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1 Introduction

During the penetration of a crystal close to a crystallographic direction, the
trajectory of the penetrating particle—due to the sequence of binary encounters—
becomes indistinguishable from the trajectory obtained from ‘smearing’ (averaging)
the charges along the string or plane, see Fig. 1.

From the resulting translational invariance in the longitudinal direction of the
potential inside the crystal, follows a separation of the longitudinal and transverse
motions, since the longitudinal momentum p‖ is conserved. The result is a conserved
‘transverse energy’ and a transverse potential U (r⊥) in which the particle moves:

U (r⊥) = 1

d

∫ ∞

−∞
V (r⊥, z)dz (1)

where V (r⊥, z) is the potential of the atom at the location of the projectile.
s
In the continuum model the transverse motion is given by:

d

dt
γmṙ⊥ = − d

dr⊥
U (r⊥(t)) (2)

where the dot denotes differentiation with respect to time, t , and r⊥ is the trans-
verse coordinate. Using energy conservation and neglecting terms of order 1/γ 2, the
transverse energy reduces to

E⊥ = 1

2
pvψ2 + U (r⊥) (3)

U. I. Uggerhøj (B)
Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
e-mail: ulrik@phys.au.dk

W. Greiner (ed.), Exciting Interdisciplinary Physics, 411
FIAS Interdisciplinary Science Series, DOI: 10.1007/978-3-319-00047-3_33,
© Springer International Publishing Switzerland 2013



412 U. I. Uggerhøj

Fig. 1 A schematical drawing of the discrete nature of the scattering centers in a crystal and the
resulting continuum approximation. The target atoms with atomic number Z2 and distance d along
the string, impose a curved trajectory on the penetrating particle with atomic number Z1 through
binary encounters over the transverse distance r⊥. The resulting trajectory with entrance angle ψ
can be accurately described as if being the result of interaction with a string of continuous charge
distribution, i.e. the charges Z2e being ‘smeared’ along the direction of motion z

Fig. 2 The transverse potential energy for positrons and electrons, in the continuum approximation,
for diamond along the 〈110〉 axis at room temperature. The main regions for channeled e− and e+
are indicated. The Doyle-Turner approximation for the atomic potential has been used [1]

where ψ is the particle angle to the axis [2, 3].
As can be seen from Fig. 2, the axial potential in diamond varies roughly 50 V

over a transverse distance of 0.1 Å, corresponding to an electric field

Ed � 5 · 1010 V/cm (4)

This extremely strong, and macroscopically continuous, electric field arises from
the coherent interaction of the screened nuclear fields along the direction of motion.
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It should be emphasized that although this field also appears in combination with
channeled particles, it is not a necessary condition that the particle is channeled—the
continuum approximation generally applies at angles one to two orders of magnitude
higher than the critical angle for channeling.

For a thorough introduction to strong fields in crystals at high energies, see e.g.
[4, 5].

1.1 The Critical Field

In the present connection, ‘strong’ means comparable to the quantum mechanical
critical field in a Lorentz-invariant expression. In atomic physics, the scale for ‘strong’
fields is set by the electric field a 1s electron is exposed to in atomic hydrogen, the
atomic unit Ea = e/a2

0 = 5.14 · 109 V/cm, and the magnetic field that gives rise
to the same force on the 1s electron Ba = Ea/cα = 2.35 · 105 T. In quantum
electrodynamics, on the other hand, the strength of the electric field is measured
in units of the critical field E0 (and the corresponding magnetic field B0), obtained
from a combination of the electron charge and mass, the velocity of light and Planck’s
(reduced) constant (with values from [6])

E0 = m2c3

e�
= 1.323285 · 1016 V/cm , B0 = 4.414005 · 109 T (5)

These scales of strength are thus related as Ea = α3E0 and Ba = α2 B0. As we shall
see shortly, classical strong fields are even stronger Ec = E0/α and Bc = B0/α.

The critical field E0 is frequently referred to as the Schwinger field [7], although
it was treated as early as 1931 by Sauter [8, 9], following a supposition by Bohr on
the magnitudes of fields relevant in the Klein paradox [10].

Rewriting the expression for the critical field to E0 = mc2/eλ/, where λ/c = �/mc
is the reduced Compton wavelength, it appears that in a critical field a (virtual)
electron may obtain an energy corresponding to the electron rest energy mc2 while
moving over a distance corresponding to the uncertainty of its location λ/c. Thus, the
strong gradient of the potential combined with quantum uncertainty, as e.g. also seen
in Zitterbewegung, may produce new particles—a QED phenomenon analogous to
the Hawking radiation, discussed below.

In a classical analogue, a similar field strength is obtained from the field at a
distance of a classical electron radius from the ‘center’ of the electron, Ec = e/r2

e .
This field ‘on the surface’ of a classical electron is likewise where e transported
over re yields mc2, Ec = mc2/ere = E0/α, and, as must be required of a classical
field, it does not contain �. It is approximately equal to the Born-Infeld limiting
field strength bl . The latter was introduced ‘dogmatically’ by a Lagrangian L =
−b2(1 −

√
1 − (E 2 − B2)/b2

l ) (inspired by the relativistic mc2(1 − √
1 − v2/c2)

where c is the limiting speed) and described a transition to non-linear, classical
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electrodynamics [11]. The classical strong field is thus 137 times larger than the
quantum one, i.e. a tunneling process reduces the necessary field strength required
to produce a pair in quantum theory [12].

1.2 Electrodynamical Invariants

We now consider the general case of a charged particle interacting with an elec-
tromagnetic field, following e.g. [13, 14]. Three dimensionless invariants can be
constructed from the electromagnetic field strength tensor, Fμν , and the momentum
four-vector pν (or, in the case of a photon, �kν):

χ2 = (Fμν pν)2

m2c4E 2
0

(6)

Ξ = F2
μν

E 2
0

= 2(B2 − EEE 2)

E 2
0

(7)

Γ = eλμνρFλμFνρ

E 2
0

= 8EEE · B

E 2
0

(8)

where eλμνρ is the antisymmetric unit tensor and contraction is indicated by repeated
indices. For an ultra-relativistic particle moving across fields E � E0, B � B0 with
an angle θ 	 1/γ the invariants fulfill χ 	 Ξ,Γ and Ξ,Γ � 1. The relation of χ
to the fields EEE and B is given by [14]

χ2 = 1

E 2
0 m2c4

((pc × B + E · EEE )2 − (pc · EEE )2) (9)

For an ultrarelativistic particle moving perpendicularly to a pure electric or pure
magnetic field this reduces to

χ = γE

E0
or χ = γ B

B0
(10)

Due to E0 being proportional to m2, we note that χ scales with 1/m2 such that e.g.
the coherent production of muon pairs from electrons becomes appreciable only at
energies 2072 ≈ 4 · 104 times larger than electron-positron pairs.

For the emission of radiation it is the trajectory that is decisive. Therefore, it
is insignificant if the field responsible for the path is electric or magnetic and as a
consequence they are frequently used indiscriminately in radiation emission. Sinceχ
is invariant, γ B (or γE ) is the same in any reference system and thus it is reasonable
to transform to the electron frame. In this reference system, by definition the Lorentz
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factor of the electron is 1 and the field present in the frame of the laboratory is boosted
by γ = E/mc2, where E is the energy of the electron in the laboratory. This means
that the field in the rest-frame of the electron can become critical for achievable
γ -values.

2 Quantum Synchrotron Radiation

Concerning the recoil in the emission process, a classical calculation of the syn-
chrotron radiation emission in a magnetic field leads to a spectrum which extends to
ωc � 3γ 3eB/2p = 3γ 3ωB/2 [15, 16], i.e.

�ωc

E
� 3γ B

2B0
= 3γ κ f

2
= 3χ

2
(11)

which for sufficiently large γ exceeds 1. Here ωB = eBv/pc is the cyclotron
angular frequency and χ is the strong field parameter. Thus, for γ values beyond a
certain point, the classically calculated radiation spectrum extends beyond the avail-
able energy [4, 17–19]. In this case a quantum treatment taking recoil into account
becomes necessary:

“ …the condition for quantum effects to be unimportant is that the momenta
of the radiated quanta be small compared with the electron momentum” [17].

As a result of the quantum correction, the total radiated intensity for the classical
emission is according to Schwinger reduced by a factor

I/Icl = 1 − 55
√

3λ/cωBγ
2/16c (12)

due to first order quantum corrections when χ � 1 [17]. Including the second order
term the reductions for small values of χ are [14]

I/Icl = 1 − 55
√

3χ/16 + 48χ2 χ � 1 (13)

and asymptotically for large values of χ

I/Icl � 1.2χ−4/3 χ 	 1 (14)

Furthermore, an approximate expression (“accuracy better than 2 % for arbitrary χ”
[20, eq. (4.57)])

I/Icl � (1 + 4.8(1 + χ) ln(1 + 1.7χ)+ 2.44χ2)−2/3 (15)
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Fig. 3 Experiment [23] and theory [24] for radiation emission from electrons penetrating a tungsten
crystal near the 〈111〉 axis. For comparison, a curve based on Eq. (15) with a slightly arbitrary, but
realistic χ = 0.02 · E[GeV] (and vertical scale obtained as the best fit) is shown as the dashed
line (‘quantum’), and the corresponding classical expression as the dash-dotted line (‘classical’).
The enormous difference between the ‘classical’ and ‘quantum’ curves directly show the strong
quantum suppression in the experimentally accessible regime

gives a compact analytical expression applicable e.g. in computer codes. From this,
it is clear that the emission of synchrotron radiation is affected already at fairly
small values of χ . A graphical representation compared to measured values is given
in [21, 22].

In Fig. 3 is shown results for radiation emission from electrons impinging on
a tungsten crystal close to the 〈111〉 axis. As a consequence of the strong deflec-
tion upon the passage of the string of nuclei composing the axis, the electron is
forced to emit radiation as in a constant field, as described above. This happens
much like in normal synchrotron radiation emission, only in a much more intense
field, �1011 V/cm, corresponding to 30.000 T. As a result of the high peak value of
the χ parameter (χW,〈111〉 � 0.03 · E[GeV]), the radiation emission is subjected
to strong quantum suppression. In the limit χ � 1 the enhancement would be
linear with increasing energy, as shown by the dash-dotted line. This is the case
because synchrotron radiation emission is quadratic in energy and radiation from
an amorphous foil is linear in energy, but due to the strong quantum suppression,
the enhancement is reduced to the level shown by the dashed line, as also expected
from equation (15). The good agreement between experimental values and theory
shown in Fig. 3, combined with the equality of beamstrahlung and strong field theory
shown in Fig. 4 provide a strong experimental indication that QED theory as applied
to beamstrahlung—discussed in the following section—in the regime 1 � ϒ � 10
is correct.

The accuracy of the experimental values is 5–10 %, enough to ascertain the valid-
ity of the theoretical approach. The quantum synchrotron behaviour of radiation
emission in a strong field, is thus experimentally well confirmed at relatively high
values of 1 � χ � 10.
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3 Beam-Beam Interactions—Beamstrahlung

In the construction of linear colliders an important phenomenon is the emission of
intense radiation due to the interaction of particles in one bunch with the electro-
magnetic field from the opposing bunch. This leads to the synchrotron radiation
equivalent of particle deflection in the field of the bunch, instead of in a magnetic
dipole: Beamstrahlung. As the emission of beamstrahlung has a direct and signif-
icant impact on the energy of the colliding particles, it is a decisive factor for e.g.
the energy-weighted luminosity. Conversely, beamstrahlung emission may provide
a method for luminosity measurement. It is therefore important to know if beam-
strahlung theory is correct for the conceptual and technical design of the collision
region—the center about which the rest of the machine is based.

The Lorentz factor γ in this case is understood as the Lorentz factor of each of
the oppositely directed beams, measured in the laboratory system. Then relativistic
velocity addition v′ = (v − V )/(1 − vV/c2) = 2v/(1 + v2/c2) with V = −v and
γ ′ = 1/

√
1 − v′2/c2 yields the Lorentz factor γ ′ of one beam seen from a particle

in the other beam of γ ′ = 2γ 2 − 1, usually shortened to 2γ 2 in the ultrarelativistic
limit. Thus, in the restframe of a particle in one bunch the field of the other bunch
is boosted by a factor �2γ 2 and may approach or even exceed critical field values.
The emission of beamstrahlung can be expressed as a function of χ (often called ϒ
in the accelerator physics community) which for the Stanford Linear Collider (SLC)
is small �10−3 but of the order unity for the next generation linear colliders [25].
For the planned Compact LInear Collider (CLIC) at CERN, the collision point is
designed such that ϒ � 4. Quantum corrections to the emission of beamstrahlung
therefore become crucial.

3.1 Quantum Treatment of Beamstrahlung

The discussion of quantum effects in radiation emission from energetic particles in
collision with a counterpropagating bunch was started in the mid-80’s [26–28]. In
particular the suppression of the intensity stemming from the strong field deflection
was of interest. It later continued with treatments of pair creation [29, 30]. Of par-
ticular relevance to the connection of beamstrahlung with emission from electrons
penetrating crystals is the contribution by Baier, Katkov and Strakhovenko to the
early development of the theory of beamstrahlung [31].

Shortly after the first publications on the relevance of quantum theory to beam-
strahlung, Blankenbecler and Drell contributed a full quantum treatment of the prob-
lem, based on the eikonal approximation [32]. The scaling parameter in their approach
is given by

C = m2c3 RL

4Ne2γ 2�
(16)
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Fig. 4 The quantum suppression of radiation emission intensity, according to Eqs. (15) and (17)

representing the electric field from a homogeneously charged cylinder of length L
and radius R holding N charges, in units of E0 = m2c3/�e. The applicability of
this scaling parameter was later elaborated upon by Solov’yov and Schäfer [33, 34].
From this model of a beam, the form factor F = δ/δclassical, describing the quantal
energy loss in units of the classical, was derived and approximated by:

F(C) =
[
1 + 1

b1
[C−4/3 + 2C−2/3(1 + 0.20C)−1/3]

]−1
(17)

with b1 = 0.83, see also [33]. Clearly, as stated by Blankenbecler and Drell, in the
classical regime � → 0 in Eq. (16) such that C tends to infinity, and therefore the
form factor tends to 1 according to Eq (17), as must be required.

As a result of the quantum correction, the total radiated intensity for the classical
emission is reduced as given by equation (15).

In Fig. 4 is shown graphs based on Eqs. (17) and (15), where it has been assumed
that C = 1/χ . The curves are very similar, over the entire range of more than five
orders of magnitude in χ . The expressions originating from the same phenomenon
becomes even more evident by adjusting to C = 1.3/χ which results in the curves
being indistinguishable on the plot. This is not a fortuitous coincidence: In Blanken-
becler and Drell’s theory, the bunch is treated as a homogeneously charged cylinder
of length L and radius R holding N charges. At the distance r from the center of this
cylinder the electric field is 2γ Ne/Lr , which leads to an average (over r ) field

E = γ Ne

L R
(18)

which can be combined with Eq. (16) to give

C = m2c3

γE e�
= E0

γE
= 1

χ
(19)
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so it is legitimate to interchange C and 1/χ . The additional factor 1.3 that brings the
curves into almost exact agreement, is due to the radiation intensity being non-linear
in C , i.e. averaging over the field encountered and then calculating the intensity from
this field may be different from calculating the intensity from the fields encountered
and then averaging.

Early studies by Chen and Yokoya [25] showed that field gradient effects are small
for a collider operating near ϒ = χ = 1/C = 1, i.e. also for the planned CLIC at
CERN where the expected value is as mentioned ϒ � 4. It is therefore to a high
degree of accuracy sufficient to use Eq. (17) derived for the homogeneously charged
cylinder in calculations for beamstrahlung.

Nevertheless, due to the emission of quantum beamstrahlung, the ‘useful’ lumi-
nosity L1 (where L1 is defined as the luminosity for that part of the beam where the
energy is still at least 99 % of the initial) becomes about 40 % of the nominal, due to
the loss of energy in the beamstrahlung process. In a classical calculation the useful
luminosity would have been at least an order of magnitude smaller. For such future
colliders, γ γ -collisions, resulting e.g. also in hadronic interactions, may be gener-
ated from the beams themselves and the advantage of using leptonic beams (‘clean’
collisions) is to some extent lost. The beamstrahlung problem is unavoidable since
single passage (as opposed to circular machines) forces small beam cross sections to
give high luminosity. And since ϒ ∝ Nγ /(σx + σy)σz , with σ denoting the beam
size, high energies and high luminosity means a high value for ϒ . However, the
problem may be partly alleviated by applying special bunch structures (‘flat’ beams,
maximizing σx +σy) to avoid rapid beam deterioration from strong field effects [35].

Finally, it should be mentioned that effects of the spin of the particle become
very important in the beamstrahlung emission. As polarimeters cannot be positioned
at the intersection point of the crossing beams, reliable models for the degree of
polarization after emission (immediately before the collision) must be developed for
measurements with polarized beams to make sense.

4 Hawking Radiation and Unruh Effect

A fascinating analogy exists between the critical field and the Hawking radiation
from a black hole: The gravitational acceleration at the Schwarzschild radius RS =
2G M/c2 equals g(RS) = c4/4G M where G is Newton’s constant and M the mass
of the black hole. From the equivalence principle, locally the gravitational field is
analogous to an accelerating frame of reference. The word locally is crucial in this
context: A gravitational field and an accelerating frame are closely related, but they
are not equal. It is impossible to ‘transform away’ a gravitational field by shifting to an
accelerating frame due to the existence of tidal forces as expressed by the Riemann
curvature tensor. But locally, e.g. for one test particle only, there is equivalence.
Setting this gravitational acceleration equal to the acceleration of an electron in a
critical field g0 = eE0/m = c2/λ/c the condition λ/c = 2RS is obtained. In words:
the black hole emits particles with (reduced) Compton wavelengths that are as large
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as or larger than the hole itself. This is approximately (within a factor 2 as for the
calculation of the deflection of light by use of the equivalence principle) equal to the
answer obtained in a full analysis of the Hawking radiation [36].

Likewise, the equivalence between the temperature of the Hawking radiation from
a black hole and the temperature of the vacuum in a constantly accelerated frame
[37, 38] has been widely discussed—the so-called Unruh effect. As channeled parti-
cles are subject to enormous fields and accelerations, outlines for possible detection
schemes using strong crystalline fields have been put forward [39, 40]. In [39] it is
estimated that a planar channeled positron with γ � 108 will emit Unruh radiation as
intense as the incoherent bremsstrahlung. These estimates, however, do not discuss
the subtleties connected to the inherently non-constant acceleration for a channeled
particle.

The Unruh effect gives rise to a Planckian photon spectral distribution at a
temperature

T = �a

2πkBc
(20)

where a is the acceleration and kB the Boltzmann constant.
Several other methods have been proposed to pursue the problem of measur-

ing the Unruh temperature experimentally. According to Baier—who was an expert
also in the field of radiative polarization [41]—the Unruh mechanism is a possible
interpretation (“theoretical game”) of the radiative depolarization in a storage ring
[42], as originally suggested by Bell. For an overview of the suggested experimental
methods and a review of the literature on the subject see e.g. [43, 44] (these chapters
are mainly sophisticated theory chapters, but do contain references to experimental
methods). In this connection, it may be mentioned that even the lightest charged
composite, the positronium negative ion Ps−, will have an essentially unaffected
hyperfine structure when exposed to Unruh radiation during state-of-the-art acceler-
ation in a high-gradient radio-frequency cavity [45].

The above mentioned analogy between the critical field and the Hawking radiation
from a black hole becomes even more compelling by interpreting the field as a
temperature as is done for the Unruh effect, Eq. (20): T0 = eE0�/2πmkBc [46] and
inserting g(RS) = c4/4G M instead of g0 = eE0/m in T0 from which the correct
Hawking temperature appears [47]:

T0 = �c3

8πG MkB
(21)

The Hawking radiation can thus be viewed as a critical field phenomenon, where the
electromagnetic critical field is replaced by a gravitational field. Generally speaking,
the uncertainty of the location of the particles is given by their (reduced) Compton
wavelength, as evidenced e.g. by the Zitterbewegung. Thus, the interpretation that
a quantum fluctuation—a virtual pair—can become real due to the presence of the
critical field, where the rest mass energy is created over exactly this length, is valid in
both cases. As the gravitational field at the Schwarzschild radius g(RS) is larger for
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small holes, short Compton wavelength—‘hot’—radiation may be emitted, which is
why light black holes possess a higher temperature than heavy ones—they possess
a higher gradient.

It must be emphasized, though, that it is an analogy, not a one-to-one corre-
spondence between electrodynamics and geometrodynamics. In the former case, for
instance, the invariant Ξ , Eq. (7), is much smaller than one.

From the above qualitative considerations, it is clear that the QED analogy of
Hawking radiation, critical field radiation, is of high importance to be investigated
experimentally. This is perhaps even more the case as long as the gravitational version
is not within observational reach in the foreseeable (perhaps even imaginable) future.
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