world-line and we say that there must exist some charged

1This is not true for ∗F which does depend on the space-time metric.
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n-dimensional surface. The problem now amounts to determining which form fields are

present within superstring theory.

The superstring allows for the possibility of differing boundary conditions for the world-

sheet fermions. If the fields are periodic then they have so called Ramond (R) boundary

conditions, whilst if they are anti-periodic they have so called Neveu-Schwarz (NS) boundary

conditions. Now the modes on any closed string can be decomposed into left and right

moving parts, and since it is supersymmetric we expect there to be a spinor groundstate

for each of these movers which we denote by |s >L and |s̄ >R. Each spinor is actually a 32

dimensional Dirac spinor in the ten-dimensional theory, so the ground state is actually in

the 32 ⊗ 32 representation. However these spinors are reducible and it can be shown that

each of the 32 decomposes into two Weyl spinors 16 and 16′ which have opposite chiralities

[10]. If we further demand that unphysical states decouple from the spectrum then we

have the physical state condition that 16 → 8 and 16′ → 8′. Basically this means that

the original groundstate can be written in terms of products of eight-dimensional spinors.

There are actually two inequivalent choices that we can make on the groundstate, namely

if the spinors have the same chirality 8 ⊗ 8 then we have the type IIB superstring theory,

whereas if the spinors have different chirality 8⊗ 8′ then we have type IIA superstring

theory. Because the ground state is a tensor product of spinors, this can be decomposed

into a sum of antisymmetric tensor representations of the group SO(8) It turns out that

both IIA and IIB share the same NS-NS sector2 where the decomposition gives the following

massless fields

8 ⊗ 8 = φ⊕ Bµν ⊕ Gµν = 1 ⊕ 28⊕ 35 (1.4)

with φ being the dilaton, Bµν being the antisymmetric two form field and Gµν being the

symmetric spin-two graviton. For the R-R sector3 we obtain the following massless fields

for type IIA and type IIB respectively;

8⊗ 8′ = [1] ⊕ [3]

8⊗ 8 = [0] ⊕ [2] ⊕ [4]+ (1.5)

where we have introduced the notation [n] to denote an antisymmetric tensor with n indices,

and the + subscript denotes that the tensor is self-dual in the sense of Hodge duality. The

same decomposition also occurs in the remaining NS-R and R-NS sectors, which give rise

to a total of two gravitinos.

Looking at the RR type IIA solutions (1.5) we see that there exists a one-form and a

three-form gauge potential. These will clearly couple to a zero (space) dimensional object

(or point particle), and a two-dimensional object. By Hodge duality we see that there will

2We will refer to this simply as the NS sector.

3We will write this explicitly as the RR sector.
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also exist a five-form and a seven-form gauge potential, which will couple to a four and

six dimensional object. Conversely in IIB we see that there are couplings to an object

of dimension minus one (an instanton), a one-dimensional object (a string) and a three-

dimensional object. Again under Hodge duality we see that there will also exist a five-

dimensional object. Thus IIA has even dimensional objects, whilst IIB has odd dimensional

ones. In fact these objects were already known to exist as solutions of classical IIA/B

supergravity [11], so it seemed remarkable that they arose naturally in a string theory

context. The NS sector also contains an antisymmetric two-form, which couples to a one-

dimensional object, which is actually just the fundamental string, and also a five-dimensional

one via Hodge duality.

Understanding the physical nature of these objects was the subject of the second string

revolution. Polchinski showed [12] that these membranes (or branes for short) were actually

solitonic hypersurfaces on which the fundamental open string could end. These objects

existed even in the purely closed type II string theories. The endpoints of an open string

attached to such a p-brane satisfied p+1 Neumann boundary conditions, and 9−p Dirichlet

conditions in the transverse directions. Thus they became known as D(irichlet) p-branes

(or Dp-brane for short), carried one unit of charge associated with the p + 1 form gauge

potentials coming from the RR sector and are half-BPS objects. The five-dimensional object

in the NS sector was given the name NS5-brane, however it is different to the D-branes

because the open string cannot end on its worldvolume. However a non-perturbative duality

known as S-duality [13]allows us to interchange the D5-brane with the NS5-brane, aswell

as the D1-brane with the fundamental string. In fact another duality, known as T-duality,

relates all of the D-branes to one another by compactifying various world-volume directions

onto a torus.

1.0.1 Introducing the Abelian DBI action

The low energy theory for the open strings on the Dp-brane is given by the Dirac-Born-

Infeld (DBI) action, which is a modification of the Born-Infeld action used in the study of

non-linear electrodynamics [17]. As we have seen, the Dp-brane is a (p+1)-dimensional ob-

ject that carries RR-charge and allows fundamental open strings to end on its surface. The

massless modes of these strings form a U(1) gauge theory with a gauge field Aµ and (9− p)

real scalar fields φi 4. The action for this U(1) gauge theory was derived by Leigh [15] using

CFT techniques, and by the other authors in [15] via the path integral formalism. The CFT

approach relies on calculating the α′ corrections to the β function in both the open and

closed string sector, which can be done by assuming a leading order expansion in the back-

ground fields. The vanishing of the β function then exactly matches the equations of motion

coming from the DBI action. The path integral approach requires an explicit calculation

4There are also world-sheet fermions which will be neglected in this thesis.
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of the partition function for open strings with mixed boundary conditions propagating in a

background of massless string modes, but yields the same result.

The leading order terms in the action give rise to a dimensionally reduced Super Yang-

Mills theory, however there are also higher order α′ corrections which are inherently stringy

in origin. Provided that the field strength of the gauge field is constant these α′ corrections

can be resummed and we obtain the following action

SDBI = −Tp

∫

dp+1ξe−φ
√

−det (P[G + B]ab + λFab.) (1.6)

The overall coefficient Tp is the tension of the brane [10], which is given by the following

expression

Tp =
Mp+1

s

(2π)pgs
(1.7)

where Ms = l−1
s is the mass associated with the string scale and gs is the asymptotic value

of the string coupling constant. Note also that λ = 2πα′ is the inverse of the fundamental

string tension. The above action describes the coupling of the brane to the massless, closed

string modes of the NS sector, which is simply the bulk string frame metric Gµν , the

NS two-form Bµν and the dilaton φ. The symbol P indicates that we must pull-back the

respective tensor fields to the world-volume of the brane. In the canonical basis we see that

in the static gauge this operation is given by

P[E]ab = Eab + λEai∂bφ
i + λEib∂aφ

i + λ2Eij∂aφ
i∂bφ

j (1.8)

and therefore we expect to recover the usual canonical kinetic terms upon expansion of

the action. The massless modes of the RR sector can also be included by introducing the

following Chern-Simons term 5

SCS = µp

∫

P
(

∑

C(n)e
B
)

eλF (1.9)

where C(n) denotes the n form RR potential. There is a summation over all the allowed

values of n so that the Dp-brane is charged under the C(p+1) form with charge µp. However

supersymmetry imposes the important relation that µp = ±TP .

What is noticeable about this action is that there are couplings to RR potentials of lower

dimensions. Since these potentials will also couple to branes of lower dimension, this implies

that a Dp-brane may be thought of as a bound state of a Dp-brane with
∑

kD(p − 2k)

branes, where k ∈ Z [68], or as an intersection of such branes [16]. Schematically we can see

that if there is non-trivial first Chern-class on the brane (i.e non-zero magnetic flux) then

5Strictly speaking this is known as the Wess-Zumino action, however we will use the Chern-Simons
notation as it is more general.
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the Chern-Simons term can be expanded to give couplings of the form

SCS ∼ µp

∫

C(p+1) + λC(p−1) ∧ F + . . . (1.10)

where the dots denote possible couplings to forms of a lower degree (with suitable numerical

factors), and the wedge product is the totally antisymmetric tensor product between form

fields.

The fact that the Dp-brane carries a U(1) gauge field allowed for a world-volume de-

scription of gauge theories. There was a lot of work concerned with brane intersections, in

order to engineer configurations which had the same gauge group as the standard model.

The study of time dependence was neglected, primarily for technical reasons related to the

CFT description. However time-dependent solutions are important if string theory is to de-

scribe dynamical processes such as cosmology [76, 105]. Therefore it is a worthwhile cause

to learn as much as possible about the dynamics of branes within a string context. This

was the genesis for the work in this thesis.

In chapter two we will discuss the relationship between the dynamics of a probe brane

in a certain NS5-background, and the condensation of an open string tachyonic mode

on an unstable D-brane. This is an example of the Tachyon-Radion correspondance. In

chapter three we will introduce the action for multiple coincident branes, and study their

dynamics in a variety of non-trivial backgrounds. We will also use this technology to

construct the macroscopic and microscopic theories of the BIon spike on a brane in an

arbitrary background, and then consider a related physical application in cosmology and

gauge theory by modelling strings in the Warped Deformed Conifold. The final chapter

is devoted to a study of inflationary cosmology using brane dynamics. We present three

different models of inflation and investigate how they can be reconciled with experimental

evidence. This thesis summarises the collected works of [1] - [9].
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CHAPTER 2

THE TACHYON-RADION

CORRESPONDANCE.

2.1 Introduction.

We have already seen that Dp-branes exist in type II string theory due to the fact that

there are non-zero RR fields. However we also note that there is the NS two-form field

B(2) which acts as the source for fundamental strings. Using ten-dimensional Hodge duality

we see that this implies the existence of a field strength H7 = ∗H3 (where H3 = dB2),

which is associated with a six-form field B(6). This means that there must be some (5 + 1)

dimensional brane that carries this charge which is called the NS5-brane. The NS5-brane

is a hypersurface in ten dimensions in much the same way as the D5-brane of type IIB

string theory. However the fact that the NS two-form exists in both type IIA and type IIB

means that the NS5-brane also exists in both sectors of the theory. One could also have

deduced the existence of the NS5-brane using the properties of S-duality, beginning with

the D5-brane of type IIB string theory and then performing duality transformations on all

the relevant fields. We find that this implies that the tension of the NS5-brane goes like

1/g2
s , making it far heavier than the D-branes in the perturbative regime [26]. Thus the

NS5-brane (or ’fivebrane’) is indeed a solitonic object at weak coupling. Another difference

between the fivebrane and the D-branes is that the fundamental string cannot end on the

world-volume of the fivebrane due to conservation of charge. In contrast we have defined

the D-brane as the hypersurface where the fundamental string can end, which implies that

the D-brane is a source for closed strings. The fivebrane is clearly not a source for closed

strings, however it is possible for D-branes themselves to end on the fivebrane, making it

a useful object to study. If we place the fivebrane in flat ten-dimensional spacetime then

it preserves exactly half of the supersymmetries, much like the D-branes. Therefore it is

again a half-BPS object. However we state without proof that it preserves a different half

of the supersymmetries to that preserved by the D-brane, and so if we place a fivebrane

and a D-brane so that they are parallel in the spacetime they will completely break the

bulk supersymmetry and a non-zero force should exist between them [21]. This means that

the D-brane will be attracted towards the fivebranes, and we can study the brane dynamics

using the Abelian DBI action.

In the main introduction we briefly explained the existence of the stable D-branes in

type II string theory, however there also exist unstable (or non-BPS) branes. In type IIB
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2.1. INTRODUCTION.

we saw that only branes of odd dimension were charged under the RR fields, however that

is not to say that even dimensional branes do not exist in the theory. In fact they do exist,

but are uncharged objects and hence unstable. This instability can be represented by the

presence of a tachyonic mode on the worldvolume of the brane and therefore described by

a theory of open strings. This was carried out in detail by Sen, where he examined the

condensation of this tachyonic mode using boundary conformal field theory. He conjectured

that the decay of D-branes can be completely described by tachyon condensation, and that

the energy difference between the tachyonic false vacuum and the true open string vacuum

should completely account for the tension of the decaying brane [28]. A simple way to study

this condensation process relies on the use of an effective action for non-BPS branes [31],

the bosonic sector of which can be written as follows

S = −Tp

∫

dp+1ξV (T )
√

−det(ηµν + ∂µT∂νT + λFµν) (2.1)

where V (T ) is the tachyonic potential for the open string mode T - which in this expression

has dimensions of length. This is an effective action describing the massless string modes

arising from the NS-sector of the theory, and can easily be generalised to non-trivial back-

grounds. This action forms the basis of most work on open string tachyon condensation,

and there is now a vast amount of literature dealing with this subject [28].

It was first suggested in [26] that this system is remarkably similar to the dynamics of a

Dp-brane in the fivebrane background, provided that the symmetry of the transverse space

is broken to become SO(4) → SO(3) × U(1) and the probe D-brane is confined to motion

along the S1. One can show that there exists a map between the Abelian DBI in this

background and the non-BPS DBI in a flat background, and is referred to as the Tachyon-

Radion correspondance. At its simplest level this correspondance allows us to identify the

condensation of the open-string tachyon with the dynamics of D-branes, at least at the

classical level. This leads to the possibility that we can formulate an alternative formalism

to describe the open string tachyon vacuum - which is currently only really understood

using String Field Theory.

In this chapter we will consider brane dynamics in a different background to the ones

presented in [21], namely that generated by a ring of NS5-branes 1. In fact the two back-

grounds are related to one another via a non-trivial space-time duality transformation. They

are also clearly related in the large distance limit, since the ring distribution will appear

to be pointlike to a sufficiently distant observer. We will first investigate the relativis-

tic dynamics of a brane in such a background, before later developing the tachyon-radion

correspondance.

1See [23] for other related work.
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2.2. THE NS5-BRANE RING SOLUTION.

2.2 The NS5-brane ring solution.

We wish to study the dynamics of a Dp-brane in the background gravitational potential

generated by a ring of k, static NS5 branes in type II string theory. In order to do so we

must first introduce the solutions for the background fields which were first obtained by

CHS [19]. The resulting expressions for the metric, dilaton and NS B-field are as follows

ds2 = dxµdx
µ +H(xn)dxmdxm

g2
s(φ)

g2
s

= e2(φ−φ0) = H(xn)

Hmnp = −ǫqmnp∂qφ (2.2)

where µ = 0..5 label coordinates parallel to the NS5-brane, roman indices m,n run over

the four transverse dimensions, whilst gs is the asymptotic value of the string coupling.

As usual Hmnp is the 3-form NS field strength for the B field, and H(xn) is a harmonic

function describing the location of the NS5 branes and which satisfies the Poisson equation

in the transverse space. The general solution for a total of k fivebranes located at arbitrary

positions with respect to a given origin, can be written as follows

H = 1 + l2s

k
∑

i=1

1

|x− xi|2
(2.3)

where ls =
√
α′ is the fundamental string length. This expression clearly simplifies when

the branes are all coincident, however we wish to investigate the dynamics of branes in

a slightly more complicated geometry such as that described by a ring of branes. The

harmonic function for the ring solution can be obtained from the extremal limit of the

rotating NS5 brane solutions, however this is generally a very complicated expression and

does not yield itself to simple analytic solutions.

We can consider a limit of this particular solution where we have a continuous and

uniform distribution of branes along a circle of radius R, which we can interpret as a

smearing of charge around a ring [20]. Essentially this means that k must be large and thus

the individual branes are not resolvable. The harmonic function in this ’continuum’ limit

is therefore given by

H = 1 +
kl2s

√

(l21 − l22 + x2
6 + x2

7 + x2
8 + x2

9)
2 − 4(l21 − l22)(x

2
6 + x2

7)
. (2.4)

where we have written the ring radius as R =
√

|l21 − l22|, which is oriented in the x6 −
x7 plane in the transverse Euclidean space. The full geometry under question originally

possesses an SO(1, 5)×SO(4) symmetry, however since we are considering a ring distribution

it is evident that this breaks the SO(4) symmetry down to SO(2) × SO(2). This suggests

that we should use polar coordinates rather than Cartesian coordinates to make full use of

20



2.2. THE NS5-BRANE RING SOLUTION.

the symmetry of the problem, as we can identify two distinct planes. Let us introduce the

following parameterisations for these planes

x6 = ρ cos(θ), x7 = ρ sin(θ) (2.5)

x8 = σ cos(φ), x9 = σ sin(φ),

and so the harmonic function in this instance reduces to the following expression

H(ρ, σ) = 1 +
kl2s

√

(R2 + ρ2 + σ2)2 − 4R2ρ2
. (2.6)

We now wish to probe this background using a Dp-brane, described by the DBI action.

This is possible provided that the probe brane does not back-react upon the ring geometry.

A way to ensure that this doesn’t happen is to take the limit k >> 1. Since 1/k is a

measure of the α′ corrections to the background, this limit ensures that the supergravity

approximation is reliable. Fortunately the NS5-brane solution exists for both type IIA and

IIB, so we are not forced to specify the dimensionality of the probe brane 2 We will orient

the probe parallel to the five-branes, and use the residual reparameterization invariance to

go to static gauge. As a result the transverse directions to the NS5 branes induce scalar

fields on the Dp-brane world volume, whose behaviour is described by the DBI action

S = −Tp

∫

dp+1ζe−φ
√

−det(Gµν +Bµν + 2πl2sFµν). (2.7)

where Tp is the Dp-brane tension, Fµν is the field strength for the U(1) gauge field, whilst

Gµν and Bµν are the pullbacks of the metric and the B field to the brane:

Gµν = ∂µX
A∂νX

BGAB (2.8)

Bµν = ∂µX
A∂νX

BGAB

Here A,B = 0, 1, 2, . . . , 9 run over the full ten dimensional bulk spacetime and GAB , BAB

are the bulk closed string fields.

2.2.1 Dynamics of the probe brane.

For simplicity we will be interested in homogeneous solutions to the equations of motion,

where the transverse scalars dependent only on time. This will also ensure that coupling to

the B field vanishes and so we will ignore it from now on. We will also consider a non zero

(but constant) electric field on the brane world volume, i.e F0m = Em. Note that nonzero

electric fields on the brane world-volume can be interpreted as dissolved (fundamental)

2However in the S-dual picture we have a ring of D5-branes and are thus in type IIB string theory, forcing
us to restrict our analysis only to odd dimensional branes.
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2.2. THE NS5-BRANE RING SOLUTION.

F1-strings. So we can write the induced metric on the brane as follows

Gµν = ηµν +H(xn)δ0µδ
0
ν(ρ̇

2 + ρ2θ̇2 + σ̇2 + σφ̇2) (2.9)

and upon substitution of this into the action (2.7) we obtain

S = −Tp

∫

dp+1ζ

√

H−1 − ρ̇2 − σ̇2 − ρ2θ̇2 − σ2φ̇2 −H−1F 2 (2.10)

where we have defined F 2 = EmEm as the constant electric field strength in dimensionless

units by absorbing the factors of λ = 2πl2s . Also we have assumed that F 2 is small in order

to obtain the relatively simple form of the action (2.10). The fact that we are using polar

coordinates implies that we can consider the probe brane motion in a two-dimensional plane,

which significantly simplifies the analysis and also allows us to include angular momentum

about the origin. From (2.10) we can deduce the following expressions for the canonical

momenta:

Πσ =
mσ̇

√

H−1(1 − F 2) − (ρ̇2 + σ̇2 + ρ2θ̇2 + σ2φ̇2)

Πρ =
mρ̇

√

H−1(1 − F 2) − (ρ̇2 + σ̇2 + ρ2θ̇2 + σ2φ̇2)

Lθ =
mρ2θ̇

√

H−1(1 − F 2) − (ρ̇2 + σ̇2 + ρ2θ̇2 + σ2φ̇2)

Lφ =
mσ2φ̇

√

H−1(1 − F 2) − (ρ̇2 + σ̇2 + ρ2θ̇2 + σ2φ̇2)
(2.11)

where m = Tp

∫

dpζ represents the effective ‘mass’ of the probe brane. In what follows it

will be useful to rescale these momenta to remove this mass dependence, and so we are left

with the following physical expressions

Π̃ρ = Πρ/m, Π̃σ = Πσ/m, (2.12)

L̃θ = Lθ/m, L̃φ = Lφ/m.

It now becomes a fairly straightforward procedure to calculate the canonical energy density

of the brane using the Legendre transform

Ẽ ≡ E

m
=

1

H
√

H−1(1 − F 2) − (ρ̇2 + σ̇2 + ρ2θ̇2 + σ2φ̇2)
, (2.13)

implying that in these conventions the energy is dimensionless. The above expression yields

the following equation for the motion of ρ and σ, using the fact that the energy must be
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2.2. THE NS5-BRANE RING SOLUTION.

conserved:

(ρ̇2 + σ̇2) =
(1 − F 2)

H(ρ, σ)
− 1

H2(ρ, σ)Ẽ2

(

1 +
L̃2

θ

ρ2
+
L̃2

φ

σ2

)

(2.14)

Since the RHS of this equation must be non-negative, it imposes constraints on the maximal

strength of the electric field. In order to see this we first set the angular momentum terms

to zero, implying that the following constraint must be satisfied due to the non-negativity

of the LHS:

H(1 − F 2) ≥ 1/Ẽ2. (2.15)

In order to determine the full constraint it is necessary to specify the trajectory of the

probe brane. Since our coordinate choice has broken the original SO(4) symmetry down

to SO(2) × SO(2), it is simpler to treat the dynamics as being confined to one or both of

these planes. We will consider the simplest scenario where the motion occurs in only one

plane i.e in the plane parallel to the ring (and inside the ring, where σ = 0), or in the

plane transverse to the ring (i.e ρ = 0)3. In the first instance setting σ to zero reduces the

harmonic function (2.6) to the following

H(ρ) = 1 +
kl2s

|R2 − ρ2| . (2.16)

Which can easily be seen to be singular at ρ = R when the probe brane hits the ring. Upon

insertion of the harmonic function into the constraint equation we find:

kl2s
|R2 − ρ2|(1 − F 2) − F 2 ≥ 1

Ẽ2
− 1. (2.17)

which tells us that F 2 must be less than unity, in agreement with what we expect from the

definition of the DBI action, and also that the energy density should be large. We can also

consider the case of motion transverse to the disk plane by fixing ρ = 0 and considering

motion in the σ plane. This gives us a new harmonic function, namely

H(σ) = 1 +
kl2s

|R2 + σ2| (2.18)

which can be seen to be nowhere singular as expected because the probe brane never will

never hit the ring. The constraint condition, however, is essentially the same as that for

the case of motion in the plane. Following on from the work of Kutasov [21] we will define

the general effective potential for the system to be the equal to the negative of the kinetic

term

Veff = −(1 − F2)

H(ρ, σ)
+

1

H(ρ, σ)2Ẽ2

(

1 +
L̃2

θ

ρ2
+

L̃2
φ

σ2

)

. (2.19)

3The most general solution would obviously correspond to motion in both planes simultaneously.
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2.2. THE NS5-BRANE RING SOLUTION.

In general this potential will give rise to interesting dynamical solutions, however we expect

to capture most of the important behaviour by restricting our analysis to planar motion.

The two most important cases are discussed below.

2.2.2 Probe motion in the ring plane.

As discussed previously the ring plane is identified with the coordinates ρ and θ, and the

harmonic function is given by (2.16). It is known that multiple coincident NS5-branes

produce an infinitely warped throat which is asymptotically connected to Minkowski space.

The region of interest for this geometry is essentially that of the throat and so we will define

the ’throat geometry’ as the solution where we neglect the factor of unity in the harmonic

function - which decouples the Minkowski part of the solution. In the case of the ring the

warped geometry is far more intricate, however for convenience we will refer to the throat

as the region near to the five-branes. In this instance we must ensure that kl2s >> R2 for

our analysis to hold near the origin.

Because of the circular distribution of theNS5-branes there are two disconnected regions

in the plane corresponding to the spacetime inside or outside of the ring. Of course, the full

equations of motion are complicated and need to be solved numerically (see later), but we

can make some progress by considering various approximating limits. Let us first consider

the case of ρ << R, which puts the probe brane very close to the centre of the ring, and

so we can essentially neglect factors of ρ in the expression for the harmonic function. The

equation of motion now reads

ρ̇2 =
(1 − F 2)R2

kl2s
− R4

Ẽ2k2l4s
. (2.20)

Recall that the electric field is a constant, and also the energy density Ẽ is a conserved

charge. This allows us to find the following solution (where we have dropped any constants

of integration in order to illustrate the dynamical behaviour)

ρ =
Rt√
kls

√

(1 − F 2) − R2

Ẽ2kl2s
, (2.21)

i.e is linear in the bulk time t. Thus at t=0 we expect the probe to be at the centre of the

ring, which is the furthest distance from the NS5 branes in the region under consideration,

and as time evolves it moves outwards due to the gravitational force from the fivebranes.

Obviously (2.21) will only be valid in the small ρ regime and so this solution can only be

trusted for early times. Furthermore, we can see that the solution becomes time independent

if the following constraint is satisfied

(1 − F 2) =
R2

Ẽ2kl2s
, (2.22)
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2.2. THE NS5-BRANE RING SOLUTION.

and the probe will always remain at the origin. This condition acts as a constraint on

the possible energy of the probe brane. For the moment let us set the gauge field to

zero, therefore for the brane to remain fixed at the origin requires Ẽ2 = R2/(kl2s), and

so Ẽ must be small in order to be consistent with our assumptions about the harmonic

function. Effectively this means that the self energy of the brane is exactly cancelling out

the attraction due to gravity. Including the non zero gauge field relaxes the constraint upon

the total energy of the brane, such that for a near critical field this condition can be satisfied

for larger values of the energy density. We shall not consider such a solution in this thesis,

as we are interested in purely dynamical situations.

We can also consider the regime where the probe is located far from the ring, i.e ρ >> R,

but with kl2s still larger than ρ. The equations of motion are now modified slightly to become

ρ̇2 =
(1 − F 2)ρ2

kl2s
− ρ4

Ẽ2k2l4s
, (2.23)

which gives us the solution

1

ρ
=

1

Ẽls
√

k(1 − F 2)
cosh

(

t
√

1 − F 2

√
kls

)

(2.24)

This is the same expression that Kutasov found for a probe moving in the background of

a stack of coincident NS5-branes [21], and reinforces our claim that the ring distribution

appears pointlike at large distances. The above solution informs us that at t = 0 the probe is

at its maximum distance from the sources, and as time evolves it is gravitationally attracted

towards the ring. Of course we must be aware that this solution is no longer valid in the

regime where the probe is near the ring, since the pointlike approximation will clearly no

longer be valid.

So far we have made decent progress by simply considering the asymptotic limits of

the solution, but in order to understand the ring background we must try and find explicit

solutions for the equation of motion in the region close to the ring. In order to do this we

have resorted to a numerical approach 4.

Consider first the case with Lθ = Lφ = 0. Figs 2.1 and 2.2 show numerical solutions for

the distance function ρ(t). In Fig 2.1 we have taken the dimensionless energy density to be

Ẽ = 0.6 and the electric flux F = 0 or F = 0.8. We have assumed a positive initial velocity

for the probe brane and a starting value of ρ outside the ring. (In this and all subsequent

plots we have taken kl2s/R
2 = 1 for simplicity). It is clear that in this case trajectories of the

probe brane are bound to the ring and cannot escape to infinity. The effect of turning on

the electric flux on the probe is to increase its ’effective mass’ which results in the maximum

distance away from the ring being reduced. Fig 2.2 is the same situation but with Ẽ = 1.5.

4In fact we can find interpolating analytic solutions, which will be discussed in a later section.

25



2.2. THE NS5-BRANE RING SOLUTION.

Figure 2.1: Plot of the radial coordinate ρ vs t, for Ẽ = 0.6, Lθ = Lφ = 0 and taking electric
flux F = 0, 0.8.

In this case both solutions describe a probe that can escape the ring and move to infinity,

the case with no electric flux having a greater escape velocity. This is to be expected since

we know that the presence of an electric field acts to reduce the velocity of the probe brane.

Similar plots for starting positions inside the ring (or trajectories where the initial velocity

is towards the ring starting from ρ > R) show trajectories that eventually hit the ring at

ρ = R although strictly speaking, one cannot follow these trajectories right to the ring

location as in this region there are large stringy effects which need to be included in the

analysis.

These solutions can be understood in terms of the effective potential Veff (ρ/R) plotted

for various values of Ẽ and F . Fig 2.3 shows four such plots, taking e.g. Ẽ = 0.6 or 1.5 and

F = 0 or 0.8. These plots cover the region from ρ = 0 at the centre of the ring, to values

outside.

2.2.3 Probe motion transverse to the ring plane.

As in the previous section we initially consider the situation when σ << R. The equation

of motion in this plane is similar to the one for motion in the ring plane, and we obtain the

solution

σ =
Rt√
kls

√

(1 − F 2) − R2

Ẽ2kl2s
. (2.25)
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2.2. THE NS5-BRANE RING SOLUTION.

Figure 2.2: Plot of the radial coordinate ρ
R vs t, for Ẽ = 1.5, Lθ = Lφ = 0 and taking

electric flux F = 0, 0.8.

Figure 2.3: Plot of the effective potential Veff vs ρ
R , for Ẽ = (0, 1.5), Lθ = Lφ = 0 and

taking electric flux F = 0.6, 0.8.
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2.2. THE NS5-BRANE RING SOLUTION.

Figure 2.4: Plot of the distance σ
R of the probe from the ring plane vs t, for Ẽ = 0.98, Lθ =

Lφ = 0 and taking electric flux F = 0. This describes motion of the probe through the
centre of the ring at ρ = 0

The same comments apply to this solution, except that in this instance the probe brane

is no longer moving towards the NS5 branes as time evolves, since it is moving in the

transverse plane to the ring. Again we must be aware that this linear solution is only valid

for small σ. If we now consider the case where σ >> R, then we can again imagine that at

large enough distances the ring distribution will appear pointlike and we expect to recover

a similar solution to that obtained in the previous section. This is indeed the case, and the

solution is
1

σ
=

1

Ẽls
√

k(1 − F 2)
cosh

(

t
√

1 − F 2

√
kls

)

(2.26)

Where the same comments must apply when considering the critical value of the electric

field.

Once again we can understand the solutions inbetween small or large values of σ/R by

using numerical methods. Given that a probe is attracted to the NS5 ring if it is positioned

above it, we might guess that a brane with small enough energy, falling towards the centre

of the ring from above the plane of the ring, would pass through its centre and then extend

below it to some maximum distance and then be attracted back through the centre of the

ring and so on. That is we might expect a special solution describing the oscillatory motion

of the probe through the ring centre. Such a solution should match on to the linear solution

described above when the probe is at a small distance either above or below the ring plane,

i.e when σ/R << 1. Fig 2.4 shows a plot of the numerical solution in this instance.
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2.2. THE NS5-BRANE RING SOLUTION.

Figure 2.5: Plot of Veff (ρ = 0, σ) relevant to the study of probe motion through the centre
of the ring. Ẽ = 0.98, Lθ = Lφ = 0, whilst the electric flux is taken to be F = 0, 0.6.

The linear behaviour of σ(t) as a function of t, for small values of σ/R is clearly evident

from Fig 2.4, and so matches our analytic solution. In this plot the probe starts from
σ
R = 1.3 at t = 0 and reaches a maximum distance below the ring of about 4.5R. After this

time the probe is attracted back up through the ring and the process repeats. The motion

thus describes oscillation between the two zeros of the effective potential Veff (σ) which

is plotted in Fig 2.5. What is also noteworthy about this particular solution is that it is

stable to stringy corrections since we can control the minimum distance the probe comes to

the ring by making the ring radius sufficiently large. In reality however, we know that the

D-brane carries charge which we would expect to be radiated away during this oscillatory

phase as closed string modes [21, 30].

In the plot of Fig 2.5 we have also shown the effect turning on some electric flux has

on Veff . It is clear that it results in making this potential more positive everywhere and

hence reduces the range and period of the oscillation through the center of the ring. What

is particularly interesting is that there exists a critical value of the flux F (in fact this

is around 0.6) beyond which oscillation is not possible and the probe is stuck at the ring

center. The existence of this critical value of the flux F (for a given fixed energy density

Ẽ) can easily be understood.

The energy density of a probe brane carrying flux F , which is at rest above the ring
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2.2. THE NS5-BRANE RING SOLUTION.

plane at distance σ (with ρ = 0) must satisfy the following equation

1

Ẽ2
− (1 − F 2)H(R,σ) = 0 (2.27)

where the harmonic function H(R,σ) is given in (2.18). Now we see that for given Ẽ,

turning on the flux, F , on a probe brane which was initially at some point σ above the

ring plane means that in order to satisfy this equation the probe has to move closer to the

plane, thus increasing the value of H(R,σ). But as we keep increasing F this cannot carry

on indefinitely as there is a maximum value that H(R,σ) can take (for fixed value of the

background charge), which is its value at the centre of the ring. Thus there is a critical

value of flux for a given Ẽ. Of course one has to bear in mind that we cannot make the

factor of 1−F 2 too small as we are assuming that our derivations are only perturbative in

F .

So far we have only considered radial trajectories with vanishing angular momentum,

at this point we must also consider the probe dynamics when the momenta are non zero.

2.2.4 Motion in the ring plane with L̃θ 6= 0

If we retain the angular momentum term in (2.14) we must try to solve the expression

ρ̇2 =
(1 − F 2)

H(ρ)
− 1

Ẽ2H(ρ)2

(

1 +
L̃2

θ

ρ2

)

(2.28)

As in the previous sections we begin by considering the limit ρ << R, which puts the probe

brane inside the ring. We find that the solution in this instance is given by the following

expression;

ρ2 = R2 t
2(Ẽ2kl2s(1 − F 2))2 − 2R2Ẽ2kl2st

2(1 − F 2) +R4t2 + Ẽ2k2l4s L̃
2
θ

Ẽ2k2l4s(Ẽ
2kl2s(1 − F 2) −R2)

(2.29)

This somewhat complicated expression reduces to (2.21) in the limit L̃θ = 0. At the opposite

end of the spectrum in the ρ >> R regime, we find that the solution is given by

1

ρ
=

1

Ẽ
√
kls

√

(1 − F 2) − L̃2
θ/kl

2
sẼ

2
cosh





t√
kls

√

(1 − F 2) − L̃2
θ

kl2sẼ
2



 (2.30)

which again reproduces the earlier result in the limit of no angular momentum, and shows

us that the momentum term has the effect of slowing the decrease of ρ in the t→ ∞ limit.

Furthermore this equation provides us with bounds on the angular momentum, since it

must satisfy the constraint

L̃2
θ < (1 − F 2)kl2sẼ

2. (2.31)
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If L̃θ saturates this bound then the only solution is 1/ρ = 0. Thus we see that increasing

the flux automatically leads to a reduction in the angular momentum. This is in agreement

with our intuitive picture of the flux providing extra mass on the brane.

In order to study trajectories of the full theory without resorting to the special limits

in ρ discussed above we again look to numerical solutions. We expect that solutions to

the full theory will describe the probe brane in an unstable orbit about the ring. This is

confirmed in Fig 2.6 which is a parametric plot in the (ρ, θ) plane of a solution which starts

at ( ρ
R = 1.1, θ = 0) at t = 0. In this plot we took Ẽ = 1.02, Lθ = 0.98R and F = 0.2

and we see the trajectory spiralling outwards from the ring. Starting with different initial

conditions would produce e.g. trajectories that spiral towards the ring (either starting from

inside or outside) and eventually ending on there.

Figure 2.6: Plot of brane trajectory in the x6 − x7 (i.e ρ, θ ) plane, for Ẽ = 1.02, Lθ

R = 0.98
and taking electric flux F = 0.2

2.2.5 Motion transverse to the ring plane with L̃φ 6= 0.

Since we expect the analytic solutions to be similar to those discussed in the ring plane, we

present the numerical solutions associated with this case.

Fig 2.7 shows the plot of Veff vs ρ
R with all other values as above. The same function

is also shown for Ẽ = 0.75, in which case the spiral trajectories cannot escape to infinity.

Figure 2.8 shows a 3-d plot of the effective potential for non-zero values for Lθ and Lφ

and Ẽ = 3.29 respectively. For this value of the energy we expect trajectories corresponding
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2.2. THE NS5-BRANE RING SOLUTION.

Figure 2.7: Plot of Veffvs
ρ
R with Ẽ = (0.75, 1.02), Lθ

R = 0.98 and taking electric flux
F = 0.2

Figure 2.8: A 3-d plot of Veff vs ρ
R and σ

R with Ẽ = 3.29, Lθ

R = 1.2,
Lφ

R = 1.4 and taking
electric flux F = 0
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to the probe brane moving away from the ring to escape to infinity, which corresponds to

Veff becoming negative at large distances in σ, ρ as can be seen in the plot. On the other

hand probe branes moving towards the ring feel a generic repulsion due to the presence of

a centrifugal barrier coming from the angular momentum terms in Veff . This would lead

to scattering of the probe brane off the ring which happens also in the case of point like

source of NS5-branes, in the presence of angular momentum. The plot also shows a ‘gap’ in

the centrifugal barrier located at the ring location σ = 0, ρ = 1 so that its possible for some

trajectories to still end on the ring itself (ignoring possible stringy corrections). A numerical

study is needed to distinguish these various possibilities. Unfortunately this requires solving

the full set of non-linear equations of motion for ρ, σ, θ and φ which requires methods that

go beyond those we used earlier. Nevertheless it would be interesting to explore the nature

of trajectories in this case.

2.3 Tachyon map.

The dynamics of a probe brane in the ring background were discussed in the previous section

using a combination of analytic and numerical methods. In this section we introduce the

concept of the ’tachyon map’, which we hope will shed new light on these solutions, and also

give us more understanding of the behaviour of the open string tachyon in string theory.

The reasoning for this was suggested by Kutasov [26] and extended by Sen [27], namely that

the rolling tachyon [28] and the late time dynamics of D-branes in non-trivial backgrounds

lead to vanishing of the spatial components of the energy-momentum tensor.

Upon substitution of the background metric into our DBI action (2.10) for time depen-

dent scalar fields, and setting the U(1) gauge field to zero (we will discuss non-vanishing

electric fields later) we obtained the following action

S = −Tp

∫

dp+1ζH−1/2
√

1 −H(ρ, σ)(ρ̇2 + σ̇2), (2.32)

where we have also set the angular terms to zero to consider purely radial motion. It is

important to remember that the action is only well defined if the higher order derivatives are

vanishingly small, i.e we are demanding that ∂t∂tρ ∼ 0. The crucial point is that this form

of the action is reminiscent of that describing the open string tachyon, which is governed

by a Born Infeld action of the form

S = −
∫

dp+1ζV (T )
√

1 + ∂µT∂µT , (2.33)

where V (T ) is the tachyon potential (there are also other actions describing the behaviour

of the open string tachyon 5 which are more appropriate in other regions of field space). We

5See [28] and references therein.
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are also absorbing factors of λ into the definition of the tachyon field to give it dimensions

of length. Using the techniques of boundary conformal field theory Sen argued that the

tachyon potential is an even, runaway function of T , with the maximum value occurring at

T = 0, and tending to zero as T → ±∞. One particular representation of this potential is

given by

V (T ) ∼ 1

cosh(T/T0)
, (2.34)

where T0 is a theory dependent constant.

In fact it is possible for us to define a map from one action to the other, whereby we

rescale our ’radion’ fields (ρ, σ) to become ’tachyonic’ fields with a potential given by

V (T ) =
Tp

√

H(ρ, σ)
. (2.35)

This mapping can be thought of as a worldsheet duality map. On one hand we begin with

a theory where there is a Dp-brane moving in the background of a ring of fivebranes, whose

solutions we have already analysed. Performing the tachyon map is equivalent to considering

a non-BPS brane moving in 10D Minkowski space, but now with a non-trivial, tachyonic

open string mode on its world-volume. This new mode is a Geometrical (or Geometric)

Tachyon, as it clearly has a geometrical origin. The string mode will be tachyonic in the sense

that it’s dynamics are governed by an unstable potential which forces the field to roll toward

the true vacuum - exactly as in the case for the open string tachyon. In fact we will treat this

Geometrical Tachyon as being as fundamental as the open string tachyon in the rest of this

chapter. One may ask about the justification for such a proposal. However it is clear that

once we start thinking in terms of the Geometrical Tachyon as a field in its own right, we can

use much of the technology associated with tachyon condensation to probe the dynamics of

the theory. This will also allow us to ’lift’ our theory back to the bulk supergravity picture

and shed new light on the fivebrane background. In addition it was shown by Kutasov how

to construct a theory which mimicked Sen’s tachyon potential using coincident fivebranes -

where the transverse symmetry was broken from SO(4) → SO(3) × U(1). The suggestion

was that this provided a geometrical origin for the open string tachyon [26]. Another reason

is that massive open string states have also been found using string field theory, which have

a potential of the form V (φ) ∼ exp(m2

2 φ
2) and so it may well be that there are a whole

class of other tachyonic theories, with different potentials, that remain to be discovered. In

any event, we expect that our analysis will shed new light on the conjecture by Kutasov,

and also be an alternative way of discussing brane dynamics in non-trivial backgrounds.

Referring back to our ring solution it is clear that we can consider 3 different types of

motion for the probe brane, namely motion in the ring plane with ρ < R, motion in the ring

plane with ρ > R and motion completely perpendicular to the ring plane. We will study

each of these cases separately for simplicity. In the following chapter we will often switch

between the tachyon picture (in Minkowski space) and the bulk supergravity picture (ring
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background) in order to better understand the physics of a given solution. We hope that

this will not confuse the reader.

2.3.1 Inside the ring.

Setting σ = 0 and assuming that ρ < R we find that the harmonic function reduces to

(2.16), where we are assuming the throat approximation

H(ρ) =
kl2s

R2 − ρ2
. (2.36)

Although the use of polar coordinates was employed in the first section it will actually be

more convenient to revert back to the full Cartesian form, where ρ2 =
∑

i x
2
i , i = 6, 7. It is

more usual to consider the tachyon mapping as being one dimensional, as this is essentially

the case for the open string tachyon. In what follows we will consider the brane to start at

xi = −R, and follow its motion through the origin until it reaches xi = +R i.e the entire

interior diameter of the ring. The tachyon map in this instance is given by the following

expression

T (xi) =

∫

√

H(xi)dxi, (2.37)

which can be trivially integrated to give

T (xi) =
√

kl2s arcsin(xi/R), (2.38)

and therefore the harmonic function written in terms of the Geometrical Tachyon field

becomes

H(T ) =
kl2s

R2 cos2(T/
√

kl2s)
. (2.39)

We know that ρ = 0 is an unstable point, since a probe brane initially located at the origin

will move toward the ring if perturbed due to its gravitational attraction, and from the

tachyon map we find that T (xi) = 0 at this point. The maximum values of the field are

therefore Tmax = ±π
√

kl2s/2, which occur when the probe brane strikes the ring, of course

we are neglecting stringy corrections which renders this limit invalid. The corresponding

potential for this Geometrical Tachyon field is given by

V (T ) = T unstable
p cos(T/

√

kl2s), (2.40)

where we are defining the unstable brane tension through the following expression

T unstable
p =

TpR
√

kl2s
. (2.41)
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It is interesting to note that the tension of the unstable brane at this point is proportional

to the radius of the ring. The tachyon potential clearly has its maximum at T = 0, and

tends to the value ±π
√

kl2s/2 as ρ → ±R, corresponding to the point where the probe is

attached to the ring. This agrees with the general descriptions of the potential proposed

in [28]if we consider kl2s >> 1 (strictly speaking this should be the kl2s → ∞ limit). The

potential contains the mass of this tachyonic field, which can be seen by expanding about

T = 0, corresponding to the perturbative vacuum. The resulting action is given by

S ≈ −
∫

dp+1ζT unstable
p

(

1 − T 2

2kl2s
+ . . .

)

√

1 − Ṫ 2, (2.42)

which implies that

M2
T = − 1

kl2s
.

Note that this is extremely small when compared to the usual (mass)2 term for the open

string tachyon, M2
T = −1/2 (in units where α′ = 1) due to the additional suppression by

the factor kl2s , which in the supergravity picture is simply the charge of the background

branes.

We can also calculate the components of the energy momentum tensor associated with

this tachyonic field which will become relevant later. The expression is exactly the same as

that for the open string tachyon, derived from the effective action

T00 =
V (T )

√

1 − Ṫ 2

Tij = −δijV (T )
√

1 − Ṫ 2, (2.43)

where the pressure goes to zero at late times as expected for tachyonic matter. This can

easily be seen since V (T ) tends to zero as the tachyon rolls towards either of its maximal

values.

2.3.2 Outside the ring.

In this case we have ρ > R and so the harmonic function simplifies to the following

H(ρ) =
kl2s

ρ2 −R2
. (2.44)

Using the same method of analysing the tachyon map as in the previous section, with xi ≥ R

and xi ≤ −R being the allowed range of the probe, we obtain

T (xi) = ln

(

|xi|
|R| +

√

x2
i

R2
− 1

)

. (2.45)
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This tachyon is clearly zero at the ring xi = ±R, and tends to ∞ as |xi| >> |R| in

accordance with our boundary conditions. For simplicity we split the solution into two

different branches, namely domains where |xi| >> |R|, and |xi| ≈ |R|.

T (xi) → ln

( |2xi|
|R|

)

|xi| >> |R|

T (xi) → ln

( |xi|
|R|

)

|xi| ≈ |R| (2.46)

and consequently the tachyon potential can be approximated by

V (|xi| >> |R|) =
R

2
√

kl2s

√

e2T − 4

V (|xi| ≈ |R|) =
R
√

kl2s

√

e2T − 1. (2.47)

This potential vanishes at T = 0 where the probe brane hits the ring, and as expected it

gives us a pressure-less fluid at late times. The form of the potential indicates that the

probe brane will be gravitationally attracted to the ring, which is what we would expect

from the analysis of the previous section. However if it is expanded for small T we find that

the field is actually massive, but we will continue to refer to it as a Geometrical Tachyon

field so as to avoid any possible confusion.

2.3.3 Transverse to the ring.

If we now consider the case of motion transverse to the ring, i.e with ρ = 0 and σ =
√

x2
8 + x2

9, the harmonic function becomes (2.18) where we have dropped the absolute value

notation as this is a strictly positive definite function

H(σ) =
kl2s

(R2 + σ2)
. (2.48)

Since, in the bulk picture, we are considering brane motion passing directly through the

origin of the ring, we again resort to Cartesian coordinates to parameterise the space.

Performing the tachyon map yields the following solutions as a function of xj , j = 8, 9.

T (xj) =
√

kl2sarcsinh(xj/R),

V (T ) =
R
√

kl2s
csgn

[

cosh(T/
√

kl2s)
]

cosh(T/
√

kl2s), (2.49)

where the csgn function is defined as follows

csgn[y] =
{ 1 Re(y) > 1

−1 Re(y) < 1
. (2.50)
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Thus we find that at T = 0 the tachyon potential is at a minimum, whilst for T → ±∞
we have V (T ) → ±∞. Immediately this suggests that the scalar mode must be massive,

i.e its mass2 is positive definite, mimicking the solution [82]. Furthermore the fact that

the potential has a clearly identifiable minimum allows for the prospect of field oscillation

around this point - which is obviously not realised in the case of the open string tachyon.

In our idealised scenario this oscillation can happen indefinitely since we are neglecting

stringy effects, however as we have already pointed out - a realistic analysis must account

for the emission of closed strings as the brane passes back and forth through the origin

which will modify our tachyon solution by a decay factor. Eventually the field will come

to reside at the minimum of the potential (the origin in the ring picture), which we know

to be the unstable point of the theory and thus susceptible to quantum fluctuations which

will destabilise the field.

In this section we have seen that the tachyon map can be defined in each of the three

solution branches, but that only in the case where we have motion inside the ring do we

actually recover a ’real’(i.e. negative mass2) field. We will examine this field in more detail

in the next section.

2.4 Geometrical Tachyon kinks.

Using our tachyon map we are able to map the open string ’radion’ to a Geometrical Tachyon

field. We want to argue that this is due to the fact that we are considering brane motion

in a compact, bounded space where the ring of NS5-branes acts as the boundary to the

solution located at the radial distance R from the origin. For future convenience we will

represent this field by T̃ rather than T , which we will reserve exclusively to denote the open

string tachyon. We will also write the unstable tension as being T u
p in order to simplify the

expressions. Let us recapitulate by considering the following action for our new tachyon

field, given by

S = −
∫

dp+1ζV (T̃ )

√

−det(ηµν + ∂µT̃ ∂ν T̃ + λFµν), (2.51)

where

V (T̃ ) = T u
p cos

(

T̃
√

kl2s

)

(2.52)

Note that this action is slightly different to that of the usual open string tachyon because

this is obtained from a duality map from a Dp-brane to a Dp-brane. In reality we know

that the tachyonic mode on a non-BPS brane occurs because we are embedding the brane

into the wrong theory - for example if we embedded a D2-brane into type IIB string theory.

The fact that the NS-fivebranes exist in both IIA and IIB, and are related to one another

only through a T-duality in the transverse directions, implies that our Geometrical action

can have the same dimensionality as the original probe brane action. Also note that we

have added the gauge field in by hand in order to make the action look the same as that
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for a non-BPS brane.

In general the scalar field will be a function of all the world-volume coordinates, however

for simplicity we will consider the case directly related to the rolling radion mode, namely

a time dependent field, and will also set the gauge field to zero. The energy momentum

tensor associated with such a tachyon field is given by (2.43) with T replaced by T̃ . We

could solve the full equations of motion to determine the dynamical behaviour of the tachyon

field, however it is far simpler to use the conservation of the energy momentum tensor

∂µTµν = 0, (2.53)

which shows us that the T00 component must be conserved in time. Strictly speaking this

should be the covariant derivative acting on the energy-momentum tensor, but as we are

in Minkowksi space with no gauge field this reduces to an ordinary partial derivative. This

allows us to write the first equation above as

V (T̃ )
√

1 − ˙̃T 2

= γ = constant. (2.54)

Upon substitution of the potential we can integrate this equation to determine the full time

dependence of the tachyon [29]. As an intermediate step we write

(∂tT̃ )2 +
V (T̃ )2

γ2
= 1. (2.55)

This expression tells us immediately that there are no kink solutions6 possible when the

following condition is satisfied
(

T u
p

γ

)2

> 1 (2.56)

using the classification in [29]. Additionally we see that if the above condition becomes an

equality, then the only solution we expect to obtain will be the trivial T̃ (t) = 0 - which is

the constraint that the probe brane is fixed at the origin when we revert to the bulk picture.

Performing the integral gives us, up to any arbitrary constants which we neglect,

sin(T̃ /
√

kl2s)
√

1 − u2 cos2(T̃ /
√

kl2s)
= Sn

[

t
√

kl2s
, u

]

(2.57)

where we have written u = T u
p /γ, and Sn is the Jacobi Elliptic function. Fortunately

this equation is invertible and we obtain the following solution for the evolution of the

6Timelike kinks usually correspond to S-branes [85], with a Euclidean DBI action. They are intimately
related to the open string tachyon, however we will not investigate the analogue of the Geometrical S-brane
in this thesis.
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Geometrical Tachyon.

T̃ (t) =
√

kl2s arcsin













Sn

[

t√
kl2s
, u

]√
1 − u2

√

1 − u2Sn2

[

t√
kl2s
, u

]













. (2.58)

Now using the conservation equation we see that at t = 0, T̃ = 0, which gives us a constraint

on the allowed values of the parameter u. In fact we find the velocity condition

(∂tT̃ )2 = (1 − u2), (2.59)

implying u lies in the range 0 ≤ u ≤ 1 in agreement with (2.56). We also remind the reader

that u = 1 corresponds to T̃ = 0, and that if u = 0 then the tachyon is moving at the speed

of light. Thus although our tachyon has negative mass-squared, it is still causal.

The solution (2.58) is effectively the solution to the full equation of motion for the Dp-

brane discussed in the first section. In that analysis we resorted to numerical simulation to

determine the probe brane dynamics, however using the tachyon map has yielded an explicit

solution for the whole region of parameter space consistent with our approximations (and

neglecting stringy effects). We plot solutions for various values of u in Figure 2.9. It is

interesting to see that in the u→ 0 limit, the motion of the probe brane is ultra relativistic.

Whilst for u→ 1 the probe accelerates toward the ring with much smaller velocities. This

solution is intuitively understood since, if there is tachyon rolling, the decreasing potential

must be compensated by an increase in the derivative in order for γ to remain constant

(unless, of course, the tachyon field is moving at the speed of light). Not plotted in this

figure is the T (t) = 0 solution, which corresponds to the probe brane being trapped at the

origin.

Recall that our solution in this region was valid between xi = −R and xi = R, indicating

that at some point the field must pass through the origin. Typically we expect this to give

rise to some kind of topological defect, which is precisely what occurs in the case of the open

string tachyon. In that instance the tachyon field yields a kink solution on the world-volume,

which can be interpreted in the effective theory as a co-dimension one object - namely a

D(p− 1)-brane. However the original action corresponded to a non-BPS brane, so once the

open string tachyon condenses the brane can become stable and will therefore become BPS.

Therefore it is interesting to find the equivalent relation in our picture, knowing that our

tachyon field has a potentially much smaller mass. We may expect to find a kink solution if

we consider the tachyon to be dependent upon a solitary spatial direction, namely T̃ = T̃ (x).
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Figure 2.9: Solution curves for the evolution of the time dependent tachyon T̃ with varying
values of u. The maximum value of the tachyon field is π/2, which corresponds to the
probe brane being stuck to the ring, thus the continuation of the curves beyond the time
this happens is unphysical. For simplicity we have set

√

kl2s = 1.

In this case conservation of the energy momentum tensor implies

V (T̃ )
√

1 + (∂xT̃ )2
= γ = constant. (2.60)

An initial inspection of this equation reveals that there is no kink solution if u < 1, and that

if this constraint becomes an equality then again, the only solution will be T̃ (x) = 0. From

the conservation equation we expect that γ will be zero. This is because a kink solution

requires T̃ (x) = ±π
√

kl2s/2 for x 6= 0, and consequently the potential must be zero. This

implies that γ is zero since the derivative of T̃ will be finite. At x = 0 we find that the

derivative term blows up in the denominator of the energy momentum tensor, and so once

again we find that γ → 0. It will transpire that γ corresponds to the width of the kink, and

since we expect it to be zero this implies that a BPS D(p − 1) brane has zero thickness.

This discussion has actually been general, and is also valid for the open string tachyon.

If we now proceed with our integration, we find that the solution is given by

T̃ (x) =
√

kl2s arcsin

(√
u2 − 1

u
Sn

[

xu
√

kl2s
,

√
u2 − 1

u

])

, (2.61)

where once again we have defined u = T u
p /γ and Sn is the Jacobi elliptic function. Now we

make an important observation. For small γ we find u >> 1 and so the second term in the

Jacobi function can be approximated by unity. Using the properties of Sn, namely that

Sn(z, 1) = tanh(z), (2.62)
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our expression for the tachyon reduces to

T (x) =
√

kl2s arcsin

(

tanh

[

xu
√

kl2s

])

. (2.63)

This is clearly a kink solution which interpolates between ±
√

kl2sπ/2 due to the arcsin

function, for non-zero x, whilst at x = 0 we find T (x) = 0. Furthermore by differentiating

the full solution (2.61) we find that at x = 0 we have

(∂xT̃ )|x=0 =
√

u2 − 1 (2.64)

This can be made infinite by sending u to infinity, and so we recover the usual solution for

tachyonic kinks as in the case of the open string tachyon. In terms of the bulk picture, this

corresponds to a brane attached to the ring at −R for x < 0, and at +R for x > 0. At x = 0

we obtain the usual soliton solution which stretches across the entire diameter of the ring.

This kink solution is interesting since the Geometrical Tachyon only oscillates between the

two zeros of the potential, and not the two minima. The open string tachyon also has this

behaviour, but it has a runaway potential which is effectively of zero width, whereas the

Geometrical Tachyon potential is clearly of finite width. This is not the case for topological

defect solutions in field theory, which tend to stretch from one minima to another in order

for them to be stable. Furthermore we can compute the energy density E of the kink using

E =

∫ ∞

−∞
dxV (T̃ )

√

1 + (∂xT̃ )2. (2.65)

In the large u limit we obtain, after some algebra

E = T u
p

√

kl2s

∫ ∞

−∞
dy sech2(y)

= 2T u
p

√

kl2s

= 2RTp. (2.66)

Clearly the energy corresponds to a kink solution which is stretched across the diameter of

the ring. If we compare this to the energy bound we find

T kink
αβ = −ηαβ

∫ π
√

kl2s/2

−π
√

kl2
S
/2
dT̃ V (T̃ ), (2.67)

which reduces to

Tαβ = −2ηαβT
u
p

√

kl2s . (2.68)

Thus we can see that both integrals yield the exact same result, implying that this is indeed

the lowest energy configuration for the solution.
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We now investigate what happens when we couple an electric field to the kink to create

a charged soliton. For simplicity we choose a constant electric field which is perpendicular

to ∂xT̃ , so e.g. Ei = Eδik where xk 6= x Expanding the action (2.51) for small λ, and

incorporating the factors of l2s into the field definition allows us to write the components of

the energy-momentum tensor as

Tαβ = −ηαβV (T̃ )

√

1 −E2 + (∂xT̃ )2

Txx =
V (T̃ )

√

1 − E2 + (∂xT̃ )2
. (2.69)

There will also be a constant conserved displacement field, which can be derived by varying

the action with respect to Ȧk.

D =
EV (T̃ )

√

1 − E2 + (∂xT̃ )2
. (2.70)

We note that using a perturbative expansion in λ allows us to consider E → 1, where E = 1

is the critical value for the field. Using the conservation of Txx we can write

E =
D

γ
= constant. (2.71)

The presence of the electric field modifies the kink solution only slightly, and in fact we find

the following expression for the scalar profile

T̃ (x) =
√

kl2sarcsin

(√
u2 + E2 − 1

u
Sn

[

xu
√

kl2s
,

√
u2 + E2 − 1

u

])

. (2.72)

There is an interesting case where the electric field takes its critical value, as we no longer

have to consider the large u limit in our solution since it reproduces (2.63) exactly 7. This

generally implies that the kink solution can be non-singular. If we allow u = 1 in the full

solution (2.72), then the tachyon is entirely dependent upon the electric field, E. In fact it

reduces to

T (x) =
√

kl2s arcsin

(

ESn

[

x
√

kl2s
, E

])

. (2.73)

Using the expansion properties of the Jacobi function we find that for E close to unity, we

have a solitary kink solution of finite width, whilst for small E we find an tiny array of

small kink-antikink solutions which have period x = 2nπ
√

kl2s .

We want to know which of these solutions are stable, so we must integrate the energy

7Although we have to be careful about the validity of our action in such a limit.
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momentum tensor over the x direction on the world sheet. The final result valid for all u is

Tαβ = −2ηαβT
u
p

√

kl2sEllipticE

(√
u2 + E2 − 1

u

)

, (2.74)

where we have used the periodic properties of the Jacobi functions. This clearly shows us

that the minimum energy configuration occurs when

(u2 + E2 − 1)

u2
= 1 (2.75)

which implies that u → ∞ or E = 1, with u being arbitrary. The first case corresponds to

the uncharged kink solution of infinitesimal width, implying that the electric flux is diluted

to the point where it is effectively zero. The second solution requires that the electric field

takes its critical value, and the resulting kink solution can be deformed to one of finite

width. Furthermore all the possible kink configurations will have the exact same energy.

Thus the introduction of electric flux introduces a fixed point into the theory, since a small

electric field will find it energetically more favourable to increase to its maximum size. This

tells us that the stable kink solutions will either be uncharged, or fully charged under the

U(1) gauge field. By this we mean that the stability requires either a zero field, or a critical

field.

Interestingly in the time dependent kink solution with critical field strength, we find

that T̃ (t) =
√

kl2sπ/2 for all time, corresponding to the probe brane being permanently

attached to the ring in the bulk picture. Physically this is to be expected since flux on the

brane effectively increases the ’mass’, forcing the probe further into the throat generated

by the fivebranes.

2.5 Dynamics of Non-BPS branes.

The existence of the unstable Dp-brane at the point ρ = 0, σ = 0 is reminiscent of a Non-

BPS brane. Thus it is also useful to consider the coupled dynamics on a Non-BPS brane

in this ring background along the lines of [22]. Recall that a Non-BPS Dp-brane is related

to a BPS D(p − 1)-brane, since the latter is a soliton solution on the world-volume of the

former. The Non-BPS brane action is similar to the usual DBI governing the behaviour

of the BPS Dp-brane, except that it has a tachyon on its world-volume, and an additional

tachyon potential controlling the overall brane tension. The action8 is of the form (2.33)

S = −
∫

dp+1ζV (T )
√

−det(Gµν + ∂µT∂νT ). (2.76)

8Note that we choose this form of the action rather than the alternative proposal in Kutasov [31], since
the form of the harmonic function makes it difficult to find space-time symmetries. It would be interesting
to look for symmetries, if any, using the alternative form of the action, and compare the results to those
obtained in the following section.
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The form of the action suggests that the tachyon is effectively playing the role of an extra

direction in field space. We shall insert this brane into the NS5-ring background and

examine the dynamics. Now there will be two scalar fields present, the open string tachyon

and also the radion field parameterising fluctuations of the brane in the transverse directions.

The action for this system becomes, upon using (2.2)

S = −
∫

dp+1ζ
V (T )√
H

√

−det(ηµν +H∂µXm∂νXm + ∂µT∂νT ). (2.77)

Where we employed the static gauge, and Xm are the transverse scalars on the world-

volume. We now use the tachyon map to redefine the radion field, recalling that T̃ is the

geometrical tachyon the action becomes:

S = −
∫

dp+1ζV (T, T̃ )

√

−det(ηµν + ∂µT∂νT + ∂µT̃ ∂ν T̃ ). (2.78)

Note that we are able to couple the two tachyon potentials together into product form,

with V (T, T̃ ) = V (T )Ṽ (T̃ ), Ṽ (T̃ ) being the potential of the Geometric Tachyon. This is

already suggestive of something interesting. The Geometrical Tachyon potential is that

already derived in (2.40). We have implicitly assumed that the fields do not mix at the

leading order classical level in order to justify the tachyon mapping. This is actually a highly

non-trivial step since we are demanding that only half the scalar fields transform under this

mapping operation. We will try and remain general about the form of the tachyon potential

V (T ) by insisting that it meets the criteria described in the previous section. Note that this

behaviour is easily satisfied by the 1/ cosh(T/
√

2) potential which is valid for the superstring

tachyon in units of the string length. In addition we note that the form of the action allows

the two tachyons to decouple from each others equation of motion. Thus we may look at the

dynamics by explicitly solving these equations, or by conservation of the energy momentum

tensor.

The form of the action in (2.78) suggests that we could obtain this action by demanding

that the open string tachyon is a complex field, where we have factorised the tachyon into

its real parts. As such this suggests that the best way to carry out our analysis should be to

(re) introduce a complexified field given via U = T + iT̃ This is usually done when we have

a Dp and a D̄p-brane and are looking for vortex solutions [28], since the brane/anti-brane

pair will annihilate with each other to form co-dimension two objects such as fundamental

strings and D1-branes (or D-strings). One can see this from K-theory which tells us that

only objects of even co-dimension can form in such a process.

This is interesting in its own right, however for simplicity we will consider the evolution

of the two fields separately to emphasise their differing origins. We can now proceed with

our analysis of solutions to the equations of motion for the non-BPS action.
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2.5.1 One spatial direction.

To begin with we will consider the simple case where T = T (x) and T̃ = T̃ (x), where x is

an arbitrary direction on the world-volume. Here and in the remainder of the section we

shall set l2s = 1. Denoting the derivative with respect to x by a prime, we can write the

action as follows.

S = −
∫

dp+1ζV (T, T̃ )
√

1 + T
′2 + T̃

′2 (2.79)

which allows us to calculate the associated energy momentum tensor, with components

Tαβ = −ηαβV (T, T̃ )
√

1 + T
′2 + T̃

′2

Txx =
−V (T, T̃ )

√

1 + T ′2 + T̃ ′2
(2.80)

Where α, β run over the 0, 2 . . . p − 1 directions perpendicular to x. We will assume that

the open string tachyon has the usual kink solution, namely that as x→ ±∞, T (x) → ±∞
and V (T ) → 0. Using the conservation of the energy momentum tensor, ∂xTxx = 0 ∀x, we

see that this is automatically satisfied by the kink solution since the open string tachyon

component of the potential rolls to zero as the tachyon condenses. Furthermore, this is true

irrespective of the behaviour of the Geometrical Tachyon since they are decoupled fields.

In fact it turns out that the xx component of the tensor must vanish for all x, not just the

derivative. In any case, this physically corresponds to the appearance of a co-dimension one

brane located at the origin of the ring, which is just the BPS D(p− 1) probe brane used to

probe the background. Alternatively we may find that it is the Geometrical Tachyon which

condenses first, in which case the brane will be stretched across the diameter of the ring

leaving an unstable soliton at the origin. It would be interesting to see what happens when

both fields condense at the same time as this is the more general expectation - however the

resulting analysis is complicated.

2.5.2 Two (or more) spatial directions.

We can now extend the analysis to consider dependence upon two (or more) spatial direc-

tions, namely T = T (x), T̃ = T̃ (yj), where j = 2 . . . p + 1. The associated components of

the energy momentum tensor in this instance are

Tαβ = −ηαβV (T, T̃ )
√

(1 + (∂xT )2)(1 + (∂yj
T̃ )2)

Txx = −V (T, T̃ )

√

1 + (∂yj
T̃ )2

√

1 + (∂xT )2

Tyjyj
= −V (T, T̃ )

√

1 + (∂xT )2
√

1 + (∂yj
T̃ )2

(2.81)
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Now we find there are two conservation conditions, ∂xTxx = 0 and ∂yj
Tyjyj

= 0. These

simply state that Txx is independent of x and Tyjyj
is independent of the yj’s. We look

for the usual tachyon kink solution in the x direction, which satisfies both conditions in

the limit that x → ±∞. At the point x = 0 we expect that the derivative of the tachyon

field becomes infinite, which means that Txx vanishes. But there is still the conservation of

Tyjyj
to consider. In order for this to hold for all yj we must ensure that Ṽ (T̃ ) → 0, which

means that the Geometrical Tachyon must also condense. But this tachyon also has a kink

solution associated with it, and so the conservation conditions are automatically satisfied.

We know that the condensation of the open string tachyon yields a BPS D(p−1) brane,

but we may well enquire about what the subsequent condensation of the geometrical tachyon

correspond to? Naively we may assume that it gives rise to a Non-BPS D(p−2)-brane, but

this brane would be unstable and have no tachyonic modes left which could condense and

stabilise it. Therefore we must look for an alternative explanation

More generally, using the factorization properties of the Non-BPS brane action, we may

write the brane descent relations for both kink solutions and find the total energy,

E =

∫ ∞

−∞
V (T )dT

∫ π
√

k/2

−π
√

k/2
Ṽ (T̃ )dT̃ . (2.82)

In order to do this integration we must first specify the form of the open string tachyon

potential, which we will take to be

V (T ) =
T non

p

cosh( T√
2
)
. (2.83)

with T non
p the non-BPS brane tension. The first integration yields

E = π
√

2T non
p

∫ π
√

k/2

−π
√

k/2
Ṽ (T̃ )dT̃ (2.84)

However we have already seen that the configuration of the BPS D(p-1) brane is itself

unstable due to the geometrical tachyonic mode also forming a kink. If we integrate over

this potential we find

E = 2πRT non
p

√
2 (2.85)

This can be written as

E = (2RTp) × 2π (2.86)

where we have used the relation T non
p =

√
2Tp, Tp being the usual BPS D-brane tension.

One possible interpretation of the form of the energy (2.86) is as follows. The first factor in

(2.86) is the energy of D-brane stretched along the diameter of the ring which we calculated

earlier (2.66). The additional factor of 2π can be thought of as coming from ’smearing’ the

stretched brane around the inside of the ring. Thus the process of condensation acts to
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deform the brane when we view it in the bulk picture.

2.5.3 Space and time dependence.

Let us now consider mixed dependence for the two fields. We will assume that the Geo-

metrical Tachyon is time dependent, whilst the open string tachyon is spatially dependent.

This allows us to write the the components of the energy momentum tensor as follows

T00 = V (T, T̃ )

√

1 + (∂xT )2
√

1 − (∂0T̃ )2

Tij = −δijV (T, T̃ )

√

(1 + (∂xT )2)(1 − (∂0T̃ )2)

Txx = −V (T, T̃ )

√

1 − (∂0T̃ )2
√

1 + (∂xT )2
. (2.87)

We again appeal to the conservation equations to determine the behaviour of the kink

solution. If we assume there is a kink in the x direction, then we find that there are only

two possibilities for the Geometrical Tachyon. We either have a kink in the time direction,

or the field must condense. Since we have already established that there is no stable kink

solution, we again find that the tachyon condenses, and this implies that the Dp-brane

moves toward the ring in the bulk picture. Looking explicitly at the conservation equation

for the Txx component we find the expected decoupling behaviour

∂x

(

V (T )
√

1 + (∂xT )2

)

= 0. (2.88)

This allows us to integrate the equation to determine the x dependence of the open string

tachyon, provided we specify the explicit form of the potential. If we choose the usual form

(2.83) then upon integration we obtain the solution

sinh

(

T√
2

)

=

√

1 − p2

p
sin

(

x√
2

)

(2.89)

where p is an arbitrary constant of integration. If we now substitute for ∂xT in the T00

component of the stress tensor we find

T00 =
Ṽ (T̃ )

√

1 − (∂0T̃ )2)

p

p2 + (1 − p)2sin2
(

x√
2

) . (2.90)

This is the same result that Kluson derived for branes moving on a transverse R3 ×S1 [22],

and can be interpreted as an array of D(p− 1)-branes and D(p− 1)-antibranes. Since there

is a map between the rolling of the time dependent Geometrical Tachyon and the motion

of a probe Dp-brane we can see that these branes simply move toward the ring i.e they are
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gravitationally unstable as one would expect.

2.6 Compactification in a transverse direction.

In [26] Kutasov established the relationship between BPS and Non-BPS branes by compact-

ifying one of the transverse directions in the coincident NS5-brane background. Since we

have already seen that Geometric Tachyons can exist when the brane is probing a compact

space, we may well enquire if there will be tachyonic modes if we compactify one of the

transverse directions in the ring background.

Due to the symmetry of the transverse space, it is easiest to consider a compactification

in the σ plane. We remind the reader that the harmonic function in this case is given by

(2.18). We will choose to compactify the x8 direction into a circle of radius L. The resultant

expression for the harmonic function becomes

H =
∞
∑

m=−∞

kl2s
(R2 + x2

9) + (x8 − 2πLm)2
. (2.91)

This sum is easy to do, since it is very similar in form to the one in [26, 27], and we obtain

the final form of the function

H =
kl2s

2L|z|
sinh(|z|/L)

(cosh(|z|/L) − cos(y/L)),
(2.92)

where we have defined z =
√

R2 + x2
9 and y = x8. In this form the harmonic function

is exactly the same as that for a coincident fivebrane background where we compactify a

direction within the S3 onto a S1 , except that if we set the x9 fields to their minimum

value we find z = R.

As usual we insert a Dp-brane into this background and then perform the tachyon map

which leads to the following solution for the Geometrical Tachyon field

T̃ (y) =

√

2Lkl2s sinh(|z|/L)

|z|(1 + a)
EllipticF(δ, r) (2.93)

where EllipticF is the incomplete elliptic integral of the second kind and we have made the

following definitions:

a = cosh(|z|/L)

δ = arcsin

(
√

(1 + a)(1 − cos(y/L))

2(a− cos(y/L))

)

(2.94)

r =

√

2

1 + a
.
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By setting the x9 fields to zero we see that the behaviour of the tachyon is dependent

upon the ratios R/L and y/L. We can see that as y → 0, the numerator of δ → 0 and

using the properties of elliptic integrals we find that T̃ → 0. This is to be expected since

Kutasov [26] essentially argues the same thing, namely that the tachyon starts at some

initial value T̃ = T̃max at the point y = πL, and then rolls toward zero as y → 0. However

we see that there is also the ratio R/L in the tachyon solution, which we would expect to

explicitly determine the value of T̃ since this term dominates the cosine term associated

with the motion around the compact dimension. We can calculate the maximum value for

the tachyon

T̃max =

√

2Lkl2s sinh(R/L)

R(1 + cosh(R/L))
EllipticK

(√

2

1 + cosh(R/L)

)

, (2.95)

where we have introduced the elliptic integral of the first kind. We can make some approx-

imations to determine the behaviour of the field. Firstly we take the limit R/L << 1

T̃max ≈
√

2Lkl2s sinh(R/L)

R(1 + cosh(R/L))
ln

(

4

√

1 + cosh(R/L)

cosh(R/L) − 1

)

(2.96)

which can be seen to tend to infinity. In the converse limit we can approximate the tachyon

field by

T̃ ≈
√

2Lkl2s
R

arcsin

(
√

a(1 − cos(y/L))

2(a− cos(y/L))

)

. (2.97)

which yields a maximum value of

T̃max ≈
√

2Lkl2s
R

π

2
, (2.98)

and will roll to zero as y → 0. Clearly the maximum value of the tachyon field will be

determined by the exact ratio of R/L and also the number of source branes.

We can also determine the tachyon potential in this instance by inverting the solution

(2.93). After some manipulation using elliptic functions we obtain

Ṽ (T̃ ) =

√

2LR

kl2s sinh(R/L)

√

(1 − a)(1 + a)

1 − a− 2Sn2[∆(T̃ ), r]
. (2.99)

where a and r are the same as before, whilst ∆(T̃ ) is defined to be

∆(T̃ ) = T̃

√

R(1 + a)

kl2sL sinh(R/L)
.

This is a complicated potential, and does not yield simple analytic solutions. Furthermore

we see that it is not defined for R/L << 1 or even R ≈ L due to the presence of the Jacobi

50



2.7. DISCUSSION

function in the denominator. Thus, it is only valid for the R/L >> 1 case and we must also

assume that the tachyon never becomes too large! The potential can only be zero if L = 0

which means that the compact dimension is of zero size, and a probe brane moving along it

will be essentially stuck at the origin. For all other values of R and L the minimum of the

potential is at some fixed non-zero value. The unstable maximum of the potential should

occur when T̃ = T̃max. For the case when R/L >> 1 we find that

Vmax(T̃ ) ≈
√

2LR cosh(R/L)

kl2s cosh(R/L) + 2T̃ 2R
. (2.100)

As the tachyon field decreases, the potential decreases, passing through its minimum at

T̃ = 0 which in the brane picture corresponds to the probe passing through the origin.

Thus we anticipate that the tachyon field in this instance will be massive, as it was for the

case in an earlier section. This again suggests that we will obtain massive fields when we

compactify, unless the compact space is bounded by fivebranes.

Compactifying one of the directions in the plane of the ring is also possible, however

we will not consider it here. The main difficulty lies in the fact that there is a crossover

between harmonic functions in different regions of the covering space, but there is also the

additional problem of the complicated form of the functions. It appears likely that there

will be a geometrical tachyon in this instance when the probe is confined to the region

y = R . . . 2πL −R, since it is bounded by NS5 branes. But there is also the possibility of

new Geometrical Tachyons in the region 2πL−R . . . R which should map onto the tachyon

field discussed earlier. Once again we would expect the ratio R/L to fully specify the scalar

dynamics.

2.7 Discussion

In this chapter we have investigated the dynamics of probe branes in a non-trivial back-

ground, and shown how this leads to an alternate description in terms of a tachyonic field.

In particular we have focused on the fivebrane ring solution, which extends the work of

[21]. Most of the dynamical trajectories are attracted to the ring, however we found an

interesting oscillatory solution which is stable to stringy corrections. The dynamics of the

brane are more easily described in terms of the Geometrical Tachyon solution, obtained by

mapping the BPS D-brane action to that of a non-BPS brane in flat space.

If we restrict ourselves to dynamics in the plane (and inside) of the ring, then we find

a Geometrical Tachyon, which has a mass2 given by m2 = −m2
s/k, which is significantly

smaller than that associated with the usual open string tachyon in the large k limit. The

dynamics in the transverse direction, or outside of the ring and in the ring plane, could be

mapped to massive scalar fields on the worldvolume. Therefore it appears that the tachyonic

nature of the scalar field is entirely due to the trajectory of the brane being bounded so
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that there exists a Z2 symmetry. We then restricted ourselves to a more detailed analysis of

the Geometrical Tachyon using the methods proposed in [29]. We found that the solution

admits similar co-dimension one defects to those obtained in the case of the open string

tachyon, and therefore suggests a novel description for the process of tachyon condensation.

The corresponding kink solution also appears to have a geometrical description in terms of

the fivebrane background, although the width of the kink was found to be significantly larger

than those associated with the open string tachyon, and also more sensitive to the strength of

any coupled gauge field. We also discussed a hybrid theory where the Geometrical Tachyon

and open string tachyon were coupled together in a modified non-BPS action.

The main objective of this chapter was to emphasise the tachyon-radion correspondance

using a non-trivial but highly geometric background. The correspondance relates the dy-

namics of Dp-branes with the condensation of an open string tachyonic mode on a non-BPS

Dp-brane. In fact these two descriptions are thought to be equivalent through a new con-

jecture due to Sen [27], and based on the original proposal by Kutasov [26]. Recall that

the string background is taken to be the coincident fivebrane background, where one of

the transverse directions is compactified on a circle of radius r. The Geometrical Tachyon

corresponds to a Dp-brane located on this circle at the point πr, and moving towards the

fivebranes. It has a negative mass2 given by m2 = −m2
s/k

2 exactly as in our solution. In the

language of Sen the Geometrical field is known as G-type, whilst the open string tachyon

on a non-BPS brane in flat space is known as U -type. If we take the limit of k → 2 of the

G-type solution, then we recover the U -type solution which suggests that they are different

descriptions of the same underlying theory. However we know that the α′ corrections to

the DBI action vary like 1/k, which implies that one cannot naively take the k → 2 limit.

Fortunately Sen identified a third kind of solution known as S-type, which corresponds

to a non-BPS brane in the coincident fivebrane background, which wraps the transverse

circle. His conjecture is that this S-type solution is exactly dual to the G-type solution.

The interesting feature is that one can safely take the k → 2 limit of the S-type theory,

and therefore there is indeed a direct relationship between the G-type solutions and the

open string tachyon. This is important because the tachyon vacuum in the G-type solution

corresponds to a D-brane localised in the core of the NS5-branes, and therefore using the

conjecture, we may learn something new about the U -type vacuum.

This conjecture has been applied to the original configuration due to Kutasov, however

it has not been developed in the ring case. We would expect the conjecture to hold however,

since the coincident fivebrane background is clearly related to the ring background, and in

fact can be mapped to it in the near horizon region 9. The S-type solutions in this case would

correspond to non-BPS branes wrapping the radius of the ring - between the fivebranes.

However a more detailed analysis of this scenario remains an outstanding problem.

9However there are some technical issues involved with this mapping.
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CHAPTER 3

COINCIDENT D-BRANES AND THE

NON-ABELIAN DBI ACTION

3.1 Introduction

One of the most interesting and possibly most phenomenologically important aspects of

D-brane physics is that each brane carries a U(1) gauge group. As demonstrated in the

previous chapter, one can learn a great deal about the classical dynamics of solitary branes

in various supergravity backgrounds - which also implies that we are learning about the

dynamics of U(1) gauge theory. However the Standard Model of particle physics is not a

simple Abelian gauge group, instead it is the non-Abelian group SU(3) × SU(2) × U(1) 1.

Therefore it is important that non-Abelian gauge groups can be realised in a string theory

context, which is possible using multiple coincident branes. However the full description of

multiple branes is still unresolved

The work in this chapter will study the dynamics of multiple branes in various brane

backgrounds, where we again use the probe approximation to simplify the analysis. We

will also study multiple non-BPS branes in these backgrounds, which have the additional

complication of open string tachyon fields on their worldvolume. After this we will write

down the dynamical solutions valid for more general backgrounds, with and without world-

volume gauge fields. We will also construct the microscopic and macroscopic descriptions

of the D1-D3 intersection in the general case. Finally we will discuss a relevant physical

application of the non-Abelian DBI action when we develop a model of cosmic (p, q)-strings

in the Warped Deformed Conifold.

3.1.1 The Non-Abelian DBI action.

To begin this section we will introduce the effective action for N coincident Dp-branes. As

branes approach one another we know that the massless string states form representations

of a U(N) gauge group. We can see this in a simple example where two branes approach

one another, which we denote by [1] and [2]. At large distances the 1 − 2 and 2 − 1 strings

are massive and dominate the dynamics giving rise to a U(1)2 gauge theory. There are also

massless 1 − 1 and 2 − 2 string states which start and end on the same brane and have

1In fact there is also an additional discrete Z6 subgroup required for invariance of all the SM fields.
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a negligible contribution. Once the branes reach the order of the string scale, the 1 − 2

and 2 − 1 strings also become massless and therefore combine with the 1 − 1 and 2 − 2

strings to form four (i.e 22) massless modes, which is the dimension of the group U(2).

Thus we have an enhancement of the symmetry from U(1)2 → U(2) as the branes coalesce.

Generalising this, we anticipate that for N branes we should find the symmetry enhanced

from U(1)N → U(N). This is a non-Abelian gauge group and so we have the following

transformation for the world-volume vector field

Aa = Ai
aTi Fab = ∂[aAb] + i[Aa, Ab] (3.1)

where Ti are N2 generators satisfying Tr(TiTj) = Nδij . The scalar fields must also now

transform under the gauge group, where we choose them to transform in the adjoint repre-

sentation. Gauging the symmetry implies that the covariant derivative is now

Daφ
i = ∂aφ

i + i[Aa, φ
i]. (3.2)

If the scalars commute with each other then we may simultaneously diagonalise them. The

resulting eigenvalues can be interpreted as being the individual positions of each of the N

branes [33]. Therefore even though the scalars in the non-Abelian DBI are matrix valued,

they still allow us to interpret them as fluctuations of the branes in analogy with the Abelian

description. However the fact that the transverse scalars are matrix valued suggests that we

should consider space-times with non-commutative geometries, which is a generalisation of

the more familiar commutative (classical) geometry. In fact calculations involving Matrix

theory [38] further solidify this notion, and thus it appears that non-commutative geometry

is an essential ingredient when considering multiple branes.

Calculating the precise form of the non-Abelian action is extremely difficult due to

the matrix nature of the fields, however it can be determined from the vector scattering

amplitude on the disc [35]. Then using T-duality it is possible to obtain the non-Abelian

DBI action for branes of all dimensionalities, noting the fact that under T-duality we see

that φp+1 → A(p+1) and Ap → φp with the other components remaining unchanged. It was

proposed that the resultant non-Abelian action takes the following form which we will refer

to as the Myers action [33] 2

SBI = −Tp

∫

dp+1ζSTr

(

e−φ
√

det(Qi
j)

√

−det([Êab + Êai(Q−1 − δ)ijÊjb] + λFab)

)

where we have made the following definitions

λ = 2πl2s , Êµν = P[Gµν +Bµν ], and Qi
j ≡ δi j + iλ[φi, φk]Ekj. (3.3)

2See [34] for an alternative proposal.
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The coupling of the closed string RR fields to the action is given by an analogous modifi-

cation of the Abelian Chern-Simons action

SCS = µp

∫

STr(P[eiλiφiφ
∑

C(n)eB ]eλF ). (3.4)

As usual P[. . .] represents the pullback of the spacetime tensors to the brane worldsheet,

which is now non-Abelian of course

P[E]ab = Eab + λEaiDbφ
i + λEibDaφ

i + λ2EijDaφ
iDbφ

j (3.5)

with a, b corresponding to worldvolume indices, and i, j being transverse directions. Note

that we are employing the relation xi = λφi in order to work with scalar fields having

canonical mass dimension. The validity of the Myers action, together with its origin, have

been discussed in a number of papers [36], with an interesting result coming from the work

of Howe at al, who showed that by including boundary fermions and quantising using a

suitable gauge choice, it is possible to exactly reproduce the Myers action. This suggests

that the Myers action is a good starting point for discussing the theory of coincident branes.

In the Chern-Simons term (3.4) there is also a new interior product which is given by

the following expression acting on an arbitrary p form

iφiφC
(p) =

1

2(p − 2)!
[φi, φj ]C

(p)
jiα3α4...αp

dxα3
. . . dxαp

. (3.6)

Note that this is explicitly non-zero because the scalar fields are matrix valued. The action

is further complicated by the symmetrized gauge trace, which is the maximally symmetric

trace over the fields [33]. This prescription involves taking the symmetric average over all

the possible orderings of the Fab,Daφ
i, [φi, φj ] and any individual scalars arising from per-

forming a non-Abelian Taylor expansion of the background fields. The low energy expansion

of the resulting theory agrees with the results obtained by string scattering amplitudes up to

order F 4, however at sixth-order and above we need to incorporate additional commutators

of the field strength in order to obtain the correct physics [33, 37]. Fortunately the STr

prescription can be simplified by consideration of the large N limit. In this case we can

replace the symmetric trace by a trace, since the corrections will be subleading in powers

of 1/N . This limit will be the main assumption employed in this chapter.

It is well known, and we have already stated, that a Dp-brane is electrically charged

under the (p+1) form RR potential, with a charge µp. As usual supersymmetry constraints

impose the additional condition that µp = ±Tp. Whilst the Abelian Chern-Simons action

included couplings to RR charges of lower dimension, the non-Abelian Chern-Simons action

shows that a Dp-brane can couple to RR charges of higher dimensionality, and thus permits

the possibility of a brane dielectric effect whereby a lower dimensional brane expands into

a higher dimensional one. For example if we expand the Chern-Simons action to leading
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order with no B field and no worldvolume gauge field, we find

SCS = µp

∫

STr(P[C(p+1) + iλiφiφC
(p+3) − λ2

2
(iφiφ)2C(p+5)]). (3.7)

where the first term acts as a source for Dp-branes, whilst the second term is clearly sourcing

D(p + 2)-branes. Performing the pullback operation on these fields leads to expressions

involving covariant derivatives of the scalars, and is thus generally complicated. Turning on

non-vanishing Chern classes and including non-zero B fields further increases the complexity

of the theory, and leads to more interesting brane couplings.

3.1.2 Fuzzy spheres as non-commutative geometry.

At this stage we should briefly introduce the concept of the fuzzy sphere, as this is integral

to much of the work in this chapter [18]. Consider first the classical unit two-sphere S2,

which has an algebra of complex valued functions that can be expanded as follows

f(xi) = f0 + fix
i +

1

2
fijx

ixj + . . . (3.8)

where roman indices run only over 1, 2, 3 and we must satisfy the additional constraint that

xixi = 1. Each of the coefficients in the expansion are traceless and symmetric, since we

know that the Euclidean coordinates are commutative. We can now consider truncating this

expansion to a finite number of terms using a series of non-commutative approximations.

Consider first the zeroth order term f0. This reduces the algebra of the sphere to the

algebra of complex numbers A0(S
2) = C which means we can only identify a single point

on the sphere. Let us now also include the linear term in the expansion, which implies

that we now have a four-dimensional vector space. If we endow this vector space with an

appropriate product then we can form another algebra A1(S
2). The simplest option is to

choose this vector product to be isomorphic to the algebra of 2× 2 complex matrices. This

can be done by identifying the coordinates xi with the SU(2) Pauli matrices σi, as this

continues to respect the original SO(3) symmetry of the sphere. This means that we are

now able to distinguish two points on the sphere, one for each of the eigenvalues of the

matrix σ3. The next truncation is to include the quadratic terms. If we now identify the

coordinates with the three dimensional representation of the SU(2) algebra, then we can

identify three points on the sphere. Thus we describe the sphere with only a finite number

of identifiable points as being ’fuzzy’. This truncation can clearly be continued up to the

nth term which gives us the algebra An(S2) = N2, implying that the associated vector

space is N2 dimensional. As before we identify the coordinates with matrices in some N

dimensional representation of the gauge group In this thesis our convention for the SU(2)

algebra will be to use [T i, T j ] = 2iǫijkT
k, where the T i are the N dimensional generators.
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Identifying the coordinates with these generators yields the following constraint

T iT i = C1N → 1

N
Tr(T iT i) = N2 − 1 (3.9)

where we have introduced the N ×N identity matrix 1N , and the quadratic Casimir C =

N2 − 1. In order to normalise this with the spherical constraint we must identify the

coordinates in the following manner. Firstly we promote the xi to matrices Xi, and then we

see that the appropriate normalisation requires Xi = T i/N in the large N limit. Therefore

we find that the spherical constraint in this language becomes

1

N
Tr(XiXi) = 1 −O

(

1

N2

)

(3.10)

which agrees with the classical solution up to 1/N2 terms as expected. If we look at the

commutator of these coordinates we find that

[Xi,Xj ] =
1

N2
[T i, T j]

=
1

N
2iǫijkX

k (3.11)

and therefore in the limit that N → ∞ we again recover the classical notion of commutative

space. Of course as N gets larger the sphere becomes ’less fuzzy’ since we can identify an

increasing number of points.

The example of the fuzzy S2 serves to introduce the basic concept of a non-commutative

geometry, however one must be careful because this is a particularly simple example where

we can safely take the N → ∞ limit. In general this may not be the case, as can be

seen when one considers higher dimensional even fuzzy spheres i.e S2k where k ∈ Z. We

will comment on these solutions in a later section. The fuzzy sphere description arises in

the Myers action because we will (initially) choose three transverse coordinates to be non-

commutative - whilst ignoring those parallel to both sets of brane worldvolumes. This allows

us to consider the problem either through the dynamics of multiple brane configurations,

or the expansion/collapse of a fuzzy sphere.

Pre-empting much of the work in this chapter, we will employ the following definition

for the physical radius of a general fuzzy sphere which is valid in the large N limit

r2 =
1

N
Tr(XiXi) =

λ2

N
Tr(φiφi), (3.12)

where we have implicitly identified the transverse scalars with the SU(2) generators as in

(3.10)

Now that we have set the stage, we can use our Dp-brane solutions to determine the

dynamics of a collapsing fuzzy sphere in various backgrounds. Some early work on this
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topic included [40]. We will assume that the N branes will not backreact on the background

geometries, which implies that the background charges must be substantially larger than N

if we are to neglect any 1/N corrections to the Myers action in what follows.

3.2 Dynamics in Dp and NS5-brane Backgrounds

3.2.1 D-Brane Backgrounds.

We consider the standard type II supergravity background solutions for M coincident Dp-

branes, where p is even for type IIA and odd for type IIB string theory. These source

branes are all assumed to be parallel in the sense that their world volumes are oriented in

the same directions, and they are all static. This will ensure that our solutions are as simple

as possible. Furthermore we will only consider Dp-brane backgrounds where p < 7. The

reason for this is to allows for the possibility of decoupling the open/closed string interactions

in the study of gauge/gravity duality [14]. Decoupling the massive string modes requires

us to send α′ → 0, however if we also want to decouple interactions we additionally need to

send lp → 0 (typically we require that g2
Y M remains finite where g2

Y M = gs(2π)p−2(α′)
p−3
2

in the study of gauge/gravity duality). However since l4p = gsα
′2, we see that requiring

gY M to remain finite in the decoupling limit implies that lp ∼ α′ 7−p

4 . Although we will not

decouple the string modes in this thesis, we will still use this as a guiding principle for our

background solutions. It will then be straight-forward to modify our analysis in this limit

to study the dynamics of gauge theories. The 10-dimensional bulk spacetime is assumed to

be infinite in extent, and we assume that there are no gravitational moduli in the problem.

The solutions for the metric, dilaton and R-R field are given by the following expressions

[10, 11, 23]

ds2 = H−1/2ηµνdx
µdxν +H1/2dxmdxn

eφ = H(3−p)/4

C0...p = 1 −H−1, (3.13)

where µ, ν represent directions parallel to the background branes, whilst m,n are transverse

directions transforming under an SO(9 − p) symmetry The harmonic function H again

satisfies a Laplace equation in the transverse Euclidean space. In general it can be written

as a multi-centred function of the transverse coordinates:

H = 1 +

M
∑

i=1

k̃p

|x− xi|7−p
(3.14)

which for coincident D-branes clearly reduces to

H = 1 +
kp

r7−p
. (3.15)
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where, r =
√
xmxm and kp = (2

√
π)5−pMΓ(7−p

2 )gsl
7−p
s . As usual ls is the string length and

gs is the asymptotic value of the string coupling.

Into this background we wish to insert N probe Dp′-branes where we must ensure that

N < M and also that p ≥ p′ in order to satisfy the supergravity constraints (note that we

will neglect the case of p′ = −1 in IIB, which corresponds to the D-instanton). Because

there is more than a single probe brane we can no longer use the Abelian DBI action, as

the extra massless string modes enhance the gauge symmetry on the world-volume. This

can clearly be regarded as an extension of [23] to the non-Abelian case.

Most of the interesting physics will take place in the ’near horizon geometry’, which

is an approximation that we will frequently make reference to. This simply means that

we will neglect the factor of unity in the harmonic function and just concentrate on the

radial dependence. Not only will this simplify the analysis, but it effectively decouples the

asymptotic Minkowski space from the problem.

In this analysis we are assuming that all the probe branes are parallel to the source

branes, therefore we find that the leading order contribution to the Chern-Simons coupling

reduces to:

SCS = µp

∫

STr(P[Cp+1]) (3.16)

which, upon insertion of the background solutions, becomes

SCS = +q

∫

dtNH−1 (3.17)

up to an arbitrary constant, where q = +1 corresponds to a D-brane probe and q = −1

corresponds to an antibrane. Clearly we could consider more general couplings in this action

even without turning on any gauge fields, but this is left for future endeavour. Now, in the

Abelian case we know that there is only a coupling if p = p′ or if p = 6, p′ = 0 [23]. Since we

are neglecting higher order corrections to the Chern-Simons action, we effectively have the

same situation and so we must remember to include these couplings in our effective theory.

To simplify the analysis as much as possible we will only consider time dependent so-

lutions for the transverse scalars. This will ensure that there are no caustics in the action.

We will also set Fab to zero, and allow the only fields to be excited on the branes to be those

which are not in the angular directions. This will also ensure that the B field will drop out

of the action.

3.2.2 Radial Collapse.

In this section, we will consider the purely radial motion of N Dp′-branes in the background

of M Dp-branes, where we must ensure that M >> N for us to be able to trust our effective

action. Provided we can perform this tuning of the background charge, we will treat the
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N -branes as being probes of the geometry. Physically this corresponds to the leading order

dynamics of the theory, where there are expected to be back-reactive corrections which may

in principle be calculated. We anticipate that these corrections would be most important

when the probe branes are close to the background branes, as it is here that the warped

geometry would be most sensitive to other branes. The detailed calculations relevant here

are beyond the scope of the current work, where we will concentrate on what are effectively

the ’zeroth’ order solutions.

For simplicity we begin with the p = p′ case, where the dimensions of the branes are all

equal. In general there are difficulties associated with the p 6= p′ cases which also arise when

using the Abelian DBI action. It becomes necessary to search for various conserved charges

in order to solve the equations of motion. However we should also note that in the Abelian

case there exist supersymmetric solutions when p − p′ = 4, and also when p = 6, p′ = 0

where the probe brane doesn’t feel the gravitational force from the background branes [23].

3.2.3 Dynamics in the p = p′ case.

Inserting the background solutions (3.13) into the non-Abelian DBI and Chern-Simons

actions we find that at leading order

S = −Tp′

∫

dp′+1ζSTr

(

H−1

√

(1 −Hλ2φ̇iφ̇jδij)(1 − 1

2
λ2H[φi, φj ][φj , φi])

)

SCS = +Tp′

∫

dp′+1ζ
qN

H
, (3.18)

where we have made the approximation Qij ∼ δij , and only expanded the second square root

term to leading order. Our approximation that the inverse matrix Qij is treated as unity to

leading order in lambda is consistent as long as our solution only probes distances greater

than the string length. As the fuzzy sphere radius starts approaching ls we anticipate that

higher order terms in Qij (and in the square root of det(Q) ) would need to be kept for

consistency. This approximation has been used by other authors who have investigated

fuzzy spheres in the non-Abelian DBI theory, see [33] for example.

In order to simplify the expression to something more useful we need to expand the

commutator terms. The simplest ansatz possible is to make the transverse scalars all com-

muting, however it has been shown that the system will be unstable since it will not be at its

minimal energy. This can be easily be verified by expanding out the last term in the action.

Instead we opt for the more familiar SU(2) ansatz which parameterises a non-commutative

object known as a fuzzy 2-sphere as described in the introduction. The reason for choosing

SU(2) is that it is the simplest non-Abelian group one could consider. Moreover as we are

limiting our analysis to values of p ≤ 6 we see that there will always exist at least an SO(3)

isometry group in the transverse directions as can be read off from the metric in (3.13). We
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could also consider higher dimensional gauge groups, however they will lead to restrictions

on the dimension of the supergravity background as we will see later. It is also possible

to allow the scalars to transform in reducible representations of SU(2), which could lead

to very interesting dynamical effects and even fuzzy sphere nucleation however we will not

study this possibility in this thesis.

After this motivation we choose to identify our scalar fields with the gauge group gen-

erators as follows

φi = R(t)T i, i = 1, 2, 3 (3.19)

where the T i are in the N ×N irreducible matrix representation of SU(2) algebra

[T i, T j ] = 2iεijkT
k. (3.20)

Note that since the scalar has canonical mass dimensions in (3.19), so too must the radius

R(t) - however we will see shortly that this is not a physical radius and therefore is an

acceptable parameterisation. The remaining fields φi, i = 4, 5... are set to zero or more

generally to constant matrices that commute with the SU(2) generators. Let us make

some comments concerning the generality and validity of this ’round’ fuzzy sphere ansatz

in (3.19). Our ansatz sets the non-Abelian transverse fields φi either to be SU(2) valued

fields (the fuzzy sphere ansatz) or to constant commuting matrices. The latter are taken

to commute with both the SU(2) generators and themselves. These latter fields have no

potential because they commute with everything, so the assumption that they are constant

is consistent with their equations of motion; they simply parameterise flat directions of the

theory.

There remains the related issue of what is the most general time dependent configu-

ration for these fields. For example one would anticipate that there will be non-spherical

fluctuations due to tidal effects in the direction of motion in the curved backgrounds which

should alter the geometry of the fuzzy sphere...maybe leading to a fuzzy ’egg’. But these

are deformations of the spherical solution, so we would argue that in the first instance one

should study these first and then investigate fluctuations about the solutions. This is what

we will concern ourselves with in this thesis

To check that our spherical ansatz is at least a consistent one, we consider the equations

of motion for the non-Abelian fields φi in a general curved background as will be derived

in a later section in this chapter. Let us consider a background metric of the form

ds2 = −g00dt2 + gxxdx
adxbδab + gzzdz

idzjδij (3.21)

where a, b run over the p worldvolume directions and i, j are transverse directions to the

source. This background could obviously be generated by a stack of coincident branes, or
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something more exotic. The NS-sector of the non-Abelian action then takes the form

S = −T ′
p

∫

dp′+1ζSTr

(

e−φ
√

gp
xxg00(1 − λ2gzzg

−1
00 φ̇

iφ̇jδij)

√

1 − 1

2
λ2g2

zz[φ
i, φj ][φj , φi]

)

(3.22)

Note that restricting the metric components g00 = gxx = g−1
zz = H1/2 the above action

reproduces that in (3.2.3) above. Working to leading order in λ the equations of motion for

φi from this action can be seen to yield

d

dt
(e−2φgp/2

xx g
−1/2
00 gzzφ̇i) = g2

zz[φ
i, [φj , φi]], (3.23)

where we are implicitly using the large N limit to ensure that the STr reduces to a trace -

which must be imposed on both sides of the equation. Now let us consider the more general

ansatz for the φi

φi = R(t)T i + β(t)Y i, i = 1, 2, 3 (3.24)

where the matrices Y i represent some non-spherical orthogonal directions to the SU(2)

generators T i, and without loss of generality we assume that Tr(T iY i) = 0. Using this

property one can easily obtain the equations of motion for R(t) and β(t) by substituting

the above ansatz into (3.23). In the limit when we send β(t) → 0 (i.e our original fuzzy

sphere ansatz) the equation of motion for β(t) becomes

d

dt
(e−2φgp/2

xx g
−1/2
00 gzzβ̇) =

1

Tr(Y iY j)
g2
zzTr([T

i, [T j , T i]]Y j) (3.25)

Due to the orthogonality of both T i and Y j, the second trace factor in (3.25) vanishes so

e−2φg
p/2
xx g

−1/2
00 gzzβ̇ is a constant. We can choose this constant to be zero and hence β̇ also

vanishes. It is therefore consistent to set β(t) = 0 at the outset as in our spherical fuzzy

sphere ansatz (3.19).

Returning then to our spherical fuzzy sphere ansatz for φi as argued before, we choose

the generators to be in the irreducible representation of the algebra since this will correspond

to the minimum energy configuration [33]. We will repeat the following expressions again for

convenience. The physical radius of the fuzzy sphere is given by the following relationship

at large N

r2 =
λ2

N
Tr(φiφjδij) = λ2R(t)2C, (3.26)

where C is the quadratic Casimir of the representation defined by

3
∑

i

(T i)2 = C1N , (3.27)

and 1N is the N ×N identity matrix. We also note that for the irreducible representation,

C = N2−1, which can be approximated by N2 in the large N limit. For most of our analysis
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this will be the limit of interest, since there are many complications with the symmetrized

trace prescription at finite N 3.

Combining all this information allows us to write the final form of the action as follows

S = −Tp′

∫

dp′+1ζNH−1
√

(1 −Hλ2Ṙ2C)(1 + 4λ2HCR4) + Tp′

∫

dp′+1ζ
qN

H
. (3.28)

which is obtained by expanding the square root and dropping all the terms that are order

1/N2 or higher. This ensures that the remaining terms are all proportional to the identity

matrix and therefore the symmetrization is not necessary. Taking the trace and then re-

summing the terms should re-produce (3.28). Note that we have not restricted ourselves

to a specific orientation for the brane, therefore we have written the action in terms of the

integer q = ±1. From the definition of the harmonic function we see that the large r limit

corresponds to Minkowski space, and the non-Abelian action reduces to its usual flat space

form [33, 45, 50]. We can now calculate the associated canonical momentum and energy

density from the action, which are defined as follows

Π̃ =
Π

T ′
p

= Nλ2ṘC

√

(1 + 4λ2HCR4)

(1 −Hλ2Ṙ2C)
(3.29)

Ẽ =
E

T ′
p

=
N

H

√

(1 + 4λ2CHR4)

(1 −Hλ2Ṙ2C)
− qN

H
, (3.30)

where the momentum is the derivative of the Lagrangian with respect to Ṙ, and the energy

is constructed via Legendre transform. In addition we have divided out by a factor of
∫

dp′ζ

which loosely corresponds to the ’volume’ of each Dp′-brane. To construct the potential

energy we will find it useful to switch to the Hamiltonian formalism, where we write the

energy in terms of the conjugate variables.

Ẽ =

√

N2H−2(1 + 4λ2CHR4) +
Π̃2

Hλ2C
− qN

H
, (3.31)

which allows us to define the non-Abelian static potential via Veff = Ẽ(Π̃ = 0).

Veff = NH−1
(
√

1 + 4λ2CHR4 − q
)

, (3.32)

In order to consider the collapse of the fuzzy sphere, it will be more convenient to work in

term of the physical radius r rather than R. In which case the potential can be written

Veff = NH−1

(
√

1 +
4Hr4

λ2C
− q

)

, (3.33)

3The work in this section was performed well before [53], which conjectured an exact prescription for the
symmetrized trace of SU(2) generators.
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which is the gravitational potential generated by the background branes located at r = 0.

It is useful to compare this result with that coming from the Abelian case [23]. The

most direct means of comparing the two cases is to consider the scenario where there are

N independent probe branes separated by a distance larger than the string length. The

corresponding potential would then simply be N times the potential due to a single probe

brane, at leading order.

V abelian =
N(1 − q)

H
(3.34)

This potential vanishes for q = 1 reflecting the BPS nature of the branes, but a potential is

generated for anti-branes as we would anticipate. Clearly we see that there is an additional

term present in (3.33) compared to (3.34) arising from the non-Abelian nature of the effective

action, which we interpret as the energy of the fuzzy sphere. This extra term generates a

non-zero potential regardless of the value of q, indicating that the solution is no longer

BPS. It is instructive to consider the behaviour of the potential in the different regions of

spacetime, but first we must ensure that there are no limiting constraints to be imposed on

the solution.

Since the energy is conserved in time we can solve this equation for the physical velocity

to obtain the equation of motion, which in turn will yield a constraint on the dynamics.

ṙ2 =
1

H

(

1 − N2

(ẼH + qN)2

{

1 +
4Hr4

λ2C

})

. (3.35)

Since this equation is non-negative we see that the following constraint must be satisfied,

when we set the Chern-Simons part to zero,

1 ≥ N2

Ẽ2H2

{

1 +
4Hr4

λ2C

}

.

We consider what happens when we are in the near horizon geometry, as the constraint

reduces to the following expression

1 ≥ N2

Ẽ2

(

r7−p

kp

)2{

1 +
4kpr

p−3

λ2C

}

, (3.36)

For p ≥ 3 the leading term in the expression is expected to be dominant and so we are

effectively left with the following constraint

1 ≥ N2

Ẽ2

(

r7−p

kp

)2

. (3.37)

Now the near horizon approximation implies that the term in parenthesis is already vanish-

ingly small, which in turn implies that the ratio N/Ẽ can take a wide range of values and

still satisfy this constraint. We must emphasise at this point that the classical analysis may

break down as the fuzzy sphere collapses toward zero size, since the back reaction upon the
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source branes will no longer be negligible and there will doubtless be correction terms to the

energy which will invalidate this constraint. Furthermore there will also be the problem of

open string tachyon modes, which will arise as the branes approach distances comparable to

the string length. If we now consider the limiting case where p < 3, the constraint equation

becomes

1 ≥ 4

Ẽ2

(

r7−p

kp

)

r4

λ2
, (3.38)

when we take the large N limit. This solution has explicit dependence upon the ratio of the

radius to the string length, which we would expect to be larger than unity in order for us to

have any faith in the effective field theory description. This implies that the energy density

can again be reasonably arbitrary as the supergravity constraint implies that the other term

is already vanishingly small. To be safe we will assume that Ẽ >> N in what follows, as

there is no ambiguity in the constraints if this is fulfilled. Interestingly if we reinstate the

Chern-Simons contribution we find, to leading order, that the same constraints apply.

For completeness we now turn out attention to the large r region i.e asymptotically

flat space. This means that we are approximating the harmonic function by unity. In the

Abelian case there are no constraints to be imposed, and so the probe branes can move

to an infinitely large distance from the sources [23]. In the non-Abelian case however, we

can obtain an equation for the maximum radius of the fuzzy sphere which can be written

(dropping a factor of unity)

r4max ∼ λ2CẼ2

4N2

(

1 +
2qN

Ẽ

)

, (3.39)

from which we deduce that the orientation of the Dp′-branes plays the role of a small cor-

rection term provided we take our Ẽ > N approximation. This maximal distance represents

the limit of our effective action, and it is likely that higher order correction terms will allow

us to consider limits such as rmax → ∞. We note, however, that this maximal distance

is dependent upon the energy of the probe branes, and that by tuning the energy we can

effectively consider an unbounded solution in Minkowski space. If we take the large N limit

and use the binomial theorem for the Chern-Simons contribution, this equation simplifies

to

rmax ∼

√

Ẽλ

2

(

1 +
qN

2Ẽ
+ . . .

)

=

√

Ẽπl2s

(

1 +
qN

2Ẽ
+ . . .

)

(3.40)

which shows that the size of the fuzzy sphere is only dependent upon the energy of the solu-

tion. This is what we expect from our knowledge of dielectric branes and Giant Gravitons

[57], which are expanding brane solutions sourced by non-trivial background fields. Even

though we are only looking at a relatively simple example, we would expect to find some

similarities between these problems.

Armed with this knowledge from the constraints we may proceed to investigate the

behaviour of the effective potential. A quick calculation shows that the potential has no
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turning point, therefore we shouldn’t expect any stable bound states between the fuzzy

sphere and the background branes. It will be easier to consider the throat region and the

Minkowski region as two decoupled regions of space-time, as this will simplify our analysis.

Any solutions to the equations of motion can then be patched together using appropriate

boundary conditions. In the throat region, for vanishing r we find the potential becomes

Veff ∼ Nr7−p

kp

(
√

1 +
4kprp−3

λ2C
− q

)

. (3.41)

Now for p ≥ 3 we may again ignore the radial contribution in the square root, provided

that

r <<

(

λ2C

4kp

)3−p

,

and correspondingly we find that the potential is well approximated by

Veff ∼ Nr7−p

kp
(1 − q), (3.42)

which we can see is identically zero if q = 1, and is attractive if q = −1. This is the same

behaviour as seen for arbitrary p in the Abelian case, and implies that the configuration

can become BPS at sufficiently small distances. However the size of this stabilisation radius

is likely to be smaller than the string length, where our effective action is not valid. Now if

we consider p < 3 we find the potential is given by

Veff ∼ Nr7−p

kp

(
√

4kp

λ2Cr3−p
− q

)

. (3.43)

which is attractive for all valid p in this region. Therefore we see that to leading order, the

probe branes are always gravitationally attracted toward the source branes.

In the large r limit, remembering that there is a maximum radius for the fuzzy sphere

solution to hold, the potential becomes.

Veff ∼ N

(
√

4r4

λ2C
− q

)

, (3.44)

which we see will tend to a positive constant depending upon the exact size of the maximum

radius. If we substitute our solution (3.39) into the potential, we find

Veff ∼ Ẽ

√

1 +
2Nq

Ẽ
− qN ∼ Ẽ, (3.45)

where we have explicitly expanded out the square root term using our energy constraints.

Thus the potential energy is effectively the energy density at large r. Before proceeding to

solve (3.35), it is worth mentioning that the ’velocity’ of the collapse is a decreasing function
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of time. This is in stark contrast to the fuzzy sphere in a flat Minkowski background, where

we find that at small r, the velocity is a substantial fraction of the speed of light [50]. The

curved geometry of spacetime in the near horizon limit acts in such a way as to slow the

rate of collapse, in fact for an observer on the background branes it would take an infinite

amount of time for the sphere to reach zero size. Only if we switch to conformal time will we

see a finite time solution. This is an example of the usual red shift phenomenon in General

Relativity.

In the large r region, we see that the harmonic function is well approximated by unity

and we would expect to find the usual equations of motion for collapsing fuzzy spheres

in flat space [51]. Using the fact that the energy is conserved in time, we can integrate

the equation of motion to obtain the general form of the radial collapse in terms of Jacobi

elliptic functions. By carefully selecting our initial value of r0 to be

r40 =
λ2CẼ

4N

(

Ẽ

N
+ 2q

)

, (3.46)

we find that the equation of motion is given by

r(t) = ±r0JacobiCN



2

√

2

C

r0t
√

1 + 4r0
λ2C

,
1√
2



 (3.47)

The form of this solution has been extensively discussed in [51], and so we will not say

much about it here. In this instance we know that the regime of validity for the solution is

r7−p >> kp and so we find a simple monotonically expanding/contracting solution without

collapse toward zero size. Thus the effective action should remain a valid description of

the dynamics, and we do not have to worry about the physical nature of the coordinate

system being employed. Interestingly this solution appears to be valid for arbitrary values

of p since all the p dependence arises in the form of the harmonic function, and gives rise to

another example of the so called p-brane democracy. Unfortunately the precise form of the

equation of motion in this limit will make it difficult to obtain smooth analytic solutions

interpolating between flat space and the near horizon geometry.

Turning our attention to the throat solutions, we see that the complicated form of the

equation of motion also makes analytic solutions difficult to obtain. One case where we can

make some progress is the p = 3 background, as the ’fuzzy’ term loses all radial dependence

in this instance. The time evolution is given in terms of a hypergeometric function, and it

thus difficult to invert to obtain a closed form expression for r

t− t0 ∼ ±
√
k3

r
2F1

(

1

2
,
−1

8
,
7

8
,
N2r8

Ẽ2k2
3

{

1 +
4k3

λ2C

}

)

. (3.48)

In the limit that the sphere collapses toward zero size, we can expand the hypergeometric
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function using the well known series expansion

t− t0 ∼ ±
√
k3

r

(

1 − N2r8

14Ẽ2k2
3

{

1 +
4k3

λ2C

}

)

, (3.49)

which implies that at very late times the solution behaves as

r ∼ ±
√
k3

t− t0
. (3.50)

The collapse of the sphere is described by the positive branch of the above solution, and

is in fact an example of a simple power law solution. This power law behaviour can be

explicitly seen at late times in the general case by assuming that the dominant contribution

to the denominator of (3.35) is unity. The resulting integral is trivial to perform and we

obtain the general late time solution (dropping constants of integration)

r ∼ ±
(

(p − 5)(t− t0)

2
√

kp

)2/(p−5)

, (3.51)

the solution for p = 5 must be calculated separately, but is simply proportional to an

exponential

r ∼ exp

(

± t√
k5

)

. (3.52)

Thus we have shown that the solutions obey simple power law equations of motion as r → 0.

Of course, we must be careful in our interpretation of these results as we expect corrections

to affect the validity of our effective action as the fuzzy sphere collapses.

Whilst we cannot analytically solve the equations of motion in the throat limit unless

we assume the r → 0 limit, we can attempt to solve them numerically, which gives us

some indication of the late time dynamics as measured by observers on the source branes.

Figure 3.1, for example, shows the numerical solution for D0 and D̄0 branes. In order to

generate this solution we took ls = 1, gs = 0.1, N = 100, Ẽ = 200 and M = 1000, whilst

retaining the full form of the harmonic function but taking the large N limit. Although the

parameter space of solutions is large, we expect the numerical solutions to be representative

of more general behaviour. In fact we investigated the dynamics for various ranges of energy,

and found approximately the same solutions with all the solution curves collapsing onto one

another at very small distances. The analytic solution clearly shows that the radius collapses

rapidly when the metric is approximately flat, but decelerates as the sphere enters the near

horizon geometry. We expect that our solutions will break down as the probes near the

source branes, although it is useful to recall that D0-branes can probe distances smaller

than the string length and so the solution may be valid for some time [44]. The plot shows

that the brane and anti-brane follow similar trajectories as they cross into the near horizon

region and are thus indistinguishable. Our analysis of the potential suggests that it should
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Figure 3.1: Numerical solution to the equations of motion for the D0-brane background.

vanish for the D0-brane solution as r → 0. Clearly our plot shows that this must happen

at a distance smaller than the string scale.

Figure 3.2 shows the solutions for the D4 and D5-brane backgrounds using the same

parameters, but ignoring the Chern-Simons term. The five brane solution indeed tends

toward an exponential at late times as expected from our simplified analytic solution.

Figure 3.3 shows the solution for the D3 and D̄3-branes. In this instance we can clearly

see that the fuzzy sphere associated with the D3 solution collapses faster than the D̄3 solu-

tion when they are in flat space. This is because the D3-branes are more strongly attracted

to the sources than the D̄3-branes. However as they cross into the near horizon geometry,

both spheres tend to the same radius as the Chern-Simons term becomes negligible which

accounts for the similarity in their dynamics.

The difficulty in analytically solving the integral equation of motion is related to the

fact that it describes curves on hyper-elliptic Riemann surfaces, with the infinitesimal time

playing the role of a holomorphic differential [51]. The velocity and the radius can each be

regarded as two complex variables related by a single constraint. We can use the simplified

Riemann Hurwitz formula to calculate the genus, g, of the underlying surface

g =
1

2
(B − 2), (3.53)

where B refers to the number of branch points - which is the same as the degree of the

corresponding polynomial in the equation of motion. This is a special case of the general
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Figure 3.2: Solutions for D4 and D5 brane backgrounds, ignoring the Chern-Simons cou-
pling.

Figure 3.3: Solutions for the fuzzy sphere sourced by D3 and anti D3-branes.
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expression

g = n(G− 1) + 1 +
B

2
, (3.54)

where G is the target space genus - which is zero because the target space object is a sphere,

and n is the degree of the mapping between the covering space and the target space - which

is two in this case. It is fairly straight forward to see that the p = 6 and p = 5 cases

correspond to genus 2 surfaces, p = 3, 4 give rise to genus 3 surfaces, p = 2, 1 are genus 5

surfaces and p = 0 defines a genus 7 surface. Thus as we decrease the dimensionality of the

background branes, we find surfaces of higher and higher genus. Obviously this leads to the

difficulty in obtaining an analytic solution to the equation of motion. Even if we include

the Chen-Simons term in the equation of motion, this doesn’t modify the number of branch

points. As in [51]it may be possible to reduce the integral for the genus 3 and 5 surfaces

into integrals over products of genus 1 surfaces using the special symmetries present.

It is important to note that the fuzzy sphere solutions in flat space correspond to a genus

1 surface (a torus), which provides a hint as to why it is possible to find an an explicit

solution to the equation of motion. By contrast the Riemann surfaces corresponding to

collapse in curved backgrounds are actually of a higher genus, with the branch points on

the complex plane being totally unresolvable when the cycles are large. This is suggestive

that the higher genus surfaces naturally have more structure, which makes analytic solutions

difficult. However this may be resolved by keeping higher order terms in the effective action,

or by including finite N effects.

3.2.4 Dynamics in the p 6= p′ case.

We now turn our attention to the more general case where p 6= p′. However, as we are only

looking at the leading order terms in the action we find that there is no Chern-Simons term

except for the p = 6, p′ = 0 case. But we will neglect this contribution in this thesis, and

focus solely on the NS sector. The action in this instance is a simple extension of (3.28),

and can be written in the following way

S = −Tp′

∫

dp′+1ζNH(p−p′−4)/4
√

(1 + 4Hλ2CR4)(1 −Hλ2CṘ2), (3.55)

which clearly reduces to the expression in the previous section when taking the p = p′ limit.

We will again divide out by the ’mass’ of the brane to find a closed form expression for the

canonical momentum, which turns out to be

Π̃ = NH(p−p′−4)/4λ2CṘ

√

1 + 4Hλ2CR4

1 −Hλ2CṘ2
, (3.56)
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and the corresponding energy is obtained via Legendre transformation in the usual manner.

Ẽ = NH(p−p′−4)/4

√

1 + 4Hλ2CR4

1 −Hλ2CṘ2
(3.57)

=

√

N2H(p−p′−4)/2(1 + 4Hλ2CR4) +
Π̃2

Hλ2C
.

Extending the results from the previous section we will define the effective potential as

follows

Veff = NH(p−p′−4)/4

√

1 +
4Hr4

λ2C
, (3.58)

which is clearly the general extension of (3.32) when there is no Chern-Simons coupling

term. Once again we see that the additional energy density due to the fuzzy sphere is

responsible for generating a non-trivial potential.

Using the conservation of energy we also have a modified constraint condition

1 ≥ N2H(p−p′−4)/2

Ẽ2

(

1 +
4Hr4

λ2C

)

. (3.59)

In the near horizon geometry we see that the RHS blows up as as the radius tends to zero

when p − p′ > 4 which, because of the dimensionality of the branes, implies that for the

p = 6, p′ = 0 case the energy must go to infinity as the fuzzy sphere collapses in order to

satisfy the constraint. All of the other solutions are satisfied for arbitrary energy in this

limit. This tells us that the D6-D0 solution will not collapse to zero size, instead it will

be energetically favourable for the fuzzy sphere to expand in the near horizon geometry. In

the large r limit we again expect there to be a maximum size for the fuzzy sphere solution,

which is given by (3.40) when we take the large N limit.

By analysing the behaviour of the effective potential we should get a general under-

standing of the dynamics of the fuzzy sphere as the probe branes are attracted towards the

source branes. In general we see that the potential is always attractive, implying that the

fuzzy sphere will eventually collapse down toward zero size. The case where this isn’t true is

when p = 6 and p′ = 0, which has a repulsive potential at small radius exactly as expected

from the energy constraints. We will have more to say about the D6-D0 configuration in a

later section as this is an example of the gravitational Myers effect [55], and is relevant for

constructing a microscopic description of the Quantum Hall soliton. The other case where

the potential does not vanish is when p − p′ = 4, corresponding to the cases p = 6, p′ = 2;

p = 5, p′ = 1 and p = 4, p′ = 0. In these cases we see that the potential tends to N with

vanishing radius. Again this should be expected as the branes are all parallel and this is

precisely the supersymmetry preserving condition in the Abelian theory, however this may

well occur at distances beyond the regime of validity of our effective theory.

Solving the equations of motion in the general case is far from trivial, as the integral
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equation gives rise to a description of Riemann surfaces of varying genus. For completeness

we have written the genus associated with all the possible values of p, p′ in the following

table. Note that as the factor p − p′ increases, the genus of the surface associated with

the solution decreases. For example in the p − p′ = 4 case (not including p = 6), we see

that the Riemann surface becomes a simple two-sphere. This is interesting as we know

that this is exactly the supersymmetry preserving condition in the Abelian theory, and a

quick calculation verifies that the Abelian equation also yields a genus 0 surface even in

the p = 6, p′ = 2 case. This poses the question of whether there is some deeper connection

between the preservation of supersymmetry and the underlying Riemannian geometry. An

example solution can be found in the p = 4, p′ = 0 case which will be valid when r satisfies

the following constraint, λ2Ẽ2 >> 4k4r. Upon integration we find

r ∼ r0 ±
4Ẽk4

(Ẽ2 −N2)t2
, (3.60)

where we must take the negative branch of the solution to approximate the collapsing fuzzy

sphere.

p 6 5 4 3 2 1 0

p′ 6 4 2 0 5 3 1 4 2 0 3 1 2 0 1 0

genus 2 2 1 1 2 1 0 3 2 0 3 1 5 2 5 7

3.2.5 Corrections from the symmetrized trace.

In our work so far we have only considered the leading order Lagrangian, and neglected

any 1/N corrections. This was essential in order to avoid the complications introduced by

the symmetrization over the fields. However some of these terms can be calculated allowing

corrections to the effective potential to be found [50]. We remind the reader that to lowest

order, we have calculated the energy density to be

Ẽ =
δL
δṘ

Ṙ− L.

Based upon arguments in [50] we know that the corrections to next order are given by

Ẽ1 =

(

1 − 2

3
C
∂2

∂C2

)

Ẽ, (3.61)

We differentiate our expression for Ẽ in order to find the next order corrections to the

effective potential. Note that for static BPS configurations such as the D1-D3 intersection

in flat space, all the symmetrized trace correction terms are zero [51]. This will be important

for later discussions. We don’t anticipate the same situation occurring here because the

Chern-Simons coupling is independent of C at leading order and will drop out when we
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differentiate the Lagrangian. Since it is this coupling which (in the Abelian case at least)

preserves the bulk supersymmetries, we expect that higher order corrections will, in general,

not be BPS configurations and so we should find non-zero correction terms to all orders.

Our calculation gives us the following first order correction to the potential (where we

write V1 = Veff + ∆Veff)

∆Veff =
8NH(p−p′+4)/4r8

3λ4C3
(

1 + 4Hr4

λ2C

)3/2
, (3.62)

where we have made explicit use of the near horizon approximation to simplify the result.

Once more we find that the solution depends heavily upon the dimensionality of the branes

involved. Firstly we will consider the case when p ≥ 3. In this instance the correction term

becomes;

∆V ∼ 8Nr8b

3λ4C3

(

1

r7−p

)(p−p′+4)/4

, (3.63)

where we have introduced the quantity b = k(p−p′+4)/4 to simplify the notation. In general

the factor of p− p′ can only take the integral values of 6, 4, 2 or 0, and so it is easily noted

that the potential tends to zero as r → 0 for all values of p and p′ in this particular range.

If on the other hand we consider the case where p < 3 then p − p′ is limited to be either 2

or 0. The correction term in this instance reduces to

∆V ∼ 8Nr8b

3λ4C3

(

1

r7−p

)(p−p′+4)/4( λ2C

4kprp−3

)3/2

(3.64)

This potential again tends to zero with r for all values of p and p′, which is in agreement

with our general expectations from the behaviour of the leading order term. Thus the

correction doesn’t alter the overall dynamics of the fuzzy sphere, and we don’t find any

bounce solutions. However it should be noted that if we relax our throat approximation

and look at large r, we would expect to find differing behaviour. For example [50]showed

that there are bounce solutions for the D0-solution in flat Minkowski space when the 1/N

sub leading order terms are taken into account. It is well known that D0-branes may probe

distances much smaller than the string length, however the curved backgrounds we have

been studying in this section appear to impose constraints upon this behaviour 4.

3.2.6 Remarks on the D6-D0 solution.

In this section we will briefly comment on the p = 6, p′ = 0 solution as there is a similarity

with the Quantum Hall Soliton [56], which we will briefly introduce below.

The stringy QHS was introduced as a way of establishing the link between condensed

4In fact it was shown that this ’bounce’ was dependent on the order of the correction, and in fact vanishes
when computed using the finite N proposal for the symmetrized trace.
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matter physics and string theory. To construct the QHS we imagine a type IIA background

of k coincident D6-branes with k strings emerging from them. The transverse space to the

D6-branes can be parameterised by R×S2, and we wrap a D2-brane over the S2. However it

is known that this configuration is unstable, and so we are forced to introduce ND0-branes,

which are dissolved into the D2-brane world volume. Since it is well known that D6 and

D0-branes repel each other (due to the energy becoming infinite at small distances), this

extra repulsion stabilises the QHS. The D6 is charged under the seven-form RR gauge field

∗C(1), which is the dual of the field charging the D0-branes. This is analogous to the fact

that F -strings cannot end on NS5-branes since they are either electrically or magnetically

charged under the NS two form field. It was further shown that the world-volume of the

spherical D2-brane is the surface where the quantum hall fluid lives.

This is a purely macroscopic Abelian construction in terms of the D2 picture, however

our Non-Abelian construction can provide information on the dual microscopic picture. This

is because we can consider ND0-branes in the supergravity background of M coincident

D6-branes. We expect that the fuzzy sphere ansatz will play the role of the D2-brane with

flux on the Abelian side, furthermore we anticipate that the D0-branes can be regarded as

being the endpoints of fundamental strings which start on the background D6-branes. The

only difference is that we are neglecting the open string contributions from the background

branes to the probe branes. This is similar to the Myers Dielectric effect [33], except that it

is the gravitational field that ’puffs up’ the D0-branes rather than non-trivial Chern-Simons

terms. Consequently this phenomenon has been labelled the ’Gravitational Myers Effect’

in the literature [55]. From the previous section we know that the effective potential for

this (bosonic) configuration can be written as follows

V = N
√
H

√

1 +
4Hr4

λ2c
, (3.65)

where the harmonic function, H, can be approximated in the near horizon limit by

H ∼ Mgsls
2r

.

We now determine that the potential has a minimum at the distance

rmin =

(

π2l3sN
2

Mgs

)1/3

(3.66)

where we have explicitly employed the use of the large N limit. This is exactly the same

result that was obtained for the stability of the spherical D2-brane with flux in terms of the

Gravitational Myers effect effect [55]. We wish to compare this result to the one calculated

in [56], which relied on the D2-brane theory. In that paper they used a coordinate rescaling
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to simplify the initial background metric. The scaling is given by

r = ρ

(

Mgs

2

)−1/3

,

and consequently the equation for the stabilisation radius (denoted by ρ∗) is given by

ρ∗ =
(Nπ)2/3ls

2
. (3.67)

Performing the same rescaling in our Non-Abelian dual picture gives the result

ρ∗ =
(Nπ)2/3ls

21/3
(3.68)

which is almost identical to the Abelian theory. In fact the discrepancy between the two

radii is due to the contribution from the k strings on the Abelian side, which has been

neglected in our analysis. In fact the string contribution appears to alter the stabilization

radius only by a factor of 2−2/3. If we reconstruct the Abelian action for the QHS, but

neglect the stringy contribution and allow for time dependent radial solutions we obtain

the following

S = −T2

∫

d3ζHr2 sin(θ)

√

(1 −Hṙ2)

(

1 +
λ2N2

4Hr4

)

, (3.69)

where we are using spherical coordinates to parameterise the D2-brane worldvolume and

the flux on the brane is given by

Fθφ =
N sin(θ)

2
, (3.70)

which satisfies the usual quantization conditions. For a more rigorous explanation of the

derivation we refer the reader to [56] for more details. We can integrate out the angular

dependence to find an exact expression for the Lagrangian

L = −T24πr
2H

√

(1 −Hṙ2)

(

1 +
λ2N2

4Hr4

)

. (3.71)

Using this we can easily construct the static potential for the Abelian theory in the near

horizon geometry, which we find to be

V =
kr

λ

√

1 +
λ2N2

2kgslsr3
. (3.72)

Although this appears to be different from the non-Abelian potential, they are in fact

identical as can be verified with a simple expansion. Thus the theories are in fact dual

to one another, which we can further exhibit by analysing the equations of motion for the

radion fields. Using subscripts A (for Abelian) and N (for non-Abelian) to represent the
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two theories, we find the result

ṙ2A =
1

H

(

1 − 16π2T 2
2H

2r4

E2

{

1 +
λ2N2

4Hr4

})

, (3.73)

ṙ2N =
1

H

(

1 − T 2
0N

2H

E2

{

1 +
4Hr4

λ2C

})

.

If we take the large N limit and carefully expand these equations, using the definition of

the brane tension in each case, we see that they are identical. This was noted for the case

of a fuzzy sphere in flat space, and as expected this duality continues to hold in a curved

geometry. On the Abelian side we find an explicit example of the gravitational dielectric

effect, whilst on the non-Abelian side we have the gravitational Myers effect. It would be

useful to include the terms coming from the strings in our work, as this would be the dual of

the QHS, however this is expected to be complicated as the strings are charged under U(M)

on one end and U(N) on the other. The corresponding trace over the Chan-Paton factors

will be expected to yield an extra term in the DBI forcing the fuzzy sphere to stabilise at

a smaller radius due to the tension of the strings.

As a further remark we should note that this macroscopic/microscopic duality only holds

for the p = 6, p′ = 0 case. We could consider a different background source such as D4,

D2 or D0-branes, with a single probe D2-brane wrapped over a transverse S2 whilst the

remaining transverse coordinated are set to zero. Unfortunately the corresponding solutions

do not map across to the non-Abelian construction where we would have D0-branes probing

each of these background solutions. This is because we are losing information about the

theory by setting some of the Abelian degrees of freedom to zero.

It is interesting to examine the stability of our solution with regards to D0-brane emis-

sion. It was argued for the QHS that there is an energy barrier proportional toN , preventing

the tunnelling of D0-branes out of the D2 brane. In fact it requires energy to be put into

the system to remove the D0-brane. Therefore the QHS appears to be stable with respect

to particle emission 5. The potential at the stable radius in our dual picture can be written

explicitly as

V = N

√

(Mgs)4/3

2(Nπ)2/3

√

1 +
N2

2C
, (3.74)

where we are using the dimensionless potential obtained from Ẽ. We now revert to proper

time as measured by an observer on the fuzzy sphere, which allows us to re-write the

5[56] also noted that there could be possible nucleation of the D2-brane causing another D2 brane to
appear inside the original one. Although we can consider multiple fuzzy spheres by selecting an ansatz which
is a reducible representation, this does not correspond to the QHS picture on the Abelian side. It would be
certainly interesting to consider a non-Abelian description of this.
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minimised potential with respect to proper time

VT (N) =

√

N

π

Mgs

23/4

√

1 +
N2

2C
. (3.75)

Now imagine that the soliton emits a single D0-brane into the bulk, the change in the

potential - to leading order in 1/N , and taking the large N limit - can be approximated by

VT (N) − VT (N − 1) ∼
√

3

Nπ
Mgs. (3.76)

We now need to compare this with the potential energy of a single D0-brane attached to

a fuzzy sphere located at the stabilisation radius. Although our effective action is valid as

a large N expansion, we can use it to determine the potential for a single brane provided

that we neglect the back reaction terms between brane and fuzzy sphere. By adding this

contribution to the one calculated in the previous line we see that

Vtot ∼
Mgs√
π

(

√

3

N
+

1√
2

)

, (3.77)

which is larger than the potential of the stable fuzzy sphere. Thus we conclude that the

solution appears to be stable with regard to emission. This gives us an estimate of the

binding energy of the D0-branes in the near horizon region, which we interpret as the

energy barrier needed for quantum tunnelling

Ebinding ∼ νgs

√
N, (3.78)

where we have made use of the ratio ν = M/N to simplify the result. In the QHS picture

this corresponds to the definition of the filling ratio. Clearly the barrier is an increasing

function of N , thus in the large N limit we would expect the fuzzy sphere to be stable.

The supergravity description is then the following. If the fuzzy sphere is initially large,

then the metric is approximately Minkowski and we have our usual collapsing solution

with velocity approaching that of light. As the D0-branes enter the near horizon geometry

they decelerate (from the D6 viewpoint) until they oscillate around the minimum of the

potential, eventually forming a bound state at rmin. If on the other hand, the fuzzy sphere

is initially small, then the gravitational dielectric effect forces the configuration to expand

until it reaches the stabilisation radius - at which point it settles into its bound state after

oscillation.

3.2.7 Inclusion of Angular Momentum.

Our analysis thus far has only considered radial dynamics, which is not the most general

solution possible. Therefore it would be interesting to include something akin to angular
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momentum in our theory - which will be the focus of the next section. In the Abelian case

the inclusion of angular momentum terms in the action is essentially trivial since all the

coordinates commute [23]. This will clearly not be the case in the Non-Abelian version

and so we must choose a specific ansatz for the scalar fields. A fuzzy cylinder ansatz was

introduced in, which was able to rotate about three independent axes. However this ansatz

proves to be restrictive on the dimensionality of the background brane solutions limiting

them to p ≤ 3, although it may be useful in describing dual versions of supertubes and

we will have a closer look at it in the next section. Instead we choose a different ansatz

corresponding to rotation in the φ6 − φ7 plane [42],

φ6 = R(t) cos(θ)T3,

φ7 = R(t) sin(θ)T3,

φ8 = R(t)T1,

φ9 = R(t)T2. (3.79)

This means that the resulting theory will only be valid for p < 6 - as we require four

transverse directions for this ansatz, and so we will not be able to consider rotation in the

Gravitational Myers effect. The action for this particular ansatz can be calculated and we

find (again assuming large N)

S = −Tp′

∫

dp′+1ζ

N
∑

j=0

NH(p−p′−4)/4
√

(1 + 4Hλ2CR4)(1 −Hλ2CṘ2 −Hλ2R2θ̇2λ2
j).

(3.80)

where λj is the jth eigenvalue of the matrix (T3)
2 (using a matrix representation for the

diagonal generator). If we expand the action out to leading order this enables us to isolate

the λj dependence and we can perform the sum to obtain

N
∑

j=0

λ2
j =

N

12
(N2 − 1) =

CN

12
. (3.81)

In general, the inclusion of angular momentum for the fuzzy sphere is non-trivial. If we

employ a convention where the subscript on the λ implies summation over that variable

then we find the exact solution for the static potential in physical radius is given by

Veff =
NH(p−p′−4)/4

√

1 −Hλ2R2θ̇2λ2
j

√

1 +
4Hr4

λ2C

(

HNr2θ̇2

12
+

√

1 −Hλ2R2θ̇2λ2
k

√

1 −Hλ2R2θ̇2λ2
j

)

,

(3.82)

where θ̇ corresponds to the angular velocity of the fuzzy sphere. By setting this term to zero

we recover the result for the purely radial collapse, as we would anticipate. Even though we

cannot find a closed form solution for the potential we can still make some comments about

the dynamics of the fuzzy sphere. Interestingly we expect that the potential will vanish in
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the r → 0 limit, as the only case where there is the possibility of a bound state is when

p − p′ > 4 corresponding to the p = 6, p′ = 0 case we investigated in the previous section.

Unfortunately our choice of ansatz doesn’t allow for this to be investigated here. This tells

us that the angular momentum term cannot counteract the gravitational force exerted by

the source branes, and the fuzzy sphere will always collapse.

3.2.8 Alternative ansatz.

Thus far our analysis has been exact but does not allow us to obtain closed form solutions

describing the full dynamics, so it is useful to consider an alternative ansatz which allows

us to incorporate angular momentum in a clear manner. Since we require two transverse

scalars to define a plane in the transverse space, and at most each plane is parameterised

by one of the generators of the representation, we are led to the conclusion that we should

use six transverse scalars to introduce angular momentum. This will obviously place severe

restriction upon the dimensionality of the branes that we can consider in our solution, since

not all background solutions admit spacetimes with six-transverse directions. In fact we

find that at most we can consider a D3-brane background. We choose to parameterise

the six transverse scalars as follows - temporarily dropping the group generators from our

notation:

φ1 = R(t)cos(θ) φ2 = R(t)sin(θ)

φ3 = R(t)cos(θ) φ4 = R(t)sin(θ)

φ5 = R(t)cos(θ) φ6 = R(t)sin(θ) (3.83)

Thus we are breaking the SO(6) symmetry of the transverse space down to SO(2)×SO(2)×
SO(2), and choosing the same angle θ to parameterise the three planes. This may seem a

rather restrictive ansatz but it will actually allow us to make some progress. The action in

this case becomes

S = −Tp′

∫

dp′+1ζSTr

(

H(p−p′−4)/4
√

1 −Hλ2C(Ṙ2 +R2θ̇2))(1 + 4λ2HR4C)

)

, (3.84)

with a possible Chern-Simons term, defined up to a constant factor

SCS = +Tp′δ
p
p′

∫

dt
q

H
. (3.85)

Since both terms in the Born-Infeld part of the action are proportional to the identity

matrix, we find that the STr reduces to Tr to leading order in large N . Finally we obtain

S = −Tp′

∫

dp′+1ζNH(p−p′−4)/4
√

(1 −Hλ2C(Ṙ2 +R2θ̇2))(1 + 4λ2HR4C). (3.86)
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We can now proceed as usual by switching to the Hamiltonian formalism and writing the

canonical energy density as

Ẽ =

√

√

√

√N2H(p−p′−4)/2(1 + 4λ2CHR4) +
1

Hλ2C

(

Π̃2 +
L̃2

R2

)

. (3.87)

Reverting to the formulation in terms of the physical radius r, we find that the effective

potential becomes

Veff =

√

N2H(p−p′−4)/2

(

1 +
4Hr4

λ2C

)

+
L̃2

Hr2
(3.88)

Where we must remember that this equation is only valid for p ≤ 3, and that both the

energy density and the angular momentum are conserved charges.

For ease of calculation we choose to rescale the potential by a factor of N . This is

possible because there is an N2 term in the angular momentum density. The resulting

non-Abelian and Abelian potentials are written below for comparative purposes

V̄eff =

√

H(p−p′−4)/2

(

1 +
4Hr4

λ2C

)

+
L̃2

Hr2
,

V abelian =

√

H(p−p′−4)/2 +
L̃2

Hr2
. (3.89)

Simple analysis of the potential in the non-Abelian case shows that it is a monotonically

decreasing function for all valid p and p′ in this regime. Therefore there is no possibility

of the formation of bound states, in the same way that there are no bound orbits in the

Abelian theory. Once again it is useful to look at the equations of motion to determine

if there are any constraints to be imposed on the solution. We wish to consider a case

where the energy density and the angular momentum density are constant. Thus we find

the following expression

ṙ2 =
1

H

(

1 − 1

Ẽ2

[

N2H(p−p′−4)/2

{

1 +
4Hr4

λ2C

}

+
L̃2

Hr2

])

. (3.90)

If we assume that the angular momentum takes some fixed, non-zero value - then we

can consider how the constraint equation is modified in the asymptotic limit of r → 0

1 ≥ 1

Ẽ2

(

4N2k
(p−p′−4)/4
p kp

λ2Cr((7−p)(p−p′−4)+6−2p)/2
+
L̃2r5−p

kp

)

. (3.91)

This appears to have a complicated dependence upon r, however because of the restrictions

from the ansatz we know that there are only two possible cases we can consider, i) p−p′ = 2
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and ii) p− p′ = 0. The first case reduces the constraint to the following

1 ≥ 1

Ẽ2

(

r4 + L̃2r5−p
)

. (3.92)

It is clear that as r vanishes the contribution from the angular momentum term also van-

ishes and the energy density can be relatively arbitrary, as already discussed. The second

condition implies a similar result, however the dimensionalities of the branes involved plays

a role in determining how quickly the leading term vanishes.

3.2.9 Non-BPS branes.

It is well known that BPS branes can be interpreted as solitonic solutions of Non-BPS branes

[28], so it is natural to enquire about the dynamics of these branes in various backgrounds.

In this section we will look at the action for N Non-BPS branes in the Dp-brane background

and try and study the dynamical evolution of the fuzzy sphere in this instance. This will

not be as straightforward to analyse as the BPS case, as there is the additional complication

of open string tachyon modes condensing on the world volume. We begin this section by

introducing the non-Abelian extension of the non-BPS Dp-brane action [39].

S = −
∫

dp+1ζSTrV (T )e−(φ−φ0)
√

− det(P[Eab + Eai(Q−1 − δ)ijEjb] + λFab + Tab)

×
√

detQi
j. (3.93)

As usual there is an overall factor of the tachyon potential multiplying the entire action,

and the rest of the fields are defined in the same way as before. In addition there is a new

tensor, Tab, containing all the open string tachyon terms. The expansion of this tensor can

be written as follows

Tab = λDaTDbT −DaT [xi, T ](Q−1)ij [x
j, T ]DbT + . . . . (3.94)

In what follows we will assume that the tachyon potential takes the same form as the single

brane case, namely

V (T ) =
1

cosh(T/
√

2)
, (3.95)

which tends to an exponential for large T in agreement with calculations from BSFT [28].

Inserting the D-brane background solutions, we find that at leading order the action

reduces to

S = −Tp′

∫

dp′+1xSTrV (T )H(p−p′−4)/4

√

(1 − λ2Hφ̇2 −H1/2λṪ 2)(1 − λ2H

2
[φi, φj ][φj , φi]).

(3.96)

We are absorbing α′ factors into the definition of the tachyon (T ) to make it dimensionless
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and we are assuming, like the transverse scalars, that it is purely time dependent. We are

also assuming that the tachyon is real in this model. Generally we would expect the tachyon

to be a complex field, however for our purposes this only served to make things even more

analytically complicated. The explicit time dependence of the tachyon also ensures that the

Chern Simons term vanishes to lowest order when we employ the static gauge 6.

The overall multiplication factor, V (T ), is the potential for the tachyon field which

describes the changing tension of each of the branes. We will again rescale it so that it is

dimensionless. The form of the tachyon potential is not known in general, however using

arguments from boundary string field theory, Sen argued that it is exponentially vanishing

at large values. As a result it has become somewhat standard in the literature to use

an inverse cosh potential to describe the rolling tachyon. This is perfectly valid for flat

space calculations, however the form of the potential may well be modified in non-trivial

backgrounds. For simplicity we will assume that the inverse cosh potential is a reasonable

description of the open string decay even in curved space.

As usual, the simplest ansatz for the transverse scalars is to use the standard SU(2)

ansatz, φi = R(t)T i. In which case we find that the action becomes

S = −Tp′

∫

dp′+1xNV (T )H(p−p′−4)/4
√

(1 − λ2CHṘ2 − λH1/2Ṫ 2)(1 + 4Hλ2CR4), (3.97)

where we have traced over the SU(2) indices. As it stands, this form of the action is

perfectly acceptable for us to analyse the dynamics of the brane. However the presence of

the world-volume tachyon makes things difficult since it will not decouple from the equation

of motion for the radion. It turns out that we can re-write the action in an equivalent form

which is more useful for analysing the dynamics. In order to do this we choose to rescale

the tachyon field such that
T̃√
2

= sinh

(

T√
2

)

, (3.98)

which transforms the action into the following form

S = −Tp′

∫

dp′+1x
NH(p−p′−4)/4

√
F

√

1 +
4Hr4

λ2C

√

1 −Hṙ2 − H1/2λṪ 2

F
. (3.99)

Where we have introduced a new parameter, F , which controls the changing tension of the

probe branes

F (T ) = 1 +
T 2

2
, (3.100)

and we have also chosen to write the rescaled tachyon field in terms of T for ease of notation.

This form of the action allows us to investigate the dynamics of the Non-BPS brane when

6This is because the CS term goes like
R

dT ∧C where our parameterisation of C ensures that it has one
leg in the time direction.
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the tachyon field is large. At this juncture we must point out that there may also be

objections to using this form of the tachyon potential, as we are assuming that it will hold

true in a gravitating background. It is well known that there are many effective descriptions

for the tachyon field, with each one defined on a specific section of tachyon moduli space

[31]. However as there has been little progress in constructing non-Abelian versions of these

effective actions, we must use the DBI and hope that it provides an adequate description

of the physics at late time.

It turns out that making the field redefinition will still not be enough to simplify the

problem, and so we are also forced to consider the throat geometry around the source

branes. In terms of field space definitions we are probing the large T , small r region of the

theory. We can now use the Noether method to find the charge associated with a scaling

symmetry on the brane world volume. We postulate that the fields and the time scale as

follows:.

t′ = Γαt, r′ = Γβr, T ′ = ΓγT. (3.101)

Inserting these transformations into the action yields the following constraints,

β(p− 3) = 0, α = −β, γ = −αp′. (3.102)

The first of these is the most important, since we have two possible solution branches.

Firstly we can have β = 0, which automatically implies that α = γ → 0 and so there are no

field symmetries. However the second solution gives p = 3, which implies that the scaling

variables are arbitrary. What we have found is that the symmetry on the world-volumes of

the probe branes imposes a constraint on the allowed dimensionality of the background. If

we were to allow extended transformations, for example a rescaling of the string coupling,

we find that the background constraint becomes p = 5. Only in the case where we rescale

all the fields, the string coupling and the string length can we eliminate this background

constraint and have a theory valid in all backgrounds.

For brevity we will only consider the basic case in this thesis. Extending this to the

more general case remains an outstanding problem. As the scaling variables are arbitrary,

we find it convenient to choose α = −1, thus the scalings become

t′ = Γ−1t, r′ = Γr, T ′ = Γp′T, (3.103)

and we find a representation for the conserved charge generating these transformations,

which is

D = tẼ + rΠ̃ + p′TPT , (3.104)

where Ẽ, Π̃ and PT are the canonical energy density, radial momentum and tachyon mo-
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mentum respectively. Now it is useful to write the energy density in canonical form

Ẽ =

√

2N2

T 2

(

k3

r4

)−(1+p′)/2 {

1 +
4k3

λ2C

}

+
Π̃2r4

k3
+
T 2P 2

T r
2

2λ
√
k3
, (3.105)

where we have written k3 to denote the constant charge of the D3-brane background. Using

this expression we find the equations of motion for the radion and tachyon fields reduce to

ṙ =
Π̃r4

Ẽk3

, Ṫ =
T 2PT r

2

2Ẽλ
√
k3

. (3.106)

Note that in this instance, neither Π̃ or PT is a conserved charge which makes it difficult

to solve the equations of motion. However due to our world-sheet transformations we have

discovered a charge, D, that is conserved and so we can use this to simplify the equations of

motion. In order to do this we will have to consider specific decompositions of the symmetry

charge, as the general expression does not lead to simple analytic solutions. This will be

the focus of the next subsection.

3.2.10 Decomposition of charge.

Even with the existence of the conserved charge (3.104), this does not allow an easy split

between the variables r and T which would allow us to solve (3.106).7. In order to try and

find analytic solutions (even approximate ones) we need to impose further conditions on

the canonical variables in a manner consistent with the equations of motion. Let us write

the conserved scaling charge D in (3.104) as the condition

Φ = (tẼ + rΠ̃ + p′TPT −D) = 0. (3.107)

This constraint is preserved under Hamiltonian flow since it can be verified that Φ̇ =

dΦ/dt+ {H,Φ} = 0 where {, } defines the usual Poisson bracket and H is the Hamiltonian

defined in (3.105) . Now let us decompose Φ = Φ1 + Φ2 where

Φ1 = Ẽ1t+ rΠ̃ −D1

Φ2 = Ẽ2t+ p′TPT −D2 (3.108)

with Ẽ1 + Ẽ2 = Ẽ and D1 + D2 = D. If we now impose, for example, the additional

constraint that Φ1 = 0 (and hence Φ2 = 0 as a consequence) then this would allow us to

solve for r(t) and T (t). However we must check that this additional constraint is preserved

7The only exception is the case p′ = 0 which we shall discuss later.
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under Hamiltonian flow, i.e that

Φ̇1 =
dΦ1

dt
+ {H,Φ1} = 0 (3.109)

This leads to the following algebraic constraint between r and T :-

Ẽ1 − Ẽ − 2N2p′

ẼT 2

(

k3

r4

)−(1+p′)/2{

1 +
4k3

λ2C

}

= 0 (3.110)

The case p′ = 0 is special in that the original constraint, Φ = 0, can be used to solve the r, T

system completely (see later). For now we will assume that p′ 6= 0 . Since we are considering

p′ < p = 3 we only need consider the case when p′ = 2. It’s clear from (3.110) that Ẽ1 > Ẽ

if this constraint is to be solved exactly. But one can then show an inconsistency appears

when this algebraic constraint is applied to (3.106). Thus at best we can only solve (3.110)

approximately. One such solution is to take Ẽ1 ≈ Ẽ and assume T is large. We remind the

reader that we already assumed that T is large in order to obtain the scaling symmetries

earlier. We can now proceed to solve the r, T system of equations.

Solving for the radial equation of motion we find

1

r2
=

1

r20
− t

Ẽk3

(2D2 − Ẽt) (3.111)

Now for small values of D2 the dynamics of the probe obeys a 1/t relationship. The exact

description of the dynamics will depend on the relative sizes of D2 and Ẽ. If Ẽ >> D2,

then the quadratic term will be dominant. This ensures that the solution starts at some

maximal distance and tends to zero. Conversely if D2 is much larger than Ẽ, then the

linear term is dominant and this describes an expanding solution which will break down

when the supergravity constraint is no longer satisfied. However when the two charges are

of the same order of magnitude we find a turning solution. The sphere initially expands

from t = 0 until it reaches a stationary point at t = D2/Ẽ, before collapsing toward zero

size.

Using the second constraint to solve for the tachyon momentum yields the solution to

the tachyon equation of motion

T ∼ T0 exp

(√
k3r

2
0

4λ
f(t)

)

(3.112)

where the function f(t) is proportional to arctanh(tẼ−D2). Thus the general behaviour of

the tachyon solution is that it is an exponential function of time.

The results obtained so far have all been for the case p′ = 2. In order to determine

the dynamics of the p′ = 0 case corresponding to N coincident D-particles we see that the

tachyon dependence drops out of of the conserved charge. This is an unusual case, since
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when the tachyon condenses we will be left with D-instantons. Initially solving for the

radial equation of motion, we find the expression

1

r2
=

1

r20
− t

Ẽk3

(2D − tẼ) (3.113)

which is a similar solution as the one obtained in the charge decomposition above for p′ = 2.

Therefore we also expect to find a similar turning solution for the fuzzy sphere parameterised

by the time t = D/Ẽ. We have no other constraint to impose on the equation of motion for

the tachyon field, but we can write the tachyon momentum in terms of the other canonical

forms

P 2
T =

2
√
k3λ

T 2r2

(

Ẽ2 − 2r2

T 2
√
k3

{

1 +
4k3

λ2C

}

− Π̃2r4

k3

)

. (3.114)

In general we can use this solution to exactly solve for the tachyon field, however this is

extremely difficult and we will find it much more useful to find an approximate solution.

From the above equation we see that the supergravity solution implies r4/k3 << 1, and so

we can effectively neglect the contribution from the final two terms. Inserting this into the

equation of motion yields the solution

T ∼ T0 exp

(

(√
k3

2λ

)1/2

ln

[

√

Ẽk3 − r20t(2D − tẼ) +
r0(tE − D)
√

Ẽ

])

, (3.115)

which we expect to provide a reasonable approximation as r → 0, and once again shows the

increasing exponential dependence of the tachyon field. Again the contribution from the

two charges can change the dynamics of the field, as described earlier.

The general solution for the tachyon field is expected to be background dependent,

however we see that in the D3-case it is roughly exponential in all cases. The fuzzy sphere

appears to always collapse, but there is an intricate relationship between the tachyon con-

densation and the radial modes which depends upon the conserved charges. When both

terms appear in the radial equation of motion we see that there can be turning solutions

describing an initial expansion which eventually contracts within finite time. This is a result

of the tachyon condensation which decreases the tension of the branes so that they feel a

weaker gravitational attraction. However the combination of the charges in the tachyon

solution also implies a turning point for the tachyon field and so the tension eventually

increases and the fuzzy spheres collapses - provided that the tachyon solution still remains

valid.

3.2.11 NS5-brane background.

The analysis in the previous section was concerned with coincident Dp-brane backgrounds,

but we wish to extend this to the NS5-brane background. This particular background
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is important for several reasons as in many cases there is an exact conformal field theory

description allowing BCFT calculations [21]. Secondly there is an interesting duality which

relates six dimensional string theory on theNS5-brane world-volume, known as Little String

Theory (LST) [43], to supergravity in the bulk permitting an understanding of the dynamics

in terms of defects of the LST. Aside from this - as we saw in the first chapter of this thesis,

there is an interesting relationship between brane dynamics and tachyon condensation in

these backgrounds. Much of the construction of the non-Abelian theory follows a similar

line to that of the D-brane backgrounds

For simplicity we will restrict ourselves to the analysis of coincident fivebranes. The

background supergravity solution was presented in the first chapter, see (2.2). Note that

there are no bulk RR fields in this solution because the NS5-branes don’t carry these

charges. The probe branes themselves do carry RR charge, which would be emitted as

closed string radiation as the branes move through the background [30]. This has important

consequences as we know that the Abelian theory is only valid for probe brane dimensions

3 ≤ p < 5, due to the emission of these string modes. This result was calculated from the

CFT perspective, so we expect it to be correct. Performing the equivalent calculation for

multiple branes is significantly harder, and remains an open problem.

We now insert the background solution (2.2) into our non-Abelian action. Once again

we expand everything to leading order and assume that the transverse scalars are time

dependent, which will ensure that our solutions are homogeneous and thus there will be no

formation of caustics. Finally we arrive at the following form of the action

S = −Tp

∫

dp+1ζSTr

(

H−1/2
√

1 −Hλ2φ̇iφ̇jδij

√

1 − 1/2λ2H2[φi, φj ][φj , φi]

)

. (3.116)

Recall that theNS5-branes have a tension that goes as 1/g2
s , whilst theDp-branes each have

tensions proportional to 1/gs, thus the five-branes are heavier in the large k limit, however

as we are considering the large N limit we may find there is considerable back reaction

upon the throat in the target space which may deform it substantially. As far as this thesis

is concerned we will always assume k >> N in order to minimise this effect, however we

should bear in mind that this may not always lead to a physical solution. Following on from

the previous sections we will assume the usual SO(3) ansatz for the transverse scalars and

the resulting action reduces to8

S = −Tp

∫

dp+1ζ
N√
H

√

(1 −Hλ2Ṙ2C)(1 + 4λ2CH2R4), (3.117)

with C being the usual Casimir of the N -dimensional representation. Switching now to

8For simplicity we do not include angular momentum though this can be done as in the case of the
D-brane backgrounds.
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physical coordinates we arrive at the final form of the action useful for our analysis

S = −Tp

∫

dp+1ζ
N√
H

√

(1 −Hṙ2)

(

1 +
4H2r4

λ2C

)

, (3.118)

from which we can derive the usual canonical momenta and energy densities, where we have

explicitly divided out the ’mass’ of each brane.

Π̃ =
NHṙ√
H

√

1 +
4H2r4

λ2C

1√
1 −Hṙ2

Ẽ =
N√
H

√

1 +
4H2r4

λ2C

1√
1 −Hṙ2

. (3.119)

We solve the equation for the energy, which is conserved, to obtain the following constraint

on the dynamics of the probe branes assuming a fixed energy density

1 ≥ N2

Ẽ2H

(

1 +
4H2r4

λ2C

)

. (3.120)

As usual the interesting physics occurs in the near horizon geometry of the five-brane

background, and so we will drop the factor of unity from the harmonic function when

referring to this limit. We will also anticipate that there is a maximum size for the fuzzy

sphere in the large r region, which is again identified with Minkowski space. In the throat

we find that the constraint becomes

1 ≥ N2r2

Ẽ2kl2s

(

1 +
4k2l4s
λ2C

)

(3.121)

which is automatically satisfied for the radial part since we know that H >> 1 in this

region. This actually allows us to find the following constraint on the energy density

Ẽ2

N2
≥ r2

kl2s

(

1 +
k2

π2C

)

. (3.122)

The supergravity solution tells us that r2/kl2s must be extremely small, and we can select

k/N to be small even when k and N are individually large, thus the last term can be tuned

to be O(1) and implies that Ẽ is larger than N . Thus like the majority of the Dp-brane

solutions we find that the fuzzy sphere can collapse down toward zero size.

One caveat to this assumption is that the dynamical D-branes will shed their energy as

they fall toward the five-branes, and could eventually form a (k,N) bound state in analogy

to the (k, 1) state in the Abelian case. As we have already seen, one of the main differences

between the usual fuzzy sphere solutions in flat space and those in curved background is

that the velocity term decreases with the radius. In flat space we find that the collapsing

configuration approaches the speed of light at late times and thus the 1/N corrections due
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to the symmetrized trace become important. Clearly we don’t see the same behaviour in

this case, in fact a six dimensional observer on the NS5-brane world volume will record

that it takes an infinite amount of time for the fuzzy sphere to collapse to zero size. This

is interesting as it appears that the energy of a collapsing fuzzy sphere in flat space is the

same as an essentially static sphere in a space-time throat 9, and is clearly related to the

formation of a bound state of (p, q) fivebranes.

In the large r region corresponding to Minkowski space, we find that the constraint

becomes

1 ≥ 4N2r4

Ẽλ2C
(3.123)

which translates into the condition that the fuzzy sphere has a maximum radius given by

rmax =

√

ẼλC1/2

2N
. (3.124)

which, as expected, is the same as the value obtained in the Dp-brane backgrounds in the

absence of Chern-Simons terms.

We now look at the static potential associated with the fivebrane background. Following

the parameter conventions employed in the Abelian cases [21], we easily find that the

potential can be written in the following form

Veff =
N2

Ẽ2H2

(

1 +
4H2r4

λ2C

)

− 1

H
(3.125)

The interesting question is what happens in the throat, since we know that in the large r

region the potential will be a simple monotonically increasing/decreasing function, which

goes like

Veff ∼ 4r4

λ2Ẽ2
. (3.126)

Dropping the factor of unity as before we find that in the r → 0 limit the potential becomes

Veff ∼ N2r4

Ẽ2k2l4s

(

1 +
4k2l4s
λ2C

)

− r2

kl2s
. (3.127)

which indeed tends to zero with r, for fixed Ẽ as expected

In any case, we wish to solve the equation of motion for the probe branes in the throat.

Because the energy is conserved, the solution - up to constants of integration - is simply

1

r
=

√

N2

Ẽ2kl2s

(

1 +
4k2l4s
λ2C

)

cosh

(

t
√

kl2s

)

, (3.128)

9Provided one is in the correct reference frame.
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which is actually a simple extension of the solution for a single probe Dp-brane in the

Abelian theory [21], which was shown to be

1

r
=

1
√

Ẽ2kl2s − L̃2

cosh

(

t
√

kl2s

√

1 − L̃2

kl2sẼ
2

)

. (3.129)

where we have also included the angular momentum contribution for completeness. This

extra term acts as a deceleration parameter, slowing the velocity of the probe brane.

Let us make some brief remarks on the solution (3.128). If we perform a Wick rotation

on the time coordinate for the collapsing solution, we find a periodic solution in terms of

a cosine function. This can be interpreted as the collapse and subsequent bounce of the

fuzzy sphere in imaginary time - although the physical interpretation of this solution is not

clear we expect it to approximate the time dependent solution for Euclidean branes. This

sinusoidal behaviour can also be seen if we switch to conformal time where an observer sees

that the collapse occurs in finite time. In this case we would expect 1/r to be proportional to

sin(t) which again is suggestive of a periodic collapse and expansion. However this solution

would indeed probe the non-perturbative region of the theory, and it is not clear if the

corrections (e.g quantum, 1/k and back-reaction) would admit such a solution. One further

thing to note is that using S-duality we may map this solution to that of the coincident D5-

brane background being probed by coincident D3-branes. This agrees with our expectation

that the D5-brane background yields exponential solutions at late times.

We may enquire about the validity of this classical solution in the throat region. Using

our time dependent ansatz we see that the dilaton is also a time dependent function, in fact

for a radially collapsing solution we find that the dilaton behaves as

eφ =
Ngs

Ẽ

√

1 +
4k2l4s
λ2C

cosh

(

t
√

kl2s

)

. (3.130)

Note that quantum effects can be neglected provided that gs = eφ << 1, however as we

know that Ẽ >> N from our constraint equation we expect that the classical analysis will

provide an accurate description of the solution, at least for early times. This can be ’fine

tuned’ for specific values of k and N so that the classical solution continues to hold at late

times. If we do not wish to fine tune the solution, then we must uplift to M-theory in order

to study the dynamics. However there is no M-theory analogue of the non-Abelian action10,

which makes this step impossible. Simple analysis shows that a theory of coincident M5-

branes must also contain a theory of M2-branes which intersect along one dimension of the

M5-branes. This means that the massles degrees of freedom will not vary as N2 like in

ten-dimensions, in fact they vary like N3/2.

10However see [47] for a recent development.
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3.2.12 Correction from symmetrized trace.

Thus far we have investigated the dynamics of the action at leading order, and seen that the

fuzzy sphere will generally collapse down to small size. It is expected that the effective action

will break down at distances comparable with the string length, and thus 1/N corrections

will become important. In order to deal with this situation we will look at the next order

terms arising from corrections to the symmetrized trace. As we have already seen we can

write the first order correction to the energy as [50]

Ẽ1 =

(

1 − 2

3
C
∂2

∂C2

)

Ẽ0,

which yields the corrected energy

Ẽ1 =
N√

H
√

1 −Hṙ2

(

W (k,C) +
2Ck4

3W (k,C)3/2π4C4
− 2k2C

3W (k,C)π2C3

)

. (3.131)

Where we have introduced the following simplifying notation

W (k,C) =

√

1 +
k2

π2C
. (3.132)

This term can be thought of as a mass term, by seeing how it arises in the context of the

energy. In the Dp-brane case (and in flat space) this term is an explicit function of the

radius, and we have the notion of a position dependent mass. However in the near horizon

of the NS5-brane background this term reduces to a constant. Because we are using the

supergravity approximation in our analysis, we are taking k and N to both be large, and

so this ’mass’ term is positive but small since we are also demanding k/N to be small. If

we now employ the canonical formulation of the energy, we can set the Π̃ terms to zero to

find the corrected potential for the probe branes up to leading order in 1/C

V1 =
N√
H

(

W (k,C) − 2k2

3W (k,C)π2C2

)

. (3.133)

The potential clearly does not vanish with this correction because the new term is suppressed

by k/N . In fact, even taking into account higher order corrections, the potential is nowhere

vanishing since the corrections are not functions of r. Thus the symmetrized trace correction

does not appear to yield exotic behaviour, such as bounce solutions.

3.2.13 Non-Abelian tachyon map.

It has been shown in the case of a single probe brane, that the unstable dynamics in the

NS5-brane background are more easily understood in terms of the rolling tachyon, since

the energy momentum tensors have similar behaviour at late times. We may ask what
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the implications are when we have multiple coincident branes with a U(N) symmetry on

their worldvolumes. This relationship can be explicitly demonstrated by mapping the probe

brane action into that of the tachyon action in flat Minkowski space. This is particularly

simple in the Abelian case, but we wish to show that it is also possible in our non-Abelian

construction. The corresponding non-Abelian action for tachyons in a flat background, to

leading order, can be written

S = −TpVp

∫

dtNV (T )
√

1 − Ṫ 2. (3.134)

Because the tachyon field does not take values in the SU(2) algebra we find that the action

is simply N times that of a single non-BPS brane. In fact this corresponds to a configuration

of branes each separated by distances larger than the string length, as found in constructions

of Assisted Inflation [97]. In this scenario each of the tachyons is assumed to follow a similar

trajectory toward the late time attractor point, namely T1 ∼ T2 . . . ∼ TN ≡ T . Here Vp

is the effective ’volume’ of each brane, whilst V (T ) is the tachyon potential which we will

again assume to be of the form;

V (T ) =
1

cosh(T/T0)
, (3.135)

We remind the reader of the action for the probe brane in the NS5-background, which we

have already shown to be of the form

S = −TpVp

∫

dt
NW (r)√

H

√

1 −Hṙ2, (3.136)

where, for simplicity, we have absorbed the potential term into our definition of W (r).

Clearly we can map this action to that of the non-Abelian tachyon by making the identifi-

cation

dT̃ =
√
Hdr, V (T̃ ) =

W (r)√
H

. (3.137)

Using the near horizon approximation we can solve for the Geometrical Tachyon in terms of

the physical radius of the fuzzy sphere. The result, up to arbitrary constants of integration,

is simply an exponential as expected from the Abelian case which allows us to write the

tachyon field as

T̃ ∼
√

kl2s ln(r). (3.138)

The solution tells us that as r → 0, T̃ → −∞ as expected, whilst as r → rmax we find

T̃ → T̃max. Clearly this is not the general behaviour associated with the open string tachyon

solution, which we should have expected from the Abelian theory, but we may anticipate

that the decay of the fuzzy sphere will also be describable in terms of this rolling tachyon

93



3.2. DYNAMICS IN Dp AND NS5-BRANE BACKGROUNDS

solution. Using our field redefinition, we write the expression for the tachyon potential as

V (T̃ ) =

√

1

kl2s

(

1 +
k2

π2C

)

exp

(

T̃
√

kl2s

)

. (3.139)

The form of the potential shows that it had its maximum at T̃ = 0, and tends to zero

for T̃ → −∞. The exact maximum will be defined by the number of source branes, as

expected from the Abelian case. However note that there is a correction term present here

due to the fuzzy sphere, which does not occur in the leading order tachyon action as we

know that the tachyonic scalar field is a commuting variable. Therefore although we can

capture the general behaviour of the tachyon action, we must go beyond leading order to

find closer agreement. If we construct the Energy-Momentum tensor associated with this

rolling tachyon solution, omitting the delta functions which localise the tensor on the brane

world-volumes, we obtain

T00 =
NV (T̃ )

√

1 − (∂tT̃ )2

Tij = −NV (T̃ )

√

1 − (∂tT̃ )2, (3.140)

which shows that the pressure tends to zero as the potential tends to zero, i.e, when the

probe branes approach the fivebranes at late times. This is because the probe brane will

emit energy in closed string modes as the fuzzy sphere collapses, and the resulting mat-

ter will be non-Abelian pressureless fluid. One must also imagine that because the fuzzy

sphere collapses in the near throat region of the fivebranes, becoming pointlike at distances

approaching the string length, the harmonic function approximation may fail, and there

will certainly be quantum corrections to take into account. This is due in part to the back

reaction of the probes on the source branes and the throat, therefore in order to determine

the physics of this non-Abelian fluid it will be necessary to calculate this back reaction

term and incorporate it into the action. In any case, it would be useful to compute the

dynamics of this configuration using the exact CFT on the world volume which would help

shed further light on the validity of the classical solution.

3.2.14 Non-BPS branes in fivebrane backgrounds.

We have already started developing the technology to deal with this solution in the case of

Dp-brane backgrounds, where the action of our coincident probe branes is once again given

by (3.93). As usual we expand everything to leading order, and we will drop any gauge

field term so that all the covariant derivatives reduce to normal derivatives. The resulting
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action can be written as follows

S = −
∫

dp+1ζSTr
V (T )√
H

√

(1 +Hλ2∂0φi∂0φjδij + λ∂0T∂0T )

(

1 − 1

2
H2[φi, φj ][φj , φi]

)

.

(3.141)

We again use the fuzzy sphere ansatz for the radially dependent transverse scalars which

reduces the action to a more tractable form

S = −
∫

dp+1ζN
V (T )√
H

√

(1 −Hλ2CṘ2 − λṪ 2)(1 + 4H2λ2CR4). (3.142)

The presence of the open string tachyon will again generally prohibit exact solutions to the

equations of motion for the radion field unless we take various asymptotic limits. This is

obvious, as the form of the action shows that the conjugate momenta associated with the

radion and tachyon fields will not be conserved. Once again it will be useful to perform

symmetry transformations on the various fields, as in the Dp-brane case, which will allow

us to solve the equations in specific regions of field space.

We will assume the ’canonical’ form for the tachyon potential as in (3.95). We insert

this into the action, and once again switch to using physical coordinates. Again note that

the current form of the potential will make it difficult to find symmetries of the action as it

stands, thus it will be more useful to perform the same field redefinition as we did for the

coincident Dp-brane background

T̃√
2

= sinh

(

T√
2

)

,

and for convenience we re-write T̃ = T for ease of calculation, although we will always

imply that this is the re-definition of the original tachyon field. As mentioned previously

there may be objections to performing this kind of field redefinition using the non-Abelian

action in this gravitational background. Assuming that this won’t be too problematic, we

can now proceed to analyse the resulting action,

S = −Tp

∫

dp+1ζ
N√
HF

√

√

√

√

(

1 −Hṙ2 − λṪ 2

F

)

(

1 +
4H2r4

λ2C

)

, (3.143)

where we have introduced the following definitions

F =

(

1 +
T 2

2

)

, H = 1 +
kl2s
r2
. (3.144)

We can now try to find the conserved charge associated with transformations of this action,

and use that in conjunction with the energy density to solve the equations of motion.

Unfortunately we see that this is still non trivial unless we make further approximations,

thus we will look at the theory in the large T and small r limit. Since the large tachyon
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field gives rise to a gas of closed strings arising due to tachyon condensation, we expect to

find that the radial field on the probe branes will describe the late time dynamics of this

gas. The action in this instance, reduces to

S = −Tp

∫

dp+1ζ

√
2Nr

√

kl2sT

√

1 − kl2s ṙ
2

r2
− 2λṪ 2

T 2

√

1 +
k2

π2C
, (3.145)

At this juncture we will revert back to the W (k,C) notation to simplify things, and further-

more, we postulate that the action be invariant under the following transformations [22]

T = λT, r = λr, where λ = 1 + ǫ and infinitesimally we find

δT = ǫT, δr = ǫr, (3.146)

for some parameter ǫ. Note that this is a scaling transformation that acts both on the

world-volume fields and the transverse scalars. Presumably there is some relation here to

the space-time uncertainty principle [48]

∆t∆X ≥ α′ (3.147)

where distances on the world-sheet are inversely related to distances in the bulk. Since the

NS5-brane world-volume theory is related to a Little String Theory (LST), it would be

interesting to find out the implications of the transformations for fields in the LST.

Varying the action, we determine that the charge associated with this symmetry is given

by

D =
Nr

√
2

T
√

kl2s

(

kl2s ṙ

r
+

2λṪ

T

)

W (k,C)
√

1 − kl2s ṙ2

r2 − 2λṪ 2

T 2

, (3.148)

which can be seen to have dimensions of length. We also determine the canonical energy

density associated with the action, using the canonical momenta of the radion and the

tachyon fields. For brevity we will simply state the resultant dimensionless energy density

and not the individual momenta

Ẽ =
Nr

√
2W (k,C)

T
√

kl2s

1
√

1 − kl2s ṙ2

r2 − 2λṪ 2

T 2

. (3.149)

It can be seen that both Ẽ and D are conserved, as expected, and it will be useful to

combine both of these charges to form a solitary conserved charge

Q =
D

Ẽ
=
kl2s ṙ

r
+

2λṪ

T
, (3.150)
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which after some manipulation can be used to define the tachyon field via

T = Co exp

(

Qt

2λ

)

r−k/4π, (3.151)

where C0 is a constant of integration. Furthermore from (3.150) we can also find the time

dependence of the tachyon field in this condensing limit.

Ṫ = T

(

Q

4πl2s
− kṙ

4πr

)

. (3.152)

As we are probing the large T region of field space, we expect that the dominant contribution

to the charge will come from the radial modes. Now that we have written the tachyon field

in terms of this conserved charge we can attempt to solve the radial equations of motion.

Note that this would be extremely challenging if we had tried to proceed from the original

form of the action without finding another conserved charge. We will initially consider the

case where Q = 0. This obviously implies that we are setting D → 0 (or taking the energy

density to be extremely large), which may seem strange, however we have used the charge

to construct an expression for the tachyon field and so it is valid. By setting Q = 0 we are

identifying the condensation of the tachyon field with the inverse of the radion field on the

probe branes (up to some power), and so small r will automatically imply large T . The

simplicity of this approach is now clear, since we began with two distinct fields and have

effectively coupled them via the conserved charge thus only requiring us now to solve for one

of the fields. We now substitute the expressions for the tachyon into the energy equation,

which will now solely be a function of r.

Ẽ =
NW (k,C)ry

√
2

C0

√

kl2s

1
√

1 − kl2s ṙ2

r2

(

1 + k
4π

)

(3.153)

and for future reference, we will introduce the simplifying notation

B =
NW (k,C)

√
2

ẼC0

√

kl2s
, y = 1 +

k

4π
, x = kl2s

(

1 +
k

4π

)

(3.154)

Rearranging the energy equation allows us to solve for r(t), which we find to be, up to

constants of integration

1

r
∼
(

B cosh

[±y(t− t0)√
x

])1/y

, (3.155)

where t0 parameterises some initial time for the dynamics. This solution describes an

expanding fuzzy sphere which reaches its maximum size at t = t0 and thereafter collapses

down to zero size. We easily find that the maximum radius will be given by

rmax =

(

ẼC0

√

kl2s
NW (k,C)

√
2

)1/y

. (3.156)
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The physics behind this solution can be understood. As the fuzzy sphere expands the

tension of the non-BPS branes is increased as the tachyon moves closer to the top of its

potential (assumed to be located at T = 0 ). Thus the expanding solution has a natural

’braking force’ that restricts it to expand to a certain size. Conversely in the collapsing

phase, the non-BPS branes feel a decreasing tension which goes to zero as the solution

collapses toward the origin.

We can also determine the constant of integration by demanding that T = T0 at t = t0,

and since we are in the large T region of field space we will assume that |T0| >> 1. After

some manipulation we find

C0 = T y
0

(

NW (k,C)
√

2

Ẽl2s
√
k

)k/4π

, (3.157)

and therefore we can completely determine the behaviour of the tachyon near condensation,

in the approximation where Q = 0. It is natural to now consider the case where Q 6= 0,

however we should note that this case is not solvable exactly, and we must be forced into

approximations. If we insert the full expression for the tachyon field into the energy equation

we find

1 − kl2s ṙ
2

r2
− l2s

4π

(

Q2

l4s
− 2Qkṙ

l2sr
+
k2ṙ2

r2

)

= B2e−Qt/λr2y. (3.158)

Now at late times we see that the RHS of this equation will become vanishingly small, and

so we neglect it in our analysis. This allows us to rewrite the LHS as a quadratic equation,

which we solve to find

ṙ

r
=
Qk ± 2

√

kπ(4πl2s + kl2s −Q2)

(4πk + k2)l2s
= β, (3.159)

and upon integration we can determine the late time behaviour of the fuzzy sphere

r ≃ r0 exp(βt), (3.160)

with the corresponding late time solution for the tachyon field given by

T ≃ exp

(

Qt

4λ

)

exp(−kβt/8π). (3.161)

Now if we look for a collapsing solution we must take β to be negative in (3.160), where we

must bear in mind that the solution is only valid for late times. In this case the tachyon field

will be large even if the charge Q is small, and so our analysis is consistent. Furthermore

having non-zero Q appears to imply that there will not be a bounce solution, rather the

probe branes will eventually approach the source branes and the fuzzy sphere will collapse

toward zero size. This can be seen from (3.159) which suggests that for a real solution,

we must ensure that (4π + k)l2s ≥ Q2. In the large k limit this is approximated by the
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constraint kl2s ≥ Q2. Clearly if this is saturated then we find

β → Q

(4π + k)l2s
, (3.162)

which is dependent upon the sign of Q. If we accept the constraint, then for β to be negative

we require

4π(4πl2s + kl2s −Q2) > Q2k, (3.163)

which becomes

4πl2s > Q2 (3.164)

when we ensure k >> 1. Clearly the only way to satisfy this constraint is to assume that Q

is vanishingly small. This is inconsistent with (3.150) for both expanding and contracting

solutions. It would be interesting to see if this holds when we keep higher order tachyon

terms in the action.

One way of interpreting the physical aspect of the conserved charge is that it parame-

terises the deviation from the single field duality we found when we identified the tachyon

field with the inverse of the radial mode.

3.2.15 Higher (even) dimensional fuzzy spheres.

So far our analysis has dealt with collapsing fuzzy two-spheres in curved backgrounds, thus

it would be useful to extend this to higher (even) dimensional fuzzy spheres [52]. The

procedure for dealing with higher dimensional fuzzy spheres is essentially the same as for

the S2, although technically it is far more complicated. We will briefly sketch out how

one can do this, but our interest lies in the dynamics of such solutions and not in their

mathematical construction. So many results will simply be stated without proof. We will

briefly look at the fuzzy 4-sphere before commenting on how our analysis can generalise to

the fuzzy 2k sphere where k is an integer. In the following discussion we will concern ourself

with D-brane backgrounds for simplicity. We cannot consider the NS5-brane backgrounds

in this instance because we require at least 2k + 1 transverse scalars to describe the fuzzy

S2k.

Let us begin by constructing the fuzzy S4 solution, where we need five transverse scalar

fields satisfying the following ansatz

φi = ±RGi, i = 1 . . . 5. (3.165)

This will obviously imply that we can only look at p ≤ 4 backgrounds. The Gi matrices

above arise through the totally symmetric n-fold tensor product of the gamma matrices of
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SO(5), which have dimension

N =
(n+ 1)(n + 2)(n+ 3)

6
. (3.166)

For a detailed description of these constructions we refer the interested reader to [51, 52]

and the references therein. In terms of the physical radius we find a similar relationship to

the case of the SU(2) algebra, where we write

r = λ
√
CR, (3.167)

note that in this instance R must be positive definite and the Casimir is given by products

of the Gi, as usual, where we have GiGi = C1N×N = n(n + 4)1N×N . We can now use

this ansatz in our non-Abelian DBI effective action, which we again treat as a lowest order

expansion. The resultant action may be written [51]

S = −Tp′

∫

dp′+1ζNH(p−p′−4)/4
√

1 −Hλ2CṘ2
(

1 + 4Hλ2CR4
)

+ Tp′δpp′

∫

dp′+1ζ
qN

H
,

(3.168)

where the Chern-Simons term only couples to the action for p = p′ as usual. From this

action we can derive the usual canonical momenta and energy, which yields the following

static potential in terms of physical distances

Veff = Tp′NH
(p−p′−4)/4

(

1 +
4Hr4

λ2C

)

, (3.169)

note that this appears to gave exactly the same basic structure as the fuzzy S2 potential

except that now p ≤ 4 because of our ansatz. Before we comment on this solution, we

should discuss the extension to the fuzzy S6. We again use the Gi matrices which are now

representations of SO(7) as i runs over seven transverse dimensions. Again the G’s arise

from the action of gamma matrices on the traceless, symmetric n-fold tensor product of the

spinor, and we have the following relationship between the dimension of the matrices and

the number of branes

N =
(n+ 1)(n + 2)(n + 3)2(n+ 4)(n + 5)

360
. (3.170)

The relationship between the physical radius and the transverse scalar ansatz is the same as

before except that the Casimir has a different definition GiGi = C1N×N = n(n+ 6)1N×N .

This suggests that we can make the following generalisation. For the fuzzy S2k sphere

in ten dimensions, where k ≤ 4 we require 2k + 1 transverse scalar fields which can be

parameterised by the action of SO(2k + 1) gamma matrices on tensor products of the

spinor. If we assume that this is correct then we propose to write the general form of the
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action for fuzzy S2k in a curved D-brane background

S = −Tp′

∫

dp′+1ζNH(p−p′−4)/4
√

(1 −Hλ2CkṘ2)(1 + 4Hλ2CkR4)k + Tp′δpp′

∫

dp′+1ζ
qN

H
.

(3.171)

Where we have written Ck to indicate that the Casimir refers to the gauge group SO(2k+1).

The factor of k imposes restrictions upon the dimensionality of the background branes, in

fact the maximum value of p is pmax = 8 − 2k. Thus we see that for the fuzzy S8 we can

only consider D0-branes probing the D0-brane background. Using the general form of the

action we define the effective potential, in physical coordinates, to be

Veff = NTp′

{

H(p−p′−4)4

(

1 +
4Hr4

λ2Ck

)k/2

− qδpp′

}

. (3.172)

In general we see that the bosonic part of the potential will always tend to zero in the near

horizon region, implying that the fuzzy spheres will collapse toward zero size. Thus the only

case of interest relates to p = p′ when there is the additional term coming from the bulk

RR charge of the background branes. In the small radius limit we find that the potential

reduces to

Veff =
NTp′

H

{

(

1 +
4kpr

p−3

λ2Ck

)k/2

− q

}

. (3.173)

We can differentiate this potential to see if there are any solutions corresponding to stable

minima at which point the fuzzy sphere may stabilise, however we see that there are no real

solutions (as leading order) again implying that all fuzzy spheres are unstable in D-brane

backgrounds with the exception of p = 6, p′ = 0 which we discussed in a previous section.

The generalised form of the equation of motion can be written as

ṙ2 =
1

H

{

1 −
N2T 2

p′H
(p−p′−4)/2

E2

(

1 +
4Hr4

λ2Ck

)k/2
}

, (3.174)

where we are using a generalised expression for the energy. If we again assume that the

velocity and the radius can be treated as complex variables with the equation of motion as a

constraint, we can calculate the genus of the underlying Riemannian surface. Interestingly

the results are similar to those obtained in an earlier part of this chapter, with the number

of branch points being the same, though the the genus is dependent upon the dimensionality

of the branes and on the non-Abelian group structure.

3.3 Dynamics in more general backgrounds.

In section 3.2 we considered specific background solutions, however we now wish to develop

a more general formalism to deal with arbitrary backgrounds of a specific type. Namely

backgrounds whose metrics are block diagonal. We also want to investigate solutions where
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there is a non-zero, homogeneous U(1) gauge field on each of the branes. In general because

of our matrix ansatz, we know that the gauge fields are generically non-Abelian, so this

is somewhat of an idealised solution. However it is the first step in constructing a more

complete description of non-Abelian brane dynamics.

We will begin by restricting ourselves to type II string theory in ten dimensions, and

assume that there is a curved background generated by some source with M units of flux.

The only constraint we will impose on the form of the background metric is that it is

diagonal, with a symmetry group given by SO(1, q) × SO(9 − q)

ds2 = −g00dt2 + gxxdx
adxbδab + gzzdz

idzjδij (3.175)

where a, b run over the q worldvolume directions and i, j are transverse directions to the

source. This background could obviously be generated by a stack of coincident branes, or

something more exotic. Although there will generally be RR or NS charge generated by

this solution we will only focus on the NS sector of the DBI action for simplicity.

As usual we will use the Myers action to describe the coincident Dp-branes, where the

open string couplings on the world-volume are controlled by the inverse of the F-string

tension as λ = 2πα′. Recall that α′ = l2s is the slope of the Regge trajectory and equal to

the square of the string length.

We are interested in the dynamics of this configuration, and so we will demand that

our transverse scalar fields are time dependent only, namely φ = φ(t). Additionally we will

begin by using diffeomorphism invariance to position the branes parallel to the gravitational

source, but displaced along one of the transverse directions. On each of the world volumes

we will also turn on an electric field using F0a = εa where a, b = 1 . . . p are world-volume

directions, and we implicitly assume that we take the A0 = 0 gauge and that the gauge

field commutes with itself. It will often be convenient to write ε2 =
∑

a εaε
a for simplicity.

After calculating the determinant using (3.175), the kinetic part of the action can be seen

to reduce to the following form

Skin = −Tp

∫

dp+1ζSTr

(

e−φ
√

gp
xxg00(1 − λ2gzzg

−1
00 φ̇

iφ̇jδij − λ2ε2g−1
xx g

−1
00 )

)

, (3.176)

where we must still perform the symmetrized trace over the adjoint indices. As usual let

us take the scalar fields to be valued in SO(3), the fuzzy sphere ansatz. Strictly speaking

this ansatz should be imposed upon the complete equations of motion and not upon the

action, however it transpires that the ansatz is indeed consistent. Upon substitution into

the kinetic part of the action written above we find it reduces to

Skin = −Tp

∫

dp+1ζSTr

(

e−φ
√

gp
xxg00(1 − λ2gzzg

−1
00 Ṙ

2αiαi − λ2ε2g−1
xx g

−1
00 )

)

. (3.177)

We also note that the metric components are generally functions of the transverse coordi-
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nates, which implies that they will be proportional to a trace over the group generators.

However the radial coordinate implicit in the ansatz is not of the correct dimensionality

and thus we are forced to revert to the physical distance in the metric. The implications for

this are potentially far reaching, as we are assuming that the metric (and dilaton) terms are

singlets with respect to the symmetrized trace. With these remarks in mind, and using the

definition of the quadratic Casimir C1N = (N2 − 1)1N , we can pull various terms through

the trace operation and write the full action as follows

S = −Tp

∫

dp+1ζNgp/2
xx g

1/2
00 e

−φ
√

(1 − gzzg
−1
00 λ

2CṘ2 − g−1
xx g

−1
00 λ

2ε2)(1 + 4g2
zzλ

2CR4),

(3.178)

where we are making the reasonable assumption that the dilaton is a scalar function, and

of course - we are taking the large N limit. Varying the Lagrangian density with respect

to Ṙ and εa yields the canonical momenta for the radial mode and the displacement field

respectively, the latter term being

Da =
TpVpe

−φg
p/2
xx g

1/2
00

√

1 + 4λ2CR4g2
zz

√

1 − gzzg
−1
00 λ

2CṘ2 − g−1
xx g

−1
00 λ

2ε2

(

λ2εa

gxxg00

)

, (3.179)

where we note that Da is the electric flux along the xa direction on each of the world-

volumes and is related to the charge of the fundamental string. As usual the canonical

momenta allows us to construct the Hamiltonian via Legendre transform

H =
TpVpNe

−φg
p/2
xx g

1/2
00

√

1 + 4g2
zzλ

2CR4

√

1 − gzzg
−1
00 λ

2CṘ2 − g−1
xx g

−1
00 λ

2ε2
. (3.180)

At this juncture we note that R is not the physical distance of the probe branes from the

source, however the two distances are related via the usual expression

r2 =
λ2

N
Tr(φiφjδij) = λ2CR2

and so we may write the physical Hamiltonian as follows

Hphys =
TpVpNe

−φg
p/2
xx g

1/2
00

√

1 − gzzg
−1
00 ṙ

2 − g−1
xx g

−1
00 λ

2ε2

√

1 +
4g2

zzr
4

λ2C
, (3.181)

or we can write it in the often more convenient Hamiltonian formalism

Hphys =

√

(

TpVpNe−φg
p/2
xx g

p/2
00

)2
(

1 +
4r4g2

zz

λ2C

)

+
g00Π2

gzzλ2C
+
D2gxxg00

λ2
. (3.182)

In the above expressions we have defined Vp as the p-dimensional volume element of the

branes. Note that when p = 0, corresponding to coincident D0-branes, the electric field
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contribution vanishes, as it must since the world-volume cannot support a rank two field

strength tensor. In general the Hamiltonian will be conserved, however εa will not. This is

because it is the flux that is the conserved charge on the D-brane, and not the gauge field.

However because of our homogeneous ansatz we find that the electric field is conserved in

this instance, and so we may write it in the following suggestive way

εa =
Da

H̃
, (3.183)

which shows us that the electric field is conserved and quantised with D units of charge.

3.3.1 Minkowski space dynamics.

We have tried to keep the background space-time as general as possible, however in this

section we will consider the dynamics of these branes in the flat space limit. The situation

can be described as follows. We have N coincident Dp-branes with three excited transverse

scalar fields parameterising a fuzzy two-sphere, the physical radius of which is given by r.

The flat space Hamiltonian can be written simply as

H̃ =
1√

1 − ṙ2 − λ2ε2

√

1 +
4r4

λ2C
, (3.184)

where we introduce the simplifying notation H̃ = H/(TpVpN), and note that ṙ corresponds

to the velocity of the collapsing fuzzy sphere. Furthermore with this definition of the

Hamiltonian we lose all dependence on the dimensionality of the probe Dp-branes. Thus

in the Minkowski limit all the p-branes yield the same equations of motion. As is usual

with this type of problem it is far more convenient for us to use dimensionless variables. By

making the following definitions

z =

√

2

λ
√
C
r, τ =

√

2

λ
√
C
t, e = λε, (3.185)

the Hamiltonian and effective potential can be written as follows

H̃ =

√

1 + z4

1 − ż2 − e2

Veff =

√

1 + z4

1 − e2
. (3.186)

The electric field must satisfy the usual constraint e2 ≤ 1 in order for the theory to remain

valid. The other constraint can be seen to be 1 ≥ ż2 + e2, which implies that the velocity

of the collapse is reduced by a factor
√

1 − e2, which is less than the speed of light. For an

arbitrary field strength we see that the fuzzy sphere will tend to collapse down to zero size

as expected.
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Our Hamiltonian has no explicit time dependence and is therefore a conserved charge

which will allow us to obtain a solution to the equation of motion. We choose the initial

conditions ż(0) = 0 and z(0) = z0 to indicate an initially static configuration at some

arbitrary distance z0. By integrating the equation of motion and using the many properties

of Jacobi Elliptic functions, we arrive at the solution [50, 51]

z(τ) = ±z0JacobiCN

[

√

2(1 − e2)τz0
√

1 + z4
0

,
1√
2

]

. (3.187)

Note that z0 corresponds to the initial radius of the fuzzy sphere (in dimensionless variables).

Taking the positive sign initially, one sees that as time evolves the fuzzy sphere collapses.

The speed of the collapse is dependent upon the strength of the electric field, because an

increasing field implies that the branes move more slowly. The physical interpretation of

this is that the extra flux on the world-volume acts as extra ’mass’, which acts to reduce the

velocity. If there is a critical electric field which saturates the bound e2 = 1 then the fuzzy

sphere will be static for all time. This is different to the result obtained when considering

the dynamics without gauge fields, which always implied collapsing solutions - at least to

leading order in 1/N . Eventually the sphere reaches zero size, however the periodic nature

of the solution appears to imply re-expansion into a region of negative z. This is due to

the ambiguity in taking the positive sign for the physical radius. A similar remark applies

when taking the minus sign in the above solution. Note that in both cases, it is the R2

term that appears in the DBI action and therefore no potential for discontinuities when we

use the different sign choices for the physical radius.

The zeros of the elliptic function occur when the amplitude equals K(k), where K is

the complete elliptic integral of the first kind. This allows us to calculate the collapse time

t∗ for the fuzzy sphere to be

τ∗ =

√

1 + z4
0

2(1 − e2)

1

z0
K

(

1√
2

)

, (3.188)

which agrees with our intuitive notion that by increasing the electric field, the collapse takes

longer to occur.

3.3.2 1/N Corrections in Minkowski space.

In this section we will investigate the corrections to the theory arising from the symmetrized

trace prescription. These corrections were first derived in [50], and we refer the interested

reader to that paper for more details. In flat space it was emphasised that as the fuzzy

sphere collapses its velocity approaches the speed of light, and therefore higher order terms

in 1/N ought to become important in order to fully describe the dynamics. This is due

to the fact that the energy will increase as the velocity increases. However the presence
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of an electric field on the brane world-volumes reduces the velocity of the collapse by the

factor
√

1 − e2 and thus the leading order Lagrangian may remain valid - although there

are difficulties associated with near critical electric fields and the DBI. In curved space the

gravitational red shift appears to reduce the velocity of the fuzzy sphere to sub-luminal

speeds, however there was found to be no turning point solution in the static potential and

therefore no formation of non-Abelian bound states (with the exception of D0-branes in

the D6-brane background.)

The important result from is that the corrections to the Lagrangian an be written as a

series expansion in powers of C, thus our Hamiltonian can be shown to be the 0th order in

this expansion

H̃ =

(

1 − 2C

3

∂2

∂C2
+

14

45
C2 ∂4

∂C4
+ . . .

)

H̃0. (3.189)

It will be convenient in what follows to return the original action for a flat background, and

define the following dimensionless parameters

r̃4 = 4λ2CR4 (3.190)

s̃2 = λ2CṘ2

e2 = λ2ε2

where the last expression has already been introduced in the previous section. The first

two equations can be regarded as defining complex parameters, constrained by a single

equation - namely the conservation of energy, and can be regarded as a ’radial’ variable and

a ’velocity’ variable respectively. In terms of these complex parameters we can define the

Hamiltonian to be

H̃ =

√

1 + r̃4

1 − s̃2 − e2
= Uγ, (3.191)

where U can be regarded as a position dependent mass term, whilst γ is the modified

relativistic factor. If we now apply the leading order symmetrized trace correction to this

form of the Hamiltonian we obtain the following solution

H̃1 = Uγ − γ

6CU3

[

3U4γ4(1 − e2)2 − 4U4γ2(1 − e2) − 2U2γ2(1 − e2) + 4U2 − 1
]

, (3.192)

which represents the 1/N correction to the Hamiltonian in flat space. The first thing to

note is that when there is a critical (or near critical) electric field, the corrected Hamiltonian

reduces to

H̃1 ∼ U

is̃

(

1 − (4U2 − 1)

6CU4

)

, (3.193)

which is clearly imaginary and therefore does not correspond to a physical solution. We can

avoid this problem by rotating the background metric to a Euclidean signature and studying
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the effects of over-critical electric fields, however we will not do that in this instance 11.

More generally we will have an arbitrary non-critical electric field, however we can still

learn about the physical interpretation of the energy corrections. We first consider the static

solution, i.e zero velocity, in which case the Hamiltonian becomes

H1 =
U√

1 − e2

(

1 − (2U2 − U4 − 1)

6CU4

)

. (3.194)

The correction terms will be non-zero except for when we choose U = 1, or when U → ∞
corresponding to large radius. In this latter limit we would expect the geometry to resemble

the classical geometry of the two-sphere. It should be noted that there is no value of r for

which the energy will vanish. If we now consider the case where R→ 0, the energy reduces

to

H1 = γ

(

1 − (γ2(1 − e2)2 − 2γ2(1 − e2) + 1)

2C

)

. (3.195)

The correction term will be minimised by sending s̃ → 0, however it can be seen that the

Hamiltonian itself will vanish if the velocity term satisfies

s̃2 = (1 − e2)

(

1 − 1

1 ±
√

2N

)

∼ (1 − e2) (3.196)

where we have explicitly taken the large N limit. Note that when the electric field is zero

this condition reduces to s̃2 = 1, implying that the branes are moving at the speed of light.

Therefore in general we see that increasing the strength of the electric field reduces the

velocity of the branes, as expected, and therefore can reduce the energy of the configuration

when it is located at the origin.

3.3.3 Curved space dynamics.

The dynamics of the fuzzy sphere in curved backgrounds are generally non-trivial due to

the additional contributions from the metric and dilaton. Thus we can only obtain exact

solutions by specifying the form of the background. We repeat the physical Hamiltonian

here for convenience.

H̃ =
e−φg

p/2
xx g

1/2
00

√

1 − gzzg
−1
00 ṙ

2 − g−1
xx g

−1
00 λ

2ε2

√

1 +
4g2

zzr
4

λ2C
,

which allows us to define the static potential as follows

V =
e−φg

p/2
xx g

1/2
00

√

1 − g−1
xx g

−1
00 λ

2ε2

√

1 +
4g2

zzr
4

λ2C
(3.197)

11We refer the interested reader to the recent work [60] for more information.
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The unknown dependence of the metric components upon the physical radius prevents us

from determining the general behaviour of the fuzzy sphere in this background. However

we can see that the maximum value for the electric field will be a function of the transverse

variables and therefore the radius of the fuzzy sphere. The general solution for the maximal

field value can be seen to be

εmax ≤
√
g00gxx

λ
. (3.198)

In our analysis we will assume that the electric field does not saturate this bound in order

to keep the action finite and real. There has been extensive work on overcritical fields on

D-branes, but this will not be relevant here. Using the conservation of the Hamiltonian we

find the general expression for the velocity of the collapsing fuzzy sphere

ṙ =
δH
δΠ

=

(

Πg00
Hgzzλ2C

)

. (3.199)

Now for general supergravity solutions we expect the metric components corresponding

to the SO(1, q) directions to correspond to either flat, or decreasing monotonic functions

of the physical radius. Conversely we would anticipate that the gzz functions are either

flat, or increasing monotonic functions of r - becoming singular when we reach zero radius.

Therefore the general expression for the velocity suggests that it is a decreasing function of

the physical radius regardless of the specific values of the ratio of Π/H, provided that it is

finite. The implication for this is that the sphere would take an infinite amount of time to

collapse to zero size, neglecting any open string effects at short distances. This ’braking’

behaviour is in contrast to what happens in flat space, where the fuzzy sphere collapses at

an ever increasing velocity. However this is in a gravitational background and we expect

the velocity term to be red shifted by the factor g00/gzz, thus by switching to proper time

variables we would find that the collapse occurs in finite time.

The acceleration of the sphere turns out to be

r̈ =
Πṙ

Hgzzλ2C

(

g′00 −
g′zz

gzz

)

, (3.200)

where primes denote derivatives with respect to the physical radius. The equation can be

seen to be zero in three cases, firstly when ṙ is zero which is the trivial solution as the

sphere is static. Secondly when gzz → ∞ which implies that we must take r → 0 and so

the effective action breaks down, and finally when we have the case g00 = ln(gzz). Provided

the derivatives of the metric function are continuous, we see that the acceleration will never

become singular and so we would expect the DBI to provide a reasonable description of the

dynamics of the coincident branes.

At this point it is useful to consider some concrete examples of non-trivial backgrounds

in order to fully understand the dynamical collapse of the fuzzy sphere.
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Dq-brane background

The supergravity solutions are simply those presented in the previous section, which we

will not repeat here. We will however switch notation to use q instead of p to denote the

spatial dimensionality of the D-branes. We can read off the the various metric components

and insert them into the physical Hamiltonian to obtain

H̃ =
H(q−p−4)/4

√
1 −Hṙ2 −Hλ2ε2

√

1 +
4Hr4

λ2C
(3.201)

and the expression for the static potential becomes

Veff =
H(q−p−4)/4

√
1 −Hλ2ε2

√

1 +
4Hr4

λ2C
(3.202)

The last expression tells us that the electric field can diverge as the radius of the fuzzy

sphere collapses.

NS5-brane background.

Again this background was investigated in some detail in the previous chapter, so we do not

re-write the supergravity solutions. The expression of interest for us is the static potential,

which can be seen to reduce to

Veff =
1√

H
√

1 − λ2ε2

√

1 +
4H2r4

λ2C
, (3.203)

implying that the maximal electric field bound is εmax ≤ λ−1. It is straight-forward to see

that there is no turning point for the potential, except when we take r to be large which

corresponds to the global maximum. The implication is that there is no radius at which

the fuzzy sphere may stabilise at, and therefore nothing to halt the progress of the probe

branes toward the five-branes even with the inclusion of an electric field.

F -string background.

We can also consider the background sourced by M fundamental strings, where for con-

sistency we should limit the dimensionality of the probe branes to p ≤ 1 in order to fully

justify our assumption about neglecting backreaction effects, the resulting late time config-

uration is a bound state of fundamental strings and D-strings more commonly referred to
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as a (p, q)-string [68, 69]. The supergravity background solution is [10, 11]

ds2 = H−1ηµν + dzadzbδab (3.204)

e−φ = H1/2

H = 1 +
25π2g2

s l
6
sM

r6
,

where now µ, ν run over one temporal and one spatial dimension. The static potential for

the bound state can be written

Veff =
1

H

√

Hτ̃2
1

(

1 +
4r4

λ2C

)

+
Π2H

λ2C
+
D2

λ2
, (3.205)

where we have rescaled the D1-brane tension such that τ̃1 = T1V1N . Thus we effectively

have a (D,N)-string bound state. We are at liberty to consider various limits of the poten-

tial, however the general behaviour is that it is always a monotonically decreasing function

of the radius. For the D-string dominated solution we find the Hamiltonian scales like the

tension of the string on a fuzzy sphere, namely

H ∼
√

τ̃2
1

H

(

1 +
4r4

λ2C

)

. (3.206)

Conversely, taking the F -string dominated solution we find that the Hamiltonian scales

with the displacement field

H ∼ |D|
Hλ

, (3.207)

which shows that both configurations will be gravitationally attracted toward the F -string

background as this is the lowest energy state. The background string coupling tends to

zero with the physical radius of the fuzzy sphere, which means that our world-volume

description can be trusted to very late times. As the strings move closer together we expect

the formation of a new (D +M,N)-string bound state. The binding energy of which can

be shown to be of the form

Ebind ∼
√

τ̃2
1 + (D +M)2. (3.208)

This result mimics the behaviour in the Abelian theory [24] where it was shown that the

condition gs → 0 with gsN >> 1 prevented the emission of closed string states and as such

could be regarded as a semi-classical field theory. We close this section with a remark about

the electric field in this instance. In the large radius limit we find that the displacement

field can be well approximated by

D ∼ 2τ̃1λε∞r2√
C
√

1 − λ2ε2∞
, (3.209)
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where ε∞ reflects the strength of the field at large distances where the harmonic function

is approximately unity. As the sphere collapses the electric field is driven to its critical

value, resulting in an increase in the displacement field. This behaviour can be seen via the

expression

Da = Hλ2H2εa, (3.210)

where the right hand side naturally becomes large as the radius shrinks. This tells us that

exactly at the threshold point of the bound state, the electric field reaches its critical value

and the string becomes tensionless. A more detailed analysis with the inclusion of angular

momentum modes would tell us a great deal about the formation of this bound state. We

have also assumed here that the closed string modes will be suppressed, however a more

detailed investigation would be useful as the supergravity constraints impose the strong

condition M >> N if we are to neglect back reaction. This is potentially useful in the

investigation of cosmic superstring networks [67].

3.3.4 1/N corrections in Curved space.

As in the flat space case we can consider higher order corrections to the energy in powers

of 1/N coming from the application of the symmetrized trace. We will find it convenient

to define the following variables

α = e−φgp/2
xx g

1/2
00 β =

√

1 + 4g2
zzR

4λ2C γ = (1 − e2 − gzzg00Ṙ
2λ2C)−1/2, (3.211)

where e2 = g−1
xx g

−1
00 λ

2ε2 and therefore the Hamiltonian reduces to H̃ = αβγ. We know

that this energy is the zeroth order expansion in powers of 1/N and using (3.189) we find

that the first order Hamiltonian is remarkably similar to that constructed in the flat space

instance

H̃1 = αβγ − αγ

6Cβ3

(

3β4γ2(1 − e2) − 4β4γ2(1 − e2) − 2β2γ2(1 − e2) + 4β2 − 1
)

(3.212)

In deriving this expression we are explicitly assuming that the metric components are unaf-

fected by the symmetrized trace prescription. Note that the energy to all orders will depend

on the α factor, and therefore when this is zero the energy of the configuration will be zero.

As we have argued, in general the metric functions g00 and gxx are decreasing functions of

r so that they vanish when r → 0, thus we may expect that the energy will always tend

to zero. However we have no way of knowing the general behaviour of the dilaton term

with respect to the radial distance. What is clear is that minimising α is equivalent to

minimising the energy. We begin by considering the case of zero electric field. We choose

to set ε = 0 rather than taking the limit of the metric components to zero as this will imply

that α, and therefore the energy, is zero. We further wish to consider the static case with

the branes at an arbitrary distance away from the source. This reduces the Hamiltonian to
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the following form

H̃1 = αβ − α

6Cβ3
(2β2 − β4 − 1). (3.213)

There will be no correction terms when β = 1, which corresponds to the two cases R → 0

or g2
zz → 0. The first of these implies that r → 0 and so the branes will be on top of the

sources where we expect the DBI to break down. The second case corresponds to sending

r → ∞ because the metric component is generally an increasing function as r → 0. This

latter limit is unphysical in our situation, and so we see that the sphere energetically favours

collapse from a static position. There will also not be any corrections as β → ∞, which

implies that either r → ∞, 0 leading to the same remarks as above.

We now insist on keeping the electric field turned on, although the modification to the

Hamiltonian in the static limit is very similar to the zero field case. The solution reduces

to

H̃1 =
αβ√
1 − e2

(

1 − (2β2 − β4 − 1)

6Cβ4

)

. (3.214)

In this case the correction terms will only vanish as β → ∞, which corresponds to the case

of infinite energy for the fuzzy sphere. Thus for finite electric field we see that the solution

will still collapse toward zero size, provided that the dilaton term does not blow up in the

small r limit. In fact this is what distinguishes the D6-D0-brane system from the others

as this is precisely where the dilaton term becomes large as the same time that the other

metric components are going to zero. The resultant energy profile is not monotonic but

yields a stable minimum in which a bound state can form. The case of critical, or almost

critical field, is similar to the flat space scenario, where the energy becomes imaginary.

3.3.5 Brane Intersections in Curved Space.

Thus far our our analysis has dealt with parallel brane configurations, however this is not

the only place non-commutative geometry enters into string theory, as we can also consider

intersecting branes. The simplest intersections have been investigated in a series of papers

where ND1-branes intersect with either D3, D5 or D7-branes in flat space-time. There

are two dual world-volume descriptions of the intersection. The first is from the higher

dimensional brane viewpoint, where the D1-brane is realised as an Abelian BIon spike

solution protruding in a transverse direction [49]. The second, dual, description is from

the non-Abelian viewpoint of the D-strings, which can be seen to blow up into the higher

dimensional branes when we use non-commutative co-ordinates to parameterise a fuzzy

funnel [45] The simplest and most investigated example of these has been the D1 − D3

intersection, where the Abelian side consists of a BIon solution on the D3-brane world-

volume. For the D3 case it is necessary to turn on a homogeneous magnetic field on

the brane, since the D-string acts as a magnetic monopole solution on the world-volume.

By contrast the D5 world-volume description is more complicated because there is a non
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vanishing second Chern class on the world-volume which alters the description of the BIon

solution.

In this section we will investigate the D1−D3 intersection in the generic, static curved

background labelled by the metric solution (3.175), with the inclusion of a constant electric

field along the string world-volume [46]. As such, in contrast to the previous section, we

will not consider ε as a dynamical degree of freedom. In fact the addition of a constant

electric field turns the D-string into a (p, q)-string as the electric field can be interpreted

as the dissolving of the fundamental string degrees of freedom into the world-volume. We

will assume that the string is oriented in the X0 −X9 plane, where we will take X0 = t and

X9 = σ to parameterise the embedding coordinates. We will again take the gauge A0 = 0

and assume that the gauge field commutes with the transverse scalars. The kinetic part of

the action reduces to the following expression

S = −T1

∫

d2σSTr

(

e−φ
√

g00gzz(1 − λ2gxxg
−1
00 φ̇aφ̇a + λ2gxxg

−1
zz φ′aφ

′
aλ

2ε2g−1
00 g

−1
zz )

)

,

(3.215)

where a dot denotes derivatives with respect to time, and primes are derivatives with respect

to σ. In the above we use the standard notation of representing the matrix-valued world

volume scalar fields as φa which are not to be confused with the dilaton field φ. As in [45]

we simplify our analysis by only considering fluctuations of the D-strings perpendicular to

their world sheet that are also parallel to the world volume of the source branes. As such

we look to employ the modified SU(2) ansatz

φa = R(t, σ)T i, a = 1, 2, 3,

where the T i again are the generators of the algebra and a = 1, 2, 3 label coordinates parallel

to the source branes. Inserting the ansatz into the full action, and taking the large N limit

produces the following

S = −T1

∫

d2σ N e−φ
√

(g00gzz)(1 − λ2Cgxxg
−1
00 Ṙ

2 + λ2Cgxxg
−1
zz R′2 − λ2ε2g−1

00 g
−1
zz )

√

(1 + 4λ2CR4g2
xx), (3.216)

where we have neglected higher order corrections to the DBI, and also ignored any potential

Chern-Simons term which may arise from the background source.

The metric components are typically functions of the 9 − q transverse coordinates to

the source branes. By our simplification above, we can consistently set the transverse

coordinates to zero with the exception of x9 = σ, and thus all the metric components are

now explicit functions of σ. We will also assume that any dilaton term is purely a function

of σ in order to simplify our analysis. In most of what follows we will only consider the

near horizon approximation, however we will occasionally make reference to the Minkowski
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limit.

In what follows we shall be interested in either the time dependent solution or the

spatial solution. It will be the latter that defines the fuzzy funnel. In any case the diagonal

components of the energy-momentum tensor for the above action can be written as follows

T00 =
e−φ

√

g00gzz(1 + 4λ2CR4g2
xx)(1 + λ2CR′2gxxg

−1
zz − g−1

00 g
−1
zz λ

2ε2)
√

1 − λ2CṘ2gxxg
−1
00 + λ2CR′2gxxg

−1
zz − g−1

00 g
−1
zz λ2ε2

Tσσ =
e−φ

√

g00gzz(1 + 4λ2CR4g2
xx)(1 − λ2CṘ2gxxg

−1
00 − g−1

00 g
−1
zz λ

2ε2)
√

1 − λ2CṘ2gxxg
−1
00 + λ2CR′2gxxg

−1
zz − g−1

00 g
−1
zz λ2ε2

, (3.217)

where we have explicitly divided out each term by the factor T1NV1 which is independent

of any space-time coordinates and will not affect the equations of motion. We must now

consider the static and dynamical cases separately if we wish to find simple solutions to the

equations of motion.

3.3.6 Funnel solutions.

We can now attempt to find solutions by specifying the background explicitly. We know that

in flat Minkowski space the solutions correspond to funnels, where the lower-dimensional

branes blow up into a solitary D3-brane. We may expect these funnel type solutions to

occur in curved space as well, however the form of the solution will be different. Firstly

consider a stack of Dq-branes, which have the usual supergravity solution

ds2 = H−1/2ηµνdx
µdxν +H1/2dxidxjδij , e−φ = H(q−3)/4,

where µ, ν are world-volume directions and i, j are transverse directions. The warp-factor

H is a harmonic function in the transverse directions, which since we are only considering

fluctuations of the D-string parallel to the Dq world volume implies they are only dependent

on
∑9

i=9−q(x
i)2 = σ2 and we assume q = 1, 3, 5 only because we are looking at type IIB

string theory. The equation of motion can be satisfied by the following expression

R′2 =
1

λ2CH−1

(

H(q−3)/2{1 + 4λ2CR4H−1}(1 − λ2ε2)2 − (1 − λ2ε2)
)

. (3.218)

Note that for critical electric fields the RHS of the expression vanishes which implies that

R =constant and therefore no funnel solution exists regardless of the background. For

near critical fields the solution is approximately constant until we reach the point where

R diverges. Thus the general behaviour is that increasing the strength of the gauge field

forces the funnel to alter its shape. The stronger the field, the wider the funnel and the

larger the fuzzy sphere radius. Temporarily setting the electric field to zero brings us back
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to the D-string solution, and the equation of motion reduces as follows

R′2 =
1

λ2CH−1

(

H(q−3)/2{1 + 4λ2CR4H−1} − 1
)

, (3.219)

which can be seen to be trivially solved when q = 3 since the eom reduces to R′ = 2R2 and

we recover the funnel solution 12

R(σ) =
−1

2(σ − σ0)
. (3.220)

The radius of the funnel diverges at σ = σ0 where the D-strings blow up into a D3-

brane. Note that the minus sign indicates this is a D3-brane and not a D̄3-brane, since

the latter will be unstable in the background. In fact the harmonic function drops out of

the equations implying the funnel solution is insensitive to the curved background. This is

due to the vanishing dilaton term. If we insist on the inclusion of the electric field in the

D3-brane solution then we can shift variables in the integration to obtain a solution, which

is a simple deformation of the standard funnel as we would anticipate

R(σ) ∼ −1

2
√

1 − λ2ε2(σ − σ0)
. (3.221)

The effect of increasing the electric field is to force the funnel to open up more at smaller

values of σ. In fact for near critical fields we expect the funnel to diverge before the point

σ0, implying that the D3-brane is located at a different position to the case of zero field.

The structure of the equation of motion prohibits us from finding an exact solution in the

D5 and D1-backgrounds.

We can also look at the NS5-brane background, where the supergravity solutions are

given in (2.2), but where we now use M instead of k. The solution with zero electric field

can be parameterised by R′ = 2R2
√
H, with H(σ) given by [19] with r2 = σ2. In the first

instance, if we look in the throat approximation (i.e dropping the factor of unity in H) we

find the funnel solution

R(σ) =
−1

2
√

Ml2s ln(σ/σ0)
. (3.222)

Here we have selected the cut-off distance σ0 to represent the location of the D3-brane in the

transverse space. Because the dilaton term tends to blow up as we approach the fivebranes,

we must worry that our solution (being weakly coupled to neglect backreaction) may not be

valid deep in the throat geometry. Therefore this solution can be trusted when the curvature

of the bulk geometry is relatively small. Interestingly we see the funnel solution is invariant

(up to a sign) under σ → 1/σ, which is related to the large/small duality problem and

standard T -duality solutions in type II string theory [51]. The change in sign reflects the

12Note that this is also the BPS condition in flat space, however the D3-brane will also be supersymmetric
in the D3-brane background and so this is also the BPS condition in this instance.
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change in orientation of the D3-brane, however as both D and D̄-branes are unstable in

the fivebrane background the minus sign is technically irrelevant. It may be possible to

probe further into the throat using the corrections from the symmetrized trace. The idea

would be to use the fact that gsN is constant, but take a slightly larger value for the string

coupling. In order to compensate for this we must reduce the number of D-strings and

therefore extra 1/N terms will become important. Using the prescription developed in [50]

we can calculate these corrections and check to see how the funnel solution is modified.

We can also extend our solution above to the case where we keep the full expression for

H. This yields an interpolating solution between the throat solution and Minkowski space,

given by

R(σ) =
∓1

2

(

√

Ml2s + σ2 −
√

Ml2s + σ2
0 +

√

Ml2s ln

{

σ[
√

Ml2s+
√

Ml2s+σ2
0 ]

σ0[
√

Ml2s+
√

Ml2s+σ2]

}) (3.223)

which can be seen to yield the two asymptotic solutions when we take the appropriate limit.

This solution is particularly interesting because of the cut-off imposed in the integral. On

one side of the D3-brane we have a semi-infinite string solution (solution with +sign in

(3.223) whilst on the other (- sign choice) we have a string of finite length. In the throat

approximation we can relate the two solutions through a σ → 1/σ duality. The finite length

of the string implies that the energy of the solution is finite. This differs dramatically from

the Minkowski space solution where the energy will be infinite as the string is of infinite

length. The profile of the solution therefore relates a finite energy configuration to an

infinite energy configuration. This behaviour may well have an interesting analogue in the

Abelian world-volume theory.

The corresponding funnel solution in the background of fundamental strings (3.204)

can be obtained from the following expression R′2 = 4R4/H, which gives, in the throat

approximation,

R(σ) =
−2

√
k

σ4 − σ4
0

, (3.224)

obviously diverging strongly in the limit that σ → σ0. Of course there are many other kinds

of backgrounds that we are free to consider. As an example we could look at the static

Maki-Shiraishi solutions [59] corresponding to a static black hole geometry. In this case we

see that R(σ) ∝ σ5/2 − σ
5/2
0 which implies that the funnel only diverges at large values of

σ, very far from the event horizon of the black hole. This class of metrics also allows for

time dependent solutions, corresponding to gases of D0-branes and may play an important

role in the study of matrix cosmology.

Finally we note that even though it is difficult to obtain an analytic solution of the

funnel profile in Dq-brane (for q 6= 3)- backgrounds, progress can be made in the large R
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approximation. In this case we find from (3.218)

R′ ≈ 2H(q−3)/4R2 (3.225)

which can be integrated to yield approximate (large R) solutions.

3.3.7 1/N Corrections to the Fuzzy Funnel.

We are interested in the corrections to the funnel solutions we have found, particularly

those arising from the symmetrized trace prescription. In flat space the funnel is a BPS

configuration and thus insensitive to any corrections to all orders. In curved space we have

seen that the funnel solution will not generally correspond to a BPS configuration as the

bulk supersymmetries will be broken, or at least non-linearly realised. Using (3.189) we

can calculate the leading 1/N corrections to the Hamiltonian. As usual it is convenient to

introduce the following expressions to simplify the results

α = e−φ√g00gzz, β =
√

1 + 4λ2CR4g2
xx, γ =

√

1 + λ2CR′2gxxg
−1
zz − e2,

where we have also introduced the simplification e2 = λ2ε2g−1
00 g

−1
zz . This allows us to write

the first correction to the Hamiltonian, assuming of course that the dilaton term is not a

function of the Casimir

H1 = αβγ − α

6C

{

2(β2 − 1)(γ2 − 1 + e2)

βγ
− γ(β2 − 1)2

β3
− β(γ2 − 1 + e2)2

γ3

}

. (3.226)

Now, setting the electric field to zero implies that the correction terms will cancel out to

zero when β = γ. This can actually be seen just by demanding minimisation of H0, however

we can also see that the correction terms vanish upon implementation of the symmetrized

trace. The minimisation yields a constraint on the curvature which is given by the following

R′2 = 4R4gxxgzz. (3.227)

In flat space this is just the BPS condition which leads to the simple funnel solution. In

certain backgrounds where the gxx components equal the inverse of the gzz components -

for example Dq-brane backgrounds - we also recover the simple funnel solution. However

we know that this is only a solution to the equation of motion in the D3-brane background,

and so we seem to have found solutions satisfying the minimal energy condition but which

do not solve the equations of motion. In the NS5 and F -string backgrounds we see that

this energy condition coincides with a solution to the equations of motion, and so we expect

those particular funnel solutions to be minimal energy solutions. This suggests that the

symmetrized trace corrections are zero for configurations which are in their minimal energy

states. In flat space the minimal energy state coincides with the BPS condition which is
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why we do not have corrections. In general the lowest energy configuration may not be

BPS but will still receive no corrections from the symmetrized trace. The general solution

consistent with energy minimisation can be written as

R(σ) =
∓1

2
∫

dσ
√
gxxgzz

=
∓1

2
∫

dσf(σ)
. (3.228)

We expect simple power law behaviour for f(σ) ∼ σn and so the solution can be written as

R(σ) ∼ ∓(n+ 1)

2(σn+1 − σn+1
0 )

, (3.229)

where n can be positive or negative, but not equal to −1. The case where n = 1 corresponds

to flat space. In the above expression we have neglected the dimensionality constant coming

from the function f . When n = −1 the solution reduces to the inverse logarithm solution we

find in the NS5-brane background. Note that when n is negative we do not obtain funnel

solutions as the radius of the fuzzy sphere never diverges, instead it monotonically increases

with the distance from the sources. This indicates that these solutions do not expand into

higher dimensional branes, and will not have an Abelian world-volume description.

Even though the funnel configuration appears to satisfy the energy minimisation condi-

tion, the energy itself still has dependence on the location of the funnel in the throat through

the α term. For the three cases where we find explicit brane solutions, namely the D3, NS5

and F -string backgrounds this term reduces to unity. In the D5-brane background we see

that α ∝ 1/σ and so the solution minimises its energy when it is far from the sources and

thus is well approximated by the simple funnel solution. The D1-brane background yields

α ∝ σ3 and so the funnel is only a solution when it is on top of the background branes,

which is where our effective action will no longer be valid. This perhaps explains why we

were unable to find analytic solutions to the funnel equation of motion. We should note

at this point that gs → 0 with σ in the D5 case, implying that the tension of the branes

will become infinite and again our action will be invalidated. In the D1 case we see that

the coupling becomes strong as σ → 0, therefore the tension of the branes is small but our

assumption that gsN < 1 must be violated. It appears that both these backgrounds cause

the effective action to break down and so we cannot trust our solutions except at large σ,

where the background is essentially flat and we recover our simple funnel solution. The

reason why this is not the case in the NS5-brane background is because their tension goes

as 1/g2
s , and so the coincident brane solution has a much larger mass than the N D-strings.

Setting aside the minimal energy condition for a moment we can make some observations

about the energy of the funnel including the leading order correction terms. Firstly we

consider the case R′ = 0 corresponding to no curvature. The energy can be written as

H1 = αβ
√

1 − e2
(

1 +
α(β2 − 1)2

6Cβ4

)

. (3.230)
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Clearly when β2 = 1 there will be no (leading order) corrections to the energy, a condition

that can be satisfied either by taking R → 0 or g2
xx → 0. The first condition corresponds

to no curvature, with the strings located at an infinite distance away from the background

source. The second condition is the more interesting as it generally implies that σ → 0,

or that the strings are located at the source. The resultant energy for the strings is then

determined by α - provided we have a sub-critical electric field, and so we see that minimising

α is equivalent to minimising the energy. We can also consider the case where we take R = 0,

to see the effect this has on the energy and its corrections. The resultant expression becomes

H1 = αγ

(

1 +
λ2R′2gxxg

−1
zz

6γ4

)

. (3.231)

Again we see that the correction term vanishes if we demand the curvature to be zero,

or alternatively we can set gxxg
−1
zz → 0 either as a product or individually, which basically

implies that σ → 0 as usual. We see once more that α plays the dominant role in determining

the energy, and that if this term can vanish then so can the energy. This helps to explain

why we cannot obtain analytic solutions for the D5 and D1-backgrounds, as in these cases

the α term is a function of σ which implies that the energy will either diverge, or tend to

zero with σ, depending on the dimensionality of the source branes. Therefore the energy

is dependent upon the space-time variables. For the D3, NS5 and F -string backgrounds

we find that α = 1 and thus it is the shape of the funnel itself which dictates the minimal

energy configuration.

3.3.8 Time Dependence and Dualities.

In the time dependent case we again use the conservation of the energy-momentum tensor

to obtain the equation of motion

Ṙ2 =
g00(1 − g−1

00 g
−1
zz λ

2ε2)A

λ2Cgxxḡ00ḡzz(1 + 4λ2CR4
0ḡ

2
xx)(1 − ḡ−1

00 ḡ
−1
zz λ2ε2)

, (3.232)

where the coefficient A is written as follows

A = −(e2(φ0−φ)g00gzz(1+4λ2CR4g2
xx)(1−g−1

00 g
−1
zz λ

2ε2)−ḡ00ḡzz(1+4λ2CR4
0ḡ

2
xx)(1−ḡ−1

00 ḡ
−1
zz λ

2ε2)).

In deriving this expression we have imposed the initial conditions that R(t = 0) = R0 when

Ṙ = 0, and the metric components at this initial point have been denoted by a bar. Note

also the factor of eφ0 in the solution which reflects the initial value of the dilaton subject

to these boundary conditions. In fact this equation is remarkably similar to the static one,

which can be calculated to yield

R′2 =
gzz(1 − g−1

00 g
−1
zz λ

2ε2)B

λ2Cgxxḡ00ḡzz(1 + 4λ2CR4
0ḡ

2
xx)(1 − ḡ−1

00 ḡ
−1
zz λ2ε2)

, (3.233)
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where the coefficient B turns out to be simply −A. If we consider the case where the D-

string is located far from the sources in flat Minkowski space, the metric components and

the dilaton can be set to unity. In this limit the two equations of motion reduce to

R′2 =
4(1 − λ2ε2)(R4

0 −R4)

1 + 4λ2CR4
0

(3.234)

Ṙ2 =
4(1 − λ2ε2)(R4 −R4

0)

1 + 4λ2CR4
0

,

which are clearly invariant under the following invertible world-sheet transformation t→ iσ,

which is nothing more than Wick rotation [51]. If we re-write these equations using dimen-

sionless variables as in (3.185), introducing a similar transformation on the σ coordinate,

then we find that the two equations of motion are related via ż = iz′. Therefore knowledge

of one of the solutions (3.187) automatically implies knowledge of the other solution as

follows

z(τ) = ±z0JacobiCN

[

√

2(1 − e2)τz0
√

1 + z4
0

,
1√
2

]

(3.235)

z(σ) = ± z0

JacobiCN

[√
2(1−e2)σz0√

1+z4
0

, 1√
2

] .

In the last line we have used one of the various properties of elliptic functions. As discussed

in an earlier chapter, the last equation defines a periodic array of D3/D̄3-branes connected

by the fuzzy D1-funnels. There are two important comments to be made at this point.

Firstly that the equation of motion for a collapsing fuzzy sphere is the same as that of a

time-dependent funnel in Minkowski space. Secondly the world-sheet transformation we

employed on the equation of motion has a geometric interpretation. Instead of performing

a Wick rotation on the time variable, we can instead identify τ with σ provided we also send

z → 1/z. Using the definition of the elliptic function we can easily verify that this is true.

Therefore we have a concrete example of the so called large/ small duality that pervades all

string theories, as a collapsing fuzzy sphere of radius R is dual to a brane-anti-brane array

with interpolating funnel solutions of maximal radius 1/R [51].

In the more general case it is clear to see that we recover the static equation from the

time dependent one by performing the following transformation

ε→ 0, t→ iσ, g00 → gzz. (3.236)

This corresponds to a Wick rotation on the worldsheet and a space-time transformation

in the bulk, and is therefore a highly non-trivial symmetry. However we can see that the

transformation is not invertible, unlike in Minkowski space, due to the σ dependence of the

metric components. If we start with the static equation and rotate the spatial coordinate

such that σ → −iτ , then the metric components (as well as the curvature term) become
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time dependent - corresponding to some form of time dependent background 13. If we take

this solution and then Wick rotate the time variable again we recover the spatial dependent

equation. Thus it appears there is a mapping from the time dependent equation to the static

one, but not vice-versa. The static equation is invariant under a double Wick rotation, which

appears to be the only automorphism of that particular equation. This implies that the

large/small duality is broken in this instance by the presence of curved spacetime, which we

ought to expect since the time-like and space-like Killing vectors cannot be rotated into one

another due to the additional spatial dependence of the metric components. In flat space

the metric, and therefore the Killing vectors, are invariant under Wick rotation and so the

field theory solutions ought to respect this symmetry.

There is, however, a particularly interesting transformation in curved space when the

metric components g00 and gzz are inverses of each other - as in the case for Dq-brane

backgrounds in the near horizon limit. Writing the harmonic function in terms of the

dimensionless distance variable z̃

H ∼ 1

z̃7−q
, (3.237)

then it is straightforward to see that the transformation to the static equation is nothing

more than T-duality, taking z̃ → 1/z̃.

One further comment should be made here with regard to the interpretation of the

dynamical solution. In the Minkowski limit we saw that the time dependent funnel solution

yielded the same equations of motion as the collapsing fuzzy sphere. This led [51] to

postulate the existence of a duality between contracting fuzzy spheres and funnels. In

curved space we see that this interpretation is no longer valid, since the equations of motion

coming from the collapsing fuzzy sphere are different - as shown in section 2.

3.3.9 The Dual Picture - D3 world-volume theory.

Our work on constructing funnel solutions in curved space has yielded some interesting

results. At this stage we would like to check our assumption that the funnels do in fact

lead to the emergence of D3-branes, which can be done in the dual D3 world-volume theory

[49]. We begin with the effective action for a solitary D3-brane in a general background

with vanishing Kalb-Ramond two form

S = −T3

∫

d4ζe−φ
√

−det(Gab + λFab),

The D-strings in this theory will appear as magnetic monopoles on the D3-brane, thus we

must ensure a non-trivial magnetic field is turned on. We choose this to be Fab = ǫabcBc,

with roman indices running over the world-volume. Finally we must also ensure that one of

13Unfortunately these are not the spacelike D-brane supergravity solutions constructed in [85].
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the transverse scalars - σ is excited. As usual we neglect higher derivative terms in the DBI

action, and employ the use of static gauge. The result for the static solution is as follows

S = −T3

∫

d4ζe−φ
√

g00g3
xx(1 + λ2gzzg

−1
xx (~∇σ)2 + λ2g−2

xx
~B2 + λ4gzzg

−3
xx ( ~B.~∇σ)2). (3.238)

It should be noted that the scalar field has canonical dimension of L−1, which we need to

be careful of when interpreting our solutions - particularly when trying to show that this

is indeed the dual picture configuration. The equation of motion for the transverse scalar

is complicated in curved space, and not readily amenable to analytic solutions. Thus we

will attempt to find the spike profiles by searching for configurations which minimise the

energy, a tactic which worked for several backgrounds in the non-Abelian case where the

energy minimisation condition corresponded to the equations of motion [45]. The energy

density in the static case simply equals −L therefore we may write

H = T3

∫

d3ζe−φ
√

g00g3
xx(1 + λ2gzzg

−1
xx (~∇σ)2 + λ2g−2

xx
~B2 + λ4gzzg

−3
xx ( ~B.~∇σ)2)

= T3

∫

d3ζe−φ
√

g00g3
xx

√

λ2|
√

gzzg
−1
xx
~∇σ ± g−1

xx
~B|2 + (1 ∓ λ2g

1/2
zz g

−3/2
xx

~B.~∇σ)2,

where in the last line we have written the determinant as the sum of two squares. We see

that there is an energy bound given by

H ≥ T3

∫

d3ζe−φ
√

g00g3
xx|1 ∓ λ2g1/2

zz g
−3/2
xx

~B.~∇σ|, (3.239)

which is saturated provided that the σ-field satisfies the following constraint

~B = ∓~∇σ√gxxgzz, (3.240)

which can be seen to reduce to the usual flat space constraint ~B = ∓~∇σ as required.

The expression for the energy bound (3.239) seems to be the sum of two terms where the

second one is topological in nature. We wish to show that this expression has a simple

interpretation in terms of the energy of the D3-brane and the energy of a warped spike

solution. We will write the first term as follows

HD3 = T3

∫

d3ζe−φ
√

g00g3
xx. (3.241)

Now in flat space the energy of the D3-brane is simply T3

∫

d3ζ, however as we are in a

generic curved background we must also include the contribution from a non-trivial dilaton.

This means the energy is modified to become T3

∫

d3ζe−φ which is exactly the equation we

wrote down for the energy of a warped D3-brane. Thus our intuition about the first term is

correct, namely that it corresponds to the energy of the brane in curved space. The second

term is a simple extension of the BIon spike solution, generalised to a curved background.
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We return now to (3.240) which gives us important information about the profile of

the spike solution. It is clear that the second term here is a total derivative if the B field

satisfies the modified Gauss law equation

~∇.(√g00gzze
−φ ~B) = 0. (3.242)

This modification of the Gauss law appears to be due to red-shifting of the magnetic field

for an observer in the UV end of the background geometry. Such red-shifting effects are

common in warped metrics. Under these circumstances the second term would then be

determined by the boundary values of σ(r) and so we would find a contribution to the

energy proportional to σ(r = ∞) − σ(r = 0) which could be interpreted as the energy of a

string stretching along the σ direction i.e the D-strings of the non-Abelian theory.

In the case of background NS5 branes or F -strings, which are both charged under the

NS field, it is easy to check that (3.242) reduces to the familiar flat-space Gauss constraint

due to the cancellation with the metric components i.e ~∇. ~B = 0. In the case of Dq-brane

backgrounds, which are charged under the RR fields, such a cancellation between the dilaton

and metric components does not occur and the Gauss law condition reduces to

~∇.(e−φ ~B) = 0. (3.243)

We wish to solve the general spike solution using (3.240). In general we may expect a power

series solution for the metric functions which will be given by f(σ̃), where σ̃ refers to the

physical coordinate distance. Note that σ is related to the physical distance via σ̃ = l2sσ.

As in the non-Abelian section we will take f(σ̃) ∼ σ̃n, where n can be positive or negative

but not unity. It will be convenient to switch to spherical coordinates in which case the

magnetic field will only have a radial dependence, and we will take the traditional ansatz

for the field to be

B = ± Q

4πr2
, (3.244)

where Q corresponds to the magnetic charge of the U(1) field. Equating both sides of

(3.240) gives us the physical solution for the spike

σ̃n+1 − σ̃n+1
0 ∝ ±Ql

2
s(n + 1)

4πr
, (3.245)

where we have neglected a dimensionality factor which makes f(σ̃) dimensionless. With

reference to the general solution on the non-Abelian side (3.228) in physical coordinates we

find

σn+1 − σn+1
0 ∼ ±πNl

2
s(n+ 1)

r
. (3.246)

If we demand that both of these solutions are equal - to leading order in N - we need to

impose the following quantisation condition on the magnetic charge, namely Q = 4π2N .

This condition, with the appropriate choice of sign, ensures that the equations from the
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non-Abelian and Abelian theories are the same in an arbitrary background. The n = −1

case, which arises in the fivebrane backgrounds, will give rise to a logarithmic funnel profile

and not the simple power law solution.

In the specific case of the NS5-brane background we find that the spike solution from

the Abelian action, σ̃(r) satisfies the following equation

−1

r
− 4π

√
M

Q

√

σ̃2

l2sM
+ 1 +

2π
√
M

Q
ln





√

σ̃2

l2sM + 1
√

σ̃2

l2sM
− 1



 = c (3.247)

where c is a arbitrary constant of integration. In the throat approximation where σ̃2

l2sM
≪ 1

this equation can be solved explicitly for the spike profile

σ̃ = σ̃0 exp

( −Qls
4πr

√
M

)

= σ̃0 exp

(−πlsN√
Mr

)

, (3.248)

More generally the complete solution above in (3.247) can be seen to be exactly equivalent

to the solution for the fuzzy funnel discovered on the non-Abelian side in (3.223) with an

appropriate definition of the constant c in terms of the D3-brane location parameter σ0 and

using the quantisation of magnetic charge Q found earlier.

Now in flat space the fact that a spike profile saturates the energy bound is normally

sufficient to argue that such a profile solves the equations of motion. However in the case

where there is a throat present due to the NS5 source branes, this is not the case. From

equation (3.240) with gxx and gzz appropriate to the throat geometry, we can scale σ̃ → lσ̃

and still satisfy this equation. However under the same scaling, the energy of the warped

D3-brane scales like

HD3 → lHD3 (3.249)

and so the energy of the brane can now be reduced by sending l → 0, indicating that

the D3-brane - or funnel solution on the non-Abelian side - will be unstable. This shows

that the static spike profile (3.247) is unstable and wants to decay. Thus by considering a

time-dependent profile rather than static, we can find a solution to the equations of motion.

In general looking for analytic t and r-dependent solutions to the equations of motion

looks very difficult. However assuming the throat approximation, a simple solution, which

describes the motion of the funnel as a whole, can be obtained by using separation of

variables. Such a solution can be expressed as F (t)σ̃(r), where we have introduced a di-

mensionless time-dependent profile, F (t) for the spike. It is easy to see that F (t) drops out

of (3.240) so that σ̃(r) still describes a static spike profile as in (3.248). F (t) is determined

by demanding F (t)σ̃(r) solves the complete equations of motion. We find that the energy
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density of the brane reduces to the simple form

E = T3V3
Fσ̃
√

Ml2s

∣

∣

∣

∣

1 ± λ2

ls

√
M ~B.~∇ ln

(

σ̃

σ̃0

)∣

∣

∣

∣

(

1 − λ2MḞ 2

l2sF
2

)−1/2

, (3.250)

where V3 is the volume element of the D3-brane. Demanding the conservation of energy

(equivalent to solving the equations of motion) we can solve for for F (t), noting that the

absolute value of the second term is independent of time. The solution can be seen to yield

1

F (t)
=

1

F0
cosh

(

tls

λ
√
M

)

, (3.251)

where F0 is the initial condition on the profile. There are two important comments to make

here. Firstly that the solution appears to be valid for any point on the world-volume, even

at the location of the monopole r = 0. Secondly the solution for the profile is exactly the

same functional form as that of a D3-brane with no magnetic flux in the same background,

as shown by Kutasov in [21]. This suggests that the BIon spike will not feel any tidal forces

due to the gravitational attraction of the fivebranes. We may now write the full solution to

the equation of motion (again in the throat approximation) as follows

r(σ, t) =
Nπλls

λ
√
M ln

(

σ̃
σ̃0

[1 + e−tls/
√

Mλ]
)

+ tls + λ
√
M ln(2)

, (3.252)

which we can simplify by considering the solution at late times - and neglecting the constants

arising from the initial conditions

r(σ, t) ∼ Nπλls

λ
√
M ln

(

σ
σ0

)

+ tls
(3.253)

which shows that the radion field is proportional to 1/t in this limit. We now want to

consider how this appears on the non-Abelian side, however we note that even when we

include time dependence in the action the equations of motion are highly non trivial and do

not yield a simple analytic solution. We should check that the solution (3.253) is actually a

solution of the theory. We again factorise the scalar field into a time dependent piece and

a spatial piece and make the ansatz

R(σ, t) =
1

2
√

Ml2s ln
(

σ
σ0

)

+BF (t)
, (3.254)

whereB is some arbitrary constant. It can easily be seen that R′ = 2R2
√
H and Ṙ = BḞR2,

where H is the usual harmonic function for the NS5-brane solution. If we substitute these
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two equations into the energy density equation for the fuzzy funnel we obtain

H =
T1V1N(1 + 4λ2CR4)3/2

√

1 + 4λ2CR4 − λ2CB2R4Ḟ 2
, (3.255)

which must be conserved in time. This requires that the Ḟ term must vanish from the

expression. The simplest solution is to take Ḟ = 0, however this implies that F is constant

in time and so we are just introducing a constant shift into the equation of motion. A non-

trivial solution can be obtained by setting Ḟ 2B2 = 4, which has the solution F (t) = 2t/B.

This reproduces the same functional form for the equation of motion as we derived from

the Abelian theory, however we need to check the interpretation of the resultant expression

for the energy density, which can be seen to yield

E → T1V1N(1 + 4λ2CR4)3/2. (3.256)

Expanding the solution we can see the first term corresponds to the energy density of

N coincident D-strings, as we would expect. The higher order terms correspond to non-

linearities arising from the fuzzy funnel solution representing the warping of the D-strings

in the transverse space. Thus we argue that this ansatz for the equation of motion is a

solution of the theory since we are left with the minimal energy configuration. Therefore

both solutions agree at late times. Furthermore it was argued in [21] that we can trust

the macroscopic description even deep in the IR end of the geometry provided that the

energy of the brane is large enough. Therefore we expect our solution to capture the vast

majority of the evolution of the system. Of course, our analysis is based upon the fact that

we are ignoring the back reaction upon the geometry. Again this requires fine tuning of the

various parameters in the theory to accomplish this. Hopefully using the prescription for

the symmetrized trace at finite N will alleviate this problem entirely.

Similar analysis can be carried out for both the F -string and Dq-brane backgrounds.

The static spike profile in the F -string background, obtained by solving (3.240) is consistent

with the static funnel profile obtained in the same background on the non-Abelian side. The

same scaling argument about such static solutions being unstable, as discussed in the NS5

case above, is not naively applicable here. What we can verify is that at least in the static

case, the equation for the spike on the Abelian D3-world volume side and the fuzzy funnel

on the non-Abelian side agree.

Finally we discuss the situation for Dq-background geometry with q 6= 3. Here things

are obviously more complicated due to the red-shift of the magnetic field. However we can

use some intuition from our knowledge of the Abelian theory to understand the physics. It

is known that for supersymmetry to be preserved we require the D3-brane to be embedded

in either a D3-brane or D7-brane background. In this case the funnel solution will be

completely solvable. For all other brane backgrounds the supersymmetry is broken, and

the D3 feels a gravitational potential drawing it toward the background branes. Thus our

126



3.3. DYNAMICS IN MORE GENERAL BACKGROUNDS.

static funnel solution will not be compatible with the full equations of motion, and so we

would require a time dependent ansatz. Interestingly in the D5-brane background we know

that open string modes stretching between the funnel and the source branes will become

tachyonic at late times, potentially distorting the funnel.

3.3.10 Higher Dimensional Fuzzy Funnels.

We can generalise the non-Abelian results we have obtained to the higher dimensional theory

using the results from the previous chapter. This means we are considering the fuzzy S2k

spheres, which are labelled by the group structure of SO(2k+1) in ten dimensions [51, 52].

This will obviously imply that we require 2k+1 transverse scalars in the DBI action, where

k ≤ 3 and the funnels are now blowing up into nD(2k+1)-branes in an arbitrary background.

Of course the higher number of transverse directions will impose serious constraints upon

the dimensionality of the possible background sources, in many cases we will be left with

unphysical situations such as type IIA, or potentially non braney solutions. The geometry of

these higher dimensional fuzzy spheres is interesting to study in its own right, for example

we know that the fuzzy S6 can be written as a bundle over the classical six-sphere. In

the classical limit we find that the fibre over the sphere belongs to the group SO(6)/U(3),

which implies that constructing a dual picture is non-trivial [52]. The geometrical analysis

is revealing as we can calculate the charge of the branes directly from the base space. The

general topology of our higher dimensional funnel configuration will now be R × S2k, and

we must modify our gauge group ansatz to read

φi = ±RGi, (3.257)

where the Gi matrices satisfy GiGi = Ck1N and lie in the irreducible representation of the

particular gauge group. The Casimir in this case will be labelled by a k index so that we

know which group structure it conforms to. The relationship between N and n means that

the dual picture is far more complicated. For example in the k = 2 case we know that the

D-strings blow up to form several D5-branes, which have a non-trivial second Chern Class

on the world-volume. This makes the dual picture difficult to analyse and we will not do

it here - but see [45] for a more detailed derivation of the D1 −D5 and D1−D7 solutions

in flat space. The general relationship between the physical distance and the scalar field

ansatz can be written as follows

r = k
√

CkλR, (3.258)

which is similar to the SU(2) case, except there is no ambiguity over the choice of sign, and

we emphasise that the Casimir will be dependent upon the number of higher dimensional

branes in the funnel solution.
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The generalisation of the non-Abelian action to leading order is expected to be given by

S = −T1

∫

d2σNe−φ
√

g00gzz(1 + λ2Ckgxxg
−1
zz R′2)(1 + 4λ2CkR

4g2
xx)k/2, (3.259)

and therefore with our usual rescaling of the tension we can find the spatial component of

the energy momentum tensor

Tσσ =
e−φ√g00gzz(1 + 4λ2CkR

4g2
xx)k/2

√

1 + λ2CkR′2gxxg
−1
zz

. (3.260)

Our work in the lower dimensional case has shown that we can obtain solutions to the

equations of motion, consistent with the energy minimisation principle, when the α term is

constant. If we assume that this is true for our background metric then we can write the

general equation of motion for the funnel as follows

R′2
k =

gzz

λ2Ckgxx

(

(1 + 4λ2CkR
4g2

xx)k − 1
)

. (3.261)

A quick check shows that with k = 1 the solution reduces to R′2
1 = 4R4gxxgzz as expected

from our efforts in the preceding sections. Of course setting α to be constant also imposes

additional constraints on the possible supergravity backgrounds that exist. Interestingly

the higher dimensional solutions will all have a variant of this solution as their lowest order

expansion in λ. The k = 2 and k = 3 solutions can be written as follows

R′2
2 = 8

(

R4gxxgzz + 2λ2C2R
8g3

xxgzz

)

(3.262)

R′2
3 = 12

(

R4gxxgzz + 4λ2C3R
8g3

xxgzz +
16

3
λ4C2

3R
12g5

xxgzz

)

which shows that there are apparent recursive properties for these equations. Note that

these expression agree exactly with the ones derived in [45] when taking the flat space

limit, where these results were obtained via minimisation of the energy and found to be

perturbatively stable. Clearly we do not expect this to be the case in a general background

due to the additional σ dependence of the metric components.

In general these equations are difficult to solve, but can in principle be written in terms

of elliptic functions. We will try and make some progress by assuming trivial solutions

for the gxx components which can be absorbed into a redefinition of R, and power law

behaviour for the gzz components. In the k = 2 case we can find approximate solutions to

the equation of motion. In the large R region, the second term is dominant and a quick
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integration yields the following solution

R2(σ) =

( ∓1

4λ
√
C2(σm+1 − σm+1

0 )

)1/3

m 6= −1 (3.263)

R2(σ) =

( ∓1

4λ
√
C2 ln(σ/σ0)

)1/3

m = −1.

Note that m = 0 corresponds to the flat space limit and agrees with the solution in [45].

When R is small the solution is dominated by the leading term and we recover the usual

funnel solution derived in previous sections. Clearly this implies the existence of an inter-

polating region where the solutions cross over from one another. Upon equating the two

terms we find that the cross over occurs at

Rcr ∼
(

1

2λ2C2

)1/4

, (3.264)

which implies, in physical coordinates, that r >> ls. Moving on to the k = 3 case we find it

complicated by the appearance of an extra term. Of course in the large R limit this will be

the dominant contribution to the integral and we find a similar solution to the one sketched

out above with the power now being 1/5 rather than 1/3 , and the dependence on λ and C

will also be slightly altered. The crossover in this case will happen at the point

Rcr ∼
(

3

8λ2C3

{

1 +

√

7

3

})1/4

, (3.265)

which will again imply that the physical distance is much larger than the string scale. The

general conclusion here is that higher dimensional fuzzy spheres lead to funnel solutions

which are modified version of the lower dimensional ones, although we ought to bear in

mind that these solutions are potentially only valid in flat space as physical brane sources

satisfying the background constraints may not exist. The general behaviour for the funnel

in the large R limit can be seen to be

R ∼ σ−(m+1)/(2k−1), (3.266)

and so the higher dimensional effects play a more important role as σ → σ0.

We now switch our attention to the leading order 1/N corrections for the general fuzzy

funnel. As usual we choose to work in terms of the variables α, β, γ, where now β is the

general function for arbitrary k. The leading order correction can be calculated to give

H̃1 = αβγ

{

1 − 1

3γCk

(

k(γ2 − 1)(β2/k − 1)

γβ2/k
− (γ2 − 1)2

2γ3
+
kγ(k − 2)(β2/k − 1)2

2β4/k

)}

which clearly reduces to the standard expression when k = 1. This is actually valid for
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k = 4 provided we take the flat space limit. Now we see that in general the correction

terms will be non-zero, even if we assume the funnel configuration where β = γ. This is

actually reminiscent of the flat space solutions where the higher dimensional fuzzy funnels

are corrected under the symmetrized trace. Taking k = 2 for example we find that the

corrected energy becomes

H̃1 = αβγ

{

1 − 1

3γC2

(

2(γ2 − 1)(β − 1)

γβ
− (γ2 − 1)2

2γ3

)}

, (3.267)

which implies that the correction terms only vanish for γ2 = 1. The non-trivial solution

to this implies that R′ = 0, or that the radius of the sphere is a constant function of σ.

Furthermore we see that the correction term will always be positive, therefore the higher

order corrections reduce the energy and so we expect the solution to be unstable. It is only

the D1 −D3 funnel which is the lowest energy configuration in an arbitrary background.

Many of the arguments presented in this section have been quite technical, and one may

wonder whether there is any physical application for the Myers action beyond the intrinsic

mathematical aspects. In the next section we will suggest an application of this formalism

by taking a closer look at the (p, q)-string system that was briefly mentioned before. Because

of the gauge/gravity duality, this string configuration is of potential interest from both a

cosmological and a gauge theory perspective.

3.4 Application: (p,q) strings in the Warped Deformed Conifold.

An interesting inflationary model within string theory is the hybrid inflation scenario of the

D3-D̄3 annihilation [87]. The different branes experience a Coulombic attraction forcing

them towards one another, and so the inter-brane distance can play the role of the inflaton.

Once the branes reach distances comparable to the string scale, an open string tachyon

forms which causes inflation to end. Despite many technical difficulties with this model,

it has been placed on reasonably sound footing by embedding the mechanism into semi-

realistic models arising from flux compactifications [108]. The branes annihilate in a warped

throat, which is separated from the Standard Model throat by the internal compactification

manifold. One of the predictions of this model, however, is that strings will be created

during the annihilation process - after inflation has ended. To illustrate this let us consider

the annihilation of one D3-brane with a D̄3-brane. K theory tells us that the remnant brane

must have co-dimension two [10], which means that there will be a remnant D-string left

after annihilation which is charged under a linear combination of the original U(1) × U(1)

symmetry. The other linear combination of U(1) charge must vanish (as there is only a single

residual brane). However the annihilation also leads to the creation of confining flux lines,

which can be interpreted as (fundamental) F -strings. The result is that generically we will

have remnant cosmic (super) strings [66]. This is clearly incompatible with the experimental
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data, which can be seen to fit a ΛCDM inflationary model with great accuracy [88–91]. In

fact the current observational bounds impose a constraint on any cosmic string tension

through the relationship Gµ ≤ 10−6, where µ is the string tension [67, 76]. Thus we are left

with one of three likely possibilities:

• D3-D̄3 inflation is not a viable mechanism.

• Only a few strings are formed during this process, which mean they contribute negli-

gibly to the CMB.

• The warping of the throat is so severe that the tension of these objects is essentially

zero.

Although it may well turn out that the first of these is correct, we consider the other two

possibilities in this thesis. In fact one may argue that it is indeed a combination of these

two statements which leads to the correct answer. Namely that a few strings are formed

after inflation, and the warping does indeed reduce their tension. In the next subsection we

will introduce the background supergravity solutions which we need to analyse this problem

3.4.1 The Warped Deformed Conifold.

The conifold is a non-compact, singular manifold which is topologically a cone over the

base T 1,1 [61]. There are classes of more general conical geometries, called La,b,c manifolds

- however we will not discuss them in this thesis [62]. Conifold singularities are the most

common type of singularities arising from Calabi-Yau compactifications of string theory,

which makes them interesting objects to study. Mathematically it is convenient to define

the conifold as a complex algebraic curve satisfying the following equation

f(z1, z2, z3, z4) =
4
∑

i=1

z2
i = 0. (3.268)

Note that this defines a cone because if zi lies on the cone then so does λzi where λ ∈ C.

If we intersect the polynomial with a seven-sphere of radius r, then we see that near the

intersection we can write the zi in terms of xi + iyi to find xix
i = yiy

i = r2/2 and xiy
i = 0.

These equations give us an S2 which is fibred over an S3. However such fibrations are

trivial and so the resulting bundle must be a product bundle S2 × S3. The singularity can

be resolved by allowing either the S3 or the S2 to shrink to remain finite. When the S2

shrinks the resulting manifold is the deformed conifold, whilst if it is the S3 that degenerates

then we obtain the resolved conifold. A cartoon of the deformed conifold is sketched in Fig

3.4 which is taken from Majumdar [66].

As it stands this is a good string background, however things become even more inter-

esting when we consider the backreaction of the fluxes, which are turned on in the compact
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Figure 3.4: Sketch of the conifold and the deformed conifold.

directions. The backreaction can cause some of the three-cycles to collapse, forming finitely

warped throats [63]. This was first discussed by Klebanov and Strassler, and is more com-

monly referred to as the KS throat. More importantly the throats naturally reduce the

amount of supersymmetry that the solution preserves. In fact for the warped deformed

conifold we find that only N = 1 susy is preserved. The general metric for the conifold can

be written as follows

ds6
2 = dr2 +

r2

9

(

dψ +

2
∑

i=1

cos θidφi

)2

+
r2

6

2
∑

i=1

(

dθ2
i + sin2 θidφ

2
i

)

, (3.269)

which clearly shows that there is an S2 fibred over an S3. The warped deformed conifold

emerges when we turn on the RR flux F3 through the S3, and the NS-NS flux H3 through

the dual three-cycle which creates the warped throat14. The fluxes must satisfy the Dirac

quantisation condition

1

4π2α′

∫

A
F3 = M,

1

4π2α′

∫

B
H3 = −K, (3.270)

where M,K ∈ Z and A,B are the dual three-cycles. We can now deform the equation for

the algebraic curve by a small (and real) parameter ǫ using

4
∑

i=1

z2
i = ǫ2. (3.271)

14In fact this cycle is basically r × S2.
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Now it is convenient to re-write the metric using a basis of one-forms

g1 =
e1 − e2√

2
, g2 =

e2 − e4√
2

g3 =
e1 + e3√

2
, g4 =

e2 + e4√
2

g5 = e5 (3.272)

where we have defined

e1 = − sin θ1dφ1 (3.273)

e2 = dθ1

e3 = cosψ sin θ2dφ2 − sinψdθ2

e4 = sinψ sin θ2dφ2 + cosψdθ2

e5 = dψ + cos θ1dφ1 + cos θ2dφ2.

In this basis the metric (3.269) can be seen to take the following form

ds6
2 =

ǫ4/3K(τ)

2

[

dτ2 + g2
5

3K3(τ)
+ cosh2(

τ

2
)[g2

3 + g2
4 ] + sinh2

(τ

2

)

[g2
1 + g2

2 ]

]

, (3.274)

where the overall warp factor is given by

K(τ) =
(sinh(2τ) − 2τ)1/3

21/3 sinh(τ)
. (3.275)

Note that τ parameterises the size of the S2 fibration, and as τ → 0 we are left with the

metric for the three-sphere - i.e the warped deformed conifold. We will be mostly interested

in the physics of this solution near the tip of the warped throat, once the S2 has shrunk to

zero size. The full ten-dimensional metric in this instance reduces to something like

ds10
2 ∼ a2

0ηµνdx
µdxν + gsMb0α

′
(

1

2
dr2 + r2dΩ̃2

2 + dΩ2
3

)

(3.276)

where now r is the radius of the shrinking two-sphere, parameterised by θ, φ coordinates

using θ1 = −θ2 and φ1 = −φ2. The warp factor a2
0 arises from the fluxes and can be tuned

to be exponentially small. The threading of the flux through the three cycle can be viewed

as arising from N = MK D3-branes localised at the origin, where the warp factor has been

truncated at some finite value - rather than leading to an infinitely warped throat.

The solution is in Einstein frame, and the RR 2-form at the tip of the throat can be

written as follows

C2 = Mα′
(

ψ − sin(2ψ)

2

)

sin(θ)dθdφ. (3.277)

Because the warp factor is smallest at the tip of the throat, we expect that any residual
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objects will localise themselves here in order to minimise their energy. This implies that

we only need consider the physics near the tip, and far away from the gluing region where

the KS throat is ’glued’ smoothly onto the conifold. One further thing to note is that the

dilaton and B2 are zero at the tip of the throat. The vanishing B field simplifies our analysis

however the vanishing dilaton implies that the string coupling gs = eφ = 1 in this region.

Although this means that both Einstein and string frames coincide in this instance, it also

means that we are in a strongly coupled regime.

Having stated the supergravity background let us make some comments before proceed-

ing. For cosmological purposes we want to consider the KS throat as being the inflationary

throat. Thus after brane annihilation we will end up with cosmic strings at the tip. Al-

though this solution is ten-dimensional, we expect it to be representative of the exact

solution obtained upon compactification. Provided we restrict our analysis to the tip of the

throat, we are essentially insensitive to UV physics - which is where the model dependent

phenomena come into play. This ensures that our analysis will be reasonably robust.

We can also interpret strings in this background in another way [73]. Due to gauge/gravity

duality this gravity theory is actually dual to a confining gauge theory. It was shown in

[63] that if the fluxes are integer multiples of one another, then the gauge theory undergoes

a cascade from SU(K + M) → SU(M) in the deep IR, i.e near the tip. Because this is

a confining gauge theory F -strings in this solution acts as quark-antiquark strings, whilst

D-strings will be dual to axionic strings. This means that studying stringy objects in this

background has dual application, either for cosmology or for gauge theory. Our primary

focus is on a model for cosmology, however we will often make reference to the gauge theory

interpretation as there is an abundance of literature on the subject.

3.4.2 Macroscopic (p, q)-strings.

We have already mentioned that we expect F and D-strings to be formed in annihilation

processes in the KS throat, but more generally we expect these strings to combine to form a

bound state of pF -strings and qD-strings - or a (p, q)-string. This is simply due to SL(2, Z)

symmetry which interchanges the B(2) field with the C(2) field, thus transforming F -strings

into D-strings [69].

A nice way of obtaining the tension spectrum for such objects in the warped deformed

conifold was derived in [70], who considered a D3-brane wrapping a two-cycle within the

S3 and extending along two of the four Minkowski directions 15. As we have mentioned

many times in this thesis, a non-zero electric field on the brane is equivalent to dissolved

F -string flux so we can simulate a (p, q) string by turning on a non-zero U(1) gauge field.

[70] also turned on non-zero magnetic flux on the world-volume to stabilise the brane on the

15See [71] for related work.
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S2. For simplicity both these fields are assumed parallel, and we choose a gauge such that

only F23 and F01 are non-zero. The brane is extended in two of the non-compact directions

and wrapped on the two-cycle inside the S3. After collecting all the terms and integrating

over the compact directions, one can obtain the Hamiltonian density for the (p, q) bound

state via Legendre transform

H =
a2

0

λ

√

q2

g2
s

+
b20M

2

π2
sin4(ψ) +

[

M

π

(

ψ − sin(2ψ)

2

)

− (p− qC0)

]2

. (3.278)

At this stage we must minimise the energy with respect to the radius of the S2. The result

is

ψmin +
b20 − 1

2
sin(2ψmin) =

(p− qC0)π

M
. (3.279)

However the b20 − 1 factor is almost zero and so to leading order we can drop this term
16. Then we see that ψmin ∼ (p−qC0)π

M which yields a value rmin for the S2 radius at the

minimum

rmin =
√

b0gsMα′
∣

∣

∣

∣

sin

(

π(p − qC0)

M

)∣

∣

∣

∣

(3.280)

If we now insert this into our expression for the Hamiltonian we obtain the tension of

the (p, q) bound state

Hmin =
a2

0

λ

√

q2

g2
s

+

(

b0M

π

)2

sin2

(

π(p − qC0)

M

)

, (3.281)

which is in excellent agreement with the results obtained in [69, 73], when one sets p = 0

or q = 0 yielding the tension spectrum for the D and F -strings respectively. If we take the

large (background) flux limit then we can expand the final term in the square root to the

next to leading order in powers of 1/M . This yields the following expression

Hmin ∼ a2
0

λ

√

q2

g2
s

+ b20(p− qC0)2
(

1 − π2(p− qC0)2

3M2
+

2π4(p − qC0)4

45M4
− . . .

)

, (3.282)

where we recall that b0 ∼ 1. Thus we see that in the large M limit one recovers the expected

result for the (p, q) string tension in a non-trivial background. It is worth mentioning that

if we take the limit q → 0, leaving us with only the fundamental string contribution, that

the corrections to the tension scale as 1/M2. This was first noted by Douglas and Shenker

[74] and is different to the 1/M correction that arises due to Casimir scaling. Note that in

this limit the minimal radius, rmin, can be approximated by the following

rmin ∼
√

b0gsα′π(p− qC0)√
M

∣

∣

∣

∣

{

1 − π2(p − qC0)
2

6M2
+ O(

1

M4
)

}∣

∣

∣

∣

, (3.283)

16Strictly speaking this means that the supergravity solution is now that of [75], which was recently
rediscovered by Maldacena-Nunez [64].
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where the terms inside the brackets are a power series in even powers of 1/M .

3.4.3 Microscopic (p, q)-strings.

The macroscopic description proposed in the last section gives a nice result, however from

the cosmological perspective we can only use this as a tool. In order for the theory to

be ’physical’ - i.e arising as a natural consequence of inflation - we need to deal with the

effective action for the strings themselves. This is even more important when one wants to

study the formation of (p, q) string networks, because typically the dominant contributions

come from the lowest lying string modes. However the macroscopic description needs to

be modified in this instance, since turning on flux induces non-commutative effects on the

brane worldvolume [68]. Seiberg and Witten [58] showed that these effects can be included

by the introduction of a suitable star-product, rather than the normal product. For large

values of the flux it can be shown that the effects of the star-product are negligible, but for

small fluxes they provide an important contribution to the theory.

Using the Myers action [33] to construct the microscopic description allows us to include

some of the non-commutative effects, although they are ’washed out’ in the limit of a large

number of strings (which is where the action is simplest). However using 1/N corrections

[50], and the conjectured finite N prescription [53], we can attempt to include these effects

in order to develop a more realistic model. The starting point is to construct a theory of q

coincident D-strings, with non-zero electric flux on their worldvolumes. Since the number

of D-strings must be an integer, this automatically accounts for the quantisation of q and

therefore only p needs to be quantised.

We can use the results from the previous chapters to determine the action of the strings

in this background. It should be remembered that the two-form field Cij is a function of

all the background coordinates, and in particular its dependence on the non-commuting

coordinates φi is obtained through the non-Abelian Taylor series expansion. For the U(1)

gauge field we will fix the gauge A0 = 0 implying that F01 6= 0 = ε. Effectively this means

that the gauge field is proportional to the identity matrix in this picture, breaking the U(q)

symmetry group of the coincident branes down to SU(q)×U(1), where the gauge field now

commutes with the SU(q) sector.

We choose to orient the D-strings along two of the Minkowski directions of the non-

compact spacetime in order to make contact with the Abelian theory of the wrapped D3-

brane. Recall that theD3-brane wraps an S2 inside the S3. Since this S2 is thus magnetized,

it suggests that on the non-Abelian side we should attempt to describe this wrapped S2 via

a fuzzy sphere ansatz for our transverse scalars [65], as we know that in the large q limit

we should recover the classical two-sphere geometry with q units of magnetic flux.

Our goal is thus to try and describe, in the non-Abelian theory, a fuzzy two-sphere

embedded not in flat space but in a round S3 geometry, where we capture the essential
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physics of the solution presented in [70] but do not construct the dual microscopic model.

Let us begin by only taking the transverse coordinates φi to be non-vanishing in the direction

of this S3 whose coordinates we label as ya, a = 1, 2, 3. The metric on this S3 can now be

obtained after performing a non-Abelian Taylor expansion 17

ds23 = gabdy
adyb, gab(φ) ∼ gab(y) + . . . . (3.284)

Since we are not looking for dynamical solutions we can regard the scalar fields as static

which simplifies the dynamical portion of the action. If we calculate the determinant in the

potential piece then to leading order we find (using the property that gab(y) is diagonal)

detQi
j = 1 − λ2

2
[φa, φb][φc, φd]gac(y)gbd(y) + .. (3.285)

and so the DBI contribution to the effective action can be written as

S = −T1

∫

d2σSTr

(

a2
0

√

1 − λ2ε21

a4
0

√

1 − λ2

2
[φa, φb][φc, φd]gacgbd

)

(3.286)

Let us now consider the fuzzy sphere ansatz for the transverse scalars by imposing the

following condition18

φa = R̂eai α
i, (3.287)

where the αi are the generators of the SU(2) algebra, which is isomorphic to SO(3) and

satisfies the commutation relation [αi, αj ] = 2iǫijkαk, and eai are vielbeins on the round

three-sphere. Using this notation the indices i, j label coordinates in the tangent space

to this S3. As before we will take these generators to be in the q dimensional irreducible

representation in order for them to yield the lowest energy configuration. If we now impose

this ansatz on our fields in the action we find

S = −T1

∫

d2σSTr

(

a2
0

√

1 − λ2ε2

a4
0

√

1 + 4λ2R̂4Ĉ

)

, (3.288)

where Ĉ is the usual quadratic Casimir of the representation given by ĈIq = αiαjδij , where

Iq is the rank q identity matrix.

It follows from our choice of ansatz in (3.287) that there is no explicit dependence of the

metric gab(y) in the above action. With the inclusion of the S3 veilbeins in the fuzzy sphere

ansatz (3.287), the SU(2) matrices αi arrange themselves into the Casimir invariant αiαiδij

in the action (3.288). This feature simplifies the calculation of the symmetrized trace both

17In fact we can do better than this by noting that the metric on the S3 is flat, this means we can avoid
having to Taylor expand the metric and the fields [72].

18We use αi to denote the group generators in this section rather than T i and Ĉ for the Casimir. We
hope this will not confuse the reader.
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at large q and also for finite q (see next section). It is plausible that there exists a more

general choice of ansatz for the transverse scalars than our proposed solution (3.287), but

the resulting symmetrized trace computation may be rather difficult. Another motivation

for (3.287) is that it is easy to see that the equations of motion (assuming constant matrices

φa) are satisfied for the S3 background since the resulting algebraic equations are formally

equivalent to those obtained in a flat background, using the ansatz φi = R̂αi.

In the large q limit the symmetrized trace can be approximated by a trace over the

gauge group. We can expand the square roots, take the trace and then re-sum the resultant

solution to get a closed form expression for the action. Later, when we restrict ourselves

to the case of finite q this will change, as we must take the symmetrization over the scalars

into account.

From the expansion of the Chern-Simons action we can see that the leading order non-

zero contributions are

Scs = T1gs

∫

STr
(

P[C0 + eiλiφiφC(2)]λF
)

+ . . . (3.289)

where C(2) has only non zero components in the spherical directions. Note that we are

working in the conventions of [33] in which the normalization of the RR C(n) differs from

the canonical one, which accounts for the factor of gs in (3.289).

After expanding the action to include the interior derivatives, and performing the pull-

back operation we find the action reduces to

Scs = T1gs

∫

d2σSTr

(

λεC0 − iλ2ε
Cab

2
[φa, φb]

)

. (3.290)

In order to make any further progress we must Taylor expand the RR two-form which yields

a term which will vanish, and also a term λ∂cCabφ
c. However under the STr operation this

terms is proportional to the field strength Fabc which gives rise to quantised flux when

integrated over S3. We write Fabc = fΩabc where Ωabc is the volume element of S3, and

using the flux normalisation condition
∫

A F3 = 4π2α′M we find

f =
2

(b0gs)3/2
√
Mα′

. (3.291)

Combining this with the standard relation ΩabcΩ
abc = 6 implies that the large q limit of the

Chern-Simons action reduces to

Scs = T1

∫

d2σ

(

gsλqC0ε+
4

3

qgsĈλ
3εR̂3

(b0gs)3/2
√
Mα′

)

. (3.292)

We can now construct the canonical momentum density of the electric field by varying

the Lagrangian density. As there is no explicit dependence of the action upon the gauge
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potential, we expect the resulting quantity to be conserved and also quantised in units of

the string tension. The resultant displacement field, p, is found to be

p = T1qa
2
0

√

1 + 4λ2ĈR̂4
λ2ε

a4
0

(

1 − λ2ε2

a4
0

)−1/2

+ T1qgsλC0 +
4qgsT1λ

3R̂3Ĉ

3(b0gs)3/2
√
Mα′

. (3.293)

Note that we are using the canonical radius R̂ in this expression, which is related to the

physical radius, r, of the fuzzy sphere through the expression r2 = R̂2λ2Ĉ. If we make this

substitution and construct the canonical Hamiltonian density via the Legendre transforma-

tion we find (using the relation T1λ = 1/gs)

H =
a2

0

λ

√

√

√

√

q2

g2
s

(

1 +
4r4

λ2Ĉ

)

+

(

p− qC0 −
4qr3

√
2π

3(b0gs)3/2
√

ĈMλ3

)2

. (3.294)

The overall factor multiplying the square root is simply the warped tension of a fundamental

string. At this juncture we should minimise the energy in (3.294) to compare with that

predicted in the Abelian theory of the last section. We first concentrate on the large M

approximation, which implies that there is a large flux on the three-sphere. Naively one

might assume that the energy is minimised when r = 0, however we can easily see that this

corresponds to a saddle point. In fact a quick calculation shows that in this approximation,

the energy is minimised at the following radius

rmin =
(p− qC0)

2b
3/2
0

√

2πgsλ

M
. (3.295)

This should be compared to the Abelian result (3.280) of the last section. We see that

approximating b0 = 1, to leading order in 1/M both expressions for rmin are in precise

agreement. Whilst this result is encouraging, what we are really interested in is comparison

of the tension of the (p, q) strings in the two formulations. Substituting (3.295) back into

(3.294) we find that keeping terms to O(1/M2) the energy density at the minimum becomes

Hmin ∼ a2
0

λ

√

√

√

√

q2

g2
s

(

1 +
(p− qC0)4π2g2

s

b60M
2Ĉ

)

+ (p − qC0)2
{

1 − 4(p− qC0)2π2

3b60M
2

}

. (3.296)

If we now again work in the approximation where b0 = 1 we can see that the predicted (p, q)

string tension agrees exactly with that predicted in the Abelian theory (3.282) up to and

including terms of O(1/M2). This result is further strong evidence that the non-Abelian

DBI description of (p, q) strings through the fuzzy sphere ansatz is capturing the correct

physics. This is particularly so of the O(1/M2) terms in the tension formula above as these

are sensitive to the r4 and r3 terms in the non-Abelian DBI and to our choice of fuzzy

sphere ansatz.
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One may wonder if the predicted tension of the (p, q) strings in the non-Abelian formu-

lation agrees to O(1/M2) even if the parameter b0 6= 1. (In fact the two tensions agree to

all orders [72].) To check this one needs the corresponding expression for the tension in the

Abelian formulation, expanded as a power series in 1/M . This is obtained by first solving

the minimization equation (3.279) after expanding the sin(2ψmin) term to cubic order. This

gives

ψmin =
(p− qC0)π

b20M
+

2

3

(p − qC0)
3π3(b20 − 1)

b8M3
+ O(1/M5). (3.297)

Substituting this value of ψmin into (3.278) and expanding in powers of 1/M one find precise

agreement with the terms arising from a similar expansion of (3.296).

A further calculation of the O(1/M4) in the tension formula shows a discrepancy with

the Abelian result. The latter predicts corrections 2
45M4π

4(p − qC0)
6 whereas the non-

Abelian theory gives a factor 4
9M4π

4(p− qC0)
6. An investigation of the algebraic structure

of sub-leading corrections in (3.294) shows that they take the form (π2k(p−qC0)2k+2

M2k ) for

k = 1, 2, 3.. (taking b0 = 1). This is exactly the structure one finds on the Abelian side by

expanding out the sin2 term in (3.281).

One may also consider comparing the tension obtained above, in the case where the

quantised flux M is not necessarily large. In this case, rmin can be obtained by solving

the depressed cubic coming from energy minimization. Two of the solutions are imaginary,

however the physical solution can be written as follows

rmin =

(

−α0

2
+

√

α3
1

27
+
α2

0

4

)1/3

−
(

α0

2
+

√

α3
1

27
+
α2

0

4

)1/3

(3.298)

where for large q, α0 = −3
4(p − qC0)λ(gsMα′)1/3 and α1 = 3

2Mα′gs. It should be noted

that to avoid large back reaction corrections to the metric of the S3, M should be taken to

be large in order for us to trust the effective action. Then the perturbative analysis of the

string tension in powers of 1/M is a good approximation.

We have seen that the large q limit agrees with the macroscopic picture. However we

should typically regard this with a little suspicion, since a large number of D-strings at the

tip of the throat will have a large backreaction effect which we have neglected. Furthermore

a large number of strings should, in principle, be visible and contribute to the CMB. From

the cosmology perspective it seems far more natural for a small number of strings to be

created after inflation. Combined with sufficient warping, this would explain why they

are not visible to us. However describing a small number of strings is difficult. In the

macroscopic theory this would mean turning on small flux quanta on the worldvolume,

which is typically sensitive to non-commutative effect as we have already pointed out. It

seems more natural to describe the strings using the Myers action, however this is just as

difficult. Our analysis has assumed that q is large, which means that we neglect terms

like 1/q2. However to describe a small number of strings requires explicit knowledge of the
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expansion for the symmetrized trace which is unknown.

Recently, however, a prescription for the symmetrized trace in the case of SO(3) has

been proposed [53] which we will employ here as a preliminary analysis to the finite p, q

problem. Let us write the general form for the Hamiltonian density H, where we continue

to use the fuzzy S2 ansatz but work in terms of the canonical radius R̂

H =
a2

0

λ

√

√

√

√

1

g2
s

(

STr
∞
∑

k=0

(−1)k

k!

[

−1

2

]

k

(4λ2ĈR̂4)k

)2

+

(

p− qC0

gs
− 4qĈλ2R̂3

3(b0gs)3/2
√
Mα′

)2

where we have used the following definition

[

−1

2

]

k

=
Γ(k − 1/2)

Γ(−1/2)
. (3.299)

Now the symmetrized trace acts on the Casimir of the representation in two different ways,

depending on whether the spin representation is odd or even. There is a simple relationship

between the spin and the number of branes, namely n = 2j = q − 1, which will play a role

in what follows. The symmetrized trace acts on the ’Casimir’19 in the following manner

STr[Ĉm] = 2(2m+ 1)

n/2
∑

i=1

(2i)2m n = even (3.300)

= 2(2m+ 1)

(n+1)/2
∑

i=1

(2i − 1)2m n = odd.

This prescription implies the following definition for the physical radius of the fuzzy sphere

r2 = λ2R̂2Limm→∞

(

STrĈm+1

STrĈm

)

= λ2R̂2n2, (3.301)

where the quadratic Casimir is now ĈIq = (q2 − 1)Iq = n(n + 2)In+1 in terms of the spin

representation.

We can now consistently take the limit of small q using this prescription. To illustrate

this we consider the first non-trivial solution where there are two coincident D-strings.

Expansion of the symmetrized trace leads to the following expression for H

H =
a2

0

λ

√

√

√

√

4

g2
s

(

1 +
8r4

λ2

)2(

1 +
4r4

λ2

)−1

+

(

p− 2C0 −
8r3

(b0gsλ)3/2

√

2π

M

)2

(3.302)

where there is a potential sign ambiguity in the r3 term due to the definition of the physical

radius. However we have chosen the minus sign in order for the solution to agree with that

19Recall that we really mean T iT i.
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of the large q limit. Once again we can search for a minimal radius constraint by considering

the large flux limit, which is a useful simplification. However as there are now only two

branes, the backreaction upon the background is more under control.

Writing the full constraint equation for the minimisation of H for the case q = 2, without

demanding that 1/M terms are negligible, we find

32r

g2
sλ

2
F (r) =

8(p − 2C0)

(bgsλ)

√

2π

M
G(r)

(

1 − 8r3

(p− 2C0)(bgsλ)3/2

√

2π

M

)

(3.303)

where we have introduced the following simplifications

F (r) = 1 +
32

3

2
∑

k=1

k

(

r4

λ2

)k

, G(r) = 1 + 8

2
∑

k=1

k

(

r4

λ2

)k

. (3.304)

Clearly (3.303) is difficult to solve analytically. To simplify the task, we drop all terms of

order 1/M as in any case they should be insignificant in the large flux solutions we are

considering in this note. There are now two limiting cases of interest for us. The first is

when the physical radius namely r4 << λ2, which allows us to find the solution

r =
r′

2
(3.305)

where r′ is a shorthand notation for the corresponding minimal radius in the large q case

(3.295) (where we would set q=2). This clearly shows that the minimum energy configura-

tion occurs at a smaller radius. However we should be careful about interpreting this result,

as the Myers action may not actually be valid in such a limit. Moreover it would also seem

to suggest that the S2 embedded within the S3 of the conifold geometry has shrunk to zero

- which would imply a further non-trivial topology change. The second limit of interest is

when the summation is dominated by the r8 terms. Again it is easy to see that the minimal

radius occurs at

r =
3r′

8
(3.306)

which is again smaller than the radius in the large q limit. In fact evaluating the minimum

of H for various values of q shows that this radius is always smaller than the corresponding

radius in the large q limit, which is what we would naively expect. Fig 3.5 illustrates this

in a plot of the tension, H, against the physical radius r for the three values q = 2, 4, 10.

Here, we chose for convenience p = 100, gs = 0.1, C0 = 0.1,M = 100, a0 = 1 and work with

units where α′ = 1. Typically C0 will be small in this solution, however the results are

applicable even when we consider an odd number of branes. This shift in radius arises due

to the symmetrization prescription for pairs of fields in the Myers action. Furthermore we

see that the tension at the minimum is smaller for finite q, which is phenomenologically

interesting from a cosmological perspective as we can imagine a situation where very few

F and D strings are formed at the end of brane/anti-brane annihilation. The strings will
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tend to move together to minimise their energy at the tip of the conifold, and for cases

where there are only a couple of D-strings, their respective tensions could easily satisfy the

observational bounds.

Figure 3.5: string tension H vs r for q = 2, 4, 10.

3.5 Discussion.

In this chapter we investigated the dynamics of the Myers action in a variety of different

backgrounds. In terms of the fuzzy spherical description we found that there were only

collapsing solutions except for the case where coincident D0-branes are in the D6-brane

background. This is the gravitational Myers effect [55], and is the microscopic dual of

the gravitational dielectric effect. We saw that there appears to be a complex relationship

between the dynamics in non-trivial backgrounds and algebraic geometry, which deserves

further analysis as this could also be related to supersymmetry preservation. We also

studied how the introduction of the open string tachyon on the worldvolumes alters these

dynamics, leading to interesting bounce solutions, and also conjectured solutions for all

the fuzzy even spheres S2k. We then generalised these solutions to general curved metrics

exhibiting an SO(1, q)×SO(9− q) symmetry, and also included a commuting electric field.

Furthermore we constructed both the macroscopic and microscopic D1-D3 intersection

in this background, which led to unusual fuzzy funnel solutions for certain backgrounds.

Using this technology we studied in detail the specific construction of (p, q)-strings in the

Warped Deformed Conifold, which has potential applications for a viable model of cosmic

superstrings, or as confining strings in an N = 1, SU(M) gauge theory.

The tension spectrum for the microscopic (p, q) string was found to deviate from that

predicted by the macroscopic model at higher orders in the 1/M expansion. However this

is due to the non-Abelian Taylor expansion of all the background fields. In fact we can

exactly reproduce the tension spectrum to all orders in 1/M by a more selective choice of
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ansatz for the fuzzy sphere [72], this also suggests that it may be possible to obtain simpler

closed form expressions for the tension at finite q and is therefore relevant for gauge theory,

and also cosmic string network modelling, as it may provide an experimentally testable

prediction of string theory.
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CHAPTER 4

BRANE DYNAMICS AND COSMOLOGY.

4.1 Introduction.

Standard Big Bang cosmology is based on the cosmological principle, namely that the uni-

verse is homogeneous and isotropic on sufficiently large distance scales, and is well described

by the Friedmann Robertson Walker (FRW) metric

ds2 = −dt2 + a(t)2
(

dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

)

(4.1)

where k represents the spatial curvature, and a(t) is the overall scale factor. For flat

universes k = 0, for positively curved universes k > 0 whilst for negatively curved universes

k < 0. The dynamics of the universe are effectively governed by the energy density it

contains through the Einstein equations. In the absence of a cosmological term the Einstein

equation is simply Gµν = Tµν/M
2
p

1, and therefore the evolution of the scale factor is given

by [76]

H2 =
ρ

3M2
p

− k

a2
(4.2)

where ρ is the energy density of the universe. If we know the explicit dependence of the

energy density on the scale factor, then we can use this expression to obtain a closed form

solution for a(t).

The Big Bang model of the universe, developed from these equations, has been exper-

imentally tested and verified during the last century. However despite its many successes,

there remain many puzzling questions. It is not the aim of this introduction to go into them

all with great detail, but we will briefly mention a couple relevant for our purposes 2.

• The Flatness Problem

If we define the ratio Ω = ρ/ρc then we can re-write (4.2) as Ω − 1 = k/ȧ2. However

because the universe is expanding with decreasing velocity, ȧ2 is always decreasing.

Recent measurements suggest that Ω is very close to one [88–91], which implies that

it must have been even closer to unity - and therefore the universe even flatter - in the

1We are using natural units and the reduced Planck scale, which is related to the traditional one via the
relation M2

p = m2
p/8π.

2See [76] for a more complete discussion.
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distant past. At the time of Nucleosynthesis [76] this implies that |Ω−1| ≤ O(10−16).

Extrapolating this back to Planck times requires this tuning to be O(10−64).

• Defects

Particle physics suggests that there should be some Grand Unified Theory, which has

a large gauge group to encompass all the relevant fields. However when this symmetry

is broken we typically obtain magnetic monopoles and other topological defects. If

they exist at early times then their energy density varies like matter i.e ρ ∼ a−3,

whereas radiation varies like a−4. Therefore these defects would be dominant form

of energy density in the early universe, and could potentially overclose the universe

before structure had time to form.

• The Horizon Problem

The CMB measures photons at the epoch of decoupling. However they are essentially

all thermalised at the same temperature of 2.73K across the sky. According to stan-

dard lore the physical wavelength of these photons (aλ) exhibited power law behaviour

at early times, aλ ∝ tp where 0 < p < 1. By contrast the Hubble radius satisfied a

linear relationship, H−1 ∝ t, therefore the physical wavelength of the photons should

be much smaller than the Hubble radius, and causal effects should only cover a small

Hubble patch. This clearly disagrees with the CMB observation.

These problems basically arise because of the assumption that ä < 0 for the entire

evolution of the universe. A simple solution is to postulate a period where ä > 0, implying

that ȧ increases during this period with a ∼ eHt. This period is what we call inflation.

Because ȧ increases during inflation this rapidly drives Ω to unity, and then after inflation

it evolves as in the standard Big Bang paradigm. Thus the flatness problem is naturally

resolved. The topological defects can be seen to be red-shifted away during this inflationary

phase, which prevents them from overclosing the universe. So this solves the defect problem

aswell. The horizon problem is solved in a similar fashion, since now the physical wavelength

of photons has power law behaviour with p > 1. This means that the physical wavelength

grows faster than the Hubble radius, and is in fact pushed outside the radius so that the

causal horizon is larger than the Hubble horizon. This allows radiation to be correlated on

much larger scales.

Inflation appears to be a nice solution to these long standing problems, however the

mechanism by which ä > 0 occurs appears to require the existence of a scalar field known

as the inflaton. At the simplest level, we require the potential energy of the inflaton to

dominate over the kinetic energy which indicates that it must be reasonably flat in order

to ensure that enough inflation occurs. This is more commonly referred to as ’slow roll’

inflation, since the inflaton field is non-relativistic. To parameterise the amount of inflation

146



4.1. INTRODUCTION.

obtained, we introduce the number of e-foldings defined through

N = ln

(

af

ai

)

=

∫ tf

ti

Hdt (4.3)

where the subscripts i and f denote values at the start and end of inflation respectively. To

solve the flatness and horizon problems it turns out that we require N ≥ 60 [76].

In recent years we have witnessed an explosion in the number of proposed inflationary

models, but essentially these are all special cases of only three kinds of inflationary behaviour

which can be classified as (i) small field inflation, (ii) large field inflation and (iii) hybrid

inflation. The first class of models have a small initial value for the inflaton field, and

include models such as natural [101] and tachyonic inflation (see [80] for a substantial but

far from complete set of references.). The second class of models require the inflaton field

to have a large initial value, and includes eternal inflation (see Linde [76]). The final class

of models is a model of double inflation, where inflation ends when one scalar field rolls to

its minimum and forces another field to being rolling [76]. Each model has slightly different

physical characteristics, which allows us to distinguish between them.

Of course despite its beautiful simplicity, inflation is still a paradigm in search of a

concrete framework. Over the past few years we have seen many attempts to embed infla-

tion naturally into the MSSM and other grand unified theories, but the abundance of free

parameters makes few concrete predictions in the absence of experimental evidence. Since

superstring theory pertains to be a theory of everything and typically contains many scalar

fields, it makes sense to search for inflationary mechanisms within a stringy context. There

are many potential benefits to such a program, which are currently under active investiga-

tion. But it is fair to say that inflationary model building within a string theory context

(typically referred to as String cosmology) is still in its infancy.

There are three main threads in string cosmology. Firstly there is the string gas approach

[78], which is purely stringy and relies heavily on the ideas of T-duality and enhanced

symmetries. The second approach is through closed string modes, typically moduli fields,

and includes models such as modular inflation [79]. The final approach is through the open

string sector and relies on brane dynamics [86], or tachyon condensation [80, 82, 87]. It is

this final approach which is of relevance to this thesis.

In this chapter we will develop a simple model of inflation/dark energy based on the

Geometrical Tachyon. We will also consider a hybrid inflation scenario which can be mod-

elled using similar techniques. Finally we will consider a more robust mechanism relying

on the non-linear nature of the DBI action itself, called DBI inflation [92].
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4.2 Geometrical Tachyon Inflation.

In Chapter 2 we saw that it was possible to define a map between brane dynamics in curved

space and a scalar field on a brane worldvolume in flat space through the radion-tachyon

correspondance [26]. We called this the Geometrical Tachyon, as in some sense it was a

holographic scalar field, yet encoded all of the classical dynamics of the original theory.

This scalar field has a vanishingly small mass, which distinguishes it from the open string

tachyon which has a mass around the string scale. In the absence of warping this large

mass prevents tachyon inflation from generating the requisite number of e-foldings, and

therefore doesn’t appear to be a likely candidate for the inflaton field. One may ask what

happens to the Geometrical Tachyon field when we treat it as a candidate for the inflaton.

This motivates our analysis in this section. However it should be noted that we are no

longer considering a pure string cosmology scenario, rather we are in the realms of string

inspired cosmology - in much the same vein as the Randall-Sundrum models of braneworld

cosmology [105].

Recall that our Geometrical Tachyon arose from considering D-brane dynamics in the

NS5-ring background of type II string theory. The branes are on a circle of radius R, and

we will treat the solution (initially) as a smearing of the charge of k branes on an S1. We

will again write the supergravity equations for such a solution for convenience [19]

ds2 = ηµνdx
µdxν +H(xn)dxmdxm

e2(φ−φ0) = H(xn)

Hmnp = −εqmnp∂qφ, (4.4)

where µ, ν parameterize the directions parallel to the fivebranes whilst m,n are the trans-

verse directions and φ is the dilaton. As usual the harmonic function H(xn) describes the

orientation of the fivebranes in the transverse space. Part our assumption is that the num-

ber of branes must be large in order to neglect α′ corrections, so we must take k >> 1 in

what follows.

H = 1 +
kl2s

√

(R2 + ρ2 + σ2)2 − 4R2ρ2
. (4.5)

In this equation we have switched to polar coordinates to simplify the expression. This

parameterisation breaks the transverse symmetry from SO(4) → SO(2) × SO(2)

x6 = ρ cos(θ), x7 = ρ sin(θ)

x8 = σ cos(ψ), x9 = σ sin(ψ), (4.6)

and now the harmonic function describes a ring oriented in the x6 − x7 plane. Note that

we are also able to switch between IIA and IIB theory because the NS5-brane background

solution is insensitive to a single T-duality transformation, as the harmonic function couples
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only to the transverse parts of the metric.

We now insert a probe Dp-brane in this background whose low energy effective action

is the DBI action, which we again write as

S = −Tp

∫

dp+1ζe−φ
√

−det(Gµν +Bµν + λFµν), (4.7)

where both Gµν and Bµν are the pullbacks of the space-time tensors to the brane, λ = 2πl2s

is the usual coupling for the open string modes, Fµν is the field strength of the U(1) gauge

field on the world volume, and Tp is the tension of the brane. As discussed in Chapter 2,

we should only consider classical solutions where 3 ≤ p ≤ 5 in order to neglect backreactive

effects, and divergent closed string emission. We will assume that the transverse scalars are

time dependent only, and set the gauge field and Kalb-Ramond field to zero for simplicity.

Upon insertion of the NS5-brane background solution, we see the action in static gauge

reduces to

S = −Tp

∫

dp+1ζ
√

H−1 − Ẋ2, (4.8)

with Xm parameterizing the transverse scalar fields, and there is no Chern-Simons coupling

because the fivebrane background does not act as a source for RR-fields.

4.2.1 Cosmology in the ring plane.

We now restrict ourselves to motion within the plane of the ring, and map the DBI action

to the tachyon action as before. It is convenient to simply restate the results from chapter

2. The action can be written as follows

S = −
∫

dp+1ζV (T )
√

1 − Ṫ 2, (4.9)

where the potential and unstable tension are given by

V (T ) = T u
p cos

(

T
√

kl2s

)

T u
p =

TpR
√

kl2s
. (4.10)

In obtaining the above, we have used the throat approximation for the harmonic function,

which means neglecting the factor of unity in (4.5). Under this assumption we see that

taking ρ = σ = 0 in (4.5) (i.e. the centre of the ring) requires that
√
kls >> R, which is

the first constraint we find on the parameters k, ls and R. Later on we will use numerical

techniques to arrive at a form of the potential V (T ) which will use the exact form of

the harmonic function as calculated in [20]. In principle we can then relax the throat

approximation which leads to the cosine potential in (4.10) so that the previous inequality
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may not be needed.

We see that the Geometrical Tachyon potential is symmetric about the origin, which

arises as a consequence of the background geometry. It should be noted that this mapping

is non-trivial in the sense that we began by probing a gravitational background, and have

ended up with a solution in flat Minkowski space. This tells us that there are two equivalent

ways of visualizing the theory. Firstly there is the bulk viewpoint, where there is actually

a ring of NS5-branes and the solitary probe brane universe moving in the throat geometry.

Alternatively, we could view the problem as a single brane moving in flat space-time with

a highly non-trivial field condensing on its world volume. In what follows we will find it

useful to switch between these two pictures in order to better understand the physics.

Our earlier work showed that the Geometrical Tachyon takes values between ±π
√

kl2s/2

in contrast to the usual open string tachyon which is valued between ±∞. This is simply

due to the probe brane being confined inside the ring. Expanding the potential about the

unstable vacuum yields a tachyonic mass of M2
T = −1/kl2s . For sufficiently large k this can

be made much smaller than the open string tachyonic mass M2 = −1/2 (in units where the

string length is unity). It is this different mass scale and profile of the potential, which is

similar to that of Natural Inflation [101], which suggest that the Geometrical Tachyon may

be useful as an inflaton candidate.

In order for us to consider realistic cosmological solutions we must now specialise to the

case of p = 3, and therefore we are in type IIB string theory. The energy momentum tensor

can be calculated by variation of the action, and has non-zero components

T00 =
V (T )

√

1 − Ṫ 2
(4.11)

Tij = −δijV (T )
√

1 − Ṫ 2

from which we see that the pressure of the tachyon fluid tends to zero as the tachyon rolls

toward the zero of V (T ). For the open string tachyon this implies that the vacuum is a gas of

heavy closed string modes as discussed in [28, 80] In a cosmological context the condensing

tachyon will generate a gravitational field on the D-brane and therefore we must include

this minimal coupling in the action [80]. We will also assume that there is no coupling to

any other string mode in order to keep the analysis simple, however we should be aware

that there is no reason why other modes should not be included. Our Lagrangian density

can thus be written

L =
√−g

(

R

16πG
− V (T )

√

1 + gµν∂µT∂νT

)

, (4.12)

where gµν is the metric and R is the usual scalar curvature. For simplicity we will assume

150



4.2. GEOMETRICAL TACHYON INFLATION.

that there is a FRW metric of the form

ds2 = −dt2 + a(t)2dx2
i , (4.13)

with i running over the spatial directions. The effect of the scale factor is to modify

the energy density, u for the flat background such that it is no longer conserved in time,

which prevents us from obtaining an exact solution for the tachyon in the presence of the

gravitational field in the usual manner.

From this we can determine the late time behaviour of the tachyon condensate. If we

assume that u is constant, then the pressure will vary as p = −V (T )2u and will tend to

zero as V (T ) reaches its minimum. Using the standard equation of state p = ωu, we find

that ω = −(1 − Ṫ 2) which implies −1 ≤ ω ≤ 0. From the Lagrangian density, we can also

obtain the Friedman and Raychaudhuri equations for the tachyon condensate

H2 =

(

ȧ

a

)2

=
κ2V (T )

3
√

1 − Ṫ 2

ä

a
=

κ2V (T )

3
√

1 − Ṫ 2

(

1 − 3Ṫ 2

2

)

, (4.14)

where κ2 = 8πG = M−2
p , Mp = 2.2× 1018GeV and the cosmological constant term is set to

zero.

Before discussing the cosmological evolution of our scalar field we must first comment on

the coupling to four dimensional Einstein gravity. In some ways the Geometrical Tachyon

is reminiscent of the Mirage Cosmology scenario [102]. In fact recent work has used this

approach to study inflation [103]. Mirage Cosmology requires us to re-write the induced

metric from the supergravity background on the D3-brane world-volume in a FRW form.

The universe will automatically be flat or closed if we choose the D-brane to be flat or

spherical respectively. The problem however, is that there is no natural way to couple

gravity to the brane action and therefore we must insert it by hand, however the cosmological

dynamics are expected to be reliable virtually all the way to the string scale. A second

way to think about the solution is to simply start with the Geometrical Tachyon. The

tachyon mapping in this case is only concerned with time-dependent quantities, and in

particular only with the temporal component of the Minkowski metric. Therefore we can

choose to include a scale factor component in the spatial directions. This means that we

have essentially the ’old’ model of tachyon inflation [80], but with a rolling Geometrical

Tachyon. As argued by Sen, this should generate a gravitational field on the brane and

therefore a coupling to Einstein gravity. We can then compactify this solution down on

a six-dimensional manifold and investigate the four dimensional cosmology. Of course the

problem now is that there are α′ corrections to the DBI action, which could become large

near the tachyon vacuum. The final approach would be to perform a direct compactification
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of the fullNS5-brane background down to four dimensions [25]. In order to do this we would

first need to truncate the background to ensure the space is compact. In our case the ring

can naturally impose a cut-off in the planar direction, however we must still impose some

constraint in the transverse direction to the ring plane. Our solution simplifies somewhat

if we can consider the R → 0 limit, or equivalently the σ ≫ 1 limit, as the background

will appear point like. Smoothly gluing the truncated space to a proper compact manifold

will now automatically include an Einstein-Hilbert term in the effective action. However,

although we now have a natural coupling to gravity, the compactification itself is far from

trivial as we also need to wrap two of the world-volume directions of the NS5-branes on

a compact cycle. In order to proceed we must first uplift the full solution to M-theory 3,

where we now have a ring of M5-branes magnetically charged under the three-form C(3).

Compactification demands that the magnetic directions of the three-form are wrapped on

toroidal cycles, which is further complicated by the ring geometry and will generally result

in large corrections to the potential once reduced down to four-dimensions. So although

we have a natural gravitational coupling we may have large corrections to the theory. The

complete description of this compactification is interesting, but well beyond the scope of

this work and should be tackled as a future problem. However we could also assume a large

volume toroidal compactification, where again all the relevant moduli have been stabilised.

Provided we introduce some ’sink’ for the five-brane charge, located at the some distant

point in the compact space, and also only concentrate on the region close to the branes so

that the harmonic function remains valid we will have an induced gravitational coupling in

the low energy theory. The corrections to the scalar potential in this region of moduli space

may well be sub-leading with respect to the scalar field dynamics and thus we can treat our

model as the leading order solution.

The approach we have in mind in this chapter is the second option, which treats the

Geometrical Tachyon as being the fundamental object of interest. In fact we know that this

object can be related to the open string tachyon through the S-type tachyon and therefore

may be more than just a mathematical construct. We will assume that the theory is com-

pactified on a six-torus T 6 for simplicity. Obviously this could be generalised to manifolds

with SU(3) structure4, which could lead to a more phenomenologically realistic model. But

this is left for future endeavour. However since the original picture of a brane moving in the

ring background is intuitive, we will often make reference to the ring background in order

to clarify the physics of the tachyon condensation.

Upon compactification on a T 6, we find that we can write the four-dimensional Planck

3This was discussed by Ghodsi in [21]. We refer the interested reader there for more details.

4See Grana [108] for example.
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mass in terms of the string scale via the following relationship [80]

M2
p =

vM2
s

g2
s

, (4.15)

where Ms = l−1
s is the fundamental string scale and the quantity v is given by

v =
(Msr)

d

π
, (4.16)

with r, d being the radius and number of compactified dimensions respectively (we will be

using d = 6 in this chapter), and v being the volume of the torus. In a realistic toroidal

compactification we must also stabilise the moduli of the torii so that v >> 1, in order

to trust our effective action. We will assume that this can be done without altering the

tachyon solution, although it would be useful to perform this explicitly.

The evolution of the universe is effectively determined by the Raychaudhuri equation

which shows that inflation will cease when Ṫ 2 = 2/3 and the universe will then decelerate

as the tachyon velocity increases. Upon variation of the action, we find the equation of

motion for the tachyon field can be written

V (T )T̈

1 − Ṫ 2
+ 3HV (T )Ṫ + V ′(T ) = 0, (4.17)

where a prime denotes differentiation with respect to T , and H is the Hubble parameter.

Note that in deriving this equation we must also use the conservation of entropy of the

tachyon fluid. We see that 3HV (T )Ṫ acts as a friction term, in much the same way as in

standard inflationary models, except that this term may vanish for the open string tachyon

as the field rolls to ±∞ where its potential vanishes. For a scalar field to be a candidate for

the inflaton field it must typically satisfy a set of slow roll parameters, as well as providing

enough e-foldings during rolling. In contrast to the open string tachyon, our Geometrical

Tachyon has a cosine potential and therefore, with appropriate tuning, can be flat near the

origin. This should allow for sufficient inflation before velocity effects become important. In

this analysis we use the conventions employed in the earliest papers in [80] to parameterise

the slow roll parameters in the Hamilton-Jacobi formalism

ǫ(T ) =
2

3

(

H ′(T )

H2(T )

)2

η(T ) =
1

3

(

H ′′(T )

H3(T )

)

. (4.18)

Where we assume that the acceleration (and also the velocity) is negligible. By definition

inflation ends when the slow roll parameters become unity. The number of e-folds produced
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between To and Te is given by the standard expression

N(To, Te) =

∫ Te

To

dT
H

Ṫ
, (4.19)

which must satisfy N ∼ 60 to agree with observational data. To is the value of the field N

e-folds before the end of inflation, whilst Te is the value of the field at the end of inflation.

We first consider the Geometrical Tachyon starting very close to the top of its potential

with a small initial velocity to ensure that it will roll. Note that if T = 0 then spontaneous

symmetry breaking will cause the universe to fragment into small domains which will each

have differing values of the tachyon field. As usual in tachyon cosmology, inflation can occur

only if H2 >> |M2
T | near the top of the potential5, which translates into the constraint

T3R

3M2
p

>>
1

√

kl2s
. (4.20)

Where T3 is the tension of a stable D3-brane. Since we are considering the large k limit,

the RHS is very small and so we find that this condition is satisfied 6. Furthermore this

also suggests that the effective theory for the Geometrical Tachyon is valid because we can

clearly see that

(kl2s)
1/2 >> H−1, (4.21)

and so the de-Sitter horizon may be larger than the string length for large k. This is in

contrast to the open string scenario where we find that the horizon is smaller than the string

length, and thus should not be described by an effective theory.

At this stage we must try and get a handle on the size of gs which is the asymptotic

string coupling constant. This is important since this is what rules out most models of

tachyon inflation. Typically we find that in order to satisfy H2 >> |M2
T | at the top of the

potential, we are forced to tune [80]

gs >> 260v. (4.22)

However the effective field theory is only valid when v >> 1, which implies gs is extremely

large and well outside the realm of perturbation theory. Additionally we see that because

the tension of the brane goes like 1/gs this constraint on the coupling implies our effective

action is breaking down leading to brane fragmentation. By contrast a similar calculation

for the Geometrical Tachyon implies

gs >>
24π3v√
kRMs

≈ 744
v√

kRMs

, (4.23)

5In our case this means that the Hubble scale could also be small.

6In the finite k case we will have to be careful to ensure that this constraint is fulfilled.

154



4.2. GEOMETRICAL TACHYON INFLATION.

thus by fixing appropriate values for k and R we may ensure that v >> 1 and also that

gs << 1. Earlier we introduced the throat approximation
√
kls >> R, which means that√

kRMs << k. Thus in fact it is large values for k that will essentially allow a satisfactory

solution to (4.23). For example, assuming v = 10 a value of k ≈ 105 would allow for pertur-

bative gs to solve (4.23). Relaxing the throat approximation may allow much smaller values

of k. This is interesting because we see that the weak coupling arises naturally because of

the choice of the background parameters, whereas the reason for the weak coupling of the

inflaton in standard field theory is unknown.

Despite this apparent success we may be concerned that the effective theory may still

not be a valid description at the top of the potential. In order to check this we should

compare the effective tension of the unstable brane to the Planck scale. After some algebra,

and using the equation for weak coupling we find

T u
3

M4
p

∼ 3

k2

(

24π3

RMs

)2

v. (4.24)

Again we see that for a certain range of background parameters (and assuming RMs >> 1),

the effective tension need not be Super-Planckian and therefore the DBI can still be a good

approximation to 4D gravity.

As there is an obvious similarity with the potential arising in Natural Inflation we could

demand that the height of the potential to be of the order of M4
GUT (where MGUT ∼ 1016

GeV) in order to generate inflation, however we will try to keep this scale arbitrary for the

moment. Using the potential we immediately see that the slow roll conditions become

ǫ =
M2

p

2T3R
√

kl2s

tan2(T/
√

kl2s)

cos(T/
√

kl2s)

η =
−M2

p

4T3R
√

kl2s

(

1 + cos2(T/
√

kl2s)
)

cos3(T/
√

kl2s)
. (4.25)

Slow roll will only be a valid approximation when the tachyon is near the top of its potential

and thus we should Taylor expand the trig functions to determine the analytic behaviour.

In fact for small T we see that ǫ is already extremely small. Dropping the numerical factors

gives us the primary constraint for slow roll;

M2
p << T u

3 R
√

kl2s , (4.26)

which must be satisfied by both equations. Given that the reduced Planck mass in string

theory is typically of the order of 2.4×1018 GeV, this means that k and R/ls must be large.

Generally we see that the slow roll conditions will be satisfied due to the mass scale of the

geometrical tachyon. In the open string models the larger mass implies that the tachyon

may only have been involved in some pre-inflationary phase. Of course, the analysis in both
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cases is classical and quantum corrections may well prove to be important is determining

the exact behaviour near the top of the potential.

We can estimate the number of e-foldings using (4.19), however this turns out to be

sensitive to the value of the tachyon velocity near the top of the potential. To remedy this

we use the equations of motion and the slow roll approximation, which allows us to re-write

this equation in terms of the potential and its derivative. In fact this is the method most

commonly used in standard inflationary analysis. After some algebra we obtain

Ne = −3

∫

dT
H2V (T )

V ′(T )
(4.27)

=
T3R

√

kl2s
M2

p

{

cos

(

Te
√

kl2s

)

− cos

(

To
√

kl2s

)

+ ln

(

tan(Te/2
√

kl2s)

tan(To/2
√

kl2s)

)}

Using the constraint from the slow-roll equations we see that the leading term must be

large. If we demand that To and Te are reasonably close, then the contribution from the

other terms will be small, and so the number of e-foldings will depend on the ratio

ν =
T3R

√

kl2s
M2

p

, (4.28)

where ν ≥ 60 in order for there to be enough inflation. However if we don’t impose this

restriction, but allow inflation to begin near the top of the potential and end near the

bottom, then there can be significant contribution to the number of e-foldings from the

additional terms. This has the effect of reducing the value of ν - however it must still

satisfy the slow roll constraint of being larger that unity 7. We can write the unstable brane

tension in terms of the string coupling, string mass scale and the parameter ν, thus we have

the height of the potential given by

M4
infl =

M2
pM

2
s ν

k
, (4.29)

which defines our effective inflation scale Minfl. The exact value of Ms depends on the

particular string model but it is usually assumed to lie in the range 1 Tev - 1016 GeV. So

as an example, if ν ∼ 60, Ms ∼ 1016 GeV and k ∼ 105 we find Minfl ∼ 1016 GeV.

Numerical Analysis.

We can also check the consistency of our analytic solutions by numerically solving for the

Hubble parameter. We choose to employ the Hamilton-Jacobi formalism [76], where the

Hubble equation is written as a function of T rather than time (since the tachyon field is

monotonic with respect to time), and then using the Friedmann equation we obtain the

7See Fairbairn and Tytgat in [80]for a more detailed inflationary analysis of the model presented here.
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following first order differential equation

H ′2(T ) − 9

4
H4(T ) +

1

4M4
p

V (T )2 = 0, (4.30)

where a prime denotes differentiation with respect to T . Solving this for the Hubble term

gives us a constraint on the velocity of the tachyon field

Ṫ 2 = 1 −
(

V (T )

3M2
pH(T )2

)2

. (4.31)

It will be convenient to work with dimensionless variables in our numerical analysis, so we

define the dimensionless tachyon field and Hubble parameter as follows,

y =
T

√

kl2s
, h(y) =

√

kl2sH(y). (4.32)

We can solve (4.30) to obtain h(y) and then substitute this into (4.31) to determine the

velocity of the tachyon field. We choose the initial velocity of the field to be zero, and the

initial value of T0 to be very small - but non-zero. As in Fairbairn [80] the general behaviour

is dependent upon the dimensionless ratio X0, where X2
0 = ν. Some results are plotted in

Figure 4.1. We find that the velocity (strictly speaking this is the square of the velocity) of

the tachyon field is very small over a large range, only becoming large as it nears the bottom

of the potential. In inflationary terms this implies that universe will be inflating for almost

the entire duration of the rolling of the field. For increasing values of X0, inflation ends at

larger values of T . However even for the case of X0 = 2, which barely satisfies the slow

roll constraints, we expect inflation to end reasonably close to the bottom of the potential.

We can also make a numerical check on the smallness of the slow roll parameters ǫ, η (see

Figure 4.1: Velocity of tachyon field for differing values of X0, with an initial velocity of
zero.

Figs 4.2 and 4.3). Using our numerical solution for h we can also determine the amount
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Figure 4.2: Value of the slow-roll parameter ǫ for various values of X0

Figure 4.3: Value of the slow-roll parameter |η| for various values of X0

of e-foldings during inflation via (4.27). It turns out that in order to generate at least 60

e-foldings we only need to take ν ∼ 30

Finally we can also use numerical techniques to try and reconstruct the complete tachyon

potential by using the full form of the ring harmonic function as derived in [20] without

assuming the approximation that lead to the cosine potential (4.10). Recall that this ap-

proximation was that theNS5 branes were unresolvable as point sources arranged uniformly

around the ring. As our tachyon field rolls from near the top of the cosine potential down

towards the value T/
√
kls = π/2, the geometric picture of this process is that we start from

near the centre of the ring at ρ = 0 and move towards the ring located at ρ = R. As T/
√
kls

nears π/2, even for large k, the approximation of a continuous distribution of NS5 branes

around the ring will break down and individual sources will be resolvable. It is at this point

that we expect the true potential V (T ) to deviate from the cosine form. Fig 4.4 shows the

shape of the potential one obtains for the case k = 1000 by numerically implementing the
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Figure 4.4: Profile of the tachyon potential taking k = 1000. The solutions from each region
are matched onto each other at T = π/2 in dimensionless units.

tachyon map discussed earlier and using the exact form of the ring harmonic function. In

this plot we have chosen the angular variable θ that appears in the exact form of the har-

monic function to be fixed at π/2k for simplicity. Details of the harmonic function relevant

to fully resolvable NS5 branes are given in a later section. What is perhaps most apparent

about this potential is the existence of a minimum very close to the ring location. It also

turns out that our previous cosine potential is an excellent approximation to this numerical

plot for values of T to the left of the minimum. Later on we shall see how analytic methods

can be used to verify the existence of this minimum.

Perturbations.

Obtaining the minimal number of e-foldings tells us that inflation is possible, but we must

also examine the perturbations of the field near the end of inflation [76]. The perturba-

tions are directly relevant for observation, and are therefore highly constrained. One of the

generic difficulties associated with open-string tachyonic inflation is the fact that the tension

of the D3-brane must be significantly larger than the Planck mass. This indicates that the

effective action cannot adequately describe 4D gravity, as it will have metric fluctuations

that are always too large. This is not necessarily the case for our Geometrical Tachyon,

as we seen there are additional scales in the theory which can reduce the overall effect of

these fluctuations. There are two main perturbations to consider, the scalar, and the grav-

itational (tensor) ones which we will denote by PT and PG respectively. (Strictly speaking,

P corresponds to the amplitude of the perturbation). Constraints from observational data
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imply the relation (at its absolute limit)8

|PT | + |PG | ≤ 10−5. (4.33)

During inflation gravitational waves are produced whose amplitude is given by the ratio

PG ∼ H
Mp

, but observational data of the anisotropy of the CMB [88] implies that at the end

of inflation
Hend

Mp
≤ 3.6 × 10−5, (4.34)

and we must ensure that this condition is consistently satisfied in order for us to consider

the Geometrical Tachyon as a viable inflaton candidate. In order to verify this we will first

consider the scalar perturbation and use the solution from that to determine our mass scales

for the tensor perturbations, as it is generally more important to see whether the tachyon

action allows for small tensor fluctuations. For simplicity we will assume that inflation ends

when the following constraint is satisfied

H ∼ |MT | ∼
Ms√
k
, (4.35)

and we will also assume that the tachyon velocity at this time is given by Ṫ =
√

2/3. The

scalar perturbations are determined in the usual manner using [76, 106]

|δρ
ρ
| ∼ H

δT

Ṫ
, (4.36)

where δT satisfies the following constraint near the top of the potential

δT ∼ H2

2π
√

V (T )
. (4.37)

Combining the last two equations we write the amplitude for the scalar perturbation as

PT ∼ H2

2πṪ
√

V (T )
≤ 10−5. (4.38)

(We should actually calculate the values of H and Ṫ during inflation in order to determine

the ratio of the perturbations, however since we expect T to be a slowly varying field (4.38)

should remain constant over a large range of wavelengths.) If we assume that T is small

then the cosine part of the potential is close to unity, and upon substitution of the Hubble

term we find

PT ∼ Ms

Mp

√

3

8π2kν
≤ 10−5, (4.39)

8Note that these are very old normalisations, and the current WMAP normalisation [91] is far more
stringent than the one implied here.
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We can use this to determine a constraint upon the string scale/Planck scale ratio as follows

Ms

Mp
≤
√

8π2kν

3
× 10−5. (4.40)

As an example, for k ∼ 103 and ν ∼ 28 (4.40) implies Ms ≤ 1016GeV . However as we

noted, the most current observational limit restricts the scalar mode to be less than 10−9

and so we would expect the string scale to be significantly smaller as a result.

Solving the equation for the tensor perturbation leaves us with

PG ∼ H

Mp
∼ Ms

Mp

√
k
≤ 3.6 × 10−5 (4.41)

which is explicitly dependent upon this ratio. We can establish the absolute upper bound

on the perturbation using (4.40)

PG ≤ 2π × 10−5

√

2ν

3
. (4.42)

If ν is O(30) then this implies the maximum perturbation will be of the order of 10−4 which

is slightly too large. However in general we may expect that the metric perturbations will

be acceptably small by assuming a smaller string scale than the one that saturates (4.40)

for given k. This is encouraging since the open string tachyon always admits large metric

fluctuations, and therefore cannot be responsible for the last 60 e-foldings of inflation. In

our case these fluctuations can be suppressed when k is sufficiently large, and we can find

inflationary behaviour leading to the correct amount of structure formation. This was

confirmed in the work of [83], who performed a more detailed analysis.

Resolving the minimum.

Perhaps the most problematic aspect of tachyon inflation is the shape of the potential itself.

The open string tachyon potential is exponentially decaying at large field values with its

minimum at asymptotic infinity. Thus even if it were possible to satisfy all the inflationary

conditions, the lack of minimum makes this model difficult to reconcile with phenomenology

as there will be no reheating, in the classical sense of scalar field oscillation. Gravitational

reheating, although possible, is far too weak in these models to account for the particle

abundance we see today, although tachyonic pre-heating may still occur [81, 99]. It is also

certainly possible that the potential vanishes for finite T , leading to small oscillations about

a minimum which could provide a mechanism for reheating. The bottom line, however, is

that there is no simple mechanism for particle creation.

Our Geometrical Tachyon is no exception to these criticisms. Although the minimum

is not at infinity, the effective theory breaks down when the tachyon rolls to its maximum
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value and we are unable to proceed. In the 10D gravitational picture this is due to the

probe brane hitting the ring of smeared fivebranes. However even with the simple form of

the DBI action in this instance, we see that outside the ring the potential is approximately

exponential and it is suggestive that it smoothly maps onto the cosine at ρ = R. One

may well enquire what happens if we consider a case where the fivebranes are not smeared

around the ring, rather that they appear resolvable thus allowing a probe brane to pass

between them. In this case we would not expect the DBI action to break down allowing us

to find corrections to the truncated cosine potential and thus obtain a minimum. This is

exactly what we found following the numerical analysis presented earlier. Let us now see

how the existence of such a minimum can be seen analytically. In order to proceed, we refer

the reader back to the full harmonic function describing k branes at arbitrary points on the

circle, with the interbrane distance, x, given by

x =
2πR

k
. (4.43)

The full form of the function in the throat region is given by

H ∼ kl2s
2Rρ sinh(y)

sinh(ky)

(cosh(ky) − cos(kθ))
, (4.44)

where ρ, θ parameterize the coordinates in the ring plane, and the factor y is given by

cosh(y) =
R2 + ρ2

2Rρ
. (4.45)

We clearly see that as k → ∞ we recover the expression for the smeared harmonic function

which we used in the previous sections to derive the tachyon potential. Furthermore we see

that when ρ = R the function reduces to

H ∼ k2l2s
2R2

1

(1 − cos(kθ))
(4.46)

which is clearly finite provided that θ 6= 2nπ/k, which are the locations of the NS5 branes.

In order to look for a minima we must expand about the point ρ = R using ρ = R+ξ, where

ξ is a small parameter which can be positive or negative. Using the expansion properties of

hyperbolic functions we power expand the harmonic function for an arbitrary fixed angle

θ, and we find to leading order

H ∼ k2l2s
2R2

1

1 − cos(kθ)

(

1 −
∣

∣

∣

∣

ξ

R

∣

∣

∣

∣

+

(

5

6
− k2 2 + cos(kθ)

6(1 − cos(kθ))

)

ξ2

R2
+ . . .

)

, (4.47)

where we have used the fact that kξ << R and have neglected any higher order correction

terms. Note that the inter brane distance is given by 2πR/k and so our expansion will only

be valid for distances much smaller than the brane separation. Of course we must be careful

not to take k to be too small since our effective action for the Geometrical Tachyon will be
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invalid. We can clearly see that if the trajectory is at an angle θ = (2n + 1)π/2k, then the

harmonic function will reduce to the form (again to leading order in large k)

H ∼ k2l2s
2R2

(

1 − k2ξ2

3R2
+ . . .

)

. (4.48)

We now perform the tachyon map to determine the value of the tachyon as a function of ξ.

Note that we expect this field to now have positive mass squared, since the potential has a

minimum. Up to constants we find that

T (ξ) ∼
√

k2l2s
2(1 − cos(kθ))

(

ξ

R
− ξ2

2R2
+ . . .

)

(4.49)

If we assume that the ξ2 term is negligible then we can invert our solution and calculate the

perturbed tachyon potential. Note that keeping higher order terms here does not lead to

a simple analytic solution, and so we would hope that a numerical analysis would be more

appropriate. After much manipulation we find

V (T ) ∼ T3

kls

(

2R2(1 − cos(kθ))
)1/2

[1 +
T

2kls

√

2(1 − cos(kθ)) +

T 2

(

2 + cos(kθ)

6l2s
− (1 − cos(kθ) )

12k2l2s

)

+ . . .] (4.50)

which shows that the potential is approximately linear around the minimum as it inter-

polates between the cosine and the exponential functions, however this linear term is sup-

pressed by a factor of 1/k and we would expect it be negligible in the large k limit, thus

we can see that there is an approximately quadratic minimum. We see that the minimum

of the potential in the tachyonic direction will be

V (T (ξ = 0)) =
T3R

kls

√

2(1 − cos(kθ)) (4.51)

which can obviously be made small in the large k limit, and will clearly go to zero when

the D3-brane trajectory is such that it hits one of the NS5-branes. The local maximum

will occur at the bisection angle θ = π/k, which we suspect will be an unstable point. All

this fits nicely with our earlier numerical analysis. Recall that Figure 4.4 showed the result

of numerical methods used to plot the potential using the exact form of the ring harmonic

function. Numerical solutions to the tachyon map inside and outside the ring were matched

together to obtain this plot. The minimum can be seen to be quadratic for small distances

before mapping onto an exponential function outside the ring as expected from the work in

Chapter two. This is because the numerical analysis includes all the higher order correction

terms, which produces a curved potential at the minimum.

The condensing tachyon field may oscillate about the minimum of this potential, as-

suming that the energy of the tachyon is such that it will not overshoot and return back
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up the potential toward T = 0. This assumption seems to be valid because as we have just

seen the potential no longer has to vanish at ρ = R, so the friction term in (4.17) will not

vanish as the tachyon condenses. However in order for reheating to occur we must ensure

that this term sufficiently damps the motion, confining the field to very small oscillations

about this minimum.

From standard inflationary models we know that the oscillations about the minimum

can be thought of as being a condensate of zero momentum particles of (mass)2 = V′′(T)

[76]. The decay of the oscillations leads to the creation of new fields coupled to the tachyon

condensate via the reheating mechanism [99]. The temperature of this reheating can be

approximated as the difference between the maximum and minimum of the potential, and

so we find

T 4
RH ∼M4

infl

(

1 − 1√
k

√

2(1 − cos(kθ))

)

(4.52)

and so if we assume that the conversion of the tachyon energy is almost perfectly efficient

then we will have an upper bound for the reheating temperature given by the effective

inflation scale Minfl.

We must now consider the more general case where we perturb θ away from its bisection

value of π/k. Since we are assuming that the NS5-branes are somehow resolvable we must

also be aware that a single brane does not form an infinite throat. As such a passing probe

brane will feel the gravitational effect of the fivebranes, but because we expect it to be

moving relativistically we expect that its trajectory will only suffer a slight deflection. In

this instance the perturbed harmonic function at ρ = R reduces to

H ∼ k2l2s
2R2

1

(1 + cos(kδ))
, (4.53)

where δ represents the angular perturbation. Now, we know that the harmonic function be-

comes singular when our probe brane hits a fivebrane so the function needs to be minimized

to ensure a stable trajectory, This is clearly accomplished by sending δ → 0. So the value

π/k corresponds to an unstable maximum from the viewpoint of the tachyon potential. Of

course, we could also see this directly from (4.51) by considering perturbations about the

bisection angle. For small angular deflection we may write

H ∼ k2l2s
4R2

(

1 +
k2δ2

4
+ . . .

)

, (4.54)

and so we see that provided kδ << 1 the trajectory of the probe will be relatively unaffected

by the presence of the fivebranes and therefore we may expect that it will pass between

them. On the other hand, for larger values of kδ, this will not be true and the probe

brane may be pulled into the fivebranes. In any case we expect that the analysis of the

Geometrical Tachyon will be invalid in this instance.

The analysis will also be true for a D3-brane in a ring D5-brane background, the only
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difference will be to replace

kl2s → 2gskl
2
s , (4.55)

where gs is the string coupling and we again consider k branes on the ring. The overall

effect of switching to the D5-brane background is to allow for a weaker coupling at the top

of the potential. In fact the analogue of (4.23) in this picture becomes

gs >>

(

24π3v

R
√

2kMs

)2/3

(4.56)

The situation is made slightly more complicated due to the presence of background RR

charge, but this can be neglected when the tachyon is purely time dependent. Thus we

would expect similar results to those obtained in the last two sections. Of course, we should

remember that fundamental strings can end on the D5-branes and consequently there can

be additional open string tachyons in the theory thus complicating the analysis. We will

see a similar situation in a later section.

4.2.2 Cosmology in the plane transverse to the ring

Let us now consider the cosmology when the probe brane lies in the centre of the ring but

is shifted a little from the plane. In this case the probe brane will exhibit transverse motion

through the ring.

Recall that the tachyon map gave us the following solutions for the field and potential

T (σ) =

∫ σ

0

√

H(σ′)dσ′

=
√

kl2sarcsinh
( σ

R

)

V (T ) =
T3R
√

kl2s
cosh

(

T
√

kl2s

)

. (4.57)

Clearly we see that T → ±∞ as σ → ±∞, and that T = 0 at the minimum of the potential
9. The shape of the potential suggests that the field is massive, with (mass)2 given by

1/kl2s . However we will still refer to this as a Geometrical Tachyon in order to make its

origins clear, One may ask if there is a known string mode exhibiting this profile. In fact

the fluctuations of a massive scalar were computed in [82] using a similar approach to the

construction of the open string tachyon mode in boundary conformal field theory. This

field was then used in as a candidate for the inflaton living on a D̄3-brane in the KKLT

scenario [108]. The potential for the scalar is known to fourth order and was assumed to

be exponential in profile.

9We must bear in mind that our approximation of the harmonic function prevents us from taking the
σ → ∞ limit.
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We can now analyse our four dimensional minimally coupled action, where we find the

same solutions to the Einstein equations as we did for the radial mode. We can now proceed

with the analysis of our theory as in the previous section. It must be noted that this model

corresponds to large field inflation, where the initial value of the scalar field must satisfy

the following constraint

T0 ≪
√

kl2sarccosh

(

√

kl2s
R

)

, (4.58)

according to our truncation of the harmonic function. Using the slow-roll approximation,

H2 ≃ V (T )/3M2
p and 3HṪ ≃ −V ′/V , the e-folding expression becomes

N =
T3R

√

kl2s
M2

p

∫ x(T )

x(Tf )

cosh2 x

sinhx
dx

= s

[

− cosh(xf ) + cosh(x) − ln

(

tanh(xf/2)

tanh(x/2)

)]

. (4.59)

Where we have introduced the dimensionless quantities x = T/
√

kl2s and s = T3R
√

kl2s/M
2
p

for simplicity. Further defining the new quantity y ≡ cosh x, we can write the number of

e-folds as follows:

N = s

[

−yf + y − 1

2
ln

(

(yf − 1)(y + 1)

(yf + 1)(y − 1)

)]

(4.60)

Now the relevant slow-roll parameter is more generally defined to be ǫ ≡ −Ḣ/H, which for

our solution gives us

ǫ =
(y2 − 1)

2sy3
. (4.61)

Note that our model is explicitly non-supersymmetric and therefore we don’t need to calcu-

late the second slow roll parameter η since we anticipate that this will be trivially satisfied

provided that ǫ is.

At the end of inflation ǫ = 1, then yf ≡ f(s) is given by the root of above equation,

setting ǫ = 1

f(s) =
1

6s

[

g(s) +
1

g(s)
+ 1

]

(4.62)

where we have defined g(s) =
(

−54s2 + 1 + 6s
√

3(27s2 − 1)
)1/3

for simplicity. From (4.60)

the equation for y can be seen to satisfy

ln

(

y + 1

y − 1

)

− 2y = −2N

s
− 2f(s) − ln

(

f(s) − 1

f(s) + 1

)

Clearly for s > 1 and as ymin = 1, ǫ always remains less than one leading to an ever
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accelerating universe. Thus in this case the Geometrical scalar field in the present setting

is not suitable to describe inflation but could become a possible candidate for dark energy.

However if T3 is small enough so that s < 1, then we will find that inflation is possible as

the slow roll parameter will naturally tend toward unity. In fact there is a critical bound

s ≤ 1/(3
√

3), which must be satisfied if we are to consider inflation in this context. In the

context of the large k approximation, this constraint can be satisfied by again assuming a

small string scale.

Inflationary Constraints.

To know the observational constraint on s we have to calculate the density perturbations.

In the slow-roll approximation, the power spectrum of curvature perturbation is effectively

given by [106]:

PS =
1

12π2M6
p

(

V 2

VT

)2

=
T 2

3R
2

12π2M6
p

(

cosh2(T/
√

kl2s)

sinh(T/
√

kl2s)

)2

(4.63)

We will use the more stringent bound that PS ≃ 2× 10−9 for modes which crossed N = 60

e-foldings before the end of inflation [88–91], which gives the following constraint:

k(lsMp)
2 ≃ 109

12π2

s2 cosh4(T/
√

kl2s)

cosh2(T/
√

kl2s) − 1
(4.64)

From the numerics using (4.63), we find that

k(lsMp)
2 ≥ 3 × 1010 (4.65)

which corresponds to a specified value of s ∼ 10−3 when we impose the constraints T3 =

10−10M4
p and R = 102/Mp which we regard as being typical values. The constraint on the

tension in fact implies the following relationship

Mp

Ms
∼ 102

g
1/4
s

, (4.66)

which we need to be consistently satisfied. However note that because of our basic assump-

tions about the theory, we will generally obtain the bound

T3R

M3
p

≤ 1

9 × 105
. (4.67)

If we write the tension of the brane in terms of fundamental parameters we can estimate the

relationship between the string and Planck scales using the fact that we require R > M−1
s
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for the action to be valid
Mp

Ms
≥ 15

g
1/4
s

, (4.68)

where gs is the string coupling constant. Note that a smaller string scale allows this con-

straint to be satisfied for a larger range of string couplings.

If we carefully consider the limiting case where s is small, making sure our effective

action remains valid, then we may write

k(lsM
2
p )2 ≃ 109

48π2
(2N + 1)2 (4.69)

which corresponds to s ∼ 10−5(2N+1) and y ∼ (2N+1)
2s , when we choose T3 = 10−10M4

p and

R = 102/Mp. More generally, however, we find the following upper limit on the solution

s ≤ 10−3(2N + 1), (4.70)

which is easily satisfied by our typical values. Having shown that the scalar amplitude can

be normalised to the data, we must check that the spectral index of the amplitude is also

satisfied 10. The scalar index can be defined as follows [76, 106]

nS − 1 ≡ −4
M2

pV
2
T

V 3
+ 2

M2
pVTT

V 2

=
2

s

(

2 − y2

y3

)

(4.71)

Whilst the spectral index for the tensor perturbations is defined as:

nT = −
M2

pVT

V 3

= −1

s

(

y2 − 1

y3

)

(4.72)

And the tensor-to-scalar ratio is:

r ≡ 8
M2

pV
2
T

V 3

=
8

s

(

y2 − 1

y3

)

(4.73)

With the asymptotic limit of s→ 0 we find

nS = 1 − 4
(2N+1) , nT = − 2

(2N+1) , r = 16
(2N+1) (4.74)

For N = 60 we get nS = 0.96694 and r = 0.13223; for N = 50, we get nS = 0.96040 and

10See Appendix for a more detailed description.
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r = 0.15842. We know from observations that the constraint on the tensor-to-scalar ratio is

r < 0.24 at the 95% confidence level, and so our model appears to be well within this bound

[88–91]. Moreover the scalar spectral index is localised around ns ∼ 0.96, putting it at the

lower range when we consider the WMAP three-year data set. However our assumptions

here have relied heavily on the fact that s is small. In general this will not be the case, and

so we will find an ever accelerating universe. We turn to this now, as it may correspond to

a model for dark energy.

Dark energy

What are the implications of our model for dark energy [77, 90]? It is well known that the

non-linear form of the DBI action admits an unusual equation of state, which is of the form

ω =
P

ρ
(4.75)

= Ṫ 2 − 1

where P and ρ are the pressure and energy densities respectively. In tachyon models the

field is moving relativistically near the vacuum and the equation of state will tend to ω ∼
0, which is problematic for reheating. However our model has significantly different late

time behaviour because our scalar field will oscillate about the minimum of its potential,

eventually coming to a halt at the minimum. This assumption is based upon the fact that

in the ten dimensional picture we know that the probe brane carries RR charge, which will

be radiated during its oscillatory cycle. The explicit analysis of this emission remains to

be calculated, however we expect that the corresponding Geometrical Tachyon behaviour

would be that of a damped harmonic oscillator Therefore we expect the equation of state to

become ω ∼ −1, corresponding to the vacuum energy of the universe. This motivates us to

analyse our system as a potential candidate for dark energy. The corresponding evolution

equations of interest are:

T̈

1 − Ṫ 2
+ 3HṪ +

VT

V
= 0

Ḣ +
V (T )Ṫ 2

2M2
p

√

1 − Ṫ 2
+
γρB

2M2
p

= 0 (4.76)

where we have included the contribution from a barotropic fluid in the second equation

[80, 82]. Defining the following dimensionless quantities:

Y1 =
T

√

kl2s

Y2 = Ṫ , (4.77)
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and combining the last two sets of equations we find the following

Y ′
1 =

1
√

kl2sH
Y2

Y ′
2 = −

(

1 − Y 2
2

)

(

3Y2 +
1

H

dY3

dY1

)

(4.78)

Where we have switched to using the number of e-folds as the time parameter, and now

primes denote derivatives with respect to N . The final expressions we require can be read

off as follows

Y3 = ln

(

V (T )

3M2
p

)

H2 =
eY3

√

1 − Y 2
2

+
ρB

3M2
p

. (4.79)

Simple analysis shows us that critical points are at Y1 = 0 and Y2 = 0 which is a global

attractor as can be seen in Fig 4.5. This agrees with our physical intuition since it implies

the probe brane will slow down, eventually coming to rest at the origin of the transverse

space. In terms of our critical ratios we find

ΩT =
eY3

eY3 + ρB

3M2
p

√

1 − Y 2
2

ΩB =
ρB

3M2
p eY3√

1−Y 2
2

+ ρB

(4.80)

Note that they are constrained by ΩT + ΩB = 1. We also have ΩB = ΩM + ΩR, where

M and R denote matter and radiation respectively. From the plots in Fig 4.6 we see that

the ΩT goes to 0.7, ΩM goes to 0.3 and ΩR goes to 0 in the present epoch.

We see that at late times, the field settles at the potential minimum leading to de-Sitter

solution with energy scale V0 = T3R/
√

kl2s . Using the numerical data from the preceding

sections we can write this an upper bound on the energy density as follows

V0 ≤ 10−12M4
p . (4.81)

Although this is several orders of magnitude higher than the observed value [90], we note

that this value is heavily dependent on the scales in the theory, and with appropriate tuning

could be substantially smaller. Since there exists no realistic scaling solution (which could

mimic matter/radiation), the model also requires fine tuning of the initial value of the field.

It should remain sub-dominant for most of the cosmic evolution and become comparable

to the background at late times. It would then evolve to dominate the background energy

density ultimately settling down in the de-Sitter phase.
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Figure 4.5: Plot of the phase space solution for the Geometrical Tachyon (here denoted
φ) with a variety of initial conditions. Here we see the presence of global attractor at
(φ = 0, φ̇ = 0)

However recall from the bulk picture that the point σ = 0, ρ = 0 will be gravitationally

unstable and the probe brane will eventually be attracted toward the ring. In terms of

our cosmological theory we see that this de-Sitter point will actually be only metastable

and that a tachyonic field will eventually condense forcing the vacuum energy down toward

zero. This suggests that the vacuum energy will not be constant, but will be slowly varying.

Furthermore our equation of state should be modified to incorporate the dynamics of this

additional field. It is trivial to see that the inflationary phase will terminate and give way

to a dark energy phase where ω ∼ −1. Once the tachyon field starts to roll, ω will increase

toward zero from below giving rise to a phase of quintessence. Eventually we will begin to

probe the strong coupling regime and our effective action will break down unless we can

fine tune the trajectory of the probe brane.

Let us return to the geometric picture to understand this in more detail. We introduce

a complex field ξ = ρ + iσ which can actually be globally defined in the target space.

The harmonic function factorises in this coordinate system into holomorphic and anti-

holomorphic parts F (ξ, ξ̄) = f(ξ)f(ξ̄). Thus the tachyon map will also split accordingly

∂tT = f(ξ)∂tξ, ∂tT̄ = f(ξ̄)∂tξ̄. (4.82)

These expressions are exactly solvable provided we continue them into the complex plane.

If we now re-construct the potential for these fields in terms of our holographic theory we
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Figure 4.6: Here we have taken ρ0
m = 4.58 × 106, ρ0

R = 1010 and V0 = 10−6. The dark line
is for ΩR, dotted line is for Ωφ and light line is for Ωm

obtain the general solution

V (T, T̄ ) =
RT3
√

kl2s

[

cos

(

T
√

kl2s

)

cos

(

T̄

kl2s

)

]1/2

. (4.83)

Clearly when T is real we recover our cosine potential, whilst if it is purely imaginary we

recover the cosh solution. These correspond to motion inside the ring and motion transverse

to the ring respectively. The tachyonic instability forces the field from the false vacuum

state toward the true ground state. Therefore we expect the general dark energy potential

to be

V (T, T̄ ) ∼ RT3
√

kl2s
cos

(

T
√

kl2s

)

, (4.84)

and so the true minimum will occur when V ∼ 0 at T = ±π
√

kl2s/2 corresponding to the

location of the ring in the bulk picture. The cosmological dynamics in this particular phase

are well described by the results presented earlier (and also in [83]), where it was shown to

be possible for the true vacuum to be non-zero, provided the trajectory of the probe brane

is sufficiently fine tuned.

We finally comment on the instability for the field fluctuations for a potential with a

minimum. In a flat FRW background each Fourier mode of T satisfies the following equation

[80]

δT̈k̃

1 − Ṫ 2
+

[

3H +
2Ṫ T̈

(1 − Ṫ 2)2

]

δṪk̃

+
[ k̃2

a2
+ (lnV )T,T

]

δTk̃ = 0 (4.85)
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Where k̃ is the comoving wavenumber. We can now compute the second derivatives of the

potential and obtain

(lnV )T,T =
1

kl2s

(

1 − tanh

[

T
√

kl2s

])

. (4.86)

Here we see that (lnV )T,T is never divergent for any value of T , and is always non-negative i.e

that (ln V )T,T ∈ [0, 1]. Thus we do not have any instability associated with the perturbation

δφk with our potential. This is to be contrasted with the result obtained for the open string

tachyon, which undergoes rapid fluctuations and instabilities during its evolution.

4.3 D3-brane dynamics in the D5-brane background

Using the fact that the NS5-brane is S-dual to the D5-brane, we could also consider infla-

tionary solutions emerging in D5-brane backgrounds using the Geometrical Tachyon. We

would anticipate that this gives rise to hybrid inflation because the fundamental strings

stretched between the two different branes will become tachyonic at very late times. There-

fore at early times we can treat this mode as being the inflaton, and inflation will end once

this mode becomes tachyonic.

For simplicity we will consider the background to be generated by a stack of coincident

and static D5-branes, rather than the D5-ring solution. The important difference between

this solution and the NS5-brane solution is that there exists a non-zero RR charge, and that

the solution is weakly coupled when we are deep in the throat geometry. The background

fields, namely the metric, the dilaton φ and the RR field C(6) for a system of k coincident

D5-branes are given by [10, 11, 23]

gαβ = F−1/2ηµν , gmn = F 1/2δmn,

e2φ = F−1 = C0...5, F = 1 +
kgsl

2
s

r2
, (4.87)

where µ, ν = 0, .., 5; m,n = 6, ..., 9 denote the indices for the world volume and the trans-

verse directions respectively and F is now the harmonic function describing the position of

the k D5-branes and satisfying the Green function equation in the transverse four dimen-

sional space with SO(4) symmetry.

The DBI action for the D3-brane in this background can be written as

S0 = −T3

∫

d4ξF−1/2
√

1 + F∂αR∂αR , (4.88)

where T3 is again the tension of the 3-brane. Here the motion of the probe brane is restricted

to be purely radial, denoted by the mode R, along the common four dimensional transverse

space. We now map this action to that of a Geometrical Tachyon field, T , through the
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usual definition of the tachyon map

dT

dR
=
√

F (R) =
√

1 + L2/R2 , (4.89)

where

L ≡
√

kgsls .

In terms of this field the potential for such a Geometrical Tachyon is given by

V → T3
√

F (R)
=

T3
√

1 + L2/R2
. (4.90)

We have kept the full form of the harmonic function in order to show that this mapping is

exactly solvable. In fact using (4.89) we can solve for T (R) and find it to be a monotonically

increasing function:

T (R) =
√

L2 +R2 +
L

2
ln

(√
L2 +R2 − L√
L2 +R2 + L

)

(4.91)

This function is non-invertible but can be simplified by exploring limits of the field space

solution. As R→ 0 we have T (R) → −∞ with dependence

T (R→ 0) ≃ L ln

(

R

L

)

. (4.92)

Whilst as R→ ∞ we have T (R) → ∞with

T (R→ ∞) ≃ R . (4.93)

The effective potential in these two asymptotic regions is given by:

V (T )

T3
≃ exp

(

T

L

)

for T → −∞ , (4.94)

≃ 1 − 1

2

L2

T 2
for T → +∞ .

Thus in the limit T → −∞, corresponding to R→ 0, one observes that the potential goes

to zero exponentially as shown in Fig 4.7. This is consistent with the late time behavior for

the open string tachyon potential in the rolling tachyon solutions and leads to exponential

decrease of the pressure at late times. At large distances the DBI action interpolates

smoothly between standard gravitational attraction among the probe and the background

branes and a “radion matter” phase when the probe brane is close to the five branes. The

transition between the two behaviors occurs at R ∼ L.

It is important to note that when the probe brane is within the distance R ∼ ls, the

above description in terms of the closed string background is inappropriate and the system
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Figure 4.7: The potential of the field T . The value T∗ = [
√

2 + ln (
√

2− 1)]L is determined
by the condition R = L. The potential of the region (i) is approximately given by V (T ) =
T3 exp(T/L), whereas V (T ) = T3(1 − L2/2T 2) in the region (ii).

should be studied using open strings stretched between the probe brane and the five branes.

To be more precise, when the probe brane comes to within a distance ls from the D5-branes,

a tachyon appears in the open string spectrum and in principle the dynamics of the system

will be governed by its condensation from that point on.

Thus the full dynamics can be divided into two regimes. When the distance R between

the D3-brane and the D5-branes is much smaller than L but larger than ls, we can de-

scribe the dynamics of the radial mode R(xµ) with the non-BPS DBI action [31] with an

exponentially decaying potential given by (4.94) (note that T is going toward −∞). On

the other hand when R is of the order of ls, the dynamics would be be governed by the

conventional Lagrangian describing the complex tachyonic scalar field χ present in the open

string stretched between the D3-brane and the k D5-branes. The potential for such open

string tachyon field has already been calculated and we will simply state its form without

comment. Thus the dynamics of χ is described by the canonical action:

S2 =

∫

d4x[−∂αχ∂
αχ∗ − U(χ, χ∗)] , (4.95)

where the potential, up to quartic order, is given by [84]:

U(χ, χ∗) =
1

4π4l4sgsk

[

π(k + 1)(χχ∗)2 − vχχ∗] . (4.96)

Note that χ and v are dimensionless quantities. Here v is a small parameter (v ≪ k)

corresponding to the volume of a two-torus. This arises as we are toroidally compactifying

the directions transverse to the D3-brane, but parallel to the D5-branes, in order to describe
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the dynamics of the open string tachyon.

When we compactify our Geometrical Tachyon solution, we will neglect any string wind-

ing modes arising from this torus. Furthermore it can be seen that our fully compactified

theory is actually not T 6 but the product space T 4 ×T 2, but for simplicity we shall assume

that the relevant radii are approximately equal [80].

Let us briefly recapitulate and consider the bulk dynamics in more detail. At distances

larger than the string length we know that the DBI action provides a good description of the

low energy physics for a probe brane in the background geometry. As mentioned already

several times, the probe brane is much lighter than the coincident D5-branes and so we can

neglect the back reaction upon the geometry. Furthermore the SUGRA solution indicates

that the string coupling tends to be zero as we probe smaller distances, providing a suitable

background for perturbative string theory and implying that we can trust our description

down to small distances without requiring a bound on the energy.

Because of the dimensionalities of the branes in the problem there is no coupling of

the D3-brane to the bulk RR six form. This is because the only possible Chern-Simons

interaction between the probe brane and the background can be through the self dual field

strength F̃ = dC̃(4). However this field strength must be the Hodge dual of the background

field strength - which is given here by F = dC(6) for D5-branes - clearly this inconsistency

implies that the coupling must vanish. For a more detailed explanation of the more general

case we refer the reader to [23], however the basic result for our purpose is that there is

only a non-zero interaction term when either the dimensionality of probe and background

branes are the same, or they add up to six.

The energy-momentum tensor density of the probe brane in the background can be

determined by variation of the DBI action

Tab =
T3√
F

(

F∂aR∂bR
√

1 + Fηcd∂cR∂dR
− ηab

√

1 + Fηcd∂cR∂dR

)

, (4.97)

where the roman indices are directions on the world-volume. Since we are only interested

in homogeneous scalar fields, we find that this expression simplifies to

T00 =
T3√

F
√

1 − FṘ2
,

Tij = −T3δij
√

1 − FṘ2

√
F

, (4.98)

where i, j are now the spatial directions on the D3-brane.

Using the energy conservation we can obtain the equation of motion for the probe brane

in our background and estimate its velocity. By imposing the initial condition that the
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velocity is zero at the point R = R0 we find that the expression for the velocity reduces to

Ṙ2 =
R2L2

(R2 + L2)2

(

1 − R2

R2
0

)

, (4.99)

which is obviously valid for R ≤ R0 and in fact as expected it vanishes identically at

R = R0. We typically would expect R0 to be extremely large. Note that in the two

asymptotic regions of small and large R the velocity is tending to zero. This is understood

because the throat geometry acts as a gravitational red-shift, giving rise to ”D-cceleration

phenomenon” [92]. It should be emphasised that the asymptotic limit R→ 0 is unphysical

because the DBI is not valid once we reach energies of the order of string mass Ms, and so

it is not strictly correct to say that the velocity goes to zero in the small R approximation.

However note that when R→ ls we have Ṙ2 ∼ l2s/L
2 = 1/kgs which is also negligibly small

for large k. From our perspective this implies that the kinetic energy of the scalar field

become sub-dominant at small distances. It is essentially frozen out and the dynamics of

the open string tachyonic modes come to dominate. Once the probe brane reaches distances

comparable with the string length our closed string description is no longer valid. Instead

we must switch over to an open string description of the tachyonic modes χ described by

the action.

It is worth pointing out that our discussion so far seems to suggest that the radionic

mode and the open string tachyonic mode which are being described by two different action

functionals have nothing in common, and can be described independent of each other. This

is not strictly true. Firstly the number of background branes have to be same. Secondly,

unlike the open string tachyon on the world volume of a non-BPS brane or a brane/anti-

brane pair, the dynamics of the tachyon on the open string connecting a BPS Dp-brane and

a BPS D(p+2)-brane is not described by a DBI type action. If this was the case, the above

two fields could have been combined together, keeping in mind their individual regimes of

validity.

However even in the present context we can combine the two actions by introducing

an interaction term like λT 2χ2, where the coupling λ will be zero for values of the field

T corresponding to R greater than ls. Provided that inflation ends for R > ls, this term

does not affect the dynamics of inflation and for simplicity we have ignored it in the action

functional. However such a term may play an important role in a possible reheating phase.

We can now proceed with our analysis of inflation using the full form of the harmonic

function - which specifies the scalar field potential in terms of the Geometrical Tachyon

field rather than the radion field.
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Inflation and observational constraints from CMB

Let us introduce the dimensionless quantity x ≡ R/L, the full potential (4.90) of the field

T can be written as

V =
xT3√
1 + x2

, (4.100)

where T̃ ≡ T/L is related to x via

T̃

x
=

√
1 + x2

x
=

1

Ṽ
, (4.101)

and Ṽ ≡ V/T3. For the action to be valid we require R to be larger than ls, which translates

into the condition x > 1/
√
kgs. In the flat FRW background, the field equations are once

again

H2 =
1

3M2
p

V (T )
√

1 − Ṫ 2
, (4.102)

T̈

1 − Ṫ 2
+ 3HṪ +

VT

V
= 0 ,

where VT ≡ dV/dT as usual. Combining both terms in (4.102) gives us the relation Ḣ/H2 =

−3Ṫ 2/2, and then the slow-roll parameter is given by

ǫ ≡ − Ḣ

H2
=

3

2
Ṫ 2 ≃ M2

p

2

V 2
T

V 3

=
1

2s

Ṽ 2
x

Ṽ
=

1

2s

1

x(1 + x2)5/2
, (4.103)

where the parameter s is defined by

s ≡ L2T3

M2
p

.

In deriving the slow-roll parameter we used the usual slow-roll approximations Ṫ 2 ≪ 1 and

|T̈ | ≪ 3H|Ṫ | in (4.102). Furthermore (4.103) shows that ǫ is a decreasing function as x

increases, thus ǫ increases as the field evolves from the large R region to the small R region,

marking the end of inflation at ǫ = 1.

The number of e-foldings from the end of inflation is given by

N ≡
∫ tf

t
Hdt ≃

∫ T

Tf

V 2

M2
pVT

dT

= s

∫ x

xf

(x2 + 1)3/2dx . (4.104)
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Which integrates to give

N = s[f(x) − f(xf )] , (4.105)

where we have defined

f(x) =
1

4
x(x2 + 1)3/2 +

3

8
x
√

x2 + 1

+
3

8
ln
∣

∣

∣
x+

√

x2 + 1
∣

∣

∣
. (4.106)

The function f(x) grows monotonically from f(0) = 0 to f(∞) = ∞ with the increase of x.

In principle we can obtain a sufficient amount of inflation to satisfy N > 60 if either s or x

is large.

In order to test the robustness of our model with observations we need to consider the

spectra of scalar and tensor perturbations that are generated during inflation [76, 106]. The

power spectrum of scalar metric perturbations in this case is given by

PS =
1

12π2M6
p

(

V 2

VT

)2

=
T 2

3L
2

12π2M6
p

(

Ṽ

Ṽx

)2

=
s2

12π2kgs(lsMp)2
x2(x2 + 1)2 . (4.107)

The COBE normalization [88–91] corresponds to PS = 2 × 10−9 around N = 60, which

gives the condition

kgs(lsMp)
2 =

109

24π2
s2x2

60(x
2
60 + 1)2 . (4.108)

where x60 is the value of x evaluated at N = 60. The spectral index of curvature perturba-

tions is given by

nS − 1 = −4
M2

pV
2
T

V 3
+ 2

M2
pVTT

V 2

= −2

s

1 + 3x2

x(1 + x2)5/2
, (4.109)

whereas the ratio of tensor to scalar perturbations is

r = 8
V 2

TM
2
p

V 3
=

8

s

1

x(x2 + 1)5/2
. (4.110)

We shall study the case in which the end of inflation corresponds to the region with an

exponential potential, i.e xf ≪ 1. When s = 1 we see that (4.103) shows that inflation ends

around xf ∼ 0.5. Hence the approximation xf ≪ 1 is valid when s is larger than of order
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Figure 4.8: The spectral index nS of scalar metric perturbations as a function of s with
three different number of e-foldings (N = 50, 60, 70). This figure corresponds to the case in
which inflation ends in the region xf ≪ 1.
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Figure 4.9: The tensor-to-scalar ratio r as a function of s with three different number of
e-foldings (N = 50, 60, 70).
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Figure 4.10: The quantity kgs(lsMp)
2 as a function of s. This is derived by the COBE

normalization at N = 60.

unity. In this case one has xf ≃ 1/2s from (4.103). Since f(x) ≃ x for x≪ 1, we find

f(x) =
1

s

(

N +
1

2

)

. (4.111)

Now in the regime of an exponential potential (x ≪ 1) we see that this becomes sx ≃
N + 1/2. and (4.109, 4.110) give

nS − 1 = − 4

2N + 1
,

r =
16

2N + 1
. (4.112)

Hence nS and r are dependent only on the number of e-foldings. Using (4.112) we find that

the normalisation implies nS = 0.9669 and r = 0.1322 for N = 60. It was shown in that

this case is well inside the 1σ contour bound coming from the observational constraints of

WMAP, SDSS and 2dF [88–91].

Of course there is a situation in which cosmologically relevant scales (55 . N . 65)

correspond to the region x & 1. In Figs 4.8 and 4.9 we plot nS and r as a function of s

for three different values of N . For large s i.e s ≫ 1, we find that the quantity x is much

smaller than unity from the relation (4.111). Hence nS and r are given by the formulas in

(4.112). For smaller s the quantity x becomes larger than of order unity, which means that

the results in (4.112) are no longer valid. From Fig 4.8 we see that the spectral index has a

minimum around s = 70 for N = 60. This roughly corresponds to the region x = R/L ∼ 1.

As we see from Fig. 4.7, the potential becomes flatter for x & 1 which leads to the increase

of the spectral index toward nS = 1 with the decrease of s. Recent observations show that
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nS = 0.98±0.02 at the 95% confidence level. As we find in Fig. 4.8 this condition is satisfied

for N & 60.

The tensor-to-scalar ratio given by (4.112) is valid for s ≫ 1. For a fixed value of N

this ratio gets smaller with the decrease of s. This is understandable since the potential

becomes flatter as we enter the region x & 1. The tensor-to-scalar ratio is constrained to

be r < 0.36 at the 95% confidence level from recent observations. Hence our model satisfies

this observational constraint.

When x60 ≪ 1 the condition of the COBE normalization gives

kgs(lsMp)
2 ≃ 109

24π2
(60 +

1

2
)2 ≃ 1.55 × 1010 , (4.113)

which is independent of s. As we see from Fig. 4.10 the quantity kgs(lsMp)
2 departs from the

value (4.113) for smaller s. However kgs(lsMp)
2 is of order 1010 for s & 1. It is interesting

to note that the COBE normalization uniquely fixes the value of the potential at the end

of inflation, if it happens in the regime of an exponential potential, independently of the

value where inflation started. In fact using (4.100) we see that

Vend ≃ xfT3 =
1

2kgs(lsMp)2
M4

p ≃ 3.2 × 10−11M4
p . (4.114)

This sets the energy scale to be V
1/4
end ≃ 2.3 × 10−3Mp.

The above discussion corresponds to the case in which inflation ends in the region

xf ≪ 1. In order to understand the behavior of another asymptotic region let us consider

a situation when inflation ends for xf ≫ 1. In this case the end of inflation is characterized

by x6
f ≃ 1/(2s). Since xf ≫ 1, we are considering a parameter range s ≪ 1. When x ≫ 1

the function f(x) behaves as f(x) ≃ x4/4, which gives the relation x4 ≃ 4N/s. Hence we

obtain the following

nS − 1 = − 3

2N
,

r =

√
s

N3/2
, (4.115)

kgs(lsMp)
2 =

109
√

2N3/2

6π2

√
s .

While nS is independent of s, both r and kgs(lsMp)
2 are dependent on s and N . For

example one has nS = 0.975, r = 0.003
√
s and kgs(lsMp)

2 = 1.11 × 1010√s for N = 60.

From Fig. 4.8 we find that nS increases with the decrease of s in the region 1 . s . 50

for a fixed value of N . This tendency persists for s . 1 and nS approaches a constant

value given by (4.115) as s decreases. We note that the spectral index nS satisfies the

observational constraint coming from recent observations. The tensor-to-scalar ratio is
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strongly suppressed in the region s < 1, which also satisfies the observational constraint,

and the quantity kgs(lsMp)
2 gets smaller with decreasing s.

We can estimate the the potential energy at the end of inflation in this regime via

Vend ≃ T3 ,

T3 =
sM4

p

kgs(lsMp)2
≃ 9.0 × 10−11√sM4

p . (4.116)

In this case Vend depends on the value of s. The order of the energy scale does not differ

from (4.114) provided that s is not too much smaller than unity.

In summary we find that nS and r in our model satisfy the CMB constraints for any

values of s, which means that s is unconstrained. This is different from the case in the pre-

vious section, in which the spectral index nS provides constraints on the model parameters.

The only constraint in our model is the COBE normalization. If we demand that the value

of R at the end of inflation is larger than ls, this gives

k < 16π6gs

(

Mp

Ms

)4

, (4.117)

where we used the standard form of the brane tension, T3 = M4
s /(2π)3gs.

Combining this relation with the condition of the COBE normalization: kgs(lsMp)
2 ≃

1010 for s & 1, we find

gs >
105

4π3

(

Ms

Mp

)3

. (4.118)

Since we require the condition gs ≪ 1 for the validity of the theory, this gives the constraint

Ms/Mp ≪ 0.1, (4.119)

thus favouring a smaller string scale.

After the field reaches the point R = ls, we assume that the field T is frozen at this point,

which is a reasonable assumption given what we understand from the bulk description of

the dynamics. This gives us a positive cosmological constant in the system.

After the end of inflation

The first phase driven by the field T eventually gives way to a second phase driven by the

field χ. Introducing new variables χ = χ1 + iχ2, X
2 = χ2

1 + χ2
2, X̃ = MpX and ṽ = M2

p v,

183



4.3. D3-BRANE DYNAMICS IN THE D5-BRANE BACKGROUND

the potential (4.96) of the field X reduces to

U(X̃) =
1

4π4(lsMp)4gsk

[

π(k + 1)X̃4 − ṽX̃2
]

(4.120)

This potential has two local minima at X̃c = ±
√

ṽ/(2π(k + 1)) with corresponding negative

energy

U(X̃c) = − ṽ2

16π5k(k + 1)(lsMp)4gs
. (4.121)

One can cancel (or nearly cancel) this term by taking into account the energy of the

field T at R = ls. Since this is given by V (R = ls) = T3/
√
kgs, the condition V (R =

ls) + U(X̃c) = 0 leads to

ṽ2 = 16π5(k + 1)T3(lsMp)
4
√

kgs . (4.122)

Using the definition of the brane tension this can be written as follows

ṽ2 =
2π2

√
k(k + 1)√
gs

. (4.123)

Then the total potential for our system is

W = A
(

X̃2 − X̃2
c

)2
, (4.124)

where

A ≡ k + 1

4π3(lsMp)4gsk
. (4.125)

The mass of the potential at X̃ = 0 is given by

m2 ≡ d2W

dX̃2 (X̃=0)
= −4AX̃2

c . (4.126)

Meanwhile the square of the Hubble constant at X̃ = 0 is

H2
0 =

Aṽ2

12π2(k + 1)2M2
p

. (4.127)

Then we obtain the following ratio

|m2|
H2

0

=
24π(k + 1)

v
=

12
√

2(k + 1)1/2

k1/4
g1/4
s , (4.128)

where we used (4.123) in writing the second equality.

As we have just seen, the COBE normalization gives kgs(lsMp)
2 ≃ 1010 for s & 1, and
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the ratio (4.128) can be estimated to be

|m2|
H2

0

≃ 5 × 103

(

k + 1

k

)1/2(Ms

Mp

)1/2

≃ 5 × 103

(

Ms

Mp

)1/2

, (4.129)

using the large k limit. Thus we find that |m2| > H2
0 for

Ms

Mp
> 4 × 10−8 . (4.130)

This means that the second stage of inflation does not occur for the field χ provided that the

string scale Ms satisfies the condition (4.130). When 4 × 10−8 < Ms/Mp ≪ 10−1, inflation

ends before the field T reaches the point R = ls, which is triggered by a fast roll of the field

χ. This situation is similar to the original hybrid inflation model [76].

When Ms/Mp < 4× 10−8, double inflation occurs even after the end of the first stage of

inflation. In this case the CMB constraints for the inflationary model need to be modified.

However the second stage of inflation is absent for a string scale close to the Planck scale.

We note that the vacuum expectation value of the field X̃ can be re-written as follows

X̃c = 2
√

3
H0Mp

|m| . (4.131)

Therefore when |m| & H0 we find that X̃c is less than of order the Planck mass. When

double inflation occurs (|m| . H0), the amplitude of symmetry breaking takes a super-

Planckian value X̃c & Mp. In this sense the latter case does not look natural compared to

the case in which the second stage of inflation does not occur.

Since the field χ has a canonical kinetic term, reheating proceeds as in the case of

potentials with spontaneous symmetry breaking [100]. This is in contrast to tachyon fields

governed by the DBI action, in which the energy density of the tachyon overdominates the

universe soon after the end of inflation. Thus the problem of reheating present in DBI

tachyon models is absent in this instance. Since the potential of the field X has a negative

mass given by (4.126), this leads to the exponential growth of quantum fluctuations of X

with momenta k < |m|, i.e., δXk ∝ exp(
√

|m2| − k2 t). This negative instability is so strong

that one can not trust perturbation theory including the Hartree and 1/N approximations.

We require lattice simulations in order to take into account rescattering of created particles

and the production of topological defects.

It was further shown in [100] that symmetry breaking ends after one oscillation of the

field distribution as the field evolves toward the potential minimum. This reflects the fact

that gradient energies of all momentum modes do not return back to the original state at
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X = 0 because of a very complicated field distribution after the violent growth of quantum

fluctuations.

Finally we should mention that de-Sitter vacua can be obtained provided we tune the

potential such that V (R = ls) does not exactly cancel the negative energy contribution

U(X̃c). In order to match with the current energy scale of dark energy we require extreme

fine tuning V (R = ls) + U(X̃c) ≃ 10−123M4
p . However this kind of fine tuning is a generic

problem in all dark energy models, not just this one [77].

4.4 DBI Inflation in the IR.

In this section we will explore a specific inflationary model which is inherently ’stringy’, that

goes by the name of DBI inflation [92]. We have already used the DBI action to describe

the dynamics of moving branes, and shown how the open string modes can play the role of

the inflaton. However our analysis relied heavily upon the tachyon-radion correspondance

to map the problem to a more field theoretic one. However it was shown in [92]that one

can use the full DBI action to drive a period of inflation in a warped geometry, despite

the fact that the brane moves relativistically. This model gives rise to specific inflationary

signatures which may (or may not) be observable, and so it is useful to probe the full moduli

space of solutions.

It was suggested that there were two kinds of DBI inflation. Firstly there is the so called

UV model, where the brane is initially located far from the tip of a warped throat [92]. The

potential generated by the fluxes in the throat attracts the probe D3-brane towards the tip

of the throat, which can lead to inflation and a suitable amount of metric fluctuations. The

alternate scenario is dubbed IR inflation [93]. In this case the probe D3-brane starts at the

tip of the throat, and feels a potential generated from branes/fluxes in other throats which

forces it up toward the internal space. Again this model can yield suitably small levels of

metric perturbations during inflation.

However whilst one can argue that the UV model is reasonably generic, this cannot be

said of the IR models. In this case the residual brane localised at the tip of the throat is

assumed to be the remnant of brane/flux annihilation [96], which implies there must be

some (additional) fine tuning. To see this consider a background where we have M units of

D3-brane flux threading some three-cycle. If we insert N ′ D̄3-branes into this background

such that they fill the non-compact 3+1 dimensional spacetime, they will feel an attractive

force from the flux and roll down the throat to annihilate quantum mechanically. Then

there will be precisely N = M −N ′ D3-branes created after this annihilation process. The

IR model assumes that N = 1, however the more generic scenario would in fact leave us

with N branes at the tip. In fact we would expect the branes to be distributed randomly

near the tip. If they somehow arranged themselves such that they were a distance L > ls

apart, then we could mimic their cosmic evolution using a form of assisted inflation [97].
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However on energetic grounds the branes would typically be coincident - therefore we need

to describe their dynamics using the non-Abelian DBI (or Myers) action which was discussed

in Chapter three.

One of the benefits of the single brane solution was that the backreaction of the D3-

brane can be neglected in the analysis. Clearly this will not be the case when there are

N -branes unless we assume that the background fluxes will dominate. This is not too

bad for a non-compact model, however if this is compactified then we would expect higher

order corrections to become important, and so we would lose control over the low energy

theory. However recent developments have suggested a way to expand the Myers action

in the finite N limit, which means that we can keep our non-Abelian degrees of freedom,

whilst also keeping the back-reactive effects firmly under control [53]. This motivates us to

consider a more general version of the IR scenario where we use multiple branes to drive

inflation. This will have important consequences which we will discuss later.

For now let us assume that the ten dimensional type IIB spacetime metric factorises as

follows

ds2 = h2ds24 + h−2(dρ2 + ds2X5
), (4.132)

where the four-dimensional metric is taken to be the usual FRW form characterised by the

scale factor a(t). There is also a throat region over some five-dimensional manifold X5,

with h being the corresponding warp factor. The internal space X5 will be taken to be

non-compact in this thesis. One may wonder about the validity of such an approximation

with regard to modelling four-dimensional physics. However we will assume that most of

the relevant physics occurs deep in the warped throat, far from the internal space which is

where the model dependent effects typically come into play.

As we saw in Chapter three, the bosonic component of the Myers action can be written

as follows

S = −T3

∫

d4ξSTr

(

√

−det(Êab + Êai(Q−1 − δ)ijÊjb + λFab)
√

detQi
j

)

. (4.133)

The fields Êab are the non-Abelian pullback of the linear combination of closed string fields

Eab = Gab +Bab, while the matrix Q is determined as

Qi
j = δi

j + iλ[φi, φk]Ekj , (4.134)

with the φi being scalar fields on the world-volume of the D-branes corresponding to the

transverse fluctuations. As in the KS model [63], we will assume that the bulk B field is zero

near the tip of the throat, and consider the case where the transverse coordinates define a

fuzzy S2 embedded within a three cycle in the X5.

Now that we have restricted ourselves to the SO(3) ∼ SU(2) algebra, we expect the

scalars to be proportional to its generators. The usual matrix ansatz that we take for our

187



4.4. DBI INFLATION IN THE IR.

scalar fields is thus φi = Rαi (i = 1, 2, 3), where R is a variable of canonical mass dimension,

and the αi are the N -dimensional generators of the SU(2) algebra.

In flat space we can find solutions where the radius of the fuzzy sphere grows without

bound. However for most spaces there will be a maximum bound on the size of the fuzzy

sphere, as illustrated by the famous example of the AdS5×S5 metric where the fuzzy sphere

radius is bounded by the radius of the five-sphere [57]. In the warped backgrounds where

the length of the throat provides the cutoff scale, the throat is smoothly glued onto the five-

dimensional internal space. We denote this as the UV cut-off, analogous to the UV brane

in the Randall-Sundrum models [105]. As already discussed, provided inflation occurs far

from this UV cutoff we should be able to trust our solution.

Let us insert the metric (4.132) into the Myers action (4.133). After expanding all the

determinants, we find that the effective action for coincident D3-branes in this background

becomes

S = −T3

∫

d4ξSTr
(

h4a3
√

1 − h−4λ2αiαiṘ2
√

1 + 4λ2αiαih−4R4 − a3h41N + a3V (R)1N

)

,

(4.135)

where the second term arises as the leading order contribution from the Chern-Simons

coupling of the bulk RR fields, while the final term is a flux induced potential which comes

from fluxes present in the background. Both terms are singlets under the trace, which is

why they appear multiplied by the N × N identity matrix. The potential generated will

depend on the topology of the internal space, and also the quantisation constraints of the

fluxes. Here we have absorbed a factor of T−1
3 into the potential to make it dimensionless,

and set the dilaton to be unity. This agrees with the supergravity background generated

by D3-branes, and also the tip solution of the Klebanov-Strassler throat [63].

We now minimally couple the DBI action to the standard Einstein-Hilbert action. For-

tunately the Einstein part of the action arises naturally in the warped backgrounds we are

considering, therefore provided the branes don’t move too far away from the tip - gravity

should still be confined to their world-volumes. It is convenient to introduce the notation

W (R, Ĉ) =
√

1 + 4λ2h−4αiαiR4, (4.136)

which is essentially an additional potential induced by the fuzzy sphere geometry, which

we will refer to as the fuzzy potential. For a single probe brane this contribution is always

unity, since the corresponding matrix representation is commutative. This would also be

the case if the branes are located at distances greater than ls. We can now determine the

non-zero components of the energy-momentum tensor on the world-volume. It gives the

188



4.4. DBI INFLATION IN THE IR.

energy and pressure densities as follows

E = T3STr

(

W (R, Ĉ)h4

√

1 − h−4λ2αiαiṘ2
− h4 + V

)

, (4.137)

P = −T3STr
(

h4W (R, Ĉ)
√

1 − h−4λ2αiαiṘ2 − h4 + V
)

. (4.138)

These form the basis for all our analysis in the subsequent sections and we will return to

them in due course.

One of the reasons that we can have DBI inflation in this background, despite the branes

moving relativistically, is that the speed of sound is usually very small compared to unity.

This is therefore a string theory motivated model of kinetic inflation [92, 106], using the

warped nature of the spacetime to reduce the velocity scale. In the standard canonically

normalised slow roll models, this factor is always unity since the scalar field moves slowly.

The speed is given by the following expression

C2
s =

∂P/∂Ṙ

∂E/∂Ṙ
, (4.139)

which is valid provided that the entropy corrections are negligible [76, 94].

4.4.1 The large N limit

Let us restrict ourselves to the large N limit when we ignore the backreaction11. The large

N limit has proven to be useful for inflation in many other contexts such as assisted inflation

[97] or N-flation [98] Now we can approximate the symmetrized trace by a trace once we

neglect the contributions of terms of the order 1/N2 in the action. The resulting action

simplifies to

S = −T3

∫

d4ξNa3

(

h4

√

1 − h−4λ2ĈṘ2

√

1 + 4λ2Ĉh−4R4 − h4 + V (R)

)

(4.140)

where T3 is the tension of the D3-branes given by the usual formula

T3 =
M4

s

8π3gs
(4.141)

with Ms being the mass scale for the open strings and gs being the asymptotic string

coupling which we take to be small to allow for perturbatively defined strings. In this

chapter we will generally assume that the coupling is set to gs ∼ 10−2 in order to make

order of magnitude approximations.

11This amounts to a constraint on the energy of the D-branes which could lead to an unphysical solution
upon compactification. However it can be interpreted as a metric constraint on the bulk fluxes.
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The backreaction effect will be small provided that we ensureMK >> N is also satisfied,

in addition to the assumption of large N . It is instructive to make a redefinition of the scalar

field in order to compare our model with the rest of the literature. Firstly we switch to

’physical’ coordinates using the standard relationship R2 = r2/(λ2Ĉ) which parameterises

the physical radius of the fuzzy sphere. Let us also further define a scalar field φ = r
√
T3

with canonical mass dimension, which we will use as the inflaton.

We have the standard relationship between the four-dimensional Planck scale and the

ten dimensional one through the volume of the warped space V6;

M2
p =

V6

κ2
10

. (4.142)

Interestingly it was shown in Baumann [94]that with minimal assumptions about the volume

of the throat, one can find the following bound on the maximal field variation:

∆φ <
2Mp√
MK

, (4.143)

where MK is the contribution from the background fluxes. In our case we demand that

MK >> N to neglect the back reaction upon the geometry, which restricts our field to

move over very small distances in Planckian units.

We find from (4.133) the equation of motion of the φ field:

0 = W (φ, Ĉ)γ3φ̈+ 3Hφ̇W (φ, Ĉ)γ +
8γφ3

T3λ2ĈW (φ, Ĉ)

(

1 − φh′

h

)

+ 2T3h
′W (φ, Ĉ)γ

(

2h3 − γ2φ̇2

hT3

)

− 4T3h
3h′ + T3V

′ , (4.144)

where primes are derivatives with respect to φ and we have also introduced

γ =
1

√

1 − h−4T−1
3 φ̇2

, (4.145)

for the analogue of the relativistic factor for the DBI action. This implies that the velocity

of the brane is bounded as

φ̇2 < h4T3. (4.146)

These last two equations are exactly the same as in the case of a single brane. Recall from

our discussion in the Chapter three that when we take the large N limit of the fuzzy S2,

we recover the classical S2 with N units of charge. This suggests that the large N limit

essentially behaves like a single object - which is why we should expect to find similarities

with the N = 1 results.

Using the general expression (4.139), we calculate the speed of sound to be C2
s = 1/γ2,

190



4.4. DBI INFLATION IN THE IR.

in agreement with that of single brane inflation. As in that case we will now also assume

that the scalar field is monotonic, at least for early times. This assumption allows us to

switch again to the Hamilton-Jacobi formalism. We differentiate the Friedmann equation

H2 = E/3M2
P with respect to time, dropping terms proportional to φ̈, and use the continuity

equation, Ė = −3H(P + E) to get

φ̇ = −
2M2

pH
′

NγW (φ)
, (4.147)

where the fuzzy potential W is now an explicit function of φ, and H ′ is the derivative of the

Hubble parameter with respect to the inflaton. Substituting this φ̇ into (4.145), we obtain

γ(φ) =

√

1 +
4M4

pH
′2

N2W 2(φ)h4T3
. (4.148)

We can use (4.148) to write the velocity of the inflaton without reference to the relativistic

factor γ:

φ̇ =
−2M2

pH
′

√

N2W 2 + 4M4
pH

′2h−4T−1
3

, (4.149)

which allows us to write the corresponding Friedmann equation solely as a function of the

inflaton:

H2 =
NT3

3M2
p

(

W (φ)h4(φ)γ(φ) + V (φ) − h4(φ)
)

(4.150)

=
NT3

3M2
p



V (φ) + h4(φ)







1

N

√

N2W 2 +
4M4

pH
′2

h4T3
− 1









 ,

which is reminiscent of the equation found in for the Abelian DBI inflation model [92]. The

main difference here is the presence of factors of N and the fuzzy sphere induced potential

W (φ), the latter being an inherently non-Abelian feature.

We may be concerned that the DBI models of inflation do not exhibit standard attractor

solutions for inflation, since we expect relativistic motion. This attractor behaviour is

important as it implies that inflation will not be dependent upon the precise choice of

initial conditions for the inflaton [76]. To check this let us suppose that H0(φ) is any

solution of (4.150), which can be either inflationary or non-inflationary. We add to this

a linear homogeneous perturbation δH(φ). The attractor condition will be satisfied if it

becomes small as φ increases. Upon substituting H = H0 + δH into (4.150) and linearizing

the resultant expression, we find that the perturbation obeys

H ′
0δH

′ =
3NWγ

2M2
p

H0δH, (4.151)
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which has the general solution

δH(φ) = δH(φi) exp

[

3N

2M2
p

∫ φ

φi

dφW (φ)γ(φ)
H0(φ)

H ′
0(φ)

]

, (4.152)

where δH(φi) is the value at some initial point φi, and γ = γ(H0). Because H ′
0 and dφ

have opposite signs, the integrand within the exponential term is negative definite 12, and

all linear perturbations indeed die away. This means that there is an attractor solution for

this model regardless of the initial conditions and the velocity of the brane. This is also

true for the single brane solutions with N = 1 = W (φ).

We note that the equation of state in this model is drastically different from the canonical

field models. At large N we find that

ω = −Wh4γ−1 + V (φ) − h4

Wh4γ + V (φ) − h4
. (4.153)

If the potential dominates all the other terms, we recover the usual de-Sitter solution with

ω ∼ −1. However the DBI admits more interesting solutions due to its non-linear nature.

For example, if we consider ultra-relativistic motion where γ >> 1, and demand that the

h4 terms are suppressed, we obtain

ω ∼ −V (φ)

Wh4γ + V (φ)
, (4.154)

which can be very small depending on the scale of the fuzzy potential, and may give rise to a

matter phase in the asymptotic velocity limit. This shows that we have a larger parameter

space of solutions for ω than in the standard inflationary scenarios.

Our analysis thus far has been general. To make a more detailed investigation of the

inflationary signature of this model, we must determine the background potential. Let us

consider nonzero fluxes inducing the warped throat solution. The coincident branes localised

at the bottom of the throat will feel a potential generated by branes/fluxes in other throats

and will move towards them. We then expect a tachyonic potential of the form

V (φ) ∼ V0 −
V2φ

2

2
+ . . . , (4.155)

with higher order even powers of φ because of the Z2 symmetry of the throat. The various

constants will be determined by the choice of geometry, fluxes, and also non-perturbative

effects. The IR DBI inflation is thus a special case of small field inflation. The constant V0

is the scale set by the fluxes, and need be large to be able to neglect back-reactive effects

in our model. This is significantly different from the UV inflationary model. In this section

we are mainly interested in the IR solution, and we consider that most of the dynamics will

12Assuming that γ is also positive definite.
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take place in a region dominated by the potential energy.

Inflationary observables and constraints

In this subsection, we focus on inflationary solutions in two specific backgrounds. We

show that inflation can be achieved in this model by allowing an appropriate tuning of the

parameters in the theory.

We wish to consider inflation near the tip of a warped throat where φ is small. However

we are also interested in solutions where the background is no longer approximately AdS

but is constant. This is motivated by the work of Kecskemeti et al [94] and also the fact

that a constant warp factor appears to be a generic feature of the IR end of warped throats.

This is a phenomenologically motivated solution, because we expect the fluxes to back-react

on the bulk geometry to form a warped throat. We expect that these throats will be of the

Klebanov-Strassler (KS) variety, which have a finite cut-off at the origin. This cut-off is

generically exponentially small due to its dependence on the three-form fluxes.

In order to mimic a constant warping in our non-compact theory we choose to put in

’by hand’ a constant warp factor parameterised by a mass term µ, where we expect that µ

is small at a scale set by the bulk fluxes [94]:

h(φ) =

√

φ2 + µ2

L
, (4.156)

where we have used L to denote the background charge. It should be noted that this L

will be different from that in the purely AdS-like backgrounds. When φ goes to zero, the

warp factor remains finite. Strictly speaking away from the origin there may be a different

φ dependence, but we use this form of the warp factor in the following sections.

The solutions we consider are

(i) the AdS type cases (where we set µ to 0), or

(ii) the mass gap cases (where we assume φ ∼ 0).

One further remark that we need to make is that in the AdS type solution we strictly

need to introduce a cut-off for φ such that the solution is nowhere singular. The warp

factor in this case would therefore be cut-off at the value hC . In our analysis we will not

write this explicitly, but we will always assume that hC << 1. Let us assume that inflation

occurs very close to the tip of the warped throat, in which case we expect the energy

density to be dominated by the constant piece of the background potential. The other

terms are suppressed by the square of the warp factor and will be small in this limit. It

may appear that the warp factor can be easily vanishingly small, but more care is required

in cases where h reduces to a constant, since in those backgrounds (as we shall see) the

other parameters can both be large. Assuming V0 >> h4(W (φ)γ(φ) − 1) is satisfied, the
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Friedmann equation (4.150) can be approximated as

H2 ∼ NT3V (φ)

3M2
p

. (4.157)

We then find that our solutions for the inflaton velocity and the gamma factor reduce to

φ̇ ∼ −MpV
′

γW

√

T3

3NV
,

γ(φ) ∼
√

1 +
M2

p

3N

(

V ′2

h4W 2V

)

, (4.158)

where we have expressed everything in terms of derivatives of the potential. Clearly these

expressions are background dependent as they are functions of the warp factor h.

Inflation in AdS type backgrounds

Let us consider the locally AdS type backgrounds, such as those studied in the original IR

inflation scenario [93]. The harmonic function can be approximated by h ∼ φ/L in the near

horizon region where L is essentially the charge of the background geometry given by13

L4 = gsMKT 2
3 λ

2π2/Vol(X5), with M and K the corresponding quanta of flux and Vol(X5)

corresponding to the dimensionless volume of the compact space. We expect to find that

Vol(X5) = aπ3, where a is a topological parameter. For example we know that a = 1 for the

five-sphere and a = 16/27 for the manifold T 1,1. In this situation the fuzzy sphere induced

potential becomes constant which greatly simplifies the analysis. In fact the second term

inside the square root is proportional to the ratio of the background fluxes and the number

of coincident branes, and thus it is not clear a priori whether this term will be small or

large. Under our assumption of no back reaction, we require the flux term to dominate over

N , and so we may expect that W >> 1 which translates into the flux condition

L2

M2
s

>>
N

8π2gs
→

√

MKgs >> N (4.159)

in the large N limit. For small values of the string coupling constant, we see that this

requires the fluxes to be very large. This is to expected from out heuristic arguments

regarding the backreaction. In the converse limit where W ∼ 1 we see that the constraint

becomes
√
gsMK << N - which although provides a bound on N is much harder to satisfy

within the remit of our approximation.

13Note we have rescaled this quantity to ensure it has the correct dimensions. This corresponds to the
radius of curvature for the AdS space scaled by the square of the brane tension.
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This requirement also affects the definition of γ:

γAdS(φ) →
√

1 +
M2

pV
2
2 L

4

3NW 2V0φ2

(

1 +
V2φ2

V0
+ . . .

)

. (4.160)

As we are interested in DBI inflation, we should take γ(φ) >> 1 for the speed of sound to be

substantially reduced, and so the right hand side will dominate this expression. Furthermore

since we are assuming that the background potential should dominate the energy density

at this stage of the evolution, we should also assume that V0 >> V2, which implies that the

new constant piece of γ will be subdominant.

In this regime we can approximately solve the inflaton equation of motion. In fact there

is a cancellation between terms in the equation which implies that φ̇ ∼ O(φ2) + O(φ6) and

so for consistency we must drop all terms higher than quadratic in the fields. The resultant

expression for the field is actually of the same functional form as the single brane case.

Actually this is expected since we can view the fuzzy sphere as a classical sphere with N

units of flux in the large N limit:

φ ∼ φ0L
2

L2 − φ0

√
T3(t− t0)

, (4.161)

where the field is initially located at φ = φ0 at t = t0. This expression on the denominator

will generally be much smaller than unity as time evolves, since we are assuming that

h0 << 1 which is the initial value of the warp factor.

Let us now compute the inflationary parameters in this large N limit. The non-linear

form of the DBI action prevents us from using the traditional slow roll variables, and so

we must establish new ’fast roll’ variables. In reality the name ’fast roll’ is somewhat of a

misnomer because despite moving relativistically, the non-linear nature of the action allows

for the brane to be held up on the potential for a significant amount of time as in slow roll

scenarios. This has already been extensively discussed for the single brane models but the

non-Abelian action requires us to modify these expressions. Suppose that the leading order

term for the epsilon parameter expansion is given by

ä

a
= H2(1 − ε), (4.162)

which yields the usual slow roll constraint ε = −Ḣ/H2. However now that we are working

in the Hamilton-Jacobi formalism, we need derivatives with respect to the inflaton. This

leads to the following modified expressions for the relevant slow roll parameter:

ε =
2M2

p

NγW (φ, Ĉ)

(

H ′

H

)2

. (4.163)

This is clearly equivalent to the usual single brane slow roll conditions where we would have
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N = 1,W (φ, Ĉ) = 1, although we cannot take the N → 1 limit in our non-Abelian DBI

description. Note that this slow roll parameter is suppressed not only by a factor of 1/γ as

in the single brane inflation, but also by an additional factor of 1/N . Intuitively we may

have expected this since the coincident branes will tend to accelerate much more slowly

than a single brane. Hence we would expect inflation to last for a longer period of time.

Using our approximate solutions we find for the AdS type backgrounds (and assuming

γ >> 1)

ε ∼
√

3MpV2φ
3

2L2V0

√
NV0

+ . . . , (4.164)

where we have neglected φ5 terms. We must ensure that ǫ < 1 for inflation to occur at all.

We can also calculate the number of e-foldings for this model using

Ne =

∫

Hdt. (4.165)

We obtain

Ne ∼
√

NV0

3

L2

Mp

∫

dφ
1

φ2

(

1 − V2φ
2

4V0
+ O(φ4)

)

, (4.166)

where the integration should be between φ0 and φf , the latter being determined though the

fast roll parameter. Clearly for small φ the first term will dominate the integral and so we

drop the higher order terms. The result is that the field value Ne e-folds before the end of

inflation can be written as

φ0 ∼ φfL
2
√
NV0

L2
√
NV0 +

√
3φfNeMp

, (4.167)

which we can use to determine the perturbation spectrum. For completeness, we write the

fast roll parameter as a function of the number of e-foldings:

ε ∼



1 +Ne

(

6M2
p

NL4V2

)1/3




−3

. (4.168)

Inflation in mass gap backgrounds

The equation of motion for the inflaton in the AdS background is basically the same as

in the single brane case. Is this also true for the mass gap solution? In this instance the

fuzzy sphere potential now has non-trivial field dependence which complicates the analysis.
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Without loss of generality we will take the warp factor of the form h ∼ µ/L:

Wmg(φ) ∼
√

1 +
4φ4L4

µ4λ2N2T 2
3

,

γmg(φ) ∼
√

1 +
M2

pL
4V 2

2 φ
2

3Nµ4Wmg
2V0

. (4.169)

Since we are mainly interested in the relativistic limits of the theory we should take γ

to be large. This immediately imposes a constraint on the fuzzy potential - which is now

an explicit function of the inflaton φ

M2
pV

2
2 φ

2

3V0Nh4
>> W 2. (4.170)

The analytic form of W tells us that it is bounded from below by unity, but has no upper

bound. Of course in reality we expect W (φ) to be a monotonically increasing function,

however for analytical simplicity we will consider the two limits separately.

In the first instance let us assume that W ∼ 1. From (4.170) this implies that we have

an upper bound on the number of branes

N <<
M2

pV
2
2 φ

2

3V0h4
(4.171)

which can be satisfied by having a small enough warp factor. However we must also impose

the constraint coming from the definition of the fuzzy potential which actually implies a

lower bound on N through the relation

N >>
2φ2

h2λT3
(4.172)

so upon combining these constraints we see that both assumptions are valid provided that

V 2
2

V0
>>

h2

M2
sM

2
p

(4.173)

We now ask about the constraints arising from the converse limit, when both γ and W are

large. For the fuzzy potential to be large we must ensure that

N <<
7 × 10−1φ2

h2M2
s

, (4.174)

however the relativistic limit also requires N to be bounded from below

N >>
O(1)φ2V0

V 2
2 M

4
sM

2
p

. (4.175)
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Combining both of these constraints also results in (4.173). It is straight-forward to note

that due to the constant warp factor near the tip of the throat, the relativistic limit implies

that φ is a linear function of time. The overall scale is simply set by the warp factor and

the brane tension, and is independent or our parameterisation of the fuzzy potential.

Let us now consider how inflation occurs in this model. Our starting point will once

again be (4.163). Inserting the mass gap solution and also demanding relativistic motion is

enough to ensure that W drops out of the analysis, thus the solution is independent of the

fuzzy potential contribution. After integrating to find the number of e-folds we see that the

slow roll parameter can be written in the form (Ne e-folds before the end of inflation)

ε ∼ 1 −
3NeV2M

2
ph

4

2V0N
(4.176)

We have seen that for a certain range of parameters, we can obtain the required number of

e-foldings. The real signature of the model lies in the perturbation spectrum and the scale

of the spectral indices, which we now address.

Cosmological Signatures.

The derivation of the various perturbation spectra for this model is presented in the Ap-

pendix, and we refer the reader there to see how the expressions arise [76, 106]. We will

simply quote the important results in the following section. The main equations we need

to calculate the perturbation spectra are (A.13) and (A.15) respectively. In terms of our

standard notation employed in the rest of this section these translate into the following

conditions when we substitute for the velocity equation in the Hamilton-Jacobi formalism,

and re-insert the factors of the reduced Planck mass

A2
S ≃ H2

8π2M2
p εCs

,

A2
T ≃ 8

(

H

2πMp

)2

. (4.177)

The slow-rolling inflation generally predicts very low non-gaussianity since at leading order

the quantum fluctuations are generated by free fields in the dS background. However in the

DBI inflation, much larger non-gaussianity can be generated since the causality constraint

in the kinetic term introduces non-linear interactions among different momentum modes of

the scalar field [94, 95]. Recently it was shown that in the equilateral triangle limit, the

leading-order contribution to the non-linearity parameter is given by

fNL =
35

108

(

1

C2
s

− 1

)

− 5

81

(

1

C2
s

− 1 − 2Λ

)

, (4.178)
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where, using the definitions in the appendix,

Λ ≡ X2p,XX + 2
3X

3p,XXX

Xp,X + 2X2p,XX
. (4.179)

It can be shown that the second term on the right-hand side of (4.178) vanishes in the

large N case, as it does in the single brane case. Therefore we have the usual non-gaussian

parameter

fNL ≈ 0.32γ2. (4.180)

This once again emphasizes the similarity between the N = 1 and the N >> 1 descriptions.

Current measurements indicate a rather weak bound on the level of non-gaussianities fNL ≤
100, however the upcoming Planck mission aims to increase the sensitivity to probe down

to regions where fNL ≤ 5 and will therefore provide a robust test of these predictions.

We will now discuss the expected level of perturbations in each of the two cases we have

discussed so far.

• Ads backgrounds. Using the formulae derived in the appendix we find that the

scalar amplitude at leading order becomes

A2
S ∼ NV0

12π5gs

γ

16ǫ

(

Ms

Mp

)4

. (4.181)

Now using the WMAP normalisation for the non-gaussianities we must ensure that

γ ≤ 10
√

3, which in turn fixes ǫ through the (weak) constraint that r ≤ 0.5. Therefore

we see that at horizon crossing we must ensure that

ε ≤ 5
√

3

16
→ MKNV2 ≤

106M2
p

M4
s

(4.182)

is satisfied where we assume that the string coupling is roughly 10−2. This essentially

means that the slow roll parameter must be less than one half. Using this constraint

to fix the scalar amplitude we find the following condition needs to be satisfied

NV0

(

Ms

Mp

)4

≤ 10−8. (4.183)

Clearly this is linear in NV0, therefore requires that the string scale must be low in

order for the WMAP normalisation to hold, assuming that the constant part of the

potential is sub-Planckian. In addition we see that the scalar index can be expanded

as a power series in ε, which at leading order becomes

ns ∼ 1 − 4ε− 4ε1/3δns + . . . (4.184)
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where we have defined the ’perturbation’

δns ∼
(

102Mp

M2
s

√
NV2gsMK

)2/3

. (4.185)

Recall that the WMAP bound for this index is given by ns = 0.987+0.019
−0.037. Using the

constraint in (4.182) we find that the δns term must be bounded from below by unity.

Moreover we see that by constraining ε to be smaller - this in fact makes the δns term

larger. Given this, one sees that the scalar index will always be large and negative in

this instance and therefore incompatible with observation.

We also see using the relation

dnX

d ln k
∼ dnX

dNe
X = S, T (4.186)

evaluated at horizon crossing, that both tensor and scalar indices are positive running.

• Mass Gap Backgrounds. The form of the Hubble parameter in this instance is

the same as in the AdS case, therefore we expect similar arguments to hold in this

instance. Once again this favours a smaller string scale using (4.183). Assuming

similar constraints on r and γ we see that the only real distinction between the two

cases arises through the spectral indices, since we again have to ensure that (4.182) is

satisfied. Explicit calculation of the scalar index in this case reveals that

ns − 1 ∼ −4ε

(

1 − H

4H ′

{

3H ′′

H ′ − 2W ′

W

})

. (4.187)

If we restrict ourselves to the case where W ∼ 1 then this simplifies down to the

following

ns ∼ 1 − 7ε−
9M2

pV2

2V0Nε
. (4.188)

The scalar index will clearly be sensitive to the magnitude of the last term, which we

write as −δns/ε, and we see that

δns ≥
1

20h4

(

1 − 5
√

3

16

)

(4.189)

using the WMAP normalisation. Clearly for small values of the warp factor we will

see that the δns term will be large, which implies that we cannot obtain the observed

spectrum of scalar perturbations. The only way we can satisfy the experimental data

in this instance is to assume a large warp factor - however this is contrary to all our

assumptions thus far. So we must conclude that this particular model does not agree

with the data.

Conversely in the limit where we take W >> 1 we find a cancellation between dan-
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gerous 1/φ terms which gives the final result for the scalar tilt

ns ∼ 1 − 7ε, (4.190)

which can be seen to arise as the limiting case of the W ∼ 1 solution. Using the

WMAP bound, this serves to fix a much tighter bound on ε at horizon crossing,

which we can interpret as a upper bound on N

N ≤
V210

2M2
ph

4

V0
, (4.191)

and therefore we can satisfy the experimental bounds on inflation. In both cases we

see that the indices are positive definite, as in the Ads models.

Examples of other solutions

Let us consider more general solutions which arise from the master equation (4.150). We

will consider both UV and IR inflationary solutions for generality and then make some

comments about the general signals of inflation in the large N limit.

To distinguish between each solution branch, we note that on the UV side we have large

field inflation. So there will generally be positive contributions to the potential, and the

vacuum energy V0 will be set to zero. In the IR branch, we have V0 6= 0 at all times and the

potential will generally be taken to be tachyonic indicating that the branes move away from

the tip of the throat. In the fuzzy sphere picture, the UV side corresponds to a collapsing

sphere, while the IR side corresponds to an expanding sphere.

An interesting solution was analysed in [92] when there is no quadratic term in the

potential i.e V (φ) = V0−V4φ
4. Solving the master equation (4.150) forH(φ) and integrating

back to find the time dependence of the inflaton, we obtain the following solutions for the

AdS type backgrounds:

H(φ) ∼ H0 +H4φ
4

φ(t) ∼ 1

4Mp

√

(tf − t)

√

NW0

H4
, (4.192)

where the terms in the Hubble parameter are calculated to be

H0 =

√

NT3V0

3M2
p

, H4 =

√

NT3

3V0

1

2Mp

(

W0 − 1

L4
± V4

)

. (4.193)

Note that there is a potential sign ambiguity in the definition of H4. This is because we

can consider either the IR inflation (where we have a minus sign in the potential) or the

UV inflation (where we have a plus sign). In both cases the equation of motion for the
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inflaton is the same. In the IR case this is the early time, small φ solution, whereas in the

UV case it corresponds to the late time solution where the fuzzy sphere has collapsed to

almost zero size. In both cases the form of the equation of motion implies that in the small

field limit the inflaton is moving relativistically with large γ. The number of e-foldings can

be determined as follows:

Ne ∼ H0(te − t0) +
NW0

16M2
p

(

φ2(te) − φ2(t0)
)

, (4.194)

where t0 and te are the times at the beginning and end of inflation, respectively. We must

ensure that tf ≥ te, where tf represents the time at which we can no longer trust our

approximations.

Let us now reconsider the mass gap solution. Since the throat is finite and the warp

factor is actually constant for small values of φ, there is no reason why the field is moving

rapidly near the origin. Let us take a quadratic potential of the form V (φ) = V0 ± V2φ
2,

where the positive sign signifies UV type inflation. For small values of the inflaton, we

have the Hubble parameter H(φ) = H0 +H2φ
2, where the coefficients are determined in a

similar way to those in the AdS case. If we assume that the field is small (in both cases),

the general solution can be written as

H0 ∼
√

NT3V0

3M2
p

, H2 ∼ 3H0

8M2
p

(

1 ±
√

1 +
8NT3V2

9H2
0

)

. (4.195)

This solution is valid for the IR inflation. For the UV solution, one only need substitute

a minus sign in front of the V2 term inside the square root. Again this means that for the

IR solution this is the early time evolution, while for the UV solution it is the late time

evolution of the Hubble parameter. In both cases, the solution for the field can be written

as

φ(t) ∼ φ0e
−

4M2
pH2(tf−t)

N , tf ≥ t, (4.196)

which means that the field is rolling non-relativistically because H2 and φ are both small.

Let us focus initially on the IR solution. If we wish the inflaton to be increasing,

corresponding to the branes moving away from the origin, we are forced to choose the

minus sign in H2. The other sign is a solution where the field is getting smaller. In the

event that V2 is zero, we find either a solution where the inflaton is at a constant value, or

H2 is positive definite and again the field is getting smaller. The former case corresponds

to de-Sitter expansion since we can immediately integrate the solution for the scale factor

to get a = eH0t. In the UV region we must also impose an additional reality constraint

9H2
0 ≥ 8NT3V2. If this reality bound is saturated, the field is again rolling towards the

origin. In both cases the evolution of the field is essentially determined by the vacuum

energy V0 which sets the overall scale for the Hubble parameter.
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Using the solution to the equation of motion, we can calculate the number of e-foldings

and write is as a function of the field. In the UV case the branes would be near the bottom

of the throat, and so this correspond to late time evolution of the inflaton. As such we

interpret this as the early stage evolution of the IR inflationary model. We obtain

Ne ∼ H0(te − t0) +
N

8M2
p

(

φ2(te) − φ2(t0)
)

, (4.197)

e-foldings in this regime and we must again ensure that te ≤ tf . Since we expect φ to be

small over this time period in accordance with our approximation of the Hubble parameter,

the dominant contribution to the number of e-foldings comes from the constant part of the

potential. However since N >> 1 we may well see a sizable contribution to the number of

e-foldings.

Let us consider what happens in more generality, although we will assume that the

Hubble parameter is generically of the form shown in (4.157). Focusing our attention on

the power spectra, we find that the amplitudes are given by

A2
T =

2H2

π2M2
p

, (4.198)

A2
S =

H2

8π2M2
p ε

(

1 +
4M4

pH
′2

N2W 2h4T3

)1/2

,

r = 16ε

(

1 +
4M4

PH
′2

N2W 2h4T3

)−1/2

,

where we have included r as the ratio of the tensor/curvature amplitudes. Recall that each

of these is to be evaluated at horizon crossing if we wish to normalise them to the WMAP

data. Note that ε is expected to be small at horizon crossing. We can repeat the same

analysis as before and consider limits of the term in parenthesis. (i) In the first case when

we consider relativistic motion, the scalar amplitude and ratio reduce to

A2
s ∼ H2|H ′|

4π2εNWh2
√
T3

r ∼ 8εNWh2
√
T3

M2
p |H ′| . (4.199)

If we satisfy the condition that r ≤ 0.24 then we find from the scalar amplitude, saturating

the bound, that 8H2 ∼ 10−9M2
p or more concretely that

NV (φ) ∼ 10−10

(

Mp

Ms

)4

, (4.200)

assuming that the string coupling is around 10−2. This will be extremely difficult to satisfy

under the assumption of large N , and also vacuum energy dominance, unless we are willing
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to postulate a low string scale

(ii) If we consider the non-relativistic limit, we find the solutions

A2
s ∼ H2

8π2M2
p ε

(

1 +
2M2

pH
′2

N2W 2h4T3
+ . . .

)

,

r ∼ 16ε

(

1 −
M2

pH
′2

N2W 2h4T3
+ . . .

)

. (4.201)

The first expression implies that ε >> H2 at horizon crossing, which can be satisfied

provided that the energy density of the inflaton is vanishingly small. In fact if this condition

is met, the ratio will simultaneously be satisfied. A quick calculation shows that if we

demand r ≤ 0.24 (i.e using the strongest possible WMAP bound), then the energy density

must satisfy E ≤ 10−7M4
P which is very small in Planck units.

Using the fact that fNL ≤ 100 we can obtain a bound on N for our theory. For an

arbitrary warp factor we see that

N ≥
√

32πgs

299

|H ′|
Wh2

(

Mp

Ms

)2

. (4.202)

To an order of magnitude approximation the numerical factor is O(1). Now for mass gap

backgrounds we may generally expect W ∼ 1 or W >> 1 and h is a small constant which

forces N to be large. This will be further enhanced by a smaller string scale unless the

derivative of the Hubble parameter is vanishingly small. For the AdS scenarios we have

competition between the W and h2 terms in the denominator - so we would expect N to

be set explicitly by the choice of background fluxes and the string scale.

The general form for the scalar spectral index can be calculated to give

nS − 1 = −2ε

(

2 − H

H ′∆

)

(4.203)

∆ =
H ′′(γ2 + 1)

2H ′γ2
+

(W 2 − 1)(2γ2 − 1)

Wγ2φ
+

h′

hγ2W

(

W (γ2 − 1) + (W 2 − 1)(1 − 2γ2)
)

for an arbitrary warp factor. In principle the backreaction effects will appear through a

redefinition of the harmonic function, and so this expression should be valid for all theories

satisfying our assumptions. This equation simplifies once we assume relativistic motion, i.e

γ >> 1

∆ ∼ H ′′

2H ′ +
2(W 2 − 1)

Wφ
+

h′

Wh

(

W − 2(W 2 − 1)
)

. (4.204)

For AdS type solutions the fuzzy potential is constant, however we can see that the limiting
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solutions are

∆ ∼ H ′′

2H ′ +
h′

h
W ∼ 1

∆ ∼ H ′′

2H ′ + 2W

(

1

φ
− h′

h

)

W >> 1. (4.205)

Clearly in our simplest case analyzed in the previous section we see that for W >> 1 the

second term will be identically zero thus cancelling out any dangerous 1/φ dependence. For

the mass gap solution we find similar expressions to those presented above except that the

h′ terms will be zero - at least to leading order. Unless the backreaction dramatically alters

the solution, we should expect inflation to favour the W >> 1 regime, in which case the

scalar index is essentially only a function of the potential and its derivatives - the overall

scale being set by the ε term.

In general we expect the number of e-foldings to be enhanced by factors of N thus

making the universe generically very flat. However the factors of N tend to increase the

level of scalar and tensor perturbations, making it difficult to satisfy observational bounds

without imposing restrictive fine tuning. Very recently it was shown that this model is in

fact the only DBI inflation model which gives testable predictions for the gravitational wave

spectrum [109]. The other models have almost vanishingly small tensor fluctuations, well

below the proposed sensitivity of Plank.

4.4.2 Inflation at finite N

In this section, we investigate cosmic inflation due to a small number of coincident branes.

We begin with some general remarks about the finite N formalism before specialising to

two simple cases, namely N = 2 and N = 3. In these cases the action is highly non-linear

and gives an expression for the speed of sound and the inflationary parameters in certain

regions of the phase space. They are very different from those in the single brane models.

General remarks and motivations

We will now switch to the finite N formulation of the non-Abelian Myers action, using the

prescription for the symmetrized trace as given in [53]. We believe this prescription to be

correct, however a concrete proof remains an outstanding problem. In most models of brane

inflation, the bulk fluxes are tuned so that only a single brane is left after the brane-flux

annihilation process [93]. In the context of the landscape, this is a very special case and the

general expectation is that there remain several residual branes which will tend to coincide

to minimise their energy in a warped throat. In the first part of this section we looked at

the large N limit, which has many problems due to the large back-reactive effects on the

geometry although it is a more general solution than the single brane cases. In the remainder
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of the section we will look at the solution when there are a handful of residual branes at

the tip of a warped throat. This means that we can effectively neglect back-reactive effects

as in the single brane models, while still retaining the enhanced non-Abelian world-volume

symmetry.

Let us rewrite the expressions for the energy and pressure of the coincident branes in a

more suitable manner for a finite N analysis:

E = T3STr



h4
∞
∑

k,p=0

(−XṘ2)kY p(αiαi)k+p(1 − 2k)

(

1/2

k

)(

1/2

p

)

+ V − h4





P = −T3STr



h4
∞
∑

k,p=0

(−XṘ2)kY p(αiαi)k+p

(

1/2

k

)(

1/2

p

)

+ V − h4



 , (4.206)

where we have used the following definitions

X = λ2h−4, Y = 4λ2R4h−4,

(

1/2

m

)

=
Γ(3/2)

Γ(3/2 −m)Γ(m+ 1)
, (4.207)

and the fact that the scalar potential is a singlet under the trace. We employ the sym-

metrization procedure in [53]. The basic formulas we need are then once again

STr[(αiαi)m] = 2(2m+ 1)

(n+1)/2
∑

i=1

(2i− 1)m

= 2(2m+ 1)

n/2
∑

i=1

(2i)m. (4.208)

The first line corresponds to odd n = N − 1, and the second line to even n. Note that we

move from working with the N -dimensional representation to the spin representation with

n = 2J . It is important to consider what we mean by a physical radius in this context. We

use the definition

r2 = λ2R2Limm→∞

(

STr(αiαi)m+1

STr(αjαj)m

)

= λ2R2n2, (4.209)

which implies that the Lagrangian will converge for velocities from 0 to 1, and moreover

that the radius of this convergence will be unity. This definition is consistent with what we

know about the solution in the large N limit.

To illustrate the additional complexity arising from the finite N solution, let us calculate

the speed of sound in two examples using (4.139). For N = 2, we find

C2
s (N = 2) =

(1 −XṘ2)(3 + 4Y −XṘ2[2 + 3Y ])

3 + Y (4 −XṘ2)
, (4.210)
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where R2 = r2/λ2. This is obviously far more complicated than the large N expression

which is C2
s = 1 −XṘ2. For N = 3, we obtain

C2
s (N = 3) =

(1 − 4XṘ2)(3 + 16Y − 8XṘ2[1 + 6Y ])

3 + 16Y (1 −XṘ2)
, (4.211)

where now R2 = r2/(4λ2). Note that in both cases, we recover the usual result that C2
s = 1

when the velocity of the branes is zero.

4.4.3 Two brane inflation.

In this subsection, we consider inflation driven by two coincident branes moving in the

warped throat. This gives rise to a U(2) symmetry on the world-volume. The relevant

expressions for the energy and pressure can be calculated using (4.206) and (4.208):

E2 = 2T3

(

h4(1 + 2Y −XY Ṙ2)√
1 + Y (1 −XṘ2)3/2

+ V − h4

)

(4.212)

P2 = −2T3

(

h4(1 + 2Y −XṘ2[2 + 3Y ])
√

1 + Y
√

1 −XṘ2
+ V − h4

)

.

Note that in order to keep the energy finite, we should impose the constraint φ̇2 ≤ h4T3.

This also ensures that the contribution coming from the DBI part of the action will be

non-negative, as can be seen from the first term in the numerator of the energy equation.

In general it is difficult to get solutions due to the complicated form of the energy density.

So let us make the approximation that the inflaton is rolling ultra relativistically. We can

define the relativistic factor γ much as we did in the large N solution by γ = (1−XṘ2)−1/2.

We now write the energy and pressure as functions of γ, and then take the large γ limit.

By utilising the conservation equation and dropping all acceleration terms, we can find the

solution

γ3 ∼ ∓
M2

pH
′

√

T3(1 + Y )h2
, (4.213)

where H ′ is the derivative of the Hubble parameter with respect to φ. The sign in (4.213)

corresponds to the two choices φ̇ = ±
√
T3h

2 + ... in the expansion of the velocity φ̇ about

its saturation value. The − sign is for the choice φ̇ > 0 while the + sign for φ̇ < 0. Note

that in order to have γ > 0, we must demand that H ′ < 0 for φ̇ > 0 and H ′ > 0 for φ̇ < 0.

The choice of sign here is vital to obtaining the correct solution branch for inflation.

We can rewrite the speed of sound as a function of γ and Y as follows:

C2
s =

1

γ2

(

γ2(1 + Y ) + 2 + 3Y

3γ2(1 + Y ) + Y

)

, (4.214)
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which shows the finite N corrections to the equation in this limit. Without recourse to a

specific background, we can make the following observation: If we consider limiting solutions

for Y , i.e that it is either >> 1 or << 1, all Y dependence drops out of the expression

and the equation reduces to C2
s ∼ 1/(3γ2). The sound speed is thus only a third of that in

the large N limit. This appears to be the attractor point for the velocity with this action

regardless of background choice. In this case we find (4.179) is given by

Λ =
XṘ2(5 + 6Y −XY Ṙ2)

2(1 −XṘ2)(3 + 4Y −XY Ṙ2)
. (4.215)

In the γ ≫ 1 case, the non-linearity parameter is

fNL ≈ 0.24γ2, (4.216)

which is a little smaller than the large N (and single brane) solution and effectively means

that we can satisfy the observational bounds whilst considering larger velocities than in the

single brane scenario.

The corresponding Friedmann equation in this case becomes

H2 =
E2

3M2
p

, (4.217)

where we are using the energy as defined in (4.212). Substitute our expression for γ into

this equation, we find that the Hamilton Jacobi equation for N = 2 (in the large γ limit)

becomes

H2(φ) ∼ 2T3

3M2
p

(

V (φ) − h4 ∓
h2M2

pH
′

√
T3

)

, (4.218)

for an arbitrary flux induced potential. At this stage we could either specify the form of the

Hubble parameter and then consider how this modifies the potential, or we could specify

the form of the potential and then solve for H. We use this latter approach as this appears

to be more within the spirit of the Hamilton-Jacobi formalism we have employed thus far.

Inflation in AdS type backgrounds

Let us first consider a solution where the potential is dominated by a constant, V ∼ V0. Let

us also assume that the background is approximately AdS. In the small field limit, we expect

the h4 term is negligible compared to the remaining terms. So as a first approximation we

ignore its contribution. Solving this differential equation, with an appropriate constant of

integration C̃, we obtain

H2(φ) ∼ 2T3V0

3M2
p

tanh2

(√

3V0

2M2
p

L2

φ
(−1 + C̃φ)

)

. (4.219)
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Since H ′ < 0, we have assumed φ̇ > 0 in obtaining this solution. In the limit of very

small φ, we can approximate the solution by H2 ∼ 2T3V0/(3M
2
p ), which is of the same

functional form as in the large N case. However this expression is not consistent with our

approximation that γ >> 1 since the ratio H ′/φ2 is approximately zero for vanishingly

small values of φ. Therefore we must be careful to choose a regime of validity where this

solution is valid. Careful inspection shows that the function γ3 has a turning point in the

small field limit, with a maximal value given by

γ3
max ∼ 256e−4

9

M4
p

L4V
3/2
0

√
1 + Y

, (4.220)

where Y is constant in the AdS background, and the value of the field at this point is given

by φ = φmax ∼ L2
√

6V0/(4Mp). Thus to consider inflation in this region, we need some

’extreme fine tuning’ to set up the initial value of the field.

Rather than proceeding this way, we make a Taylor series expansion of the Hubble

parameter for small φ but without dropping the h4 term in (4.218). This means we must

include quartic terms in the expansion of the Hubble parameter and so we need

H(φ) ∼
4
∑

i=0

Hiφ
i, (4.221)

We will also keep quartic terms in the inflationary potential for consistency, V (φ) ∼ V0 −
V2φ

2/2−V4φ
4/4+ . . .. Equating the various coefficients, we find that the linear term in the

Hubble parameter actually vanishes, leaving us with the residual terms

H0 =

√

2T3V0

3M2
p

, (4.222)

H2 = − T3V2

6M2
pH0

,

H3 =
2
√
T3H2

3L2H0
,

H4 = − 1

12M2
pL

4H0

√
T3

(

V4L
4T

3/2
3 + 4T

3/2
3 − 12M2

pH3L
2T3 + 6M2

pL
4
√

T3H
2
2

)

.

We find that the constant piece of the potential dominates the Hubble parameter when the

field is vanishingly small. The sign of the last term is potentially ambiguous which can lead

to interesting cosmological behaviour. It turns out that the Hubble term is extremised at

the usual φ = 0 solution (which is a local maximum), and there exists a non-trivial solution

given by

φmin =
1

8H4

(

−3H3 ±
√

9H2
3 − 32H2H4

)

, (4.223)

where we must require the term inside the square root to be non-negative. We can rewrite
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this reality constraint as
H2

H4
≥ 8H2

0L
4

T3
. (4.224)

We now find the possibility of a ’cosmic turnaround’ because H2 will be negative definite

for those regions of phase space where H4 is also negative. If we concentrate on regions of φ

near the origin, H ′ < 0 so we necessarily have φ̇ > 0 in order for γ > 0 in our approximation

(4.213). Of course, we have implicitly assumed that the field is monotonic so we cannot say

anything about the reality of such a bounce solution within the current framework.

It is easy to solve the equation of motion in this limit for relativistic motion. As in the

case of a single brane, and for the large N solution, we obtain the following term for the

inflaton equation of motion

φ ∼ φ0

1 − φ0

√
T3(t− t0)/L2

, (4.225)

where again we define φ0 as the field value at time t = t0, and it can be seen that φ̇ > 0.

To see the implications of this for inflation, we must first determine which are the

relevant parameters in this finite N formulation. The modified ’fast roll’ parameter in this

case can be written as

ε ∼ ±φ
2
√
T3

L2

H ′

H2
, (4.226)

where the sign is related to the sign for φ̇ and we need to demand that inflation ends when

ε = 1 as usual. Recall that for small φ, H ′ < 0 and we need to choose the minus sign in

this equation (coming from the choice φ̇ > 0). Inserting our expression into the Hubble

parameter, we see that ε can be expanded in powers of the inflaton. Keeping only the

leading order term (which amounts to dropping O(φ4) contributions), we see that inflation

will end around

φe ∼
(

L2H2
0

2|H2|
√
T3

)1/3

. (4.227)

The corresponding number of e-foldings given by this Hubble parameter is generically a

power series in φ. We expect the dominant contribution to arise from the constant piece H0

as in the standard inflationary scenario. Integrating over the field, we find the expressions

for the inflaton as a function of e-folding number:

φ0 ∼ φe

(

1 +
Ne

√
T3φe

L2H0

)−1

. (4.228)

Inserting this back into the ’fast roll’ parameter (4.226), we find that the dependence on

the number of e-foldings is of the same functional form as in the large N case:

ε ∼



1 +Ne

(

3M2
p

L4V2

)1/3




−3

(4.229)
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For the perturbation amplitudes we can use the general results developed in the appendix.

We find that the gravitational wave amplitude will be constant to leading order, and given

by

A2
T ∼ 4T3V0

3π2M2
p

=
V0

6π5gs

(

Ms

Mp

)4

(4.230)

the corresponding expression for the scalar amplitude is given by

A2
S ∼ V0γ

32
√

3π5gs

(

Ms

Mp

)4


1 + 60

{

3M2
p

L4V2

}1/3




3

(4.231)

We choose to re-write this in terms of the tensor amplitude as

A2
S ∼ 10−1γA2

T



1 + 60

{

3M2
p

L4V2

}1/3




3

(4.232)

Now the non-gaussianity condition implies that the bound 1 << γ2 << 400 must be

satisfied to comply with observation. The spectral indices for this model at large γ are

nT ∼ 2H ′√T3φ
2

H2L2
(4.233)

nS − 1 ∼ − 4X2

(1 + 60X2)
+ . . .

where the first line is understood to be evaluated at horizon crossing, and we have written

X2 = (3M2
p /L

4V2)
1/3 as a dimensionless parameter. Note that the tensor index is negative,

but suppressed by the Hubble parameter. Clearly the scalar index is bounded from above

by unity, and so normalising to WMAP data implies that 0 ≤ X2 ≤ 0.05, or more concretely

that
L4V2

2.4 × 104
≥M2

p . (4.234)

Using this constraint in (4.232) we see that the term in brackets varies between 1 and 64.

The relationship between the two amplitudes is characterised by the parameter r and so we

recover the anticipated DBI relation

r ∼ 1

γ
. (4.235)

The fact that 1 << γ ≤ 20 in this model implies that r will generically be small and thus

well within the WMAP confidence bounds. [91] Furthermore this implies that the tensor

amplitude will be smaller in magnitude than the scalar one, something like 10−10 for a range

of γ. Using the normalisation for the scalar amplitude, namely that it satisfies A2
S ∼ 10−9

at horizon crossing, we see that this constrains the potential in terms of the string scale.

For small X2 we find
V0O(103)

gs

(

Ms

Mp

)4

≥ 1 (4.236)
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where we are interested in an order of magnitude approximation. Whilst for the maximal

value of X2 we recover the same constraint but with an additional factor of 103 in the

numerator. Clearly both solutions are sensitive to the mass splitting between Planck and

string scales and imply that generic inflation prefers the string scale to be close to the

Planck scale in order not to have super-Planckian scalar potentials. For example if we have

Ms ∼ 10−1Mp then the potential constraint becomes O(101 − 104)V0 ≥ 1. What about the

constraint in (4.234)? Upon substituting for the background parameters we see that this

equation can be written as

V2 ≥ O(105)

MK

M2
p

M4
s

(4.237)

which gives us a constraint on the inflaton mass scale.

Inflation in mass gap backgrounds

If we repeat the analysis for the mass gap backgrounds, (assuming that the constant part

of the potential dominates), we find the following solution for the Hubble parameter:

H(φ) = ±
√

2T3

2M2
p

(V0 − h4) tanh

(√

3(V0 − h4)

2M2
p

φ+ C̃

h2

)

(4.238)

where we have used the fact that the warp factor is constant to write the solution as a

function of h.

Substituting this into the gamma constraint, we must require that the solution is larger

than unity even when φ is vanishingly small. We make a Taylor series expansion of the

resultant function, and find that γ3 ∝ sech2(F(C̃)), where the amplitude of the function is

determined by the ratio of the potential and the warp factor. Now the hyperbolic trigono-

metric function is a decreasing function of its argument, which forces us to take the limit

C̃2 << h4/V0 in order for the large velocity expansion to hold.

Let us assume that we can in fact take this limit and consider the implications for

inflation. Calculation of the fast roll parameter ε yields the following

ε ∼ 3

2

(

Cosh2

(

√

6(V0 − h4)φ

2Mph2

)

− 1

)−1

, (4.239)

which is a decreasing function of the inflaton field. Thus after some critical field value φc, we

will find a solution where inflation never ends. It may appear that this is an artifact due to

the neglect of higher order terms in the potential. However if we consider quartic terms in

V (φ), and also up to the same order in a Taylor expansion of H(φ), we find the same result

that ε is a decreasing function of the inflaton. We conclude that in the relativistic limit
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that inflation (once started) never ends14 unless we turn on extra effects, such as nonzero

gauge fields. This result is not anything that we expect from the results of the single brane

case, or the large N limit discussed in the previous sections and appears to be a distinctly

finite N effect. Of course, it may well be that standard inflation can occur for moderate

values of γ. However this would almost certainly require the use of numerical methods.

Of course the mass gap background will eventually give way to something similar to the

Ads solution, where the harmonic function will have explicit dependence upon the inflaton

field. Therefore we expect inflation to end in this regime. The fact that the mass gap

solution has finite warping means that it will be relatively easy to produce the necessary 60

e-folds of expansion.

Non-relativistic limit

Let us restrict ourselves to the non-relativistic regime in order to see the consequences

for brane inflation 15. It would of course be more preferable to obtain an interpolating

solution between these two extremes, however it is analytically challenging and would be

better suited to a numerical analysis. After performing a series expansion of the continuity

equation, we find the following solution for the velocity of the field in the Hamilton-Jacobi

formalism:

φ̇ = −
√

1 + YM2
pH

′

(3 + 4Y )
, (4.240)

which means that the corresponding Friedmann equation reduces to

3M2
pH

2

2T3
∼ h4

√
1 + Y

(

1 + 2Y +
Z2M

4
pH

′2

2T3h4

)

+ V (φ) − h4, (4.241)

where Z2 = (1+Y )/(3+4Y ). Let us solve this equation by considering a standard quadratic

potential. There are two solution branches, one of which has an imaginary component of

H. We ignore this solution as it appears unphysical. The other real solution can be

parameterised by a quadratic Hubble parameter with nonzero components given by

H0 =

√

2T3V0

3M2
p

H2 =
9H0

M2
p



1 ±
√

1 +
V2M2

p

18V0



 . (4.242)

For inflation to occur we must ensure that we take the minus sign in the solution for H2.

14Technically this is no longer true once the branes reach the gluing region. However the effective action
is no longer expected to be a good description of the physics in this region.

15This has recently been examined in [104].
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The speed of sound in this instance reduces to

C2
s ∼ 1 − 15φ̇2

h4T3(3 + 4Y )

(

1 +
5Y

4
+ . . .

)

(4.243)

where we can substitute φ̇ for derivatives of the Hubble parameter.

The non-relativistic assumption means that we can find inflationary solutions even in

the mass gap backgrounds. Using the definition of the ε parameter we find that the leading

order contribution yields

ε ∼ e2βNe (4.244)

at Ne e-folds before the end of inflation. We have introduced the dimensionless ratio β =

M2
pH2/H0 for simplicity. For inflation to occur we must ensure β < 0, which implies that

H2 < 0. However the fact that the slow roll parameter is now exponential implies that the

level of scalar perturbations will now be enhanced by this exponential term. Our assumption

is that φ is small, so the speed of sound is essentially unity in this instance. It transpires

that the simplest equation to study is the tensor to scalar ratio r, which is now given by

r ∼ 16ε. If we demand that r ≤ 1/4 to satisfy the more stringent bound, then after some

algebra we find the following constraint

V2 ≥ 0.1V0

M2
p

(4.245)

where we have explicitly left in the numerical value. If this bound is not satisfied then we

find H2 to be very small which suppresses the number of e-foldings and sufficient inflation

is generically difficult to achieve.

For Ads type backgrounds we have the following solution for the Hubble parameter

H0 =

√

2T3V0

3M2
p

H2 =
3H0(3 + 4Y )

M2
p

√
1 + Y



1 ±
√

1 +
T3V2

√
1 + Y

9H2
0 (3 + 4Y )



 (4.246)

where we must again take the minus sign for an inflationary solution. Interestingly for

Y << 1 we see that the solution becomes exactly the same as the mass gap one. We

can follow the same procedure and obtain a similar result for the number of e-folds. The

difference is of course due to the constant nature of the factor Y .

ε ∼ exp

(

2δNe

√
1 + Y

3 + 4Y

)

(4.247)

where δ is defined in a similar way to β except that the Hubble parameters are different in

this case.
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The observed constraint on the amplitude ratio can now be written as

V2 ≥ 0.1V0

M2
p

F (Y ) F (Y ) =
3 + 4Y√

1 + Y
(4.248)

which is slightly different from the mass gap solutions. The function F (Y ) acts to increase

the RHS of the expression above, ranging from F (Y ) ∼ 3 → 4
√
Y depending upon our

choice of fluxes. Larger values of Y clearly impose tighter constraints on the parameter V2

and so one would anticipate that smaller values are more preferential.

In both instances we see that in order to satisfy the scalar curvature constraints, we

require the dominant term in the potential to satisfy the following

V0 ≤ 3 × 10−7

(

Mp

Ms

)4

, (4.249)

which can be combined with the expressions for V2 to yield a constraint purely on that

variable in terms of the Planck and string scales (and also the fluxes for the AdS case). We

have again assumed a string coupling of gs ∼ 10−2 in the above expression.

4.4.4 Three brane inflation

Let us now move to the case where there are three coincident branes, giving rise to a U(3)

world-volume symmetry. We have the energy and pressure:

E = 2T3

(

h4(1 + 4Y [1 +XṘ2])√
1 + 2Y (1 − 2XṘ2)3/2

+
3V

2
− 3h4

2

)

, (4.250)

P = −2T3

(

h4(1 + 4Y − 4XṘ2[1 + 3Y ])
√

1 − 2XṘ2
√

1 + 2Y
+

3V

2
− 3h4

2

)

.

The symmetry breaking induced by a gauge field in this case will be U(3) → SU(3)×U(1).

Let us again consider the large γ solution for the fast rolling action. It is convenient to

define

γ =
1

√

1 − 2XṘ2
, (4.251)

which allows us to write the energy and pressure in (4.250) as explicit functions of γ.

However the exact solution for the speed of sound can be written as a function of γ

C2
s =

(

γ2 − 2

γ2

)(

γ2(1 + 8Y ) − 4(1 + 6Y )

γ2(3 + 8Y ) + 8Y

)

, (4.252)

which, unlike the other solutions studied so far, allows for the possibility that the sound
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speed is zero. This is the case if either of the following critical conditions are satisfied:

γ2
c = 2 or, γ2

c =
4(1 + 6Y)

(1 + 8Y)
. (4.253)

The first condition corresponds to φ̇2/h4 = T3/4. The second condition is a little more

difficult to deal with due to the potential φ-dependence of Y . Now we can consider the two

simplifying limits. (i) In the limit where Y → 0, we see that the constraint on the velocity

becomes φ̇2/h4 = 3T3/8, while (ii) in the converse limit (where Y is dominant), we see

that φ̇2/h4 = T3/3. All of these conditions are allowed because they satisfy the causality

constraint on the velocity. We know that fluctuation modes exit the horizon at the reduced

scale kCs = aH in these models, so a zero speed of sound tells us that the modes will never

exit the horizon. In order to consider an inflationary epoch, we have to ensure the velocity

is either much smaller than either of the critical bounds (corresponding to non-relativistic

motion), or much higher corresponding to ultra relativistic motion. Thus unlike the case of

N = 2, we are lead to selecting a specific velocity range. Even for Y ∼ O(1), we find that

Cs rapidly tends towards unity as in normal models of scalar field inflation.

In order to consider inflationary solution, we start with the continuity equation. Taking

the large velocity limit we find the general result

γ3 =
−(±1)M2

pH
′√2(1 + 2Y )

h2
√
T3(1 + 6Y )

, (4.254)

where we have made use of the fact that φ̇ = ±√
2T3h

2 + .. in this limit. The sign ambiguity

here can be resolved by demanding γ to be positive. Since we are interested in solutions

where H ′ < 0, we take the + sign in the definition of the velocity. Substituting our

expression back into the Friedmann equation (4.250) yields the Hamilton-Jacobi equation

M2
pH

2

T3
= V (φ) − h4 −

h2M2
pH

′

3

√

8

T3
, (4.255)

which can again be integrated to solve for H once we specify the background potential. The

level of non gaussianities arising from this action can be parameterised by

fNL ∼ 162

85(1 + 8Y )

(

1 +
10(1 + 8Y )

51
γ2

)

(4.256)

which clearly has non-trivial dependence on the inflaton field for the mass gap backgrounds

(since Y is constant for the AdS solutions). Let us explore the possible solution space here.

For the AdS case we find that

Y =
KMgs

4aπ
(4.257)

and so can be small with appropriate tuning of the fluxes and the string coupling. If we

assume Y << 1 then we see that the non-gaussianities are (up to O(Y 2) terms - and
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dropping the constant piece)

fNL ∼ 0.37γ2 + . . . , (4.258)

whilst if we assume that Y is large (corresponding to large fluxes) we find the following

fNL ∼ 2.99γ2 + O
(

1

Y

)

. (4.259)

The latter condition is much larger than anything encountered before, and severely restricts

the relativistic approximation we have been making. In fact if we have Y ∼ O(1) we find

a similar condition. However for small Y we see that the non-gaussianities are roughly the

same as in the previous sections, and would appear to be the more favourable regime for

inflation. This tells us that we require gs << 1/(MK).

Inflation in AdS type backgrounds

It is generically difficult to find inflationary solution for AdS backgrounds. To proceed with

our small φ, but large gamma solution, we again turn to a Taylor series approach to the

Hubble parameter. Let us take the same form for the expansion as in the last section,

with a similar expression for the inflaton potential. Again we find that there is no linear

dependence in this limit, but the non zero coefficients can be seen to be

H0 =

√

V0T3

M2
p

, (4.260)

H2 = − V2T3

4M2
pH0

,

H3 = −
√

8T3H2

3L2H0
,

H4 = − 1

8M2
pL

4H0

(

V4L
4T3 + 4T3 + 8M2

pH3L
2
√

2T3 + 4M2
pL

4H2
2

)

.

The conditions for inflation are basically the same as in the previous section, which is to be

expected since we are assuming that inflation is essentially driven by the constant part of

the Hubble parameter. The slow roll parameter is shifted only slightly by the extra brane

because the velocity in this case is increased by an extra factor of
√

2. Solving for the

inflaton at the end of inflation, we find

φe ∼
(

L2H2
0√

8T3|H2|

)1/3

, (4.261)

where we have absorbed the minus sign into the definition of |H2| to make the solution

manifestly positive. This is only slightly different from that obtained in the N = 2 case.

By integrating the Hubble term, we can invert again the resulting expression to obtain the

inflaton as a function of the number of e-foldings. The result is the same as for N = 2
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except that now the tension is doubled. Finally we obtain ε as a function of the number of

e-foldings

ε ∼



1 +Ne

(

4M2
p

L4V2

)1/3




−3

(4.262)

which represents only a slight numerical shift with regard to the expression in the previous

section for N = 2. We can once again calculate the relevant signals for this model, and the

analysis proceeds much as in the case of N = 2, except that we are now forced to restrict

ourselves to the γ >> 1 solution. The tensor amplitude at leading order becomes

A2
T ∼ V0

4π4gs

(

Ms

Mp

)4

(4.263)

which is a factor of 3/2 larger than the amplitude in the N = 2 case (4.230). Whilst the

scalar amplitude can again be written solely in terms of the tensor amplitude divided by

the parameter r.

The tensor spectral index is relatively suppressed as in the N = 2 case, however for the

scalar index we find

nS − 1 ∼ − 4X3

1 + 60X3
(4.264)

which is identical in form to the N = 2 solution in (4.233) under the replacement by

X3 = (4M2
p /L

4V2)
1/3. The same remarks apply here except the physical constraint is

slightly tighter than before
L4V2

3.2 × 104
≥M2

p . (4.265)

Using the small Y constraint in order to suppress the non-gaussianities we can write this

constraint purely in terms of the potential term

V2 >>
gs × 109M2

p

M4
s

(Y << 1) (4.266)

Let us consider the two limiting solutions, bearing in mind that we expect that the Y >> 1

case will lead to extremely large non-gaussianities. For small Y we see that the sound speed

becomes

Cs(Y << 1) ∼
√

γ2 − 4

3γ
(4.267)

and so if we also assume that γ2 >> 4 then we see that this becomes 1/3. This is unlike

all the other DBI models studies so far. Interestingly if we take the limit where Y >> 1 we

also see that it drops out of the analysis

Cs(Y >> 1) ∼
√

γ2 − 28/8

γ
(4.268)

and in fact we find that Cs ∼ 1 as in standard slow roll models of inflation. Following
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the same procedure as in the N = 2 case we can constrain the potential using the scalar

amplitude. We find that the range for V0 is

V0 ∼ O(10−10 − 10−9)

(

Mp

Ms

)4

Y << 1 (4.269)

V0 ∼ O(10−9 − 10−7)

(

Mp

Ms

)4

Y >> 1

which once again indicates the sensitivity of inflation to the string scale.

Inflation in mass gap backgrounds.

Let us now restrict our analysis to the mass gap backgrounds. We can again solve the

master equation assuming that the constant part of the potential dominates the solution.

The result is

H(φ) =

√

T3(V0 − h4)

Mp
tanh

(

3(φ+ C̃)√
8Mph2

√

V0 − h4

)

, (4.270)

which should be valid for small values of the inflaton field, and we have left the mass gap

warp factor as an arbitrary constant. We must ensure that this expression is consistent

with our demand that the γ factor is large. This requires us firstly to take the minus sign

in the velocity term, and secondly to examine the behaviour of the function for small values

of the inflaton. Differentiating this function and then performing a Taylor series expansion

of (4.254) for small φ yields the constraint (valid up to terms of O(φ4))

3Q >>

{

1 + cosh

(

3C̃

Mp

√

Q

2

)}

(

1 +
7φ4L4

4µ4λ2T 2
3

)

, (4.271)

where we have introduced the simplifying notation Q = V0/h
4 − 1. Clearly to satisfy this

condition we must require that the term C̃ arising from the boundary condition be very

small in Planck units. Neglecting the φ4 terms, we can again use a Taylor series expansion,

this time for C̃ ∼ 0. At leading order we must satisfy the following condition on the

parameter Q:

Q >>
2

3

(

1 +
3C̃2

4M2
p

+ . . .

)

. (4.272)

However the fact that we require C̃ to be small has an effect on the amount of inflation we

can have in this fast rolling regime. To see this, let us calculate the fast rolling parameter

ε, making use of our near relativistic approximation. A short calculation shows that

ε ∼ −3

2
csch2

(

3(φ + C̃)

Mp

√

Q

8

)

. (4.273)
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4.4. DBI INFLATION IN THE IR.

For small values of C̃ and the inflaton field, we see that the real part of this function is

divergent. In fact ε is a decreasing function of φ which suggests that inflation will only be

possible once the field reaches a critical point given by φc ∼ Mp

3

√

8
QArccsch(

√

2
3)− C̃, after

which we enter a phase of eternal inflation which will not end within the bounds set by our

theory.

Non-relativistic limits

In this subsection, we examine the non-relativistic motion of the branes and compare with

the results from the previous sections. From the continuity equation and the definition of

the energy momentum tensor, we find the inflaton velocity

φ̇ = −
2M2

pH
′√1 + 2Y

3(1 + 4Y )
. (4.274)

Upon substitution of this back into the Friedmann equation, we obtain

3M2
pH

2

2T3
∼ h4

√
1 + 2Y

(

1 + 4Y +
Z3M

4
pH

′2

9T3h4

)

+
3

2
(V (φ) − h4), (4.275)

where we have introduced another function Z3:

Z3 =
(3 + 16Y )(1 + 2Y )

(1 + 4Y )2
. (4.276)

The above equation (4.275) is difficult to solve analytically for either background. So we

resort to the usual trick of Taylor expanding the Hubble term for a given potential.

Let us consider the mass gap backgrounds. The simplest analytic solutions are obtained

when we keep only terms up to quadratic in the potential and Hubble parameter. It is easy

to see that the coefficient H1 is imaginary and so we drop it from the analysis. The results

for the remaining components are

H0 =

√

T3

2M2
p

(3(V0 − h4) + 2h2), (4.277)

H2 =
9H0h

2

8M2
p

(

1 ∓
√

1 +
4V2T3

9h2H2
0

)

. (4.278)

The general result for the ε equation reduces to

ε ∼
8M2

pH2φ
2

3H2
0

√
1 + 2Y

(1 + 4Y )
, (4.279)

for all backgrounds, where Y is a function of the inflaton for the mass gap solutions. For

small values of φ we can expand this and obtain a value for the field at the end of inflation.
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4.4. DBI INFLATION IN THE IR.

As a result we can write the slow roll parameter as an explicit function of the number of

e-foldings:

ε ∼ e
8β

3
Ne , (4.280)

where we have used the previous definition of β. For any inflation to occur we must have

β < 0 → H2 < 0 therefore we must again choose the minus sign in the expression above.

Following the same line of reasoning as in the N = 2 case we see that the constraint on

the potential contributions can be written as follows

V2 ≥ 10−3V0

M2
p

(4.281)

where we have neglected higher order contributions in h2. This is smaller than the constraint

in the two-brane solution due to the additional ’mass’ coming from the extra brane. The

inflaton is effectively weighted by this contribution thus making it roll more slowly. Of

course this analysis is only valid for small velocities, which is more problematic in this

instance as there are zeros for the speed of sound function which destroys any hope of

obtaining an inflationary solution.

We can also obtain a simple analytic solution if the constant parts of the potential and

the Hubble parameter are the dominant contribution. In this case we find

H0 =

√

T3

M2
p

(

V0 − h4 +
2h2

3

)

, (4.282)

where the warp factor contribution is subdominant. This implies that the velocity of the

inflaton will be zero from the Hamilton-Jacobi expression.

As for the AdS type backgrounds, we again cannot obtain simple analytic solutions

when we keep quartic terms in the Friedmann equation. So again we restrict our analysis

to the purely quadratic pieces. As in the other cases, the linear term in H must vanish for

consistency and so the physical solutions are

H0 =

√

3T3V0

2M2
p

(4.283)

H2 =
H0

√
1 + 2Y

4Z3M2
p

(

1 ∓
√

1 +
6ZT3V2

H2
0

√
1 + 2Y

)

. (4.284)

The inflation in this limit is parameterised by the slow roll term

ε ∼ exp

(

4δNe

√
1 + 2Y

3(1 + 4Y )

)

, (4.285)

where we have reintroduced the parameter δ as in the N = 2 section. The validity of the
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4.5. DISCUSSION

expression is determined by the background fluxes manifest in the Y terms.

Again we find a similar bound on V2 as in the two-brane case, namely

V2 ≥ 10−1V0

M2
p

F (Y ) (4.286)

where the function F (Y ) now ranges between F (Y ) = 1 → 2
√

2Y .

In both cases we see that in order to satisfy the observed scalar curvature bound, we

require

V0 ≤ 1 × 10−7

(

Mp

Ms

)4

(4.287)

which can again be used to constrain the maximal value of V2. Once again we see that the

inflationary scale is sensitive to the magnitude of the string scale.

4.5 Discussion

In this chapter we have investigated three different inflationary scenarios within a string

theory context. The first was based upon the Geometrical Tachyon arising from the NS5-

ring background. In this case we found a suitable inflationary phase was possible when we

considered dynamics in the ring plane (and inside the ring), with sufficiently small metric

perturbations. The effective potential also has a resolvable minimum in this instance which

leads to the possibility of a reheating phase as in standard field theory models of inflation.

We also studied the theory in the direction transverse to the ring, and found that the

general solution was a never ending period of inflation. However our analysis was only valid

as a leading order approximation. A more general analysis would show that the scalar field

would be damped and therefore could be used as an initial phase of inflation. Moreover this

suggested a phase of double expansion, whereby we consider an initial inflationary phase

arising from motion transverse to the ring. As the field gets damped it comes to rest at

the origin before quantum effects force the field to condense in another direction leading to

another phase of accelerated expansion.

In the second model we developed a hybrid inflation scenario using the Geometrical

Tachyon coupled to an open string tachyon field. The results in this case showed that

inflation with appropriately small tensor perturbations was indeed possible. However recent

work has suggested that the level of non-gaussian fluctuations generated near the end of

inflation may be slightly too high.

Despite the attractive simplicity of both scenarios there remain several difficulties.

Firstly there are certainly α′ corrections which become important as the inflaton field nears

its global vacuum. There is also the issue of the toroidal compactification and moduli sta-

bilisation, as this was put in by some ad hoc mechanism. In addition there is also the issue
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4.5. DISCUSSION

about transmitting the massive (emitted) closed string sector to the Standard Model sector.

The final model was multiple brane DBI inflation in the IR end of a warped throat. This

is the more phenomenologically viable model of the three, but significantly more complicated

due to the non-Abelian nature of the effective action. We studied the large N limit, and

found many similarities between this and the N = 1 case, however the physically relevant

observables in this case are all weighted by factors of N , making it difficult to normalise

them to the experimental data without a great deal of fine tuning. We then investigated

two further cases where N = 2 and N = 3, which are more under control from a closed

string perspective. However due to the non-linear nature of the action functionals we were

only able to look at two limiting regimes, namely non-relativistic and highly relativistic

motion. A more detailed analysis of these two cases would be welcome.

The results obtained here are surprisingly different from the usual IR models [93]. We

saw that inflation was possible in the large N limit, and furthermore predicts relatively

large levels of tensor perturbations [109]. For the N = 2 case we saw that inflation never

ends in the mass gap backgrounds, however for AdS type solutions we require the string

scale to be close to the Planck scale. The level of non-gaussian fluctuations in this case is

smaller than those associated with the single brane models. The final case of three-brane

inflation led to larger non-gaussian fluctuations. Furthermore inflation in the AdS solution

appears to be extremely sensitive to the flux parameters, preferring small fluxes. As before

we found that inflation in the mass gap backgrounds was never ending.

Despite the difficulties, this remains a robust inflationary proposal. The single brane

models require additional fine tuning of the background fluxes, before inflation even occurs.

Moreover once inflation ends in these models, much of the released energy will go into

reheating the U(1) gauge bosons in the inflationary throat, and not into reheating the

Standard Model degrees of freedom in another throat. Our model doesn’t have this problem,

since it is a worldvolume theory, thus the universe lives on the moving stack of branes and

therefore energy loss during reheating is no longer a problem. Of course to make the model

more realistic we must include more branes so that the gauge group becomes large enough

to contain the Standard Model. We must also ensure that there are intersections at angles

between some of these branes in order to generate chiral fermions. These are certainly

problems that need to be addressed in the future.
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CHAPTER 5

CONCLUSIONS

We have studied three different aspects of D-brane dynamics in this thesis. Firstly we

investgated the dynamics of a Dp-brane in a fivebrane background through the tachyon-

radion correspondance. At its simplest level, the correspondance allows us to map the

gravitational problem to that of a condensing open string mode in flat space. However as

emphasised by Sen [27] this mapping may shed new light on the condensation of the open

string tachyon, in particular the tachyonic vacuum.

It would be interesting to develop this duality further by mapping to a complex Geo-

metrical Tachyon field. In fact this may be possible using the tools developed in Section

2.5, whereby we combine the open string tachyon with the Geometrical Tachyon. Alterna-

tively we may be able to construct a purely geometrical, but complex solution. This would

be useful for obtaining a better understanding of coincident D-D̄ systems, which generally

admit complex open string tachyons. The geometrical origin of such a construction would

shed new light on the vacuum state which is currently only really understood from the CFT

description.

The dynamics of a brane in this background are also relevant for a discussion of the

string - black hole transition [32]. The ring solution can be exactly described in terms of

a SU(2)/U(1) × SL(2,R)/U(1) coset [20], which allows for the construction of the hairpin

brane [21] in this instance. It would also be possible to use the CFT to calculate the emission

rate of the closed string modes, and thus allow us to learn more about the decay of the

Dp-brane [30] in addition to the possible scattering of branes whose trajectory takes them

into the ring. Finally we point out that the work in this section involved an approximation

of the full harmonic function for this solution [20], and it would be useful to extend the

work to the exact case.

In Chapter three we investigated the dynamics of multiple branes in various supergravity

backgrounds. We interpreted this as the collapse or expansion of the fuzzy sphere in these

geometries. The equations of motion in general are difficult to solve, and so we made

various approximations of resorted to numerical solutions. In all cases, bar the D6 − D0

solution, the fuzzy spheres collapse toward zero size. Using the fact that the equations of

motion can be mapped to curves on Riemannian surfaces of varying genus, we suspect that

there is a relationship between brane dynamics and algebraic geometry. It was noticeable

that for the solutions in flat space [51], and those which corresponded to supersymmetric

configurations [23], the underlying geometrical structure was of low genus - and typically
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solvable. Understanding this in more detail would shed more light on non-commutative

geometries in curved space.

We also considered more general background metrics, and included the effects of U(1)

gauge fields. Again the solutions indicate that the fuzzy sphere will always collapse, but

with the time of collapse dependent upon the strength of the U(1) field. The large-small

dualities that can be seen in flat space [51] are no-longer present in curved backgrounds,

although parts of the dualities continue to exist. We then proceeded to construct both

the macroscopic and microscopic models of the BIon spike on a D3-brane in an arbitrary

background, using the gravitational Myers effect [55]. This proved to be easiest to solve in

the NS5-brane background, but we found interesting behaviour in all cases.

In the final part of the chapter we investigated the tension spectrum for (p, q)-strings in

the Warped Deformed Conifold [70]. This is highly relevant from a cosmological perspective,

since the bound state gives us information about the tension of cosmic superstrings and thus

opens up the possibility of experimental verification of string theory. It is also relevant from

the gauge theory perspective because the dual field theory to the Warped Deformed Conifold

is a confining SU(M) theory, and therefore F -strings in this background are confining

strings between quark-antiquark pairs [73]. This may lead to new insights into QCD type

gauge theories. In particular the tension spectrum appears to be of a similar form to that

proposed by Douglas and Shenkar [74], and is therefore inconsistent with the Casimir scaling

hypothesis [73]. Recently it has also been proposed that the microscopic (p, q)-bound state

may have relevance in the context of open string attractors [107].

There are many further things to investigate along these lines. Firstly our initial analysis

neglected the NS two-form, and also higher order RR fields. Both should be included if

we are to fully understand the dynamics of fuzzy spheres in general backgrounds. We also

restricted the analysis to fuzzy even spheres, since they are simpler to deal with. It would

be useful to consider the fuzzy odd spheres aswell [54], since this could be relevant for

cosmology or black hole physics. It is also important to understand how the action behaves

when one considers finite brane corrections. Recall that everything in the first sections of

this chapter were only valid in the large N limit. There has been a recent proposal for the

action of the symmetrized trace [53](for the case of SO(3)), which we utilised explicitly in

section 3.4. A full proof of the validity of this proposal is still required.

The final chapter considered how brane dynamics could be useful for inflationary cos-

mology, with the open string mode playing the role of the inflaton. We presented three

different scenarios along these lines. Firstly Geometrical Tachyon Inflation, then a hybrid

inflation scenario and finally DBI inflation in the IR region of a warped throat.

The first model is a modification of the usual tachyonic inflation scenario, but with

a cosine potential similar to those arising in discussions of natural inflation [101]. The

difference between the two is that there is no fundamental scale to set the maximum height
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of the Geometrical Tachyon potential. As such we can tune the parameter space of k and R

to obtain a sufficient amount of inflation, with suitable levels of metric perturbations. The

resulting inflaton potential admits a minimum, and therefore classical reheating is possible

[99] provided one imposes additional tuning on the brane trajectory. The scalar mode

emerging from the transverse ring plane leads to an eternally accelerating solution unless

the tension of the brane is sufficiently small, and is therefore better suited to a model of

dark energy [77]. This model can be developed further, especially in the light of the Sen

conjectures [27], and could still be phenomenologically relevant.

The second model used the Geometrical Tachyon to drive an initial (hybrid) inflationary

phase, with the open string tachyon playing the role of the waterfall field.. Again we saw that

with appropriate tuning one could find inflation with small levels of metric perturbations,

although the non-gaussian fluctuations [95] may be too large in this model. It would be

useful to try and embed this model into a more realistic compactification, since the torus

is known not to be phenomenologically favoured [10]. One may also expect that there is a

sigma model description of such a theory, which would shed valuable light onto the coupling

of the Geometrical Tachyon to the open string tachyon. It also opens up the possibility

that there may be a ”landscape” of such geometrical hybrid inflation scenarios, and as such

it is useful to understand them in as much detail as possible.

The final model was a modification of the usual IR inflation [93] scenario, where there

were multiple coincident branes at the tip of a warped throat. This proved to be a gener-

alisation of the DBI inflation scenario [92], sharing many of the features of those models

[94]. Although severe fine tuning is required in order to satisfy the observational data,

this model is phenomenologically robust. In this model the universe is contained on the

worldvolume of the branes, as opposed to living in another throat as in the usual models

[92]. This means that reheating after the end of inflation will be due to open string modes.

As mentioned in Chapter four, the traditional DBI models rely on closed string interactions

to reheat the standard model degrees of freedom but there is a residual U(1) gauge boson

in the inflationary throat which absorbs much of the reheating energy. Thus it is not clear

how much we can learn about the coupling of the inflaton sector to the standard model

in these cases. There remains much work to be done on this model in particular, in order

to make it more phenomenologically viable. Firstly we need to arrange for the branes to

intersect at an angle in order to obtain chiral fermions in the spectrum. We also need to

extend the analysis to include a larger number of branes, in order to have a large enough

gauge group which will include the standard model, whilst still being able to neglect the

backreaction. It is also interesting to explore the relationship with the Randall-Sundrum

model [105], since the gluing region acts as a UV cutoff for the theory. It would also be

useful to consider a fully compactified version of the model using the ideas of flux compact-

ifications [108] in type IIB string theory, and then determine how reheating and particle

creation fit into the overall picture. This is important if we want to relate string theory to
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particle phenomenology.
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APPENDIX A

COSMOLOGICAL PERTURBATIONS.

In this section we explicitly calculate the relevant perturbation amplitudes for the non-

Abelian action The definitions of the parameters in this section differ from those in other

sections in order to simplify the calculations as much as possible - and again we use units

where Mp = 1. The action in the general case can is a non-linear function of the inflaton

field and its time derivative, therefore it can be written in the following form - consistent

with the general prescription described in [106]

S =

∫

d4x
√−g

[

R

2
+ p(φ,X)

]

, (A.1)

where

p = −NT3

[

h4(φ)

√

1 − 2h−4(φ)T−1
3 X

√

1 + C−1h−4(φ)φ4 − h4(φ) + V (φ)

]

. (A.2)

with X = φ̇2/2 and C = λ2ĈT 2
3 /4. We will explicitly consider the case of large N in this

appendix, however it is straightforward to show that the derived results also apply for the

finite N case. The background equations following from this are

3H2 = 2Xp,X − p ≡ ρ ,

Ḣ = −Xp,X ,

1

a3
(a3φ̇p,X)· − p,φ = 0 . (A.3)

Note that the energy density ρ is given here by

ρ = NT3





h4(φ)W (φ)
√

1 − 2h−4(φ)T−1
3 X

− h4(φ) + V (φ)



 , (A.4)

where the fuzzy potential is

W (φ) =
√

1 + C−1h−4(φ)φ4 . (A.5)
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We consider the following general perturbed metric about a FRW background

ds2 = −(1 + 2A)dt2 + 2a∂iBdxidt

+a2 [(1 + 2ψ)δij + 2∂ijE + 2hij ] dxidxj , (A.6)

where ∂i represents the spatial partial derivative ∂/∂xi and ∂ij = ∇i∇j − (1/3)δij∇2.

Here A, B, ψ and E denote scalar metric perturbations, whereas hij represents tensor

perturbations. Defining the so-called comoving perturbation

R ≡ ψ − H

φ̇
δφ , (A.7)

the Fourier modes of curvature perturbations satisfy the following expression

v′′ +

(

c2Sk
2 − z′′

z

)

v = 0 , (A.8)

where

z2 =
a2φ̇2(p,X + 2Xp,XX)

H2
,

v = zR ,

c2S =
p,X

ρ,X
=

p,X

p,X + 2Xp,XX
. (A.9)

Note that k is a comoving wavenumber and a prime represents a derivative with respect to

a conformal time τ =
∫

a−1dt. If the variable z has a time-dependence z ∝ |τ |q, one has

z′′/z = γS/τ
2 with γS = q(q − 1). As long as c2S is a positive constant or a slowly varying

positive function, the solution for (A.8) is given by

v =

√

π|τ |
2

[

c1(k)H
(1)
νS

(cSk|τ |) + c2(k)H
(2)
νS

(cSk|τ |)
]

, (A.10)

where νS =
√

γS + 1/4 = |q − 1/2|. The coefficients are chosen to be c1 = 0 and c2 = 1 to

recover positive frequency solutions in a Minkowski vacuum in an asymptotic past.

Defining the spectrum of curvature perturbation as PR = k3|R|2/2π2, we obtain

PR =
a2c−2νS

S

z2

(

H

2π

)2( 1

aH|τ |

)2( Γ(νS)

Γ(3/2)

)2(k|τ |
2

)3−2νS

≡ A2
S

(

k|τ |
2

)3−2νS

, (A.11)

The spectral index of the power spectrum is

nS − 1 = 3 − 2νS = 3 −
√

4γS + 1 , (A.12)
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which means that the scale-invariant spectrum corresponds to νS = 3/2. About the de-

Sitter background with |τ | = 1/aH, the amplitude of the curvature perturbation is given

by

A2
S ≃ 1

p,XcS

(

H2

2πφ̇

)2

. (A.13)

The tensor perturbations satisfy the same equation as in the case of standard slow-roll

inflation. Taking into account polarization states of tensor modes, The power spectrum is

given by

PT = 8

(

H

2π

)2( 1

aH|τ |

)2( Γ(νT )

Γ(3/2)

)2(k|τ |
2

)3−2νT

≡ A2
T

(

k|τ |
2

)3−2νT

, (A.14)

where νT =
√

γT + 1/4 with a′′/a = γT /τ
2. Hence about the de-Sitter background the

amplitude of the tensor perturbation is

A2
T ≃ 8

(

H

2π

)2

. (A.15)

The spectral index of the power spectrum is

nT = 3 − 2νT = 3 −
√

4γT + 1 . (A.16)

The tensor to scalar ratio is

r =
A2

T

A2
S

= 8
φ̇2

H2
p,XcS . (A.17)

To study the running of the spectral indices we find it convenient to introduce the following

parameters:

ǫ1 = − Ḣ

H2
, ǫ2 =

φ̈

Hφ̇
, ǫ3 =

Ḟ

2HF
. (A.18)

where F ≡ p,X + 2Xp,XX and ǫ1 is the same as the ε which we used in the latter part of

Chapter four. If ǫ̇i = 0, we can derive

z′′

z
=
γR
τ2

, γR =
(1 + ǫ1 + ǫ2 + ǫ3)(2 + ǫ2 + ǫ3)

(1 − ǫ1)2
. (A.19)

Under the slow-roll approximation |ǫi| ≪ 1, we find that the spectral index of the curvature
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perturbation is given by

nS − 1 = −2(2ǫ1 + ǫ2 + ǫ3) . (A.20)

Similarly the spectral index of the tensor perturbation is

nT = −2ǫ1 . (A.21)

By using the background equations we have ǫ1 = φ̇2p,X/(2H
2). This then shows that the

tensor to scalar ratio (A.17) yields

r = 16ǫ1cS = −8cSnT . (A.22)

Again this is the same expression as in the single brane case, and is a distinctive feature of

DBI inflation. The WMAP normalisation we will employ in the latter section of this thesis

is the following [88–91]

AS
2 = 10−9

r =
A2

T

A2
S

≤ 0.55 (≤ 0.24 at 0.95 C.L)

ns = 0.987+0.019
−0.037

fNL ≤ 100 (A.23)

which may differ slightly from normalisation used elsewhere.
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