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ABSTRACT 

Ratios of the invariant distributions of produced particles, R@+/a- ), 

R&n- ) > R(K-/n- ) , and R(K’/p), have been calculated in the diffractive excitation 

model. Two free parameters are used to adjust the relative normalization. The 

shapes of the ratios as functions of x are essentially independent of any arbitrary 

parameters. The results agree with the data very well. 
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One of the attractive features of the diffractive excitation model is that 

it can predict the shapes of the single particle spectra with essentially no ad- 

justable parameters and yet with remarkable accuracy in a variety of inclusive 

reactions. l-6 The model should therefore lend itself readily to the prediction of 

particle production ratios as functions of the longitudinal momenta. In this paper 

we discuss the production of K+K- and bp pairs as well as the associated pro- 

duction of K+E” and the like. With two adjustable parameters, we calculate the 

particle ratios R(n+/ 7r- ), R(F/n-), R(K-/n- ), and R(K’/p) as functions of x. 

The agreement with the experimental data currently available is good. 

The diffractive excitation model assumes that at very high energies the 

production processes are dominated by .two-cluster formations. Under the sup- 

position that the mean momentum of a particle in the rest frame of the associated 

cluster is limited, typically 350 MeV, 7 the overlap between the decay distributions 

of the right-going and left-going clusters in the center-of-mass system becomes 

insignificant as the total energy increases indefinitely. We may thus calculate 

the asymptotic shape of the single-particle spectrum for a + b - c + anything by 

considering only one cluster explicitly, the phase space for the other cluster 

being completely integrated over. Defining the invariant distribution for the de- 

tection of particle c to be 

fJx9 P,) = x0 -*2 = P() 
do 

dxdp, 
2 

dq dpI 

where x = 2p,, /& and x0 = 2po/fi, we have” 2 

f,(x,p,) = x0 j&l gc(MI,x)nc(MI)dM1, x ’ 0 . 

(1) 

(2) 
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The expression for x < 0 is similar (with MI replaced by M2), so it will not 

be considered separately. In (2), dc/dM1 is the cross section for the production 

of a cluster of mass MI whatever the other cluster may be, i. e. M2 being 

integrated over both the discrete and the continuum states. gc(M1, x) is the 

probability that among the particles emanating from a cluster of mass MI a 

particle of type c, if created, is observed at x. We normalize the integral of 

gc(Ml, x) over all x to unity. The probable number of such particles is given by 

nc inside the integral in (2). Because we attach a probabilistic interpretation to 

the number nc, it is a continuous variable which can be less than one. 

Since the data on particle production ratios at very high energies are 

available only for pp collisions, 8-10 let us for definiteness consider here only 

the proton cluster. When a proton is exicted to a massive state, it decays 

mainly by emitting pions. This is necessarily true when the excited state is not 

too massive. But if MI is large, finite probability exists for the creation of kaons 

and nucleon-antinucleon pairs. In order to facilitate the development of a concept 

for particle production, let us consider first the extreme case of a very massive 

cluster, MI -+ ~0. We emphasize that this limit is taken under the condition 
n 

tiI << s, so s is even greater. By considering very large MI we remove the 

kinematical limitations on producing any type of particle. Thus if we assume 

that any particle i that is produced has a finite average energy Ei in the cluster 

rest frame, we have 

Ml = c niEi + n;EN + “flYEm 
i 

The first term on the right-hand side represents the summation over the three 

(3) 

types of pions and all particles produced in pairs, the totality of which has zero 
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baryon and hypercharge quantum numbers. ni is the number of particles of 

type i produced. We exclude resonances in the counting, including only the 

detectable particles that are stable against strong decay. The last two terms 

of (3) represent the two modes that have the quantum numbers of the proton: 

proton itself and the kaon-hyperon state (K+Y’ or K’Y+). Other more massive 

possibilities such as K+K’&’ are ignored. It should be noted that n; does not 

include the protons produced in conjunction with an antinucleon, which should 

be accounted for in the summation term. 11 Evidently, baryon number conser- 

vation implies 

s+sy= 1 (4) 

where n; and “;(Y are the probabilities for finding a leading proton or a kaon- 

hyperon pair, respectively, per collision after averaging over many events with 

the formation of clusters of the same mass Ml. In obvious notation EKy signifies 

the average energy (always in the cluster rest frame) of the kaon-hyperon pair. 

We now make the fundamental assumption that asymptotically (as Ml - a) 

the fraction, 5(mi), of the total number of produced particles that correspond to 

a particular type i of mass mi is constant. If nl designates the number of produced 

particles in a cluster of mass Ml, then we have 

n. 1 = [(mi)nl, nl- fo . (5) 

The label i indicates the type of particle with mass mi; the density of states 

describing the number of different types within a mass interval (m, dm) is an 

extra factor not included in t(mi). Using (3) and (5) we obtain 
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nl = (Ml - EO)/W = Ml/W, Ml - 00 

where 

E. = n;EN + nKyEKy 

W = c 5 (mi) Ei . 
i 

(6) 

(7) 

(8) 

From (6) we see that W has the meaning of grand average energy per particle 

in a cluster regardless of the particle type. We have learned from the study of 

the’spectrum and average multiplicity of the pions 192 that nlT. must be propor- 

tional to Ml if an agreement with the data is to be achieved. The introduction of 

pair production of heavy particles into our consideration should not alter this 

conclusion. Hence, W must be a finite quantity. This means that the summation 

in (8) must converge; in fact, it should converge very quickly if W is to be 

roughly equal to En, a condition which ensures that the consideration of kaon- 

and antiproton-production does not alter the general features about the pion pro- 

duction already obtained by ignoring K and 5. It is not necessary for us to 

specify at this point what 5(mi) is, except to mention that it should be a rapidly 

damping function of mi. 

We turn our attention next to the dependence of nc on Ml for low and inter- 

mediate values of Ml where we are near the thresholds for the production of kaon 

pairs and nucleon-antinucleon pairs. Clearly the asymptotic formula given by 

(5) and (6) must be modified in order to account for the threshold effects. If we 

assume that R+, A- and QTO are produced with equal probability except for the 

necessity of preserving charge conservation , and that the production of p and n 

is also equally probable, then the probable numbers of 7r’ and 7r- are 
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n =- 
n- t (y-1) (10) 

where nn is the total number of pions produced in any given event. For low cluster 

masses only pions are produced, so we shall calculate nr according to 

n lr = (Ml - EN)/E, (11) 

Corresponding to < p, > - 350 MeV, we set EN = 1 GeV and En = 450 MeV. The 

minimum value of Ml is taken to be 1.4 GeV. However, since En and Ep may 

vary when Ml is near threshold, we shall take the values of nn+ and nr- to be 

given by (ll), but not less than l/2 and l/3 respectively. 

For 5 production the mass of the minimal cluster is approximately Ml = 

3 EN. At that mass although the state ppp with each particle having an average 

energy EN is kinematically allowed, the probability for the occurrence of such 

a state is vanishingly small as compared to a state with one proton and many 

pions. That is, the value of n-p should become zero at the I1 threshold” Ml = 3 EN. 

We therefore use the following formula which incorporates both the threshold 

effect and the asymptotic behavior: 

n- = 

P 5 (mN)(Ml -aEN)+ (12) 

Identical reasoning applies for the production of K- , yielding 

“K- = 5 (m,) (Ml - EN- 2 EK)Wml . (13) 

The characters of the proton and K+ spectra are similar; they both have 

two components. For the proton, one component is the leading proton, the ground 

state into which the excited proton decays. The other component arises from the 

creation of nucleon-antinucleon pairs. For Kf, instead of the leading proton, we 
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have the associated production of K+ and a hyperon. The asymptotic behavior 

of n.Ky for large Ml can conceivably be 

%Y %Y 

+Y=.;,= 
t [k tmK + my) 1 

5(m,) ’ M1-00’ (14) 

However, near the KY threshold we expect nKy to vanish, so a reasonable formula 

for Iall Ml is 

n;cy(Ml) = gyp’) [l - Em/M11 (15) 

The leading Kf spectrum thus calculated should then be added to the K- spectrum 

to give the total K+ distribution. 

Having discussed nc(Ml) for all interesting types of particles c that can be 

and have been observed, we are now ready to apply (2) in the computation of the 

invariant distributions for the various particles and then to obtain their ratios. 

The quantity dcr/dMl in (2) is known in the diffractive excitation model lp2 to be 

s=* d”l 
(16) 

for large Ml, although by duality its validity may hold even for moderate values 

of Ml. The constant A need not be specified here since it is cancelled upon 

taking the particle ratio. The function gc(Ml, x) in (2) is taken to be the Lorentz 

transform to the c. m. system of a Gaussian distribution in the cluster rest 

frame 

gc(Ml,x) =/&eq (- 5) 2 (17) 
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kc = ~,(x~-x)~-(x~+x)M~ . 
I 

(18) 

The dependence on the mass and transverse momentum of the particle c is 

contained in the relation between x0 and x. We can either integrate over the 

transverse momentum or set it at the root-mean-square value; the result is 

essentially the same. We present the results in terms of the particle ratios 

which are defined to be 

fc (x9 PI) 
R(3 = f,,(x, p,) (1% 

1. Since the average transverse momentum of the pions is about R(n+/n-). 

350 MeV, we choose for the masses of the minimal cluster to be (Ml)mm = 

1.4 GeV. Incorporating (5) and (6) with (9) through (ll),so as to arrive at a set 

of formulas for all Ml, we rewrite 

[ 

M1- E. 
%f =t(mn) w +f 1 W-3 

(21) 

where we set E6 = 1 GeV, and W = 450 MeV. The factor 5 (m, ), which is 

irrelevant to R(n+/n-), is expressed explicitly here for later use in the cal- 

culation of other ratios. We integrate (2) over p,, setting EC in (17) equal to W. 

The result for R(n+/n-) is shown in Figure 1. The data are given in references 

9 and 10. The agreement is evidently good. 

2. R(b/n-). We set EN = 1 GeV in (12) and (17), and integrate (2) to 

get fc (x). The shape of R(F/n-) as a function of x is independent of 5 (mN)/l (mr), 

which we choose to fit the normalization of the data. In fact, the shape is 
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essentially independent of any adjustable parameters; that is, all (energy) 

parameters are given reasonable values on the basis of the argument stated in 

footnote 7 and are not free to vary except in a limited range. The result is 

shown also in Figure 1. Note that the model predicts a flattening of the ratio 

for x < 0.15. At x = 0, R(/n-) = t(m,)/.$(m,) e 0.04. 

3. R(K-/n-). The calculation is identical to the above case except that 

EK is set at 700 MeV corresponding to an average kaon p, of 350 MeV. The 

predicted shape is as shown in Figure 1. The only question is about the normali- 

zation which is proportional to t (m,)/t (m,). In an attempt to speculate on a 

reasonable form for 5(mi) we conjecture that the highly excited state (fireball) 

is a thermodynamic system of its constituents and that the creation of particles 

follows a distribution of the form 12 

rl (mi) = q o expt- mi/T) (22) 

where T is some energy parameter. Here mi represents the masses of all the 

particles that can be created, not only the “stable” particles 7r, K, and p, but 

also the resonances p, w, etc. The function [ (mi) differs from 77 (mi), however, 

in that it describes the proportion of various stable particles only, since they 

are the ones detected in the inclusive reactions. Since the resonances decay 

eventually into pions, plus a K or an N as the case may be, we expect 

t lrnN) 
5 0.Q (23) 
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5 tmN) r] tmN) -M- 
t c”K) 77 tm,) (24) 

Hence, we have 

(mNmmK)/T (25) 

The value of T is to be determined by fitting R(K+/p) and is found to be - 760 

MeV as is discussed below. Since 5 (mN)/5 (m J is found from R(F/n-) to be 

about 0.04, we have 

t tmK)/t fin,) @ O-O7 P-3) 

Thus, the normalization and shape of R(K-/n-) as shown in Figure 1 are pre- 

dictions. The only experimental result on this is contained in the statement in 

reference 10 that R(K-/n-) remains constant at 0.08 to within a factor of two 

for 0.1 < x < 0.4, 0.3 < p, < 0.5 GeV/c. 

4. R(K+,,p). If we substitute 

proportional to nKy(a) which from 

(15) for nc in (2), we see that fK+ is directly 

(14), (22) and (24) is given by 

where 

(27) 

(28) 

The total distribution fK+ is obtained by adding the hyperon production component 

to the K+K- production component which is just fK- . We set EKY = 1.8 GeV in 

the calculation. The parameter T is varied to fit the data of reference 10 on 

R(K+/p) as shown in Figure 2. For the choice of T = 760 MeV the fit is evidently 

good. 
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Conclusion. The shapes of the particle production ratios are essentially 

independent of adjustable parameters. All energy parameters (apart from T) 

follow from the same < p, > of about 350 MeV for all particles. The normali- 

zations of R(s/n-) and R(K+/p) are not predicted but obtained by adjusting two 

parameters to fit the data. However, R(n+/s-) and R(K-/r-) are predicted. 

They all agree well with data. It is interesting to note how flat some of these 

ratios are for small values of x. 

We thank the theory group at SLAC for their hospitality during our summer 

visit in 1972. 
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Figure Captions 

Figure 1 Solid lines are theoretical curves of R(a+,n-), R(K-/n-) and 

R(E/ n-). The data points are for R(n+/s-) and R&/r- ) from 

references 9 and 10. Data for R(K-/n-) are essentially constant 

at around 0.08 for 0.1 < x < 0.4. 

Figwe 2 Theoretical result for R(K+/p) is shown in solid line. The data 

are from reference 10. 
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