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Abstract. It has recently been shown that in every spatial dimension there
exist precisely five distinct classes of topological insulators or superconductors.
Within a given class, the different topological sectors can be distinguished,
depending on the case, by a Z or a Z2 topological invariant. This is an exhaustive
classification. Here we construct representatives of topological insulators and
superconductors for all five classes and in arbitrary spatial dimension d, in
terms of Dirac Hamiltonians. Using these representatives we demonstrate how
topological insulators (superconductors) in different dimensions and different
classes can be related via ‘dimensional reduction’ by compactifying one or more
spatial dimensions (in ‘Kaluza–Klein’-like fashion). ForZ-topological insulators
(superconductors) this proceeds by descending by one dimension at a time into
a different class. The Z2-topological insulators (superconductors), on the other
hand, are shown to be lower-dimensional descendants of parent Z-topological
insulators in the same class, from which they inherit their topological properties.
The eightfold periodicity in dimension d that exists for topological insulators
(superconductors) with Hamiltonians satisfying at least one reality condition
(arising from time-reversal or charge-conjugation/particle–hole symmetries)

6 Authors to whom any correspondence should be addressed.
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is a reflection of the eightfold periodicity of the spinor representations of
the orthogonal groups SO(N ) (a form of Bott periodicity). Furthermore,
we derive for general spatial dimensions a relation between the topological
invariant that characterizes topological insulators and superconductors with
chiral symmetry (i.e., the winding number) and the Chern–Simons invariant. For
lower-dimensional cases, this formula relates the winding number to the electric
polarization (d = 1 spatial dimensions) or to the magnetoelectric polarizability
(d = 3 spatial dimensions). Finally, we also discuss topological field theories
describing the spacetime theory of linear responses in topological insulators
(superconductors) and study how the presence of inversion symmetry modifies
the classification of topological insulators (superconductors).
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1. Introduction

Topological insulators (superconductors) are gapped phases of non-interacting fermions
which exhibit topologically protected boundary modes. These boundary states are gapless,
with extended wavefunctions, and protected against arbitrary deformations (or perturbations)
of the Hamiltonian, as long as the generic symmetries (such as e.g. time-reversal symmetry) of
the Hamiltonian are preserved and the bulk gap is not closed7. The different phases within
a given topological insulator (superconductor) are characterized by a topological invariant,
which is either an integer Chern/winding number or a Z2 quantity. The integer quantum
Hall effect (IQHE) is the best-known example of such a phase. In the IQHE, the transverse
(Hall) electrical conductance σxy carried by edge states is quantized and is proportional to
the topologically invariant Chern number [1, 2]8. As a consequence of the quantization of the
Hall conductance σxy , two different quantum Hall states with different values of σxy cannot be
adiabatically connected without closing the energy gap in the bulk. They therefore represent
distinct ‘topologically ordered’ phases that are separated by a quantum phase transition
(figure 1(a)).

Other examples of gapped topological phases are the (spinless) chiral px + ipy

superconductor [8], which breaks time-reversal symmetry (T ), and the quantum spin Hall
(QSH) states [9]–[15], which are time-reversal invariant. In the former case, the topological
features in question are those of the fermionic quasiparticle excitations deep in the
superconducting phase, whose dynamics is described by the Bogoliubov–de Gennes (BdG)
Hamiltonian9. The BdG Hamiltonian of any superconductor has, by construction, a ‘built-
in’ charge-conjugation (or particle–hole) symmetry (C). In analogy to the IQHE, the different
topological phases of the px + ipy superconductor can be labeled by an integer (Z) topological
invariant [16]. The corresponding quantized conductance is the transverse (Hall) thermal or
‘Leduc-Righi’ conductance (divided by temperature). The quantum spin Hall effect (QSHE), on
the other hand, which occurs in two-dimensional (2D) and 3D time-reversal invariant insulators,
is characterized by a Z2 topological number ν0 [9], [12]–[14]. This binary quantity distinguishes
the nontrivial state (ν0 = 1), whose boundary modes consist of an odd number of Dirac fermion
modes (i.e. odd number of Kramers’ pairs), from the trivial state (ν0 = 0), which is characterized
by an even number of Kramers’ pairs of boundary (surface or edge) states (figure 1(b)).
A physical realization of the QSHE was theoretically predicted [17] and experimentally
observed [18, 19] in HgTe/(Hg,Ce)Te semiconductor quantum wells. Subsequently, based on
both theoretical considerations [15, 20] and experimental measurements [21]–[25], the 3D Z2

topological insulator phase was shown to occur in bismuth-related materials, such as the BiSb
alloys Bi2Se3 and Bi2Te3.

The key difference among the IQHE, the QSHE and the 3D Z2 topological insulator, and
the chiral px + ipy superconductor lies in their generic symmetry properties (discussed in more

7 In the presence of disorder (= lack of translational symmetry), a sufficient condition is that all bulk states near
the Fermi energy are localized [3].
8 A profound implication of a non-vanishing Chern number is that exponentially localized Wannier wavefunctions
cannot be constructed [4]–[6]. Yet another manifestation of the nontrivial nature of the band structure when σxy 6= 0
appears in the scaling of the entanglement entropy (and the entanglement entropy spectrum) [7].
9 Physically, the quasiparticles are responsible for heat (energy) transport and not for the electrical transport
properties of the superconductor.
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quantum phase transition quantum phase transition

Figure 1. Topological distinction among quantum ground states. (a) Z
classification and (b) Z2 classification.

detail below). All these states are topological in the sense that they cannot be continuously
deformed into a trivial insulating state (i.e. a state without any gapless boundary modes) while
keeping the generic symmetries of the system intact and without closing the bulk energy gap.
The key property of the QSH states, for example, is the spin–orbit interaction in combination
with time-reversal symmetry (T ). The latter protects the boundary states from acquiring a gap or
becoming localized in the presence of disorder (= terms added to the Hamiltonian which break
translational symmetry). The chiral px + ipy superconductor, on the other hand, is characterized
by C but the lack of T .

The aforementioned examples of ‘symmetry protected’ topological states are part of a
larger scheme10 that fully classifies [26, 27] all topological insulators (superconductors) in terms
of symmetry and spatial dimension. This classification scheme is summarized in table 3. The
first column in this table provides the complete list of all possible ‘symmetry classes’ of single-
particle Hamiltonians. There are precisely ten such ‘symmetry classes’, a fundamental result
due to Zirnbauer [29] and Altland and Zirnbauer [30]11. These authors recognized that there
is a one-to-one correspondence between single-particle Hamiltonians and the set of (‘large’)
symmetric spaces, of which there are precisely ten, a classic result obtained in 1926 by the
mathematician Élie Cartan. The work of Altland and Zirnbauer extends, indeed completes,
the much earlier work by Wigner and Dyson that is well known in the context of random
matrix theory as the three ‘unitary, orthogonal and symplectic’ symmetry classes [32]. Before
discussing in more detail the result of the classification in table 3, we will first briefly explain the
notion of ‘symmetry class’ and the tenfold list of Hamiltonians, which is the framework within
which the classification scheme in table 3 is formulated. The reader familiar with this topic may
skip this subsection.

10 A complete classification of all topological insulators (superconductors) in dimensionalities up to d = 3 was
given in [26]. A systematic regularity (periodicity) of the classification as the dimensionality is varied was
discovered by Kitaev in [27] for all dimensions through the use of K -theory. A certain systematic pattern as
the dimensionality is varied was discovered for some of the topological insulators by Qi et al in [28] using a
Chern–Simons action in extended space. Below we will use a version of the ideas of ‘dimensional reduction’
employed in [28].
11 See, e.g., [31] for a more recent discussion.
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1.1. Review: classification of generic Hamiltonians—‘the tenfold way’

Consider the gapped first-quantized Hamiltonian describing the topological insulator (super-
conductor) in the bulk (d spatial dimensions). The topological features of this Hamiltonian,
which we are interested in characterizing, are (by definition) not changed if we modify (deform)
the Hamiltonian by adding terms (or perturbations) to it that break any translational symmetry
that may be present. Thus, the topological features must be properties of a translationally not
invariant Hamiltonian. Seeking a classification scheme, one must have some framework within
which to classify such translationally not invariant Hamiltonians. Such a classification cannot
involve the notion of ordinary symmetries, i.e. of unitary operators that commute with the
Hamiltonian. Consider e.g. (Pauli-)spin rotation symmetry, ubiquitous in condensed matter
systems. The notion of spin-rotation invariance can be eliminated by writing the Hamiltonian
in block form and by focusing attention on a block of the Hamiltonian. Such a block decompo-
sition can be performed for any symmetry that commutes with the Hamiltonian. The notion of
‘symmetry classes’ mentioned above refers to the properties of these blocks of symmetry-less
‘irreducible’ Hamiltonians: as it turns out, there are only ten of them. The basic idea why this
is the case is simple to understand. The only properties that the blocks can satisfy are certain
reality conditions that follow from the ‘extremely generic symmetries’ of time reversal and
charge conjugation (or particle–hole symmetry). These are not symmetries in the above sense,
since they are both represented by anti-unitary operators, when acting on the single-particle
Hilbert space. Specifically, consider a general system of non-interacting fermions described by
a ‘second-quantized’ Hamiltonian H . For a non-superconducting system, e.g., this reads

H =
∑
A,B

ψ
†
AHA,B ψB, (1)

with fermion creation and annihilation operators satisfying canonical anti-commutation
relations

{ψA, ψ
†
B} = δA,B . (2)

Here, we imagine, for convenience of notation, that we have ‘regularized’ the system on a lattice,
and A and B are combined labels for the lattice sites i and j , and if relevant, of additional
quantum numbers such as e.g. a Pauli-spin quantum number (e.g. A = (i, a) with a, b =±1/2).
ThenHA,B is an N × N matrix, the ‘first quantized’ Hamiltonian. (Similarly, a superconducting
system is described by a BdG Hamiltonian for which we use the Nambu spinor instead of
complex fermion operators ψA and ψ†

A and whose first quantized form is again a matrixH when
discretized on a lattice.)

Now, time-reversal symmetry can be expressed in terms ofH: the system is invariant under
time-reversal symmetry if and only if the complex conjugate of the first quantized Hamiltonian
H∗ is equal to H up to a unitary rotation UT , i.e.

T : U †
T H

∗ UT = +H. (3)

Moreover, the system is invariant under charge-conjugation (or particle–hole) symmetry if and
only if the complex conjugate of the Hamiltonian H∗ =HT is equal to minus H up to a unitary
rotation UC , i.e.

C : U †
C H

∗ UC =−H. (4)

(This property may be less familiar, but it is easy to check [26] that it is a characterization of
charge-conjugation (particle–hole) symmetry for non-interacting systems of fermions). A look
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at equations (3) and (4) reveals that T and C, when acting on the single-particle Hilbert space,
are not unitary symmetries, but rather reality conditions on the Hamiltonian H modulo unitary
rotations12,13.

Now it is easy to see that there are only ten possible ways for a system to respond to
time-reversal and charge-conjugation (particle–hole symmetry) operations. As for time-reversal
symmetry (T ), the Hamiltonian can either be (i) not time-reversal invariant, in which case we
write T= 0 or (ii) it may be time-reversal invariant and the anti-unitary time-reversal symmetry
operator T squares to plus the identity operator, in which case we write T= +1 or (iii) it may
be time-reversal invariant and the anti-unitary time-reversal symmetry operator T squares to
minus the identity, in which case we write T=−1. Similarly, there are three possible ways
for the Hamiltonian H to respond to charge-conjugation (particle–hole symmetry) C (again,
C may square to plus or minus the identity operator). For these three possibilities we write
C= 0,+1,−1. Hence, there are 3× 3= 9 possible ways for a Hamiltonian H to respond to
time-reversal and charge-conjugation (particle–hole transformation). These are not yet all ten
cases because it is also necessary to consider the behavior of the Hamiltonian under the product
S = T · C, which is a unitary operation. A moment’s thought (see table 1) shows that for 8 of the
9 possibilities the behavior of the Hamiltonian under the product S = T · C is uniquely fixed14.
(We write S= 0 if the operation S is not a symmetry of the Hamiltonian, and S= 1 if it is.)

12 In second-quantized language, time-reversal and particle–hole operations can be written in terms of their action
on the canonical fermion creation and annihilation operators,

T ψAT −1
=

∑
B

(UT )A,B ψB, CψAC−1
=

∑
B

(U ∗C)A,B ψ
†
B . (5)

While the particle–hole transformation is unitary, the time-reversal operation is anti-unitary, T iT −1
=−i. The

system is time-reversal invariant (particle–hole symmetric) if and only if T HT −1
= H (CHC−1

= H ). This
leads directly to conditions (3) and (4) for the first quantized Hamiltonian. Note that T HT −1

= H implies
T ψA(t)T −1

= T e+iHtψAe−iHtT −1
=
∑

B (UT )A,B ψB(−t). Iterating T and C twice, one obtains T 2ψAT −2
=∑

B (U
∗

T UT )A,B ψB , and C2ψAC−2
=
∑

B (U
∗

CUC)A,B ψB . When acting on the first quantized Hamiltonian this
reads (U ∗T UT )

†H(U ∗T UT ) =H and (U ∗CUC)
†H(U ∗CUC) =H, respectively. The first quantized Hamiltonians H are

seen (below) to run over an irreducible representation space, and thus (U ∗T UT ) and (U ∗CUC) are both multiples of
the identity matrix IN (by Schur’s lemma). Since UT and UC are unitary matrices, there are only two possibilities
for each, i.e. U ∗T UT =±IN and U ∗CUC =±IN . The time-reversal operation T and the particle–hole transformation
C can then each square to plus or to minus the identity, T 2

=±1 and C2
=±1.

13 It may also be worth noting that we may assume without loss of generality that there is only a single time-reversal
operator T and a single charge-conjugation operator C. If the (first quantized) Hamiltonian H was invariant under,
say, two charge-conjugation operations C1 and C2, then the composition C1 · C2 of these two symmetry operations
would be a unitary symmetry when acting on the first quantized Hamiltonian H, i.e. the product UC1 ·U

∗

C2
would

commute with H. By bringing the Hamiltonian H in block form, UC1 ·U
∗

C2
would then be constant on each block.

Thus, on each block UC1 and UC2 would then be trivially related to each other, and it would suffice to consider one
of the two charge conjugation operations. On the other hand, note that the product T · C corresponds to a unitary
symmetry operation when acting on the first quantized HamiltonianH. But in this case the unitary matrix UT ·U ∗C .
does not commute but anti-commutes with H. Therefore, T · C does not correspond to an ‘ordinary’ symmetry
of H. It is for this reason that we need to consider the product T · C (called ‘chiral’ or ‘sublattice’ symmetry S
below) as an additional essential ingredient for the classification of the blocks, besides time-reversal T and charge-
conjugation (particle–hole) symmetries C.
14 The symmetry operation S is sometimes called ‘sublattice symmetry’, hence the notation S. However, in many
instances, S is not realized as a sublattice symmetry, but is simply the product of T and C. Therefore the term
‘chiral symmetry’ to describe the symmetry operation S is sometimes more appropriate.
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Table 1. Listed are the ten generic symmetry classes of single-particle
Hamiltonians H, classified according to their behavior under time-reversal
symmetry (T ), charge-conjugation (or particle–hole) symmetry (C), as well
as ‘sublattice’ (or ‘chiral’) symmetry (S). The labels T, C and S represent
the presence/absence of time-reversal, particle–hole and chiral symmetries,
respectively, as well as the types of these symmetries. The column entitled
‘Hamiltonian’ lists, for each of the ten symmetry classes, the symmetric space of
which the quantum mechanical time-evolution operator exp(itH) is an element.
The column ‘Cartan label’ is the name given to the corresponding symmetric
space listed in the column ‘Hamiltonian’ in Élie Cartan’s classification scheme
(dating back to the year 1926). The last column entitled ‘G/H (ferm. NLσM)’
lists the (compact sectors of the) target space of the NLσM describing Anderson
localization physics at long wavelength in this given symmetry class.

Cartan label T C S Hamiltonian G/H (ferm. NLσM)

A (unitary) 0 0 0 U(N ) U(2n)/U(n)×U(n)
AI (orthogonal) +1 0 0 U(N )/O(N ) Sp(2n)/Sp(n)×Sp(n)
AII (symplectic) −1 0 0 U(2N )/Sp(2N ) O(2n)/O(n)×O(n)
AIII (ch. unit.) 0 0 1 U(N + M)/U(N )×U(M) U(n)
BDI (ch. orth.) +1 +1 1 O(N + M)/O(N )×O(M) U(2n)/Sp(2n)
CII (ch. sympl.) −1 −1 1 Sp(N + M)/Sp(N )×Sp(M) U(2n)/O(2n)
D (BdG) 0 +1 0 SO(2N ) O(2n)/U(n)
C (BdG) 0 −1 0 Sp(2N ) Sp(2n)/U(n)
DIII (BdG) −1 +1 1 SO(2N )/U(N ) O(2n)
CI (BdG) +1 −1 1 Sp(2N )/U(N ) Sp(2n)

The only case when the behavior under the combined transformation S = T · C is not determined
by the behavior under T and C is the case where T= 0 and C= 0. In this case, either S= 0
or S= 1 is possible. This then yields (3× 3− 1)+ 2= 10 possible types of behavior of the
Hamiltonian.

The list of ten possible types of behavior of the first quantized Hamiltonian under T , C
and S is given in table 1. These are the ten generic symmetry classes (the ‘tenfold way’),
which are the framework within which the classification scheme of topological insulators
(superconductors) is formulated.

Let us first point out a very general structure seen in table 1. This is listed in the column
entitled ‘Hamiltonian’. When the first quantized Hamiltonian H is ‘regularized’ (or ‘put on’)
a finite lattice, it becomes an N × N matrix (as discussed above). The entries in the column
‘Hamiltonian’ specify the type of N × N matrix that the quantum mechanical time-evolution
operator exp(itH) is. For example, for systems that have no time-reversal or charge-conjugation
symmetry properties at all, i.e. for which T= 0, C= 0, S= 0, which are listed in the first row
of the table, there are no constraints on the Hamiltonian except for Hermiticity. Thus, H is a
generic Hermitian matrix and the time-evolution operator is a generic unitary matrix, so that
exp(itH) is an element of the unitary group U(N ) of unitary N × N matrices. By imposing
time-reversal symmetry (for a system that has, e.g., no other degree of freedom such as, e.g.,
spin), there exists a basis in which H is represented by a real symmetric N × N matrix. This,
in turn, can be expressed as saying that the time-evolution operator is an element of the coset
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of groups, U(N )/O(N ). All other entries of the column ‘Hamiltonian’ can be obtained from
analogous considerations15. What is interesting about this column is that its entries run precisely
over what is known as the complete set of ten (‘large’) symmetric spaces16, classified in 1926 in
fundamental work by the mathematician Élie Cartan. Thus, as the first quantized Hamiltonian
runs over all ten possible symmetry classes, the corresponding quantum mechanical time-
evolution operator runs over all ten symmetric spaces. Thus, the appearance of the Cartan
symmetric spaces is a reflection of fundamental aspects of (single-particle) quantum mechanics.
We will discuss the last column entitled ‘G/H (ferm. NLσM)’ in the following subsection.

1.2. Review: classification of topological insulators (superconductors)

The approach used in [26] to classify all possible topological insulators (superconductors)
rested on the existence of protected extended degrees of freedom at the system’s boundary.
These are, in particular, also protected in the presence of arbitrarily strong perturbations
at the boundary which break translational symmetry (commonly referred to as ‘random’ or
‘disordered’). The existence of extended, gapless degrees of freedom even in strongly random
fermionic systems is highly unusual, because of the phenomenon of Anderson localization17.
Thus, the degrees of freedom at the boundary of topological insulators (superconductors) must
be of a very special kind, in that they entirely evade the phenomenon of Anderson localization.
Our approach consists in classifying precisely all those problems of (non-interacting) fermionic
systems which completely evade the phenomenon of Anderson localization. We have completed
this task in [26]. Thus, we have reduced the problem of classifying all topological insulators
(superconductors) in d spatial bulk dimensions to a classification problem of Anderson
localization at the (d − 1)-dimensional boundary. By solving the mentioned problem of
Anderson localization, we have thereby solved the problem of classifying all topological
insulators (superconductors).

We will now focus our attention on the above-mentioned problem of Anderson localization
at the (d − 1)-dimensional boundary of a d-dimensional topological insulator (superconductor).
Specifically, we will now review a solution of this problem [26],18 that allows us to see
directly the dependence on dimensionality d of the classification of topological insulators
(superconductors). In the later, main part of this paper, we will present another point of view on
this dependence on dimensionality d (using ‘dimensional reduction’).

The theoretical description of problems of Anderson localization is well known to be very
systematic and geometrical [36, 37]. A problem of Anderson localization is in general described
by a random Hamiltonian (i.e. one that lacks translational symmetry). That Hamiltonian will

15 Possible realizations of the chiral symmetry classes AIII, BDI and CII possessing time-evolution operators in
table 1 with N 6= M are tight-binding models on bipartite graphs whose two (disjoint) subgraphs contain N and M
lattice sites.
16 A symmetric space is a finite-dimensional Riemannian manifold of constant curvature (its Riemann curvature
tensor is covariantly constant) which has only one parameter, its radius of curvature. There are also so-called
exceptional symmetric spaces, which, however, are not relevant for the problem at hand, because for them the
number N would be a fixed finite number, which would prevent us from being able to take the thermodynamic
(infinite-volume) limit of interest for all the physical systems under consideration.
17 This is the phenomenon that, at least for sufficiently strong disorder potentials, spatially extended (= delocalized)
eigenstates of the Hamiltonian tend to become localized (i.e. exponentially decaying in space) [33]–[36].
18 See especially footnote 22 of the 2nd article of [26].

New Journal of Physics 12 (2010) 065010 (http://www.njp.org/)

http://www.njp.org/


9

be in one of the ten symmetry classes listed in table 1 and we are currently focusing on
Hamiltonians describing the boundary of the topological insulator (superconductor). Now, as
it turns out, at long length scales (much larger than the ‘mean free path’) a description in terms
of a ‘nonlinear-sigma-model’ (NLσM) emerges. An NLσM is a system like that describing
the classical statistical mechanics of a Heisenberg magnet. The only difference is that while
the magnet is formulated in terms of unit vector spins, pointing to the surface of a 2D sphere,
for a general NLσM that spin is replaced19 by an element of one of the ten symmetric spaces
listed in the last column of table 1, called the ‘target space’ of the NLσM, denoted by G/H .20

For a given symmetry class of the original Hamiltonian, whose time-evolution operator is
characterized by the penultimate column, the specific ‘target space’ that needs to be used for
the NLσM describing Anderson localization in this symmetry class is listed in the last column
of table 1 (see also appendix A).

Now, the NLσM on the (d − 1)-dimensional boundary of the d-dimensional topological
insulator (superconductor) completely evades Anderson localization if a certain extra term of
topological origin can be added to the action of the NLσM which has no adjustable parameter
([26], see footnote 17 of the present article). Whether such an extra term is allowed depends
on (i) the ‘target space’ of the NLσM in the symmetry class in question21, and (ii) the
dimensionality d̄ := (d − 1) of the boundary on which the NLσM is defined. There are only
three terms of topological origin that can possibly be added to the action of the NLσM: these are
a θ -term (Pruisken term) [38], aZ2 topological term (see, e.g., [39]) and a Wess–Zumino–Witten
(WZW) term [40, 41]. It is the homotopy groups of the NLσM target spaces G/H that
determine whether it is possible to add such a topological term to a given NLσM action (see
table 2). Specifically, a θ -term (Pruisken term) can appear when πd̄(G/H)= Z. Similarly, a Z2

topological term is allowed when πd̄(G/H)= Z2, and a WZW term can be included22 when
πd̄+1(G/H)= Z. Note that, on the one hand, one obtains, upon addition of a θ -term (Pruisken
term), a one-parameter family of theories (on the boundary) depending on the value of θ , all of
which reside in the same symmetry class. On the other hand, however, it is known that only for
a special value of the parameter θ , is Anderson localization avoided; for generic values of θ ,
this is not the case. It is for this reason that the ability to add a θ -term (Pruisken term) is not of
interest for the question we are asking. One is therefore left with only a Z2 topological term and
a WZW term as the only terms of topological origin that have no freely adjustable parameter
and that are thus of relevance here.

The homotopy groups for all ten NLσM target spaces G/H listed in the last column of
table 1 are well known from the literature (see e.g. [42] and references therein for a summary)
and this information is summarized in table 2 for the convenience of the reader. In order to
make a certain regular structure of this table apparent, the rows of table 1 have been re-ordered

19 The 2D sphere S2 is a particularly simple example of a symmetric space, namely it can be written as the space
S2
= U(2)/U(1)×U(1), i.e. the first row in the last column of table 1, when n = 1.

20 Both G and H are classical Lie groups, and H is a maximal subgroup of G.
21 The relevant ‘target space’ is, as already mentioned above, listed in the last column of table 1.
22 Observe that, while the homotopy group determines if a term of topological origin for a given NLσM action
is allowed in principle, it depends on the specific disorder model considered, whether such a term is actually
present. In any case, if a term of topological origin is possible in a specific dimension and symmetry class, then a
corresponding topological insulator (superconductor) can exist in this symmetry class (in one dimension higher).
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Table 2. Table of homotopy groups πd̄(G/H) for symmetric spaces G/H , taken
from the standard mathematical literature (see e.g. [42] and references therein
for a summary). (Here, N must be sufficiently large for a given d̄ . Cartan
labels of those symmetry classes invariant under the chiral symmetry operation
S = T · C from table 1 are indicated by boldface letters.). The pattern continues
for higher d̄, with periodicity 2 for the complex case and 8 for the real case. The
entries corresponding to Z topological insulators (superconductors) in (d̄ + 1)
dimensions (see e.g. table 3) are indicated by blue color boldface symbols.
There is a (d̄ + 1)-dimensionalZ2 topological insulator whenever πd̄(G/H)= Z2

(also indicated in blue). A (d̄ + 1)-dimensional Z topological insulator, on the
other hand, can be realized whenever πd̄+1(G/H)= Z. This is one way ([26],
see footnote 17 of the present article) to directly relate the classification of
topological insulators (superconductors) to the table of homotopy groups.

AZ G/H d̄ = 0 d̄ = 1 d̄ = 2 d̄ = 3 d̄ = 4 d̄ = 5 d̄ = 6 d̄ = 7

Complex case:
A U(N + M)/U(N )×U(M) ←− Z 0 ←− Z 0 ←− Z 0 ←− Z 0←−
AIII U(N ) 0 ←− Z 0 ←− Z 0 ←− Z 0 ←− Z

Real case:
AI Sp(N + M)/Sp(N )×Sp(M) ←− Z 0 0 0 ←− Z Z2 Z2 0←−
BDI U(2N )/Sp(2N ) 0 ←− Z 0 0 0 ←− Z Z2 Z2

D O(2N )/U(N ) Z2 0 ←− Z 0 0 0 ←− Z Z2

DIII O(N ) Z2 Z2 0 ←− Z 0 0 0 ←− Z
AII O(N + M)/O(N )×O(M) ←− Z Z2 Z2 0 ←− Z 0 0 0←−
CII U(N )/O(N ) 0 ←− Z Z2 Z2 0 ←− Z 0 0
C Sp(2N )/U(N ) 0 0 ←− Z Z2 Z2 0 ←− Z 0
CI Sp(2N ) 0 0 0 ←− Z Z2 Z2 0 ←− Z

in a specific way23. Part of this re-ordering is a subdivision of all symmetry classes into what
is called ‘complex case’ and ‘real case’ in table 2. The physical origin of this subdivision is
simple to understand. In the category ‘complex case’ appear precisely those symmetry classes
in which there is no reality condition (T or C) whatsoever imposed on the Hamiltonian. We see
from table 1 that these are the classes that carry Cartan labels A and AIII. The Hamiltonians
in these symmetry classes are therefore ‘complex’ (in this sense). The other category called
‘real case’ in table 2 consists precisely of all the other eight symmetry classes which have the
property that there is at least one reality condition [T or C—cf equations (3) and (4)] imposed
on the Hamiltonian (see table 1). In this sense the Hamiltonians in these symmetry classes are
therefore ‘real’.

Table 2 now tells us directly in which symmetry class there exist topological insulators or
superconductors (and of which type, Z2 or Z): according to the above discussion, we know that
a topological insulator (superconductor) exists in a given symmetry class in d = d̄ + 1 spatial

23 We were first made aware by A Kitaev of the existence of a regularity in dimensionality in the classification of
topological insulators (superconductors) [27], which, as reviewed below (see the second article in [26] and also
footnote 17 of the present article) can be seen as a consequence of the regularity of the present table of homotopy
groups.
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Table 3. Classification of topological insulators and superconductors as a
function of spatial dimension d and symmetry class, indicated by the ‘Cartan
label’ (first column). The definition of the ten generic symmetry classes of single
particle Hamiltonians (due to Altland and Zirnbauer [29, 30]) is given in table 1.
The symmetry classes are grouped into two separate lists, the complex and
real cases, depending on whether the Hamiltonian is complex or whether one
(or more) reality conditions (arising from time-reversal or charge-conjugation
symmetries) are imposed on it; the symmetry classes are ordered in such a way
that a periodic pattern in dimensionality becomes visible [27]. (See also the
discussion in subsection 1.1 and table 2.) The symbols Z and Z2 indicate that
the topologically distinct phases within a given symmetry class of topological
insulators (superconductors) are characterized by an integer invariant (Z) or a
Z2 quantity, respectively. The symbol ‘0’ denotes the case when there exists no
topological insulator (superconductor), i.e. when all quantum ground states are
topologically equivalent to the trivial state.

d
Cartan 0 1 2 3 4 5 6 7 8 9 10 11 . . .

Complex case:
A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 . . .
AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z . . .

Real case:
AI Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 . . .
BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 . . .
D Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 . . .
DIII 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z . . .
AII 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 . . .
CII 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 . . .
C 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 . . .
CI 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z . . .

dimensions if and only if the target space of the NLσM on the d̄-dimensional boundary allows
for either (i) a Z2 topological term, which is the case when πd̄(G/H)= πd−1(G/H)= Z2, or
(ii) a WZW term, which is the case when πd(G/H)= πd̄+1(G/H)= Z. By using this rule in
conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of
topological insulators and superconductors24.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of
topological insulators (superconductors), three of which are characterized by an integral (Z)
topological number, while the remaining two possess a binary (Z2) topological quantity25.

24 To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace
the column label d̄ by d = d̄ + 1. The result is table 3.
25 Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional
topological states might be of interest indirectly, because, for example, some of the additional components of
momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on
which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter
space—sometimes referred to as adiabatic ‘pumping processes’).
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The topological insulators (superconductors) appear in table 3 along diagonal lines. That
is, as the spatial dimension is increased by one, the locations where the topological insulators
(superconductors) appear in the table shift down by one column. This entire pattern descends
directly from an analogous one appearing in the table 2 of homotopy groups.

In the main part of the present paper, we will give another derivation of this periodicity
structure of table 3, by ‘dimensional reduction’ and by considering the Dirac Hamiltonian
representatives in each of the symmetry classes in which there exist topological insulators
(superconductors) in a given spatial dimension. By running the argument backwards, this can
then, in turn, also be viewed as another route to obtain table 2 of homotopy groups.

Let us pause for a moment to point out a few interesting aspects relating to table 3.
Firstly, it is interesting to note that the periodic structure of table 3 is quite analogous to
the dimensional hierarchy of anomalies (‘anomaly ladder’) known in gauge theories, e.g.
the (3+1)-dimensional Abelian anomaly, the (2+1)-dimensional parity anomaly and the
(1+1)-dimensional non-Abelian anomaly [43]–[45]. This does not appear to be completely
unexpected, considering that the IQHE is known as a condensed matter realization of the parity
‘anomaly’26.

Secondly, we want to draw the reader’s attention to the fact that for a given symmetry
class in table 3 any Z2 topological insulator (superconductor) always appears as part of a
‘triplet’ that consists of a d-dimensional Z topological insulator (superconductor) and two
Z2 topological insulators (superconductors) in (d − 1) and (d − 2) dimensions. This suggests
that the topological characteristics of the members of such a ‘triplet’ are closely related and,
indeed, it was shown in [28] that the Z2 classification in symmetry class AII in d = 2 and 3 can
be derived from the 4D Z topological insulator by a process of ‘dimensional reduction’. The
same procedure has been applied [28] to derive Z2 classifications in those symmetry classes
that do not possess a form of chiral symmetry (i.e. for which S= 0)—there are five of them.
In section 4, we will extend this approach to the Z2 topological insulators (superconductors)
in the remaining five symmetry classes that possess a form of chiral symmetry (i.e. for which
S= 1).

Let us now discuss explicit forms of the ‘terms of topological origin’ that can be added to
the action of the NLσM with ‘target space’ G/H , at the boundary of the topological insulator
(superconductor).

1.2.1. Terms of WZW type. Here there is a pattern, alternating in the dimension d̄
of the boundary, for the way these topological terms can be constructed. (i) For a d̄ = odd-
dimensional boundary and for the NLσMs that describe the Anderson-delocalized boundary
of the topological bulk, the field (denoted by Q ∈ G/H below27—cf the last column of
table 1) of the NLσM field theory is a Hermitian matrix field that satisfies certain constraints.
The WZW term responsible for the lack of Anderson localization takes on the form of the
d̄-dimensional integral over the boundary of the d̄-dimensional Chern–Simons form (compare
equation (22) of the main text below). Alternatively, it can be also written as an integral over

26 The IQHE is not quite an anomaly in the sense that the parity and T are explicitly broken. However, the
quantization of σxy in the IQHE can be viewed as essentially the same phenomenon as the appearance of the
Chern–Simons term in QED in D = 2 + 1-dimensional spacetime, where massless Dirac fermions are coupled with
the electromagnetic U(1) gauge field.
27 While looking similar, the field Q in the NLσM has nothing to do with the spectral projector in momentum
space defined in equation (7).
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a (d̄ + 1)-dimensional region whose boundary coincides with the physical d̄-dimensional space,
by smoothly interpolating the NLσM field configuration Q into one dimension higher. The
fact that πd̄+1(G/H)= Z guarantees that different ways of interpolation do not matter, and
the action depends only on the physical field configurations in d̄-dimensional space. (ii) For
a d̄ = even-dimensional boundary and for the NLσMs that describe the Anderson-delocalized
boundary of the topological bulk, the field in the NLσM field theory is either a group element or
a unitary matrix field (denoted by g ∈ G/H below—cf the last column of table 1), which may,
depending on the case, be subject to certain constraints. The WZW term responsible for the
lack of Anderson localization takes on the form of a (d̄ + 1)-dimensional integral of the winding
number density, as defined in equation (20) of the main text below.

To illustrate these terms, we will now give explicit examples for them in low
dimensionalities:

• d = 2: For the d = 2-dimensional topological insulator of the IQHE, the d̄ = 1-dimensional
NLσM describing the edge states is the one on U(2n)/U(n)×U(n). The field Q of the
NLσM field theory can be parameterized as Q =U †3U ∈ U(2n)/U(n)×U(n), where
U ∈ U(2n) and 3= diag (In,−In). The term of relevance for the absence of Anderson
localization at the edges of the integer quantum Hall insulator is ∝ σxy

∫
dx tr[Ax ],

where Ax :=U †∂xU ; this is a d̄ = 1-dimensional analogue of the 3D Chern–Simons
term. This term can also be rewritten as a WZW-type two-dimensional integral
∝ σxy

∫
D dxdu εµνtr[Q∂µQ∂νQ] (µ, ν = x, u). Here, we have extended the original

d̄ = 1-dimensional space to a 2D region D by adding a fictitious space direction, parame-
terized by u ∈ [0, 1]. The boundary ∂D of the 2D region coincides with the original d̄ =
1-dimensional space. Accordingly, the original NLσM field Q(x) is smoothly extended to
Q(x, u) such that it coincides with Q(x) when u = 0. Since π2 [U(2n)/U(n)×U(n)]= Z
the 2D integral turns out to depend only on the field configuration on ∂D. Note that
when we specialize to the case of n = 1, all these expressions are well known from the
coherent state path integral of an SU(2) quantum spin whose path integral is described by
a d = 1-dimensional NLσM on the target space O(3)= U(2)/U(1)×U(1).

• d = 3: For d = 3 topological insulators (superconductors) in classes AIII, DIII and CI,
the relevant NLσMs at their d̄ = 2-dimensional boundary (surface) are the ones with
a group manifold as target manifold (U(n), O(n) and Sp(n) for classes AIII, DIII,
and CI, respectively). The relevant WZW-type term can be written as a 3D integral,∫

D d2x du εµνλtr[(g−1∂µg)(g−1∂νg)(g−1∂λg)], where g ∈ U(n), O(n), Sp(n) [40]. Here
again, the original d̄ = 2-dimensional space is smoothly extended to the 3D region D, in
such a way that ∂D coincides with the physical d̄ = 2-dimensional space. Accordingly, the
field configuration g(x, y) defined on the d̄ = 2- dimensional space is smoothly extended
to the 3D one g(x, y, u) such that g(x, y, u = 0)= g(x, y).

• d = 4: For the d = 4 topological insulators in classes A, AII and AI, the relevant
d̄ = 3 NLσMs have target spaces G/H = G(2n)/G(n)×G(n) with G= U, O and
Sp, respectively. The field of the NLσM can be parameterized by Q =U †3U , where
U ∈ G(2n). The relevant ‘term of topological origin’ is the Chern–Simons term
∝
∫

d3x εµνλtr[Aµ∂ν Aλ + (2/3)AµAν Aλ], where Aµ =U †∂µU (µ= x, y, z). The appear-
ance of this term at the boundary of the d = 4 topological insulators in class AII was
discussed in [46].
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• d = 5: For the d = 5 topological insulators in symmetry classes AIII, BDI and CII, the
d̄ = 4-dimensional NLσMs have target spaces with a matrix field g, which is an element
of G/H = U(n), U(2n)/Sp(2n), U(2n)/O(2n), respectively. For these spaces the WZW
term takes the form of the d̄ + 1= 5-dimensional integral (with boundary) of the winding
number density defined in equation (21) of the main text below.

Note that those entries in table 2 of homotopy groups that are integers, πd̄(G/H)= Z,
have a periodicity in d̄ equal to four. Therefore, the forms of the ‘terms of topological origin’
of WZW type listed in the above low-dimensional cases will repeat, with the appropriate
replacement of d̄.

1.2.2. Terms of topological origin of Z2 type. The Z2 topological term for the NLσM at the
d̄ = 2-dimensional surface of the d = 3-dimensional Z2 topological insulators in symmetry
class AII was discussed in [46]–[48]. Similarly, at the d̄ = 2-dimensional surface of the d =
3-dimensional Z2 topological insulators in symmetry class CII, the Z2 topological term is added
to the NLσM [49].

1.2.3. Classifying space. There is a third way in which the set of Cartan symmetric spaces
listed in table 1 appears in the context of the classification of topological insulators
(superconductors). This arises from Fermi statistics, which allows for distinguishing between
the states of the (first quantized) Hamiltonian H with energies that lie above and those with
energies that lie below the Fermi energy EF. In a topological insulator (superconductor) there is
always an energy gap between the Fermi energy EF and the eigenstates ofH lying above as well
as those lying below EF. Therefore one may, without closing the bulk gap, continuously deform
the Hamiltonian H into one in which all eigenstates below the Fermi energy EF have the same
energy (say) E =−1, and all eigenstates above the Fermi energy have the same energy (say)
E = +1. By construction, the resulting ‘simplified Hamiltonian’28, which we often denote by
Q, has the same topological properties as the original Hamiltonian. The structure of Q for all
symmetry classes is listed in table III (second column) of the first article of [26] for systems with
translational symmetry. (Q will also be used again in the present paper.) If we were to consider
a ‘zero-dimensional’ topological insulator (superconductor) where ‘space consisted of a single
point’, then for each of the ten symmetry classes we obtain29 a matrix Q of a certain kind. It
turns out that the so-obtained matrix Q for each symmetry class is again an element of one of
the ten symmetric spaces listed in table 1, except that the order in which these spaces appear
is different from the order in the two columns of table 1. The resulting assignment is listed30

in the last column in table A.1. The symmetric spaces to which the matrices Q belong are
what is called the ‘classifying space’ in the classification scheme of [27] employing K -theory31.
In appendix A, we present a number of interesting relationships between these three lists of the

28 This ‘simplified Hamiltonian’ Q is often referred to in the first article of [26] and in the present paper as a
‘projector’, since it is trivially related to the projection operator P onto all filled (with E < EF) eigenstates of H
by Q = 1− 2P . (The matrix in subsection 1.2.1 that is denoted by the same letter Q is an entirely different object,
not to be confused with Q = 1− 2 P appearing here.)
29 From table III of the first article of [26], by setting the wavevector k→ 0.
30 The last row, titled ‘classifying space’ in table A.1, is nothing but a list of the matrices Q, and this list follows
from the second column of table III of the first article of [26] by letting k = 0.
31 The list of ‘classifying spaces’ was obtained in [27] through the use of Clifford algebras.
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ten symmetric spaces: (i) the unitary time evolution operator, (ii) the NLσM target space and
(iii) the classifying space.

We end this subsection by commenting on additional information that can be read off
from our main results, listed in table 3. This pertains to the existence of so-called weak
topological insulators (superconductors), as well as of zero-energy or extended modes localized
on topological defects in topological insulators (superconductors).

1.2.4. Weak topological insulators and superconductors. Table 3 classifies topological
features of gapped free fermion Hamiltonians that do not depend on the presence of translational
symmetries of a crystal lattice32. In particular, these properties are not destroyed when
translation symmetry is broken, e.g., by the introduction of positional disorder. Systems that
exhibit such robust topological properties are often also referred to as strong topological
insulators (superconductors). This is to contrast them with so-called weak topological insulators
(superconductors), which only possess topological features when translational symmetry is
present. As soon as translational symmetry is broken, such weak topological features are
no longer guaranteed to exist, and the system is allowed to become topologically trivial.
For example, systems defined on a d-dimensional lattice whose momentum space is the
d-dimensional torus T d , allow for weak topological insulators that are not strong topological
insulators. Such systems are topologically equivalent to parallel stacks of lower-dimensional
strong topological insulators (superconductors). Specifically, the 3D ‘weak’ integer quantum
Hall insulator on a lattice, discussed in [50], is essentially a layered version of the 2D integer
quantum Hall insulator. Hence, it is characterized by a triplet of Chern numbers, each describing
the winding of a map from the 2D torus T 2, which is a subspace of the 3D momentum space T 3,
onto the complex Grassmannian, Gm,m+n(C). Similarly, in symmetry class AII, there exists a
3D weak topological insulator [12]–[15], which consists of layered 2D Z2 topological quantum
states, and whose weak topological features are described by a triplet of Z2 invariants.

The 3D ‘weak’ integer quantum Hall insulators, as well as the weak topological
insulators of [12]–[15], are both examples of d = 3-dimensional weak topological insulators of
‘codimension’ one, i.e. they can be viewed as 1D arrays of d = 2-dimensional strong topological
insulators. The existence of these states can be read from the d = 2-column and the rows
of table 3 labeled A and AII, respectively. In general, d-dimensional weak topological states
can be of any ‘codimension’ k, with 0< k 6 d. The existence of weak topological insulators
and superconductors in d spatial dimensions and for a given symmetry class can be readily
inferred from table 3. That is, d-dimensional weak topological insulators (superconductors) of
‘codimension’ k can occur whenever there exists a strong topological state in the same symmetry
class, but in d–k dimensions. Specifically, the topological order (characterized by elements in Z
or in Z2) can be specified for each of the

(d
k

)
‘orientations’ of the submanifold. Moreover, it is

also possible that in addition ‘strong’ topological order, i.e. in the full space dimension d, exists.
In the K -theory description of [27], the presence of weak topological features is described by
additional summands in the Abelian group of topological invariants (i.e. Z or Z2), which appears
when homotopy classes of maps from the sphere (strong topological insulators) are replaced by
maps from the torus T d (weak and strong topological insulators).

32 As we will explain below, in order to classify such so-called ‘strong topological insulators’ it is sufficient to only
consider continuous Hamiltonians with momentum space Sd , the d-dimensional sphere.
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1.2.5. Zero modes localized on topological defects. Another interesting application of
table 3 is to determine whether r -dimensional topological defects in topological insulators
(superconductors) can support localized (isolated) zero modes. For example, let us first consider
a point-like defect (i.e. r = 0), which is embedded in a d-dimensional system (d > 1) of any
symmetry class. Furthermore, let us assume that at the defect time-reversal symmetry is broken
(T = 0) but particle–hole symmetry is preserved with C= +1, i.e. we are dealing with symmetry
class D. From table 3 we infer that in symmetry class D in d = r + 1= 1 dimensions, there is
a Z2 classification, which implies that the (r = 0)-dimensional boundary can support gapless
states and, therefore, a point-like defect with the symmetries of class D can bind zero modes.
This situation is realized, e.g., for a vortex core in a (p± ip)-wave superconductor, which can
bind isolated Majorana modes. In general, whether it is possible for a r -dimensional topological
defect of a given symmetry class to support gapless states or not is determined by the entry of
table 3 at the intersection of column d = r + 1 and the row of the given symmetry class. An
application of this general statement can for example be found in the work of reference [51],
where a dislocation line (r = 1) in a d = 3-dimensional lattice hosting a weak topological
insulator in symmetry class AII was found to bind an extended gapless zero mode. (This
corresponds in table 3 to the intersection of the row denoting symmetry class AII with the
column d = r + 1= 1 + 1= 2, the latter representing the d = 3-dimensional weak topological
insulator, which corresponds to a strong topological insulator in ‘codimension’ k = 1.) To
illustrate the use of table 3, we can for example predict that a similar binding of extended zero
modes to lattice dislocation lines (r = 1) can also occur in weak d = 3-dimensional topological
insulators of ‘codimension’ k = 1 in symmetry classes A, D, DIII, and C.

1.3. Outline of the present paper

In this paper, we discuss in detail the mechanism behind the dimensional periodicity and shift
property appearing in table 3. We first demonstrate that there exists, for all five symmetry
classes of topological insulators or superconductors, and in all dimensions d, a representative
of the Hamiltonian in this class which has the form of a Dirac Hamiltonian, by constructing
explicitly such a representative. We use these Dirac Hamiltonian representatives in the
five symmetry classes with topological insulators (superconductors) to obtain relationships
between these five symmetry classes in different dimensions. First, we construct dimensional
hierarchies (‘dimensional ladders’) relating Z topological insulators (superconductors) in
different dimensions and symmetry classes (see sections 2 and 3). This is done by using
a process of ‘dimensional reduction’ in which spatial dimensions are compactified (in a
‘Kaluza–Klein-like’ fashion), thus relating higher- to lower-dimensional theories. By employing
the same dimensional reduction process, we derive in section 4 the topological classification
of the Z2 topological insulators (superconductors) from their higher-dimensional parent Z
topological insulators (superconductors) in the same symmetry class. Sections 2–4 taken
together provide a complete, independent derivation of table 3 of topological insulators
(superconductors).

In section 2.2, we establish the connection between the topological invariant (winding
number) defined for topological insulators and superconductors with chiral symmetry and yet
another topological invariant, the Chern–Simons invariant, for general dimensions (equation
(43)). For lower-dimensional cases, formula (43) relates the winding number to the electric
polarization (d = 1 spatial dimensions) and the magnetoelectric polarizability (d = 3 spatial
dimensions).
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In section 2.6, we list, for topological insulators in symmetry classes A and AIII, the
topological field theory describing the spacetime theory of linear responses in all spacetime
dimensions D = d + 1. For symmetry class A, this is the Chern–Simons action, and in class
AIII it is the theta term with theta angle θ = π . (Generalizations to topological singlet
superconductors with SU(2) spin-rotation symmetry are mentioned in section 5.)

Finally, as already mentioned in subsection 1.2, we have discussed, for all dimensionalities,
the ‘terms of topological origin’ of WZW type that can be added to NLσM field theories on
symmetric spaces. In particular, in odd dimensions, these are the Chern–Simons terms.

In Appendix A, we collect a number of interesting relationships between the Cartan
classification of generic Hamiltonians due to Altland and Zirnbauer, the NLσM target space
of Anderson localization, and the classifying space appearing in the K-theory approach
to topological insulators. The representation theory of the spinor representations of the
orthogonal groups SO(N ) is briefly reviewed in Appendix B. Furthermore, we study in
Appendix C the influence of inversion symmetry on the classification of topological insulators
(superconductors), combined with either time-reversal or charge-conjugation (particle–hole)
symmetry.

2. Dimensional hierarchy: the complex case (A → AIII)

In this section, we consider the relationship between the 2n-dimensional class A topological
insulator and the (2n− 1)-dimensional class AIII topological insulator. (Recall from table 1 that
Hamiltonians in symmetry classes A and AIII are not invariant under time-reversal and charge-
conjugation symmetries (T and C), but Hamiltonians in class AIII possess ‘chiral symmetry’
called S in the table, i.e. they anti-commute with a unitary operator.) Firstly we present a
general discussion about class A and AIII topological insulators (sections 2.1 and 2.2) and then
we will focus on Dirac Hamiltonian representatives in these symmetry classes (sections 2.3, 2.4
and 2.5). The insights gained from the study of these Dirac Hamiltonian examples are applicable
to a wider class of insulators. Finally, in section 2.6 we discuss effective topological field
theories describing topological response functions of class A and AIII topological insulators.

2.1. Class A in d = 2n + 2 dimensions

The class of problems that we will consider below is non-interacting fermionic systems with
translation invariance. For such systems, the eigenvalue problem at each momentum k in the
Brillouin zone (BZ) is described by

H(k)|ua(k)〉 = Ea(k)|ua(k)〉, a = 1, . . . , Ntot. (6)

Here, H(k) is an Ntot× Ntot single-particle Hamiltonian in momentum space, and |ua(k)〉 is the
ath Bloch wavefunction with energy Ea(k). We assume that there is a finite gap at the Fermi
level, and therefore, we obtain a unique ground state by filling all states below the Fermi level.
(In this paper, we always adjust Ea(k) in such a way that the Fermi level is at zero energy.)

We assume there are N− (N+) occupied (unoccupied) Bloch wavefunctions for each k with
N+ + N− = Ntot. We call the set of filled Bloch wavefunctions {|u−â (k)〉}, where hatted indices
â = 1, . . . , N− label the occupied bands only. We introduce the spectral projector onto the filled
Bloch states and the ‘Q-matrix’ by

P(k)=
∑

â

|u−â (k)〉〈u
−

â (k)|, Q(k)= 1− 2P(k). (7)
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The ground state (filled Fermi sea) is characterized at each k by the set of normalized
vectors {|u−â (k)〉}, which is a member of U(Ntot) or, equivalently, by Q(k), up to basis
transformations within occupied and unoccupied bands. Thus Q(k) can be viewed as an element
of the complex Grassmannian G N+,N++N−(C)= U(N+ + N−)/[U(N+)×U(N−)]. For a given
system, Q(k) defines a map from BZ into the complex Grassmannian, and hence classifying
topological classes of band insulators is equivalent to counting how many distinct classes there
are for the space of all such mappings. The answer to this question is given by the homotopy
group πd(Gm,m+n(C)), which is nontrivial in even dimensions d = 2n + 2.

Define, for the occupied bands, the non-Abelian Berry connection [52]

Aâb̂(k)= Aâb̂
µ (k)dkµ = 〈u

−

â (k)|du−
b̂
(k)〉, µ= 1, . . . , d, â, b̂ = 1, . . . , N−, (8)

where Aâb̂
µ =−(A

b̂â
µ )
∗. The Berry curvature is defined by

F âb̂(k)= dAâb̂ +
(
A2
)âb̂
=

1
2 F âb̂

µν (k)dkµ∧ dkν. (9)

Class A insulators in even spatial dimensions d = 2n + 2 (n = 0, 1, 2, . . .) can be chara-
cterized by the Chern form of the Berry connection in momentum space. The (n + 1)th Chern
character is

chn+1(F)=
1

(n + 1)!
tr

(
iF
2π

)n+1

. (10)

The integral of the Chern character in d = 2n + 2 dimensions is an integer, the (n + 1)st Chern
number,

Chn+1[F]=
∫

BZd=2n+2
chn+1(F)=

∫
BZd=2n+2

1

(n + 1)!
tr

(
iF
2π

)n+1

∈ Z. (11)

Here,
∫

BZd denotes the integration over d-dimensional k-space. For lattice models, it can be taken
as a Wigner–Seitz cell in the reciprocal lattice space. On the other hand, for continuum models,
it can be taken as Rd . Assuming that the asymptotic behavior of the Bloch wavefunctions
approaches a k-independent value as |k| →∞, the domain of integration can be regarded as
Sd .33

When d = 2 (n = 0), Ch1[F] is the TKNN integer [1],

Ch1[F]=
i

2π

∫
BZd=2

tr(F)=
i

2π

∫
d2k tr(F12) , (12)

which is nothing but the quantized Hall conductance σxy in units of (e2/h). The second Chern
number (n = 1), given by Ch2[F],

Ch2[F]=
−1

8π2

∫
BZd=4

tr
(
F2
)
=
−1

32π 2

∫
d4kεκλµν tr

(
FκλFµν

)
, (13)

33 For Dirac insulators with linear dispersion, discussed below, this assumption is not entirely correct. If the
k-linear behavior of the Dirac spectrum persists to infinitely large momentum, the behavior of the wavefunctions
at |k| →∞ is not trivial: the one-point compactification thus does not work. In this case, the domain of integration
becomes effectively half of Sd , and accordingly, integer topological numbers become half-integers. However, the
Dirac spectrum can be properly regularized, in such a way that the behavior of the wavefunctions becomes trivial
at larger k; see for example equation (50). This is also the case when the Dirac Hamiltonians are formulated on a
lattice (see equation (82)).
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can be used to describe a topological insulator in d = 4 or, alternatively, a certain adiabatic
‘pumping process’ in lower spatial dimension [28].

The Chern character chn+1 can be written in terms of its Chern–Simons form,

chn+1(F)= dQ2(n+1)−1(A,F). (14)

Here the Chern–Simons form is defined as

Q2n+1(A,F) :=
1

n!

(
i

2π

)n+1 ∫ 1

0
dt tr

(
AFn

t

)
, (15)

where

Ft = tdA+ t2A2
= tF + (t2

− t)A2. (16)

For example,

Q1 (A,F)=
i

2π
tr A, Q3 (A,F)=

−1

8π2
tr

(
AdA+

2

3
A3

)
. (17)

2.2. Class AIII in d = 2n + 1 dimensions

2.2.1. Winding number. We now discuss band insulators in symmetry class AIII. By definition,
for all class AIII band insulators, we can find a unitary matrix 0 that anticommutes with the
Hamiltonians,

{H(k), 0} = 0, 02
= 1. (18)

It follows that the spectrum is symmetric with respect to zero energy and N+ = N− =: N . As a
consequence of the chiral symmetry (18), all class AIII Hamiltonians, as well as their Q-matrix
(7), can be brought into block off-diagonal form,

Q(k)=

(
0 q(k)

q†(k) 0

)
, q ∈ U(N ), (19)

in the basis in which 0 is diagonal. The off-diagonal component q(k) defines a map from
BZ onto U(N ), and classifying class AIII topological insulators reduces to considering the
homotopy group πd(U(N )). The homotopy group is nontrivial in odd spatial dimensions
d = 2n + 1, while it is trivial in even spatial dimensions, i.e. there is no nontrivial topological
insulator in class AIII in even spatial dimensions.

In odd spatial dimensions d = 2n + 1, class AIII topological insulators are characterized by
the winding number [26]

ν2n+1[q] :=
∫

BZd=2n+1
ω2n+1[q], (20)

where the winding number density is given by

ω2n+1[q] :=
(−1)nn!

(2n + 1)!

(
i

2π

)n+1

tr
[
(q−1dq)2n+1

]
=

(−1)nn!

(2n + 1)!

(
i

2π

)n+1

εα1α2··· tr
[
q−1∂α1q · q

−1∂α2q · · ·
]

d2n+1k. (21)
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2.2.2. The Chern–Simons invariant. Although derived from the Chern form, the Chern–
Simons forms, introduced in equation (15), themselves define a characteristic class for an odd-
dimensional manifold. This suggests that the Chern–Simons forms can be used to characterize
also AIII topological insulators in d = 2n + 1 dimensions. Integrating the Chern–Simons form
over the BZ, we introduce

CS2n+1[A,F] :=
∫

BZ2n+1
Q2n+1(A,F). (22)

Unlike the winding number, CS2n+1[A,F] is defined without assuming chiral symmetry and can
be used for non-chiral topological insulators (superconductors).

Before discussing how useful Chern–Simons forms are, however, observe that they are not
gauge invariant. Neither are the integrals of the Chern–Simons forms over the BZ. However, for
two different choices of gauge A and A′, which are connected by a gauge transformation

A′ = g−1Ag + g−1dg, F ′ = g−1Fg, (23)

we have
Q2n+1(A′,F ′)− Q2n+1(A,F)= Q2n+1(g

−1dg, 0)+ dα2n, (24)

where α2n is some 2n form [44]. We note that

Q2n+1

(
g−1dg, 0

)
=

1

n!

(
i

2π

)n+1 ∫ 1

0
dt tr

(
A(t2
− t)nA2n

)
=

1

n!

(
i

2π

)n+1

tr
[
(g−1dg)2n+1

] ∫ 1

0
dt (t2

− t)n

= ω2n+1[g]. (25)

This is nothing but the winding number density, and its integral

ν2n+1[g] :=
∫

BZ2n+1
Q2n+1

(
g−1dg, 0

)
=

∫
BZ2n+1

ω2n+1[g] (26)

is an integer, which counts the nontrivial winding of the map g(k) : BZ2n+1
→ U(N ). Note that

π2n+1 [U(N )]= Z (for large enough N ). We thus conclude

CS2n+1

[
A′,F ′

]
−CS2n+1 [A,F]= integer, (27)

and hence the exponential

W2n+1 := exp{2π iCS2n+1 [A,F]} (28)

is a well-defined, gauge invariant quantity, although it is not necessarily quantized.
The discussion so far has been general. In particular, it is not restricted to chiral topological

insulators. We now compute the Chern–Simons invariant for class AIII topological insulators
in d = 2n + 1. We first explicitly write down the Berry connection for chiral symmetric
Hamiltonians. To this end, we observe that for unoccupied and occupied bands, the Bloch
wavefunctions satisfy

Q(k)|u+
â(k)〉 = +|u+

â(k)〉, Q(k)|u−â (k)〉 = −|u
−

â (k)〉, (29)

respectively. Introducing

|uεâ(k)〉 =
1
√

2

(
χ εâ (k)

ηεâ(k)

)
, ε =±, (30)
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we rewrite (29) as(
0 q(k)

q†(k) 0

)(
χ±â (k)

η±â (k)

)
=±

(
χ±â (k)

η±â (k)

)
. (31)

We can then construct a set of eigen Bloch functions as

|uεâ(k)〉 =
1
√

2

(
χ εâ

εq†(k)χ εâ

)
. (32)

The N -dimensional space spanned by the occupied states {|u−â (k)〉} can be obtained by first
choosing N independent orthonormal vectors nεâ that are k-independent, and then from nεâ,

|uεâ(k)〉N =
1
√

2

(
nεâ

εq†(k)nεâ

)
. (33)

From these Bloch functions, the Berry connection is computed as

N〈u
ε
â(k)|∂µuε

b̂
(k)〉Ndkµ =

1
2

[
〈nεâ|∂µ|n

ε

b̂
〉+ ε2
〈nεâq(k)|∂µ|q†(k)nε

b̂
〉

]
dkµ

=
1
2

[
0 + ε2

〈nεâq(k)|∂µ|q†(k)nε
b̂
〉

]
dkµ

=
1
2 [q(k)∂µq†(k)]âb̂dkµ =:AN

âb̂
, (34)

where we have made a convenient choice (nεâ)b̂ = δâb̂. While this looks almost like a pure
gauge, it is not exactly so because of the factor 1/2. Note also that this calculation shows that
the Berry connections for the occupied and unoccupied bands are identical. With equations
(29)–(33), we have succeeded in constructing eigen Bloch wavefuctions of the ‘Q-matrix’,
equation (19), in block-off diagonal basis, that are free from any singularity. That is, we have
explicitly demonstrated that there is no obstruction to constructing eigen wavefuctions globally.
We emphasize that this applies to all symmetry classes with chiral symmetry (AIII, BDI, DIII,
CII, CI) for any spatial dimension (d = 2n as well as d = 2n + 1).

Alternatively, one can construct another set of eigen Bloch functions

|uεâ(k)〉S =
1
√

2

(
εq(k)nεâ

nεâ

)
. (35)

For these Bloch functions, the Berry connection is computed as

S〈u
ε
â(k)|∂µuε

b̂
(k)〉Sdkµ =

1
2

[
ε2
〈nεâq†(k)|∂µ|q(k)nεb̂〉+ 〈n

ε
â|∂µ|n

ε

b̂
〉

]
dkµ

=
1
2

[
ε2
〈nεâq†(k)|∂µ|q(k)nεb̂〉+ 0

]
dkµ

=
1
2 [q†(k)∂µq(k)]âb̂dkµ =:AS

âb̂
, (36)

where we have made a convenient choice (nεâ)b̂ = δâb̂. The two gauges are related to each
other by

AS
= g−1ANg + g−1dg, (37)
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where the transition function g is the block off-diagonal projector, g = q:

q†(k)
[

1
2q(k)∂µq†(k)

]
q(k)+ q†(k)∂µq(k)= 1

2

[
∂µq†(k)

]
q(k)+ q†(k)∂µq(k)

=−
1
2q†(k)∂µq(k)+ q†(k)∂µq(k)

=
1
2q†(k)∂µq(k). (38)

We now compute the Chern–Simons invariant for class AIII topological insulators in d = 2n + 1.
In the gauge where A=AS

= (1/2)(q−1dq), we have

dA= 1
2d(q−1dq)=− 1

2(q
−1dq)(q−1dq),

Ft = t dA+ t2A2
=

(
−

t

2
+

t2

4

)
(q−1dq)2. (39)

Then,

Q2n+1(A,F)=
1

n!

(
i

2π

)n+1 ∫ 1

0
dt tr

(
AFn

t

)
=

1

n!

(
i

2π

)n+1 ∫ 1

0

(
−

t

2
+

t2

4

)n dt

2
tr
[
(q−1dq)2n+1

]
=

1

n!

(
i

2π

)n+1 1

2

∫ 1

0
un(u− 1)ndu tr

[
(q−1dq)2n+1

]
, (40)

which is half of the winding number density,

Q2n+1(AS,FS)= 1
2ω2n+1[q]. (41)

Hence, we conclude

CS2n+1

[
AS,FS

]
=

∫
BZd=2n+1

Q2n+1(AS,FS)=
1

2
ν2n+1[q]. (42)

As a corollary,

W2n+1 = exp{2π i CS2n+1 [A,F]} = exp{π i ν2n+1[q]}. (43)

Thus, while in general the quantity W2n+1 is not quantized, for class AIII Hamiltonians in
d = 2n + 1, W2n+1 can take only two values, W2n+1 =±1.

Physically, CS2n+1 [A,F] in d = 1 (n = 0) spatial dimension takes the form of the U(1)
Wilson loop defined for BZd=1

' S1. It is quantized for chiral symmetric systems [54]. Also,
the logarithm of W1 represents the electric polarization [55, 56]. For a lattice system, the
non-invariance of CS1 [A,F] (i.e. it can change under a gauge transformation, CS1 [A,F]→
CS1 [A,F] + (integer)) has a clear meaning: since the system is periodic, the displacement of
electron coordinates has a meaning only within a unit cell, and two electron coordinates that
differ by an integer multiple of the lattice constant should be identified.

In d = 3 (n = 1) spatial dimensions, CS3 represents the magnetoelectric polarizability
[28, 57, 58]. While this was discussed originally for 3D Z2 topological insulators in symplectic
symmetry (class AII), the magnetoelectric polarizability is also quantized for class AIII.
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2.3. Dirac insulators and dimensional reduction

We start from a d = 2n + 3-dimensional gapless Dirac Hamiltonian defined in momentum space,

Hd=2n+3
(2n+3) (k)=

d=2n+3∑
a=1

ka0
a
(2n+3). (44)

Here, ka=1,...,d are d-dimensional momenta, and 0
a=1,...,2n+3
(2n+3) are (2n+1

× 2n+1)-dimensional
Hermitian matrices that satisfy {0a

(2n+3), 0
b
(2n+3)} = 2δa,b. Some results for the gamma matrices,

on which the following discussion is based, are summarized in Appendix B. The massless Dirac
Hamiltonian Hd=2n+3

(2n+3) (k) cannot be realized on a lattice in a naive way because of the fermion
doubling problem.

By replacing k2n+3 by a mass term, we obtain a d = 2n + 2-dimensional class A topological
Dirac insulator,

Hd=2n+2
(2n+3) (k,m)=

d=2n+2∑
a=1

ka0
a
(2n+3) + m02n+3

(2n+3). (45)

The topological character of this Dirac insulator will be further discussed below.
By setting in addition k2n+2 = 0, we obtain an insulator in one dimension lower,

Hd=2n+1
(2n+3) (k,m)=

d=2n+1∑
a=1

ka0
a
(2n+3) + m02n+3

(2n+3). (46)

By construction, Hd=2n+1
(2n+3) (k,m) anticommutes with 02n+2

(2n+3),{
Hd=2n+1
(2n+3) (k,m), 02n+2

(2n+3)

}
= 0, (47)

and hence it is a member of class AIII.
This construction of the lower-dimensional models from their higher-dimensional ‘parent’

is an example of the Kaluza–Klein dimensional reduction. To obtain Hd=2n+1
(2n+3) (k,m) from

Hd=2n+2
(2n+3) (k,m), one can first compactify the (2n + 2)th spatial direction into a circle S1. The

(2n + 2)th component of the momentum is then quantized, k2n+2 = 2πN2n+2/`, where N2n+2 ∈ Z,
and ` is the radius of S1. The energy eigenvalues now carry the integral label N2n+2, in addition
to the continuous label, ki=1,...,2n+1. By making the radius of the circle very small, all levels with
N2n+2 6= 0 have very large energies, while the levels with N2n+2 = 0 are not affected by the small
radius limit. In this way, in the limit `→ 0, there is a separation of energy scales, and we only
keep the states with N2n+2 = 0, while neglecting all states with N2n+2 6= 0 (the Kaluza–Klein
modes).

Similarly,Hd=2n+2
(2n+3) (k,m) is naturally obtained fromHd=2n+3

(2n+3) (k) by dimensional reduction if
we also include a U(1) gauge field. We can introduce an (external, electromagnetic) U(1) gauge
field ai=1,···,2n+3 by minimal coupling, Hd=2n+3

(2n+3) (k)→Hd=2n+3
(2n+3) (k + a). In the S1 compactification

of the (2n + 3)th spatial coordinate, we again keep modes with k2n+3 = 0 only while neglecting
all the Kaluza–Klein modes with k2n+3 6= 0. The vector field (gauge field) ai=1,...,2n+3 in d =
2n + 3 dimensions can be decomposed into a vector field (ai=1,...,2n+2) and a scalar field (a2n+3 ≡

ϕ) in d = 2n + 2, leading to

Hd=2n+2
(2n+3) (k + a, ϕ)=

d=2n+2∑
i=1

(ki + ai)0
i
(2n+3) +ϕ02n+3

(2n+3). (48)
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Switching off the d = 2n + 2-dimensional gauge field and assuming the scalar field is constant
ϕ = m, we obtain Hd=2n+2

(2n+3) (k,m).
For the massive Dirac insulator (45) in class A in 2n + 2 dimensions, the nth Chern number

Chn+1 is non-vanishing [59]. Accordingly, for the massive Dirac insulator (46) in class AIII in
2n + 1 dimensions, the winding number and the Chern–Simons form are nonzero.

As the Chern–Simons form can be derived from its higher-dimensional parent, the Chern
form, one may wonder if there is a connection between CS2n+1 =

1
2ν2n+1 of a class AIII Dirac

topological insulator in d = 2n + 1 and Chn+1 of a class A Dirac topological insulator in
d = 2n + 2. We now try to answer this question.

Let us start from

Hd=2n+2
(2n+3) (k,m)=

d=2n+2∑
a=1

ka0
a
(2n+3) + m(k)02n+3

(2n+3). (49)

Here we have regularized the Dirac spectrum by making the mass term k dependent,

m(k)= m−Ck2 with sgn(C)= sgn(m). (50)

With this regularization, as |k| →∞, Hd=2n+2
(2n+3) (k,m)∝ 02n+3

(2n+3), and hence the wavefunctions
become k independent (i.e., the BZ is topologically Sd). The sign choice of the constant C ,
sgn(C)= sgn(m), makes the Chern invariant for the Dirac insulator nonzero.

By dropping k2n+2, we obtain the (regularized) Dirac insulator in one dimension lower,

Hd=2n+1
(2n+3) (k̃,m)=

d=2n+1∑
a=1

ka0
a
(2n+3) + m(k̃, 0)02n+3

(2n+3), (51)

where k̃ = (k1, . . . , k2n+1). As mentioned before, Hd=2n+1
(2n+3) (k̃,m) is chiral symmetric,

{Hd=2n+1
(2n+3) (k̃,m), 02n+2

(2n+3)} = 0. We work in the basis where 02n+2
(2n+3) is diagonal. In this basis,

Hd=2n+1
(2n+3) is block off-diagonal,

Hd=2n+1
(2n+3) (k̃,m)=

(
0 D̃(k̃)

D̃†(k̃) 0

)
. (52)

Correspondingly,

Hd=2n+2
(2n+3) (k)=

(
1(k2n+2) D(k)

D†(k) −1(k2n+2)

)
, (53)

where 1(k2n+2)= k2n+2 and D(k)= D(k̃, k2n+2) satisfies

D(k̃, k2n+2)= D̃(k̃), when k2n+2 = 0. (54)

We now look for eigenfunctions of Hd=2n+2
(2n+3) with negative eigenvalues,(

1(k2n+2) D(k)
D†(k) −1(k2n+2)

)(
χ

η

)
=−λ(k)

(
χ

η

)
. (55)

To this end, we first solve the following auxiliary eigenvalue problem:(
0 D(k)

D†(k) 0

)(
χ

η

)
=−λ̃(k)

(
χ

η

)
, (56)
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Figure 2. (a) The d = 2n + 2-dimensional BZ, BZd=2n+2
∼ S2n+2

= S2n+1
∧ S1

and its d = 2n + 1-dimensional descendant BZd=2n+1
∼ S2n+1 located at the

equator of S2n+2. (b) Splitting the d = 2n + 2-dimensional BZ in half, or
embedding d = 2n + 1-dimensional BZ into a higher-dimensional one.

where λ̃=
√

k̃2 + [m(k)]2. We see from (33) and (35) that the solutions are given by

1
√

2

(
−nâ

q†(k)nâ

)
or

1
√

2

(
q(k)nâ

−nâ

)
, (57)

where q(k) and q†(k) are the off-diagonal blocks of the Q-matrix derived from the auxiliary
Hamiltonian. If we specialize to the case where k = (k̃, 0), the projector of Hd=2n+1

(2n+3) (k̃) is given

in terms of q(k̃) and q†(k̃). We then construct two different sets of normalized eigenfunctions
of Hd=2n+2

(2n+3) ,

|u−â (k)〉N =
1

√
2λ(λ+1)

(
−λ̃nâ

(λ+1)q†nâ

)
(58)

and

|u−â (k)〉S =
1

√
2λ(λ−1)

(
(1− λ)qnâ

λ̃nâ

)
, (59)

with the eigenvalue −λ=−
√
λ̃2 +12. When specialized to k = (k̃, 0), these wavefunctions

yield the eigenfunctions (57) of the chiral Dirac Hamiltonian Hd=2n+1
(2n+3) .

Since the Hamiltonian Hd=2n+2(k) is characterized by the nonzero Chern number,
Chn+1 [F] 6= 0, it is not possible to define wavefunctions globally. We thus need to split the
BZ (BZd=2n+2) into two parts, BZd=2n+2

N and BZd=2n+2
S . We choose the interface of these two

patches as ∂BZd=2n+2
N =−∂BZd=2n+2

S = BZd=2n+1, on which a lower-dimensional Hamiltonian
‘lives’. For each patch, BZd=2n+2

N,S , we can choose a global gauge. Observe that the wavefunction
|u−â (k)〉N is well defined for k2n+2 > 0 and has a singularity at (k̃, k2n+2)= (0,−

√
m/C).

Similarly, |u−â (k)〉S is well defined for k2n+2< 0 and singular at (k̃, k2n+2)= (0,
√

m/C).
The two gauges are thus complementary and at the boundary ∂BZd=2n+2

N =−∂BZd=2n+2
S ,

they are glued by the transition function

AS
= g−1ANg + g−1dg, (60)
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where g(k̃) ∈ U(N−) with k̃ ∈ ∂BZd=2n+2
N . Then,

Chn+1 [F] =
∫

BZd=2n+2
chn+1(F)=

∫
BZd=2n+2

dQ2n+1(A,F)

=

∫
BZd=2n+2

N

dQ2n+1(AN,F)+
∫

BZd=2n+2
S

dQ2n+1(AS,F)

=

∫
∂BZd=2n+2

N

Q2n+1(AN,F)−
∫
∂BZd=2n+2

N

Q2n+1(AS,F), (61)

where we have used the Stokes theorem. From formula (24), it follows that

Chn+1 [F] =
∫
∂BZd=2n+1

N

Q2n+1

(
g−1dg, 0

)
. (62)

By the use of equation (25), we conclude that the rhs of the above equation is nothing but
the winding number. Thus, the Chern number can be expressed as a winding number of the
transition function g. For the case we are interested in, i.e. when a d = 2n + 1 topological
insulator ‘lives’ on ∂BZd=2n+1

N , the transition function is given by the off-diagonal block of the
projector, g(k̃)= q(k̃). This is how two topological insulators in d = 2n + 2 and d = 2n + 1 are
related.

2.4. Example: d = 3→ 2→ 1

Consider three mutually anticommuting, Hermitian matrices

0
a=1,2,3
(3) = {σx , σy, σz}, (63)

where σx,y,z are the 2× 2 Pauli matrices. These matrices can be used to construct a d = 3 gapless
(Weyl) chiral fermion

Hd=3
(3) (k)=

3∑
a=1

ka0
a
(3). (64)

By replacing the third component of the momentum by a mass term, ka=3→ m, we get a d =
2-dimensional Dirac Hamiltonian,

Hd=2
(3) (k,m)=

2∑
a=1

ka0
a
(3) + m03

(3)

= kxσx + kyσy + mσz. (65)

This is a class A Hamiltonian. The Bloch wavefunctions are given by [λ(k) :=
√

k2 + m2]

|u+(k)〉 =
1

√
2λ (λ−m)

(
kx − iky

λ−m

)
,

|u−(k)〉 =
1

√
2λ (λ+ m)

(
−kx + iky

λ+ m

)
. (66)

We note that |u−(k)〉 is well defined for all k when m> 0. (When m < 0, by choosing a
gauge properly, we can obtain a similar well-defined wavefunction.) Assuming m> 0, we adopt
|u−(k)〉, for which we obtain the Berry connection

Ax(k,m)= +
iky

2λ (λ+ m)
, Ay(k,m)=−

ikx

2λ (λ+ m)
, (67)
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and the Berry curvature

Fxy (k,m)= ∂kx Ay − ∂ky Ax =−
im

2λ3
. (68)

The Chern number is nonzero,

Ch1[F]=
i

2π

∫
d2k Fxy =

i

2π

∫
d2k
−im

2λ3
=

1

2

m

|m|
, (69)

which is nothing but the Hall conductance σxy . This model can be realized, at low energies, in
the honeycomb lattice model introduced by Haldane [60].

Finally, setting k2 = 0, we get a d = 1-dimensional Dirac Hamiltonian,

Hd=1
(3) (k,m)= kxσx + mσz. (70)

This is nothing but the chiral topological Dirac insulator in class AIII, as it anticommutes
with σy . A topological invariant can be defined for the d = 1-dimensional Dirac Hamiltonian
as follows. We first go to the canonical form by (σx , σy, σz)→ (σx , σz,−σy), Hd=1

(3) (k,m)→
kxσx −mσy. This d = 1-dimensional Hamiltonian describes the physics of polyacetylene (see
for example [61, 62].) The Bloch wavefunction with negative eigenvalue is

|u−(kx)〉 =
1√

2(k2
x + m2)

(
−kx − im

λ

)
. (71)

The off-diagonal block of the projection operator Q(k) in this basis is

q(k)= −
kx + im√
k2

x + m2
, (72)

and the winding number is given by

ν1[q]=
i

2π

∫
BZ

q−1dq =
i

2π

∫
∞

−∞

dkx
−im

k2
x + m2

=
1

2

m

|m|
. (73)

From equation (71) the Berry connection is obtained,

A(kx)= 〈u
−(kx)|du−(kx)〉 =

1

2

−im

k2
x + m2

dkx . (74)

Then, we find

CS1 [A,F]=
i

2π

∫
BZ

trA=
i

2π

∫
∞

−∞

dkx
1

2

−im

k2
x + m2

=
1

4

m

|m|
. (75)

This is half of the winding number ν1[q] as expected. Hence, the Wilson ‘loop’ is given by

W1 = exp {2π iCS1 [A,F]} = exp
∫

BZ
trA= e±π i/2. (76)

Here, we mention, however, that there is a subtlety in computing the Wilson loop. In the
basis where the Hamiltonian in momentum space is real, Hd=1

(3) (k,m)= kxσx + mσz (70), the
Bloch wavefunction is real for a given k, and as a consequence the Berry connection A(kx)

vanishes identically. One would then conclude W1 = 1, not W1 =−1, although ν1 =
1
2sgn(m).

This puzzle can be solved by properly regularizing the Dirac insulator. For simplicity, let
us replace kx by sin kx , and m by m− 1 + cos(kx). With such a regularization, the BZ is
topologically S1, and one finds a singularity in the wavefunction at kx = π , where the phase
of the wavefunction jumps by π (i.e. there is a Dirac string at kx = π ). If, on the other hand, we
use a different basis (71), we can avoid having a Dirac string in the BZ, and the Wilson loop can
be obtained by integrating the Berry connection over the BZ.
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2.5. Example: d = 5→ 4→ 3

Consider five mutually anticommuting, Hermitian matrices

0
a=1,...,5
(5) = {αx , αy, αz, β, −iβγ 5

}, (77)

where we are using the Dirac representation,

αi =

(
0 σi

σi 0

)
, β =

(
1 0
0 −1

)
, γ 5

=

(
0 1
1 0

)
. (78)

Observe that αxαyαzβ =−iβγ5. These matrices can be used to construct a (d = 5)-dimensional
gapless chiral fermion

Hd=5
(5) (k)=

5∑
a=1

ka0
a
(5). (79)

By replacing the fifth component of the momentum by a mass term, ka=5→ m5, we obtain a
d = 4-dimensional Dirac Hamiltonian,

Hd=4
(5) (k,m5)=

4∑
a=1

ka0
a
(5) + m50

5
(5). (80)

It is known that for this gapped Hamiltonian, the second Chern number is nonzero [28, 59].
Finally, setting k4 = 0, we obtain a d = 3-dimensional Dirac Hamiltonian,

Hd=3
(5) (k,m5)=

3∑
a=1

ka0
a
(5) + m50

5
(5) =

3∑
a=1

kaαa −m5iβγ 5. (81)

This is nothing but the chiral topological Dirac insulator in class AIII discussed in [26]. The
tight-binding version of this model for a simple cubic lattice is given by

Hd=3
(5) (k,m5)=

3∑
a=1

sin ka0
a
(5) +

(
m5 +

3∑
a=1

cos ka

)
05
(5). (82)

By taking open boundary conditions in the z-direction and periodic boundary conditions in the
x- and y-directions, we can study the surface states of this model. When the winding number ν3

is non-vanishing, there are |ν3| surface Dirac states, which cross the bulk band gap (see figure 3).

We now study the Berry connection of the above class A (d = 4) and class AIII (d = 3)
Dirac insulators. To treat these two cases in a unified fashion, let us consider the following d = 4
Dirac Hamiltonian:

H(k,m0)=

3∑
a=1

kaαa + m0β + kw(−iβγ 5). (83)

Upon identification kw→ m5, it can also be viewed as a d = 3-dimensional Dirac Hamiltonian
with two masses. The four eigenvalues are

E(k)= ± λ(k), λ(k)=
√

k2 + m2
0. (84)
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(a) (b)

Figure 3. (a) Winding number ν3 for Hamiltonian (82) as a function of m5.
(b) 2D energy spectrum of the surface states of model (82) with mass m5 = +0.5.
There are two inequivalent surface modes in agreement with the winding number
ν3(m5 = + 0.5)=−2.

The two normalized negative energy eigenstates with E(k)=−λ(k) are

|u−1 (k)〉 =
1

√
2λ(λ+ m0)


−kx + iky

ikw + kz

0

λ+ m0

 ,

|u−2 (k)〉 =
1

√
2λ(λ+ m0)


−kz + ikw

−kx − iky

λ+ m0

0

 .
(85)

The two normalized positive energy eigenstates with E(k)= +λ(k) are

|u+
1(k)〉 =

1
√

2λ(λ−m0)


kx − iky

−ikw− kz

0
λ−m0

 ,

|u+
2(k)〉 =

1
√

2λ(λ−m0)


−ikw + kz

kx + iky

λ−m0

0

 .
(86)

Note that if m0 > 0, |u+
1,2(k)〉 are not well defined at λ(k)= m0 (i.e. k = 0). Observe that when

m0 > 0, |u−1,2(k)〉 have the form of wavefunctions expected from the general consideration
(corresponding to the AN gauge choice).
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When m0 = 0, the Hamiltonian anticommutes with β and is block off-diagonal. The
off-diagonal component of the Q-matrix is given by

q(k)=
−1

λ
(k · σ − im5) . (87)

By noting (µ= 1, 2, 3)

∂µq =
kµ
λ3
(k · σ − im5)−

1

λ
σµ, q†∂µq =

−1

λ2

(
kµ− k · σσµ− imσµ

)
, (88)

and also ∫
d3k εµνρ tr

[
q†∂µqq†∂νqq†∂ρq

]
=

∫
d3k
−εµνρ

λ6
tr
[
−3im5(k · σ)σµ(k · σ)σνσρ + im3

5σµσνσρ
]

= (−3im5)εµνρ
2i

3

∫
d3k

εµνρk2

(k2 + m2
5)

3
+ im3

52iεµνρ

∫
d3k

−εµνρ

(k2 + m2
5)

3

= 12m5

∫
d3k

1

(k2 + m2
5)

2
, (89)

the winding number is given by

ν3[q]=
12

24π 2
m5

∫
∞

0
dk

4πk2

(k2 + m2
5)

2
=

1

2π2
4π ×

π

4

m5

|m5|
=

1

2

m5

|m5|
. (90)

We now compute the Chern–Simons invariant (magnetoelectric polarizability) for the
massive Dirac Hamiltonian. For the lower two occupied bands, we can introduce a U(2) gauge
field by Aâb̂

µ (k)dkµ = 〈u
−

â (k)|du−
b̂
(k)〉 (â, b̂ = 1, 2). The U(2) gauge field is given by, in the

matrix notation,

Ax =
i

2λ(λ+ m0)

(
+ky kw + ikz

kw− ikz −ky

)
,

Ay =
i

2λ(λ+ m0)

(
−kx ikw− kz

−ikw− kz +kx

)
, (91)

Az =
i

2λ(λ+ m0)

(
−kw −ikx + ky

ikx + ky +kw

)
.

The gauge field can be decomposed into U(1) (a0) and SU(2) (a j=x,y,z) parts as

Aµ(k)= a0
µ(k)

σ0

2
+ a j

µ(k)
σ j

2
. (92)

The U(1) part of the Berry connection is trivial, whereas the SU(2) part is given by

ax
x = i

kw
λ(λ+ m0)

, a y
x = i

−kz

λ(λ+ m0)
, az

x = i
+ky

λ(λ+ m0)
,

ax
y = i

−kz

λ(λ+ m0)
, a y

y = i
−kw

λ(λ+ m0)
, az

y = i
−kx

λ(λ+ m0)
, (93)

ax
z = i

+ky

λ(λ+ m0)
, a y

z = i
+kx

λ(λ+ m0)
, az

z = i
−kw

λ(λ+ m0)
.
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The Chern–Simons form can be computed as

CS3 =
−1

8π 2

∫
d3kεµνρ tr

(
Aµ∂ν Aρ +

2

3
AµAν Aρ

)

=
1

8π 2

∫
d3k

m5(2λ+ m0)

λ3(λ+ m0)2

=
1

π

m5

|m5|
arctan

[
(m2

5 + m2
0)

1/2
−m0

(m2
5 + m2

0)
1/2 + m0

]1/2

. (94)

When m0 = 0,

CS3 =
1

4

m5

|m5|
. (95)

As the CS term is determined only modulo 1, the fractional part 1
4sgn(m5) is an intrinsic

property. On a lattice, as there are two copies of the 4× 4 Dirac Hamiltonians, the total
Chern–Simons invariant is given by CS3 =

1
2sgn(m5), and e2π iCS3 =−1.

There is a subtlety in computing CS3 and W3, which is similar to the case of the Wilson
loop W1. When m0 6= 0 and m5 = 0, the Chern–Simons form is zero identically, and one would
conclude W3 = 1, while chiral symmetry for the case of m0 6= 0 and m5 = 0 allows us to define
ν3, and ν3 =

1
2sgn(m). As before, this puzzle can be solved by properly regularizing the Dirac

insulator. With such a regularization, the BZ is topologically S3, and one finds a singularity in
the wavefunctions. If, on the other hand, we use a different basis, we can avoid having a Dirac
string in the BZ.

2.6. Description in terms of field theory for the linear responses in D = d + 1 spacetime
dimensions

For class A and AIII topological insulators or superconductors, there is always a conserved
U(1) quantity; either electric charge or one component (the z-component, say) of spin is
conserved [63]. Transport properties of these conserved quantities in these topological insulators
or superconductors in d spatial dimensions can be described in terms of an effective field theory
for the linear responses in D = d + 1 spacetime dimensions, which can be obtained by coupling
an external spacetime-dependent gauge field aµ to the topological insulator or superconductor
(we will choose the Dirac representative; see the discussion near (48)), and by integrating out the
gapped fermions. One can then read off the theory of the linear responses from the so obtained
(classical) effective action for aµ.

The theory for the linear responses of a topological insulator in symmetry class A and
in d spatial dimensions is then given by the Chern–Simons action in D = d + 1 spacetime
dimensions,

SD=2n+1
CS [a]= 2π ik

∫
RD=2n+1

Q2n+1[a], k = Chn. (96)

Here, Q[a] is the Chern–Simons form of the U(1) gauge field aµ defined in D = 2n + 1-
dimensional (Euclidean) spacetime, and the level k of the Chern–Simons term is given in terms
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of Chn, which is the Chern invariant computed from the Bloch wavefunctions in d = 2n space
dimensions.

On the other hand, the theory of linear responses of a topological insulator in symmetry
class AIII in d = 2n− 1 spatial dimensions is given by a theta term in D = 2n spacetime
dimensions,

SD=2n
θ [a]= iθ

∫
RD=2n

chn[ f ], θ = πν2n−1, (97)

where f is the field strength of the external gauge field aµ and the theta angle θ is related to the
winding number ν2n−1, which can be computed from the Bloch wavefunctions. The integration
of fermions in D = 2n dimensions is trickier than in D = 2n + 1 dimensions; while a simple
derivative expansion of the fermion determinant would appear to yield the Chern–Simons action
(96), a more careful evaluation yields in fact the theta term, which is obtained from the Fujikawa
Jacobian [64].

The theta angle in the theta term (97) can take on a priori any value if there is no discrete
symmetry that pins its value. In class AII Z2 topological insulators in D = 4n dimensions, time-
reversal symmetry demands θ to be an integer multiple of π . Similarly, in class AIII, chiral
symmetry pins θ to be an integer multiple of π . This can be seen from the symmetry properties
of the Chern–Simons and theta terms,

T : SD=2n+1
CS → (−1)n SD=2n+1

CS , SD=2n
θ → (−1)n+1SD=2n

θ ,

C : SD=2n+1
CS → (−1)n+1SD=2n+1

CS , SD=2n
θ → (−1)n SD=2n

θ .

(98)

Here, the (anti-unitary) time-reversal symmetry operation T may either square to plus or minus
the identity. Similarly, the charge-conjugation symmetry operation C may either square to plus
or minus the identity. Since the chiral symmetry S can be expressed as the product of these two
symmetry operations, i.e. S = T · C, one obtains

S : SD=2n
θ →−SD=2n

θ . (99)

Together with the 2π periodicity of θ , it follows that θ is either 0 or π .

3. Dimensional hierarchy for Z topological insulators: the real case

3.1. Dimensional reduction

We now consider eight ‘real’ symmetry classes. In particular, we consider topological insulators
(superconductors) with integer classification, Z or 2Z. (Z2 cases will be discussed in section 4.)
A connection similar to the one between classes A and AIII can be established.

The massive Dirac Hamiltonians relevant to this section are all obtained from the following
massless Dirac Hamiltonian:

(0) : Hd=2n+3
(2n+3) (k)=

d=2n+3∑
a=1

ka0
a
(2n+3), (100)
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Table 4. Symmetry class of Dirac HamiltoniansHd=2n+3
(2n+3) (k) (100),Hd=2n+2

(2n+3) (k,m)
(101), Hd=2n+1

(2n+3) (k,m) (102), Hd=2n
(2n+3)(k,m) (103) and Hd=2n−1

(2n+3) (k,m) (104),
marked by ‘0’, ‘i’, ‘i i’, ‘i i i’, and ‘iv’, respectively. Chiral and non-chiral
symmetric classes are colored in blue and red, respectively.

AZ\d 0 1 2 3 4 5 6 7 8 9 10 11 . . .

AI i i i i 0 i . . .
BDI i i iv i i . . .
D 0 i i i i 0 i . . .
DIII i i iv i i . . .
AII i i i 0 i i i i 0 . . .
CII iv i i iv . . .
C i i i 0 i i i i . . .
CI iv i i iv . . .

by replacing some momenta by a mass or by simply dropping them. Specifically, we will
consider

(i) : Hd=2n+2
(2n+3) (k,m)=

d=2n+2∑
a=1

ka0
a
(2n+3) + m02n+3

(2n+3), (101)

(i i) : Hd=2n+1
(2n+3) (k,m)=

d=2n+1∑
a=1

ka0
a
(2n+3) + m02n+3

(2n+3), (102)

(i i i) : Hd=2n
(2n+3)(k,m)=

d=2n∑
a=1

ka0
a
(2n+3) + mM, (103)

(iv) : Hd=2n−1
(2n+3) (k,m)=

d=2n−1∑
a=1

ka0
a
(2n+3) + mM, (104)

where

M := i02n+3
(2n+3)0

2n+2
(2n+3)0

2n+1
(2n+3). (105)

The massive Dirac Hamiltonian Hd=2n+2
(2n+3) (k,m) is obtained from its gapless parent Hd=2n+3

(2n+3) (k)
by replacing k2n+3 with a mass m. By further removing k2n+2, we obtain Hd=2n+1

(2n+3) (k,m). This
is essentially the same procedure as in the previous section, where we obtained the class
AIII topological Dirac Hamiltonian from its parent class A Hamiltonian. On the other hand,
Hd=2n
(2n+3)(k,m) can be obtained from Hd=2n+3

(2n+3) (k) by first removing three components of the
momentum k2n+3,2n+2,2n+1 and then addingM as a mass term. Finally,Hd=2n−1

(2n+3) (k,m) is obtained
from Hd=2n

(2n+3)(k,m) by dimensional reduction.
Here, an important difference from the dimensional reduction in the complex case is the

shifting of symmetry classes. The parent HamiltonianHd=2n+3
(2n+3) (k) has one (and only one) of four

discrete symmetries, T (squaring to plus or minus the identity) or C (squaring to plus or minus
the identity), depending on the dimensionality d (see table 4 and appendix B). That is, it is a
member of any one of AI, D, AII and C.
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3.1.1. From d = 2n + 3 to d = 2n + 2. When dimensionally reducing Hd=2n+3
(2n+3) (k) to Hd=2n+2

(2n+3)

(k,m), the symmetry of the parent Hamiltonian Hd=2n+3
(2n+3) (k) is broken by the mass term: while

the sign of the kinetic term is reversed under the discrete symmetry, the sign of the mass term
remains unchanged. Thus, the new massive Hamiltonian is a member of a different symmetry
class. By this procedure, we obtain an even-dimensional Hamiltonian Hd=2n+2

(2n+3) (k,m) with the
‘shifted’ symmetry,

AI→ C, C→ AII, AII→ D, D→ AI. (106)

This can be easily proved by taking an explicit form of gamma matrices (see appendix B).
Observe that while we have chosen to remove k2n+3 and hence 02n+3

(2n+3), any other component
could have been removed instead of k2n+3 and 02n+3

(2n+3). However, all these different choices are
unitarily equivalent, as they are simply related by a permutation of Clifford generators, 0a

(2n+3).

3.1.2. From d = 2n + 2 to d = 2n + 1. Further dimensionally reducing Hd=2n+2
(2n+3) (k,m) to

Hd=2n+1
(2n+3) (k,m), we obtain a chiral symmetric Dirac Hamiltonian. Together with the existing

discrete symmetry, this chiral symmetry yields one more discrete symmetry. One can see the
symmetry of the newly generated Hamiltonian is shifted,

D→ BDI, AII→ DIII, C→ CII, AI→ CI. (107)

This again can be easily proved by taking an explicit form of gamma matrices (see
appendix B).

3.1.3. From d = 2n + 3 to d = 2n. Let us now consider Hd=2n
(2n+3)(k,m). One can check that

this Hamiltonian belongs to the same symmetry class as its parent Hd=2n+3
(2n+3) (k). To study the

topological properties of Hd=2n
(2n+3)(k,m), observe that, by construction, Hd=2n

(2n+3)(k,m) commutes
with a product made of any two of 02n+1,2n+2,2n+3

(2n+3) ,[
Hd=2n
(2n+3)(k,m), 0a

(2n+3)0
b
(2n+3)

]
= 0, (108)

where (a, b)= (2n + 1, 2n + 2), (2n + 2, 2n + 3) or (2n + 3, 2n + 1). This suggests that the
Hamiltonian can be made block diagonal. We note that in the representation of the gamma
matrices we are using, the Hamiltonian is block diagonal,

Hd=2n
(2n+3)(k,m)=

d=2n∑
a=1

ka0
a
(2n+1)⊗ σ3−m02n+1

(2n+1)⊗ σ0

=

(
Hd=2n
(2n+1)(k,−m) 0

0 −Hd=2n
(2n+1)(k,m)

)
. (109)

By the use of a unitary transformation for the lower right block,

02n+1
(2n+1)

[
−Hd=2n

(2n+1)(k,m)
]
02n+1
(2n+1) =H

d=2n
(2n+1)(k,−m), (110)

Hd=2n
(2n+3)(k,m) reduces to two copies ofHd=2n

(2n+1)(k,−m). On the other hand, we have already seen

that each Hd=2n
(2n+1)(k,−m)=

∑d=2n
a=1 ka0

a
(2n+1)−m02n+1

(2n+1) has a nontrivial Chern number ±1. We
thus conclude that the Chern number characterizing Hd=2n

(2n+3)(k) is ±2.
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3.1.4. From d = 2n to d = 2n− 1. Finally, we discuss the topological insulators (supercon-
ductors)Hd=2n−1

(2n+3) (k,m)marked by ‘iv’ in table 4. One can check that the symmetry class of this
Hamiltonian is shifted from that of Hd=2n

(2n+3)(k,m) as

AI→ CI, C→ CII, AII→ DIII, D→ BDI. (111)

Just as Hd=2n
(2n+3)(k,m) is characterized by a nonzero Chern invariant that is even, the descendant

Hd=2n−1
(2n+3) (k,m) is also characterized by an even winding number.

The symmetry properties of all the Dirac Hamiltonians discussed here are summarized in
table 4.

3.2. Example: d = 3→ 2→ 1

Consider a d = 3-dimensional gapless Dirac fermion

H(k)= kxσx + kyσy + kzσz. (112)

This Hamiltonian is a member of class AII, since

σyH(k)σy =H∗(−k). (113)

Starting from this Hamiltonian, we dimensionally reduce this Hamiltonian successively and
obtain the lower-dimensional Hamiltonians with shifted symmetry classes, AII→ D→ BDI.
We replace kz by a mass term, and consider a d = 2-dimensional massive Dirac fermion

H(k,m)= kxσx + kyσy + mσz. (114)

This Hamiltonian is now a member of class D since

σxH∗(k,m)σx =−H(−k,m). (115)

As mentioned before, the Chern number is nonzero for this model, Ch2 =
1
2sgn(m).

This Hamiltonian is in the same universality class as the chiral p + ip-wave topological
superconductor [8, 65].

The single-particle Hamiltonian (114), of course, looks identical to (65). This degeneracy
is lifted once we consider more generic types of perturbations than the mass term, which can in
principle be spatially inhomogeneous. Also, because of the C symmetry (see equation (115)), the
Hamiltonian (114) can be viewed as a single-particle Hamiltonian for real (Majorana) fermions,
while this is not the case for a class AIII single-particle Hamiltonian. In other words, a class D
system can be written in the second quantized form as

H =
1

2

∑
k∈BZ2

(
a†

k , a
−k

)
H(k,m)

(
ak

a†
−k

)
. (116)

where a†
k/ak is a fermion creation/annihilation operator with momentum k.

By further switching off ky or by the dimensional reduction in the y-direction,

H(k,m)= kxσx + mσz. (117)

This Hamiltonian is a member of class BDI since

σxH∗(k,m)σx =−H(−k,m), σzH∗(k,m)σz =H(−k,m). (118)

This model can be realized as a continuum limit of the lattice Majorana fermion model discussed
in [66]. For this d = 1 topological massive Dirac Hamiltonian, the winding number and the
Wilson loop can be computed in the same way as we did for the d = 1 class AIII topological
Dirac insulators (70). From (73), we immediately see ν1 =

1
2sgn(m).
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3.3. Example: d = 5→ 2

Consider d = 2 · 1 + 3 dimensions. We can take the following five matrices as gamma matrices,

0
a=1,...,5
(5) =

{
τy ⊗ σx,y,z, τx ⊗ σ0, τz ⊗ σ0

}
. (119)

Note that

σy

(
0a
(5)

)T
σy = +0a

(5). (120)

Thus, the gapless Hamiltonian

H(k)=
5∑

a=1

ka0
a
(5) (121)

is a member of class C, as seen from

σyka

(
0a
(5)

)T
σy =−(−ka)0

a
(5). (122)

We now remove three momenta, and add one mass term. There are four possible mass terms
that are compatible with the class C symmetry

τx,z,0⊗ σy, τy ⊗ σ0. (123)

To construct a kinetic term we pick two gamma matrices from the list (119). For any choice of
two gamma matrices there is only one mass term in equation (123) that anticommutes with the
chosen kinetic term. In this way, we obtain, for example, the following massive Hamiltonian:

H(k,m)= τy ⊗ σxkx + τy ⊗ σzkz + mτ0⊗ σy. (124)

Observe that i(τy ⊗ σy)(τx ⊗ σ0)(τz ⊗ σ0)= τ0⊗ σy . It is easy to see that this Hamiltonian has
the doubled Chern number, Ch1 =±2. To see this, first rotate τy→ τz,

H(k,m)→ τz ⊗ σxkx + τz ⊗ σzkz + mτ0⊗ σy

=

(
σxkx + σzkz + σym 0

0 −σxkx − σzkz + σym

)
, (125)

and then apply a unitary transformation,(
σ0 0
0 σy

)(
σxkx + σzkz + σym 0

0 −σxkx − σzkz + σym

)(
σ0 0
0 σy

)

=

(
σxkx + σzkz + σym 0

0 σxkx + σzkz + σym

)
. (126)

The d = 2-dimensional Hamiltonian constructed here has the same topological properties
as the d = 2-dimensional d + id-wave superconductor discussed in [69].

4. Z2 topological insulators and dimensional reduction

In the previous sections, we have studied Z topological insulators (superconductors), which
are characterized by an integer—the Chern or winding number. In this section, we discuss
Z2 topological insulators (superconductors) and show how they can be derived as lower-
dimensional descendants of parent Z topological insulators (superconductors) (see table 5).
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Table 5. All Z2 topological insulators (superconductors) can be described
through dimensional reduction as lower-dimensional descendants of parent Z
topological insulators (superconductor) in the same symmetry class, which are
characterized by nontrivial winding/Chern numbers. Symmetry classes in which
chiral (‘sublattice’) symmetry is present (S= 1) are colored blue (the Cartan
label marked in boldface), whereas those where it is absent (S= 0) are colored
red.

AZ 0 1 2 3 4 5 6 7 8 9 10 11 . . .

AI Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 . . .
BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 . . .
D Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 . . .

DIII 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z . . .
AII 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 . . .
CII 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 . . .
C 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 . . .
CI 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z . . .

Recently, Qi et al [28] employed this procedure to derive descendant Z2 topological insulators
(superconductors) for those symmetry classes that break chiral symmetry. Here, we show how
this approach can be generalized and applied to all eight symmetry classes of table 5. We first
treat chiral symmetric systems, and then review the case of chiral symmetry breaking classes.
The reasoning follows closely that of [28].

4.1. Topological insulators with chiral symmetry

Four among the eight symmetry classes of table 5 (see also table 1) are invariant under chiral
(‘sublattice’) symmetry, which is a combination of particle–hole and time-reversal symmetries.
These four symmetry classes are called BDI, CI, CII and DIII. It is possible to characterize
the topological properties of chiral symmetric Z topological insulators by a winding number
(topological invariant), which is defined in terms of the block off-diagonal projector (see
section 2.2.1). From this topological invariant we can derive a Z2 classification by imposing
the constraint of additional discrete symmetries (such as C and T ) for the lower-dimensional
descendants. For a d-dimensional Z topological insulator (superconductor) in a given symmetry
class, we distinguish between first and second descendants, whose (reduced) dimensionality is
d − 1 and d − 2, respectively.

4.1.1. Symmetry properties of winding number. In order to better understand the role played
by T and C, we first study the transformation properties of the winding number (20) and the
winding number density (21) under these discrete symmetries. First of all, we note that the
winding number density is purely real, w∗2n+1[q]= w2n+1[q], which can be checked by direct
calculation. Without any additional discrete symmetries, i.e. for symmetry class AIII, the off-
diagonal projector q and hence the winding number density (21) are not subject to additional
constraints. However, for the symmetry classes BDI, DIII, CII and CI, the presence of time
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reversal and particle–hole symmetries relates the projector q at wavevector k to the one at
wavevector −k. As a consequence, the configurations of the winding number density w in
momentum space are restricted by time-reversal and particle–hole symmetries. Let us now
derive these symmetry constraints on the winding number density w2n+1[q] for any odd spatial
dimension d = 2n + 1.

Classes DIII and CI: First, we consider symmetry classes DIII and CI, where the block
off-diagonal projector satisfies [26]

qT (−k)= εq(k), ε =

{
−1, DIII,

+1, CI.
(127)

We introduce the auxiliary functions

vµ(k) :=

(
q† ∂

∂kµ
q

)
(k) and ṽµ(k) :=

(
q
∂

∂kµ
q†

)
(k). (128)

From the symmetry property (127), it follows that vµ(k)=−ṽ
∗

µ(−k), irrespective of the value
taken by ε. Noting that (dq†)q =−q†dq, we find

εα1α2···α2n+1tr
[
vα1(k)vα2(k) · · · vα2n+1(k)

]
= εα1α2···α2n+1 tr

[
vα1(−k)vα2(−k) · · · vα2n+1(−k)

]∗
. (129)

Thus, the winding number density for symmetry class DIII and CI is subject to the constraint

w2n+1 [q(k)]= (−1)n+1w∗2n+1 [q(−k)] . (130)

Consequently, the winding number ν4n+1[q] is vanishing in d = 4n + 1 dimensions, i.e. there
exists no nontrivial topological state characterized by an integer winding number in (4n + 1)-
dimensional systems belonging to symmetry class DIII or CI (cf table 5). Conversely, in
d = (4n + 3) dimensions both in class DIII and CI there are topologically nontrivial states
(ii or iv in table 4), and one would naively expect that for each of these states there are lower-
dimensional descendants characterized by Z2 topological invariants. However, this is not the
case, as we will explain below.

Classes BDI and CII: Next, we consider symmetry classes BDI and CII, where the
projector satisfies [26]

Gq∗(−k)G−1
= q(k), G =

{
σ0, BDI,

iσy, CII.
(131)

Introducing the auxiliary function vµ(k), equation (128), as before, we find that vµ(k)=
−Gv∗µ(−k)G−1, for both classes BDI and CII. From the cyclic property of the trace it follows
that

εα1α2···α2n+1tr
[
vα1(k)vα2(k) · · · vα2n+1(k)

]
= εα1α2···α2n+1(−1)2n+1 tr

[
vα1(−k)vα2(−k) · · · vα2n+1(−k)

]∗
.

(132)

Hence, the winding number density in class BDI and CII is constrained by

w2n+1 [q(k)]= (−1)nw∗2n+1 [q(−k)] . (133)

As a result, the winding number ν4n−1[q] is vanishing in d = 4n− 1 dimensions, i.e. there are
no nontrivial (4n− 1)-dimensional Z topological insulators belonging to symmetry class BDI
or CII (see table 5). On the other hand, in (4n + 1) dimensions there exist Z topological states
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in both classes BDI and CII (ii or iv in table 4), and one would expect, as before, that for each
of these states there are lower-dimensional topologically nontrivial descendants. Again, this
expectation turns out to be incorrect, as we will explain below.

4.1.2. Z2 classification of first descendants. In this section, we show how a Z2 topological
classification is obtained for 2n-dimensional, chiral symmetric insulators (superconductors)
under the constraint of additional discrete symmetries (i.e. C and T ). To uncover the Z2

topological characteristics of chiral symmetric systems, we study the topological distinctions
among the block off-diagonal projectors q(k). Let us consider two projectors q1(k) and q2(k),
whose momentum space configuration is restricted by the symmetry constraint of one of
the classes DIII/CI, equation (127), or BDI/CII, equation (131). We introduce a continuous
interpolation q(k, t), t ∈ [0, π] between these two projectors (see figure 4(a)) with

q(k, t = 0)= q1(k) and q(k, t = π)= q2(k). (134)

Since the topological space of 2n-dimensional class AIII insulators is simply connected,
the continuous deformation q(k, t) is well defined. In general, q(k, t) does not satisfy the
symmetry constraints encoded by equation (127) or (131), respectively. However, by combining
equation (134) with its symmetry transformed partner, we can construct an interpolation that
obeys the discrete symmetries of the given symmetry class (see figure 4(b)). In the case of
symmetry class DIII/CI, we define for t ∈ [π, 2π ]

q(k, t)= εqT (−k, 2π − t), ε =

{
−1, DIII

+1, CI,
(135)

while, in the case of symmetry class BDI/CII, we set for t ∈ [π, 2π ]

q(k, t)= Gq∗(−k, 2π − t)G−1, G =

{
σ0, BDI

iσy, CII.
(136)

Equations (134)–(136) with the parameter t replaced by the wavevector component k2n+1

represent a (2n + 1)-dimensional projection operator respecting the symmetry constraints of
the corresponding symmetry class. Consequently, a winding number for q(k, t), ν2n+1[q(k, t)],
can be defined in the (k, t) space. Two different interpolations q(k, t) and q ′(k, t) generally
give different winding numbers, ν2n+1[q(k, t)] 6= ν2n+1[q ′(k, t)]. However, we can show that
symmetry constraint (135) or (136), respectively, leads to

ν2n+1[q(k, t)]− ν2n+1[q ′(k, t)]= 0 mod 2. (137)

To prove equation (137) we introduce two new interpolations r1(k, t) and r2(k, t) that transform
into each other under the discrete symmetry operations (see figure 4)

r1(k, t)=

{
q(k, t), t ∈ [0, π] ,

q ′(k, 2π − t), t ∈ [π, 2π ] ,

r2(k, t)=

{
q ′(k, 2π − t), t ∈ [0, π] ,

q(k, t), t ∈ [π, 2π ] ,

(138)

These are recombinations of the deformations q(k, t) and q ′(k, t) with

ν2n+1[q(k, t)]− ν2n+1[q ′(k, t)]= ν2n+1[r1(k, t)] + ν2n+1[r2(k, t)]. (139)
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Figure 4. (a) One-parameter interpolation of two topological insulators
represented by the projectors q1 and q2. In (b), the one-way interpolation
(a) is extended by making use of the discrete symmetry. (c) Two different
interpolations, each colored red and blue, respectively. In (d), the original
interpolations are rearranged into two different interpolations.

Now, we make use of the result from section 4.1.1. Namely, for symmetry class BDI/CII we
found

w4n+1[q(k, t)]= w∗4n+1[q(−k,−t)] (140)

in d = 4n + 1 spatial dimensions, whereas for symmetry class DIII/CI

w4n−1[q(k, t)]= w∗4n−1[q(−k,−t)] (141)

in d = 4n− 1 spatial dimensions. Let us first consider class BDI/CII in d = 4n + 1 dimensions.
With equations (20) and (140) we obtain

ν4n+1[r1]=
∫

d4nk dt w4n+1[r1(k, t)]

=

∫
d4nk dt w∗4n+1[r1(−k,−t)]

=

∫
d4nk dt w∗4n+1[r2(k, t)]= ν4n+1[r2], (142)

where we made use of the fact that r1 transforms into r2 under the discrete symmetry operations
of class BDI/CII. In conclusion, we have shown that ν4n+1[q(k, t)]− ν4n+1[q ′(k, t)]=
2ν4n+1[r1(k, t)] ∈ 2Z for any two interpolations q(k, t) and q ′(k, t) belonging to class BDI/CII.
Hence, we can define a relative invariant for the 4n-dimensional projection operators q1(k)
and q2(k)

ν4n [q1(k), q2(k)]= (−1)ν4n+1[q(k,t)], (143)

which is independent of the particular choice of the interpolation q(k, t) between q1(k) and
q2(k). Once we have identified a ‘vacuum’ projection operator, e.g. q0(k)≡ q0, we can construct
with equation (143) a Z2 invariant: nontrivial Hamiltonians are characterized by ν4n[q, q0]=
−1, whereas trivial ones satisfy ν4n[q, q0]= +1. Finally, we note that the calculation leading to
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the relative invariant ν4n[q1, q2], equation (143), can be repeated for symmetry class DIII/CI in
d = 4n− 1 dimensions yielding a relative invariant ν4n−2[q1, q2].

For d = 4n− 1 (d = 4n + 1) the dimensional reduction seems to be possible both for class
DIII and CI (BDI and CII). However, for a given n the dimensional reduction seems to be
meaningful only for one of them; while for one of them (corresponding to ii in table 4), there is
a descendant Z2 insulator in one dimension lower, for the other (corresponding to iv in table 4),
there are no descendant Z2 insulators. In other words, for a given n = odd (even), there are
lower-dimensional Z2 topological insulators for either one of class DIII and CI (BDI and CII),
but not both. This is because the above procedure does not apply when the classification of
topological insulator is not Z, but 2Z.

4.1.3. Z2 classification of second descendants. The dimensional reduction procedure
presented in the previous subsection can be repeated once more to obtain a Z2 classification
of the second descendants. As before, we first focus on symmetry class BDI/CII and study the
topological distinctions among the block off-diagonal projectors. We consider two (4n− 1)-
dimensional projectors q1(k) and q2(k), which satisfy the symmetry constraints imposed by
class BDI/CII. We define an adiabatic interpolation q(k, t), t ∈ [0, 2π ]

q(k, t = 0)= q1(k), q(k, t = π)= q2(k),

q(k, t)= Gq∗(−k,−t)G−1, G =

{
σ0, BDI,

iσy, CII.

(144)

We can interpret q(k, t) as a 4n-dimensional projector belonging to symmetry class BDI/CII.
Therefore, for two deformations q(k, t) and q ′(k, t) of the form (144) a relative invariant
ν4n[q(k, t), q ′(k, t)] can be defined, as discussed in section 4.1.2. It turns out that due to
condition (144) the invariant ν4n[q(k, t), q ′(k, t)] is independent of the particular choice of
interpolations, i.e. ν4n[q(k, t), q ′(k, t)]= +1 for any two deformations q(k, t) and q ′(k, t)
satisfying condition (144). In order to prove this, we consider a continuous interpolation
r(k, t, s) between the two deformations q(k, t) and q ′(k, t) with

r(k, t, s = 0)= q(k, t), r(k, t, s = π)= q ′(k, t),

r(k, t = 0, s)= q1(k), r(k, t = π, s)= q2(k), (145)

r(k, t, s)= Gr∗(−k,−t,−s)G−1, G =

{
σ0, BDI,

iσy, CII.

This represents a (4n + 1)-dimensional off-diagonal projector in symmetry class BDI/CII
with the winding number ν4n+1[r(k, t, s)]. We note that r(k, t, s) is not only a deformation
between q(k, t) and q ′(k, t), but can also be viewed as a continuous interpolation
between r(k, 0, s)≡ q1(k) and r(k, π, s)≡ q2(k) (for any s ∈ [0, 2π ]). Therefore, we find
ν4n[q(k, t), q ′(k, t)]= ν4n[r(k, t, 0), r(k, t, π)]= ν4n[r(k, 0, s), r(k, π, s)]. Since r(k, 0, s)≡
q1(k) and r(k, π, s)≡ q2(k) are independent of s, we find that ν4n[r(k, 0, s), r(k, π, s)]=
(−1)ν4n+1[r ]

= +1. Hence, we have shown that ν4n[q(k, t), q ′(k, t)] only depends on q1(k) and
q2(k). Therefore, ν4n[q0, q(k, t)] together with a reference (‘vacuum’) projector q0 constitutes a
well-defined Z2 invariant in 4n− 1 dimensions.

4.1.4. Example: d = 3→ 2→ 1. As an example we consider a 3D topological Dirac super-
conductor belonging to symmetry class DIII. Consider a d = 3-dimensional Dirac Hamiltonian,

Hd=3
(5) (k,m)= kxαx + kyαy + kzαz −miβγ 5. (146)

New Journal of Physics 12 (2010) 065010 (http://www.njp.org/)

http://www.njp.org/


42

This is nothing but the chiral topological Dirac superconductor in class DIII. This Hamiltonian
is essentially identical to the BdG Hamiltonian describing the Bogoliubov quasiparticles in the B
phase of superfluid 3He [26, 68, 69]34. It also describes an auxiliary Majorana hopping problem
for an interacting bosonic model on the diamond lattice [70]. In this basis, discrete symmetries
are given by

T : (σy ⊗ τx)
[
Hd=3
(5) (−k,m)

]∗
(σy ⊗ τx)=Hd=3

(5) (k,m),

C : (σy ⊗ τy)
[
Hd=3
(5) (−k,m)

]∗
(σy ⊗ τy)=−Hd=3

(5) (k,m).
(147)

Combining these two, we have chiral symmetry, which allows us to define the winding number
ν3. From the calculations in section 2.5, the winding number is nonzero, ν3 =±1/2, depending
on the sign of the mass.

By dimensional reduction, we obtain the Hamiltonian in one dimension lower,

Hd=2
(5) (k,m)= kxαx + kyαy −miβγ 5. (148)

This Hamiltonian is a 2D analogue of 3He-B and is unitarily equivalent to the direct product
of spinless p + ip and p− ip wave superconductors. As this is obtained from dimensional
reduction of a parent topological superconductor (146), this is a Z2 state. Finally, by further
reducing dimensions,

Hd=1
(5) (k,m)= kxαx −miβγ 5. (149)

This is a 1D px -wave superconductor. Again, this is a Z2 state.
We now discuss the topological character of these states in more detail. The Z2 nature of

the state in this d = 2 example can be studied by the Kane–Mele invariant [9, 15]. It can be
expressed as an SU(2) Wilson loop

WSU(2)[L] :=
1

2
tr P exp

[∮
L
A(k)

]
. (150)

Here A(k) is the SU(2) Berry connection and P represents the path ordering. By definition,
WSU(2)[L] is a well-defined and gauge invariant quantity for any loop L in the BZ. For time-
reversal invariant systems, it is useful to consider a loop L that satisfies time-reversal symmetry;
i.e. a loop that is mapped onto itself (up to reparameterization) under k→−k. For these time-
reversal invariant loops, the SU(2) Wilson loop is quantized,

WSU(2)[L]= ± 1, (151)

and provides a way to distinguish different Z2 states [9, 15, 71]. The quantization of the Wilson
loop can be proved by first noting that because of T , Bloch wavefunctions at k and −k are
related to each other by a unitary transformation w(k),

|2u−â (k)〉 = wâb̂(k)|u
−

â (−k)〉, (152)

34 In [53], a topological invariant counting the number of gap-closing Dirac points in an extended, higher-
dimensional parameter space was discussed for a four-band example (146), as opposed to ν3[q] defined for a
given topological phase. Moreover, the crucial role for the protection of topological properties arising from the
combined time-reversal and charge-conjugation symmetries of symmetry class DIII was not discussed.
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where 2 represents T operation and

wâb̂(k) := 〈u−â (−k)|2u−
b̂
(k)〉. (153)

Accordingly, the Berry connection at k is gauge equivalent to AT
µ at −k,

Aµ(−k)= +w(k)AT
µ(k)w

†(k)−w(k)∂µw
†(k)

= −w(k)A∗µ(k)w
†(k)−w(k)∂µw

†(k). (154)

Because of this sewing condition (154) of the gauge field, when plugged in (150), contributions
at k and −k in the path integral cancel pairwise, except at those momenta that are invariant
under T by themselves. Thus,

WSU(2)[L]=
∏

K

Pf [w(K )] , (155)

where K is a momentum that is invariant under k→−k.
We now compute the Z2 number for the d = 2 class DIII topological superconductor (148).

From (85),

|u−1 (k)〉 =
1
√

2λ


−kx + iky

im
0
λ

 , |u−2 (k)〉 = 1
√

2λ


im

−kx − iky

λ

0

 . (156)

Then, their time-reversal counterparts are

|2u−1 (k)〉 =
−i
√

2λ


λ

0
−im

kx + iky

 , |2u−2 (k)〉 =
−i
√

2λ


0
−λ

−kx + iky

im

 , (157)

where 2= (σy ⊗ τx)K with K being the complex conjugation. The ‘sewing matrix’ w(k) can
then be computed as

w(k) := 〈u â(−k)|2u b̂(k)〉 =
1

λ(k)

(
−ikx + ky m(k)

−m(k) +ikx + ky

)
. (158)

Here, we have regularized the Dirac Hamiltonian properly, by making the mass k-dependent,
e.g. m→ m(k)= m−Ck2. With this regularization, k = 0 and k =∞ are the two time-reversal
invariant momenta. One finds

Pfw(0)=
m(0)

λ(0)
Pf (iσy)=

m

|m|
Pf (iσy),

Pfw(∞)=
m(∞)

λ(∞)
Pf (iσy)=

−C

|C |
Pf (iσy),

(159)

and hence

WSU(2)[L]=−sign(m) sign(C). (160)

That is, when sign(m)= sign(C), the Hamiltonian (146) is a Z2 topological superconductor.
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4.2. Topological insulators lacking chiral symmetry

Four among the eight (‘real’) symmetry classes of table 5 break chiral (‘sublattice’) symmetry.
The Z topological insulators (superconductors) that break chiral symmetry are characterized
by a Chern number (see equation (11)). Using this topological invariant one can derive the
Z2 classification for the lower-dimensional descendants. This derivation is analogous to the
discussion in section 4.1 and has been performed previously in [28] for the Z2 topological
insulators that break chiral symmetry. For these reasons we do not repeat the argument here
and refer the reader to [28] for details. For the Z2 topological insulators (superconductors) that
break chiral symmetry, one can construct a Z2 index similar to the one constructed by Moore
and Balents [12], in all (even) dimensions [72].

5. Discussion

In this paper, we have performed an exhaustive study of all topological insulators and
superconductors in arbitrary dimensions. The main part of this paper deals with dimensional
reduction procedures, which relate topological insulators (superconductors) in different
dimensions and symmetry classes. We also discussed topological field theories in D = d + 1
spacetime dimensions describing linear responses of topological insulators (superconductors).
Furthermore, we studied how the presence of inversion symmetry modifies the classification
of topological insulators (superconductors) (see appendix C). In the following we give a brief
summary of the main results of the paper.

5.1. Dimensional reduction procedures

We have constructed for all five symmetry classes of topological insulators or superconductors
a Dirac Hamiltonian representative, in all spatial dimensions. Using these Dirac Hamiltonians
as canonical examples, we have demonstrated that topological insulators (superconductors) in
different spatial dimensions and symmetry classes can be related to each other by dimensional
reduction procedures. These Dirac representatives have been useful for constructing string
theory realization of topological insulators and superconductors: In [73], a one-to-one
correspondence between the tenfold classification of topological insulators and superconductors
and a K -theory classification of D-branes was established, where open string excitations
between two D-branes of various dimensions are shown to reproduce all Dirac representatives
constructed in this paper.

5.1.1. The ‘complex’ case. We first studied topological insulators (superconductors) with
Hamiltonians that are complex (i.e. belonging to the ‘complex case’ of table 3, that is, classes
A and AIII from table 1). Here, starting from a topological insulator that lacks chiral symmetry
(i.e. class A) in even spatial dimensions d = 2n, we obtain a topological insulator
(superconductor) in d = 2n− 1, which possesses chiral symmetry (i.e. class AIII), by
dimensional reduction. In order to understand how the topological characteristics of the d =
2n− 1 class AIII topological insulator (characterized by the winding number ν2n−1) are inherited
from its higher-dimensional parent, the d = 2n class A topological insulator (characterized by
the Chern number Chn), it is important to first point out a few properties of the momentum
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space topology of Bloch wavefunctions in symmetry classes A and AIII. Firstly, we note that
the nonzero Chern number in class A leads to an obstruction to the existence of globally
defined Bloch eigenfunctions. That is, it is not possible to construct Bloch eigenfunctions
for the parent class A topological insulator globally on the d = 2n-dimensional BZ. Hence,
the Bloch eigenfunctions can only be defined locally on some suitably chosen coordinate
patches. For the descendant topological insulator (superconductor) with chiral symmetry, on
the other hand, since there is no Chern invariant in d = 2n− 1, there always exists a basis
(i.e. a gauge) in which the Bloch eigenfunctions are well defined globally on the entire
d = 2n− 1-dimensional BZ. Such a basis is provided by the one in which the Hamiltonian
is block off-diagonal. The existence of such a block off-diagonal basis, in turn, is implied
by the chiral symmetry of the descendant class AIII topological insulator (superconductor).
As a consequence, the role played by the chiral symmetry is to guarantee that Bloch eigen-
functions of class AIII topological insulators (superconductors) can be defined globally on the
entire BZ.

Now, by adopting such a block off-diagonal basis for the class AIII topological insulator,
we have shown that the d = 2n− 1-dimensional BZ of the descendant class AIII Hamiltonian
defines the boundary of two local coordinate patches of the d = 2n-dimensional BZ of the parent
class A topological insulator. The transition function between these two coordinate patches is
given by the block off-diagonal projector35 q of the descendant Hamiltonian, and the Chern
number Chn of the parent Hamiltonian can be written in terms of a winding number of this
transition function (see section 2.3).

5.1.2. The ‘real’ case. Also demonstrated is, using the Dirac Hamiltonian representatives, the
periodicity eight shift of symmetry classes for the topological insulators (superconductors) in the
eight symmetry classes in which the Hamiltonian possesses at least one reality condition (arising
from T or C). Once one has constructed a representative in terms of a Dirac Hamiltonian,
the reality properties of the spinor representations of the orthogonal groups SO(N ) (which
are linked to the reality properties of the representations of the Clifford algebra formed
by the gamma matrices) leads directly to this eightfold periodicity in the spatial dimension
d (see section 3). From the Dirac Hamiltonian representatives of topological insulators
(superconductors) in all d spatial dimensions (all of which are of course massive), one can
realize a d − 1-dimensional boundary, by making a domain wall at which the mass term changes
sign [74]. There then appears a boundary state localized at the boundary, which is a defining
property of topological character in the bulk. These boundary states are of special kind, as they
are protected from the appearance of a gap and from Anderson localization, by the time-reversal
and charge-conjugation symmetry properties of the specific symmetry class. Indeed, one of the
underlying strategies of classification adopted in [26] was to classify the properties of these
boundary Hamiltonians in each symmetry class, including those of Dirac type, which must be
completely gapless and delocalized when they come from a topological bulk, but can otherwise
be gapped and localized for a non-topological bulk. By constructing massive Dirac Hamiltonian
representatives in the bulk for all topological insulators (superconductors), which give rise to
the gapless boundary Dirac Hamiltonians, we undertook here in some sense a complementary
task as compared to that in [26].

35 Of the type described in equation (34) of the first article in [26].
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5.2. Topological field theories

In the low-energy limit, all topological insulators (superconductors) can be described by
topological field theories for the linear responses in spacetime, which characterize universal
(in principle) experimentally accessible observables of the topological features, such as, e.g.,
in transport. For example, for symmetry class A in even spatial dimensions d = 2n, the
topological field theory of the linear responses in D = d + 1 spacetime dimensions is given
by the Chern–Simons action, whose coupling coefficient is the nth Chern number Chn. For
symmetry class AIII in odd spatial dimensions d = 2n− 1, on the other hand, the topological
field theory in D = 2n spacetime dimensions is given by the θ term, whose coefficient (the
θ angle) is given by the winding number ν2n+1 (see section 2.6). For topological singlet
superconductors (symmetry classes C and CI), one can couple the external SU(2) gauge field to
the conserved spin current operator of the BdG quasiparticles. The spin response in topological
singlet superconductors can be described by SU(2) gauge theory with Chern–Simons-type
topological term in d = 2n [8] and with the θ -type term in d = 2n + 1 [75]. In passing we
note that it is also possible to establish a connection among these topological field theories in
various spacetime dimensions and symmetry classes via dimensional reduction procedures. The
topological field theory formulation may be a good starting point to explore, more generally,
topological phases in interacting systems beyond those that are currently known.

5.3. Topological insulators with inversion symmetry and either time-reversal or
charge-conjugation symmetry

We have also studied the restrictions imposed on ground-state properties of topological
insulators (superconductors) by the presence of inversion symmetry. That is, we studied
topological states that are protected by a combination of spatial inversion (denoted by I) and
an additional discrete symmetry (i.e. T or C). These systems are invariant under the combined
symmetry operations T · I or C · I, but all three symmetries T , C and I are assumed to be
absent. We have determined the space of projectors describing these topological states. From
the homotopy groups of the space of projectors follows the classification of topological states
that are protected by T · I or C · I (see table C.2).

5.4. Directions for future work

An important direction for future study is the search for experimental realizations of 3D
topological singlet or triplet superconductors. Given how fast experimental realizations of
the QSHE in d = 2 and the Z2 topological insulators in d = 3 have been found, we
anticipate a similar development for the 3D topological singlet or triplet superconductors.
For example, unconventional superconductors in heavy fermion systems, typically possessing
strong spin–orbit effects, have been studied extensively over the years. They might be good
candidates for topological superconductors. Moreover, the search for nontrivial topological
quantum ground states is not restricted to free fermions, or BCS quasiparticles, but includes
also, more generally, strongly interacting systems other than BCS with emergent free fermion
behavior at low energies. Furthermore, it should be noted that the classification scheme given
by table 3 is also applicable outside the realm of condensed matter physics. For example,
topological properties of color superconducting phases [76, 77], which are predicted to occur in
quark matter, can be discussed in terms of the present classification scheme.
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Appendix A. Cartan symmetric spaces: generic Hamiltonians, NLσM field theories
and classifying spaces of K-theory

In this appendix, we review the appearance of Cartan’s tenfold list of symmetric spaces in
the context of (i) basic quantum mechanics: where they describe the time evolution operators
exp(itH) of generic Hamiltonians H, (ii) NLσM field theories: where they describe the ‘target
space’ manifold of the NLσM and (iii) K -theory: where they describe the ‘classifying space’
(briefly discussed at the end of subsection 1.2 of the introduction). As reviewed in the introduc-
tion, the homotopy groups of these symmetric spaces play a key role in the classification of topo-
logical insulators and superconductors both in the approach of [26], which makes use of results
from Anderson localization physics, and in the approach of [27], which is based on K -theory.

In table A.1, we list for each symmetry class denoted by its Cartan label in the first column,
the time evolution operator in this symmetry class (penultimate column of table 1) in the second
column, the target spaces36 of the NLσM field theories in the third column, and in the last
column the classifying space appearing in K -theory [27].

Here we would like to re-emphasize the remarkable fact that the same ten Cartan symmetric
spaces describe all three objects listed in the last three columns of table A.1. Furthermore, there
are remarkable relations between these columns. Firstly, the second column (‘time evolution
operator’) can be obtained from the last column (‘classifying space’) by shifting the entries in
the last column down by one entry (modulo eight, and modulo two in the ‘real’ and ‘complex’
cases, respectively). Secondly, the third column (‘NLσM target space’) is obtained from the last
column by performing a reflection (modulo 8) in the last column about the entry in the row
labeled D (and an exchange for the complex case). Consequently, there is then also a resulting
relationship between the second and third columns [78].

As reviewed in subsection 1.2 of the introduction, the classifying spaces listed in the last
column of table A.1 describe topological insulators (superconductors) in zero dimensions, i.e.
at one point in space37. The disconnected components of this space of Hamiltonians Q (which
cannot be continuously deformed into each other) are labeled by Z or Z2 appearing in the d = 0
column of table 3, which denotes the list of zeroth homotopy groups of the spaces in the last

36 There are three different varieties of NLσM field theories: supersymmetric, fermionic replica and bosonic replica
models. In the latter two formulations, the replica limit must be taken, where one lets the number of replicas, N ,
tend to zero at the end of the calculations. While the target spaces of fermionic replica models are compact, those of
bosonic replica models are non-compact. In the supersymmetric formulation, on the other hand, the target spaces
are supermanifolds with both bosonic and fermionic coordinates. The fermionic and bosonic replica NLσMs,
with N finite, can be viewed as fermion–fermion and boson–boson subsectors, respectively, of the corresponding
supersymmetric NLσMs [36].
37 Kitaev [27]; compare also table III (second column, with k = 0) of the first article of [26].
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Table A.1. Three appearances of the list of Cartan’s ten symmetric spaces.
First column: unitary time evolution operator; second column: (compact) target
space of NLσMs; third column: classifying space. (We use the convention in
which m = even in Sp(m). Moreover, the Cartan labels of those symmetry
classes invariant under the chiral symmetry operation S = T · C from table 1 are
indicated by boldface letters.)

Cartan Time evolution operator Fermionic replica
label exp{itH} NLσM target space Classifying space

A U(N )×U(N )/U(N ) U(2n)/U(n)×U(n) U(N + M)/U(N )×U(M)= C0

AIII U(N + M)/U(N )×U(M) U(n)×U(n)/U(n) U(N )×U(N )/U(N )= C1

AI U(N )/O(N ) Sp(2n)/Sp(n)×Sp(n) O(N + M)/O(N )×O(M)= R0

BDI O(N + M)/O(N )×O(M) U(2n)/Sp(2n) O(N )×O(N )/O(N )= R1

D O(N )×O(N )/O(N ) O(2n)/U(n) O(2N )/U(N )= R2

DIII SO(2N )/U(N ) O(n)×O(n)/O(n) U(2N )/Sp(2N )= R3

AII U(2N )/Sp(2N ) O(2n)/O(n)×O(n) Sp(N + M)/Sp(N )×Sp(M)= R4

CII Sp(N + M)/Sp(N )×Sp(M) U(n)/O(n) Sp(N )×Sp(N )/Sp(N )= R5

C Sp(2N )×Sp(2N )/Sp(2N ) Sp(2n)/U(n) Sp(2N )/U(N )= R6

CI Sp(2N )/U(N ) Sp(2n)×Sp(2n)/Sp(2n) U(N )/O(N )= R7

column of table A.1. All higher homotopy groups of the same spaces can then be inferred from
table 2 due to the dimensional periodicity and shift properties visible in that table.

Appendix B. Spinor representations of SO(N)

In this appendix, we review spinor representations of SO(N ) and their properties under reality
conditions [79, 80]. It is most convenient to discuss spinor representations in terms of Clifford
algebras, i.e. in terms of gamma matrices {0a

(N )}a=1,...,N satisfying {0 j
(N ), 0

k
(N )} = 2δ jk, with

j, k = 1, . . . , N . Given such a set of gamma matrices a spinor representation of SO(N ) can
be readily obtained

M jk =−
i

4

[
0

j
(N ), 0

k
(N )

]
, (B.1)

with the SO(N ) generators M jk .

B.1. Spinors of SO(2n + 1)

In what follows, we will focus on SO(2n + 1), which has a 2n-dimensional irreducible spinor
representation. The gamma matrices in the Dirac representation for N = 2n + 1 are defined
recursively by

0a
(2n+1) = 0

a
(2n−1)⊗ σ3, a = 1, . . . , 2n− 2,

02n−1
(2n+1) = I2n−1 ⊗ σ1,

02n
(2n+1) = I2n−1 ⊗ σ2,

02n+1
(2n+1) = (−i)n01

(2n+1)0
2
(2n+1) . . . 0

2n
(2n+1),

(B.2)
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where I2n−1 is the 2n−1
× 2n−1 identity matrix. (The gamma matrices in the Dirac representa-

tion for N = 2n can be constructed by just leaving out 02n+1
(2n+1), i.e. 0a

(2n) = 0
a
(2n+1), with

a = 1, . . . , 2n.) To be more explicit,

01
(2n+1) = σ1⊗ σ3⊗ · · ·⊗ σ3︸ ︷︷ ︸

n−1

,

02
(2n+1) = σ2⊗ σ3⊗ · · ·⊗ σ3︸ ︷︷ ︸

n−1

,

03
(2n+1) = σ0⊗ σ1⊗ σ3⊗ · · ·⊗ σ3︸ ︷︷ ︸

n−2

,

04
(2n+1) = σ0⊗ σ2⊗ σ3⊗ · · ·⊗ σ3︸ ︷︷ ︸

n−2

,

...

02n−1
(2n+1) = σ0⊗ · · ·⊗ σ0︸ ︷︷ ︸

n−1

⊗σ1,

02n
(2n+1) = σ0⊗ · · ·⊗ σ0︸ ︷︷ ︸

n−1

⊗σ2,

(B.3)

and

02n+1
(2n+1) = σ3⊗ · · ·⊗ σ3︸ ︷︷ ︸

n

. (B.4)

From the explicit construction of the gamma matrices, we infer that 01,3,···,2n+1
(2n+1) are all real,

and 02,4,···,2n
(2n+1) are purely imaginary. In order to implement discrete symmetries on the space of

Dirac Hamiltonians, we define the matrices

B1
(2n+1) := 01

(2n+1)0
3
(2n+1) · · ·0

2n−1
(2n+1),

B2
(2n+1) := 02

(2n+1)0
4
(2n+1) · · ·0

2n
(2n+1).

(B.5)

By use of the reality and anticommutation properties of the gamma matrices, one finds that[
B1
(2n+1)

]∗
B1
(2n+1) = (−1)n(n−1)/2,[

B2
(2n+1)

]∗
B2
(2n+1) = (−1)n(n+1)/2.

(B.6)

The operator B2
(2n+1) is used to construct Majorana (real) representations of SO(2n + 1). For odd

N = 2n + 1, they are possible when [79, 80][
B2
(2n+1)

]∗
B2
(2n+1) = (−1)n(n+1)/2

= 1

H⇒ n = 0, 3 mod 4 (N = 2n + 1= 1, 7 mod 8) . (B.7)

Observe that when n is even, all gamma matrices can be made real and symmetric, whereas
when n is odd, they can be made purely imaginary and skew-symmetric.

For later use, we also introduce

B12
(2n+1) :=

[
B2
(2n+1)

]−1
B1
(2n+1) = (−i)n02n+1

(2n+1),

B̃1
(2n+1) := B1

(2n+1)0
2n
(2n+1), (B.8)

B̃2
(2n+1) := B2

(2n+1)0
2n
(2n+1).
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Note that these matrices satisfy

B1
(2n+1)0

a
(2n+1)

[
B1
(2n+1)

]−1
=

{
(−1)n+10a∗

(2n+1), a = 1, . . . , 2n,

(−1)n0a∗
(2n+1), a = 2n + 1,

B2
(2n+1)0

a
(2n+1)

[
B2
(2n+1)

]−1
= (−1)n0a∗

(2n+1), a = 1, . . . , 2n + 1, (B.9)

B12
(2n+1)0

a
(2n+1)

[
B12
(2n+1)

]−1
=

{
−0a

(2n+1), a = 1, . . . , 2n,

+0a
(2n+1), a = 2n + 1.

In the following subsection, we will use the ‘B-matrices’, equations (B.5) and (B.8),
as symmetry operators in order to implement discrete symmetries on the space of Dirac
Hamiltonians. To identify the character of these discrete symmetries we first compute the sign
ηB(2n+1) picked up by B(2n+1) under transposition, [B(2n+1)]T

= ηB(2n+1) B(2n+1). Note that the sign
ηB(2n+1) is independent of the choice of basis for the gamma matrices (see [79]). From equations
(B.6) and (B.7) and by use of the property [B2

(2n+1)]
† B2

(2n+1) = 1, it follows that

ηB2
(2n+1)
= (−1)n(n+1)/2. (B.10)

Similarly,

ηB1
(2n+1)
= (−1)n(n−1)/2,

ηB̃1
(2n+1)
= − (−1)n(n+1)/2, (B.11)

ηB̃2
(2n+1)
= (−1)n(n+3)/2.

B.2. Discrete symmetries of Dirac Hamiltonians

Let us now determine the symmetry properties of the Dirac Hamiltonians Hd=2n+3
(2n+3) (k),

Hd=2n+2
(2n+3) (k), . . . , H

d=2n−1
(2n+3) (k,m), defined in equations (100)–(104). We find that these Dirac

Hamiltonians satisfy the following symmetry conditions:

(0) : B2
(2n+1)H

d=2n+1
(2n+1) (k)

[
B2
(2n+1)

]−1
= (−1)n+1

[
Hd=2n+1
(2n+1) (−k)

]∗
, (B.12)

(i) : B1
(2n+1)H

d=2n
(2n+1)(k,m)

[
B1
(2n+1)

]−1
= (−1)n

[
Hd=2n
(2n+1)(−k,m)

]∗
, (B.13)

(i i) : B1
(2n+1)H

d=2n−1
(2n+1) (k,m)

[
B1
(2n+1)

]−1
= (−1)n

[
Hd=2n−1
(2n+1) (−k,m)

]∗
,

B̃1
(2n+1)H

d=2n−1
(2n+1) (k,m)

[
B̃1
(2n+1)

]−1
= (−1)n+1

[
Hd=2n−1
(2n+1) (−k,m)

]∗
. (B.14)

(i i i) : B2
(2n+1)H

d=2n−2
(2n+1) (k,m)

[
B2
(2n+1)

]−1
= (−1)n+1

[
Hd=2n−2
(2n+1) (−k,m)

]∗
, (B.15)

(iv) : B2
(2n+1)H

d=2n−3
(2n+1) (k,m)

[
B2
(2n+1)

]−1
= (−1)n+1

[
Hd=2n−3
(2n+1) (−k,m)

]∗
,

B̃2
(2n+1)H

d=2n−3
(2n+1) (k,m)

[
B̃2
(2n+1)

]−1
= (−1)n

[
Hd=2n−3
(2n+1) (−k,m)

]∗
. (B.16)

A few remarks are in order.
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• The Hamiltonians Hd=2n−1
(2n+1) (k,m) and Hd=2n−3

(2n+1) (k,m) satisfy two different discrete
symmetry conditions and are therefore also left invariant under the combination of these
two symmetries, which defines a chiral symmetry. In other words, bothHd=2n−1

(2n+1) (k,m) and
Hd=2n−3
(2n+1) (k,m) anticommute with a unitary matrix{

Hd=2n−1
(2n+1) (k,m), 02n

(2n+1)

}
= 0,{

Hd=2n−3
(2n+1) (k,m), 02n−2

(2n+1)

}
= 0.

(B.17)

• The Hamiltonians Hd=2n
(2n+3)(k,m) and Hd=2n−1

(2n+3) (k,m) can be made block diagonal because[
Hd=2n
(2n+3)(k,m), 0a

(2n+3)0
b
(2n+3)

]
= 0,[

Hd=2n−1
(2n+3) (k,m), 0a

(2n+3)0
b
(2n+3)

]
= 0,

(B.18)

where (a, b)= (2n + 1, 2n + 2), (2n + 2, 2n + 3) or (2n + 3, 2n + 1).

• In the case of the massive Hamiltonian Hd=2n
(2n+1)(k,m), the parity transformation38 can be

implemented by B12
(2n+1)

B12
(2n+1)H

d=2n
(2n+1)(k,m)

[
B12
(2n+1)

]−1
=Hd=2n

(2n+1)(−k,m). (B.19)

By combining the discrete symmetry B1
(2n+1) and the parity symmetry B12

(2n+1), the
Hamiltonian also satisfies

B2
(2n+1)H

d=2n
(2n+1)(k,m)

[
B2
(2n+1)

]−1
= (−1)n

[
Hd=2n
(2n+1)(k,m)

]∗
. (B.20)

This discrete symmetry is unique in that, unlike T or C that relates Bloch Hamiltonians
at k and −k, it constrains the form of the Hamiltonian at a given k. This is nothing
but the real/pseudo-real condition for SO(2n + 1). As a consequence, the Hamiltonian in
k-space can be written as a real/pseudo-real matrix. Hence, classifying topological
insulators (superconductors) satisfying the combination of B1

(2n+1) and B12
(2n+1) amounts to

classifying real bundles. (It is not necessary to satisfy both, however.) An example of a
topological insulator/superconductor satisfying the combination of B1

(2n+1) and B12
(2n+1) is

constructed in appendix C.

Appendix C. Topological insulators protected by a combination of spatial inversion
and either time-reversal or charge-conjugation symmetry

In the main text, we have focused on the role of generic symmetries such as time reversal and
charge conjugation, which are not related to any spatial symmetries. However, real systems often
have discrete spatial symmetries, such as parity, reflection, discrete rotations, etc. Hence, it is
meaningful to study the restrictions imposed by these symmetries on the Bloch wavefunctions
and thus on the ground state properties. In this appendix, we briefly discuss topological states
that are protected by a combination of spatial inversion and an additional discrete symmetry,
such as T or C.
38 Parity here simply means k→−k symmetry. In odd spacetime dimensions, it is actually not called parity.
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C.1. Inversion symmetry combined with another discrete symmetry

Consider a tight-binding Hamiltonian,

H =
∑
r,r ′

ψ†(r)H(r, r ′) ψ(r ′), H†(r ′, r)=H(r, r ′), (C.1)

where ψ(r) is an nf-component fermion operator, and index r labels the lattice sites. (The
internal indices are suppressed.) Each block in the single-particle Hamiltonian H(r, r ′) is an
nf× nf matrix, and we assume that the total size of the single-particle Hamiltonian is nfV × nfV ,
where V is the total number of lattice sites. The components in ψ(r) can describe, e.g., orbitals
or spin degrees of freedom, as well as different sites within a crystal unit cell centered at r .

Provided the system has translational symmetry,

H(r, r ′)=H(r − r ′), (C.2)

with periodic boundary conditions in each spatial direction (i.e. the system is defined on a torus
T d), we can perform the Fourier transformation and obtain in momentum space

H =
∑
k∈BZ

ψ†(k)H(k) ψ(k), (C.3)

where

ψ(r)=
√

V
−1 ∑

k∈BZ

eik·rψ(k), H(k)=
∑

r

e−ik·rH(r). (C.4)

(Here, if different components in ψ(r) were to represent different sites within a unit cell
centered at r , we could include the phase eik·(r−ra) in the definition of ψ(k), ψ(k)→
diag(eik·(r−ra))a=1,...,nfψ(k) where ra represents a location within a unit cell.)

In the main text of this paper, we considered topological insulators (superconductors)
protected by discrete symmetries, such as T and C. We now focus on the effect of inversion
symmetry. By definition, an inversion � relates fermion operators at r and at −r ,

�ψ(r)�−1
=Uψ(−r), (C.5)

where U is a constant nf× nf unitary matrix. (It is important to distinguish between inversion
and parity symmetry. The former means r→−r for any spacetime dimension. Parity
transformation in even spacetime dimension agrees with inversion, but in odd spacetime
dimension, it is different from inversion.) One can imagine, for example, U represents a parity
eigenvalue of each orbital at site r (s, p, . . . , orbitals), which can be either +1 or −1. Similarly,
if different components in ψ(r) represent different sites in the unit cell centered at r , inversion
transformation sends r to−r and, at the same time, can reshuffle locations of electron operators
within a unit cell, which can be described by the unitary matrix U . The invariance of H under
� implies

U−1H(r, r ′)U =H(−r,−r ′), U−1H(r)U =H(−r). (C.6)

Thus, the Bloch Hamiltonians at k and −k are unitarily equivalent,

U−1H(k)U =H(−k). (C.7)

To summarize, definition (C.5) implies that (i) the spectrum at k is identical to the one at−k and
(ii) the unitary matrix U relating the Hamiltonian at k to the one at −k is k independent. This
form of symmetry does not necessarily correspond to inversion symmetry verbatim, but might
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Table C.1. The ten generic symmetry classes of single-particle Hamiltonians
classified in terms of the presence (©) or absence (×) of the time-reversal
symmetry (εV = +1) with T=−1 (ηV =−1) and T= +1 (ηV = +1), and the
particle–hole symmetry (εV =−1) with C=−1 (ηV =−1) and C= +1 (ηV =

+1), as well as chiral (or sublattice) symmetry denoted by S; see table 1. For
the notation of these symmetry classes in terms of (εV , ηV ), see the main text
and [26].

T=−1 T= +1 C=−1 C= +1
(εV , ηV ) Cartan S (1,−1) (1, 1) (−1,−1) (−1, 1)

Standard A × × × × ×

AI × × © × ×

AII × © × × ×

Chiral AIII © × × × ×

(sublattice) BDI © × © × ©

CII © © × © ×

BdG D × × × × ©

C × × × © ×

DIII © © × × ©

CI © × © © ×

describe an inversion symmetry that is realized as a projective symmetry (e.g. invariance of
the Hamiltonian under inversion followed by a gauge transformation). The only big assumption
here is that we have assumed U is k independent.

We now combine the inversion symmetry with another discrete symmetry,

V−1H(k)V = εVH(−k)T , εV =±1,

with V T
= ηV V, ηV =±1.

(C.8)

As before we distinguish four different cases (see section 1.1 and in particular equations (3)
and (4)): (εV , ηV )= (1, 1) corresponds to a time-reversal symmetry with T= +1, (εV , ηV )=

(1,−1) denotes a time-reversal symmetry with T=−1, (εV , ηV )= (−1, 1) is a particle–hole
symmetry with C= +1, and (εV , ηV )= (−1,−1) is a particle–hole symmetry with C=−1.
These four cases together with the corresponding ‘Cartan label’ are summarized in table C.1.
Then, for the combined transformation,

W−1H(k)W = εWH(k)T, W :=U V, with εW = εV . (C.9)

Iterating this transformation twice,

H(k)→WH(k)TW−1
→W (W−1)TH(k)W TW−1, (C.10)

which suggests, from Schur’s lemma, W TW−1
∝ Inf . Hence, as before, for W , we distinguish

the following two cases:

W T
= ηW W, ηW =±1. (C.11)

The signature ηW is invariant under unitary transformations. It depends on the signature ηV , the
signature ηU for the inversion U T

= ηUU , and the commutation relation of U and V . Here, note
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that the signature ηU for inversion alone is not invariant under unitary transformation, while
the signature ηW is invariant. As an illustration, let us consider spinless fermions. Time-reversal
symmetry T for spinless fermions implies

H(i, j)∗ =H(i, j). (C.12)

Thus, when inversion and T are combined,

H∗(r)=WH(−r)W−1, H∗(k)=W−1H(k)W, where W =U. (C.13)

In this example and in this basis, the signature of W solely depends on the signature of U ,
ηW = ηU .

Interesting examples are provided by Dirac Hamiltonians. For a massive Dirac
Hamiltonian, the mass matrix itself can be taken as the unitary matrix U that was introduced in
equation (C.5). Put differently, any massive Dirac Hamiltonian possesses a U -type symmetry.
These U -type symmetries can be, however, different from the inversion symmetry that is
imposed at the microscopic level. However, if one starts from a microscopic lattice model with
inversion symmetry, and arrives at a Dirac Hamiltonian with a mass in the continuum, inversion
symmetry in the continuum must be implemented by a mass matrix.

Firstly, consider Hamiltonian (101)

(i) : Hd=2n
(2n+1)(k,m)=

d=2n∑
a=1

ka0
a
(2n+1) + m02n+1

(2n+1). (C.14)

This Hamiltonian has a V -type symmetry with

V = B1
(2n+1), εV = (−1)n, ηV = ηB1

(2n+1)
= (−1)n(n−1)/2. (C.15)

There is inversion symmetry represented by

U = 02n+1
(2n+1), ηU = +1. (C.16)

The combined transformation W is given by

W = B2
(2n+1), εW = (−1)n, ηW = ηB2

(2n+1)
= (−1)n(n+1)/2. (C.17)

Secondly, we consider the massive Dirac Hamiltonian (103)

(i i i) : Hd=2n−2
(2n+1) (k,m)=

d=2n−2∑
a=1

ka0
a
(2n+1) + mM,

with M := i02n+1
(2n+1)0

2n
(2n+1)0

2n−1
(2n+1).

(C.18)

The V -type discrete symmetry for this is

V = B2
(2n+1), εV = (−1)n+1, ηV = ηB2

(2n+1)
= (−1)n(n+1)/2. (C.19)

The inversion symmetry is represented by

U =M, ηU = +1. (C.20)

Thus, the combined transformation is

W =MB2
(2n+1) = i02n+1

(2n+1)0
2n
(2n+1)0

2n−1
(2n+1)×0

2
(2n+1)0

4
(2n+1) · · ·0

2n
(2n+1).

with εW = (−1)n+1, ηW = (−1)n(n+1)/2.

(C.21)

where we have noted U V = V U .
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C.2. Classification of gapped Hamiltonians in the presence of a combination of spatial
inversion and either time-reversal or charge-conjugation symmetry

We now classify the ground states of gapped Hamiltonians protected by a W -type symmetry.
We distinguish four different cases, (εW , ηW )= (±1,±1).

Let us first consider the case of (εW , ηW )= (1, 1), in which case W is a symmetric unitary
matrix, W =W T (ηW = +1). Such a matrix is an element of U(nf)/O(nf). Any element in
U(nf)/O(nf) can be written as W = X XT, where X is a unitary matrix. One can then take a basis
in which the Bloch Hamiltonian for any given k is a real symmetric matrix. In other words, if
we define H̃ := X †HX , then H̃∗ = H̃. Thus, when (εW , ηW )= (+1,+1), the Hamiltonian is real
symmetric and hence Bloch wavefunctions can be taken real at each k. We assume that there
are N− (N+) occupied (unoccupied) Bloch wavefunctions for each k with N+ + N− = Ntot(= nf).
The spectral projector onto the filled Bloch states or the ‘Q-matrix’ in this case can be viewed
as an element of the real Grassmannian G N−,N++N−(R)= O(N+ + N−)/[O(N+)×O(N−)]. For
a given system, the ‘Q-matrix’ defines a map from the BZ onto the real Grassmannian.
Hence, classifying topological classes of band insulators amounts to counting the number of
topologically inequivalent mappings from the BZ to G N−,N++N−(R). Mathematically, this is given
by the homotopy group of the space of projectors (i.e. of the real Grassmannian in the present
case), which can be read from table 2.

The same reasoning can be repeated for the case (εW , ηW )= (+1,−1). One finds that the
space of projectors is the quaternionic Grassmannian G N−,N++N−(H)= Sp(N+ + N−)/[Sp(N+)×

Sp(N−)], whose homotopy group is again given in table 2.
When (εW , ηW )= (−1,+1), the Hamiltonian can be taken, in a suitable basis, as real and

skew symmetric, i.e. an element of so(nf). Any element of so(nf) can be transformed into a
canonical form by an orthogonal transformation. For the Q-matrix, its canonical form Q̃ is a
matrix whose matrix elements are ±1,

Q = SQ̃ST, S ∈ SO(nf),

where Q̃ =


0 +1 · · ·

−1 0
0 +1
−1 0

...
. . .

 ,
(C.22)

where we have assumed that nf is an even integer. We thus identified the space of projectors
as SO(nf)/U(nf/2). Finally, when (εW , ηW )= (−1,−1), we identify the space of projectors as
Sp(nf)/U(nf).

To summarize, we have listed in table C.2, for each of the four cases of W -type symmetries,
the space of projectors ‘G/H ’ together with their homotopy groups πd(G/H), which yields
the classification of topological insulators (superconductors) protected by a combination of
inversion and an additional discrete symmetry. Note that we focus here on the implication of
the combination of inversion and discrete symmetries, but we do not require each symmetry
separately.

C.2.1. Example: (εW , ηW )= (1, 1) in d = 2. We now specialize to the case of (εW , εW )=

(1, 1). The relevant space of the projection operators is the real Grassmannian G N+,N++N−(R)
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Table C.2. Classification of topological insulators (superconductors) protected
by a combination of spatial inversion and an additional discrete symmetry.

d
(εW , ηW ) Projectors 0 1 2 3 4 5 6 7 . . .

(+1,−1) Sp(N + M)/Sp(N )×Sp(M) Z 0 0 0 Z Z2 Z2 0 . . .
(−1,+1) O(2N )/U(N ) Z2 0 Z 0 0 0 Z Z2 . . .
(+1,+1) O(N + M)/O(N )×O(M) Z Z2 Z2 0 Z 0 0 0 . . .
(−1,−1) Sp(N )/U(N ) 0 0 Z Z2 Z2 0 Z 0 . . .

and the projection operator defines a map from the BZ onto the real Grassmannian. In particular,
when d = 2, the projector Q(kx , ky) defines a map from S2 or T 2 onto G N+,N−+N+(R). The
homotopy group π2[G N+,N−+N+(R)]= Z2 tells us that the space of quantum ground states is
partitioned into two topologically distinct sectors.

A representative Q-field configuration that is a nontrivial element of π2[G N+,N−+N+(R)]=
Z2 can be constructed by following [81]. For simplicity, take the case where we have four
bands in total and two filled bands; take N+ = N− = 2. Then such a representative Q-matrix is
given by

Q(l)(k)=


n(l)z 0 −n(l)x −n(l)y

0 n(l)z n(l)y −n(l)x

−n(l)x n(l)y −n(l)z 0
−n(l)y −n(l)x 0 −n(l)z

 ,
with n(l)(k) :=

(
n(l)x , n(l)y , n(l)z

)
(C.23)

= (cos(lφ) sin(θ), sin(lφ) sin(θ), cos θ) ,

where l ∈ Z, and θ and φ are spherical coordinates parameterizing the BZ ' S2. The projector
is a nontrivial element of the second homotopy group when l is odd, while it is trivial when l is
even. Observe that the normalized vector n(l)(k) itself defines a map from S2 onto S2, and wraps
S2 integer (= l) times.

We can construct a Hamiltonian that has Q(l)(k) as a projector. We consider the following
four-band tight-binding Hamiltonian on the square lattice:

H =
∑

r

[
ψ†(r) h0ψ(r) +ψ†(r) hx ψ(r + x̂)+ h.c.+ψ†(r) h y ψ(r + ŷ)+ h.c.

]
, (C.24)

where x̂ = (1, 0) and ŷ = (0, 1), respectively, and

h0 =−µ

(
σ0 0
0 −σ0

)
, hx =

(
tσ0 1σy

−1σy −tσ0

)
, h y =

(
tσ0 −i1σ0

−i1σ0 −tσ0

)
, (C.25)

and t,1,µ ∈ R are parameters of the model. In k-space,

H(k)=


Rz 0 −Rx −Ry

0 Rz Ry −Rx

−Rx Ry −Rz 0
−Ry −Rx 0 −Rz

, (C.26)
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Figure C.1. The energy spectrum with t =1= 1 and µ=−1 (a) and µ=

+1 (b).

where
R(k)=

(
−21 sin ky, −21 sin kx , 2t

(
cos kx + cos ky

)
−µ

)
. (C.27)

We will set t =1= 1 henceforth. As we change µ, there are four phases separated
by quantum phase transitions at µ=±4 and µ= 0. When |µ|> 4, the normalized vector
R(k)/|R(k)| does not wrap S2 as we sweep the momentum and the system is in a trivial phase.
On the other hand, for |µ|< 4 the normalized vector R(k)/|R(k)| wraps the sphere S2 n = +1
times (or n =−1 times), and hence the system is in a nontrivial phase. The projector constructed
from (C.26) is topologically equivalent to Q(l)(k) with l odd.

For topological insulators and superconductors protected by T , C or a combination of both,
a diagnostic of bulk topological character is the existence of gapless edge modes. For insulators
and superconductors with an inversion symmetry, it is less clear if looking for edge modes
is useful to characterize the bulk topological character since the boundary breaks inversion
symmetry. (Nevertheless, as discussed recently in [82], for the entanglement entropy spectrum,
an inversion symmetry can protect the gapless entanglement entropy spectrum.) For the present
case, however, the Hamiltonian has several accidental symmetries (see below), in particular T
(odd), which may protect the gapless nature of edge states if they exist and if the number of
Kramers pairs is odd. In figure C.1, the energy spectrum for µ=±1 in the slab geometry is
presented; here two edges along the y-direction (located at x = 0 and x = Nx ) are created, and
the energy eigenvalues are plotted as a function of ky . Each eigenvalue is doubly degenerate for
each ky . For µ=±1, there are four edge modes, two of which are localized at x = 0 and the
other two at x = Nx , whereas for |µ|> 4, there is no edge mode.

The only symmetry we have assumed so far for ensembles of Hamiltonians is a W -type
symmetry with (εW , ηW )= (1, 1). The representative Hamiltonian (C.25) and (C.26), however,
accidentally has several other discrete symmetries. The Hamiltonian is invariant under the
following discrete symmetries: Time-reversal symmetires T

A−1H(−k)∗A =H(k), A = τzσ0 or τzσy, (C.28)

inversion symmetries I
B−1H(−k)B =H(k), B = τzσ0 or τzσy, (C.29)

and charge-conjugation symmetries C
C−1H(−k)∗C =−H(k), C = τxσx or τxσz. (C.30)
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Although accidental, the presence of these symmetries allows us to interpret the
Hamiltonian in many different ways. For example, since the Hamiltonian is invariant under
T , A = τzσy with AT

=−A, it is a member of symmetry class AII. Furthermore, it supports
two branches of modes per edge that are counterpropagating. The representative Hamiltonian
so constructed is thus a Z2 topological insulator in class AII (i.e. it is in the QSH phase). By
further imposing a C, C = τxσz with CT

= +C , the single particle Hamiltonian can be interpreted
as a member of symmetry class DIII. Again, it is a nontrivial Z2 topological superconductor
in class DIII. Thus, nontrivial Z2 topological insulators (AII) and superconductors (DIII)
in d = 2 dimensions can be interpreted, somewhat accidentally, as a nontrivial element of
π2[G N+,N−+N+(R)]= Z2. To implement a W -type symmetry, T for symmetry classes AII and
DIII (A = τzσy with AT

=−A) can be combined with an inversion symmetry represented by
B = τzσy . This inversion symmetry is, however, an artificial symmetry in the sense that it
flips spin.
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