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We investigate the three-body decays of the B0 meson to φπ+π− and the B0

s meson to φπ+π−.
Hadronic three-body decays include both non-resonant and resonant contributions, on the basis
of the factorization hypothesis. In this analysis, resonant structure is exhibited only in the π+π−

channel, whose resonant contribution can be described by S-wave, P-wave, and D-wave π+π−

contributions from f0(980), ρ, and f2 mesons, and other possible resonance. Therefore, the
theoretical values at the scale mb are (1.69 ± 0.19) × 10−7 and (3.28 ± 0.17) × 10−6, while
the corresponding experimental results are (1.82 ± 0.25) × 10−7 and (3.48 ± 0.23) × 10−6,
respectively. Comparing the numerical analysis values with the experimental values shows that
our results at the scale μb are in agreement.
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1. Introduction

The three-body decays of B0
s −→ φπ+π+ and B0 −→ φπ+π− have not been observed before and

were recorded by the LHCb experiment and tabulated by the Particle Data Group (PDG) [1,2].
The three-body decay of the D meson to Kππ was analyzed a long time ago [3]. In these sorts

of three-body decay, the final-state mesons are supposed to be light. The momentum of the output
mesons and the amplitude matrix elements are written by the variables s = (pB − p3)

2 and t =
(pB − p1)

2 [4,5], and the Dalitz plot technique should be used integrated from smin, tmin to smax,
tmax to compute the decay width. This double integral encompasses all angles between the momenta
of the output mesons. The amplitudes of the three-body decays can be obtained, and the Feynman
quark diagrams should be plotted. The direct three-body B0 → φπ+π− decay receives two separate
parts: one from the point-like weak transition and the other from the pole diagrams that involve
three-point or four-point strong vertices. First, we consider parameters that appear in the factorized
term of the hadronic matrix element. In the case of 〈B0 → ππ〉 × 〈0 → φ〉, both π mesons
are located in the form factor. In fact, two-meson matrix element transition of the B meson is
described to the π mesons. The φ is placed in the decay constant. In addition, there is the emission-
annihilation process 〈B0 → 0〉 × 〈0 → φππ〉. The total amplitude is computed as the sum of the
amplitudes of the non-resonant and resonant contributions. The resonant contribution is evaluated
by Dalitz plot analysis. The amplitude matrix element is related to multiplying the B meson by the
pion pair transition in the different waves by the vacuum to φ meson transition. There are several
resonances in the S-wave, P-wave, and D-wave π+π− contributions with π+π− invariant mass in
the range 400 < m(π+π−) < 1600 Mev/c2. Analysis of the resonant contribution defined by the
Breit–Wigner function is used to investigate the intermediate states f0φ, ρφ, and f2φ. Other three-
body B0

s → φπ+π− decay is investigated. The parameters appearing in the factorized term are
〈B0

s → φ〉 × 〈0 → ππ〉 and 〈B0
s → 0〉 × 〈0 → φππ〉. The 0 → ππ matrix element is supposed to
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be proportional to the pion scalar, vector, and tensor form factors; then, the different resonances f0i,
ρi, and f2 show in the π+π− interaction.

2. Amplitude analysis

In this section, the amplitude and branching ratio of B0 → φπ+π− and B0
s → φπ+π−are obtained

by using a factorization method. We have to contemplate the non-resonant and resonant contributions
separately. Hadronic weak decays are evaluated by the effective weak Hamiltonian [6]

Heff = GF√
2

∑
i

[VCKMCi(μ)Oi(μ)]. (1)

Here, GF defines the Fermi coupling constant, the coefficients VCKM are elements of the Cabibbo–
Kobayashi–Maskawa (CKM) matrix [7,8], Ci(μ) are the Wilson coefficients [9], and O1,2 denote
current–current operators, O3–6 being penguin operators and O7–10 the electroweak penguin
operators [10].

2.1. Non-resonant contribution

In the factorization approach, the Feynman diagrams for three-body B0 → φπ+π− decay are
depicted in Fig. 1, which includes the factorizable and non-factorizable diagrams. In the penguin
level, the two π mesons are located in the form factor and the φ meson is located in the decay
constant. The emission annihilation diagrams in which φ is emitted via gluon exchange are named
“hairpin diagrams.” The current analysis includes non-factorizable effects. The non-factorizable
terms are dependent on vertex corrections and hard spectator interactions [11]. The non-factorizable
diagrams depicted in Fig. 2 should be taken into account. For studying B0 → φπ+π− we use the
QCD factorization framework, which includes theoretical properties of QCD like color transparency
and hard scattering. Thus, the amplitude of this decay includes 〈B0 −→ π+π−〉 × 〈0 −→ φ〉 and
〈B0 −→ 0〉 × 〈0 −→ φπ+π−〉. Thus, the decay amplitude is given by

〈φπ+π−|Heff |B0〉 = iGF

2
√

2
((a3 + a5 + a7)λp〈π+π−|(b̄d)V−A|B0〉

× 〈φ|(s̄s)V−A|0〉 + (a2VubV ∗
us + (a3 + a5 + a7)λp)

× 〈0|(b̄d)V−A|B0〉〈φπ+π−|(ūu)V−A|0〉
+ (a3 + a5 + a7 + a4 + a10)λp〈0|(b̄d)V−A|B0〉

× 〈φπ+π−|(d̄d)V−A|0〉 + (a6 + a8)λp〈0|(b̄d)|B0〉
× 〈φπ+π−|(d̄d)|0〉, (2)

where λp = ∑
p=u,c VpbV ∗

pd . The three-body matrix elements 〈π+π−|(b̄d)V−A|B0〉 have the
following general form [12]:

〈π−(p1)π
+(p2)|(b̄d)V−A|B0(pB)〉 = ir(pB − p1 − p2)μ + iw+(p1 + p2)μ

+ iw−(p1 − p2)μ + hεμναβpν
B(p1 + p2)

α(p2 − p1)
β . (3)

We need to consider point-like and pole diagrams depicted in Fig. 3. We also require the strong
coupling constant of B∗Bπ and BBππ . The form factors w± and r for the non-resonant decay are
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Fig. 1. B0(B0
S) −→ φπ+π− decay.

evaluated from these diagrams as [13]

r = fB
2f 2

π

− fB
f 2
π

pB.(p2 − p1)

(pB − p1 − p2)2 − m2
B

+ 2gfB∗

f 2
π

√
mB

mB∗
(pB − p1).p1

(pB − p1)2 − m2
B∗

− 4g2fB
f 2
π

mBmB∗

(pB − p1 − p2)2 − m2
B

p1.p2 − p1.(pB − p1)p2.(pB − p1)/m2
B∗

(pB − p1)2 − m2
B∗

,

w+ = − g

f 2
π

fB∗mB∗
√

mB∗mB

(pB − p1)2 − m2
B∗

(
1 − (pB − p1).p1

m2
B∗

)
+ fB

2f 2
π

,

w− = g

f 2
π

fB∗mB∗
√

mB∗mB

(pB − p1)2 − m2
B∗

(
1 + (pB − p1).p1

m2
B∗

)
,

h = 2g2 fB
fπ

m2
B

(m2
B − m2

φ − s)(t + m2
B − m2

π)
, (4)

where g is a heavy-flavor independent strong coupling. The decay constants of the vector meson are
defined as [14]

〈0|(s̄s)V−A|φ(p3, ε)〉 = fφmφε∗
μ. (5)
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Fig. 2. Non-factorizable diagrams for B0 −→ φπ+π− decay.

For the multiplication of the matrix element, we have

〈π−(p1)π
+(p2)|(b̄d)V−A|B0(pB)〉〈0|(s̄s)V−A|φ(p3, ε)〉

= ifφmφ(rε.p3 + w+ε.(p1 + p2) + w−ε.(p2 − p1)), (6)

where, under the Lorentz condition, ε.p3 = 0. The structure of the polarization vector can be
described as

ελ=0 = (|p3|, 0, 0, p0
3)/m3,

ελ=±1 = ∓(0, 1, ±i, 0)√
2

. (7)
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Fig. 3. Point-like and pole diagrams for B0 −→ φπ+π− decay.

The energy–momentum conservation can be shown by:

pB = p1 + p2 + p3. (8)

We define the following three invariants that are not independent as:

s12 = (p1 + p2)
2 = (pB − p3)

2,

s13 = (p1 + p3)
2 = (pB − p2)

2,

s23 = (p2 + p3)
2 = (pB − p1)

2. (9)

According to the definition of four-momentum conservation, we have, from the invariants,

s12 + s13 + s23 = m2
B + m2

1 + m2
2 + m2

3; (10)

we let s12 = s and s23 = t. In the center of mass of π−(p1) and π+(p2), we find

|p1| = |p2| = 1

2

√
s − 4m2

1,

p0
1 = p0

2 = 1

2

√
s,

|p3| = 1

2
√

s

√
(m2

B − m2
3 − s)2 − 4sm2

3,

p0
3 = 1

2
√

s
(m2

B − m2
3 − s), (11)

and the cosine of the helicity angle θ between the direction of p2 and that of p3 reads

cos θ = 1

4|p2||p3|(m
2
B + m2

3 + 2m2
2 − s − 2t). (12)
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With these definitions, we obtain

ε.(p1 + p2) = 2p0
1ε

0,

ε.(p2 − p1) = 2|ε||p1| cos θ . (13)

The matrix elements of the annihilation process are written by

〈π−(p1)π
+(p2)φ(p3)|(d̄d)V−A|0〉 = 2i

fπ

(
p2μ − pB.p2

p2
B − p2

3

pBμ

)
Fφππ(q2),

〈π−(p1)π
+(p2)f0(p3)|(d̄d)|0〉 = v

fBm2
B

fπmb

(
1 − s13 − m2

1 − m2
3

m2
B − m2

3

)
Fφππ(q2), (14)

where

v = m2
π

mu + md
. (15)

The form factor F(q2) in Eq. (14) is described as

FM1M2M3(q2) = 1

1 − q2/�2
x

. (16)

We intend to compute the branching ratios for B −→ φππ decay in the improved QCD factor-
ization approach. In order to do this, we consider the vertex corrections to this decay indicated by fI
andfII in factorization. Their effects can be mixed with the Wilson coefficients [15]:

a2 = c2 + c1

3
+ αs

4π

CF

3
c1

(
−18 + 12 ln

mc

μ
+ fI + fII

)
,

a3 = c3 + c4

3
+ αs

4π

CF

3
c4

(
−18 + 12 ln

mc

μ
+ fI + fII

)
,

a5 = c5 + c6

3
+ αs

4π

CF

3
c6

(
+6 − 12 ln

mc

μ
− fI − fII

)
,

a7 = c7 + c8

3
+ αs

4π

CF

3
c8

(
+6 − 12 ln

mc

μ
− fI − fII

)
,

a9 = c9 + c10

3
+ αs

4π

CF

3
c10

(
−18 + 12 ln

mc

μ
+ fI + fII

)
, (17)

where the term fI, the hard scattering function, results from the vertex corrections and fII is expected
with the hard gluon exchange involving the spectator quark in the D meson. The vertex corrections
are given by [16]:

fI = 2
√

6

fφ

∫
dxφL

φ(x)

[
3(1 − 2x)

1 − x
ln(x) − 3π i + 3 ln(1 − r2) + 2r2(1 − x)

1 − r2x

]
,

fII = 4π2

N

ifRfBfφ
Xs

∫ 1

0
dρ

φB| (ρ)

ρ

∫ 1

0
du

φ
φ
|| (u)

u

∫ 1

0
dη

φR|| (η)

η
. (18)
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The leading twist distribution amplitudes are given in terms of an expansion in Gegenbauer
polynomials [17]:

φi(u, μ) = 6uū

[
1 +

∞∑
n=1

αn,i(μ)C3/2
n (2u − 1)

]
, i = ⊥, ‖. (19)

The other three-body decay that is investigated is B0
s −→ φπ+π+ decay. Feynman diagrams for

this decay are shown in Fig. 1. The amplitude of this decay includes 〈B0
s −→ φ〉 × 〈0 −→ π+π−〉

and 〈B0
s −→ 0〉 × 〈0 −→ φπ+π−〉. Thus, under the factorization hypothesis, the decay amplitude

B0
s −→ φπ+π− is given by

〈φπ+π−|Heff |B0
s 〉 = iGF

2
√

2
((a2VubV ∗

us + (a3 + a5 + a7)λp)〈φ|(b̄s)V−A|B0
s 〉

× 〈π+π−|(ūu)V−A|0〉 + ((a3 + a5 − 1/2(a7 + a9))λp

× 〈φ|(b̄s)V−A|B0
s 〉〈π+π−|(d̄d)V−A|0〉 + (a2VubV ∗

us

+ (a3 + a5 + a7)λp)〈0|(b̄s)V−A|B0
s 〉〈φπ+π−|(ūu)V−A|0〉

+ (a3 + a5 + a7 + a9)λp〈0|(b̄s)V−A|B0
s 〉

× 〈φπ+π−|(d̄d)V−A|0〉). (20)

The hadronic matrix elements for B0
s −→ φ can be described as [18]

〈φ(p3, ε)|(b̄s)V−A|B0
s (pBs)〉 = i((m3 + mBs)εμABsφ

1 (q2)

− ε.pBs

m3 + mB∗
(pBs + p3)μABsφ

2 (q2)

− 2m3
ε.pBs

q2 qμ(ABsφ
3 (q2) − ABsφ

0 (q2)), (21)

where

ABsφ
3 (q2) = mBs + m3

2m3
ABsφ

1 (q2) − mBs − m3

2m3
ABsφ

2 (q2). (22)

The two-pion-creation matrix element of the weak interaction current can be expressed by

〈π+(p2)π
−(p1)|(q̄q)V−A|0〉 = (p1 − p2)F

ππ
1 (q2). (23)

The non-resonant weak and electromagnetic form factor Fππ is parametrized as follows [19]:

Fππ
em (q2) = 1

1 − q2/M 2∗ + i
∗/M∗
,

Fππ
weak(q

2) = Fππ(0)

1 − q2/�2
χ + i
∗/�χ

, (24)

using 
∗ = 200 MeV and M∗ = 600 MeV, and �χ = 830 MeV is the chiral-symmetry-breaking
scale. By multiplying matrix elements, we have

〈φ(p3, ε)|(b̄s)V−A|B0
s (pBs)〉〈π+(p2)π

−(p1)|(q̄q)V−A|0〉
= iFππ

1 (q2)((mBs + m3)ε.(p1 − p2)A
Bsφ
1 (q2) − 2

ε.pBs

m3 + mB∗
(p1.p3 − p2.p3)A

Bsφ
2 (q2)). (25)
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2.2. Resonant contribution

As noted before, the Dalitz plot model can indicate the presence of intermediate resonance. The
amplitude decay of of the B meson into ππ in the different wave is to be appropriate to the pion non-
strange scalar or vector form factor, depending on the wave studied; the three-body matrix element
〈π+π−|Vμ|B0〉 can be described by S-, P-, and D-waves from the ππ channel. Resonant effects are
explained in terms of the Breit–Wigner formalism. Thus, the resonant contribution of B0 → φπ+π−
can be written as follows:

〈π+(p2)π
−(p1)|(b̄d)V−A|B0(pB)〉R =

∑
i

gTi→π+π−

s − m2
Ti

+ imTi
Ti

εσγ pσ
1 pγ

1

× 〈T |(b̄d)V−A|B0〉 −
∑

i

gVi→π+π−

s − m2
Vi

+ imVi
Vi

ε∗.(p1 − p2)

× 〈V |(b̄d)V−A|B0〉 −
∑

i

gSi→π+π−

s − m2
Si

+ imSi
Si

〈S|(b̄d)V−A|B0〉. (26)

The three-body matrix element can receive contributions from the f2 tensor meson, the ρ vector
meson, and the f0 scalar resonances. The form factors for the B −→ S [20], B −→ V [18], and
B −→ T [21] transitions are described by:

〈f0(pq)|(b̄d)V−A|B0(pB)〉 = − i

[(
(pB + pq)μ − m2

B − m2
f0

q2 qμ

)
FBf0

1 (q2)

+m2
B − m2

f0

q2 qμFBf0
0 (q2)

]
,

〈ρ(pq, ε)|(b̄d)V−A|B0(pB)〉 = i

[
(mB + mρ)ε∗

μABρ
1 (q2)

− ε∗.pB

mB + mρ

(pB + pq)μABρ
2 (q2)

−2mρ

ε∗.pB

q2 qμ(ABρ
3 (q2) − ABρ

0 (q2))

]
,

〈f2(pq, ε)|(b̄d)V−A|B+(pB)〉 = ihεμνλρε∗ναpBα(pB + pq)
λ(pB − pq)

ρ + k(q2)ε∗μνpBν

+ ε∗
αβpα

Bpβ
B(b+(q2)(pB + pq)

μ + b−(q2)(pB − pq)
μ). (27)

The polarization tensor εμν(pq, λ) with momentum p and helicity λ is given by [22]

εμν(±2) = εμ(±1)εν(±1),

εμν(±1) = 1√
2
(εμ(±1)εν(0) + εμ(0)εν(±1)),

εμν(0) =
√

1

6
(εμ(+1)εν(−1) + εμ(−1)εν(+1)) +

√
2

3
(εμ(0)εν(0)), (28)

where εμ(0, ±1) represent the polarization vector of the massive vector state moving along the Z-
axis [see Eq. (7)]. We have used the partial widths for determining the coupling constants f0 → ππ ,
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ρ → ππ , and f2 → ππ [2]:


(f0(980) → π+π−) = 34.2+13.9
−11.8 MeV,


(f0(1370) → π+π−) = 10.8 ± 2 MeV,


(f0(1500) → π+π−) = 35.8 ± 4 MeV,


(ρ(770) → π+π−) ∼ 149.1 ± 0.8 MeV,


(ρ(1450) → π+π−) = 400 ± 60 MeV,


(f2(1270) → π+π−) = 165 ± 9 MeV. (29)

Note also that gS→M1M2 , gV→M1M2 , and gT→M1M2 are the coupling constants for the scalar, vector,
and tensor mesons:


S→M1M2 = pc

8πm2
S

g2
S→M1M2

, 
V→M1M2 = p3
c

6πm2
V

g2
V→M1M2

,


T→M1M2 = p5
c

15πm4
T

g2
T→M1M2

, (30)

where pc is the center-of-mass momentum. Thus, the resonant amplitude can be obtained as follows:

MR(B− −→ π−(p1)π
+(p2)φ(p3, ε))

= iGF√
2

1

2
(a3 + a5 + a7)λpmφ fφ ×

[
gf2→π+π−

s − m2
f2

+ imf2
f2

ε
αβ
T εμ(pB + pf2)ρ

× (k(m2
φ)δμ

α δ
ρ
β + b+(m2

φ)p3αp3βgμρ) −
∑

i

igρi→π+π−

s − m2
ρi

+ imρi
ρi

(
− (mB + mρi)ε.(p1 − p2)

×ABρi
1 (m2

φ) − ABρi
2 (m2

φ)

mB + mρi

ε.(pB + pρi)pB.(p1 − p2)

)

−
∑

i

igf0i→π+π−

s − m2
f0i

+ imf0i
f0i

ε.(pB + pf0i)F
Bf0i
1 (m2

φ)

]
,

where the polarization tensor ε
αβ
T follows Eq. (28). In B0

s → φππ , the two-body matrix element
〈π+π−|Vμ|0〉 can also receive contributions from the f2 tensor meson, ρ vector meson, and f0 scalar
resonances in the π−π+ channel. As noted above, the resonant contribution of B0

s → φππ is
investigated by using the Breit–Wigner formalism:

〈π−(p1)π
+(p2)|(q̄q)V−A|0〉R =

∑
i

gTi→π+π−

s − m2
Ti

+ imTi
Ti

εσγ pσ
1 pγ

1

× 〈Ti|(q̄q)V−A|0〉 −
∑

i

gVi→π+π−

s − m2
Vi

+ imVi
Vi

ε∗.(p1 − p2)

× 〈Vi|(q̄q)V−A|0〉 −
∑

i

gSi→π+π−

s − m2
Si

+ imSi
Si

〈Si|(q̄q)V−A|0〉. (31)
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The decay constants of the scalar and vector mesons are defined as [23,24]

〈0|(q̄q)V−A|f0(980)(pf0)〉 = ff0pμ

f0
,

〈0|(q̄q)V−A|ρ(pρ , ε)〉 = fρmρε∗
μ. (32)

The polarization of the tensor meson satisfies the following relations [25]:

εμν = ενμ, εμ
μ = 0, pμεμν = pνε

μν = 0. (33)

Therefore, the decay constant of the tensor meson is defined as

〈0|(q̄q)V−A|T (pq, ε)〉 = aεμνpν + bεμνpμ = 0. (34)

Then we are led to

〈φ(p3, ε)|(b̄s)V−A|B0
s (pBs)〉〈π+(p2)π

−(p1)|(q̄q)V−A|0〉R

−
∑

i

i
gf0i→π+π−

s − m2
f0i

+ imf0i
f0i

ff0i

(
(mBs + m3)ε.pBs

× ABsφ
1 (q2) − ε.pBs

mBs + mφ

(pBs + p3).pf0i A
Bsφ
2 (q2)

−2m3
ε.pBs

q2 q.pf0i(A
Bsφ
3 (q2) − ABsφ

0 (q2)

)

−
∑

i

gρi→π+π−

s − m2
ρi

+ imρi
ρi

ερi .(p1 − p2)fρi mρi

(
(mBs + m3)ε.ερi

× ABsφ
1 (q2) − ε.pBs

mBs + mφ

ερi .(pBs + p3)A
Bsφ
2 (q2)

−2m3
ε.pBs

q2 ερi .q(ABsφ
3 (q2) − ABsφ

0 (q2)

)
, (35)

where q = p1 + p2 = pBs − p3 and pR = p1 + p2. Therefore,

ε.pf0 = ε.pBs = mBs

m3
|p3|. (36)

Finally, the decay amplitude through resonance reads

MR(B0
s → φπ+π−) = −

∑
i

i
gf0i→π+π−

s − m2
f0i

+ imf0i
f0i

ff0i mBs |p3|

× 2ABsφ
0 (s12) −

∑
i

gρi→π+π−

s − m2
ρ + imρ
ρ

fρi mρi

×
[

− (mBs + m3)ε.(p1 − p2)A
Bsφ
1 (s12)

− ε.pBs

mBs + m3
(2p3.p2 − 2p3.p1)A

Bsφ
2 (s12)

]
. (37)
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Table 1. The values of the Wilson coefficients ci at three renormalization scales μ.

μ c1 c2 c3 c4 c5 c6 c7/α c8/α c9/α c10/α

mb/2 1.137 −0.295 0.021 −0.051 0.010 −0.065 −0.024 0.096 −1.325 0.331
mb 1.081 −0.19 0.014 −0.036 0.009 −0.042 −0.011 0.060 −1.254 0.223
2mb 1.045 −0.113 0.009 −0.025 0.007 −0.027 −0.011 0.039 −1.195 0.144

Table 2. The form factor for the B → ρ transition.

Decay F(0) aF bF

A1 0.232 0.42 −0.25
B → ρ A2 0.187 0.98 −0.03

A3 −0.221 1.16 0.09
V 0.289 1.32 0.34

The three-body decay width is written as [26]


(B −→ M1M2M3) = 1

(2π)332M 2
B

∫ smax

smin

∫ tmax

tmin

|MNR(B −→ M1M2M3)

+ MR(B −→ M1M2M3)|2dtds, (38)

where

smin = (m1 + m2)
2,

smax = (mB − m3)
2,

tmin,max = m2
2 + m2

3 − 1

s
[(s − m2

B + m2
1) × (s + m2

2 − m2
3)

± λ1/2(s, m2
B, m2

1)λ
1/2(s, m2

2, m2
3)], (39)

where λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz).

3. Numerical results

We need to determine the values of several physical ingredients for the numerical analysis. The Fermi
coupling constant, GF, is taken to be 1.66 × 10−5 GeV. The values of the decay constants and meson
masses in units of MeV are [2,23,27]:

mπ± = 139.57 ± 0.00035, mφ = 1019 ± 0.016, mB0 = 5279.63 ± 0.15,

mf0 = 990 ± 20, mBs = 5366.89 ± 0.19, mρ = 775.26 ± 0.25,

mf2 = 1275.5 ± 0.8, mB∗ = 5324.65 ± 0.25, ff0 = 0.37, fφ = 221,

fπ = 130, fρ = 218 ± 2, fB = 176 ± 42, fB∗ = 194 ± 6. (40)

The coupling constants are gB∗Bπ = 32 ± 5 [28] and gB∗
s BK = 10.6 [29]. The values of ci at three

scales, μ = mb/2, mb, and 2mb, are given in Table 1 [30]. The form factors ABρ
i are shown in Table 2

[31]. The form factors of the transition Bs → φ at q2 = 0 applied in Eq. (20) are given in Table 3
[32]. The B → f2 transition form factor is depicted in Table 4 [33,34]. The parameter in the form
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Table 3. The parameters for the Bs → φ transition.

Decay A1 A2 V

Bs → φ 0.29 0.25 0.24

Table 4. The parameters for the B → f2 transition.

Decay k b+ b−
B → f2 0.425 −0.014 0.014

Table 5. The decay branching ratios at scales μ = mb/2, mb, and 2mb.

Mode B0 → φπ+π− B0
s → φπ+π−

(×10−7) (×10−6)

BR(2mb) 2.16 ± 0.21 5.5 ± 0.20
BR(mb) 1.69 ± 0.19 3.28 ± 0.17
BR(mb/2) 0.98 ± 0.15 2.34 ± 0.13
BRExp 1.82 ± 0.25 3.48 ± 0.23

factor of the B → f0(dd̄) transition is 0.3 ± 0.05 [35]. The branching ratios of these decays at three
scales are calculated as shown in Table 5.

4. Conclusion

In this research, we have computed the branching ratios of the B0 → φπ+π− and B0
s → φπ+π−

decays obtained from studies of three-body decays. The branching ratios of hadronic three-body
decays are evaluated by applying the factorization approach. The Dalitz plot model for decays is
determined by considering several resonant and non-resonant amplitudes. In order to examine the
branching ratios of three-body decays, we investigated resonant and non-resonant contributions.
There are factorizable and non-factorizable contributions such that the non-factorizable terms cor-
responding to the hard spectator interactions and vertex corrections are computed, which is why the
improved QCD factorization approach was applied. Eventually, we computed the branching ratios
at the three scales mb/2, mb, and 2mb.

In generalized factorization, the computed branching ratios of B0 → φπ+π− and B0
s → φπ+π−

had the values 1.69±0.19 and 3.28±0.17 at scale mb, while the experimental results were 1.82±0.25
and 3.48 ± 0.23 respectively. Comparison between our obtained values and experiment indicates
relative agreement with experimental information: the values of the branching ratios on the scale mb

correspond to the experimental values. The resonant contribution considered in the computation of
the branching ratio in the B0

s → φπ+π− decay is dominant, and it approximately corresponds with
the numerical values published by the PDG. Also, in the B0 → φπ+π− decay, the non-resonant
contribution considered in our computation is dominant, and it corresponds approximately with the
experimental results. In summary, the calculated branching ratios for the sum of non-resonant and
resonant amplitudes are consistent with experimental results.
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