
Design and development of vulnerability management por-
tal for DMZ admins powered by DBPowder

Tadashi Murakami1,∗

1High Energy Accelerator Research Organization (KEK), Japan

Abstract. It is difficult to promote cyber security measures in research insti-
tutes, especially in DMZ networks that allow connections from outside net-
work. This difficulty mainly arises from two types of variety. One is the vari-
ous requirements of servers operated by each research group. The other is the
divergent skill level among server administrators. Unified manners rarely fit
managing those servers. One of the solutions to overcome the above mentioned
difficulties is vulnerability management. To overcome these challenges, There
are two possible approaches. One of the options is to offer a simple and pow-
erful vulnerability management service to the administrators of the DMZ hosts
(DMZ admins). The other is to facilitate flexibility and efficiency in the de-
velopment process of the service. To achieve these requirements, we designed
and developed a vulnerability management portal site for DMZ admins, named
DMZ User’s Portal. This paper describes the design of DMZ User’s Portal and
the development process using a development framework, named DBPowder.
Using the DMZ User’s Portal, each DMZ admin can perform a vulnerability
scan on his/her own servers with ease. In other words, this delegates security
vulnerability discovery and responsibility to individual DMZ admins that im-
prove security awareness for them. Then, each DMZ admin can grasp and man-
age the security by himself/herself. The 13-year result from vulnerability scans
show that the status of security in the KEK-DMZ has been kept in good con-
ditions. Also, we are developing DBPowder object-relational mapping (ORM)
framework to improve the flexibility and efficiency in the development process
of DMZ User’s Portal.

1 Introduction

In KEK, there are various research groups within the fields of high-energy physics, mate-
rial physics, and accelerator physics, and they offer various information and communication
technology (ICT) services to various researchers around the world. Each field of physics has
its own way to proceed their research.

Their services are also diverse, including experiments, GRID services, public relations,
and login shell, among others (Figure 1). Many of these services cannot fit within the standard
ones provided by the computing research center. In the KEK-DMZ network, there are over
300 individual hosts, which are managed by about 100 administrators (DMZ admin). Each
of the hosts has its own circumstances due to historical reasons. As a result, it is difficult to
apply general security standards. Command-hierarchical manner is not suitable for research
∗e-mail: tadashi.murakami@kek.jp

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 08014 (2019) https://doi.org/10.1051/epjconf/201921408014
CHEP 2018

login shell with
hundreds of accounts
in various countries

various kinds of groups
(e.g. num of members
are 10 - 1000)

various users various levels of management skill

various usage
l experiment
l login shells
l public relations
l etc.

various kinds
of research

Figure 1: Various demands for DMZ hosts.

institutes since it is difficult to cover these various circumstances. Instead, each of the DMZ
admins has his/her responsibility for security management, and they have to spend a lot of
effort to maintain their security.

We have a vulnerability scanner, Tripwire IP360, which is used to analyze hosts and
evaluate each one’s vulnerabilities in the form of a score. The scanner is proprietary and has
rich functions, but it is too intricate for non-experts in security to utilize.

To address these challenges, we developed DMZ User’s Portal site, in 2007, that utilizes
the vulnerability scanner. Since then, we have operated and improved the portal site. All of
the owners of DMZ hosts have their own accounts.

Using DMZ User’s Portal, each DMZ admin can perform a vulnerability scan on his/her
own servers with ease. Then, each DMZ admin can grasp and manage the security by him-
self/herself. This paper shows the design and development issues of DMZ User’s Portal.

2 Application design of the vulnerability management portal for
DMZ admins – DMZ User’s Portal

2.1 Overview of DMZ User’s Portal

The vulnerability scanner Tripwire IP360 evaluates each host’s vulnerabilities in the form
of a score. If the score is over 1000, its vulnerability is regarded as severe. The scanner is
proprietary and has rich functions, but it is too intricate for DMZ admins to use because of
these rich functions themselves.

To tackle with these challenges, we developed the first version of DMZ User’s Portal site
in 2007 that wraps the functions and promotes security self-management for DMZ admins.

user’s host co-mgrs of
the host

on-demand
scan

report submission
create – DL - submit

login user

report submit:
fin/not-yet

Figure 2: Main page of DMZ User’s Portal.

2

EPJ Web of Conferences 214, 08014 (2019) https://doi.org/10.1051/epjconf/201921408014
CHEP 2018

login shell with
hundreds of accounts
in various countries

various kinds of groups
(e.g. num of members
are 10 - 1000)

various users various levels of management skill

various usage
l experiment
l login shells
l public relations
l etc.

various kinds
of research

Figure 1: Various demands for DMZ hosts.

institutes since it is difficult to cover these various circumstances. Instead, each of the DMZ
admins has his/her responsibility for security management, and they have to spend a lot of
effort to maintain their security.

We have a vulnerability scanner, Tripwire IP360, which is used to analyze hosts and
evaluate each one’s vulnerabilities in the form of a score. The scanner is proprietary and has
rich functions, but it is too intricate for non-experts in security to utilize.

To address these challenges, we developed DMZ User’s Portal site, in 2007, that utilizes
the vulnerability scanner. Since then, we have operated and improved the portal site. All of
the owners of DMZ hosts have their own accounts.

Using DMZ User’s Portal, each DMZ admin can perform a vulnerability scan on his/her
own servers with ease. Then, each DMZ admin can grasp and manage the security by him-
self/herself. This paper shows the design and development issues of DMZ User’s Portal.

2 Application design of the vulnerability management portal for
DMZ admins – DMZ User’s Portal

2.1 Overview of DMZ User’s Portal

The vulnerability scanner Tripwire IP360 evaluates each host’s vulnerabilities in the form
of a score. If the score is over 1000, its vulnerability is regarded as severe. The scanner is
proprietary and has rich functions, but it is too intricate for DMZ admins to use because of
these rich functions themselves.

To tackle with these challenges, we developed the first version of DMZ User’s Portal site
in 2007 that wraps the functions and promotes security self-management for DMZ admins.

user’s host co-mgrs of
the host

on-demand
scan

report submission
create – DL - submit

login user

report submit:
fin/not-yet

Figure 2: Main page of DMZ User’s Portal.

Since then, we have been improving the portal site with agility. All of the owners of DMZ
hosts have their own accounts. The screen of the main page is shown in Figure 2.

There are three main features in DMZ User’s Portal. One of the features provides an
easy-to-operate user-interface to DMZ admins so that they can manage and handle the vul-
nerabilities by themselves. Using the portal, DMZ admins can use the vulnerability scanner
easily with one click to run a security analysis of the owner’s host. The results can be down-
loaded as a PDF report.

Another feature helps DMZ admins from both viewpoints of support side and command-
hierarchy side in harmony. On the support side, DMZ admins can conduct the vulnerability
scan on their own, and the portal collects and aggregates the information to maintain the
security. On the command-hierarchy side, the portal helps the duty for DMZ admins to
self-inspect their hosts annually, by providing a management interface. In other words, this
delegates security vulnerability discovery and responsibility to individual DMZ admins that
improve security awareness for them. It also brings scalability into security management.

The third feature provides feedback mechanisms of the vulnerability information of their
host in multiple and continuous ways. Three scanners are set on the WAN, DMZ, and LAN
networks, which assume attacks from each of their locations. While DMZ admins can con-
duct an on-demand scan, the portal conducts a regular scan of all DMZ hosts once a week.
When serious vulnerabilities are found on a DMZ host, the portal notifies the owner of the
host of the information through a weekly email. While DMZ admins can browse the vulner-
ability list all together, they can also download the vulnerability report of each host individ-
ually. As shown above, various feedback mechanisms help DMZ admins to determine the
priority to measure, and security management can be executed by each user.

2.2 Security self-inspection performed by DMZ User’s Portal

We have been performing annual security self-inspection since 2007. In the self-inspection,
DMZ admins use DMZ User’s Portal themselves to check their hosts and submit reports. The
reports are inspected by our security management committee.

In the self-inspection, each DMZ admin performs a vulnerability analysis from the scan-
ner in the WAN using DMZ User’s Portal. If the analysis detects any vulnerability that has
a score of over 1000 point, the DMZ admin modifies the vulnerability and retries the anal-
ysis. The DMZ admin submits a report when there are no vulnerabilities over 1000 point

April Next
March

Self inspection

■ Got info about serious
vulnerability

■ checked the config of
my DMZ server

■ my server was not
corresponded

■ Email alert from Portal:
notified that there was a
serious vuln over 1000 pt

■ corrected the config in a
hurry: I found a mistake on the
change of config performed in
last week

■ Announcement of self inspection
■ Applied security updates and ran an

on-demand scan
■ a vuln with 300 pt was left
■ checked the config and

conducted treatments
■ Ran on-demand scan again and the

score reduced to 10 pt

■ Treated with small vulns
■ Ran on-demand scan again
■ The score reduced to 1 pt
■ I judged that remaining vulns would

not cause serious problems
■ Then, I submitted the report

■ Information security
management committee
examined the reports

■ My host was accepted to
use DMZ network again!

n1 th, May

n2 th, Jul

n3 th, Nov
December n4 th, Feb

Figure 3: An example story of admin tasks over one year, from April to March (JFY).

3

EPJ Web of Conferences 214, 08014 (2019) https://doi.org/10.1051/epjconf/201921408014
CHEP 2018

Portal module

DMZ hosts

Vulnerability scanner

Wrapper module
(for vulnerability scanner)

DBPowder
O/R mapper

Relational
Database

D
at

a
Sy

nc

Web UI

html proxy
Parse & Proxy

API
(XML-RPC)

API wrapper
wrapO/R mapping

DMZ User’s Portal

analysis

Email notifyWeb UI

WAN

DMZ

LAN

Vulnerability
scanner

Vuln.
scanner

diagno
sis

Server

Vuln.
scanner

Vulnerability scanner is always called via wrapper module
l to reduce the module dependency to the vulnerability scanner
l to endure the change of specification in vulnerability scanner

Template
engine

Tem
plate

Figure 4: System architecture of DMZ User’s Portal.

remaining. If the DMZ admin supposes that the result includes any false-positives, he/she
can submit a supplemental report that describes how each of the false-positives is already
fixed, with evidence. Besides, the DMZ admin submits Q/A reporting sheets. Finally, their
submitted reports and sheets are investigated and examined by the KEK security management
committee.

Figure 3 shows an example story of admin tasks over one year, from April to March
(JFY). If there is a serious vulnerability that has a score of over 1000 points, DMZ User’s
Portal sends an alert email weekly to the owner of the host, as shown in ‘n2 th, Jul’. While
KEK security team also grasps the weekly alert mail, in these years DMZ admins modified
such vulnerabilities by themselves in one or two weeks.

3 System design of DMZ User’s Portal

3.1 System architecture

Figure 4 shows the system architecture of DMZ User’s Portal. The point is that it has a wrap-
per architecture. DMZ User’s Portal mainly uses four middlewares: vulnerability scanner,
relational database, web server, and email sender. All of these are always called via wrapper
modules of their own. This reduces the module dependency.

DMZ User’s Portal has four wrapper components for the aforementioned middlewares:
Portal module, Wrapper module for the vulnerability scanner (Wrapper module in short),
DBPowder O/R mapper (DBPowder in short), and Template engine. The Portal module uses
the other three core components and organizes the functions of DMZ User’s Portal. The
Wrapper module receives all requests related to the vulnerability scanner and handles them.
DBPowder receives all requests related to the relational database and handles them. DBPow-
der also helps the development around the relational database. Template engine generates the
web UI and email texts.

The vulnerability scanner also manages the data regarding accounts, hosts, results of vul-
nerability analysis, and so on. While the data can be accessed via XML-RPC or http in the
vulnerability scanner, the performance is quite poor. The Portal module uses DBPowder to
synchronize the data with the vulnerability scanner and realizes the data access with reason-
able performance.

3.2 Wrapper module for the vulnerability scanner – flexibility and maintainability

The vulnerability scanner, Tripwire IP360, has an API with XMLRPC. However, the API
does not have some of the essential functions such as the one to download PDF reports. To
compensate for this, we developed a wrapper module that has an XMLRPC wrapper and

4

EPJ Web of Conferences 214, 08014 (2019) https://doi.org/10.1051/epjconf/201921408014
CHEP 2018

Portal module

DMZ hosts

Vulnerability scanner

Wrapper module
(for vulnerability scanner)

DBPowder
O/R mapper

Relational
Database

D
at

a
Sy

nc

Web UI

html proxy
Parse & Proxy

API
(XML-RPC)

API wrapper
wrapO/R mapping

DMZ User’s Portal

analysis

Email notifyWeb UI

WAN

DMZ

LAN

Vulnerability
scanner

Vuln.
scanner

diagno
sis

Server

Vuln.
scanner

Vulnerability scanner is always called via wrapper module
l to reduce the module dependency to the vulnerability scanner
l to endure the change of specification in vulnerability scanner

Template
engine

Tem
plate

Figure 4: System architecture of DMZ User’s Portal.

remaining. If the DMZ admin supposes that the result includes any false-positives, he/she
can submit a supplemental report that describes how each of the false-positives is already
fixed, with evidence. Besides, the DMZ admin submits Q/A reporting sheets. Finally, their
submitted reports and sheets are investigated and examined by the KEK security management
committee.

Figure 3 shows an example story of admin tasks over one year, from April to March
(JFY). If there is a serious vulnerability that has a score of over 1000 points, DMZ User’s
Portal sends an alert email weekly to the owner of the host, as shown in ‘n2 th, Jul’. While
KEK security team also grasps the weekly alert mail, in these years DMZ admins modified
such vulnerabilities by themselves in one or two weeks.

3 System design of DMZ User’s Portal

3.1 System architecture

Figure 4 shows the system architecture of DMZ User’s Portal. The point is that it has a wrap-
per architecture. DMZ User’s Portal mainly uses four middlewares: vulnerability scanner,
relational database, web server, and email sender. All of these are always called via wrapper
modules of their own. This reduces the module dependency.

DMZ User’s Portal has four wrapper components for the aforementioned middlewares:
Portal module, Wrapper module for the vulnerability scanner (Wrapper module in short),
DBPowder O/R mapper (DBPowder in short), and Template engine. The Portal module uses
the other three core components and organizes the functions of DMZ User’s Portal. The
Wrapper module receives all requests related to the vulnerability scanner and handles them.
DBPowder receives all requests related to the relational database and handles them. DBPow-
der also helps the development around the relational database. Template engine generates the
web UI and email texts.

The vulnerability scanner also manages the data regarding accounts, hosts, results of vul-
nerability analysis, and so on. While the data can be accessed via XML-RPC or http in the
vulnerability scanner, the performance is quite poor. The Portal module uses DBPowder to
synchronize the data with the vulnerability scanner and realizes the data access with reason-
able performance.

3.2 Wrapper module for the vulnerability scanner – flexibility and maintainability

The vulnerability scanner, Tripwire IP360, has an API with XMLRPC. However, the API
does not have some of the essential functions such as the one to download PDF reports. To
compensate for this, we developed a wrapper module that has an XMLRPC wrapper and

html proxy. At the same time, to reduce the module dependencies on a specific vulnerability
scanner, only the wrapper module can access the vulnerability scanner directly using API and
https. It also adds a tolerance to the change of specification in the vulnerability scanner.

The flow of the processes of the XMLRPC wrapper is as follows: receive a Java method
call, convert it to an XMLRPC call to the vulnerability scanner, receive the XMLRPC return
value, convert it to Java class object, and return the object. The flow of the processes of the
html proxy is as follows: receive a Java method call, convert it to an http request for the
vulnerability scanner and send it, receive the http response that contains http headers and
html from the vulnerability scanner, parse and interpret the html to extract the return value,
and return the value in the form of Java class object.

In the wrapper module, we also developed several test case modules to check the API
wrapper and html proxy. It is particularly useful in the update of the vulnerability scanner.
The test case modules find the errors according to the update. When the modification of
the errors is finished, the wrapper module is ready to follow the update of the vulnerability
scanner.

3.3 Template engine of html and email

When interacting with the portal users, such as those through a web interface and email noti-
fication, it is preferable for the contents to be easy to edit. Therefore in DMZ User’s Portal,
the contents are separated from the codes into templates. At the same time, the templates
can be switched using the hostname in which the program of DMZ User’s Portal is executed,
without changing the configuration in each site.

4 Development of DMZ User’s Portal, powered by DBPowder

4.1 DBPowder: object-relational mapping (ORM) framework

In DMZ User’s Portal, a database is an important component for managing the data related
to accounts, hosts, results of vulnerability analysis, and so on. We introduced DBPowder
Object-relational mapping (ORM) framework [1–3] to bridge the database to the Portal mod-
ule shown in Figure 4. In DMZ User’s Portal, we can use the database, database access codes,
and the web codes related to database access, via libraries in DBPowder. In our development,
DMZ User’s Portal improves DBPowder, and DBPowder improves DMZ User’s Portal. The
theoretical aspects of DBPowder have been already described in previous studies [1–3]. This
section describes the software design and usage aspects of DBPowder.

ORM frameworks contribute to the efficient design, development, and maintenance of (a)
persistent classes to deal with the persistent data in an object-oriented language, (b) relational
schema to manage the persistent data in the RDB, and (c) data conversion between object
states and RDB queries/responses [1]. We developed DBPowder ORM framework and utilize
it in the development of DMZ User’s Portal.

4.2 Development of DMZ User’s Portal with DBPowder

4.2.1 DBPowder-mdl: data schema description language

DBPowder-mdl [1] is a language to describe data schema in a simple and flexible manner.
Figure 5 is a simple example of DBPowder-mdl. We can design data schema in the left-hand
example of EER-style such that:

• A [user] can [register] plural [host]s, and a [host] is [register]ed by plural
[user]s.

5

EPJ Web of Conferences 214, 08014 (2019) https://doi.org/10.1051/epjconf/201921408014
CHEP 2018

üThe assigned names are
applied to both rs and spc.
If cname@EERname is
assigned (like <4>),
cname is assigned to spc.

<1>
<4># EER-style

[user]
user_name text
mail text
[<1:n> register]

reg_date Date
[<n:1> host]

host_name text
[<1:n> sec_report]

report_file text
[<n:1> host]

[<inherit-sr> adm_user]
[<inherit-sr> guest_user]

user_priv text

ObjectView-style
[SubmitUser@user]

[HostReport@sec_report]
{host}

[CoUser@register]
{user}

{adm_user}
{guest_user}

E: entity
A: attribute
L: linked-entity

PE: pivot-entity of a grouped entity
class-assigned-name@EER-assigned-name

ME: member-entity of a grouped entity

ü inherit-cr and
inherit-ccr are
also supported.

ü class-assigned-name must be different
from that EER-style already assigned.

<3>

a graph description
(extension from a
hierarchical structure)

generalization
hierarchies

<2>

üL describes a pair of a
relationship and an entity,
and the hierarchy shows
the relationship between
the entities.

Figure 5: DBPowder-mdl [1].

• A [user] can submit plural [sec_report]s, and a [sec_report] has a [host] in a
same context with the [user]-[register]-[host] above.

• The entities of [user], [register], [host], and [sec_report] have their own at-
tributes denoted in Figure 5.

• A [user] can have an inheritance structure, like [adm_user] and [guest_user].

The code generator of DBPowder generates the mapping codes using DBPowder-mdl. By
default, the code generator generates classes along with the description of EER-style.

It is desirable for data schema to be stable. On the other hand, it is also desirable that the
data schema can be used in various way for classes used in an application. We can design
classes in the right-hand example (in Figure 5) of ObjectView-style such that:

• A [user] has a corresponding class of [User]. Moreover, [user] has another class of
[SubmitUser].

• The class [SubmitUser] has a list of [HostReport]s that have a list of [CoUser]s.

The code generator also generates the classes along with the description of ObjectView-style.

4.2.2 Helper for database schema modification

In general, database schema modification is not a simple task because the modification does
not end with the schema itself. At least, the modification also impacts persistent classes and

All tables checked
(6) DBPowder-
factory detects diffs
per table defined in
DBPowder-mdl

(5) END (Succeed)
There are cases that compile
errors are found in the codes that
call DB access codes, around the
schema modification.

Even in the case, Java compiler
detects the errors and you can
modify all of them appropriately.

(1) START
[programmer]
modify
DBPowder-mdl

(2) [programmer]
Start DBPowder-
factory

(3) DBPowder-
factory detects the
diffs between
DBPowder-mdl
and RDB tables (11) END Fail

DBPowder cannot convert tables
without data loss.

To execute schema modification,
manually convert table and
execute DBPowder-factory again.

(4) DBPowder-factory re-
generates DB access code
according to the RDB tables

diff found

diff not found b/w
DBPowder-mdl and RDB tables

process

process
(decision)

Legend
(7) Check

tables
one after
another

(8) contain
data in the
table?

(10) re-
create table

(9) Is it OK
to delete
the data?

diff found b/w
table and mdl

No

Yes

delete OK

delete
NG

Figure 6: Flowchart of the helper for database schema modification

6

EPJ Web of Conferences 214, 08014 (2019) https://doi.org/10.1051/epjconf/201921408014
CHEP 2018

üThe assigned names are
applied to both rs and spc.
If cname@EERname is
assigned (like <4>),
cname is assigned to spc.

<1>
<4># EER-style

[user]
user_name text
mail text
[<1:n> register]

reg_date Date
[<n:1> host]

host_name text
[<1:n> sec_report]

report_file text
[<n:1> host]

[<inherit-sr> adm_user]
[<inherit-sr> guest_user]

user_priv text

ObjectView-style
[SubmitUser@user]

[HostReport@sec_report]
{host}

[CoUser@register]
{user}

{adm_user}
{guest_user}

E: entity
A: attribute
L: linked-entity

PE: pivot-entity of a grouped entity
class-assigned-name@EER-assigned-name

ME: member-entity of a grouped entity

ü inherit-cr and
inherit-ccr are
also supported.

ü class-assigned-name must be different
from that EER-style already assigned.

<3>

a graph description
(extension from a
hierarchical structure)

generalization
hierarchies

<2>

üL describes a pair of a
relationship and an entity,
and the hierarchy shows
the relationship between
the entities.

Figure 5: DBPowder-mdl [1].

• A [user] can submit plural [sec_report]s, and a [sec_report] has a [host] in a
same context with the [user]-[register]-[host] above.

• The entities of [user], [register], [host], and [sec_report] have their own at-
tributes denoted in Figure 5.

• A [user] can have an inheritance structure, like [adm_user] and [guest_user].

The code generator of DBPowder generates the mapping codes using DBPowder-mdl. By
default, the code generator generates classes along with the description of EER-style.

It is desirable for data schema to be stable. On the other hand, it is also desirable that the
data schema can be used in various way for classes used in an application. We can design
classes in the right-hand example (in Figure 5) of ObjectView-style such that:

• A [user] has a corresponding class of [User]. Moreover, [user] has another class of
[SubmitUser].

• The class [SubmitUser] has a list of [HostReport]s that have a list of [CoUser]s.

The code generator also generates the classes along with the description of ObjectView-style.

4.2.2 Helper for database schema modification

In general, database schema modification is not a simple task because the modification does
not end with the schema itself. At least, the modification also impacts persistent classes and

All tables checked
(6) DBPowder-
factory detects diffs
per table defined in
DBPowder-mdl

(5) END (Succeed)
There are cases that compile
errors are found in the codes that
call DB access codes, around the
schema modification.

Even in the case, Java compiler
detects the errors and you can
modify all of them appropriately.

(1) START
[programmer]
modify
DBPowder-mdl

(2) [programmer]
Start DBPowder-
factory

(3) DBPowder-
factory detects the
diffs between
DBPowder-mdl
and RDB tables (11) END Fail

DBPowder cannot convert tables
without data loss.

To execute schema modification,
manually convert table and
execute DBPowder-factory again.

(4) DBPowder-factory re-
generates DB access code
according to the RDB tables

diff found

diff not found b/w
DBPowder-mdl and RDB tables

process

process
(decision)

Legend
(7) Check

tables
one after
another

(8) contain
data in the
table?

(10) re-
create table

(9) Is it OK
to delete
the data?

diff found b/w
table and mdl

No

Yes

delete OK

delete
NG

Figure 6: Flowchart of the helper for database schema modification

Table
(DB)

Active
Record

Presentation
Entity

Base
Entity Entity

<<interface>>

Entity

<<interface>>

Presentation
Entity

Model
Validator

Component Compound
Component

n
1

xhtml xhtml

Component
Validator

Component
Validator

n1

Base
Presentation

Entity

Base
Component

n1

or

DAO

Base
DAO

<<interface>>

DAO or

Figure 7: Class structure of DBPowder.

data conversion codes between object states and RDB queries/responses. To make matters
worse, many persistent classes are referred to from the application codes. Therefore, many
places in the application codes are also impacted by the modification.

DBPowder has the function to assist in schema modification, and it relieves the burden
of the task. Figure 6 shows the flowchart of the helper. DBPowder checks the script in
DBPowder-mdl, database schema, and classes generated by DBPowder, to keep consistency
among them. If a table has one or more data records, any table modification may cause an
adverse effect. In such a case, DBPowder tells a developer whether to modify or not.

4.3 Class structure of DBPowder

Figure 7 shows the class structure of DBPowder. Most of the classes are generated per table
by DBPowder’s code generator according to the description in DBPowder-mdl, while base
classes for the classes of presentation entity, entity, and component are common among other
classes.

Each of the entities, presentation entities, and components has its own extension point.
The extension point is a simple wrapper for developers. Since DBPowder does not modify
any extension points, developers can add their own codes without fear of modification by
DBPowder.

5 Evaluation

5.1 Statistics of the security self-inspection: submit a report

Figure 8 shows the statistics of report submissions in the security self-inspection in 13 years
from 2005 to 2017 (JFY). As the graph indicates, the number of hosts gradually increased

0
100
200
300
400
500

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

(Fiscal year)

(Num of
hosts) 1) Highest score under 1000

2) Attach supplemental report
3) Cannot scan

4) disuse
5) Pause for 1y

(JFY: Fiscal year in Japan)

Figure 8: Report submissions in the security self-inspection, from 2005 to 2017 (JFY).

7

EPJ Web of Conferences 214, 08014 (2019) https://doi.org/10.1051/epjconf/201921408014
CHEP 2018

from 2005 to 2014, and the number was inverted in decreasing since 2014. Most of the hosts
end in category 1), which means that the submission was completed. In a few cases in 2012
and 2014, there were many hosts in category 4), which means to stop to use the host. In all
years, all of the DMZ hosts ended in either of the categories from 1) to 5), indicating that the
security self-inspection has been operated successfully.

5.2 Extended DMZ User’s portal to other networks

The flexibility shown in Section 3.3 enables us to introduce DMZ User’s Portal into the
networks which have different operation policy from that of KEK. In 2011, we extended
and introduced the portal to the network for J-PARC, a joint project with KEK. In 2017, we
introduced the portal to the network for HEPnet-J, another joint project with KEK.

6 Summary

In KEK, various research groups offer various information and communication technology
(ICT) services to various researchers around the world. Since each host has its own circum-
stances and it is difficult to apply general security standards, each host owner has his/her
responsibility in security management. Although vulnerability management with a vulnera-
bility scanner is a good solution, it is too intricate for non-experts in security to utilize.

To address these challenges, we developed DMZ User’s Portal site that utilizes the vul-
nerability scanner. There are three main features in DMZ User’s Portal. One feature pro-
vides a user-friendly interface for DMZ admins to manage and handle the vulnerabilities by
themselves. Another feature helps DMZ admins from both viewpoints of support side and
command-hierarchy side in harmony. The third feature provides feedback mechanisms of
the vulnerability information of their host in multiple and continuous ways. The 13-year
result from vulnerability scans show that the status of security in the KEK-DMZ has been
kept in good conditions. Also, DBPowder ORM framework brings flexibility and efficiency
in the development process of DMZ User’s Portal. Flexible implementation has enabled the
expansion of DMZ User’s Portal to other networks that have different policies.

Acknowledgments

The 13-year history of DMZ User’s Portal is based on a lot of fruitful discussions and ad-
vices. The author special thanks to: F. Yuasa(KEK), T. Kaneko(KEK), S. Kawabata(KEK),
S. Y. Suzuki(KEK), A. Manabe(KEK/J-PARC), A. Tate(J-PARC), Y. Matsuo(J-PARC), H.
Ishikawa(J-PARC), information security management committee(KEK), and the users of
DMZ User’s Portal.

References

[1] T.Murakami, T.Amagasa, H.Kitagawa, DBPowder: A Flexible Object-Relational Map-
ping Framework Based on a Conceptual Model, IEEE COMPSAC 2013, pp. 589 – 598
(2013).

[2] T.Murakami, DBPowder-mdl: Mapping description language between applications and
databases, IEEE/ACIS ICIS 2008, pp. 127 – 132 (2008).

[3] T.Murakami, DBPowder-mdl: EoD featured and much descriptive domain specific lan-
guage for O/R mapping, IPSJ Trans. on Databases (TOD), 3, pp. 46 – 67 (2010) (in
Japanese).

8

EPJ Web of Conferences 214, 08014 (2019) https://doi.org/10.1051/epjconf/201921408014
CHEP 2018

