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Abstract In the present article, we discuss relativistic
anisotropic solutions of Einstein field equations for the spher-
ically symmetric line element under the class I condition. To
do so we apply the embedding class one technique using
Eisland condition. Within this approach, one arrives at a par-
ticular differential equation that links the two metric compo-
nents eν and eλ. In order to obtain the full space–time descrip-
tion inside the stellar configuration we ansatz the generalized
form of metric component grr corresponding to the Finch–
Skea solution. Once the space–time geometry is specified
we obtain the complete thermodynamic description i.e. the
matter density ρ, the radial, and tangential pressures pr and
pt , respectively. Graphical analysis shows that the obtained
model respects the physical and mathematical requirements
that all ultra-high dense collapsed structures must obey. The
M–R diagram suggests that the solution yields stiffer EoS
as parameter n increases. The M–I graph is in agreement
with the concepts of Bejgar et al. (Mon Not R Astron Soc
364:635, 2005) that the mass at Imax is lesser by few per-
cent (for this solution ∼ 3%) from Mmax . This suggests that
the EoSs is without any strong high-density softening due to
hyperonization or phase transition to an exotic state.

1 Introduction

It is well known that Einstein’s general theory of relativ-
ity (GR from now on) has fruitfully explained about several
observations or cosmological measures including astrophys-
ical backgrounds [1,2]. The golden age of cosmology saw
the theory of Hubble, the material, the biological structure,
the nuclear synthesis, as well as the higher level of preci-
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sion in explaining the potential origin of the universe and
its subsequent evolution. Basically Einstein general theory
of relativity is generalization of Newtonian gravity which is
mainly suitable to describe the structure of compact star in the
strong gravitational fields. Few of these compact objects like
pulsars, black holes and neutron stars have densities of the
order greater than or equal 1014 gm/cm3. Schwarzschild dis-
covered the first precise solution of Einstein field equations
for the gravitational field in the inner part of a non-circular
spherical body consisting of a non-compressible fluid. This
is also known as constant density solution with outer being
empty and has zero pressure at the surface. Now a days,
the researcher are busy on the study of relativistic compact
stars. For object modeling, we study the solutions of Ein-
stein’s equations of static spherically symmetric with differ-
ent physical causes. These solution may be stated as perfect
fluid, anisotropic fluid, and dust. However, there are strong
theoretical evidence that steep excessive dense celestial bod-
ies are not made of perfect fluids. In some cases, the objects
with different physical phenomena are found, for example
anisotropy. The first theoretical attempt to look at the effect
of variance was seen in about 1922 when Jeans [3] looked
anisotropic pressure on the self-gravitating bodies of New-
tonian configurations.

After this, Ruderman [4] has studied the effect of the
anisotropy. He said that the stars may have anisotropic char-
acteristics at very high density of the order 1015 gm/cm3

where the nuclear interaction becomes relativistic. Sudden
after, Bowers and Liang [5] studied about confined properties
of relativistic anisotropic matter distribution for static spher-
ically symmetric configurations, which is comprehensively
populated. Recently, An extensive research was conducted in
the study of physics related to anisotropic pressures.In this
connection, Dev and Gleiser [6,7] have shown that pressure
variation affects the physical properties of mass, structure
and excessive pressure areas. Also there are other several
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analytical static solutions have been already discovered by
several authors [8–29]. Most pioneering work by Herrera and
Santos [30] where they have specified about effect of local
anisotropy in self gravitating systems. More remarkably, the
algorithm for all possible static isotropic, anisotropic as well
as charged anisotropic solutions of Einstein’s equation for
the spherically symmetric line element can be attractively
determined by a general procedure which are given in Refs.
[15,31,32].

It is essential to note that the redshift and mass of the
stellar model both varies with the anisotropy. Recently, an
extensive efforts have been made in the modeling of physical
observed astronomical objects in the existence of anisotropy
which can be seen in recent research papers [37–40] and the
references therein. In these recent papers, the physical anal-
ysis reaffirms the significance of the presence of a non-zero
anisotropy in the modeling of astrophysical objects. In order
to create a substantially reliable object, it is necessary to find
an analytical solution of Einstein field equations for relativis-
tic matter distribution which can be solved by restricting the
space–time geometry or stating an equation of state (EOS) of
the matter distribution. On the other hand, we can generate
the exact solution of relativistic field equation using another
different approach known as embedding class I condition.
In this connection, Riemann has presented the idea, known
as Riemannian geometry, to study the essential geometric
properties of the objects. Immediately after this, Schlaefli
[33] estimated that a Riemannian manifold of metric which
is analytic with positively defined signature can be embed-
ded locally and isometrically into the higher dimensional flat
Euclidean space.

The idea of embedding locally and isometrically an n-
dimensional Riemannian manifold Vn into an N = n(n +
1)/2 dimensional pseudo-Euclidean space was proved in
the past by authors [34–36]. The embedding class p of Vn
is the minimum number of extra dimensions required by
the pseudo-Euclidean space, which is obviously equal to
p = N − n = n(n − 1)/2. As we know, general theory of
relativity deals only with four dimensional spacetime, how-
ever embedding class solution may provide new character-
istics to gravitational field, as well to physics. In case of
relativistic space time Vn , the embedding class p turns out
to be p = 6. In particular the classes of spherical and plane
symmetric space–time are p = 2 and p = 3 respectively.
The famous Friedman–Robertson–Lemaitre space–time, is
of class p = 1, while the Schwarzschilds exterior and interior
solutions are of class p = 2 and class p = 1 respectively,
moreover Kerr metric is class 5. In the literature [41–48],
there are many interesting work concerning the effects of the
technique of embedding of lower dimensional Riemannian
space into the higher dimensional pseudo-Euclidean space in
the framework of GR. The main consequence of embedding a
Riemannian variety corresponding to a spherically symmet-

ric and static spacetime into a pseudo Euclidean space is the
so-called Eisland condition [50]. This condition links both
metric potentials eν and eλ into a single differential equa-
tion. It is a mathematical simplification which reduces the
problem of obtaining exact solutions to a single-generating
function. The approach is to choose one of the gravitational
potentials on physical grounds and to then integrate the Eis-
land condition to fully specify the gravitational behavior of
the model. In this paper we utilize Eisland condition to derive
solutions which describe compact objects in general relativ-
ity. We subject our solutions to rigorous physical tests which
ensure that they do describe physically observable objects in
the universe. The article is organized as follows: In Sect. 2
we have specified the interior space time and Einstein field
equations for anisotropic matter distribution. This section
also includes the embedding class one condition along with
non-vanishing Riemannian tensor for interior space time. In
next Sect. 3, we have presented a generalized Finch–Skea
solution for anisotropic matter distribution using the class
one condition. The nonsingular nature of pressures, density
and bounds of the constant are given in Sect. 4. In Sect. 5, we
presents the necessary and sufficient conditions to determine
all possible constant parameters that describe the anisotropic
solution. For this purpose, we match our interior space–time
to the exterior space–time (Schwarzscild metric). Section 6
includes the energy conditions. In Sect. 7, we have dis-
cussed the most important features of the objects like equi-
librium condition via. Tolman–Oppenhimer–Volkoff equa-
tion, Causality and stability condition through Herrera Aberu
criterion, adiabatic index and Harrison–Zeldovich–Novikov
static stability criterion. At the last in Sect. 8 we discuss the
result with concluding remarks.

2 Interior space–time and field equations

The interior space–time for spherically symmetric space–
time is chosen as,

ds2 = eν(r)dt2 − eλ(r)dr2 − r2
(
dθ2 + sin2 θdφ2

)
(1)

where ν and λ are functions of the radial coordinate ‘r ’ only.
The Einstein’s field equations corresponding an anisotro-

pic fluid distribution becomes

Rμ
ν − 1

2
gμ
ν R = −8π

[
(pt + ρ)vμvν − pt g

μ
ν

+(pr − pt )χνχ
μ
]

(2)

where the symbols have their usual meanings andG = c = 1.
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For the space–time (1), the field equations can be written
as

1 − e−λ

r2 + e−λλ′

r
= 8πρ (3)

e−λ − 1

r2 + e−λν′

r
= 8πpr (4)

e−λ

(
ν′′

2
+ ν′2

4
− ν′λ′

4
+ ν′ − λ′

2r

)
= 8πpt . (5)

The measure of anisotropy is defined as 	 = 8π(pt − pr ).
On the other hand, It was proved by Eisenhart [49] that an

embedding class I space ((n+1) dimensional space V n+1 can
be embedded into a (n + 2) dimensional pseudo-Euclidean
space En+2) can be described by a (n+1) dimensional space
V n+1 if there exists a symmetric tensor amn which satisfies
the following Gauss–Codazzi equations:

Rmnpq = 2 e am [paq]n
and am[n;p] − 


q
[n p] amq + 


q
m [n ap]q = 0, (6)

where e = ±1, Rmnpq denotes the curvature tensor and
square brackets represent antisymmetrization. Here, amn are
the coefficients of the second differential form. Moreover, A
necessary and sufficient condition for the embedding class I
of Eq. (6) in a suitable convenient form was given by Eiesland
[50] as

R0101R2323 = R0202R1313 − R1202R1303. (7)

The non-vanishing components of Riemannian tensor for
the spherically symmetric interior space–time (1) are given
as

R0101 = −1

4
eν

(
−ν′λ′ + ν′2 + 2 ν′′) ,

R2323 = −r2sin2 θ
(
1 − e−λ

)
, R0202 = −1

2
rν′eν−λ,

R1313 = −1

2
λ′r sin2 θ, R1202 = 0, R1303 = 0 (8)

By plugging the values of above Riemannian components
into Eq. (7) we obtain a differential equation in ν and λ of
the form

(λ′ − ν′) ν′ eλ + 2 (1 − eλ)ν′′ + ν′2 = 0. (9)

The solutions of Eq. (9) are named as ‘embedding class
one solution” and they can be embedded in five dimensional
pseudo-Euclidean space.

On integration of Eq. (9) we get

eν =
(
A + B

∫ √
eλ − 1 dr

)2

(10)

where A and B are constants of integration.

By using (10) we can express the anisotropy as [54,55]

	 = ν′

4eλ

[
2

r
− λ′

eλ − 1

] [
ν′eν

2r B2 − 1

]
. (11)

For isotropic case 	 = 0 there are three possible solutions
(a) eν = C and eλ = 1 (not physical), (b) Schwarzschild
interior solution (not physical) and (c) Kohler-Chao solution
(cosmological solution as the pressure vanishes at r → ∞).

3 A generalized solution for compact star model

Since the field equations depend on metric functions ν and
λ. To construct a viable anisotropic model, we have assumed
the generalized form of Finch–Skea metric [51] function grr
as

λ = ln(1 + ar2 + bn−1rn) (12)

where a and b are non-zero positive constants and n is a pos-
itive integer. It is note that Finch–Skea [51] have used above
metric function grr corresponding b = 0 to solve Einstein
field equations. The choice of this gravitational potential grr
is well motivated particularly they have shown that the solu-
tion is regular and physically realistic for the some range of
parameters as well as a good approximation to a neutron star
model (specially in terms of predicting central densities of
neutron stars) based on the relativistic mean field theory of
Walecka [52]. So, considering it we have generalized this
gravitational potential grr by introducing another parame-
ter b with the radial coordinate r which will provide a class
of solution for compact stars, along this the energy density,
radial and tangential pressure are decreasing outward.

By substituting the value of λ from Eqs. (12) into (10) we
get

eν =
(
A −

{
2B

[
ab(n − 2)r2 f (r)

√
ab1−nr2−n + 1

+(6 − n)
(
abr2 + bnrn

) ]} (a + bn−1rn−2)−1/2

b(n − 6)(n + 2)

)2

(13)

where f (r) = 2F1

(
1
2 , n−6

2(n−2)
; 10−3n

4−2n ;−ab1−nr2−n
)

is

known as Gauss hypergeometric function. The behaviour of
the metric potentials are plotted in Fig. 1.

By using the metric potentials ν and λ, we directly obtain
the expression for thermodynamic variables like density,
radial and transverse pressure and anisotropy as

8πρ(r) = 1(
ar2 + bn−1rn + 1

)2

[
a2r2 + a

(
2bn−1rn + 3

)

+bn−1rn−2 (
bn−1rn + n + 1

) ]
(14)
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Fig. 1 Variation of metric potentials w.r.t radial coordinate r for M =
1.97M�, R = 9.69 km and b = 0.04

n

n

Fig. 2 Density profile of PSR J1614-2230 for M = 1.97M�, R =
9.69 km and b = 0.04

n

n

pt

pr

P
r

P
t

Fig. 3 Radial and transverse pressure profile of PSR J1614-2230 for
M = 1.97M�, R = 9.69 km and b = 0.04

n

n

Fig. 4 Anisotropy profile of PSR J1614-2230 for M = 1.97M�, R =
9.69 km and b = 0.04

8πpr (r) =
[
(n − 6)bnk(r)rn

{
b
[
2Br

(
ar2 − n − 2

)

+A(n + 2) j (r)
]

+ 2Bbnrn+1
}

− 2abB(n − 2)

×r3 f (r)(abr2 + bnrn)
][

(6 − n)
{

2abBr3 + Ab

×(n + 2) j (r) + 2Bbnrn+1
}

+ 2abB(n − 2)r3

× f (r)k(r)
]−1 × b−nr−n−2

(
abr2 + bnrn

)

k(r)
(
abr2 + bnrn + b

) (15)

	(r) = k(r)l(r)q(r)

2r2 p(r)
(
abr2 + bnrn

) (
abr2 + bnrn + b

)2 (16)

8πpt (r) = 8πpr + 	. (17)

where,

j (r) =
√
ar2 + bn−1rn (18)

k(r) =
√
ab1−nr2−n + 1 (19)

l(r) = 2a2b2r4 + 4abn+1rn+2 + bnrn
[
2bnrn

+b(2 − n)
]

(20)

n(r) = b
[
Br(2ar2 − n − 2) + A(n + 2) j (r)

]

+2Bbnrn+1 (21)

q(r) = 2abB(2 − n)r3 f (r)
[
abr2 + bnrn

]
+ (n − 6)bn

k(r)n(r)rn (22)

p(r) = (n − 6)
[
2abBr3 + Ab(n + 2) j (r) + 2Bbnrn+1

]

+2abB(2 − n)r3 f (r)k(r) (23)

The variations of the above physical quantities are given in
Figs. 2, 3 and 4. We should ensure that values of pr/ρ and
pt/ρ at the interior must be less than unity for a physical
system (Fig. 5).

The other physical parameters such as mass, compactness
factor and red-shift can be determine as

m(r) = 4π

∫
r2ρ dr = r

2

(
1 − b

abr2 + bnrn + b

)
(24)
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Fig. 5 Equation of state parameter profiles of PSR J1614-2230 for
M = 1.97M�, R = 9.69 km and b = 0.04

n M M

n M M

n M M

n M M

n M M

n M M

Fig. 6 M–R diagram for a = 0.001 and b = 0.04

n

n

Fig. 7 Red-shift profiles of PSR J1614-2230 for M = 1.97M�, R =
9.69 km and b = 0.04

u(r) = 2m(r)

r
= 1 − b

abr2 + bnrn + b
(25)

z(r) = e−ν/2 − 1. (26)

We have plotted the M–R diagram in Fig. 6. Here we have
determined the radius from surface density and determine

the mass and this radius using the boundary condition. The
trend of red-shift is plotted in Fig. 7.

4 Non-singular nature of the solution

To check the physical validity of the solution, we ensure
that the central values of pressure and density must be finite
i.e.

ρc = 3a

8π
> 0, (27)

prc = ptc =
√
a

(
2B − √

aA
)

8π A
> 0. (28)

It is also require to ensure that any physical fluid satisfies
the Zeldovich’s criterion i.e. prc/ρc ≤ 1 which implies

prc
ρc

= 2B − √
aA

3
√
aA

≤ 1. (29)

Now a physical constraint on B/A arises due to (28) and
(29) as

√
2

a
<

B

A
≤ 2

√
a. (30)

5 Boundary conditions and determination of constants

It is necessary that we should match our interior space–time
to the exterior Schwarzschild [53] line element

ds2 =
(

1 − 2m

r

)
dt2 −

(
1 − 2m

r

)−1

dr2

−r2(dθ2 + sin2 θdφ2) (31)

at the boundary r = R. Also, the radial coordinate r must be
greater than 2m so that it doesn’t form a black hole.

Using the continuity of the metric coefficients eν and eλ

across the boundary (r = R) and vanishing of radial pressure
at the boundary (r = R) we get the following equations

1 − 2M

R
= eνs = e−λs (32)

pr (r = R) = 0. (33)

On using the boundary conditions (32) and (33) we obtain
the value of arbitrary constants as,

a = bn(R − 2M)Rn − 2bM

bR2(2M − R)
(34)

A =
√

1 − 2M

R
+ 2BR2

b(n − 6)(n + 2)

[
b(6 − n)

×
√
a + bn−1Rn−2 + a(n − 2)b

3−n
2 f (R)R

2−n
2

]
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B =
√

1 − 2M

R

b(6 − n)(n + 2)
√
a + bn−1Rn−2

2

×
[

2(n − 6)bn Rn + b(n − 6)
(
aR2 − n − 2

)
(35)

−a(n − 2)b1−n f (R)R2−n
(
abR2 + bn Rn

)
√
ab1−n R2−n + 1

+ab(n − 2)R2 f (R)
√
ab1−n R2−n + 1 + (6 − n)

×
(
abR2 + bn Rn

) ]−1

(36)

Here M and R are chosen from observed values of compact
stars and b as free parameter.

6 Energy conditions

In this section we are willing to verify the energy conditions
namely null energy condition (NEC), dominant energy con-
dition (DEC) and weak energy condition (WEC) at all points
in the interior of a star which will be satisfied if the following
inequalities hold simultaneously:

WEC : Tμν t
μtν ≥ 0 or ρ ≥ 0, ρ + pi ≥ 0 (37)

NEC : Tμνl
μlν ≥ 0 or ρ + pi ≥ 0 (38)

DEC : Tμν t
μtν ≥ 0 or ρ ≥ |pi | (39)

where Tμν tμ ∈ nonspace-like vector

SEC : Tμν t
μtν − 1

2
T λ

λ t
σ tσ ≥ 0 or ρ +

∑
i

pi ≥ 0.

(40)

where i ≡ (radial r, transverse t), tμ and lμ are time-like
vector and null vector respectively.

We will check the energy conditions with the help of
graphical representation. In Fig. 8, we have plotted the L.H.S
of the above inequalities which verifies that all the energy
conditions are satisfied at the stellar interior.

pr pt

pt

pr

pt
pr

n

n

Fig. 8 Energy consitions of PSR J1614-2230 for M = 1.97M�, R =
9.69 km and b = 0.04

7 Stability and equilibrium of the model

7.1 Equilibrium under various forces

Equilibrium state under three forces vi z gravitational, hydro-
statics and anisotropic forces can be analyze whether they sat-
isfy the generalized Tolman–Oppenheimer–Volkoff (TOV)
equation or not and it is given by

−Mg(r)(ρ + pr )

r
e

ν−λ
2 − dpr

dr
+ 2

r
(pt − pr ) = 0, (41)

where Mg(r) represents the gravitational mass within the
radius r , which can derived from the Tolman–Whittaker for-
mula and the Einstein field equations and is defined by

Mg(r) = 4π

∫ r

0

(
T t
t − T r

r − T θ
θ − T φ

φ

)
r2e

ν+λ
2 dr. (42)

For the Eqs. (3)–(5), the above Eq. (42) reduced to

Mg(r) = 1

2
re(λ−ν)/2 ν′. (43)

Plugging the value of Mg(r) in Eq. (41), we get

−ν′

2
(ρ + pr ) − dpr

dr
+ 2

r
(pt − pr ) = 0. (44)

The above expression may also be written as

Fg + Fh + Fa = 0, (45)

where Fg, Fh and Fa represents the gravitational, hydrostat-
ics and anisotropic forces respectively and can be written
as,

Fg = −ν′

2
(ρ + pr ) (46)

Fh = −dpr
dr

(47)

Fa = 2	

r
. (48)

The profile of three different forces are plotted in Fig. 9
and we can see that the system is in equilibrium state.

7.2 Causality and stability condition

In this section we are going to find the subliminal velocity
of sound and stability condition. For a physically acceptable
model of anisotropic fluid sphere the radial and transverse
velocities of sound should be less than 1, which is known as
the causality condition. The radial velocity (v2

sr ) and trans-
verse velocity (v2

st ) of sound can be obtained as

v2
r = dpr

dρ
, v2

t = dpt
dρ

. (49)
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Fig. 9 TOV-equation profile of PSR J1614-2230 for M =
1.97M�, R = 9.69 km and b = 0.04

n

n

vr

vt

v
r

v
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Fig. 10 Velocity of sound profiles of PSR J1614-2230 for M =
1.97M�, R = 9.69 km and b = 0.04

n

n

Fig. 11 Stability factor (v2
t −v2

r ) profiles of PSR J1614-2230 for M =
1.97M�, R = 9.69 km and b = 0.04

The profile of radial and transverse velocities of sound
have been plotted in Fig. 10, the figure indicates that our
model satisfies the causality condition. Now the stability con-
dition proposed by Abreu [74] i.e. −1 ≤ v2

t − v2
r ≤ 0 (Fig.

11).

n

n

r

Fig. 12 Adiabatic index profiles of PSR J1614-2230 for M =
1.97M�, R = 9.69 km and b = 0.04

7.3 Adiabatic index and stability condition

For a relativistic anisotropic sphere the stability is related to
the adiabatic index 
, the ratio of two specific heats, defined
by [75],


r = ρ + pr
pr

dpr
dρ

. (50)

Now 
r > 4/3 gives the condition for the stability of
a Newtonian sphere and 
 = 4/3 being the condition for a
neutral equilibrium proposed by [76]. This condition changes
for a relativistic isotropic sphere due to the regenerative effect
of pressure, which renders the sphere more unstable. For an
anisotropic general relativistic sphere the situation becomes
more complicated, because the stability will depend on the
type of anisotropy. For an anisotropic relativistic sphere the
stability condition is given by [75],


 >
4

3
+

[
4

3

(pti − pri )

|p′
ri |r

+ 8π

3

ρi pri
|p′

ri |
r

]

max

, (51)

where, pri , pti , and ρi are the initial radial, tangential pres-
sures and energy density in static equilibrium satisfying (41).
The first and last term inside the square bracket represent the
anisotropic and relativistic corrections respectively and both
the quantities are positive that increase the unstable range of

 [75,77]. For this solution the adiabatic index is more than
4/3 and hence stable (Fig. 12).

7.4 Harrison–Zeldovich–Novikov static stability criterion

The stability analysis of Harrison et al. [78,79] have shown
that the adiabatic index of a pulsating star is same as in a
slowly deformed matter. This leads to a stable configuration
only if the mass of the star is increasing with central density
i.e. ∂m/∂ρc > 0 and unstable if ∂m/∂ρc < 0.
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n

c

Fig. 13 M − ρc profiles with R = 10.86 km and b = 0.04

In our solution, the mass as a function of central density
can be written as

m(ρc) = R

2

(
1 − 3b

3bn Rn + 8πbρc R2 + 3b

)
(52)

∂m(ρc)

∂ρc
= 12πb2R3

[
3bn Rn + b

(
8πρR2 + 3

)]2 > 0. (53)

The satisfaction of the above condition is shown as a plot
in Fig. 13.

8 Discussion and conclusion

The solution of Einstein’s field equations with e−λ = 1+ar2

was presented by Duorah-Ray [81], however, Finch–Skea
[51] pointed out that the Duorah-Ray (DR) solution doesn’t
satisfy the field equations. Therefore, Finch–Skea (FS) cor-
rected the solution and hence known as FS solution. FS not
only corrected the DR solution but also performed exten-
sive works to describe physically realistic neutron stars. The
resulting equation of state from FS solution was also com-
pared with Walecka’s relativistic mean-field theory descrip-
tion and found to be quite in good agreement.

An interesting result was presented by Bhar et al. [82]
showing that with the assumption of electric charge and Adler
gtt metric potential in the Eisland condition, one leads to FS
grr metric potential which is a well behaved solution while
its neutral counterpart isn’t.

The current paper generalized the FS grr with the higher
order term bn−1rn . We also successfully analysed the
behaviour of the solution showing its well behaved range
w.r.t. the parameter n. It is found that the solution exist and
satisfy causality condition for n = 4, 5 and within the range
7 ≤ n ≤ 12. All the solutions correspond to other values are
not well-behaved. The fulfillment of the stable static criterion
signifies that the solution is static and stable. The satisfac-
tion of TOV-equation also implies the solution is in equilib-

n I M M
n I M M
n I M M
n I M M
n I M M
n I M M

Fig. 14 Variation of moment of inertia w.r.t. mass for a = 0.001 and
b = 0.04. The red dots represents

(
M, Imax

)
and blue dots

(
Mmax , I

)

rium. We have also plotted the M–R diagram for the range
7 ≤ n ≤ 12 and it shows that the maximum mass increases
with n. For n = 7 the maximum mass is 2.643M� with
radius 8.976 km and for n = 12, Mmax = 3.063M� with
radius 10.85 km. The profile of adiabatic index (see Fig. 12)
shows that the equation of state gets stiffer for larger values
of n since the central values of 
r are larger. This increases
the stiffness of the equation of state leading to increase the
maximum mass.

The stiffness of an EoS is also link with moment of inertia
of the compact star. For a uniformly rotating star with angular
velocity  the moment of inertia is given by [83]

I = 8π

3

∫ R

0
r4(ρ + pr )e

(λ−ν)/2 ω


dr (54)

where, the rotational drag ω satisfy the Hartle’s equation [84]

d

dr

(
r4 j

dω

dr

)
= −4r3ω

d j

dr
. (55)

with j = e−(λ+ν)/2 which has boundary value j (R) = 1.
The approximate moment of inertia I up to the maximum
mass Mmax was given by Bejger and Haensel [85] as

I = 2

5

(
1 + x

)
MR2, (56)

where parameter x = (M/R) · km/M�. For the solution we
have plotted mass vs I in Fig. 14 that shows as n increases,
the mass also increase and the moment of inertia increases till
up to certain value of mass and then decreases. Therefore, we
can say that as moment of inertia increases, the stiffness of the
corresponding EoS also increases. Comparing Figs. 6 and 14
we can see that the mass corresponding to Imax is not equal
to Mmax from M–R diagram. In fact the mass corresponding
to Imax is lower by ∼ 3% from the Mmax . This happens to
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the EoSs without any strong high-density softening due to
hyperonization or phase transition to an exotic state [86].
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