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Abstract

Quantum field theory is as ubiquitous and important in modern theoretical

physics today as the calculus was shortly after Newton. And like the calculus

during the eighteenth century, quantum field theory is still considered very

difficult by many, and is still surprising to us all. Although the ultimate foun-

dations of quantum field theory have changed very little in the decades since

its creation, we continue to find ourselves ill-prepared for the remarkable sim-

plicity of the predictions it makes. Among the most striking examples of this

failed intuition has been from the computation of scattering amplitudes (the

‘S-Matrix’) in theories with maximal supersymmetry (‘N = 4’), which are no-

toriously difficult to compute using familiar Feynman diagrams and yet turn

out to be extremely simple and elegant. Recently, this underlying simplic-

ity has been made more manifest through powerful alternative approaches to

quantum field theory, including a recursive on-shell definition of the S-Matrix

of planar N = 4 to all orders of perturbation theory described in this dis-

sertation. These new developments increasingly suggest the existence of a

fundamentally different and more powerful understanding of quantum field

theory, with broad theoretical implications as well as practical applications.
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als hommage an die Graßmannian.
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Spiritus Movens: Foreshadowing Recent

Progress in Scattering Amplitudes

In , Parke and Taylor pushed the boundaries of theoretical and computational

tools known at the time and succeeded in determining the ‘leading contribution’ to the

scattering amplitude for two incoming gluons to produce four outgoing gluons in quantum

chromodynamics (QCD) [1]. In order to accomplish this Herculean computation, they

first translated the problem into a simpler one by exploiting an artificially-introduced

‘N = 2 supersymmetry’—an extremely convenient trick, and one which is still used

widely today—and they employed a supercomputer to combine all of the several hun-

dred Feynman diagrams which contribute to the amplitude. Their final answer spanned

eight dense pages, but—as they apologized to their readers—the ‘details of the calcula-

tion’ would have to wait for a future, more lengthy work. And yet, somewhat whimsi-

cally, they chose to close their report with the seemingly fantastical hope that they may

somehow “obtain a simple analytic form of the answer, making [the] result not only an

experimentalist’s, but also a theorist’s delight.”

Six months later, they stumbled upon exactly what they had hoped for: they arrived

at “an educated guess” for the same leading part of the scattering amplitude painfully

computed earlier, but not merely for the amplitude involving six gluons, but for ampli-

tudes involving any number of gluons whatsoever [2]. And the answer they proposed was

spectacularly simple: in modern notation, they suggested,

AMHV(1+, 2+, . . . , i−, . . . , j−, . . . , n+) =
〈i j〉4

〈1 2〉〈2 3〉〈3 4〉 · · · 〈n 1〉 . (0.1)

This formula was meticulously checked against their previous calculation, and found to

agree perfectly.

Perhaps the single most astonishing thing about the now-famous Parke-Taylor formula

(0.1) is the stark contrast between its simplicity—and vast generality—and the eight

dense pages of tabulated contributions they had presented for the six-gluon scattering

1



amplitude six months earlier (both formulae, of course being ultimately different ways

of writing the same polynomial). Clearly, the final answer betrays a deep, underlying

simplicity which was completely obfuscated by the way it had been calculated.

In the quarter-century since Parke and Taylor’s discovery, there have been many leaps

forward in our understanding of perturbative quantum field theory; this is especially the

case for theories with maximal supersymmetry (‘N = 4’ and ‘N = 8’), but it is also true

for the more banal, non-supersymmetric quantum field theories such as quantum chromo-

dynamics (QCD) (which constitutes much of the background which must be understood

at today’s particle accelerators). It is worth mentioning that to the leading-order of

perturbation theory (referred to as ‘tree-level’) supersymmetry serves only as a powerful

book-keeping device: ultimately, tree-level scattering amplitudes for gluons are the same

whether or not a theory is supersymmetric. At higher orders in perturbation theory—

those involving loops of virtual processes—however, N = 4 is quite different from its

non-supersymmetric cousins. Nonetheless, largely because of the important advantages

gained by using supersymmetry at tree-level, amplitudes in N = 4 play a central role

in virtually all gauge-theory scattering amplitude computations, both in supersymmetric

and non-supersymmetric theories alike. Indeed, it could be said that N = 4 has played

an important role in almost all the major breakthroughs in our broad understanding of

quantum field theory over the past two decades.

Much of this new understanding has been facilitated by the development of a number

of rich, alternative formulations of perturbative quantum field theory which have very

little resemblance to their Feynman-diagram ancestral origins. These ‘dual’ descriptions

have made it possible to easily calculate scattering amplitudes of ever-expanding com-

plexity, dramatically increasing the amount of ‘theoretical data’ available for formulating

(and testing) new hypotheses to explain the surprising simplicity discovered at the end

of almost every scattering amplitude computation. Among these new formulations are

the Berends-Giele recursion relations [3]; Witten’s twistor string theory [4]; the CSW [5]

and Risager [6] recursion relations; and the BCFW recursion relations [7]. These frame-

works are all quite distinct from one another, each making quite different properties of

scattering amplitudes manifest. And for the most part—until very recently—there has

been very little understanding of whether, or how these strikingly different descriptions

of quantum field theory could be related to one another, let alone how they could fit

2



into any larger structure. One salient feature shared by all, however, was the lack of any

intrinsic justification for its existence—any new picture for what scattering amplitudes

were computing or why they were so simple.

The conflict between the manifest simplicity of scattering amplitudes and the tradi-

tional tool-box given to us by Feynman became extremely sharp in , when it was

discovered that scattering amplitudes (at tree-level, and—in a qualified sense—to all

loop-orders) were not merely invariant under the defining superconformal symmetries of

N = 4, but they are also invariant under an entirely-new set of dual superconformal trans-

formations [8,9]. And because arbitrary combinations of the two superconformal symme-

tries are also symmetries, these two in fact generate an infinite-tower of successively-dual

symmetries under which scattering amplitudes are invariant; this infinite-dimensional

symmetry algebra is known as the Yangian. It suddenly became clear that one should

try to reformulate the theory in a way which would keep all these powerful symmetries

manifest.

However, any formulation of quantum field theory based on Feynman diagrams de-

rived from a Lagrangian—a manifestly local function on spacetime—must choose a par-

ticular spacetime in which to make locality manifest, scattering amplitudes computed

with Feynman diagrams are inherently biased toward one particular set of superconfor-

mal symmetries at the cost of obfuscating the others. Manifest locality, and by extension

unitarity—traditionally the salient features of the Feynman expansion—seem directly

opposed to the underlying simplicity of scattering amplitudes in N = 4.

This strongly suggested that an entirely new formulation of quantum field theory

should exist—especially for the case of N = 4, but also for quantum field theory more

generally. Such a dual theory was proposed two years ago by Arkani-Hamed et al. [10],

and this formulation has already led to several major breakthroughs in our understanding

of scattering amplitudes and—arguably—in our understanding of quantum field theory

more generally. In this new framework, amplitudes are calculated as contour integrals in

an auxiliary space, the space of k-dimensional planes in n-dimensions, a space known to

mathematicians as the Grassmannian, G(k, n). Shortly after the appearance of [10], it

was shown that Grassmannian contour integrals generate all Yangian invariants [11].

Since the Grassmannian proposal was made, it has led to a near-continuous succession

of major breakthroughs. For example, together with Arkani-Hamed, Cachazo, and Trnka,

3



Chapter 1, it was found that formulae derived for scattering amplitudes using the BCFW

recursion relations can be smoothly deformed into the forms computed by either the

Risager or the CSW expansions. Shortly thereafter, we demonstrated how yet another

smooth deformation of the contours for scattering amplitudes connect these forms to

those obtained in Witten’s twistor string theory [12], described in Chapters 2 and 3. And

in Chapter 6, the connection between the Grassmannian integral and all of the known

dual-formulations of quantum field theory will be completed by illustrating how also the

the local Berends-Giele recursion relations can be realized in the Grassmannian, [13].

Giving this framework a foundation independent of traditional quantum field theory,

we will show in Chapter 2 how the particular integrals in the Grassmannian which com-

pute scattering amplitudes arise in a precise way by merely endowing the Grassmannian

with a ‘particle interpretation’: every n-point scattering amplitude can be obtained by

simply ‘adding a particle’ to the contour defining the (n − 1)-point amplitude—in an

essentially unique way, [12]. And so it became possible to imagine ‘boot-strapping’ all

tree-amplitudes in N = 4 from only the most elementary by successively adding parti-

cles one at a time. This vision will be fully-realized in Chapter 3 in which we describe

work done together with Trnka, Volovich, and Wen, deriving a new closed-formula for all

tree-amplitudes in N = 4, [14].

But during the past two years, it has become increasingly clear that there is much,

much more to learn from this story than what had been seen at tree-level. For one thing,

it turns out that the contours defining tree-amplitudes can in fact be extended to all or-

ders of perturbation theory by systematically integrating-out particles from lower-order

amplitudes, [15]—giving both a compelling new picture for the origin of quantum me-

chanics, and supplying an incredibly powerful new tool with which to compute scattering

amplitudes to high order. This is described in Chapter 4. It is worth emphasizing this

second—essentially technological—implication of having such a recursive definition of the

S-Matrix: from the moment we understood how to obtain loop-amplitudes from trees,

it required less than twenty-four hours for us to compute amplitudes well-beyond what

was then deemed essentially intractable by experts. Indeed, endowed by this powerful set

of new tools, we were able to present in [15] the ‘two-loop’ (or, next-to-next-to-leading-

order) generalization of equation (0.1)—collapsing the then known result which spanned

ten pages [16]—to essentially a single term—a simplification not unlike that captured in

4



equation (0.1) itself.

Indeed, in the time since [15] was published, many new and exciting forms of multi-

loop amplitudes have been found, including a one-line formula for the ‘next-to-next-

to-next-to-leading-order’ (3-loop) corrections to (0.1), and a similarly-compact formula

for all 2-loop ‘NMHV’ amplitudes (a class of amplitudes which—before the advent of

the tools described in Chapter 4—were so challenging that no examples were known in

the literature). These expressions are particularly remarkable because they are free of

any unphysical propagators, and are therefore called ‘local.’ This will be discussed in

Chapter 5. In some cases, the remarkable simplicity enjoyed by these local forms of loop

amplitudes have been found to be closely connected with an extremely elegant geometric

interpretation for what they are computing: the volumes of simplicies. This is described

in Chapter 6, also reported in [13]. It is not yet known to what extent this geometric

picture extends beyond some simple examples, but Chapter 6 provides a striking example

of very different organizing principle behind computations in quantum field theory.

The situation today is not unlike the situation in string theory a little over a decade

ago, when many disparate theoretical frameworks were suddenly seen to be different

aspects of a single underlying theory, named M-theory. This unification gave rise to

many important, previously unanticipated breakthroughs. And so it seems to be with the

Grassmannian. Within a relatively short period of time, it may be possible to understand

N = 4 completely. Indeed, it does not seem unreasonable to expect this research to

give rise to important new insights in several branches of pure mathematics, to generate

powerful new tools for practical computations relevant to collider physics, and to continue

to deepen our understanding of quantum field theory in general.
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Chapter 1 Contour Deformation
and CSW Recursion

1.1 N = 4 SYM and the Grassmannian

A dual formulation for the S-Matrix of N = 4 SYM was recently been proposed in [10],

where the leading singularities of the n-particle Nk 2MHV amplitudes—to all orders in

perturbation theory—are associated with a remarkably simple integral over the Grass-

mannian G(k, n):

Ln,k(W)=
1

vol(GLk)

∫
d k×nCαa

(12 · · · k)(23 · · · k+1) · · · (n1 · · · k 1)

k∏
α=1

δ4|4(CαaWa). (1.1.1)

Let us quickly review the notation appearing in (1.1.1). First, the Grassmannian G(k, n)

is the space of k-planes in n dimensions, an element of which can be represented by

a collection of k n-vectors in the n-dimensional space whose span specifies the plane.

These vectors can be put together into the k × n matrix Cαa, where α = 1, . . . , k and

a = 1, . . . , n. With this, we write

(m1m2 · · ·mk) = εα1···αkCα1m1 · · ·Cαkmk (1.1.2)

for the minor of the k × n matrix Cαa made from the columns (m1, · · · ,mk). Since any

k × k linear transformation on these k vectors leaves the k-plane invariant, there is a

GLk “gauge symmetry” Cαa 7→ LβαCβa; our integral is “gauge-fixed” by dividing by the

volume of GLk. The amplitude is given in dual twistor space,Wa = (µ̃a, λ̃a|η̃a), where µ̃a

is the (half-Fourier transform) conjugate of λ̃a, and η̃a is a SUSY Grassmann parameter.

This expression can be trivially transformed back to momentum space—the only

dependence is in the δ4|4(CαaWa) factor, which transforms into

δ4|4(CαaWa)→
∫
d2×kρα

n∏
a=1

δ2(ραCαa − λa)×
k∏

α=1

δ2(Cαaλ̃a)× δ4(Cαaη̃a). (1.1.3)

In words, this equation embodies a simple new way of thinking about momentum con-

servation. The kinematical data is given by specifying n individual λa’s and λ̃a’s, each of
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which has two Lorentz indices. We can think of each (Lorentz) component as specifying

some n-vector in the n-dimensional space of particle labels. Actually, given that the

Lorentz group is SL2×SL2, the Lorentz-invariant statement is that there is a two-plane

λ and another two-plane λ̃; momentum conservation
∑
λaλ̃a = 0 is the statement that

the two-planes λ and λ̃ are orthogonal. Equation (1.1.3) interprets this in a different

way, by introducing an auxiliary object—the k-plane C—and forcing C to contain the

λ-plane (the first factor) and be orthogonal to the λ̃-plane (the second factor).

The final, Grassmann δ-function in equation (1.1.3) ensures that the object is invari-

ant under all of GLk (and not just SLk). In fact, we could have motivated the entire

construction leading to equation (1.1.1) from this picture of momentum conservation:

the measure in the integral over the Grassmannian is simply the nicest GLk-invariant

one with manifest cyclic symmetry. Note also that while (1.1.1) makes superconformal

invariance manifest, the momentum-space form involving (1.1.3) makes parity manifest:

the action of parity is just the obvious map between G(k, n) and G(n k, n). This can be

seen explicitly by choosing a natural gauge-fixing of GLk, where k of the columns of C

are set to an orthonormal basis, corresponding to the “link-representation” [10,17].

The geometric picture of momentum conservation motivates yet another representa-

tion of Ln,k, which makes dual superconformal invariance manifest [18, 19]. Since mo-

mentum conservation requires that the C-plane contains the λ two-plane, it is possible

to re-write the integral as one over only the space of (k−2)-planes, D, which are comple-

mentary to λ in C. This can be done using a gauge-fixing of GLk which forces the first

two rows of the C-matrix to coincide with the λ-plane—thereby manifestly encoding the

fact that the Grassmannian includes the λ-plane. A further linear transformation maps

Figure 1.1: The geometric realization of momentum conservation.
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Figure 1.2: The relationship between momentum-twistors and dual-spacetime points.

k × k minors to (k − 2)× (k − 2) minors, and we find that we can write

Ln,k(λ, λ̃, η̃) =
δ4(
∑

a λaλ̃a)δ
8(
∑

a λaη̃a)

〈12〉〈23〉 · · · 〈n1〉 × Rn,k, (1.1.4)

where

Rn,k(Z) =
1

vol(GLk−2)

∫
d (k 2)×nDα̂a

∏k−2
α̂=1 δ

4|4(Dα̂aZa)
(12 · · · k 2)(23 · · · k 1) · · · (n1 · · · k 3)

. (1.1.5)

Here, the Za are the “momentum-twistor” variables introduced by Hodges [20], which

are the most natural variables with which to discuss dual superconformal invariance.

External particles are associated with points xa in the dual space, with pa = xa+1 − xa.
The point xa is associated with a line in its associated momentum-“twistor space”; and

since xa− xa+1 is null, the line in momentum-twistor space associated with xa intersects

the line associated with xa+1. Therefore, we can associate xa with a canonical pair of

momentum-twistors (Za,Za−1) defined by the intersection of lines. This is illustrated in

the figure below. The momentum twistor Za is composed of Za = (µa, λa|ηa), where the

variables λ̃a, η̃a are determined by µa, ηa. Explicitly, they are given by

λ̃a =
〈a− 1 a〉µa+1 + 〈a a+ 1〉µa−1 + 〈a+ 1 a− 1〉µa

〈a− 1 a〉〈a a+ 1〉

η̃a =
〈a− 1 a〉ηa+1 + 〈a a+ 1〉ηa−1 + 〈a+ 1 a− 1〉ηa

〈a− 1 a〉〈a a+ 1〉

. (1.1.6)

Dual superconformal transformations [8,19–21] are just linear transformations of the

Za, which is a manifest symmetry of equation (1.1.5), just as ordinary superconformal

transformations are linear transformations on Wa making them a manifest symmetry of

equation (1.1.1). Thus, equation (1.1.1) makes all the important symmetries of N = 4

SYM amplitudes manifest.
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The momentum-space formula for Ln,k is to be interpreted as a contour integral in

(k − 2)× (n− k − 2) variables, which can be thought of as specifying the unfixed degrees

of freedom of a (k−2)-plane orthogonal to both the λ̃- and λ-planes. In [10], evidence was

given that the residues of the integrand are associated with leading singularities up to 2

loops, motivating the conjecture that all leading singularities are contained as residues.

This conjecture carries even more weight given the realization that all the residues are

both superconformal and dual superconformal invariant, which further means they are

invariant under the full Yangian symmetry [8]. Leading singularities are data associated

with scattering amplitudes that are free of IR-divergences—at loop level, they can be

thought of as being associated with loop integrals over compact contours—and should

therefore reflect all the symmetries of the theory. In fact, the residues of our object can be

thought of as generating (likely all) Yangian invariants that are algebraic functions of the

external spinor-helicity variables. Furthermore, as emphasized in [10], higher-dimensional

residue theorems encode highly non-trivial relations between these invariants, many of

which have striking physical interpretations such as loop-level infrared equations.

It is clear that there is an enormous amount of fascinating structure to be uncovered

in the properties of the individual residues of Ln,k, since they are invariants of the most

remarkable integrable structure we have ever seen in physics! Recent work [22, 23] as

well as work to appear [24] gives strong evidence that infinite classes of all-loop leading

singularities are indeed contained amongst the residues of Ln,k.

There is however something even more remarkable than the properties of residues

taken individually: they can be combined in such a way as to produce amplitudes with a

local space-time interpretation. Consider for instance NMHV tree amplitudes (k = 3). A

given residue is associated with putting (k−2)(n−k−2) = (n−5) minors to zero, which

can be labeled as (m1) · · · (mn−5), where (m) denotes that the minor (m m+1 m+2) has

been set to zero. In [10], it was shown that a natural BCFW expansion for the NMHV

amplitudes is given by a sum of residues

MBCFW
n,NMHV =

∑
(o1)(e2)(o3) · · ·︸ ︷︷ ︸
n− 5 terms

(1.1.7)

where the sum is over all strictly-increasing series of (n−5) alternating odd (o) and even
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(e) integers; to be explicit the 6-,7- and 8-particle amplitudes are given by

MBCFW
6,NMHV = (1) + (3) + (5);

MBCFW
7,NMHV = (1)(2) + (1)(4) + (1)(6) + (3)(4) + (3)(6) + (5)(6);

MBCFW
8,NMHV = (1)(2)(3) + (1)(2)(5) + (1)(2)(7) + (1)(4)(5) + (1)(4)(7)

+ (1)(6)(7) + (3)(4)(5) + (3)(4)(7) + (3)(6)(7) + (5)(6)(7).

(1.1.8)

We remind the reader of a fact that will be important repeatedly: residues are naturally

alternating in the arguments, so that e.g. (i1)(i2) = −(i2)(i1). The P(BCFW) form of

the amplitudes has exactly the same form as BCFW, but switching the role of even and

odd integers:

M
P(BCFW)
n,NMHV = (−1)n−5

∑
(e1)(o2)(e3) · · ·︸ ︷︷ ︸
n− 5 terms

. (1.1.9)

As shown in [10], the equality MBCFW = MP(BCFW) is a (quite non-trivial) conse-

quence of global residue theorems, which further guarantees the cyclic invariance of the

amplitude.

This presentation of the NMHV amplitudes makes all of its symmetries manifest,

and is strikingly “combinatorial” in nature. One thing that is seemingly not manifest,

however, is that this object has anything whatsoever to do with a local space-time La-

grangian! Each term individually has “non-local” poles, which magically cancel in the

odd/even/odd combination defining the amplitude. The cancelation of these non-local

poles can be understood indirectly by the equality MBCFW = MP(BCFW), since the non-

local poles appearing in the two forms turn out to be different. However, this is very far

from establishing that this object comes from a local Lagrangian, and one would certainly

like to see the emergence of space-time in a much more direct and explicit way.

In this chapter, we will argue that the local space-time description of tree scattering

amplitudes is actually hiding in plain sight in the BCFW sum over residues in the Grass-

mannian. We will show that a very natural and canonical contour deformation converts

the BCFW form of tree scattering amplitudes to the CSW/Risager expansion, which is

a direct reflection of the space-time Lagrangian in light-cone gauge!
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1.2 Brief Review of CSW and Risager

To set the stage, let us quickly review the story of the CSW recursion relations [5, 25,

26] and the very closely-related Risager recursion relations [6, 27]. The CSW rules are

simply Feynman rules [28], except that the vertices are off-shell continuations of MHV

amplitudes, where the λ’s for internal lines with momentum P are defined by

λP = P |ζ], (1.2.10)

where ζ is an auxiliary spinor. Note that we use a different notation for this auxiliary

spinor than the usual one in the literature, η̃, in order to not confuse this object with the

SUSY Grassmann parameters. The similarity with usual Feynman rules and the hidden

Lorentz invariance of this expansion is not a coincidence: the CSW rules can be derived

from the Yang-Mills Lagrangian by going to a more sophisticated version of light-cone

gauge [28,29]; the auxiliary spinor ζ is associated with the light-like direction defining the

light-cone gauge. As usual in light-cone gauge, we have only physical degrees of freedom,

the two polarizations ± of the gluons. There are cubic interactions (++−), (−−+) and

the quartic interaction (+ + −−). From this, it is possible to make a field redefinition

to remove the anti-MHV (+ + −) interaction; this forces the introduction of an infinite

number of new MHV vertices, which must—on-shell—reproduce the MHV amplitudes.

The resulting Lagrangian is precisely the one that gives the CSW rules. The equivalence

between the MHV rules in a light-cone gauge and usual Lorentz-invariant formulation of

the (super) Yang-Mills Lagrangian L = −1
4
trF 2

µν+. . . was nicely established in a different

way in [30]. Beginning with a twistor space action with a large amount of gauge symmetry,

one gauge-fixing leads to the usual manifestly Lorentz-invariant Yang-Mills action, while

a different gauge-fixing yields the MHV Lagrangian in light-cone gauge. Thus, the CSW

rules should be thought of as directly reflecting the Yang-Mills Lagrangian in light-cone

gauge, encoding local space-time physics in the most succinct possible way.

For future reference, we remind the reader that the terms in the CSW expansion of

the Nk 2MHV amplitude are localized on (k−1) intersecting lines in the Z-twistor space:

the MHV vertices in the CSW diagrams are associated with lines in twistor space, while

the internal lines are associated with points where these lines intersect. Thus, a general

term in the CSW expansion of NMHV amplitudes with particles m, k, and l of negative

helicity is localized in twistor space as shown below.
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The Risager deformation is closely related, providing an alternate derivation of the

CSW rules that closely parallels the logic leading the BCFW recursion relations [7,31–33].

As with BCFW, it involves a deformation of the spinor helicity variables; specifically, it

begins by canonically deforming the λ̃i’s for all the negative helicity particles:

λ̃i → λ̃i + αizζ. (1.2.11)

In order to conserve overall momentum, the αi must satisfy the constraint∑
i

αiλi = 0. (1.2.12)

Thus, for k negative helicity gluons, the most general Risager deformation is labeled by

(k − 2) parameters. It is possible to show that under this deformation the amplitude

vanishes as z → ∞, so that the familiar BCFW logic leads to recursion relations (see,

e.g. [32,34]). Remarkably, Risager showed that repeated recursive use of this deformation

leads to the CSW rules [6].

Below we will study the Risager expansion for MHV amplitudes in the split-helicity

configuration. In this case, the Risager diagrams consist only of ones with a three-point

vertex and the lower-point MHV amplitude connected by a propagator. We will find

it useful to look at Risager deformations in momentum-twistor variables µa, for which

the general Nk 2MHV split helicity amplitude A(1−, 2−, . . . , (k 1)−, k+, . . . , (n 1)+, n−)

takes the remarkably simple form:

µ̂a =

 µa + zβaζ for a = 1, . . . , k 2 (βa arbitrary)

µa for a = k 1, . . . , n
. (1.2.13)

Note that this deforms (k − 2) terms, which is exactly the number of independent α’s

in (1.2.11). There are no constraints on the βa since—by construction—any choice of

µa is guaranteed to produce λ̃a’s that satisfy momentum conservation. This choice of βa
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determines the deformation of the negative helicity particles αi as

αi =
〈i i 1〉βi +1 + 〈i+1 i〉βi 1 + 〈i 1 i+1〉βi

〈i+1 i〉〈i i 1〉 . (1.2.14)

1.3 Relaxing δ-Functions

We now describe the contour deformation that will lead us from the BCFW contour in

the Grassmannian to the space-time Lagrangian in light-cone gauge, passing through the

CSW and Risager expansions of tree amplitudes. We begin with the form of Ln,k in

momentum space. It is most convenient to use the momentum-twistor form, since this

explicitly exhibits the (super) momentum-conserving δ-functions in the pre-factor, and

we can study instead the object Rn,k.

There is something seemingly unnatural in the expression for Rn,k: it is a nice,

holomorphic contour integral, but it has explicit δ-function factors! This is not unnatural

at all, since these are in fact to be thought of “holomorphic” δ-functions, which are

properly interpreted as poles. In other words, we may interpret δ2(µ) as being really

δ2(µ) =
1

µ1

× 1

µ2

; (1.3.15)

or more generally, introducing a pair of auxiliary spinors χ, ζ, we write

δ2(µ) =
[χ ζ]

[χµ][ζ µ]
(1.3.16)

where we also demand that the contour of integration enforce the poles where [χµ] = [ζ µ] = 0.

Note that the expression in equation (1.3.16) is not manifestly Lorentz invariant—but of

course the residue obtained on the pole of both factors is Lorentz invariant. The reason

for using the notation “δ2(µ)” is to emphasize the Lorentz invariance of the final object.

Thus, when we say that the expression for Rn,k is a contour integral in (k− 2)(n−k− 2)

variables, we really mean that we started with a larger (k − 2)(n − k + 2)-dimensional

integral and have already fixed part of the contour by specifying that it enforces 4(k− 2)

poles associated with the Bosonic parts of the δ4(Dα̂aZa)-factors. Similarly, what we have

been referring to as “the” residues of Rn,k are really particular residues in this higher-

dimensional integral, evaluated on 4(k− 2) extra poles, with an extra (k− 2)(n− k− 2)

conditions involving the minors needed to fully-specify the residue.
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This way of thinking about the δ-functions explicitly as poles naturally suggests some-

thing very remarkable. We can “relax” any one of the δ-functions, using a residue theo-

rem to move the contour off one of its associated poles, and thereby express a manifestly

Lorentz-invariant residue as a sum over non-Lorentz invariant terms which involve putting

an extra minor to zero. Inspired by this, we will take one of the δ2-factors and replace it

by

δ2(µ) = δ([ζ µ])× [χ ζ]

[χµ]
, (1.3.17)

where we mean that the pole at [ζ µ] = 0 is still being enforced while we allow ourselves

the freedom to deform the contour off the pole at [χµ] = 0. Note that while this

expression is not Lorentz-invariant away from both poles, it is independent of the choice

of χ. The reason is that on the zero of [ζ µ] = 0, µ is proportional to ζ and we may write

µ = d × ζ, and so [χ ζ]/[χµ] = 1/d is χ-independent. Thus, relaxing the δ-function in

this way expresses a Lorentz-invariant reside as a sum over non-Lorentz invariant terms

which are a function of only a single auxiliary spinor ζ. Concretely, we can do this for

one of the δ2(Dα̂aµa) factors—e.g. that of α̂ = 1—by making the replacement

δ2(D1aµa)→ δ(D1a[ζ µa])×
[χ ζ]

D1a[χµa]
(1.3.18)

and deforming the contour off the D1a[χµa] pole.

Clearly, this operation can be extended to relax even more δ-functions; but we will see

that relaxing just one δ-function “blows up” Lorentz-invariant residues into a sum of non-

Lorentz invariant terms with a beautiful physical interpretation. For the NMHV case,

we will see that some of the terms in the sum are precisely the ones that appear in the

CSW expansion of NMHV amplitudes. This is strongly suggested—even without a direct

computation—by the localization properties of these terms both in the Grassmannian and

twistor space, and the precise equality can be easily verified. Other terms in the sum

do not have the appropriate localization properties and are not associated with CSW

terms. The CSW terms have a local space-time interpretation and are therefore free of

non-local poles, while the others do contain non-local poles. In a sense our δ-relaxing

contour deformation has performed a particularly powerful partial fraction expansion of

the residue into a sum over local and non-local pieces. Remarkably, in the sum over

residues with the alternating odd/even structure of equation (1.1.9), all the non-CSW
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terms appear precisely twice with opposite signs and cancel in pairs, while the remaining

terms are exactly the terms of the CSW expansion of the amplitude!

For k > 3, it is easy to see that relaxing a single δ-function can not directly produce

CSW terms. Nonetheless, such a canonical operation must have a physical meaning, and

the only natural candidate for a non-manifestly Lorentz invariant form of amplitudes

depending on a single auxiliary spinor is the Risager expansion. This raises a puzzle,

however, since the Risager expansion is not unique, but is labeled by (k − 2) degrees of

freedom. We establish the precise equivalence and understand the origin of these degrees

of freedom for the case of split-helicity MHV amplitudes, where the (k−2) free parameters

of the Risager deformation are seen to be quite non-trivially determined by the degrees of

freedom associated with the GLk−2 “gauge symmetry” of the momentum-twistor formula.

As was shown by Risager [6], a recursive application of the Risager recursion even-

tually yields the CSW expansion for general amplitudes. Although we won’t pursue

this direction further in this chapter, this strongly suggests that the CSW expansion

for general amplitudes can be directly obtained by recursively relaxing many δ-function

factors.

1.4 NMHV and CSW from δ-Relaxation

I. Preliminaries

Let us work in the momentum-twistor picture, where

Ln,3 = MMHV ×
∫

dn−5D1a

(1)(2) · · · (n)
δ4|4(D1aZa). (1.4.19)

Here the 1 × 1 minors (j) are of course just single variables D1j; we remind the reader

that the linear transformation from the G(k, n) to the G(k 2, n) picture makes the (k −
2)× (k− 2) minor (2 3 · · · k 1)D proportional to the k× k minor (1 2 · · · k)C , so that e.g.

the minor (2) in the momentum-twistor picture is proportional to the minor (1 2 3) in the

G(3, n) picture. For convenience we will denote the elements of the 1× n matrix Dα̂a as

(D1, D2, . . . , Dn). (1.4.20)

In other words, we remove the index α̂ when k = 3 since it takes a single value.

A given residue is associated with setting (n− 5) of the minors to zero as is obvious:

after gauge-fixing any one of the Da, setting (n− 5) of the Da’s to zero allows us to use
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the Bosonic δ-function to solve for the remaining four D’s. We denote this residue as

(a1)(a2)(a3)(a4)(a5), which instructs us to write all minors in cyclic order starting from

(1), with (a1), . . . , (a5) left off. As an example with n = 8, (2)(3)(4)(6)(7) denotes the

residue (1)(5)(8) where the minors (1), (5), (8) are set to zero. We remind the reader

once again that residues of functions in several complex variables are antisymmetric

objects, so that the order in which the minors are presented matters, and e.g., (1)(5)(8) =

−(5)(1)(8).

We will be looking at explicit gluon amplitudes in what follows, so we need to in-

tegrate over the SUSY Grassmann parameters to extract these. This is a completely

straightforward exercise. We set the gluons with a ∈ I to have negative helicity, strip-off

the ordinary momentum-conserving δ-function, and we write Ln,k ≡ δ4(
∑

a λaλ̃a)Ln,k

with

Ln,k =
1

vol(GLk−2)

∫
d(k 2)×nDα̂a (detD̃)4 × δ4(Dα̂aZa)

(1 2 · · · k 2)(2 3 · · · k − 1) · · · (n 1 · · · k 3)
(1.4.21)

where D̃ is a k × k matrix

D̃αI =

 λαI

D̂αI

 with D̂αI = Θ(I − 1)
n∑

a=I+1

Dαa〈I a〉; (1.4.22)

here, Θ(x) is 1 for x > 0 and 0 otherwise.

Note that while in this expression particle “1” appears to play a special role, it could

be replaced by any other starting point, with all the expressions for Ln,k agreeing on the

support of the δ-functions.

Returning to the k = 3 case, a general residue is explicitly given by

(a1)(a2)(a3)(a4)(a5) =

∫
dDa1 · · · dDa5

Da1 · · ·Da5

(detD̃)4δ4(Da1Za1 + · · ·+Da5Za5); (1.4.23)

we can relax the δ-function for the µ-term by making the replacement

δ2(Daµa)→ δ(Da[µa ζ])× [χ ζ]

(Da[µa χ])
≡ 1

d
δ(Da[µa ζ]). (1.4.24)

Then, we can use a residue theorem to deform the contour offDa[χµa] = 0, or equivalently

off d = 0, and write

(a1)(a2)(a3)(a4)(a5) =
∑
σ∈Z5

[
(aσ(1))(aσ(2))(aσ(3))(aσ(4))d (aσ(5))

]
, (1.4.25)
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where the sum is over cyclic permutations of {1, 2, 3, 4, 5}. For example,[
(a1)(a2)(a3)(a4)d (a5)

]
is given by∫
Da5=0

dDa1 · · · dDa5

Da1 · · ·Da5

(detD̃)4 1

d
δ2(Da1λa1 + · · ·+Da5λa5)δ(Da1 [ζ µa1 ] + · · ·+Da5 [ζ µa5 ]).

(1.4.26)

II. Localization Properties of the Grassmannian

Before we demonstrate the complete equivalence of the CSW expansion and the terms

generated by “blowing-up” each residue of the NMHV contour, it is worthwhile to give

an intuitive understanding of why this should work.

One of the strongest hints that there should be a direct connection between the CSW

expansion and Ln,k is how the localization in twistor-space implied by CSW is mirrored

by a localization within the Grassmannian itself. We can see this directly by Fourier-

transforming the kinematical δ-function δ4|4(CαaWa) from the W-twistor variables to

their (ordinary) dual twistor-space variables Z:

k∏
α=1

δ4|4(CαaWa)→
∫
d4|4zα

k∏
α=1

δ4|4(Za − Cαazα). (1.4.27)

(These twistors Za are ordinary twistors, which are the duals of Wa, and should not be

confused with momentum-twistors.)

If we think of each column of G(k, n) as projectively defining a point in CPk−1, then

the vanishing of a minor of G(k, n)—consecutive or otherwise—is equivalent to some

localization condition among these points in CPk−1. The first nontrivial example of this

can be easily seen for G(3, n), where a minor (i j k) = 0 if and only if the corresponding

points i, j, and k are collinear in CP2. It is not hard to see that the twistor-space

“collinearity operator” εIJKLZ
I
i Z

J
j Z

K
k , which vanishes whenever the (Bosonic parts of

the) twistors Zi, Zj, and Zk are collinear [4], manifestly annihilates any residue of the

Grassmannian supported where the minor (i j k) vanishes. Similarly, for k = 4, the

“coplanarity operator” εIJKLZ
I
i Z

J
j Z

K
k Z

L
l which test whether Zi, . . . , Zl are coplanar, will

annihilate any residue for which the minor (i j k l) = 0. (Although beyond the scope
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of the present discussion, there are many reasons to suspect that localization in the

Grassmannian is very natural and fundamental [35].)

The simplest example to begin with is the 5-point NMHV(=MHV) amplitude. Of

course, this amplitude is entirely fixed by the δ-functions, and ordinarily no residue

would be chosen at all. Therefore, the contour deformation corresponding to relaxing

the δ-function gives rise to a sum over each of the 5 minors

M5,NMHV =
[
(2)(3)(4)(5)d (1)

]
+
[
(1)(3)(4)(5)d (2)

]
+ . . .

≡
5∑
j=1

[(j j+1 j+2)] .
(1.4.28)

From our discussion above, it is clear that the term in the expansion setting (1 2 3) =

0 forces the points 1, 2, 3 to be collinear in twistor space; it is trivial that NMHV ampli-

tudes are all localized on a CP2 inside the CP3 of twistor space, so the line connecting 4, 5

intersects the line containing 1, 2, 3 and thus, this term has the localization properties

we expect of a CSW diagram. This is true for all the terms in (1.4.28), and we can make

an association with the terms setting the minors to zero and each of the CSW diagrams

illustrated above.

Before showing the computation that establishes the precise equivalence with the

CSW terms, let us understand this localization picture for general NMHV amplitudes,

starting with the 6-particle case. A given residue (j j+1 j+2) is blown-up into the sum

of 5 terms,

(j j+1 j+2)→
∑
k 6=j

[(j j+1 j+2)(k k+1 k+2)] ≡
∑
k 6=j

[(j)(k)] (1.4.29)

where the term [(j)(j)] vanishes due to antisymmetry (or said another way, because it is a

double pole with vanishing residue). Although we are choosing to write (j j+1 j+2) ≡ (j)

for convenience, these should not be confused with minors in the
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momentum-twistor picture. Let us look at the 5 terms in the blow-up of the residue

(1 2 3); these terms have the the following localizations structure in twistor space:

Note that while the terms [(1)(2)], [(1)(4)], [(1)(6)] do have CSW localization proper-

ties, the terms [(1)(3)] and [(1)(5)] do not. Similarly, the terms [(3)(1)] and [(3)(5)] in

the blow-up of (3), and the terms [(5)(1)], [(5)(3)] in the blow-up of (5) do not have CSW

localization. However, and quite remarkably, these 6 non-local terms cancel each other in

pairs due to the antisymmetric property of the residues, as e.g. [(1)(3)]+[(3)(1)] = 0. The

9 remaining terms all have CSW localization and are indeed in perfect correspondence

with the 9 CSW diagrams for this amplitude!

This pattern holds for all NMHV amplitudes. It is easiest to see this pictorially: let

the sum over residues giving the BCFW form of the amplitude be represented as follows,

where each term represents (i 1)(i)(j 1)(j)(n), i.e., the open circles correspond to the

minors that are not being set to zero.

Now, when we blow up each residue with our contour deformation, we have a sum

over terms setting an extra minor tacked-on at the end of the chain to zero, which can

be represented in the picture by summing over terms “coloring-in” one of the white dots,

leaving us with 4 minors that are not set to zero. Each of these has some localization

properties, but it is easy to see that the only ones that have CSW localization are the

ones of the form:
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Now let us see what we get from coloring-in a white dot in a general term of our

NMHV sum. The ones where (n) is colored in automatically has good CSW properties;

these give a subset of CSW diagrams, where the white circles do not include (n):

But in addition to these good terms, there are dangerous terms which do not have

CSW localization properties, arising from coloring-in (i − 1); but each of these pair up

with a similar term where (i) is colored in, and they cancel in pairs due to antisymmetry

of the residues:

—with the obviously symmetrical statements holding for coloring-in (j). There are also

the diagrams where we color-in (i) which cancel in pairs with the one where i → i − 1,

except for the case where i − 1 = 1, where there is no canceling diagram—but this is

perfect, since the term with i−1 = 1 (and the analogous j = n−1) has CSW localization

and provide the missing CSW terms with white circles covering (n), giving us the sum

20



over all CSW terms

III. Establishing the CSW Equivalence

We finally prove that each of the remaining residues in the sum above precisely corre-

sponds to the corresponding term in the CSW expansion of the NMHV amplitude. To

begin with, it is convenient to introduce the following notation

{a b c} = µa〈b c〉+ µb〈c a〉+ µc〈a b〉 (1.4.30)

so that, e.g.,

λ̃i =
{i+ 1 i i− 1}
〈i+ 1 i〉〈i i− 1〉 . (1.4.31)

Let us compute each of the residues (i)(i+ 1)(j)(j + 1)d, corresponding to the van-

ishing of all D’s except Di, Di+1, Dj, Dj+1 and d.

Recall that we have three δ-functions to impose:

δ2(Diλi +Di+1λi+1 +Djλj +Dj+1λj+1)

× δ(Di[µi ζ] +Di+1[µi+1 ζ] +Dj[µj ζ] +Dj+1[µj+1 ζ]).
(1.4.32)

Using GL1 to fix Di = 1, it is easy to solve explicitly for the rest of the D’s

Di+1 =
[{i j j + 1} ζ]

[{i+ 1 j j + 1} ζ]
,

Dj =
[{i i+ 1 j + 1} ζ]

[{i+ 1 j j + 1} ζ]
, Dj+1 =

[{i i+ 1 j} ζ]

[{i+ 1 j j + 1} ζ]
.

(1.4.33)

Here [{a b c} ζ] means the Lorentz invariant contraction of spinors.

The three δ-functions in (1.4.32) yield a Jacobian

J =
1

[{i+ 1 j j + 1} ζ]
(1.4.34)

while the product of D’s in the denominator of the residue becomes

1

DiDi+1DjDj+1

=
[{i+ 1 j j + 1} ζ]3

[{i+ 1 i j + 1} ζ][{i+ 1 i j} ζ][{i j j + 1} ζ]
. (1.4.35)
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Finally,

d = 〈ZiZi+1ZjZj+1〉 (1.4.36)

where 〈ZiZi+1ZjZj+1〉 = εIJKLZi,IZi+1,JZj,KZj+1,L is the dual conformal invariant inner

product of four momentum-twistors. In fact, this particular combination has a special

meaning,

〈ZjZj−1ZiZi−1〉
〈j j − 1〉〈i i− 1〉 = (xj − xi)2 = (pi + pi+1 + · · ·+ pj−1)2 (1.4.37)

which is nothing but the propagator in the corresponding CSW diagram!

In this computation we are taking as the minus-helicity particles gluons k, l and m.

Therefore, the helicity-factor (det D̃) has the form

(det D̃) =

∣∣∣∣∣∣ λm λk λl

D̂m D̂k D̂l

∣∣∣∣∣∣ . (1.4.38)

In the case where particle m is on the right-side and k, l on the left-side as in the figure

above, referring to equation (1.4.22), we can write

D̂m = Dj〈m j〉+Dj+1〈m j + 1〉 =
[{j + 1 i i− 1} ζ]〈m j〉 − [{j + 1 i i− 1} ζ]〈m j〉

[{i+ 1 j j + 1} ζ]
(1.4.39)

while D̂k = D̂l = 0. Then (det D̃) = 〈k l〉 D̂m.

The residue (i)(i+ 1)(j)(j + 1)d, which equals J(det D̃)4/(dDiDi+1DjDj+1), becomes

([{j + 1 i+ 1 i}ζ]〈m j〉 − [{j i+ 1 i}ζ]〈m j + 1〉)4 〈k l〉4
〈Zj+1ZjZi+1Zi〉[{j + 1 i+ 1 i} ζ][{j + 1 j i+ 1} ζ][{i j + 1 j} ζ][{j i+ 1 i} ζ]

. (1.4.40)

A simple computation using, e.g,

(pj + · · ·+ pi+1)|i〉 =
{j + 1 j i}
〈j + 1 j〉 ,

〈j + 1|(pj + · · ·+ pi) =
{j + 1 i i− 1}
〈i i− 1〉 ,

(1.4.41)

reveals that equation (1.4.40) precisely reproduces the CSW contribution associated to

the corresponding diagram.
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1.5 Risager from δ-Relaxation

For k > 3, it is easy to see that relaxing a single δ-function does not directly lead to

the CSW expansion. This is obvious since localization in the Grassmannian associated

with putting k × k minors to zero for k > 3 is not directly associated with localization

on lines in twistor space. The only natural interpretation of our deformation is as the

Risager expansion. An immediate question with this interpretation is precisely how the

(k− 2) degrees of freedom of the Risager deformation are reflected in the Grassmannian

picture–exactly which Risager expansion are we landing on? In this section we establish

the correspondence with Risager, and also understand the origin of the Risager degrees

of freedom, by examining MHV amplitudes. This will determine precisely which Risager

expansion must be associated with our contour deformation for general (n, k).

The only Risager diagrams that contribute involve the points i, i+ 1 and the internal

line P on one side, connected with a propagator to the lower-point MHV amplitude on

the other side

which can be nicely simplified to the form

ARisager
i =

[k l]4

[1̂ 2̂] . . . [î− 1 î][i i+ 1][î+ 1 î+ 2] . . . [n̂ 1̂]
. (1.5.42)

Here, the deformation parameter z is evaluated where P 2(z∗) = 0. We will now see that

this expansion is reproduced for the first non-trivial case of the split-helicity 6-particle

MHV amplitude A(1−, 2−, 3−, 4+, 5+, 6−). The D-matrix in the momentum twistor form

of the Grassmannian is

D =

 D11 D12 D13 D14 D15 D16

D21 D22 D23 D24 D25 D26

 . (1.5.43)

As before, we will be relaxing one of the δ(D1aµa)-factors. Our strategy is to use four

δ-function constraints for the second row, and to solve for D23, . . . , D26 in terms of D21
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and D22, and to use the remaining three δ-functions to solve for D14, . . . , D16 in terms

of D11, D12, and D13. Now, in deforming the contour, we will get a sum over terms

where a given minor (j) is set to zero. Here, we use the notation (j) to refer to the

minor (j j + 1 · · · j + k − 3). We can use the condition of the vanishing of this minor

to solve for D13 and plug it back into our equations for D14, . . . , D16. Notice that we

can gauge-fix the GL2 so that e.g. D11, D12, D21, D22 are anything we like, but we will

leave them arbitrary for now. The reason is that while the sum over all the terms will

be GL2-invariant, each individual term will not, and as we will see the dependence on

gauge degrees of freedom will precisely mirror the freedom in the Risager deformations.

A somewhat lengthy computation yields a lovely result for the term where the minor

(j) is set to zero; we find that it precisely corresponds to a term in the Risager expansion

[(j)] = ARisager
j+3 (1.5.44)

where the Risager deformation is particularly simple and is given in terms of the following

deformation on momentum twistor variables µ̂i = µi + βizζ with

β1 = D22, and β2 = D21. (1.5.45)

That is, as advertised, the degrees of the freedom in the Risager expansion are contained

in the GL2-freedom of the momentum-twistor Grassmannian formula!

Moving on to the 7-point amplitude A(1−, 2−, 3−, 4−, 5+, 6+, 7−) we find exactly the

same pattern: we find that the sum over terms setting a minor to zero precisely matches

the Risager expansion of the amplitude, with the β-deformations now with

β1 = M23, β2 = M13, and β3 = M12, (1.5.46)

where the Mij are determined by the GL3 gauge degrees of freedom as

Mi,j =

∣∣∣∣∣∣ D2i D2j

D3i D3j

∣∣∣∣∣∣ . (1.5.47)

The case for general split-helicity amplitudes follows the same pattern. We use the Dij,

i, j = 1, . . . , n − 4, as free gauge-fixing parameters. We solve for Dij, i = 2, . . . , n − 4,

j = n− 3, . . . , n in terms of gauge-fixed parameters Dij, j = 1, . . . , n− 4, and then solve

for the D1j, j = n− 2, n− 1, n in terms of gauge fixing parameters Dij, j = 1, . . . , n− 4,
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and D1n−3. Then, for each individual residue characterized by some vanishing minor (j),

we determine D1n−3, and substitute it back into other D1j. We can then calculate all

minors and Jacobian factors, and compare with the Risager expansion. Remarkably the

two expressions agree using a Risager shift most nicely given in terms of a deformations

of µ’s:

βj =

∣∣∣∣∣∣∣∣
D2,1 . . . D2,j−1 D2,j+1 . . . D2,n−4

...
...

...
...

...
...

Dn−4,1 . . . Dn−4,j−1 Dn−4,j+1 . . . Dn−4,n−4

∣∣∣∣∣∣∣∣ . (1.5.48)

Again, the general pattern is that the deformations are constructed just from gauge-

fixing parameters. This just demonstrates the fact that the freedom in choosing Risager

deformations βj is included in the GLk−2 redundancy in the Grassmannian.

1.6 Concluding Remarks

We have argued that a simple and canonical “δ-relaxing” contour deformation takes us

from the Grassmannian formulation of BCFW tree amplitudes—which has a remark-

ably “combinatorial” form making all symmetries manifest—to the CSW expansion,

which manifests the local space-time Lagrangian in light-cone gauge. Relaxing a sin-

gle δ-function already yields the full CSW expansion for NMHV amplitudes, and must

lead to the Risager expansion for general k as we established for the MHV case. It

would be interesting to see this more explicitly, and also to understand whether the re-

cursive application of the Risager expansion leading to the CSW expansion has a natural

interpretation in terms of relaxing multiple δ-functions.

The operation we have found gives a natural way of “blowing up” residues into com-

ponents, separating pieces with a local space-time interpretation from the non-local ones.

This allows us to give the sum over Grassmannian residues corresponding to the tree con-

tour a “particle interpretation” in space-time. As we will see in [35], there is a second

natural operation on the sum over residues—rather than blowing each residue up into

many pieces, we can instead unify them together as the zero set of a single map. This man-

ifests an even more surprising feature than a particle interpretation in space-time—the

integral localizes on configurations with a “particle interpretation” in the Grassmannian,

allowing us to construct higher-point tree amplitudes by “adding one particle at a time”
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to lower-point ones. Furthermore, a natural deformation not simply of the contour but

of the integrand itself directly connects our Grassmannian picture with the connected

prescription [36] of Witten’s twistor string theory [4, 37–39].

We find it remarkable that almost all the concepts surrounding perturbative scattering

amplitudes in this decade—the twistor string theory, CSW, BCFW and Risager recursion

relations, infrared equations, leading singularities and dual superconformal invariance—

are unified in the Grassmannian integral we have been exploring. The only important

object that has yet to make a direct appearance in this story is the light-like Wilson loop

(see e.g. [40–46])—making this connection will surely tell us how to extract loop-level

information beyond the all-loop leading singularities that are already clearly present in

the Grassmannian.
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Chapter 2 The Unification of Residues
and Grassmannian Dualities

2.1 Scattering Amplitudes and the Grassmannian

A new duality was conjectured in [10] between leading singularities of color-stripped

n-particle Nk−2MHV amplitudes in N = 4 SYM and a simple contour integral of the

form

Ln,k(Wa)=
1

vol(GLk)

∫
dk×nCαa

∏k
α=1 δ

4|4(
∑n

a=1 CαaWa)

(1 2 · · · k)(2 3 · · · k+1) · · · (n 1 · · · k 1)
, (2.1.1)

where theWa in the (ordinary) dual twistor space and carry all the information about the

external particles. The integral is over k × n matrices Cαa modulo a GLk-action on the

right. This space is also known as the Grassmannian G(k, n)—the space of configurations

of k-planes in Cn. The rows in the matrix Cαa define k n-vectors which together span

a k-plane that contains the origin. Since GLk-transformations simply reflect a change of

basis for the k-plane, the action of GLk must be modded-out. The formulation in (2.1.1)

makes manifest that any object computed from Ln,k is superconformal invariant.

Fourier-transforming from dual twistors to ordinary momentum-space, one finds that

Ln,k =
1

vol(GLk)

∫
dk×nC

(1 2 · · · k)(2 3 · · · k+1) · · · (n 1 · · · k 1)

×
k∏

α=1

δ4(Cαaη̃a)δ
2(Cαaλ̃a)

∫
d2ραδ

2(ρβCβa − λa) .
(2.1.2)

Gauge-fixing the GLk-redundancy in such a way that k columns of the matrix Cαa make

up the unit k×k matrix takes (2.1.2) into the link representation of [17]. This gauge-fixing

makes parity manifest by making it equivalent to the obvious geometric statement that

G(k, n) is isomorphic to G(n − k, n). The δ-functions in (2.1.2) restrict the integration

to k-planes that contain the λ-plane and are orthogonal to the λ̃-plane. Using a different

gauge-fixing, one can make the first two rows of the C-matrix be identical to the two
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n-vectors defining the λ-plane. A simple linear algebra argument together with a further

gauge fixing that leaves a GLk−2 subgroup of GLk unfixed reduces the integral to one

over (k − 2)-planes in Cn, i.e. , over G(k − 2, n) [18]. The resulting form, in terms of a

(k − 2)× n matrix D is given by [18,19],

Ln,k = AMHV
1

vol(GLk−2)

∫
d(k−2)×nD

∏k−2
α̂=1 δ

4|4(Dα̂aZa)
(1 2 · · · k 2)(2 3 · · · k 1) · · · (n 1 · · · k 3)

, (2.1.3)

where AMHV is the tree-level MHV superamplitude which contains the momentum-

conserving δ-function and its superpartner. The remaining integral is now defined in

terms of what are called momentum-supertwistors Za. These are the objects introduced

by Hodges [20] in order to make dual-superconformal invariance [21,40,47,48] manifest.

After all δ-functions in (2.1.2) are used, Ln,k becomes a contour integral in

(k − 2)(n− k − 2) variables. As usual with contour integrals, there is really no inte-

gral at all and we are interested in the residues. Each of these residues is simultaneously

superconformal and dual-superconformal invariant, and is thus invariant under the full

Yangian symmetry of the theory [8,49]. Higher-dimensional analogues of Cauchy’s residue

theorem encode highly non-trivial relations between these invariants. The residues give

a basis for the leading singularities of all loop amplitudes. Evidence for this fact for

up to two-loops was given in [10], and evidence to all orders has been recently given

by [22, 23]. Tree-level amplitudes are known to be expressible as sums over one-loop

leading singularities—via the BCFW recursion relations [7,31] (see also, e.g,. [50])—and

therefore they become sums of residues of Ln,k. This can be expressed by providing

a contour of integration for Ln,k which we denote ΓLn,k. Note that this contour is not

uniquely defined, since residue theorems can be used to express the same sum in many

different forms. We will nonetheless loosely refer to this equivalence class of contours as

“the” contour.

The contour ΓLn,k must have a remarkable property. While the residues are all Yangian

invariant, they do not individually have a local space-time interpretation; for instance,

they are riddled with non-local poles. The non-local poles magically cancel in the sum

over residues of Γn,k. In the previous Chapter 1, we showed that a natural contour

deformation “blows up residues” into a sum over local and non-local terms, making the

local spacetime description as manifest as possible by connecting to the light-cone gauge

Lagrangian via the CSW/Risager [5,6,25–27] rules. In this chapter we discuss a natural
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counterpart to this operation: instead of “blowing up” residues, we will see that there is

a natural way of unifying them into a single algebraic variety. This will expose something

perhaps even more surprising than the emergence of local space-time physics: we will

see that the contour ΓLn,k can be thought of as localizing the integral over G(k, n) to a

sub-manifold with a “particle interpretation” in the Grassmannian. This allows us to

construct higher-point tree amplitudes by simply “adding one particle at a time” to lower-

point ones, with soft limits manifest. Furthermore, this unified form of the amplitude

is intimately connected to CSW localization in twistor space, and—as we will see for

N2MHV—is generally distinct from any contour derived using BCFW.

Having discovered the possibility of a particle interpretation in the Grassmannian,

it is natural to ask whether there is a formulation that makes such an interpretation

manifest while also keeping manifest cyclic invariance (which would not ordinarily be

completely explicit in a picture which “adds one particle at a time”). This motivates

us to start anew, keeping only the Grassmannian kinematics encoded in the δ-function

factor δ4|4(CαaWa). A simple counting argument leads us to an extremely natural way

of implementing the Grassmannian particle interpretation: by integrating over a sub-

manifold in the Grassmannian associated with the “Veronese map” from G(2, n) →
G(k, n). The resulting object can be easily recognized as the connected prescription [52]

for Witten’s twistor string theory [4] (see also [37–39, 53–63]; for a review, see [64]);

indeed this discussion can be thought of as a physical motivation for and derivation of

this theory from the Grassmannian viewpoint.

Cast as integrals over the Grassmannian, the integrand corresponding to our first

discovery of the particle interpretation—motivated by realizing the contour ΓLn,k as a

single algebraic variety—will not be the same as the second form, leading to the connected

prescription for twistor string theory. In the simplest examples, one can use the global

residue theorem (see e.g. [65]) to show that while the integrands are different, the contour

integrals agree (see e.g. [66]). However, this way of establishing the equality requires

some gymnastics; a significant insight into why this miracle can happen is obtained by

noticing that the two integrands can be smoothly deformed into each other by introducing

a deformation parameter t; we demonstrate t-independence explicitly for both NMHV

and N2MHV amplitudes. The equality between the objects must then be a consequence

of a more general statement about amplitudes, which should follow from a simple residue
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theorem. We identify this simple residue theorem for all NMHV amplitudes—it is the

same as the “δ-relaxing” deformation used in Chapter 1 to expose the CSW recursion

relations.

The outline for this chapter is as follows. In the next two sections we give a general in-

troduction to our two main themes. In section 2.4 we discuss the relationship between the

two different kinds of Grassmannian particle interpretations we encounter. In section 2.5

we discuss NMHV tree amplitudes. In section 2.6 we move on to the N2MHV amplitudes,

and in particular, give a detailed discussion of the 8-particle N2MHV amplitude. We end

with brief concluding remarks in section 2.7.

2.2 Unification of Residues

We begin by returning to the momentum space formula for Ln,k given in equation (2.1.2).

Gauge-fixing the GLk-invariance, leaves kn − k2 = k(n − k) integration variables, and

after imposing all 2n of the δ-functions, we end up with an overall momentum-conserving

δ-function and an integral over k(n− k)− (2n− 4) = (k − 2)(n− k − 2) variables. For

brevity, we will denote this total number of integration variables by M ,

M ≡ (k − 2)(n− k − 2), (2.2.1)

and denote the free variables by τ1, . . . , τM . In the following, we strip-off all overall factors

and concentrate on∫
dMτ

1

(1 2 · · · k)(2 3 · · · k+1) · · · (n 1 · · · k 1)(τ)
. (2.2.2)

This is a holomorphic integral—i.e. , it is over τ and not τ ; therefore, it must be inter-

preted as a contour integral in M complex variables.

I. Local Residues

There is a very natural way of defining “local residues” for functions of M complex

variables τ = (τ1, . . . , τM). Consider a rational function of the form

f =
g(τ)

p1(τ)p2(τ) · · · pN(τ)
(2.2.3)
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where N ≥ M . A residue is naturally associated with locations τ∗ in τ space where M

of the polynomial factors pi1(τ∗), . . . , piM (τ∗) = 0. It is natural to re-write

f =
hi1,...,iM (τ)

pi1(τ) · · · piM (τ)
with hi1,...,iM (τ) =

g(τ∗)∏
j 6=i1,...,M pj(τ∗)

. (2.2.4)

In the neighborhood of such a point we can change variables from (pi1 , . . . , piM ) →
(u1, . . . , uM), and up to a Jacobian, the integral becomes

∫
du1/u1 · · · duM/uM , which

is naturally defined to have residue 1. We denote the residue as (pi1)(pi2) · · · (piM ), given

by

(pi1)(pi2) · · · (piM )|τ∗ =
hi1,...,iM (τ∗)

det
(
∂(pi1 ,...,piM )

∂(τ1,...,τM )

)
(τ∗)

. (2.2.5)

Note that this definition of the residue depends on the order in which the polynomials

enter in the Jacobian and is naturally antisymmetric in the labels: different orders can

give answers which differ by a sign. This is a reflection of the fact that we were supposed

to choose an orientation for the contour. The contour is in fact topologically a collection

of circles Tm = {τ : |pi(τ)| = εi} and the orientation that produces (2.2.5) is given by

d(arg(pi1)) ∧ · · · ∧ d(arg(piM )).

The NMHV tree amplitudes are given as a sum over these simple local residues.

Consider the n = 7 NMHV amplitude. In [10], the BCFW-contour for the amplitude

was found to be given as

ΓL7,3 = (2) [(3) + (5) + (7)] + (4) [(5) + (7)] + (6)(7). (2.2.6)

Each term is of the form (i)(j) with (i) representing the minor (i i+1 i+2). The BCFW-

contour for general NMHV amplitudes is of the form

ΓLn,3 =
∑

(e1)(o2)(e3) · · ·︸ ︷︷ ︸
n− 5 terms

, (2.2.7)

where the sum is over all strictly-increasing series of (n − 5) alternating even (e) and

odd (o) integers. Again, this form is not unique: as shown in [10]: using residue theorems

one can exchange the role of even and odd integers in this sum in many ways—and this

fact was important to the proof given in [10] of the cyclic-invariance of the entire contour.

For k > 3, it is clear that for large-enough n, the simplistic definition of a local

residue described above is inadequate to localize the integrand: we have n minors, but
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(k − 2)(n − k − 2) variables, which exceeds n for any k > 3 for some sufficiently-large

n. However, as explained in more detail in [10], our object allows for a more refined

notion of “composite residue” which is applicable when there are fewer polynomial factors

than there are variables. This allows residues to be defined for any n and k. A simple

illustration of a composite residue is given by the function of three variables x, y, z,

1

x(x+ yz)
. (2.2.8)

Note that there are only two polynomial factors in the denominator, and so it is not

possible to define a local residue in the standard way. Nonetheless, on the locus where

the first polynomial factor vanishes, x = 0, the second polynomial factorizes as y · z, and

one should reasonably define this to have residue 1. Note that such a “composite” residue

is only possible for very special functions: had we replaced the second polynomial factor

with (x+ yz + a) for a 6= 0, no such identification would be possible. Geometrically, for

a = 0, the set of points where both the polynomials vanish splits into two infinite families

(x = 0, y = 0, z) and (x = 0, y, z = 0), and the point where the residue is defined is the

intersection of these infinite families. As discussed in [10], exactly the same phenomenon

happens with the minors of the Ln,k: on the zeros of some of the minors, other minors

factor into pieces, each of which can be individually set to zero to define composite

residues. Already for the 8-point N2MHV-amplitude, some of the objects appearing

the BFCW form of the tree amplitude are composite residues. Below, we will find a

very natural way of thinking about composites that is a natural consequence of our new

picture for unifying residues into a single variety: composite residues can be thought of as

ordinary residues, but associated with putting minors made of non-consecutive columns

to zero.

II. Tree-Amplitude Contours as Algebraic Varieties

The NMHV tree contour defined by ΓLn,3 in (2.2.7) is perfectly clear as given. However,

there is something somewhat unnatural about it: it is not precisely a “contour” in the

sense used by mathematicians. The reason is that we haven’t presented the set of residues

we are summing-over as a subset of the zeros of a single mapping from CM → CM ; in

other words, we haven’t identified a fixed set of M polynomials (f1, . . . , fM), such that

the tree contour is contained in a subset of the solutions to fi = 0. In fact for NMHV
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amplitudes it is possible to do this for n = 6, 7, taking the f ’s to be made of products

of the consecutive minors appearing in the denominator of Ln,k. However, already for

n = 8, we’ll see that it is impossible to do this using only consecutive minors. Thus, we

seem to reach an impasse: from a mathematical point of view, it would clearly be natural

to “glue” all the residues together as zeros of a single map—to think of the contour as a

single algebraic variety. But the physical contour for tree amplitudes does not seem to

admit such an interpretation.

However, we will see that it is possible to naturally unify the residues into a single

variety—the apparent obstruction to doing so was merely a consequence of the myopia

of only considering minors composed of consecutive columns of Cαa.

By iteratively adding one particle at a time, we will soon see that the tree-level

amplitude can be given in the form∫
f=0

dMτ
h(τ)

f1(τ) . . . fM(τ)
, (2.2.9)

where we sum over all the zeros of f ≡ (f1, . . . , fM) = 0. Note that h(τ) is not just a

polynomial, but a ratio of polynomials—otherwise this sum would vanish by the global

residue theorem! The remarkable fact is that, as rational functions,

h

f1 · · · fm
=

1

(1 2 · · · k)(2 3 · · · k+1) · · · (n 1 · · · k 1)
, (2.2.10)

but the numerator of h and f1, . . . , fM are polynomials in the minors of Cαa of degree

larger than n, and all the non-consecutive minors appearing in the fi’s are cancelled by

those in the numerator of h. This is how they manage to encode the information about

the contour.

For instance, we will show that all NMHV amplitudes can be written in the form

A(3)
n =

∫
fn=0

∏n−1
j=6 [(1 2 j)(2 3 j 1)]

(n 1)(1)(3) f6 · f7 · · · fn
, (2.2.11)

where fn = (f6, . . . , fn) and each fk : C→ C is given by the product of minors,

fk = (k 2 k 1 k)(k 1 2)(2 3 k 2). (2.2.12)

Similarly, each N2MHV amplitude can be written as

A(4)
n =

∫
fn=0

∏n−1
j=7

[
(1 2 3 j) (2 3 j 2 j 1) (1 j 2 j 1 j)

]∏n−3
j=4

[
(1 3 j j+1) (1 2 j j+3)

]
(n 1)(1)(3) F7 ·F8 · · ·Fn

, (2.2.13)
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where fn ≡ (f7a , f7b , f8a , f8b , . . . , fna , fnb) with

f`a ≡ (` 3 ` 2 ` 1 `)(` 3 ` 1 2)(` 3 2 3 ` 2);

and f`b ≡ (1 ` 2 ` 1 `)(1 ` 2 3)(1 3 ` 3 ` 2);
(2.2.14)

and for which F` ≡ f`a · f`b .
Note that as stated the definitions of h and f include minors built out of non-

consecutive columns. We will see that their presence is crucial for allowing us to unify all

the residues into a single algebraic-variety. As a by-product, they will also teach us how

to think about “ordinary” and “composite” residues of Ln,k in a more uniform way, as

“composite” residues can be understood as ordinary residues involving non-consecutive

minors.

III. Manifest Soft-Limits and the Particle Interpretation

We motivated the gluing-together of tree-amplitude residues into a single variety from a

mathematical point of view. There is also a physical reason to be dissatisfied with the

usual way of presenting tree-amplitudes as a sum over disparate local residues: soft-limits

of the amplitude would then not then manifest themselves as an obvious feature of the

contour. Suppose we take the holomorphic soft-limit of particle n, where λn → 0 while

keeping λ̃n fixed. In this limit, the most singular part of the amplitude connects directly

to the lower point amplitude with the usual multiplicative soft factor

An →
〈n 1 1〉

〈n 1 n〉〈n 1〉An−1. (2.2.15)

This means that there must be a connection between ΓLn,k and ΓLn−1,k; but this is not at

all manifest for the NMHV tree contour given by equation (2.2.7). It is important to

mention that from the mathematical point of view, the inverse operation is in fact more

natural. In other words, it is more natural to think about the inclusion of G(k, n−1) into

G(k, n) than to think about the projection of some contour in G(k, n) down to G(k, n−1).

Indeed, in [24], we will show that there is a natural notion of an “inverse-soft” operation

on individual residues, that maps a residue of Ln,k−1 to a residue of Ln,k. However what

we are after here is a remarkable feature not of individual residues but of the way they

are combined into ΓLn,k.
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Quite beautifully, the unification of residues in equation (2.2.10) allows us to think

of the n-particle amplitude by “adding a particle” to the (n− 1)-particle amplitude in a

way that makes the soft-limits manifest. In fact, we can write

hn
f1 · · · fMn

=
hn−1

f1 · · · fMn−1

× S
(n−1)→n

(2.2.16)

and recursively build the contour for higher point amplitudes in this way. Furthermore,

in the soft limit, λn → 0, we find that (after an application of the global residue theorem)

the τ integral localizes so that

S
(n−1)→n

→ 〈n 1 1〉
〈n 1 n〉〈n 1〉 , (2.2.17)

which precisely reproduces the needed soft factor!

IV. Connection to CSW Localization

The attentive reader may have noticed that the forms of fi presented above for the NMHV

and N2MHV amplitudes contain the product of three minors; moreover the denominator

of hn is the product of the three consecutive minors (n 1), (1) and (3). This is not an

accident: these forms are intimately connected to localization of amplitudes on CSW

configurations in twistor space! In order to understand why, let us begin by noting that

it is natural to think of the matrix Cαa as a collection of n k-vectors, or n points in Ck. In

fact, due to the little group symmetry which rescales each column of Cαa independently,

we can think of these points projectively as n points in CPk−1. Since the contour of

integration is the variety where f = 0, it is natural to ask whether there is anything

special about the points in CPk−1 for which f vanishes? In fact, there is an even more

interesting question, which we can best discuss with some new notation. Let us define

the “expectation value” of some “operator” built out of minors of Cαa, by

〈O〉 =

∫
f=0

h

f1 · · · fM
O . (2.2.18)

Note that with this definition, the amplitude itself is 〈1〉, and trivially 〈fi〉 = 0. However

there are also other operators with vanishing expectation values. For instance, taking the

operator to be the denominator of hn, we find that 〈(n 1)(1)(3)〉 = 0 as a consequence

of the global residue theorem. One might ask whether there exists a different way of
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writing the integral where all these vanishing expectation values are understood on the

same footing trivially, as part of the definition of the contour of integration. In this

case the answer is “yes”: the “δ-relaxing” contour-deformation used in Chapter 1 does

this. We see that this form of the amplitude makes a certain localization property of

the amplitude manifest—associated with the vanishing “expectation value” of objects

built out of the product of three minors. If we further use the (independently proven)

information that the amplitude is cyclically invariant, we get a very large number of

constraints, which we can loosely think of as localizing the integral in the Grassmannian.

Now, for k ≤ 4, there is a very close connection between localization in the Grass-

mannian and localization in (Z) twistor space. In order to see this, it suffices to Fourier-

transform the bosonic parts of the kinematical δ-functions δ4|4(CαaWa) into the Z twistor

space: ∏
α

δ4(CαaWa)→
∫
d4zα

∏
a

δ4(Za − Cαazα). (2.2.19)

Note that for k = 3, the twistor space “collinearity operator” εIJKLZ
I
i Z

J
j Z

K
k acts on the

amplitude as

(ZiZjZk)
IAn =

∫
d4z(z z z)I〈(i j k)〉 . (2.2.20)

We can think of the “localization in the Grassmannian” implied by 〈(i j k )〉 = 0 as

telling us that the points {i, j, k} in the CP2 associated with the columns of G(3, n) are

(projectively) collinear. By virtue of equation (2.2.20) this tells us that this sense of

localization in the Grassmannian is sharply reflected as localization in twistor space.

All of this is interesting because the set of twistor space collinearity operators that

test for CSW localization precisely involve products of three of them—which translate

to the vanishing expectation value for the product of three minors in the Grassmannian.

It is very easy to see that for any configuration of n cyclically ordered points localized

on two lines in CP2, the product of three minors (i x j)(k y l)(mz o) vanishes, where

i < x < j ≤ k < y < l ≤ m < z < o. To prove it, let’s assume that the first two factors

are not equal to zero, which means that (i x j), (k y l) can not be collinear. This forces

the points to be distributed on the two lines as in:

But then m, z, o are forced to be on the same line, and so the last factor (mz o) = 0. This

shows why two minors are insufficient but three suffice. Furthermore, having sufficiently
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many of the operators of this form vanish is enough to guarantee CSW-localization.

Something similar is true for k = 4. Here the coplanarity operator (ZiZjZkZl) in twistor

space maps to the 4×4 minor (i j k l) in the Grassmannian. Perhaps a little surprisingly,

collections of coplanarity operators suffice to ensure CSW-localization on lines. This can

happen if the coplanarity conditions involve non-consecutive points.

For k > 4, it is in general difficult to find a set operators testing localization for

CSW configurations of (k − 1) intersecting lines in the CP3 of twistor space; the reason

is that the CP3 is too “small”. It is however much easier to talk about localization

to CSW-like configurations of (k − 1) lines in CPk−1, and this is precisely the natural

question associated with vanishing operator expectation values from the Grassmannian

point of view! It is amusing to ask what “Grassmaniann CSW” operators test for this

Grassmannian notion of localization. It is easy to exhibit two large classes of such

operators, always made from the products of three minors for any k. One class is similar

to set we described for k = 3: the product of three (k×k) minors (i · · · j)(k · · · l)(m · · ·n)

vanishes for CSW-like configurations in CPk−1. Another class of operators can be easily

constructed recursively. Given any configuration localized on lines in CPk−1, we can

project down along one of the lines to get a another set of points (with some co-incident)

localized on (k − 2) lines in CPk−2, as shown below in an example with k = 4:

Since any particle I belongs to a unique line, by considering (k × k) minors that all

include I, we are projecting-down along the line containing I to the problem in CPk−2.

Thus the set of operators obtained by attaching column I to the ones just discussed—of

the form (I i · · · j)(I k · · · l)(I m · · · o)—will also vanish on these configurations. Given

that localization to “Grassmannian” CSW configurations implies localization on CSW

configurations in twistor space, this strongly suggests that this “three-minor” form of the

maps obtained in unifying tree amplitudes should persist for all k.

A very non-trivial check on this picture can be made by examining the simplest
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amplitude with k = 5—the split helicity 10-particle amplitude. There are 20 different

BCFW terms in the amplitude, which can all be easily identified as residues of L10,5.

We can test for localization in the Grassmannian by computing 〈OCSW〉 for the class

of Grassmannian CSW operators we have just defined. Since we know the form of the

C-matrix explicitly for each residue, this simply amounts to taking each BCFW term

and multiplying it by the relevant product of three minors of its associated C-matrix.

We have checked that the correct linear combination of twenty BCFW terms weighted

with OCSW in this way indeed vanishes. Something even stronger is true: we checked

that if we leave the coefficients of all 20 BCFW terms arbitrary, demanding that all the

“localization on intersecting lines in CP4” operators annihilate the amplitude completely

fixes the 20 terms up to a single overall scale. We will return to further investigate these

fascinating issues at greater length in a future work.

2.3 Veronese Particle Interpretation

In the previous section, we discovered the particle interpretation and CSW localization

of the tree amplitudes as a happy consequence of gluing together the residues of Ln,k
contributing to the tree amplitude into a single variety. But the particle interpretation

was not manifest from the outset—nor was the cyclic-invariance of the amplitude.

This motivates us to start anew, and construct a Grassmannian theory which makes

the particle interpretation and cyclic-symmetry as manifest as possible. We will find that

this straightforward exercise leads us essentially uniquely to the connected prescription

[52] of Witten’s twistor string theory [4]. As an additional bonus, in addition to cyclic

symmetry, this formulation will make the famous U1-decoupling identity manifest, which

is a remarkable property of amplitudes that is only “obvious” from the Lagrangian point

of view.

Going back to the beginning, the central object encoding “Grassmannian kinemat-

ics” are the twistor-space δ-functions which contain the only dependence on space-time

variables
∏

α δ
4|4(CαaWa). As seen recently in [22, 23], this factor alone goes a long way

in explaining how the (non-trivial) kinematics of leading singularities can be encoded in

Ln,k, even without using any specific properties of the measure made from consecutive

minors, so clearly we should stick with this structure. Transforming back to momentum
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space it becomes

∏
α

δ2(Cαaλ̃a)δ
4(Cαaη̃a)

∫
d2×kρα

∏
a

δ2(ραCαa − λa). (2.3.1)

The bosonic δ-functions impose (2n − 4) constraints on Cαa, enforcing the geometric

constraint that the k-plane Cαa by orthogonal to the 2-plane λ̃ and contains the 2-plane

λ. Now, in equation (2.1.2), in interpreting the integral over G(k, n) as a contour integral,

we place a further (k−2)×(n−k−2) constraints on Cαa, which is equivalent to declaring

that we are performing the integral over a k× (n− k)− (k− 2)× (n− k− 2) = (2n− 4)-

dimensional sub-manifold in G(k, n). We can generalize this idea to define a whole class

of “Grassmannian theories”, which enforce the “kinematic” constraints on the space-

time variables associated with δ4|4(CαaWa). We simply choose some (2n−4) dimensional

subspace Σ of the Grassmannian, a general point of which we represent as C?
αa(ζI) for

I = 1, . . . , (2n− 4). Then we consider the object

∫
Σ

d2n−4ζ µ(ζ)
∏
α

δ4|4(C?
αa(ζI)Wa), (2.3.2)

where µ(ζ) is a measure factor.

Now, of all such Grassmannian theories, there is a special class that we can motivate

physically as having a “particle interpretation”. Ordinarily, the configuration space for

n-particles is thought of as n copies of a given space on which each of the particles “live”.

In order for a Grassmannian theory to have such a “particle interpretation”, then, we

would like to loosely think of Σ = (Σbase)
n. Now, dim (Σ) = (2n − 4) (let us leave the

−4 offset for a moment, and) note that at large n, the only way we can make such an

identification is if dim (Σbase) = 2; and so the most natural choice is Σbase = C2. The

“−4” can arise from a GL2-redundancy acting on C2. We can therefore conclude that we

are looking for a (2n− 4) sub-manifold of the Grassmannian, that can be thought of as

a mapping of (C2)n/GL2 into G(k, n). It only remains to discuss how to determine this

mapping from (C2)n/GL2 → G(k, n) explicitly.

Let us denote a general point in C2 by σ = (A,B). It is natural to look for a mapping

into a point we will denote by σV (σ) in Ck, such that the GL2-action on σ turns into some

GLk-action on σV . There is a canonical map from C2 → Ck, familiar from elementary
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algebraic geometry which does this precisely and is known as the Veronese map:

σ :

 A

B

→


Ak−1

Ak−2B
...

Bk−1

 ≡ σV (σ). (2.3.3)

We can assemble the n k-dimensional vectors σVa , for a = 1, . . . , n, into the k× n dimen-

sional matrix CV
αa[σ] which denotes the Veronese map from (C2)n/GL2 → G(k, n)

CV [σ] =


...

... · · · ...

σV [σ1] σV [σ2] · · · σV [σn]
...

... · · · ...

 ; (2.3.4)

or written more succinctly

CV
αa[σ] = Ak−αa Bα−1

a . (2.3.5)

We group all the σa together into 2×n matrix which, given the GL2-action, we can think

of as an element of G(2, n). Thus we can also think of CV as giving the Veronese map

from G(2, n)→ G(k, n).

I. Twistor String Theory

In order to complete our story and fully define a Grassmannian theory, we need to

integrate over the two-dimensional vectors σa with a natural GL2-invariant measure. By

analogy with the simple choice for the GLk-invariant measure chosen in equation (2.1.2),

the simplest possibility is to soak-up the GL2 weights with a product of consecutive 2×2

minors and define

Tn,k(W) =
1

vol(GL2)

∫
d2σ1 · · · d2σn

(σ1σ2)(σ2σ3) · · · (σnσ1)

∏
α

δ4|4(CV
αa[σ]Wa). (2.3.6)

In the case of equation (2.1.2) for Ln,k, the choice of measure with consecutive minors

had much more than aesthetic benefits: only with this choice was it possible to prove

the equivalence with equation (2.1.3) and establish dual superconformal invariance. Sim-

ilarly, in the present case, the choice of measure with the product of the (σiσi+1) in

the denominator makes a remarkable feature of scattering amplitudes manifest which
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is normally only obvious from the spacetime Lagrangian. This property is the famous

“U1-decoupling identity”. While we normally talk about color-stripped amplitudes, in

reality the full amplitude is given by a sum over permutations

An =
∑

P∈Sn/Zn

Tr (T aP (1)T aP (2) · · ·T aP (n))A(P (1), . . . , P (n)). (2.3.7)

When the gauge group is taken to be any product of SU(Ni) factors (including U1’s), the

Lagrangian description makes it obvious that the amplitude for producing particles in

the adjoint of SU(Ni) from SU(Nj)-particles must vanish. This implies many relations

among the partial amplitudes A(P (1), . . . , P (n)) with different orderings. The simplest

of these relations is called the U1-decoupling identity, which is obtained when the gauge

group is taken to be Un = U1 × SUn. Now, the dependence on the external spacetime

variables in δ4|4(CV
αa[σ]Wa) is fully permutation-invariant; the only factor that breaks the

permutation invariance down to cyclic invariance is the factor (σ1σ2)(σ2σ3) · · · (σnσ1),

and it is trivial to see that this satisfies the identity necessary for Tn,k(Wa) to satisfy the

U1-decoupling identity.

We have motivated equation (2.3.6) as a beautiful way of writing a theory enforcing

a Grassmannian “particle interpretation”. It is also nothing other than the connected

prescription [52] for Witten’s twistor string theory [4] (see also [33] where the Grassman-

nian form of the twistor string theory is presented). To see this, we Fourier-transform

from the Wa to the Za variables in order to return to Witten’s original setting:∏
α

δ4|4(CV [σ]αaWa)→
∫
d4|4z(α)

∏
a

δ4|4(Za − CV [σ]αaz
(α)). (2.3.8)

If we further write σa = (AaBa) = ξa(1 ρa), the GL2-action has a GL1-rescaling the ξ and

an SL2-symmetry acting on ρ, with (1 ρ) being thought of as inhomogeneous co-ordinates

on CP1. Then, (σiσi+1) = (ξiξi+1)(ρi − ρi+1), and we have

Tn,k(Za) =
1

vol(GL2)

∫
dρ1 · · · dρn

(ρ1 − ρ2)(ρ2 − ρ3) · · · (ρn − ρ1)

∏
a

δ3|4(Za −
k−1∑
α=0

z(α)ραa ),(2.3.9)

where δ3|4(Z − Z ′) is a projective δ-function in CP3|4:

δ3|4(Z − Z ′) =

∫
dξ

ξ
δ4|4 (Z − ξZ ′) . (2.3.10)

Equation (2.3.9) is exactly the connected prescription for computing tree amplitudes

from twistor string theory, integrating over the moduli space (parametrized by the z(α))
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of degree-(k − 1) curves in CP3|4. However, notice that from the point of view of the

Grassmannian, there is a more fundamental notion of localization: under the action of

the little group, Wa → taWa, we have Cαa → t−1
a Cαa, and therefore we can think of

each column of Cαa projectively as giving a point in CPk−1. The Veronese condition of

equation (2.3.4) is then nothing but the statement that all these points in CPk−1 lie on

a degree-(k − 1) mapping of CP1 → CPk−1. This localization to degree-(k − 1) curves

in CPk−1 associated with the Grassmannian implies, via equation (2.3.9), localization on

degree-(k − 1) curves in twistor space.

We can cast the expression for Tn,k in a form that will most directly facilitate a

comparison with Ln,k, by writing Tn,k as an integral over the full Grassmannian G(k, n),

with (k − 2)× (n− k − 2) δ-functions imposing the constraint that the k-planes have

the Veronese form of equation (2.3.4) with a “particle interpretation”. We do this by

formally introducing “1” in the form

1 =
1

vol(GLk)

∫
dk×nCαad

k×kLβα(detL)n
∏
α,a

δ(Cαa − LβαCV
βa[σ]); (2.3.11)

here the integral over Lβα is just one over all k × k linear transformations, and by gauge-

fixing to Lβα = δβα, we get “1” trivially.

We can then integrate over the σa, and we are left with

Tn,k(Wa) =
1

vol(GLk)

∫
dk×nCαaF (C)δ4|4(CαaWa), (2.3.12)

where

F (C) =
1

vol(GL2)

∫
d2σ1 · · · d2σn

(σ1σ2)(σ2σ3) · · · (σnσ1)
dk×kLβα

∏
α,a

δ(Cαa − LβαCV
βa[σ]). (2.3.13)

Clearly, by construction F (C) will contain (k−2)×(n−k−2) δ-function factors localizing

the integral over the C’s to have the Veronese form. Really these δ-functions are to be

thought of holomorphically, in other words, we think of “δ(x)→ 1/x”, where the contour

of integration is forced to enclose x = 0 (see [51]). Therefore, Tn,k will have the form

Tn,k =
1

vol(GLk)

∫
S1=···=SM=0

dk×nCαa
H(C)

S1(C) · · ·SM(C)
. (2.3.14)

We will call the S(C)’s “Veronese operators”, whose vanishing is necessary for the matrix

Cαa to be put into the Veronese form by some GLk-transformation.
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The first non-trivial example to study is the six-particle NMHV amplitude n = 6, k =

3; the computation was first presented in [37,39], having gauge-fixed the GLk-symmetry

on the C’s in the “link representation” where k of the columns of Cαa are set to an

orthonormal basis; it is very easy to translate these results in a general GLk-invariant

form, as has also been recently done in [66]. The result for H(C) is

H(C) =
(1 3 5)

(1 2 3)(3 4 5)(5 6 1)
(2.3.15)

while there is a single S(C) given by

S(C) ≡ S123456(C) = (1 2 3)(3 4 5)(5 6 1)(2 4 6)− (2 3 4)(4 5 6)(6 1 2)(3 5 1). (2.3.16)

II. Veronese Operators for Conics

The object S123456(C) will play a fundamental role in the story of the connected pre-

scription, so we pause to discuss its salient properties. For n = 6, k = 3, the Veronese

condition is simply that 6 points on CP2 lie on a conic. Now, any 5 generic points de-

termine a conic, and there is clearly a single constraint for a 6th additional point to lie

on the conic determined by the first 5; this is what S123455 = 0 imposes. We can see that

this is the constraint by looking at the form of the CV matrix

CV =


1 · · · 1

ρ1 · · · ρ6

ρ2
1 · · · ρ2

6

 , (2.3.17)

where we have used the little group freedom to rescale the elements of the first row to all

be 1. Clearly, the Veronese condition should be GLk-invariant, and hence we are looking

for a relationship between the minors of Cαa that is a consequence of this special form.

Note any 3× 3 matrix made from columns of Cαa has the Vandermonde form and so the

minors (i j k) are very simple: (i j k) = (ρi − ρj)(ρj − ρk)(ρk − ρi). In order to discover

the relationship between minors implied by the Veronese condition in this case, examine

the “star of David” figure below:

Each link in the figure connecting (i j) represents a factor of (ρi−ρj) (in cyclic order). We

can interpret the product of the links (1 2)(2 3)(1 3) in the figure as the minor −(1 2 3),

the product (3 4)(4 5)(3 5) as −(3 4 5), the product (5 6)(6 1)(5 1) as −(5 6 1), and the

remaining links (2 4)(4 6)(2 6) = −(2 4 6). Thus the product of all the links in the figure
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is (1 2 3)(3 4 5)(5 6 1)(2 4 6). However the picture is clearly cyclically invariant, so the

product is also (2 3 4)(4 5 6)(6 1 2)(1 3 5), and thus we have found the single relation we

are looking for

S123456 = (1 2 3)(3 4 5)(5 6 1)(2 4 6)− (2 3 4)(4 5 6)(6 1 2)(3 5 1) = 0. (2.3.18)

Clearly the condition that 6 points lie on a conic is invariant under the permutation of

the points, so that if S123456 = 0, then SP (1)P (2)···P (6) = 0 as well. In fact something

even stronger is true. Even though it is not manifest, the object S123456 is permutation

invariant in its labels (up to the sign of the order of the permutation); in other words,

SP (1)P (2)···P (6) = (−1)PS12···6. (2.3.19)

It is trivial to see that S picks up a minus sign under a cyclic shift of the labels i→ i+1,

and it can be further checked that S123456 = −S213456 as a simple consequence of the

Schouten identity.

Let us move on to examine the 7-particle NMHV amplitude [37, 39, 66] where the

integrand for T is of the form

H(C)

S123456 S123567

(2.3.20)

with

H(C) =
(1 3 5)(6 1 2)(1 3 6)(2 3 5)

(6 7 1)(1 2 3)(3 4 5)
. (2.3.21)

Here the role of the two S’s in the denominator is clear. The 5 points {1, 2, 3, 5, 6}
determine a conic; S123456 = 0 enforces that the point 4 lies on this conic, while S123567 = 0

enforces that 7 lies on this conic; together they impose that all 7 points lie on the same

conic. Actually there is a loophole in this argument, which nicely explains the role of the

many factors in the numerator of H(C). If the points {1, 2, 3, 5, 6} lie on a degenerate
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conic, it is possible for both S’s to vanish without having all 7 points on conic. For

instance, suppose that any four of the points {1, 2, 3, 5, 6} are collinear; this would make

each S vanish trivially, even if the other three points are in general positions, for instance,

The numerator factors in H(C) vanish on these “spurious” configurations and ensure

that they don’t contribute to the integrand; in this example, this configuration is killed

by the (2 3 5) factor in the numerator of H. It is easy to check that all spurious solutions

are dispatched by factors in the numerator in this way.

For general NMHV amplitudes, we will have (n−5) S’s. We stress that there are many

equivalent ways of writing equation (2.3.14), using different collections of (n−5) Veronese

operators in the denominator to enforce that the n points lie on a conic. For instance,

one canonical choice involves using a fixed set of 5 points {1, 2, 3, 4, 5} to determine the

conic, and then simply choosing the (n− 5) S’s to be S12345j for j = 6, . . . , n. However,

this is not the only possibility; all that is needed is for the labels of the S’s to overlap

sufficiently to guarantee all n points to lie on the same conic; but we will find other

choices to be more natural for our purposes.

III. General Veronese Operators

Moving beyond NMHV amplitudes, we must encounter Veronese operators that enforce

n points to live on a degree-(k − 1) curve in CPk−1. The conditions must again be

GLk-invariant and must therefore be written in terms of k× k minors. Fortunately, it is

very easy to see that the conditions are always a collection of constraints of exactly the

same form as S123456 = 0, involving the difference of the product of 4 minors. Physically

this is because we can use parity to relate the Veronese conditions for (n, k) to those for

(n, n− k). It is illuminating to see this explicitly, since it also allows us to make contact

with the work of [37]. Parity is manifest in the link representation, so let us study what

the Veronese CV matrices look like in this representation. Suppose we gauge-fix the

45



first k columns to the k × k identity matrix, and denote the remaining entries as ciI for

i = 1, . . . , k and I = k + 1, . . . , n. Instead of finding the explicit GLk transformation

that takes the CV matrix to this form, we can note that the ciJ can be written in a

GLk-invariant way as the ratio of two minors:

ciI =
(12 · · · î · · · kI)

(12 · · · k)
, (2.3.22)

where in the numerator î denotes that the column i is not included. Since this ratio is

GLk-invariant, we can compute it directly for the form CV , easily finding

ciI =
κI
κi

1

ρI − ρi
(2.3.23)

where

κI =
k∏
j=1

(ρI − ρj), κi =
k∏

j 6=i=1

(ρi − ρj). (2.3.24)

So the Veronese operators must check whether the k × (n − k) variables ciI can be

expressed in the form of equation (2.3.22) [37,39]. As discussed in [37], equation (2.3.22)

is equivalent to demanding that the k × (n − k) matrix with entries c−1
iI has rank two,

which is equivalent to demanding that all 3× 3 sub-determinants of this matrix vanish,

giving rise to conditions on the ciI which are sextic polynomials in the variables. However

even without examining these conditions in detail, it is clear the conditions are the same

swapping the matrix ciI with its transpose, which is the statement ofG(k, n) = G(n−k, n)

(i.e. parity). Now, under parity, a given k× k minor (m1m2 · · ·mk) of G(k, n) is mapped

to its complement (m1 · · ·mk) in G(n− k, n), where the ( ) denotes that the (n− k)

columns that are not m1, . . . ,mk are used. Explicitly,

(m1 · · ·mk) = εm1···mkl1···ln−k(l1 · · · ln−k). (2.3.25)

Thus, we see that written in a GLk-invariant way, the (k− 2)× (n− k− 2) Veronese

conditions for some (n, k) are equivalent to the same number of conditions for (n, n− k)

replacing the k × k minors with their complements. For instance, consider the case

k = 4, where the Veronese operators check whether points lie on the degree-3 curve

known as the twisted cubic. (This has been known for a long time—see, e.g. [67]). Any

6 generic points define a twisted cubic. For 7 points, the case with k = 4 is the same as
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k = 3 that we have already studied: the condition for 7 points to be on a conic can be

written as, e.g., S123456 = 0, S123567 = 0; so to get the condition for 7 points to lie on a

twisted cubic we may just take the parity conjugate—i.e. replace the factor (1 2 3) with

(1 2 3) = (4 5 6 7) and so on. This gives us the pair of conditions for 7 points to lie on

the twisted cubic determined by the first 6. But then we can use this pair of conditions

to test that any number of further points lie on the twisted cubic. In general, for any

k, any k + 2 points like on the degree-k curve, and we can determine the conditions for

(k + 3) points to lie on that curve by looking at the parity conjugate case where (k + 3)

points must like on a conic. These are (k + 3 − 5) = (k − 2) conditions of the form

Si1...i6 = 0, which we can translate to the original value of k by replacing 3 × 3 minor

with its [(k + 3) − 3] × [(k + 3) − 3] = k × k complement. Having determined these

(k − 2) conditions for (k + 3) particles to lie on the degree-k curve, we get a total of

(n− (k+ 3) + 1)× (k−2) = (k−2)× (n−k−2) conditions for checking that all n points

lie on the curve.

From this discussion, we may conclude that a manifestly GLk-invariant Grassmannian

formulation of the connected prescription for twistor string theory will necessarily involve

a denominator with (k − 2)× (n− k − 2) S’s, each of which is given as the difference of

a product of four minors.

2.4 Deformation and Duality

We have now seen two apparently quite different formulations of Grassmannian theories

with a particle interpretation. The first was motivated by unifying the residues of Ln,k
contributing to the tree amplitude into a single algebraic variety, which allowed us to

think about adding particles one at a time to construct higher-point amplitudes while

keeping the Yangian symmetry manifest. The cyclic invariance of this object is not

completely manifest, although at least for NMHV amplitude, the cyclic invariance of the

amplitude obtained from ΓL follows straightforwardly from residue theorems. Finally,

the U1-decoupling identity is not manifest at all.

One might like to see the cyclic symmetry and U1-decoupling identities in a much

more manifest way. This is what the connected prescription for twistor string theory

accomplishes beautifully, by showing that the amplitude is almost permutation invariant,
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only breaking down to cyclic invariance because of the “MHV” factor on the worldsheet

1
(σ1σ2)···(σnσ1)

. The price is that dual superconformal invariance is not manifest.

Despite appearances, the remarkable statement is that the amplitudes computed in

these two apparently very different ways should agree:

Tn,k = LΓLn,k
n,k . (2.4.1)

We would like to understand why this miracle can happen, beginning with the NMHV

amplitudes. It is a good start that both forms are written as integrals over a single

variety—but to go further in making the comparison, we need to deal with the problem

that the maps fk involve the product of three minors while the Veronese operators involve

the product of four minors. Clearly we need to find a modified form of the fk, which

involves a fourth minor. We can also motivate the need for finding a modified form of the

f ′ks with a fourth minor in another way. Since we will soon be interested in deforming

the fk, in order to have a consistent behavior under the scaling of each column vector of

the matrix Cαa—i.e. under little group rescalings—we have to deform each component

of the map fk = (k 2 k 1 k)(k 1 2)(2 3 k 2) by something that preserves the original

scaling. Note that it is impossible to add a polynomial in the minors to fk to achieve

this. However, we can modify each fk as follows

fmodif
k = (k 2 k 1 k)(k 1 2)(2 3 k 2)(1 3 k 1). (2.4.2)

By doing this we can deform it while keeping the map holomorphic. The reader might

worry about the fact that the new factor (1 3 k 1) has introduced new poles. It is not

hard to show that if hn is modified as

hmodif
n =

∏n−1
j=6 [(1 2 j)(2 3 j 1)]

∏n−1
`=5 (1 3 `)

(n 1)(1)(3)
, (2.4.3)

then the proof presented in section III. is not affected.

Even more surprising is the fact that in the new form, fmodif
k admits a continuous

family of deformations in such a way that the amplitude is independent of the deformation

parameter! Let us denote the deformed fmodif
k by Sk(tk) in anticipation to the connection

with the twistor string. More precisely, the deformation we would like to perform is the

following

Sk(tk) = (k 2 k 1 k)(k 1 2)(2 3 k 2)(k 1 1 3)

− tk(k 1 k 1)(1 2 3)(3 k 2 k 1)(k 2 k 2),
(2.4.4)
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where tk is a real parameter (the restriction of reality is to ensure that for generic λ’s

and λ̃’s, no pole of the form 1/(i i+1 i+2) will be hit by any of the Sk(tk)). (The minus

sign in (2.4.4) is introduced for later convenience.)

Let us denote the family of maps St ≡ (S6(t6), . . . , Sn(tn)). In a moment, we will

show that the contour integral∫
St

dn−5τ
Hn

S6(t6)S7(t7) · · ·Sn(tn)
(2.4.5)

is t-independent using a contour deformation and global residue theorems. Here, Hn =

hmodif
n . When tk = 1, Sk(1) becomes the Veronese operator checking the localization of

the six points {k 2, k 1, k, 1, 2, 3} on a conic in CP2, but lacks any convenient geometric

interpretation for t 6= 0.

We have checked by explicitly computing the factor F (C) from equation (2.3.13),

along the lines of the computations in [37, 39], that choosing these Veronese operators

to appear in the holomorphic δ-functions, the numerator factor H(C) precisely coincides

with h(C). Thus, t-independence proves the equality of Tn,3 an Ln,3 equipped with

contour ΓLn,3. As we already remarked, this establishes that the amplitude satisfies the

remarkable U1-decoupling identity.

It only remains to prove the t-independence of the amplitude, which follows from a

straightforward argument using the observations of Chapter 1. Using the notation of

Chapter 1, we think of one of the δ-function factors as a pole 1
d
, and we use the global

residue theorem grouping with the (n − 5) + 1 polynomial factors being the (n − 5)

fi’s, together with the remaining three minors in the denominator and d, (n 1)(1)(3)d,

for the last polynomial. Now, as in Chapter 1, we deform the pole away from d = 0,

getting a sum over terms setting (1) = 0, (3) = 0 and (n 1) = 0. Now, in all of our

deformations, the coefficient of t contains a factor (1 2 3), so the term with (1) = 0

kills the t-dependence of all these terms and is trivially t-independent. The terms with

(n 1) = 0 and (3) = 0 make t-independent the first and the last of the f ’s respectively,

and are seen to be t-independent by induction, down to the n = 6 case which is trivially

seen to be t-independent. Note that this argument can also be thought of as a direct

contour-deformation argument relating the connected prescription of the twistor string

theory to the disconnected prescription given by the CSW rules!

Note that even without this explicit argument, the form of the connected prescription
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given by equation (2.4.5) (at tk = 1) betrays its connection to CSW. The reason is the

presence of the product of three minors (n 1)(1)(3) in the denominator of Hn: the global

residue theorem tells us that 〈(n 1)(1)(3)〉 = 0, where the “expectation value” is here

defined with the integrand of the connected prescription. But this is a CSW operator!

Furthermore, since the twistor string starting point is manifestly cyclically invariant, we

must have have that 〈(i 2)(i)(i+2)〉 = 0 for all i. This is a much stronger constraint than

the vanishing of the Veronese operators, and is the way the connected prescription alerts

us to CSW localization.

For general k, we expect a similar analysis to hold. Each of the fi can be modified to

be written as a product of 4 minors in the form

fmodif
i = M i

1M
i
2M

i
3M

i
4 . (2.4.6)

We can now consider deformation by a parameter ti of the form

fi(t) = M i
1M

i
2M

i
3M

i
4 − tiM ′i

1 M
′i
2 M

′i
3 M

′i
4 (2.4.7)

and at ti = 1, this deformed fi coincides precisely with Veronese operators Si

Si = M i
1M

i
2M

i
3M

i
4 −M ′i

1 M
′i
2 M

′i
3 M

′i
4 . (2.4.8)

Furthermore, for this choice of Veronese operators, the numerator factors in the two

forms should become identical

h(C) = H(C). (2.4.9)

In our discussion of N2MHV amplitudes, we will present very strong evidence supporting

this claim with direct verification through the 10-point amplitude. Given this remarkable

fact, it is very natural to look for a generalization of the very simple contour deforma-

tion argument we gave for NMHV amplitudes to establish the t-independence of the

amplitude.

Assuming that the argument holds for all n and k, we find not only a duality between

Tn,k and Ln,k equipped with ΓLn,k, but equality for an infinite class of theories labeled by

the continuous parameter t. In a whimsical sense, we might think of t as representing an

“RG” flow. In this analogy the Ln,k description at t = 0 is the “ultraviolet” theory, with

the individual residues being the “gluons”, with all symmetries manifest, while the Tn,k
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description is the “infrared” picture with the unified residues combined into “hadrons”,

where the “macroscopic” properties of the collection of residues—the cyclic symmetries

and U1-decoupling identities—are manifest.

2.5 NMHV Amplitudes

Having described the central ideas of this chapter in general terms, we turn to examining

them in detail for the simplest non-trivial case of NMHV amplitudes. We will begin

by showing the sum over residues with the even/odd/even structure of given by ΓL in

equation (2.2.7) can be unified into a single variety in a natural way. We will then

show that this ansatz can be t-deformed to the amplitude computed from the connected

prescription for twistor string theory. We end the section by comparing these two ways

of unifying the residues into a single variety.

Let’s start by explicitly constructing a holomorphic map fn : Cn−5 → Cn−5 defined

in terms of n − 5 polynomials f ≡ (f6, . . . , fn) and a function hn, such the tree level

amplitude is given as

A(3)
n =

∫
fn=0

dn−5τ
hn

f6 · f7 · · · fn
. (2.5.1)

The reason for the offset in the labeling of the polynomials fi will become clear below.

The construction is such that taken as rational functions one has,

hn
f6 · f7 · · · fn

=
1

(1 2 3)(2 3 4) · · · (n 1 2)
. (2.5.2)

It is natural to try to construct the map f from consecutive minors as those are the

ones that enter in (2.5.2). However, it is easy to see that for n ≥ 8 it is impossible to

construct a holomorphic map from consecutive minors such that the contour given in [10]

is contained in the set of zeros of the map. It is instructive to see the obstruction already

for n = 8. The contour ΓL8,3 is given by

ΓL8,3 = (1)(2) [(3) + (5) + (7)] + (3)(4) [(5) + (7)] + (5)(6)(7)

+ (1)(4) [(5) + (7)] + (3)(6)(7)

+ (1)(6)(7).

(2.5.3)
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Let’s try to construct a mapping f 8 : C3 → C3, with fi polynomials in the minors (k).

Consider the terms (1)(2)(3), (1)(4)(5) and (3)(4)(5). From the first term we learn that

(1) and (3) must belong to different fi’s, while combining the information from the second

and third we learn that (1) and (3) must be on the same fi, which is a contradiction.

Having seen the need for a different way to construct fn we now show that the

construction is very natural and recursive. The reason it is recursive has a beautiful

physical interpretation: it is equivalent to the operation of adding one particle at a time!

In order to motivate the construction, consider first the six-particle amplitude. (In

this section, k is always 3 and will therefore be frequently suppressed). The contour given

in [10] is ΓL6,3 = (2 3 4) + (4 5 6) + (6 1 2). By this we mean three terms, the first of which

is ∫
(2 3 4)=0

dτ
1

(1 2 3)(2 3 4)(3 4 5)(4 5 6)(5 6 1)(6 1 2)
. (2.5.4)

Clearly, if we define the map f6 : C→ C as f6 = (2 3 4)(4 5 6)(6 1 2), then

A
(3)
6 =

∫
f6=0

dτ
h6(τ)

f6(τ)
(2.5.5)

with h6 = 1/(1 2 3)(3 4 5)(5 6 1).

In order to find a recursive way of constructing the map for all n, let us consider the

five particle integrand,

1

(1 2 3)(2 3 4)(3 4 5)(4 5 1)(5 1 2)
, (2.5.6)

and ask what factor would convert this into the six-particle integrand. Clearly,

Sk=3

5→6
=

1

(5 6 1)
× (4 5 1)(5 1 2)(2 3 4)

f6

, (2.5.7)

where f6 = (4 5 6)(6 1 2)(2 3 4), does what is needed. It might be puzzling at first why we

introduced (2 3 4) both in the numerator and in the denominator. The reason for this is

clear from the previous discussion. Recall that we have to define h6 and f6 independently.

Multiplying (2.5.6) by S
5→6

we immediately find h6.

We interpret the operation of multiplying by S
5→6

as that of adding particle six to the

five-particle amplitude. We will see that this interpretation is justified when we show that

in general this corresponds to building an object with the right holomorphic soft-limit.
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I. Recursive Construction

From the six-particle example, we are motivated to construct the n-particle amplitude

recursively as follows. Let f (n-1) : Cn−6 → Cn−6 be the holomorphic map and hn−1 the

meromorphic function such that

A(3)
n =

∫
f (n-1)=0

dn−6τ
hn−6

f6 f7 · · · fn−1

. (2.5.8)

Then the n-particle amplitude is obtained by “multiplying” the integrand by

S
(n−1)→n

=
1

(n 1 n 1)
× (n 2 n 1 1)(n 1 1 2)(2 3n 2)

fn
(2.5.9)

with fn = (n 2 n 1 n)(n 1 2)(2 3 n 2). By “multiplying” we mean extending the map

(f6, f7, . . . , fn−1) to a map fn : Cn−5 → Cn−5 by adding fn as the last component—i.e. ,

forming fn = (f6, f7, . . . , fn−1, fn). Likewise, we have a new hn given by

hn = hn 1
(n 2 n 1 1)(n 1 1 2)(2 3 n 2)

(n 1 n 1)
. (2.5.10)

Note that what we are doing can be interpreted as adding the particle n between

(n− 1) and 1:

Given that we are dealing with 3× 3 minors for NMHV amplitudes, it is reasonable

that the “add particle n” operation could involve particles (n − 3) up to 3. There are

a number of choices we could make for how to do this, but the one we have presented

accomplishes the task of unifying the residues in the nicest way that also manifests a

number of important properties that we will discuss at greater length at the end of this

section.
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II. The n = 7, 8 Amplitudes

For now, let us show how this construction works explicitly for n = 7 and n = 8. The

seven particle NMHV contour is given by

ΓL7,3 = (2) [(3) + (5) + (7)] + (4) [(5) + (7)] + (6)(7). (2.5.11)

Using the recursive construction, we multiply the six-particle h6/f6 by

S
6→7

=
1

(6 7 1)
× (5 6 1)(6 1 2)(2 3 5)

f7

(2.5.12)

with f7 = (5 6 7)(7 1 2)(2 3 5).

Putting everything together we find the seven-particle amplitude to be

A
(3)
7 =

∫
f7=0

d2τ
h7(τ)

f6(τ)f7(τ)
with h7(τ) =

(6 1 2)(2 3 5)

(6 7 1)(1 2 3)(3 4 5)
, (2.5.13)

while the map f 7 = (f6, f7) where,

f6(τ) = (2 3 4)(4 5 6)(6 1 2) and f7(τ) = (5 6 7)(7 1 2)(2 3 5). (2.5.14)

The claim is that the tree-level contour is nothing but the sum over the residues of all

the 9 zeros of f 7. At first sight this might seem surprising because by näıvely simplifying

h7/(f6f7) one would find the original object

1

(1 2 3)(2 3 4)(3 4 5)(4 5 6)(5 6 7)(6 7 1)(7 1 2)
, (2.5.15)

integrated over [(2)+(4)][(5)+(7)]. This only gives four terms of the six terms in (2.5.11)

and therefore it cannot be the correct amplitude. The resolution to this näıve puzzle is

that we should not cancel terms and forget about them! Recall that the map f 7 is

independent of the function h and we are supposed to carefully study all 9 residues. It

turns out that only six are nonzero, and these add up to the amplitude. Among the six,

four of them are the ones we got from the näıve analysis. Let us present the other two.

The first term missed in the näıve cancelation is the residue at the point located

where (2 3 4) = 0 and (2 3 5) = 0. Note that (2 3 5) is also a factor in the numerator, and

this is why näıvely may not be expected to contribute. The reason it does contribute

is that when we impose the condition that the points 2, 3, 5 be (projectively) collinear

and points 2, 3, 4 be collinear, it follows that 3, 4, 5 must also be collinear, and hence
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(3 4 5) = 0. But (3 4 5) is a factor in the denominator of h7 and therefore is a pole with

non-vanishing residue. In order to compute the residue in these cases we will use the

following simple result: given linear polynomials, A,B and C in two variables, such that

C = 0 when A = B = 0 one has the identity∫
|A|=ε1,|B|=ε2

d2τ
A

ABC
=

∫
|B|=ε1,|C|=ε2

d2τ
A

ABC
=

∫
|B|=ε1,|C|=ε2

d2τ
1

BC
, (2.5.16)

for any ε1 and ε2 arbitrarily small. This means that what we called the residue at

A = B = 0 is the same as the residue at B = C = 0.

Using the identity we find that the pole at (2 3 4) = (2 3 5) = 0 can also be thought of

as a pole at (2 3 4) = (3 4 5) = 0. Canceling (2 3 5) in the numerator and the denominator

we find that it is what we call residue (2)(3).

The second term is at (6 1 2) = (7 1 2) = 0. At this point we also have (6 7 1) = 0

which is a pole of h7. Using the same identity one finds the residue (6)(7).

All other remaining 3 out of the original 9 residues vanish due to the factors in the

numerator as they do not set any other factors in the poles h7 to zero.

Putting together the first four terms we found in the näıve analysis plus the two new

terms we find (2.5.11),

(2) [(3) + (5) + (7)] + (4) [(5) + (7)] + (6)(7). (2.5.17)

Aside: A Subtlety in the Use of the Global Residue Theorem

Before continuing on to the eight particle example, it is important to discuss a subtlety

which appears in the application of the global residue theorem (GRT) to residue integrals

of the sort we are dealing with. In fact, as we will illustrate for the seven particle example,

a näıve application of the global residue theorem leads to a contradiction. Let us recall

that the global residue theorem asserts that given a holomorphic map f : Cm → Cn with

m ≤ n and a holomorphic function s in Cm, then for any way of constructing a map

g : Cm → Cm by combining several fi’s into single gi’s such that g only has isolated zeros

then

∑
p∈g−1(0)

∫
Tmp

dmτ
s(τ)

f1(τ) · · · fm(τ)fm+1(τ) · · · fn(τ)
= 0 (2.5.18)
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where the sum is over all zeros of g and the contour Tmp is defined by translating p ∈
Cm to the origin and having |gi| = εi with εi a sufficiently small positive real number.

The theorem holds provided there is no contribution at infinity, which is true when

deg s ≤∑m
i=1 deg gi − (m+ 1). Suppose that the ith component of g is given by gi = fkfl

for some k and l. Using (2.5.18) one could conclude that∑
p∈Γk

∫
Tmp

dmτ
s(τ)

f1(τ) · · · fn(τ)
= −

∑
p∈Γl

∫
Tmp

dmτ
s(τ)

f1(τ) · · · fn(τ)
, (2.5.19)

where Γk (or by Γl) are the zeros of the map g where gi is replaced by fk (or by fl).

In one complex dimension this is the usual way Cauchy’s theorem is applied. Consider

now the 7-particle amplitude. We can set m = 2, s(τ) = (6 1 2)(2 3 5), and introduce

f5 = (6 7 1)(1 2 3)(3 4 5) in addition to f6 and f7. This gives a map fnew : C2 → C3.

According to the theorem we have to construct a map g : C2 → C2 out of the three

components of fnew. One possible choice is g1 = f6 and g2 = f5f7 = (6 7 1)(1 2 3)(3 4 5) f7,

with f6 and f7 given in (2.5.14). Recalling that each minor is linear in τ ’s we find that

the degree condition for the application of the GRT is satisfied. Using (2.5.19) one finds∫
{f6,f7}

d2τ
(6 1 2)(2 3 5)

(6 7 1)(1 2 3)(3 4 5) f6 f7

= −
∫

{f5,f6}

d2τ
(6 1 2)

(5 6 7)(7 1 2) f5 f6

. (2.5.20)

The LHS has been shown to give A
(3)
7 in the first part of this section. Let us now

compute the RHS where the contour is a sum over the zeros of {(6 7 1)(1 2 3)(3 4 5), f6}.
A straightforward computation reveals that this is the sum over the usual residues of

Ln,k given by

− (6)[(4) + (2) + (7)]− (1)[(4) + (2)]− (3)[(4) + (2)]. (2.5.21)

We can use a GRT as was done in [10] to bring this into a more recognizable form. We

will use that (6)[(1) + (2) + (3) + (4) + (5) + (7)] = 0 in (2.5.21) and a rearrangement of

terms (recalling that (i)(j) = −(j)(i)) to get

− (1)[(2) + (4) + (6)]− (3)[(4) + (6)]− (5)(6) + (2)(3). (2.5.22)

The first six terms give rise to the parity-conjugate version of the BCFW-contour as

explained in [10] and therefore equal A
(3)
7 . This means that (2.5.22) equals

A
(3)
7 + (2)(3), (2.5.23)
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which is a contradiction, as advertised. As mentioned at the beginning of the discussion,

there is an implicit assumption in using the GRT (2.5.18) to derive (2.5.19). The implicit

assumption is that Γk and Γl as sets of points in Cm are disjoint. This is exactly what

fails in our seven particle example. Indeed, note that the point (2) = (3) = 0 appears

in both contours! In order to see this, note that the map defined by g1 = f6 and

g2 = (6 7 1)(1 2 3)(3 4 5) f7, with f7 = (5 6 7)(7 1 2)(2 3 5), has a double zero at (2 3 4) =

(3 4 5) = 0 since (2 3 5) also vanishes there. This means that while the GRT is valid

as given in (2.5.18), the splitting into two parts must be defined independently in this

situation. In other words, one has to decide where to keep (2)(3). In our construction we

have defined the amplitude in such a way that (2)(3) is kept where the contour is defined

by {f6, f7} and therefore should subtracted from the second form, i.e. ,

A
(3)
7 = −

∫
{f5,f6}

d2τ
(6 1 2)

(5 6 7)(7 1 2) f5 f6

− (2)(3) . (2.5.24)

This is very reminiscent of what happened in [37], where some forms for the connected

prescription gave rise to the amplitude only after subtracting “spurious” configurations.

Note that the same exercise can be repeated but using g1 = f5f6 and g2 = f7. We leave

it to the reader to show that the same phenomena happens when this time the shared

point is given by (6) = (7) = 0. Recall that (2)(3) and (6)(7) were precisely the special

points in the previous discussion of the seven particle amplitude.

Eight-Particle Example

The eight particle amplitude can be analyzed in a similar manner to the seven particle

example. Following the same steps as before we find∫
f8=0

d3τ
h8(τ)

f6f7f8

with h8(τ) =
(6 1 2)(2 3 5)(7 1 2)(2 3 6)

(7 8 1)(1 2 3)(3 4 5)
(2.5.25)

while the map f 8 ≡ (f6, f7, f8) and for which the fi are given by

f6 = (2 3 4)(4 5 6)(6 1 2), f7 = (5 6 7)(7 1 2)(2 3 5), f8 = (6 7 8)(8 1 2)(2 3 6).(2.5.26)

Once again, the näıve cancelation of terms when h8/(f6f7f8) is thought of as a rational

function leads the contour [(2) + (4)](5)[(6) + (8)] which is clearly wrong as it misses 6

terms!
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Four of the missing terms are of the same origin as the two missing terms in the seven

particle amplitude. We simply list the map and leave the geometric proofs an elementary

exercises for the reader:

{(2 3 4), (2 3 5), (6 7 8)} −→{(2 3 4), (3 4 5), (6 7 8)} = (2)(3)(6);

{(2 3 4), (2 3 5), (8 1 2)} −→{(2 3 4), (3 4 5), (8 1 2)} = (2)(3)(8);

{(2 3 4), (7 1 2), (8 1 2)} −→{(2 3 4), (7 8 1), (8 1 2)} = (2)(7)(8);

{(4 5 6), (7 1 2), (8 1 2)} −→{(4 5 6), (7 8 1), (8 1 2)} = (4)(7)(8).

(2.5.27)

The final two missing terms are more interesting. One of the missing terms from the

Ln,k-contour is (2)(3)(4) = {(2 3 4), (3 4 5), (5 6 7)}. Note that this singularity has the

geometric interpretation of imposing that points 2, 3, 4, 5, 6 and 7 be collinear in the

CP2-sense.

Let us now look at the map f 8 at the point (2 3 4) = (2 3 5) = (2 3 6) = 0. Note that

this imposes exactly the same geometric constraint and it is therefore the same point

in (τ1, τ2, τ3) space. Since by construction we have zeros in h8 where (2 3 5) = 0 and

(2 3 6) = 0 we need two poles in the denominator to vanish. These are (4 5 6) in f6 and

(3 4 5) in h8. Recalling that the residue is computed using a T 3-contour |(2 3 4)| = ε1,

|(2 3 5)| = ε2 and |(2 3 6)| = ε3 one can show that the answer is the same as if we used the

contour |(2 3 4)| = ε1, |(3 4 5)| = ε2 and |(4 5 6)| = ε3 and therefore the residue is identical

to what we call (2)(4)(5).

Moreover, this also shows that the same point in C3 is determine by (4 5 6) = (2 3 5) =

(2 3 6) = 0. This means that this is not a distinct zero of f 8 and therefore does not give

rise to a new residue.

Exactly the same happens to the second missing term but this time we have to

start with {(6 1 2), (7 1 2), (8 1 2)} and realize that (6 7 8) in f8 and (7 8 1) in h8 vanish.

Summarizing the new kind of terms

{(2 3 4), (2 3 5), (2 3 6)} = {(4 5 6), (2 3 5), (2 3 6)} −→ {(2 3 4), (3 4 5), (4 5 6)} = (2)(3)(4);

{(6 1 2), (7 1 2), (8 1 2)} = {(6 1 2), (7 1 2), (6 7 8)} −→ {(6 7 8), (7 8 1), (8 1 2)} = (6)(7)(8);

and collecting all these results we find 10 residues which agree with ΓL8,3 given in (2.5.3).
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III. General Proof For All n

Let us now prove that

A(3)
n =

∫
fn

hn
f6 f7 · · · fn

, (2.5.28)

reproduces the correct tree-level amplitude as defined by ΓLn,3 for all NMHV amplitudes

in full generality. The proof proceeds by induction. In fact, it is a simple generalization

of the computation we have already seen for eight particles—which is the simplest case

where all the general ingredients appear.

Let us state more precisely what we want to prove. Consider the n-particle amplitude.

Given that as rational functions

1

(1)(2) · · · (n 2)(n 1)(n)
=

hn
f6 · f7 · · · fn−1 · fn

, (2.5.29)

all we need to show is that the points in Cn−5 determined by

En ?On ? En ? · · ·︸ ︷︷ ︸
(n− 5) factors

(2.5.30)

are zeros of fn. These zeros are guaranteed to give the right residues while all other

zeros of fn have zero residue by virtue of (2.5.29)! Recall from [10] that the ?-product

is such that (i) ? (j) = 0 if i > j, and

En = (2) + (4) + . . .+ (2[n/2]) and On = (1) + (3) + . . .+ (2[n/2] + 1). (2.5.31)

A note on notation: in this discussion we use (i) for a consecutive minor of the n-particle

amplitude. Any other minor will be written explicitly as (i j k).

Induction Argument

Start by assuming that the statement is true for (n − 1)-particles. In other words, we

can freely start with

1

(1)(2)(3) · · · (n 3)(n 2 n 1 1)(n 1 1 2)
(2.5.32)
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and consider only the zeros of f(n−1) corresponding to

En−1 ?On−1 ? En−1 ? · · ·︸ ︷︷ ︸
(n− 6) factors

(2.5.33)

where the subscript is there to indicate that the minors in (2.5.32) are being used.

Recall that in order to get the n-particle formula all we have to do is to multiply by

hn−1/f6 · · · fn−1 by

S(3)

(n−1)→n
=

(n 2 n 1 1)(n 1 1 2)(n 2 2 3)

(n 1 n 1) fn
(2.5.34)

with fn = (n 2)(n)(n 2 2 3). For the purpose of the proof, all we need to show is that

all the points in Cn−5 given by (2.5.30) are also points in

[En−1 ?On−1 ? En−1 ? . . .]× [(n 2) + (n) + (n 2 2 3)] . (2.5.35)

The multiplication sign ‘×’ is there to stress that every single term on the left must be

multiplied by every term on the right (unlike the symbol ?).

The first two terms in the last factor of (2.5.35), i.e. , [(n − 2)] and [(n)], directly

give terms in (2.5.30) except when they hit terms of the form [. . . ? (n 1 1 2)] or [. . . ?

(n 2 n 1 1) ? (n 1 1 2)]. The reason for splitting these two cases will become clear in a

moment.

Terms of the form [. . . ? (n 1 1 2)]× (n 2) vanish because no other consecutive minor

is set to zero, while terms of the form [. . . ? (n 1 1 2)] × (n) make (n 1 n 1) = 0 and

give rise to [. . . ? (n 1)](n) = [. . .] ? (n 1) ? (n). The situation is different and much more

interesting for the second class. Note that [. . .] ? (n 2 n 1 1) ? (n 1 1 2) × (n 2) and

[. . .] ? (n 2 n 1 1) ? (n 1 1 2)× (n) define the same point in Cn−5! This particular point

is precisely the one where minors (n 2) = (n 1) = (n) = 0. This means that they give

rise to the terms in (2.5.30) of the form [. . .] ? (n 2) ? (n 1) ? (n).

This shows that as sets of points in Cn−5

[En−1 ?On−1 ? En−1 ? · · · ] ? [(n 2) + (n)] = [En ?On ? En ? · · · ] ? [(n 2) + (n)] . (2.5.36)

The only difference between this formula and what we want is a (n 4) term in the final

factor. The reason is that with (n − 5) total factors, the ?-product forces any factor

of the form (n k) with k ≥ 2 in the last factor to vanish in (2.5.30). Moreover, it
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is clear that only one term in (2.5.30) has (n 4) as the final factor. This is the term

(2) ? (3) ? (4) ? . . . ? (n 5) ? (n 4). In order to generate this term, note that (n 2 2 3) = 0

in (2.5.35) together with (2) = (3) = . . . = (n 1) = 0 implies that (n 4), which explicitly

is given by (n 4 n 3 n 2), vanishes which is what we wanted to show.

As an aside, note that this proof motivates us to write the Ln,k-contour as ?-multiplication

of the (n− 1)-particle contour by [(n) + (n 2) + (n 4)], in other words, it shows that it

is given as

[(6) + (4) + (2)] ? [(7) + (5) + (3)] ? [(8) + (6) + (4)] ? · · · ? [(n) + (n 2) + (n 4)]. (2.5.37)

Note that we have unified the residues of this contour into a single variety; both the

contour itself as well as the unification are not manifestly cyclically invariant. The cyclic

invariance of ΓLn,3 was shown to follow simply from the global residue theorem in [10], and

hence the unified form we have given it also gives rise to a cyclically invariant amplitude.

IV. “Inverse-Soft” Interpretation

It remains to show that the “add one particle at a time” construction we have given has

an interpretation more specifically as an “inverse-soft” operation, by showing that the

multiplicative factor S(3)

(n−1)→n
turns into the soft factor for particle n in the limit λn → 0.

Recall that

S(3)

(n−1)→n
=

(n 2 n 1 1)(n 1 1 2)(n 2 2 3)

(n 1 n 1) fn
(2.5.38)

with

fn = (n 2)(n)(n 2 2 3). (2.5.39)

Now, in order to exhibit the soft limit, we will use the global residue theorem, choosing

(n − 6) of the polynomials to be the f ’s for the (n − 1)-particle amplitude, and the

remaining polynomial to be fn times the remaining denominator factors, which among

others include the minor (n 1 n 1). The residue theorem gives us a sum over terms

putting the remaining denominator factors to zero. It is easy to show in general (as will

be discussed in detail in [24]), that none of these contributions can be singular in the

soft limit, except the one where the minor (n 1 n 1) is set to zero. Focusing only on this

contribution, it will also be shown that every residue of Ln,3 setting (n 1 n 1) and any
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other collection of minors to zero maps, in the soft limit λn → 0, to the usual soft factor

multiplied by the corresponding residue of G(3, n − 1) determined by the vanishing of

these other minors. This guarantees that the soft limits are manifest as claimed.

V. Connection to the Twistor String

As already mentioned in section 2.4, there is a continuous deformation of the map f(n)

which does not affect the sum over residues and which gives rise to an integral over

the Grassmannian which can be shown to come from the twistor string formulation of

the amplitude and which wonderfully manifests the cyclic-symmetry and U1-decoupling

identities of the amplitude.

It is instructive to note that both the cyclic invariance and U1-decoupling identities

can be established without performing the explicit calculation relating our form of the

object to the connected prescription. By construction, the Veronese operators localize

the integral over the Cαa’s to be over matrices with the Veronese form; computing the

residue tells us to look at what is happening to first order in a Laurent expansion in

(n− 5) variables in the vicinity of the Veronese form. Let us consider such a first-order

perturbation away from the Veronese form given by the following parametrization of the

Cαa matrix,

C =


ξ1 +

∑n−5
j=1 εjρ

j
1 ξ2 +

∑n−5
j=1 εjρ

j
2 . . . ξn +

∑n−5
j=1 εjρ

j
n

ξ1ρ1 ξ2ρ2 . . . ξnρn

ξ1ρ
2
1 ξ2ρ

2
2 . . . ξnρ

2
n

 , (2.5.40)

one finds that the leading order in ε of the Veronese polynomials is linear in ε and can be

denoted by Sleading
k (1). This means that the following change of variables uk = Sleading

k (1)

from (ε1, . . . , εn−5) to uk is linear and the contour integral around the point Sleading
k = 0

can be written as follows

G(ξi, ρi) =

∫
dn−5u

1

u6u7 · · ·un
, (2.5.41)

where the contour computes the residue at uk = 0 which gives one. Of course, to get the

final result for the tree amplitude one would still have to integrate over the ρ’s, but this

form already allows us to see both the cyclic-symmetries and U1-decoupling identity. This

is because straightforward computation of the function G(ξi, ρi) reveals a very beautiful
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property: it is almost permutation invariant. In fact, it is given by

G(ξi, ρi) =
1

(ρ1 − ρ2)(ρ2 − ρ3) · · · (ρn − ρ1)
× G̃(ξi, ρi) (2.5.42)

where G̃(ξi, ρi) is fully permutation invariant! Despite the non-manifest cyclic invariance

of this integrand, this residue is cyclically invariant, and this conclusion is not changed

in performing the integral over ρ’s giving the tree amplitude. Similarly, since the only

breaking of permutation invariance is in the pre-factor, which is just the same twistor-

string measure guaranteeing the U1-decoupling identity.

2.6 Generalization to N2MHV

Returning to the Grassmannian, it is not difficult to extend our results for general NMHV

amplitudes to higher-k by first using parity-conjugation to obtain the contour for NMHV,

and then view this as the result of having added a particle to an MHV amplitude. It

will be instructive to work this out in detail for N2MHV, because there are several new

structures that emerge first for k = 4 that will be important for all higher-k; these new

structures will be discussed in section I.. After deriving a general formula (2.6.10) for the

N2MHV amplitude computed in the Grassmannian, we will check it in detail for the 8-

particle amplitude in section II.. This will allow us to discuss many of the new structures

that emerge beyond NMHV, and which are prerequisite to understanding higher-k.

The method by which we will obtain the contour for N2MHV is roughly as follows.

We will first write the contour for the 7-particle N2MHV(= NMHV) amplitude by parity-

conjugating the result for k = 3. We will see that this can be viewed as having been

obtained from the 6-particle N2MHV(= MHV) amplitude by acting with an operator

which adds a particle while preserving k, similar to the operator discussed above to

derive the NMHV contour. This operator naturally generalizes to higher-n, and through

its repeated application to the 6-particle amplitude, we obtain a closed-form result for

all n.

As discussed in section 2.3, parity acts in the Grassmannian by exchanging C with its

dual C̃, and trading all minors for their complements (see near (2.3.25)). For example,

in going from G(3, 7)→ G(4, 7), the minor (1 2 3) 7→ (1 2 3) = (4 5 6 7). Knowing this, we

can immediately write down the 7-point N2MHV amplitude from the NMHV amplitude
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given above. It is,

A
(4)
7 =

∫
f̃7=0

(3 4 5 7)(4 6 7 1)

(2)(4)(6)
{

[(7)(3 4 5 7)(5)]︸ ︷︷ ︸
f̃6

[(1)(3)(4 6 7 1)]︸ ︷︷ ︸
f̃7

} , (2.6.1)

where we have used f̃j to denote the parity-conjugates of ‘fj’, and we have used a single

label in parentheses to denote any consecutive minors of G(4, n)—e.g., (2) ≡ (2 3 4 5).

Although equation (2.6.1) is correct as written, we will find it useful to exploit the cyclic-

symmetry of the Grassmannian to bring (2.6.1) into a form more reminiscent of our result

for NMHV. Specifically, by rotating all particle labels in (2.6.1) by j 7→ j − 3, we obtain

an expression remarkably similar to our form of the NMHV amplitude:

A
(4)
7 =

∫
f
(4)
7 =0

(4 7 1 2)(1 3 4 5)

(6)(1)(3)

1

F
4567 123

, (2.6.2)

where we have grouped the (cyclically-rotated) parity-conjugates of f6 and f7 into the

object

f
(4)
7 ≡

{
f

(4)
7a , f

(4)
7b

}
≡
{

(4)(4 7 1 2)(2), (5)(7)(1 3 4 5)
}
, (2.6.3)

and where F
4567 123

≡ f
(4)
7a · f

(4)
7b
. To motivate this notation, observe that adding a particle

to an n-point amplitude while preserving k necessarily introduces (k−2) new integration

variables that must be fixed by the contour, and each f
(4)
n accounts for one of these

new variables. For k = 4, therefore, it is the pair of maps
{
f

(4)
7a , f

(4)
7b

}
≡ f

(4)
7 —taken

together—which fixes the contour, and F
4567 123

= f
(4)
7a ·f

(4)
7b

which appears in the integrand.

(The indices ‘4567 123’ below F are meant to make explicit the fact that F involves the

seven particles numbering 4567 123—presented in this order. This notation will be useful

below, when we consider adding particles to a general n-point amplitude.)

Let us now re-write the 7-particle amplitude in such a way that makes manifest that it

could have been obtained by acting on the 6-particle N2MHV amplitude with an ‘inverse-

soft’ operator similar to that discussed above for NMHV. Knowing A
(4)
7 from above, this

is very easy to do:

A
(4)
7 =

∫
A

(4)
6 × S(4)

6→7
=

∫
f
(4)
7 =0

1

(1)(2)(3)(4 5 6 1)(5 6 1 2)(6 1 2 3)
S(4)

6→7
, (2.6.4)
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where

S(k=4)

6→7
=

(4 5 6 1)(5 6 1 2)(6 1 2 3)(4 7 1 2)(4 2 3 5)(1 3 4 5)

(6 7 1 2)

1

F
4567 123

. (2.6.5)

Two important aspects of S(4)

6→7
will allow it to be generalized to higher n in a way

which does not alter its form. First, it correctly maps the measure of L6,4 to that of

L7,4: by ‘removing’ the three minors of G(4, 6) which are not consecutive in G(4, 7)—

namely, (4 5 6 1), (5 6 1 2), and (6 1 2 3)—by including them in the numerator of S(4); also,

by adding to the measure each of the four consecutive minors of G(4, 7) which were not

present in L6,4. One of these minors—(6 7 1 2)—is manifest in (2.6.5), while the other

three minors involving particle 7 are part of F . Notice that all the non-consecutive

minors appearing in F are manifestly part of the numerator of (2.6.5). The second

important aspect of S is that, by including F in its definition, it describes the contour

of integration for the new integration variables added when going from L6,4 to L7,4 (of

course, there were no integration variables for the 6-point N2MHV(= MHV) amplitude).

Let us now see how we can generalize S(4)

6→7

to one which adds particle 8 to the 7-

particle amplitude. It turns out there is a very natural way of doing this. Notice that

for k = 4, the four consecutive minors of G(4, n) involving n—which were not present

in G(4, n 1) and—which must be added to the measure by S involves exactly seven

columns: n 3, . . . , n, 1, 2, 3. And because S(4)

6→7
and F

4567 123
both involve only seven fixed

columns of the Grassmannian, there is a canonical way to generalize these to higher n.

Concretely, in going from the (n − 1)-point amplitude to the n-point amplitude, the

inverse-soft operator must involve the minors

(n 3 n 2 n 1 n), (n 2 n 1 n 1), (n 1 n 1 2), and (n 1 2 3) (2.6.6)

in the denominator. It is easy to see how these can be kept manifest in F through its

natural generalization to Fn by

Fn≡ F
(n 3)(n 2)(n 1)n 123

≡ f (4)
na · f (4)

nb
(2.6.7)

where

f (4)
na ≡ (n 3 n 2 n 1 n)(n 3 n 1 2)(n 3 2 3 n 2);

and f (4)
nb
≡ (1 n 2 n 1 n)(1 n 2 3)(1 3 n 3 n 2).

(2.6.8)
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Notice that (2.6.7) is simply the same as (2.6.3) with the substitution {4, 5, 6, 7} 7→
{n 3, n 2, n 1, n} while keeping {1, 2, 3} fixed.

In a similar manner, we can generalize the inverse-soft operator to

S(4)

(n 1)→n
=

(n 3n 2n 1 1)(n 2n 1 1 2)(n 1 1 2 3)(n 3n 1 2)(n 3 2 3n 2)(1 3n 3n 2)

(n 1n 1 2) ·Fn

.(2.6.9)

By repeatedly applying this inverse-soft operator to the 6-particle N2MHV amplitude,

we can obtain any higher-point amplitude we like. Indeed, it is not difficult to obtain

the general result for any number of particles. Doing this explicitly, we find that the

n-particle N2MHV amplitude is given by

A(4)
n =

∫
f
(4)
n =0

∏n−1
j=7

[
(1 2 3 j) (2 3 j 2 j 1) (1 j 2 j 1 j)

]∏n−3
j=4

[
(1 3 j j+1) (1 2 j j+3)

]
(n 1)(1)(3) F7 ·F8 · · ·Fn

. (2.6.10)

As we will see below, this ansatz correctly gives the 8-particle N2MHV amplitude, and

it does so in a remarkably-novel way—involving only four one-loop leading singularities

together with sixteen two-loop (all the residues of G(4, 8) are at most two-loop leading

singularities, [24]).

I. The Geometry of Residues in the Grassmannian

The 8-particle N2MHV amplitude not only offers us an extremely good test of the ansatz

(2.6.10), but it also allows us the opportunity to discuss some of the more general struc-

tures involved in amplitudes (and their contours) for k > 3. Most of these arise as a

simple consequence of the fact that for k > 3, minors of the Grassmannian are typically

irreducible polynomials of degree greater than one and therefore vanish along cycles in

G(k, n) which multiply intersect each other (and themselves). This is true of the cycles

defined by the vanishing of the (mostly non-consecutive) minors which define the tree

contour in (2.6.10), and it is true for the purely consecutive minors which are relevant to

Ln,k.
One obvious consequence of the fact that any given set of cycles can multiply-intersect

is that more data is necessary to identify any particular residue than just which minors

vanish on its support. And it is not true in general that distinct residues supported along

the vanishing of the same set of minors are at all related. This fact becomes increasingly

apparent as n grows large, but is already striking for n = 9: for example, while two of

66



the five residues supported along by the vanishing of the minors “(1)(2)(3)(4)(6)(8)” are

the leading singularities of four-mass boxes, the other three residues associated with the

vanishing of these minors are simply rational functions.

As discussed in [10], the number of isolated solutions to setting a given set of minors

to zero is described by Littlewood-Richardson formula. For k = 4 these are simply the

Catalan numbers: there are generally 2 solutions to setting 4 minors to zero in G(4, 8); 5

solutions to setting 6 minors to zero in G(4, 9); 14 solutions for G(4, 10); 42 for G(4, 11);

132 for G(4, 12); and simple residues cease to exist for n > 12. While we may may able

to get away with labeling the 2 solutions for each set of four minors of G(4, 8) by simply

‘1’ and ‘2,’ it is clear that something more is needed in general.

As we will see below, one very powerful way to identify all the distinct residues

in G(k, n) is simply through the projective geometry of the Grassmannian viewed in

the particle interpretation. And, perhaps even more importantly, this geometric data

is closely-related to physically-important information, such as soft-limits (see [24]). Of

course, when each column of the Cαa-matrix is viewed as a point in CPk−1, every minor

represents some geometric test. Consider the following concrete example, which arises

frequently in G(4, n). It is easy to show that

(2 3 4 5) = (3 4 5 6) = 0 =⇒

A all the points {2, 3, 4, 5, 6} are coplanar;

B the points {3, 4, 5} are collinear.
(2.6.11)

In case A, we know as a consequence that (2 3 4 6) = 0, for example (similarly for

any other choice of 4 from among {2, 3, 4, 5, 6}); and in the case of B, we know as a

consequence that (3 4 5 8) = 0 (or, more generally, (3 4 5m) = 0 for any m). Notice that

the natural way to test either case would be through the vanishing of a non-consecutive

minor. Indeed, one way to uniquely identify every residue of the Grassmannian is to

give an exhaustive list of all the minors—both consecutive and non-consecutive—which

vanish on its support. (This is actually quite obvious: any point in the Grassmannian

can be identified by its Plücker coordinates, which in turn can be written as a sequence

of (typically non-consecutive) minors.)

One of the most remarkable features of the form of the tree-contour derived in (2.6.10)

is that the non-consecutive minors used to define the contour appear to automatically

collapse any possible ambiguity about which particular residues are included in the con-
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tour. This turns out to be possible because for n > 7, at least one factor among the Fn’s

given in (2.6.7) is always composed entirely of non-consecutive minors!

Another remarkable feature of the contour given in (2.6.10) is that it is given entirely

in terms of ‘simple’ residues—that is, simple residues involving both consecutive and

non-consecutive minors. As we will see, the 8-point contour fixed by the contour in

(2.6.10) turns out to contain 9 residues which are ‘composite’ in terms of consecutive

minors—and yet all of them arise as the simple residues of the contour. Moreover, for

higher n, there are always dim(τ) maps among the F ’s which define the contour, and

so: all residues—composites and non-composites alike—are generated as simple residues

involving both consecutive and non-consecutive minors!

On the Naming of Residues

Before we calculate the actual residues of G(4, 8) which contribute to the contour given

above, it is necessary for us to develop some notation to describe the residues concretely.

From our discussion above, it is clear that any residue can be uniquely identified by

giving a sufficiently-exhaustive list of the minors which vanish at its support. Naturally,

we would like to represent this data as concisely as possible. While we will not prove it

here, (see [24]), it turns out that there is a natural, physically-motivated, concise way to

represent all the necessary information: any residue of G(4, n) can be uniquely identified

by the following:1

1. a list of the consecutive minors which vanish on its support, which we write in the

form, e.g., “(2)(4)(6)(8)” (where the order of these labels determines the sign of

the residue);

2. all triples of consecutive, collinear points, which we indicate by a blue subscript

labeling the middle of the consecutive triple; so, e.g., by “(2)(3)(7)(8)1 4” we mean

the particular solution to (2)(3)(7)(8) for which the triples (812) and (345) are

collinear;

1This is only strictly true if we consider each conjugate-pair of residues associated with the leading

singularities of a four-mass box as equivalent.
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and, although not strictly necessary to identify each residue, we find it useful2 to further

indicate

3. all triples of consecutive points whose parity conjugates are coplanar, indicated with

a red superscript labeling the middle of triple of points; so, e.g., by “(2)(3)(7)(8)5 8”

we mean the particular solution to (2)(3)(7)(8) for which all the particles in the

complements of (456) and (781) are coplanar—i.e. , for which (78123) and (23456)

are coplanar.

With this notation, our example (2.6.11) can be rewritten:

(2)(3) =⇒

 (2)(3)8

(2)(3)4

. (2.6.12)

As a statement about functions, (2.6.12) reads (3) = (3)′(2) + (3)8· (3)4, which is to say,

the minor (3) factorizes on the support of (2) (and vice versa).

It is worth keeping in mind that the collinearity and coplanarity operators are actually

stronger constraints than minors alone. Specifically,

• each (· · · )m implies that (m 1 m m+1 p) = 0 for any p; and in particular, it implies

that the minors (m 1) = (m 2) = 0;

• each (· · · )q implies that any minor forming a subset of (q 1 q q + 1) vanishes; in

particular, it implies that (q+2) = . . . = (q+n 5) = 0.

Notice that it is possible for a residue to be supported where both factors of a given

minor vanish simultaneously. For example, if (2) = 0 and both (3)8 = (3)4 = 0, then

a total of three constraints would be imposed by these two minors. Because of the

symmetry between (3) factorizing on (2) and (2) factorizing on (3), we choose to indicate

this extra constraint by writing [(2)(3)]84. Notice that either of the labels ()8 and ()4 imply

that minors (2) and (3) vanish. An example of this type of composite for n = 8 is the

residue [(2)(3)](8)8
4—which will in fact contribute to the tree contour as we will see below.

Similarly, if we were to know that all of the points 3, 4, 5, and 6 were collinear, then we

would have a residue adorned by both ()4 and ()5; but ()5 implies that (3) = (4) = 0,

2This is particularly relevant for n = 8, as it is the ‘parity-conjugate of three points being collinear’;

for higher n, this geometric constraint becomes increasingly constraining.
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while ()4 implies (2) = (3) = 0, and so minor (3) is doubly-constrained. In this case, we

would name the residue (2)(3)2(4)8 1
4 5 (here, the coplanarity labels are a consequence of

the collinearity).

Although we will not have room to discuss this here (see [24]), in addition to fully-

specifying each distinct residue the Grassmannian, these labels also have an important,

physically-motivated interpretation. They indicate how each particular residue—when

viewed as a function of the kinematical variables—can be constructed out of an analogous

lower-point residue in a canonical way through the action of an ‘inverse-soft operator’

analogous to the one discussed above, but applicable to each individual residue alone

and without reference to the entire amplitude. Specifically, whenever a residue involves

three points being collinear in G(k, n), it is canonically-related to a residue in G(k, n−1)

where the middle particle has been removed. Similarly, because the coplanarity of (n−3)

points is the parity-conjugate of three points being collinear, a coplanarity label indicates

that a residue is canonically-related to a residue of G(k − 1, n− 1) in which the labelled

particle has been removed.

II. The 8-Particle N2MHV Amplitude

We now are fully prepared to write down and compute the 8-point N2MHV amplitude

as given by the general formula (2.6.10). Explicitly, we have

A
(4)
8 =

∫
f
(4)
8 =0

(5 6 7 1)(7 1 2 3)(2 3 5 6)(1 2 4 7)(1 3 4 5)(1 2 5 8)(1 3 5 6)

(7)(1)(3) F7 ·F8

, (2.6.13)

where, from (2.6.7),

F7 =
[
(4)(4 7 1 2)(2)

]
×
[
(1 2 3 7)(3 4 5 1)(5 6 7 1)

]
,

and F8 =
[
(5)(5 8 1 2)(5 2 3 6)

]
×
[
(6)(8)(1 3 5 6)

]
.

(2.6.14)

This multidimensional contour integral involves a few subtleties beyond those already

encountered for NMHV contours. As discussed at length above, the principle new sub-

tlety encountered for k = 4 is that the minors which define the contour are generically

quadratic polynomials, whose cycles of zeros typically intersect each other (and them-

selves) multiply. Another novelty first encountered for k = 4 is that it is possible for

some of the minors within the fi’s to factorize on a solution of the others, leading to
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multiple branches which can sometimes can have very different structures. These poten-

tial subtleties are best understood through example. Therefore, in the next subsection,

we will work through a number of the contributions (and potential contributions) to the

tree amplitude coming from the contour above, trying to sample all of the possible types

of contributions.

Before we begin our series of examples, it is useful to lay-out the form we expect

the answer to take, and the type of calculation that will be involved in the evaluating

(2.6.13). Because setting any 4 minors of G(4, 8) to zero will typically have 2 isolated

solutions, we may first expect that by pairing any of the three minor-factors of the fi’s

together, we would find . 34 ∗2 = 162 isolated poles in the Grassmannian ‘encompassed’

by the contour. Of course, the numerator of (2.6.13) ensures that any pole generated by

the fi’s which is not a pole of consecutive minors will have a vanishing residue. Therefore,

we expect that the vast-majority of isolated solutions to fi = 0, for i = 1, . . . , 4 will not

contribute anything to the amplitude. Indeed, it turns out that among all the 34 choices

of factors from among the fi’s (and all of their multiple solutions), only 20 poles will

contribute a non-vanishing residue to the contour—and these terms have been checked

to add-up to precisely the 8-particle amplitude, matching right-down to the sign of every

term.

Example Contributions from the Contour

In order to gain some understanding of how each of the 20 non-vanishing residues are

generated by the contour, it is worthwhile to analyze a few examples in detail. Let us

start by rewriting the maps fi which define the contour in a slightly more transparent

way:

f1 = [(2 3 4 5)(4 5 6 7)(7 1 2 4)] , f3 = [(5 6 7 8)(2 3 5 6)(8 1 2 5)] ,

f2 = [(1 2 3 7)(3 4 5 1)(5 6 7 1)] , f4 = [(6 7 8 1)(8 1 2 3)(3 5 6 1)] .
(2.6.15)

Notice that the contour is naturally composed of some 34 parts coming from the simul-

taneous vanishing of any choice of factors from among the fi’s. However, because f2 is

entirely composed of non-consecutive minors, most poles of the contour will have van-

ishing residue and contribute nothing to the tree amplitude. The exceptional cases are

those for which the solution to f1 = . . . = f4 = 0 is also a pole in L8,4. The complete
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list of such contributions is given in Table 2.1 at the end of this section. Each of these

contributions is quite easy to understand geometrically, and considering a few exercises

in particular will illustrate the role of projective geometry in the general contour.

• (2 3 4 5)(3 4 5 1)(2 3 5 6)(1 3 5 6) =⇒ (2)(3)2(4)8 1
4 5

Notice that this choice of minors from the fi’s includes only one consecutive minor,

(2 3 4 5), together with the three non-consecutive minors (1 3 4 5), (2 3 5 6), and (1 3 5 6).

The important thing to notice about these four minors is that they all involve points 3

and 5. This means that the geometry problem at hand is merely the classic problem of

Schubert calculus of finding the set of lines—in this case the lines ‘[3 5]’—which intersect

four given lines in P3.

Here, the four lines which [3 5] must intersect are [1 4], [4 2], [2 6], [6 1]. Notice that

these four lines mutually intersect at points 4, 2, 6, and 1, forming a closed loop. This is

illustrated on the left-hand side of the figure below. It is not hard to see that the only

two solutions are those shown on the right-hand side of the same figure, [3 5]A and [3 5]B.

The solution [3 5]A involves all four points {1, 2, 3, 5} being collinear. While this con-

figuration implies that minors (8) and (1) vanish, it does not provide a fourth constraint

coming from a consecutive minor, and therefore the residue associated with this pole will

vanish in the contour.

The solution [3 5]B, on the other hand, involves all the points {3, 4, 5, 6} being collinear.

Recall that when 3, 4, 5 are collinear, minors (2) and (3) vanish, and when 4, 5, 6 are

collinear, minors (3) and (4) vanish. Thus, the minor (3) is doubly-constrained, and we

find that this geometric configuration contributes the residue (2)(3)2(4)8 1
4 5 to the ampli-

tude.

• (2 3 4 5)(3 4 5 1)(2 3 5 6)(8 1 2 3) =⇒ [(2)(3)](8)8
4
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Figure 2.1: The two classes of solutions to setting minors (2 3 4 5), (1 3 4 5), and (2 3 5 6),

to zero. In solution A, line [3 5] lies on the plane [1 2 4] and passes through the point 2;

for B, the line [3 5] lies on the plane [6 2 4] and passes through the point 4.

The first three minors of this problem are the same as in the last problem. Let us start

by considering these minors by themselves. As before, because all three minors involve

the particles 3 and 5, we are looking for the configurations of lines [3 5] which intersect

the three given lines [1 4], [4 2], and [2 6]. There are two families of such solutions which

are illustrated in Figure 2.1. Specifically, these two solutions are:

A the line [3 5] passes through the point 2 and lies on the plane [1 4 2], or

B the line [3 5] passes through the point 4 and lies on the plane [6 4 2].

Now let us consider imposing the additional constraint (8 1 2 3) = 0 to each of the two

cases. In case A, (8 1 2 3) = 0 implies that the line [8 1] intersect [2 3] = [2 5] = [3 5].

The only configuration then, is where the line [3 5] lies along [1 2], which was the same

case we encountered in the previous geometry problem—and one that does not involve

enough consecutive minors to contribute to the amplitude.

For case B, the line [8 1] will intersect the plane [2 4 6] at some point through which

[3 5] must pass; this will fix the angular freedom of [3 5] on the plane [2 4 6]. Therefore, we

have that 3, 4, and 5 are collinear, and the points 2, 3, 4, 5, 6 are coplanar. Both of these

conditions set the minors (2) and (3) to zero, and so the two minors [(2)(3)]84 contribute

a total of three constraints. When combined with minor (8), we obtain the composite

residue [(2)(3)](8)8
4.

• (2 3 4 5)(5 6 7 1)(5 6 7 8)(8 1 2 3) =⇒ (2)(4)(5)(8)6 and (2)(6)(5)(8)3
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Recall how consecutive minors factorized in the example (2.6.12). Just as in that case,

because minors (5 6 7 8) and (5 6 7 1) overlap on three columns, we may conclude that,

on the support of (5), (5 6 7 1) → (6)3 · (4)6. What this means for this case is that the

two solutions to (5 6 7 1) = (5 6 7 8) = 0 are (4)(5)6 and (5)(6)3. Combining these two

constraints with the minors (2) and (8) from f1 and f4, respectively, we find that the two

solutions are: (2)
[
(4)6+ (6)3

]
(5)(8) = (2)(4)(5)(8)6+ (2)(6)(5)(8)3.

Before we move on to the next example, it is worth emphasizing that the ordering

of minors appearing in the residue “(2)(6)(5)(8)3” was fixed by the ordering of the fi’s:

minor (5 6 7 1) appearing in f2 contributed the ‘(6),’ while f3 contributed minor (5). This

completely fixes the signs of the tree-contour.

• (4 5 6 7)(5 6 7 1)(5 6 7 8)(6 7 8 1) =⇒ (4)(5)2(6)2 3
6 7

Let us start this problem by first considering the three minors (4 5 6 7), (5 6 7 8) and

(6 7 8 1). Here, we have that the line [6 7] must intersect the three lines [4 5], [5 8], and

[8 1]. This case should be familiar from before, and is illustrated in Figure 2.2. There are

two infinite families of solutions:

A. the line [6 7] passes through the point 5 and lies on the plane [1 5 8], or

B. the line [6 7] passes through the point 8 and lies on the plane [4 5 8].

Let us first consider case A. Here, we see that there is an apparent problem: when the

points {5, 6, 7, 8, 1} are coplanar, we automatically have that minor (5 6 7 1) = 0, and

so f2 vanishes everywhere over this entire infinite ‘sheet’ which solves the first three

constraints! Clearly, when f2 = 0 everywhere over a surface, it does not generate a

[ [

[ [

Figure 2.2: The two classes of solutions to setting minors (4 5 6 7) = (5 6 7 8) = (6 7 8 1) =

0, where the possible configurations for the line [6 7] are indicated.
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transversally-supported pole. Said another way, f2 vanishes trivially for this class of

solutions, and only because the non-consecutive minor (5 6 7 1) vanishes. But this also

vanishes everywhere in the numerator and so it effectively imposes no constraint at all.

In case B, however, (5 6 7 1) is not manifestly zero. Here, in fact, the vanishing of

(5 6 7 1) imposes the non-trivial constraint that [6 7] intersects the point 5. Notice that

this is actually where both of the factors of minor (5 6 7 1) = 0—one factor which tests

the coplanarity of the points {5, 6, 7, 1} and the other which tests the collinearity of the

points {5, 6, 7}. For this solution, the line [6 7] must lie along the line [5 8], and hence the

points {5, 6, 7, 8} are all collinear! Similar to our first example above, the collinearity of

{5, 6, 7} implies that minors (4) and (5) vanish, while the collinearity of {6, 7, 8} implies

that the minors (5) and (6) vanish. This leads to the composite residue (4)(5)2(6)2 3
6 7.

Residue Geometry Problem:

f1 f2 f3 f4

(2)(3)2(4)8 1
4 5 (2345)(3451)(2356)(1356)

[(2)(3)](6)8
4 (2345)(3451)(2356)(6781)

[(2)(3)](8)8
4 (2345)(3451)(2356)(8123)

(2)[(5)(6)]37 (2345)(5671)(5678)(6781)

(2)[(7)(8)]51 (2345)(1237)(8125)(8123)

(4)(5)2(6)2 3
6 7 (4567)(5671)(5678)(6781)

[(4)(5)](8)2
6 (4567)(5671)(5678)(8123)

(4)[(7)(8)]51 (4567)(1237)(8125)(8123)

(6)(7)2(8)4 5
8 1 (7124)(7123)(8125)(8124)

(2)(1)(5)(8)7
2 (2345)(7123)(5678)(8123)

Residue Geometry Problem:

f1 f2 f3 f4

(2)(3)(5)(6)4 7 (2345)(3451)(5678)(6781)

(2)(5)(3)(6)3 8 (2345)(5671)(2356)(6781)

(2)(3)(5)(8)4 (2345)(3451)(5678)(8123)

(2)(3)(7)(8)1 4 (2345)(3451)(8125)(8123)

(2)(7)(3)(8)5 8 (2345)(1237)(2356)(8123)

(2)(4)(5)(8)6 (2345)(5671)(5678)(8123)

(2)(6)(5)(8)3 (2345)(5671)(5678)(8123)

(2)(7)(5)(8)5 (2345)(1237)(5678)(8123)

(4)(5)(7)(8)1 6 (4567)(5671)(8125)(8123)

(4)(7)(5)(8)2 5 (4567)(1237)(5678)(8123)

Table 2.1: All of the non-vanishing residues contributing to the 8-point N2MHV ampli-

tude as given in (2.6.13), and the corresponding ‘geometry problem’ that gives rise to

each.

Summary of 8-Point N2MHV Results

Continuing to solve the various geometry-problems in this manner, we would eventually

find that the complete contour given in (2.6.13) contributes only 20 non-vanishing residues
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to the tree-amplitude. These 20 terms are as follows:

A
(4)
8 =

(2)(3)2(4)8 1
4 5 + [(2)(3)](6)8

4 + [(2)(3)](8)8
4 + (6)(7)2(8)4 5

8 1 + (2)[(7)(8)]51

+ (4)[(7)(8)]51 + (2)[(5)(6)]37 + (4)(5)2(6)3 2
7 6 + [(4)(5)](8)2

6 + (2)(1)(5)(8)7
2

+ (2)(3)(5)(6)4 7 + (2)(5)(3)(6)3 8 + (2)(3)(5)(8)4 + (2)(3)(7)(8)1 4 + (2)(7)(3)(8)5 8

+ (2)(4)(5)(8)6 + (2)(6)(5)(8)3 + (2)(7)(5)(8)5 + (4)(5)(7)(8)1 6 + (4)(7)(5)(8)2 5

(2.6.16)

We have checked that this correctly matches the result calculated in field theory. The

geometric origin of each of these terms is summarized in Table 2.1.

One of the remarkable features of (2.6.16) is that among all the residues of the contour,

only 4 are primitive one-loop leading singularities—namely, (2)(3)2(4)8 1
4 5 , (4)(5)2(6)2 3

6 7 ,

(6)(7)2(8)4 5
8 1 , and (2)(1)(5)(8)7

2, of which the first three are cyclic-variants of the function

‘X’ of [31], while the last is cyclically-related to ‘V ’ (see also [10]). All the other residues

appearing in (2.6.16) are two-loop leading singularities; these and similar facts were

discussed at length in a paper specifically focused on residues in G(k, n) for k ≥ 4, [24].

One may naturally wonder if there is any similarity between the structure of the tree-

contour in (2.6.16) and the even/odd structure of the NMHV contour. In some sense

there is: knowing how each of the factors of each fi contributes to the non-vanishing terms

in (2.6.16), we find that the tree-contour can be re-written (somewhat schematically) as,

A
(4)
8 =

[
(2)+(4)+(6)8 1

][
(5)3+(7)5+(1)7

2+(3)4+(5)6

][
(3)5+(7)1+(5)+(7)4+(3)8

][
(4)8 1+ (6)+(8)

]
.

By expanding this formula and keeping only the terms that are consistent with the

constraints implied by the collinearity/coplanarity operators, precisely the 20 terms of

the tree-contour given in (2.6.16) are found.

III. Connection to the Twistor String

We can now take our proposal for all N2MHV amplitudes and deform it along the lines

explained in section 5 in order to get an integral over the Grassmannian localized on

C-matrices of the Veronese form. In other words we take

A(4)
n =

∫
S

(4)
n =0

H (4)
n

S (4)
7 ·S (4)

8 · · ·S (4)
n

, (2.6.17)
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where

H (4)
n =

n−1∏
j=7

[
(1 2 3 j)(2 3 j 2 j 1)(1 j 2 j 1 j)

]n−3∏
j=4

[
(1 3 j j+1)(1 2 j j+3)(1 3 j j+2)(1 2 j j+2)

]
(n 1) (1) (3)

,

(2.6.18)

and S(4)
n ≡

{
S

(4)
7a , S

(4)
7b
, . . . , S

(4)
na , S

(4)
nb

}
with

S
(4)
ka
≡ (k 3 k 2 k 1 k)(k 3 k 1 2)(k 3 2 3 k 2)(k 3 k 1 1 3)

− (k 3 k 1 k 1)(k 3 1 2 3)(k 3 3 k 2 k 1)(k 3 k 2 k 2);

and S
(4)
kb
≡ (1 k 2 k 1 k)(1 k 2 3)(1 3 k 3 k 2)(1 k 1 2 k 3)

− (1 k 1 k 2)(1 2 3 k 3)(1 k 3 k 2 k 1)(1 k 3 k 2);

(2.6.19)

and each S (4)
k represents the product the two Veronese operators S

(4)
ka
· S(4)

kb
.

The natural question at this point is whether this form agrees with the twistor string

formula. In order to check this we take the twistor string formula equation (2.3.13) and

gauge fix GL2 using ξ1, ρ1, ρ2 and ρ3 and gauge fix GL4 to some link representation.

Therefore we get an integral of the form [39]

JGL2

∫
dρ4dρ5 · · · dρn

(ρ1 − ρ2)(ρ2 − ρ3) · · · (ρn − ρ1)

∫ n∏
i=2

dξi
ξi

∏
i,J

δ

(
ciJ −

ξiξJ
ρi − ρJ

)
(2.6.20)

where JGL2 = ξ1(ρ1 − ρ2)(ρ2 − ρ3)(ρ3 − ρ1). Here, i runs over four indices (the ones

chosen for the link representation), while J runs over the remainder n − 4. And we

can now expand around any fixed configuration ĉiJ = ξ̂iξ̂J/(ρ̂i − ρ̂J). In other words,

we may take ciJ = ĉiJ + haiJεa where haiJ are some generic functions of ρ̂’s and ξ̂’s, where

a = 1, . . . , 2(n−6). Now we take the system of 4(n−4) equations given by the δ-functions

as a system that ‘locks’ all 2(n− 6) ε’s to zero and all n− 3 ρ’s and all n− 1 ξ’s to their

hatted values. This means that (2.6.20) becomes

ITwistor−String ≡
ξ̂1(ρ̂1 − ρ̂2)(ρ̂2 − ρ̂3)(ρ̂3 − ρ̂1)

(ρ̂1 − ρ̂2)(ρ̂2 − ρ̂3) · · · (ρ̂n − ρ̂1)
× J4(n−4)(ρ̂, ξ̂, 0), (2.6.21)

where J4(n−4)(ρ̂, ξ̂) is the Jacobian of the 4(n−4) equations EiJ = ξ̂iξ̂J/(ρ̂i− ρ̂J)+haiJεa−
ξiξJ
ρi−ρJ

evaluated on the hatted values and ε = 0—i.e. ,

J4(n−4) =
∂(EiJ)

∂(ε′s, ξ′s, ρ′s)
. (2.6.22)
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On the Grassmannian side, we gauge-fixGL4 in the same way and expand ciJ = ĉiJ + haiJεa.

Using this expansion, each of the 2(n − 6) Veronese operators becomes linear in ε’s to

leading order. Therefore we can evaluate the integral (2.6.17) and obtain

IG ≡ H (4)
n

∣∣
ciJ=ĉiJ

× J2(n−6), (2.6.23)

where the Jacobian J2(n−6) is given by

∂(S
(4)
7a , . . . , S

(4)
nb )

∂(ε1, . . . , ε2(n−6))

∣∣∣∣∣
ε=0

. (2.6.24)

We have checked that ITwistor−String = IG for n = 7, 8, 9 and 10. It would be interesting

to find a general proof for all n.

2.7 Discussion

The expression for Ln,k as a contour integral over the Grassmannian G(k, n) makes the

Yangian symmetry [49] of N = 4 SYM manifest. Since conformal and dual superconfor-

mal symmetries act on mutually non-local spaces, it is not surprising that each individual

residue of Ln,k does not have a good local space-time interpretation; rather, there is by

now a great deal of evidence for the conjecture of [10], that the residues compute leading

singularities of scattering amplitudes at all loop orders. Even at tree-level, however, a

central issue is to understand how local space-time physics emerges. As we saw in Chapter

1, for the special contours associated with the tree amplitude, a canonical contour defor-

mation can expose the spacetime Lagrangian in light-cone gauge via the CSW/Risager

rules. But the more fundamental question remains: what is invariantly special about

this contour? Is there a question intrinsic to the Grassmannian that singles it out? In

this chapter we have clearly seen the outlines of the answer to this question. Demanding

that our integral over G(k, n) has a “particle interpretation” in the Grassmannian picks

out a contour that gives us the tree amplitudes with a good space-time interpretation.

The notion of a particle interpretation in the Grassmannian seems more primitive and

fundamental than locality in space-time, since it is formulated in a setting that exhibits

all the symmetries of the theory. Unifying the residues of ΓLn,k into a single variety leads

to an “add one at a time” particle interpretation which makes the Yangian symmetry

manifest. The Veronese particle interpretation is equivalent to the connected prescription
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for twistor string theory. Quite beautifully, these apparently different sorts of Grassman-

nian theories are simply related by a deformation parameter t. The theory at t = 0

corresponds directly to the unified form of Ln,k with contour ΓLn,k, while the connected

prescription amplitude Tn,k corresponds to t = 1. Thinking of t as analogous to RG time,

Ln,k is like the “ultraviolet” theory, where the full Yangian symmetry is manifest, while

Tn,k is akin to the confined description in the infrared, where the “macroscopic” prop-

erties of the collection of residues—especially the cyclic symmetries and U1-decoupling

identities—are manifest. For NMHV amplitudes a simple residue theorem demonstrates

t-independence, and we expect a generalization of this argument should be possible for

all k. Indeed, while have restricted our discussion in this chapter to NMHV and N2MHV

amplitudes, we fully expect the basic physical picture for tree amplitudes we have pre-

sented in this chapter to generalize for arbitrary k. A number of new issues arise for

k > 4—in particular the distinction between the more natural localization in CPk−1 ver-

sus localization in the CP3 of twistor space first becomes apparent for k = 5—and we

will return to examine these issues in future work.

We have focused exclusively on tree amplitudes in this chapter, yet clearly the most

exciting feature of Ln,k is that it contains all-loop information. Can the “particle interpre-

tation” picture in the Grassmannian be generalized to include full loop-level amplitudes,

not just leading singularities?
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Chapter 3 The Grassmannian
and the Twistor String:

Unifying all Tree Amplitudes in N = 4

3.1 Introduction

There is now a vast and growing body of evidence to support the duality conjectured

by Arkani-Hamed, Cachazo, Cheung and Kaplan [10] between the leading singularities1

of planar N(k−2)MHV scattering amplitudes in N = 4 super Yang-Mills and certain

contour integrals denoted Ln,k over the Grassmannian manifold G(k, n) of k-planes in

n-dimensions [10–12, 18, 19, 22–24, 39, 51, 63, 66, 68–71]. Parameterizing G(k, n) in terms

of a k × n matrix Cαa—composed of k representative vectors in Cn which span a given

plane—Ln,k is given by

Ln,k =
1

vol(GLk)

∮
Γn,k

dk×nCαa
(1)(2)(3) · · · (n− 1)(n)

k∏
α=1

δ4|4 (CαaWa) , (3.1.1)

where a = 1, . . . , n labels each particle, eachWa ≡ (µ̃, λ̃|η̃)a denotes a supertwistor which

encodes the external momenta and helicities, and ‘(j)’ represents the jth k × k-minor of

Cαa built out of consecutive columns of the matrix Cαa,
2

(j) ≡ (j j+1 · · · j+k 1) ≡ εα1 α2 ···αkCα1 jCα2 j+1 · · ·Cαk j+k−1. (3.1.2)

Of course, as a contour integral, equation (3.1.1) is nothing but the sum of the residues

of the poles ‘encompassed’ by the contour of integration Γn,k. The combinations of

residues which compute tree amplitudes can be obtained by a variety of field-theoretic

1Leading singularities are L-loop integrals in field-theory evaluated along T 4L-contours which put 4L

internal propagators on-shell.
2We will often use a single label—e.g. ‘(1)’—to denote a consecutive minor beginning with the

indicated column. More generally, a k × k minor constructed out of columns [`1, . . . , `k] Cαa will be

denoted (`1 . . . `k).
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techniques, including the BCFW recursion relations [7,31] (which can be efficiently trans-

lated in terms of the residues of Ln,k, [22–24], including the form derived from BCFW

in [50]). It was not until recently, however, that the contours Γn,k which compute tree

amplitudes in Ln,k were understood in a way purely intrinsic to the Grassmannian. This

understanding made manifest a deep connection between the Grassmannian integral Ln,k
and Witten’s twistor string theory. Because this connection is crucial to our main result,

we briefly review it here before presenting our proposal for the contours which give all

tree amplitudes in N = 4 super Yang-Mills.

Amplitudes in Witten’s twistor string theory [4] can be computed via the ‘connected

prescription’ written down by Roiban, Spradlin and one of the authors in [52, 53, 53] as

integrals of an open string correlator over the moduli space of curves in a supertwistor

space. Although geometrically very beautiful, these integrals turned out to be technically

very difficult to evaluate because of the presence of highly non-linear equations. Using

the link variables described in [39, 63], Dolan and Goddard [63] wrote contour integrals

which compute all tree amplitudes as rational functions, and checked explicitly that these

lead to the correct formulae for many particular amplitudes (see also [39]), and for all

split-helicity amplitudes in [70]. The key insight of Dolan and Goddard was to use a

sequence of global residue theorems3 which connect the connected prescription contours

to Ln,k. Significantly, the twistor string construction—especially when expressed in the

framework of the connected prescription—carries with it the knowledge of a natural,

preferred choice of integration contour which computes each tree amplitude. But only

by combining the connected prescription with the particle interpretation described in

Chapter 2 does this preferred contour become computationally tractable.

The equivalence between the connected prescription for the twistor string and Ln,k was

recently proven for all NMHV amplitudes in [12,66]. These proofs rely on repeated use of

the global residue theorem, and show that the combination of residues contributing to any

NMHV amplitude computed via the twistor string can be re-expressed as a direct sum of

residues of Ln,k. Moreover, an amazing and much stronger property was observed: the two

integrands were in fact related by a smooth deformation which interpolates between the

connected prescription of twistor string theory and the Grassmannian integrand of Ln,k.

3The global residue theorem is the multi-dimensional generalization of Cauchy’s theorem for ordinary

contour integrals in one complex dimension (see, e.g. [65]).
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The deformation connecting the two descriptions moves the locations of each pole, and

changes the value of each residue; but the sum of residues which define the tree amplitude

is itself found to be invariant. Taking together the results of [12, 66], that the twistor

string connected prescription provides a preferred choice of integration contour and that

its integrand may be smoothly deformed to the integrand Ln,k, we conclude therefore

that the twistor string may be used to generally answer the important open question of

determining the appropriate contours in the Grassmannian for computing general tree-

amplitudes in N = 4 super Yang-Mills. For this to be the case, it is necessary that the

contour given for the connected prescription continue to make manifest the connection

between the twistor string and the Grassmannian through a contour deformation similar

to that described in [12,66] for NMHV amplitudes.

In this chapter, we propose a new, explicit formula for all N(k−2)MHV tree amplitudes

in N = 4, generalizing the NMHV results of [12, 66]. In section 2 we will present our

main formula, equation (3.2.3), and discuss its smooth deformation to a contour in Ln,k.
In section 3 we will describe how this formula can be obtained by iteratively ‘adding

particles’ in a natural way to the first non-trivial tree amplitude, the 6-point NMHV

amplitude, while making sure that soft limits and parity are manifest at every stage. In

section 4 we will make a series of transformations to map our formula to that of [63],

thereby deriving it from twistor string connected prescription.
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3.2 All Tree Amplitudes in N = 4 superYang-Mills

We propose that the general, tree-level, planar, color-stripped, n-point N(k−2)MHV am-

plitude is given by

A (k)
n =

1

vol(GLk)

∮
F

(k)
n =~0

dCαa H (k)
n

(n− 1)(1)(3) F (k)
n

k∏
α=1

δ4|4 (CαaWa) , (3.2.3)

where the contour F (k)
n = ~0 is the zero-locus of F (k)

n : C(n−k−2)(k−2) → C(n−k−2)(k−2),

defined in terms of the (n− k − 2)(k − 2) Veronese maps F j
` ,

F (k)
n ≡

n∏
`=k+3

(
k−2∏
j=1

F j
`

)
, (3.2.4)

where each F j
` can be written in terms of the minors of Cαa according to

F j
` ≡

(
σj` ` 2 ` 1 `

) (
σj` ` j j+1

) (
σj` j+1 j+2 ` 2

) (
σj` ` 1 j j+2

)
−
(
σj` j j+1 j+2

) (
σj` j+2 ` 2 ` 1

) (
σj` ` 1 ` j

) (
σj` j+1 ` 2 `

)
,

(3.2.5)

with σj` representing collectively the columns [1, . . . , j 1]
⋃

[j+` k, . . . , ` 3] of Cαa, and

where H (k)
n is the product of all the non-consecutive minors in the first line of equation (3.2.5);

explicitly,

H (k)
n = H (k)

n−1 × (σk−2
n−1 n 1 k 2 k 1)

×
k−3∏
j=1

[
(σjn n j j+1)(σj+1

n−1 n 3 n 2 n 1)
] k−2∏
j=1

[
(σjn n 1 j j+2)(σjn j+1 j+2 n 2)

]
.

Noticing that all the minors appearing in a given map F j
` involve the same set of columns

σj` , and that the rest are organized according to a ‘3×3’ Veronese operator, we may encode

the structure of equation (3.2.5) by writing4

F j
` ≡σj` ./ S`−2 `−1 ` j j+1 j+2,

≡
(

[1, . . . , j 1]
⋃

[j+` k, . . . , ` 3]
)
./ S`−2 `−1 ` j j+1 j+2,

(3.2.6)

where Sa b c d e f represents the primitive Veronese operator which, when acting on P2, tests

if the six points a, . . . , e lie on a conic,

Sa b c d e f ≡ (a b c)(c d e)(e f a)(b d f)− (b c d)(d e f)(f a b)(c e a). (3.2.7)

4This simplified notation can be justified by observing that only 6 of the k + 3 columns which are

relevant to a given Veronese operator F j` change from one term to another.
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As will be described below, the structure of the numerators H (k)
n is dictated entirely

by the proposed duality between equation (3.2.3) and a related expression in Ln,k. Fol-

lowing the theme of [12, 66], let us introduce a deformation parameter tj` for each map

F j
` ,

F j
` (tj`) ≡

(
σj` ` 2 ` 1 `

) (
σj` ` j j+1

) (
σj` j+1 j+2 ` 2

) (
σj` ` 1 j j+2

)
− tj`

(
σj` j j+1 j+2

) (
σj` j+2 ` 2 ` 1

) (
σj` ` 1 ` j

) (
σj` j+1 ` 2 `

)
.

(3.2.8)

Then the integral A (k)
n (tj`), with all F j

` in (3.2.3) replaced by F j
` (tj`), will map precisely

to the one appearing for Ln,k in limit of tj` → 0 for all `, j. This is because, together with

the three minors manifest in equation (3.2.3) (namely, (n− 1), (1), and (3)) the factors

which constitute F (k)
n (tj`) when tj` → 0 will contribute exactly one copy of each of the

consecutive minors present in the measure of the integral Ln,k:

F (k)
n =

(
F 1
k+3 · · ·F k−2

k+3

)
︸ ︷︷ ︸

∪
(2),(4)

(
F 1
k+4 · · ·F k−2

k+4

)
︸ ︷︷ ︸

∪
(5)

(
F 1
k+5 · · ·F k−2

k+5

)
︸ ︷︷ ︸

∪
(6)

· · ·
(
F 1
n−1 · · ·F k−2

n−1

)
︸ ︷︷ ︸

∪
(n−k)

(
F 1
n · · ·F k−2

n

)
︸ ︷︷ ︸

∪
(n−k+1),...,(n−2),(n)

.

And since H (k)
n is composed of all the non-consecutive minors present in the first factors

of each F j
` , we have that

lim
tj`→0

(
H (k)

n

(n− 1)(1)(3) F (k)
n

)
=

1

(n− 1)(1)(3)

1

(2) (4)(5) · · · (n− 3)(n− 2) (n)
, (3.2.9)

making the connection between the twistor string and Ln,k manifest.

We strongly suspect that formula (3.2.3) is unchanged by any of the deformations

introduced by the parameters tj` in (3.2.8). For NMHV amplitudes, tj`-independence has

been rigorously proven by a direct application of the global residue theorem, [12,66], and

we suspect that similar arguments can be used to prove tj`-independence more generally.

We have checked this numerically for several nontrivial N2MHV amplitudes, including

the alternating-helicity amplitude for eight gluons, but we leave the question of proving

complete tj`-independence to future researches.

Let us end this section by presenting explicitly the tj` → 0 limit of the deformed

twistor-string contour (3.2.3), illustrating some of the key differences between the two

formulations. When tj` → 0, each Veronese operator factorizes into the product of the

four minors listed in the first line of (3.2.8). In general, all but n− 3 of these factors will

be non-consecutive, and therefore are included among the factors of the numerator H (k)
n .
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Although it is generally ill-advised to ‘cancel terms’ between the contour-defining maps

defining F (k)
n and the numerator, there is a good physical reason for suspecting that

the ‘fourth’ minors of each of the F j
` (tj` → 0)—which are never consecutive—contribute

no non-vanishing residues to the contour.5 As described in [12, 51], CSW operators,

when translated into the Grassmannian, are constructed from products of three minors.

Although beyond the scope of the present discussion, ensuring that each pole of the

integrand is composed of three-minor operators helps one to connect the CSW, or ‘dis-

connected’, support of tree amplitudes to the ‘connected’ support of the twistor string

through a series of global residue theorems. At any rate, there is now enough direct

evidence that general tree-contours are entirely supported on the vanishing first three

factors of each F j
` when tj` → 0 to justify the simplification to a ‘3-minor’ form of each

map in the contour.

Taking each tj` → 0, the twistor-string contour A (k)
n (tjl ) becomes,

A (k)
n (tj`) −−−→

tj`→0
A(k)
n =

1

vol(GLk)

∮
F(k)
n =~0

dCαa H(k)
n

(n− 1)(1)(3) F (k)
n

k∏
α=1

δ4|4 (CαaWa) , (3.2.10)

where

F (k)
n ≡

n∏
`=k+3

(
k−2∏
j=1

f j`

)
with f j` ≡ σj` ./ (` 2 ` 1 `) (` j j+1) (j+1 j+2 ` 2) , (3.2.11)

with σj` as before, and where

H(k)
n =

H (k)
n∏n

`=k+3

∏k−2
j=1

(
σj` ` 1 j j+2

) , (3.2.12)

which, as before, represents the product of all non-consecutive minors among the maps

f j` .

Alternatively, we could have started with formula (3.2.10) for A(k)
n and obtained

formula (3.2.3) for A (k)
n by “adding a missing minor” to each map of f according to

f = σ ./ (a b c)(c d e)(e f a)

⇒ F = σ ./ [(a b c)(c d e)(e f a)(b d f)− (b c d)(d e f)(f a b)(c e a)] ,
(3.2.13)

5The reason why näıve cancellation of factors between H
(k)
n and those in F

(k)
n (tj` → 0) can be

misleading is described with several examples in Chapter 2; for example, even the poles supported by

purely non-consecutive minors of the F j` ’s can have the interpretation of being supported by consecutive

minors, and thereby contributing a residue to the contour.
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in order to supply a simple geometric meaning to the contour—the maps F ’s having the

natural interpretation of testing the localization of points in P(k−1).

Both formulae give all tree-level amplitudes in N = 4 super Yang-Mills in terms of

a specific contour integral. The first one, equation (3.2.3), naturally arises from twistor

string theory, and its contour F (k)
n = ~0 has a nice geometric meaning: it is the constraint

for n points to lie on a degree-(k − 1) curve in twistor space. On the other hand, the

formula (3.2.10) provides the integration contour for Grassmannian Ln,k, and thereby

ensures that each contribution is itself manifestly Yangian invariant.

3.3 Building the Contour one Particle at a Time

In this section we describe how the general contour for any tree amplitude (3.2.3) can

be obtained by sequentially extending the contour of the first non-trivial amplitude, the

6-point NMHV amplitude, by adding one particle at a time. Before doing so, however,

it will be useful to briefly discuss some of the generally-desirable features that any such

contour-prescription should have.

Let us consider what would be necessary to extend a formula valid for Ln−1,k to one

valid for Ln,k while keeping k fixed. Recall that the integral Ln,k’s measure is given by the

product of the n consecutive k×k minors of Cαa. The nth particle, being represented by

the nth column of Cαa participates in k of these consecutive minors; and these k minors,

taken together, span a range of min(n, 2k−1) columns of Cαa. This suggests that, fixing

k, only for n ≥ 2k−1 will a tree contour be sufficiently general to have a natural extension

to all n. Conveniently however, the n = (2k − 1)-point Nk−2MHV amplitude, A (k)
n=2k−1, is

nothing but the parity-conjugate of the n-point Nk−3MHV amplitude, A (k−1)
n=2k−1, allowing

it to be uniquely related to a contour with strictly lower-k. And so we should not be too

surprised that it is possible to ‘bootstrap’ a formula valid for any fixed k to one valid for

all k, using parity when n = 2k − 1 as the bridge which connects each k to k + 1.

Just as there are several equally-valid formulae for the general NMHV tree contour

(see, e.g. [12,39,63,66]), there are several ways of writing the general N(k−2)MHV tree

contour. The one that we derive here is obtained by starting with the particular NMHV

tree contour given in Chapter 2 and extending it in such a way that the general contour

prescription is invariant under parity for all n, k. As we will see, these criteria lead
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uniquely to the contour given here which defines our general result given in equation

(3.2.3).6

I. NMHV amplitudes

Let us begin with the simplest amplitude which requires a non-trivial contour to be

specified. The 6-point NMHV amplitude’s contour is essentially unique up to a global

residue theorem, and can be written [10,12,39,63,66],

A (3)
6 =

1

vol(GL3)

∮
F

(3)
6 =~0

dCαa
H (3)

6

(5)(1)(3) F (3)
6

3∏
α=1

δ4|4(CαaWa), (3.3.14)

where
F (3)

6 =
[
(4)(6)(2)(1 3 5)− (5 6 1)(1 2 3)(3 4 5)(6 2 4)

]
= S4 5 6 1 2 3

and H (3)
6 = (1 3 5).

(3.3.15)

(Here, we have chosen to de-emphasize the minors which do not appear in the analogous

expressions for Ln,k by colouring them grey, and we have chosen to highlight each of

the consecutive minors which participate in the contour by colouring them red. This

highlighting will be useful when we consider amplitudes involving more particles and

with k > 3.)

As demonstrated in Chapter 2, this contour can be extended to all NMHV amplitudes

in the following way,

A (3)
n =

1

vol(GL3)

∮
F

(3)
n =~0

dCαa

∏n−1
`=6

[
(1 2 `)(2 3 ` 1)

]∏n
`=6

[
(1 3 ` 1)

]
(n− 1)(1)(3) F (3)

n

3∏
α=1

δ4|4(CαaWa),

(3.3.16)
where

F (3)
n =

n∏
`=6

[
(` 2 ` 1 `)(` 1 2)(2 3 ` 2)(` 1 1 3) − (` 1 ` 1)(1 2 3)(3 ` 2 ` 1)(` 2 ` 1)

]
=

n∏
`=6

S`−2 `−1 ` 1 2 3.

6We have also found other parity-symmetric contour prescriptions by starting from each of the dif-

ferent forms of the NMHV tree amplitude. We have checked that each of these extensions to all n, k is

unique and that each leads to correct formulae for general tree amplitudes. In addition, there are further

possibilities if one foregoes the connection between Ln,k and the twistor string, but these will not be

considered here.
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Notice that the only operator that involves particle n is the last, F j=1
`=n , and this

operator includes in general all but one of the consecutive minors which involve column

n—namely, all but minor (n − 1). Indeed, each F 1
` can be seen as an operator which

adds particle ` to the (`− 1)-point contour.

Consider for example the contour for n = 7,

F (3)
7 =

{
F 1

6 =(4) (6 1 2) (2) (5 1 3)−(5 6 1)(1 2 3)(3 4 5)(6 2 4)= S4 5 6 1 2 3

}{
F 1

7 =(5) (7) (2 3 5)(6 1 3)−(6 7 1)(1 2 3)(3 5 6)(7 2 5)= S5 6 7 1 2 3

} .

(3.3.17)

By recognizing that A (3)
7 is nothing but the parity-conjugate of A (4)

7 , we may use this

contour to directly obtain the contour of the first non-trivial N2MHV tree-amplitude.

II. N2MHV Amplitudes

As mentioned above, because the parity-conjugate7 of the 7-point NMHV amplitude is

the 7-point N2MHV amplitude, we may use the general NMHV contour to obtain our

first non-trivial contour for k = 4,

F (4)
7 = F̃ (3)

7 =

F
1
7 =(4) (4 7 1 2) (2) (4 6 1 3)−(4 1 2 3)(4 3 5 6)(4 6 7 1)(4 2 6 8)= [4] ./ S5 6 7 1 2 3

F 2
7 =(5) (7) (1 3 4 5)(1 6 2 4)−(1 2 3 4)(1 4 5 6)(1 6 7 2)(1 3 5 7)= [1] ./ S5 6 7 2 3 4

.

From here, there are several ways in which the above contour can be extended to one

for all n. For example, one could make the identification made in Chapter 2, that

F 1,2
7 =

 [4] ./ S5 6 7 1 2 3

[1] ./ S5 6 7 2 3 4

 =⇒ F 1,2
` ⇔

 [` 3] ./ S`−2 `−1 ` 1 2 3

[1] ./ S`−2 `−1 ` 2 3 `−3

 . (3.3.18)

However, this extension of the 7-point N2MHV amplitude leads to a form of the 8-point

N2MHV contour which is not manifestly self-conjugate under parity, and which therefore

unnecessarily obfuscates the extension to all N(k−2)MHV amplitudes.8 We suggest that

the following extension is more natural,

F 1,2
7 =

 [4] ./ S5 6 7 1 2 3

[1] ./ S5 6 7 2 3 4

 =⇒ F 1,2
` ⇔

 [` 3] ./ S`−2 `−1 ` 1 2 3

[1] ./ S`−2 `−1 ` 2 3 4

 . (3.3.19)

7Here, we should point out that we are using a definition of ‘parity’ that both exchanges the column-

labels of each minor with their complements, and maps each column j 7→ (n+ 1)− j. This appears to

be the most natural definition of parity in the Grassmannian.
8That being said, we have every reason to suspect the formula given in Chapter 2 is in fact just as

correct as the one we present here.
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Notice that the only difference between the contour prescriptions in (3.3.18) and (3.3.19)

is that the former associates S5 6 7 2 3 4 with S`−2 `−1 ` 2 3 `−3 while the latter associates

S5 6 7 2 3 4 with S`−2 `−1 ` 2 3 4.

Using this prescription, we find that the 8-point N2MHV may be written,

A (4)
8 =

1

vol(GL4)

∮
F

(4)
8 =~0

dCαa H (4)
8

(7)(1)(3) F (4)
8

4∏
α=1

δ4|4 (CαaWa) , (3.3.20)

where F (4)
8 = F 1

7F
2
7 · F 1

8F
2
8 with the F j

` given explicitly by9

F
(4)
8 =

F 1
7 = (4) (4 7 1 2) (2) (4 6 1 3)−(4 1 2 3)(4 3 5 6)(4 6 7 1)(4 2 6 8)= [4] ./ S5 6 7 1 2 3

F 2
7 =(1 5 6 7)(1 2 3 7)(1 3 4 5)(1 6 2 4)−(1 2 3 4)(1 4 5 6)(1 6 7 2)(1 3 5 7)= [1] ./ S5 6 7 2 3 4F 1
8 = (5) (5 8 1 2)(5 6 2 3)(5 7 1 3)−(5 1 2 3)(5 3 6 7)(5 7 8 1)(5 2 6 8)= [5] ./ S6 7 8 1 2 3

F 2
8 = (6) (8) (1 3 4 6)(1 7 2 4)−(1 2 3 4)(1 4 6 7)(1 7 8 2)(1 3 6 8)= [1] ./ S6 7 8 2 3 4

(3.3.21)

and H (4)
8 is the product of all non-consective minors of the first factors of the F j

` ’s,

H (4)
8 = (4 7 1 2)(1 5 6 7)(1 2 3 7)(1 3 4 5)(5 8 1 2)(5 6 2 3)(1 3 4 6)

× (4 6 1 3)(1 6 2 4)(5 7 1 3)(1 7 2 4) .
(3.3.22)

It is not hard to see that this contour is manifestly parity self-conjugate. (We should

point out that this contour differs from the one given in Chapter 2 by only single minor

appearing in F 2
8 ; however, this minor difference turns out to leave essentially all the

geometry problems described in Chapter 2 unchanged, and so the contour (3.3.21) leads

to precisely the same sum of twenty residues described in Chapter 2, and therefore

reproduces the correct 8-point N2MHV tree amplitude for all helicity configurations.)

As a further test of the validity of our contour prescription, let us briefly mention the

tree-amplitude obtained for the 9-point N2MHV amplitude. As above, we may write,

A (4)
9 =

1

vol(GL4)

∮
F

(4)
9 =~0

dCαa H (4)
9

(8)(1)(3) F (4)
9

4∏
α=1

δ4|4 (CαaWa) , (3.3.23)

9Here, we have highlighted each of the primary ‘consecutive subparts’ of each of the minors in the

contour by colouring them blue. These tend to be the most important minors when computing a tree

amplitude as a series of ‘geometry problems’ as described in Chapter 2.
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where F (4)
9 = F 1

7F
2
7 · F 1

8F
2
8 · F 1

9F
2
9 with each F j

` given explicitly by,

F
(4)
9 =

F 1
7 = (4) (4 7 1 2) (2) (4 6 1 3)−(4 6 7 1)(4 1 2 3)(4 3 5 6)(4 7 2 5)= [4] ./ S5 6 7 1 2 3

F 2
7 =(1 5 6 7)(1 2 3 7)(1 3 4 5)(1 2 4 6)−(1 6 7 2)(1 2 3 4)(1 4 5 6)(1 7 3 5)= [1] ./ S5 6 7 2 3 4F 1
8 = (5) (5 8 1 2)(5 6 2 3)(5 7 1 3)−(5 7 8 1)(5 1 2 3)(5 3 6 7)(5 8 2 6)= [5] ./ S6 7 8 1 2 3

F 2
8 =(1 6 7 8)(1 2 3 8)(1 3 4 6)(1 2 4 7)−(1 7 8 2)(1 2 3 4)(1 4 6 7)(1 8 3 6)= [1] ./ S6 7 8 2 3 4F 1
9 = (6) (6 9 1 2)(6 7 2 3)(6 8 1 3)−(6 8 9 1)(6 1 2 3)(6 3 7 8)(6 9 2 7)= [6] ./ S7 8 9 1 2 3

F 2
9 = (7) (9) (1 3 4 7)(1 8 2 4)−(1 8 9 2)(1 2 3 4)(1 4 7 8)(1 9 3 7)= [1] ./ S7 8 9 2 3 4

,

(3.3.24)

Deforming this contour from the twistor string to L9,4 by sending each tj` → 0—

removing all the contributions shown in coloured grey in (3.3.24)—the problem of com-

puting the tree-amplitude reduces to a series of ‘geometry problems’—finding the local-

ization in the Grassmannian induced by requiring that each of the six maps f j` vanish,

and determining which of these configurations are supported entirely by the vanishing of

consecutive minors.10 The six maps f j` are given explicitly by,

F (4)
9 =

f1
7 = (4) (4 7 1 2) (2)

f2
7 =(1 5 6 7)(1 2 3 7)(1 3 4 5)

⋃f1
8 = (5) (5 8 1 2)(5 6 2 3)

f2
8 =(1 6 7 8)(1 2 3 8)(1 3 4 6)

⋃f1
9 =(6)(6 9 1 2)(6 7 2 3)

f2
9 =(7) (9) (1 3 4 7)

.

(3.3.25)

We have found that there are precisely 50 non-vanishing, consecutively-supported residues

along the contour (3.3.24) and that these residues perfectly reproduce the fully-supersymmetric

9-point N2MHV tree amplitude.

These 50 residues, together with the ‘geometry problems’ giving rise to each, are

collected in appendix B, where we have followed the conventions of Chapter 2 for the

naming of each residue according to its localization in Cαa.

III. N3MHV Amplitudes and Beyond

As was the case for the 7-point amplitude, the parity conjugate of the 9-point N2NHV

amplitude represents the first sufficiently-general N3MHV amplitude from which we may

‘bootstrap’ the general N3MHV result. We will see that by requiring the 9-point N3MHV

amplitude to be iteratively-related to the 8-point N3MHV amplitude—itself obtained as

10Any configuration along the contour not entirely supported by consecutive minors will have vanishing

residue because of the non-consecutive minors which constitute H(4)
9 .
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the parity-conjugate of the 8-point NMHV amplitude—will uniquely fix the structure of

the ansatz for all further amplitudes in N = 4 super Yang-Mills.

Taking the parity-conjugate of the 9-point k = 4 contour (3.3.24), we find,

F (5)
9 = F̃ (4)

9 =


F 1

8 = [4 5] ./ S6 7 8 1 2 3

F 2
8 = [1 5] ./ S6 7 8 2 3 4

F 3
8 = [1 2] ./ S6 7 8 3 4 5


⋃

F 1
9 = [5 6] ./ S7 8 9 1 2 3

F 2
9 = [1 6] ./ S7 8 9 2 3 4

F 3
9 = [1 2] ./ S7 8 9 3 4 5

 . (3.3.26)

Notice that only the last three F j
` ’s—those of the second set above—involve column 9.

Moreover, all of the F j
` ’s for ` = 8 involve column 8. Therefore, the requirement that

the 9-point N3MHV contour is the extension of the 8-point N3MHV contour, uniquely

fixes the `-dependence of the maps F j
` . With this, it is not hard to see that the general

solution for all N3MHV amplitudes must be given by

F (5)
n =

n∏
`=8

(
F 1
` · F 2

` · F 3
`

)
, with


F 1
` = [` 4 ` 3] ./ S`−2 `−1 ` 1 2 3

F 2
` = [1 ` 3] ./ S`−2 `−1 ` 2 3 4

F 3
` = [1 2] ./ S`−2 `−1 ` 3 4 5

 . (3.3.27)

As one further, concrete illustration of this prescription for the tree-amplitude con-

tour, let us briefly consider the 10-point N3MHV amplitude,

A (5)
10 =

1

vol(GL5)

∮
F

(5)
10 =~0

dCαa H (5)
10

(9)(1)(3) F (5)
10

5∏
α=1

δ4|4 (CαaWa) , (3.3.28)

where F (5)
10 = F 1

8F
2
8F

3
8 · F 1

9F
2
9F

3
9 · F 1

10F
2
10F

3
10, and with each F j

` given by

F (5)
10 =


F 1

8 = (4) (4 5 8 1 2) (2) (4 5 7 1 3)− (4 5 1 2 3)(4 5 3 6 7)(4 5 7 8 1)(4 5 2 6 8) = [4 5] ./ S6 7 8 1 2 3

F 2
8 = (1 5 6 7 8)(1 2 3 5 8)(1 3 4 5 6)(1 5 7 2 4)− (1 5 2 3 4)(1 5 4 6 7)(1 5 7 8 2)(1 5 3 6 8) = [1 5] ./ S6 7 8 2 3 4

F 3
8 = (1 2 6 7 8)(1 2 3 4 8)(1 2 4 5 6)(1 2 7 3 5)− (1 2 3 4 5)(1 2 5 6 7)(1 2 7 8 3)(1 2 4 6 8) = [1 2] ./ S6 7 8 3 4 5
F 1

9 = (5) (5 6 9 1 2)(2 3 5 6 7)(5 6 8 1 3)− (5 6 1 2 3)(5 6 3 7 8)(5 6 8 9 1)(5 6 2 7 9) = [5 6] ./ S7 8 9 1 2 3

F 2
9 = (1 6 7 8 9)(1 2 3 6 9)(1 3 4 6 7)(1 6 8 2 4)− (1 6 2 3 4)(1 6 4 7 8)(1 6 8 9 2)(1 6 3 7 9) = [1 6] ./ S7 8 9 2 3 4

F 3
9 = (1 2 7 8 9)(1 2 3 4 9)(1 2 4 5 7)(1 2 8 3 5)− (1 2 3 4 5)(1 2 5 7 8)(1 2 8 9 3)(1 2 4 7 9) = [1 2] ./ S7 8 9 3 4 5

F 1
10 = (6) (6 7 10 1 2)(2 3 6 7 8)(6 7 9 1 3)−(6 7 1 2 3)(6 7 3 8 9)(6 7 9 10 1)(6 7 2 8 10)= [6 7] ./ S8 9 10 1 2 3

F 2
10 = (7) (7 10 1 2 3)(1 3 4 7 8)(1 7 9 2 4)−(1 7 2 3 4)(1 7 4 8 9)(1 7 9 10 2)(1 7 3 8 10)= [1 7] ./ S8 9 10 2 3 4

F 3
10 = (8) (10) (1 2 4 5 8)(1 2 9 3 5)−(1 2 3 4 5)(1 2 5 8 9)(1 2 9 10 3)(1 2 4 8 10)= [1 2] ./ S8 9 10 3 4 5
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where again H (5)
10 can be simply read-off from F j

` ’s:

H (5)
10 = (4 5 8 1 2)(1 5 6 7 8)(1 5 8 2 3)(1 5 3 4 6)(1 2 6 7 8)(1 2 8 3 4)(1 2 4 5 6)

× (5 6 9 1 2)(5 6 2 3 7)(1 6 7 8 9)(1 6 9 2 3)(1 6 3 4 7)(1 2 7 8 9)(1 2 9 3 4)

× (1 2 4 5 7)(6 7 10 1 2)(6 7 2 3 8)(1 7 10 2 3)(1 7 3 4 8)(1 2 4 5 8)

× (4 5 7 1 3)(1 5 7 2 4)(1 2 7 3 5)(5 6 8 1 3)(1 6 8 2 4)(1 2 8 3 5)(6 7 9 1 3)(1 7 9 2 4)(1 2 9 3 5) .

Although it would require more space than warranted by an appendix, we have explic-

itly verified that the contour above includes 175 non-vanishing residues which precisely

matches the general, 10-point N3MHV amplitude.

Continuing in this manner, we arrive at the general formula (3.2.3),

A (k)
n =

1

vol(GLk)

∮
F

(k)
n =~0

dCαa H (k)
n

(n− 1)(1)(3) F (k)
n

k∏
α=1

δ4|4 (CαaWa) ,

where F (k)
n = (F 1

k+3 · · ·F k−2
k+3 ) · (F 1

k+4 · · ·F k−2
k+4 ) · · · (F 1

n · · ·F k−2
n ) with each F j

` given by

F j
` ≡ σj` ./ S`−2 `−1 ` j j+1 j+2. (3.3.29)

IV. General Properties of the Result

Parity

One of the important features of the general contour obtained in the previous subsections

is that it is manifestly parity-symmetric. By this, we mean that the parity-conjugate of a

given amplitude’s contour is the contour for the parity-conjugate amplitude. For example,

for all n = 2k, the contour given by F (k)
n=2k is manifestly parity self-conjugate.

To see how this works more generally, consider the role played by each of the n

columns of the Grassmannian Cαa in the definition of the Veronese map F j
` ≡ σj` ./

S`−2 `−1 ` j j+1 j+2. In general, the n columns break into six contiguous groups,

[1 2 · · · j 1]︸ ︷︷ ︸
∈σj`

∈S︷ ︸︸ ︷
[j j+1 j+2] [j+3 · · · j+(k `) 1] [j+(k `) · · · ` 3]︸ ︷︷ ︸

∈σj`

∈S︷ ︸︸ ︷
[` 2 ` 1 `] [`+1 · · · n],

where the columns of Cαa which do not participate at all in F j
` have been coloured grey

to emphasize the ‘gaps’ in the roles played by various columns. Importantly, parity does
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not change the ‘contiguousness’ of these six groups, or the roles they played by the six

columns of the primative Veronese map S`−2 `−1 ` j j+1 j+2 (coloured red above); parity

merely changes the labels we assign each column, and exchanges the k − 6 columns

involved in all the minors of F j
` —those of σj` , coloured blue above—with the n − k − 6

columns involved in none of the minors of F j
` —those coloured grey above. That is,

[1 · · · j 1]


parity−−−−−−→
k 7→(n−k)
i 7→(n+1)−i



[n j+2 · · · n]

[j j+1 j+2] [n j 1 n j n j+1]

[j+3 · · · j+(k `) 1] [n+` j k · · · n j 2]

[j+(k `) · · · ` 3] [n `+4 · · · n+` j k 1]

[` 2 ` 1 `] [n `+1 n `+2 n `+3]

[`+1 · · · n] [1 · · · n `]


.

(3.3.30)

This shows that,

F j
`

parity−−−−−−→
k 7→(n−k)
i 7→(n+1)−i

F̃ j
` = F

(n−`+1)
(n−j+1) ≡ F j′

`′ , (3.3.31)

so that

F (k)
n =

n∏
`=k+3

(
k−2∏
j=1

F j
`

)
parity−−−−−−→

k 7→(n−k)
i 7→(n+1)−i

F (n−k)
n =

n∏
`=k+3

(
k−2∏
j=1

F̃ j
`

)
=

k′−2∏
j′=1

(
n∏

`′=k′+3

F j′

`′

)
=

n∏
`′=k′+3

(
k′−2∏
j′=1

F j′

`′

)
,

(3.3.32)

where k′ ≡ (n− k), which is that which it was required to demonstrate.

Manifest Soft-Limits and the Particle Interpretation

As we have seen, the contour integral giving the n − 1-particle N(k−2)MHV scattering

amplitude, is related to that giving the n-particle N(k−2)MHV scattering amplitude by a

single overall factor which relates H (k)
n to H (k)

n−1, together with a partial contour specifi-

cation,

A (k)
n =

1

vol(GLk)

∮
F

(k)
n =~0

dCαa
H (k)

n

(n− 1)(1)(3) F (k)
n

=
1

vol(GLk)

∮
F

(k)
n−1=~0

dCα â
H (k)

n−1

(1)(3) F (k)
n−1

×
∮

F 1
n=0
...

Fk−2
n =0

dCαn
H (k)

n /H (k)
n−1

(n− 1) F 1
n · F 2

n · · ·F k−2
n

, (3.3.33)

93



where â = 1, . . . , n − 1 and the ratio H (k)
n /H (k)

n−1 was given explicitly after equation

(3.2.5) in section 2. This separation of the integral is warranted because only the maps

F 1
n , . . . , F

k−2
n involve the variables of the nth column of Cαa. We can anticipate which

contour should be specified for these k−2 variables to extract the soft-limit by considering

the duality between the geometry of the columns of Cαa, viewed as points in Pk−1, and

Z-twistor-space geometry [12]. In twistor space, the soft-limit is achieved when the three

twistors Zn−1,Zn, and Z1 become (projectively) collinear, and so we can extract the soft

limit from A (k)
n by choosing a contour for which the column-vectors Cαn−1, Cαn, and

Cα 1 become linearly-dependent. This fixes exactly (k − 2) variables of integration, and

so should completely specify the integral factor in (3.3.33) relating A (k)
n to A (k)

n−1.

Recalling the definition of the maps F 1
n , F

2
n , . . . F

k−1
n , it is easy to see that when the

columns n−1, n, 1 become linearly-dependent, F 2
n , . . . , F

k−2
n all vanish, while F 1

n factorizes

into simply the product of four minors. Importantly, notice that H (k)
n ,H (k)

n−1, and all the

factors of F (k)
n−1 are regular in this limit. Because of this, we can apply the global residue

theorem in (3.3.33) to trade F 1
n for the minor (n− 1)—which does vanish in this limit.

This allows us to view the contour integral for the twistor string entirely in Ln,k, and

refer to some well-known facts [12,24] relating residues in Ln,k to those of Ln−1,k to see how

the soft-factor arises. It turns out that the contour which sets three consecutive columns

of the Grassmannian to be linearly dependent is particularly nice, and is nothing but a

holomorphic inverse soft-factor times the ratio of the k consecutive minors containing n

to the k−1 minors which were consecutive only prior to ‘adding particle n’ to G(k, n−1).

Recall that this ratio of minors is explicitly built-into the definition of H (k)
n

3.4 Transformation to the Twistor String

In this section we demonstrate the equivalence of the twistor string amplitude [36, 53]

(when expressed in link variables as in [39, 63]) to our main formula (3.2.3) above. This

is accomplished via repeated application of the identity transformation

δ(Sijkrst)δ(Sijkrsu) ∼
(jkt)(irt)

(jks)(irs)
δ(Sijkrst)δ(Sijkrtu); (3.4.34)

here, ∼ is used to indicate that the replacement may be made at the level of the integrand

only strictly for physical configurations along the contour of integration. This transfor-

mation has played an important role in the analysis of [66], [70]. Note that this relation
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indicates a specific change in the contour prescription: the δ(Sijkrsu) on the left-hand

side may localize the integral on fewer (or more) poles than the δ(Sijkrtu) on the right,

in which case the extra (or missing) poles on the right-hand side are provided by zeros

the minors in the denominator (or cancelled by zeros of the minors in the numerator).

In the next two subsections we first focus on following the transformation of the

δ(F i
` )’s from equation (3.2.3) to the formula (4.12) in [63]. We then collect all the pre-

factors which pile-up along the way and demonstrate precise agreement with [63]. It

is very easy to check the agreement between our formula and that of [63] for NMHV

using [66]. We may proceed by induction at step n, beginning with the assumption that

equation (3.2.3) agrees with [63] for the (n−1)-point amplitudes.

I. Transforming the δ(F j
` )’s

Let us first transform the δ(F j
` )’s from equation (3.2.3) to the corresponding ones in [63].

Because we will use induction, we only need to consider F j
n and for the simplicity we

will denote it as Fj. In order to compare with the formula in [63] we must first change

the common piece in Fj, namely σjn = [1, . . . , j 1]
⋃

[j+n k, . . . , n 3] in (3.2.6), into a

subset of the columns [1, 2, . . . , k].11 In this sense F1 is the ‘worst’ of the F ’s and Fk−2 is

the ‘best’, so the strategy will be to first make all transformations on F1, then to make

all transformations on F2, and continue in the same way (as far as possible) until Fk−3.

In this way we gradually transform all of the original δ(Fj)
′s into ‘real sextics’ (objects

which are indeed sextics in a certain gauge). In the following we show a first few steps

and then move on to the final conclusion.

• Let us first show how to transform F1 to F ′′1 ,

F1 = [n− k + 1 · · · n− 3] ./ S1 2 3 n−2 n−1 n

→ F ′′1 = [n− k + 2 · · · n− 3 2] ./ S1 3 4 n−2 n−1 n.
(3.4.35)

Step one is to use the identity

δ(F1)δ(F ′2) ∼ J
(1)
1 δ(F ′1)δ(F ′2), (3.4.36)

11The meaning of this will become clear by looking at the final result, equation (3.4.44).
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where the sextics and the Jacobian are

F ′2 =[n− k + 2 · · · n− 3 1] ./ S2 3 n−k+1 n−2 n−1 n

F ′1 =[n− k + 2 · · · n− 3 2] ./ S1 3 n−k+1 n−2 n−1 n (3.4.37)

J
(1)
1 =[n− k + 2 · · · n− 3] ./

(n 1 2 3)(n− 2 n− 1 1 2)

(n 1 3 n− k + 1)(n− 2 n− 1 1 n− k + 1)
.

This identity follows from (3.4.34) by setting a particular gauge, namely to use GLk-

symmetry to set k columns [1, 2, 3, n− k + 1, · · · , n− 3] of k × n matrix (Cαa) to be an

identity square matrix, and we will denote the gauge as {1, 2, 3, n − k + 1, · · · , n − 3}.
Note that we also transformed F2 into F ′2 which generated a Jacobian J which will end

up canceling, so we will not write it explicitly.

Next we further transform F ′1 by using

δ(F ′1)δ(F
(n−1)
1 ) ∼ J

(2)
1 δ(F ′′1 )δ(F

(n−1)
1 ), (3.4.38)

where

F
(n−1)
1 =[n− k + 2 · · · n− 3 2] ./ S1 3 n−k+1 n−2 n−1 4,

F ′′1 =[n− k + 2 · · · n− 3 2] ./ S1 3 4 n−2 n−1 n, (3.4.39)

J
(2)
1j

=[n− k + 2 · · · n− 3 j] ./
(n− 1 4 j)(3 n− 2 4)

(n− 1 n− k + 1 j)(3 n− 2 n− k + 1)
,

with j = 1 and j = 2. Note that in carrying out this transformation we have made use of

the constrain δ(F
(n−1)
1 ) which can be obtained by transforming F j

n−1 of the (n− 1)-point

amplitudes.

The third step is to transform F ′2 back to F2, which generates a Jacobian J−1.

To summarize the construction so far, we have shown how to transform the original

F1 into a “better” quantity F ′′1 at the cost of inserting the Jacobain factor J
(1)
1 J

(2)
11

into

the integrand.

• Next we would like to similarly process F2 with F ′′1 . By applying (3.4.34) for the

new F ′′1 and the old F2

F ′′1 =[n− k + 2 · · · n− 3 2] ./ S1 3 4 n−2 n−1 n,

F2 =[n− k + 2 · · · n− 3 1] ./ S2 3 4 n−2 n−1 n,
(3.4.40)

we get the new quantities

F ′′′1 =[n− k + 3 · · · n− 3 2 3] ./ S1 4 5 n−2 n−1 n,

F ′′′2 =[n− k + 3 · · · n− 3 1 3] ./ S2 4 5 n−2 n−1 n.
(3.4.41)
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The Jacobians generated from this step are

J
(1)
2 J

(2)
21
J

(1)
2 J

(2)
22
, (3.4.42)

where

J
(1)
2 = [n− k + 3 · · · n− 3] ./

(n 1 2 3 4)(n− 2 n− 1 1 2 3)

(n 1 2 4 n− k + 2)(n− 2 n− 1 1 2 n− k + 2)
,

J
(2)
2j

= [n− k + 3 · · · n− 3 j] ./
(n− 1 5 j)(4 n− 2 5)

(n− 1 n− k + 2 j)(4 n− 2 n− k + 2)
, (3.4.43)

with j = 1, 2 and 1 ≡ (2, 3), 2 ≡ (1, 3).

• We proceed by transforming the original F3 together with the new F ′′′1 , F
′′′
2 into

three new quantities F ′′′′1 , F ′′′′2 , F ′′′′3 . We continue in this manner until we reach F
′′′···′′
k−3 . In

each step we will always make two-type transformations like the ones described above.

At the end of the day, we have new quantities

Fj = [1, 2, · · · , ��j, · · · , k − 2] ./ Sj k−1 k n−2 n−1 n, (3.4.44)

where 1 ≤ j ≤ k− 2. The Jacobians generated during the whole process are products of

J
(1)
l = [n k+`+1 · · · n 3] ./

(n 1 2 · · · `+2)(n 2 n 1 1 · · · `+1)

(n 1 · · · ` `+2 n k+`)(n 2 n 1 1 · · · ` n k+`)
,

J
(2)
`j

= [n k+`+1 · · · n 3 j] ./
(n 1 `+3 j)(`+2 n 2 `+3)

(n 1 n k+` j)(`+2 n 2 n k+`)
,

(3.4.45)

where j ≡ (1, 2, · · · , ��j, · · · , `+ 1), 1 ≤ ` ≤ k − 3 and 1 ≤ j ≤ `.

Finally let us choose a gauge {1, 2, 3, · · · , k}, in which case Fj = Sj k−1 k n−2 n−1 n

may be found in (3.4.44). Thus we have mapped our F j
n’s to the sextics in [63], and all

we are left to compare is the corresponding prefactor.

II. Collecting Prefactors

Let us now verify that performing the above procedure on our formula (3.2.3)leads to

precisely the same prefactor inside the integral as in [63]. We only need to compare

the ratio between n-point amplitude and (n− 1)-point amplitude which for our formula
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(3.2.3) reads

An =
H (k)

n

H (k)
n−1

=
1

(n 1 n 1 · · · k 2)

[ k 1∏
j=1

(n k+j · · · n 1 1 · · · j)

× (n k+j · · · n 3 n 1 · · · j+1)(n k+j · · · n 2 1 · · · j 1 j+1 j+2)

× (n k+i · · · n 3 n 1 1 · · · j j+2)
]
.

(3.4.46)

The corresponding ratio in twistor string is given by the formula (4.12) of [63] . Taking

into account the Jacobian from the transformations described in the previous subsection,

we find the ratio of our formula (3.2.3) to that in [63] is precisely equal to one. This

completes the proof.
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Chapter 4
The All-Loop Extension

of the BCFW Recursion Relations

4.1 The Loop Integrand for N = 4 SYM Amplitudes

Scattering amplitudes in gauge theories have extraordinary properties that are completely

invisible in the textbook formulation of local quantum field theory. The earliest hint

of this hidden structure was the remarkable simplicity of the Parke-Taylor formula for

tree-level MHV amplitudes [2, 3]. Witten’s 2003 proposal of twistor string theory [4]

gave a strong impetus to rapid developments in the field, inspiring the development

of powerful new tools for computing tree amplitudes, including CSW diagrams [5] and

BCFW recursion relations [7,21,31,72]. At one-loop, very efficient on-shell methods now

exist [73,74] and at higher-loop level generalizations of the unitarity-based method [75–78]

have made a five-loop computation possible [79], which should soon determine the five-

loop cusp anomalous dimension [80].

The BCFW recursion relations in particular presented extremely compact expressions

for tree amplitudes using building blocks with both local and non-local poles. In a parallel

development, an amazing hidden symmetry of planar N = 4 SYM—dual conformal

invariance—was noticed first in multi-loop perturbative calculations [47] and then at

strong coupling [40], leading to a remarkable connection between null-polygonal Wilson

loops and scattering amplitudes [8, 40, 42, 43, 45, 46, 81–84]. It was quickly realized that

the BCFW form of the tree amplitudes manifested both full superconformal and dual

superconformal invariance, which together close into an infinite-dimensional Yangian

symmetry algebra [49]. Understanding the role of this remarkable integrable structure

in the full quantum theory, however, was clouded by the IR-divergences that appear to

almost completely destroy the symmetry at loop-level, leaving only the anomalous action

of the (Bosonic) dual conformal invariance [44,48,85,86].
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I. Grassmannian Duality for Leading Singularities

In [10], a strategy for making progress on these questions was suggested. The idea was

to find objects closely associated with scattering amplitudes which are completely free

of IR-divergences; the action of the symmetries would be expected to be manifest on

such objects, and they would provide “data” that might be the output of a putative dual

theory of the S-Matrix.

The leading singularities of scattering amplitudes are precisely objects of this sort.

Thinking of loop amplitudes as multi-dimensional complex integrals, leading singularities

arise from performing the integration not on the usual non-compact ‘contours’ over all

real loop-momenta, but on compact contours ‘encircling’ isolated (and generally complex)

poles in momentum space. As such, they are free of IR-divergences and well-defined at

any loop order, yielding algebraic functions of the external momenta. Leading singulari-

ties were known to have strange inter-relationships and satisfy mysterious identities not

evident in their field-theoretic definition. Morally they are also expected to be Yangian-

invariant, although even this is not completely manifest1. Thus leading singularities seem

to be prime candidates for objects to be understood and computed by a dual theory.

Such a duality was proposed in [10], connecting leading singularities of color-stripped,

n-particle NkMHV scattering amplitudes in N = 4 SYM to a simple contour integral over

the Grassmannian G(k, n):

Yn,k(Z) =
1

vol(GLk)

∫
d k×nCαa

(1 · · · k)(2 · · · k+1) · · · (n · · · k 1)

k∏
α=1

δ4|4(CαaZa). (4.1.1)

Here a = 1, · · · , n labels the external particles, and Za are variables in CP3|4. The original

formulation of this object worked with twistor variablesWa = (Wa|η̃a), and was given as

Ln,k+2(W) = Yn,k+2(W). This was quickly realized [18] to be completely equivalent to

a second form in momentum twistor space [19], with Ln,k+2(λ, λ̃, η̃) = M tree
MHV × Yn,k(Z).

Here the variables Za = (Za|ηa) are the “momentum-twistors” introduced by Hodges

[20], which are the most natural variables with which to discuss dual superconformal

invariance. Furthermore, these momentum twistors are simple algebraic functions of the

external momenta, upon which scattering amplitudes conventionally depend2.

1Indeed we will give a proof of this basic fact in the next section; a different argument for the same

result is given in [87].
2 To quickly establish notation and conventions, the momentum of particle a is given by pµa =
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Since the Grassmannian integral is invariant under both ordinary and dual supercon-

formal transformations, it enjoys the full Yangian symmetry of the theory, as has been

proven more directly in [68]. In fact, it has been argued that these contour integrals in

G(k, n) generates all Yangian invariants.3 [11, 69].

Leading singularities are associated with residues of the Grassmannian integral. Residue

theorems [65] imply many non-trivial and otherwise mysterious linear relations between

leading singularities. These relations are associated with important physical properties

such as locality and unitarity [10].

Further investigations [12] identified a new principle, the Grassmannian “particle in-

terpretation”, which determines the correct contour of integration yielding the BCFW

form of tree amplitudes [50]. Quite remarkably, a deformation of the integrand connects

this formulation to twistor string theory [12,14,66]. Furthermore, another contour defor-

mation produces the CSW expansion of tree amplitudes [51], making the emergence of

local space-time a derived consequence from the more primitive Grassmannian starting

point.

The Grassmannian integral and Yangian-invariance go hand-in-hand and are essen-

tially synonymous; indeed, the Grassmannian integral is the most concrete way of think-

ing about Yangian invariants, since not only the symmetries but also the non-trivial

relationship between different invariants are made manifest; even connections to non-

manifestly Yangian-invariant but important physical objects (such as CSW terms) are

made transparent.

Given these developments, we are encouraged to ask again: is there an analogous

structure underlying not just the leading singularities but the full loop amplitudes? Does

Yangian-invariance play a role? And if so, how can we see this through the thicket of

IR-divergences that appear to remove almost all traces of these remarkable symmetries

xµa+1 − xµa , and the point xµa in the dual co-ordinate space is associated with the line (Za−1 Za) in

the corresponding momentum-twistor space. This designation ensures that the lines (Za−1 Za) and

(Za Za+1) intersect, so that correspondingly, xµa+1−xµa = pa is null. (Bosonic) dual-conformal invariants

are made with 4-brackets 〈a b c d〉 = εIJKLZ
I
aZ

J
b Z

K
c Z

L
d . An important special case is 〈i 1 i j 1 j〉 =

〈i 1 i〉〈j 1 j〉(xj − xi)2; 2-brackets 〈ij〉 are computed using the upper-two components of Zi, Zj and

cancel out in dual-conformal expressions. For more detail see [18–20].
3The residues of G(k, n) are Yangian-invariant for generic momenta away from collinear limits. See

[88,89] for important discussions of the fate of Yangian invariance in the presence of collinear singularities.
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in the final amplitudes?

II. The Planar Integrand

Clearly, we need to focus again on finding well-defined objects associated with loop

amplitudes. Fortunately, in planar theories, there is an extremely natural candidate: the

loop integrand itself!

Now, in a general theory, the loop integrand is not obviously a well-defined object.

Consider the case of 1-loop diagrams. Most trivially, in summing over Feynman diagrams,

there is no canonical way of combining different 1-loop diagrams under the same integral

sign, since there is no natural origin for the loop-momentum space. The situation is

different in planar theories, however, and this ambiguity is absent. This is easy to see in

the dual x-space co-ordinates [47]. The ambiguity in shifting the origin of loop momenta

is nothing other than translations in x-space; but fixing the x1, . . . , xn of the external

particles allows us to canonically combine all the diagrams. Alternatively, in a planar

theory it is possible to unambiguously define the loop momentum common to all diagrams

to be the one which flows from particle “1” to particle “2”.

At two-loops and above, we have a number of loop integration variables in the dual

space x, y, . . . , z, and the well-defined loop integrand is completely symmetrized in these

variables.

So the loop integrand is well-defined in the planar limit, and any dual theory should be

able to compute it. All the symmetries of the theory should be manifest at the level of the

integrand, only broken by IR-divergences in actually carrying out the integration—the

symmetries of the theory are broken only by the choice of integration contour.

III. Recursion Relations for All Loop Amplitudes

Given that the integrand is a well-defined, rational function of the loop variables and the

external momenta, we should be able to determine it using BCFW recursion relations in

the familiar way4. At loop-level the poles have residues with different physical meaning.

The first kind is the analog of tree-level poles and correspond to factorization channels.

4We note that [90] have conjectured that the loop amplitudes can be determined by CSW rules,

manifesting the superconformal invariance of the theory.
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The second kind has no tree-level analog; these are single cuts whose residues are forward

limits of lower-loop amplitudes. Forward limits are näıvely ill-defined operations but

quite nicely they exist in any supersymmetric gauge theory, as was shown to one-loop

level in [91]. There it was also argued that forward limits are well-defined to higher orders

in perturbation theory in N = 4 SYM. In principle, this is all we need for computing the

loop integrand in N = 4 SYM to all orders in perturbation theory. However, our goal

requires more than that. We would like to show that the integrand of the theory can be

written in a form which makes all symmetries—the full Yangian—manifest. The Yangian-

invariance of BCFW terms at tree-level becomes obvious once they are identified with

residues of the Grassmannian integral, we would like to achieve the same at loop-level.

This is exactly what we will do in this chapter. We will give an explicit recursive

construction of the all-loop integrand, in exact analogy to the BCFW recursion relations

for tree amplitudes, making the full Yangian symmetry of the theory manifest.

The formulation also provides a new physical understanding of the meaning of loops,

associated with simple operations for “removing” particles in a Yangian-invariant way.

Loop amplitudes are associated with removing pairs of particles in an “entangled” way.

We describe all these operations in momentum-twistor space, since this directly corre-

sponds to familiar momentum-space loop integrals; presumably an ordinary twistor space

description should also be possible.

As is familiar from the BCFW recursion relations at tree-level, the integrand is ex-

pressed as a sum over non-local terms, in a form very different than the familiar “rational

function × scalar integral” presentation that is common in the literature. Nonetheless,

the Yangian-invariance guarantees that every term in the loop amplitude has Grassman-

nian residues as its leading singularities.

The integrands can of course be expressed in a manifestly-local form if desired, and

are most naturally written in momentum-twistor space [92, 93]. As we will see, the

most natural basis of local integrands in which to express the answer is not composed of

the familiar scalar loop-integrals, but is instead made up of chiral tensor integrals with

unit leading-singularities, which makes the physics and underlying structure much more

transparent.

Of course the integrand is a well-defined rational function which is computed in four-

dimensions without any regulators. The regularization needed to carry out the integra-
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tions is a very physical one, given by moving out on the Coulomb branch [94] of the

theory. This can be beautifully implemented, both conceptually and in practice, with

the momentum-twistor space representation of the integrand [92,93].

Quite apart from the conceptual advantages of this way of thinking about loops,

our new formulation is also completely systematic and practical, taking the “art” out

of the computation of multi-loop amplitudes in N = 4 SYM. As simple applications of

the general recursive formula, we present a number of new multi-loop results, including

the two-loop NMHV 6- and 7-particle integrands. We also include very concise, local

expressions for all 2-loop MHV integrands and for the 5-particle MHV integrand at 3-

loops. All multiplicity results for the so-called “parity even” part of two-loop amplitudes

in the MHV sector were obtained by Vergu in [16], extending previous work done for

5-particles [79] and 6-particles [83, 95] in dimensional regularization. The “parity even”

part of the 6-particle amplitude in dimensional regularization has been computed in

work in progress by Kosower, Roiban, and Vergu [96]. Complete integrands have been

computed at two-loop order for 5-particles in [79] using D-dimensional unitarity and for

5- and 6-particles in [95,97] using the leading singularity technique developed in [97,98].

Also using the leading singularity technique, the 5-point 3-loop integrand was presented

in [99]. Combining D-dimensional unitarity with a generalization of quadruple cuts to

higher loop order [98], a method called maximal cuts was introduced in [79] and used

for the computation of the 4-point 5-loop integrand. The 4-point amplitude integrand at

l = 2, 3, 4 loop-level were computed in [100], [101], and [102], respectively. The method

to be used in this chapter is, however, very different both in philosophy and in practice

from the leading singularity or generalized unitarity approaches.

In this chapter, we give a brief and quite telegraphic outline of our arguments and

results; we will present a much more detailed account of our methods and further elab-

orate on many of the themes presented here in upcoming work [35]. In section 4.2, we

describe a number of canonical operations on Yangian invariants—adding and removing

particles, fusing invariants—that generate a variety of important physical objects in our

story. In section 4.3 we describe the origin of Yangian-invariant loop integrals as arising

from the “hidden entanglement” of pairs of removed particles. In section 4.4 we describe

the main result of this Chapter: a generalization of the BCFW recursion relation to all

loop amplitudes in the theory, and discuss some of its salient features through simple
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1-loop examples. In section 4.5 we set the stage for presenting loop amplitudes in a man-

ifestly local form by describing the most natural way of doing this in momentum-twistor

space. In section 4.6 we present a number of new multi-loop integrands computed using

the recursion relation and translated into local form for the convenience of comparing

with known results where they are available. We conclude in section 4.7 with a discus-

sion of a number of directions for future work. We discuss indications that not only the

integrands but also the loop integrals should be “simple”. The idea of determining the

loop integrand for planar amplitudes is a general one that can generalize well beyond

maximally supersymmetric theories with Yangian symmetry, and we also very briefly

discuss these prospects.

4.2 Canonical Operations on Yangian Invariants

As a first step towards the construction of the all-loop integrand for N = 4 SYM in

manifestly Yangian form, we study simple operations that can map Yangian invariants

Yn,k(Z1, · · · ,Zn) to other Yangian invariants. In this discussion it will not matter whether

the Z’s represent variables in twistor-space or momentum-twistor space; we will simply

be describing mathematical operations that mapping between invariants. Combining

these operations in various ways yields many objects of physical significance [35]. The

same physical object will arise from different combinations of these operations in twistor-

space vs. momentum-twistor space; we will content ourselves here by presenting mostly

the momentum-twistor space representations.

As mentioned in the introduction, understanding these operations is not strictly nec-

essary if we simply aim to find a formula for the integrand. The reason is that the

BCFW recursion relations we introduce in section 4.4 can be developed independently

for theories with less supersymmetry, which do not enjoy a Yangian symmetry. Our

insistence in keeping the Yangian manifest however will pay off in two ways. The first is

conceptual: the Yangian-invariant formulation will introduce a new physical picture for

meaning of loops. The second is computational: the Yangian-invariant formulation gives

a powerful way to compute the novel “forward-limit” terms in the BCFW recursions in

momentum-twistor space, using the Grassmannian language.

We will begin by discussing how to add and remove particles in a Yangian-invariant
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way. One motivation is an unusual feature of the Grassmannian integral–the space of

integration depends on the number n of particles. It is natural to try and connect different

n’s by choosing a contour of integration that allows a “particle interpretation”, by which

we mean simply that the variety defining the contour for the scattering amplitudes of

(n+1) particles differs from the one for n particles only by specifying the extra constraints

associated with the new particle [12]. Following this “add one particle at a time”-guideline

completely specifies the contour for all tree amplitudes [12,14], along the way exposing a

remarkable connection with twistor string theory [4, 39, 52,63, 66]. As we will see in this

chapter, loops are associated with interesting “entangled” ways of removing particles from

higher-point amplitudes. We will then move on to discuss how to “fuse” two invariants

together. Using these operations we demonstrate the Yangian invariance of all leading

singularities, and discuss the important special case of the “BCFW bridge” in some

detail.

I. Adding Particles

Let us start with a general Yangian-invariant object

Yn,k(Z1, . . . ,Zn). (4.2.2)

We will first describe operations that will add a particle to lower-point invariants to get

higher-point invariants known as applying “inverse soft factors” [24], which are so named

because taking the usual soft limit of the resulting object returns the original object.

This can be done preserving k or increasing k 7→ k + 1. We can discuss these in both

twistor- and momentum-twistor space; for the purposes of this chapter we will describe

these inverse-soft factor operations in momentum-twistor space.

The idea is that there are residues in G(k, n) which are trivially related to residues in

G(k, n− 1) or G(k − 1, n− 1). The k-preserving operation Yn−1,k 7→ Yn,k is particularly

simple, being simply the identification

Y ′n,k(Z1, . . . ,Zn−1,Zn) = Yn−1,k(Z1, . . . ,Zn−1); (4.2.3)

that is, where we have simply added particle n as a label (but have not altered the

functional form of Y in any way); thanks to the momentum-twistor variables, momentum
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conservation is automatically preserved. The k-increasing inverse soft factor is slightly

more interesting. There is always a residue of G(k, n) which has a C-matrix of the form
∗ ∗ 0 · · · 0 ∗ ∗ 1

∗ · · · · · · · · · · · · · · · ∗ 0
...

. . . . . . . . . . . . . . . ∗ ...

 . (4.2.4)

Here, the non-zero elements in the top row, ∗ ∗ ∗ ∗ 1 correspond to particles

1, 2, (n− 2), (n− 1), n, and we have generic non-zero entries in the lower (k−1)×(n−1)

matrix. The corresponding residue is easily seen to be associated with

Y ′n,k(. . . ,Zn−1,Zn,Z1, . . .) = [n 2 n 1 n 1 2]× Yn−1,k−1(. . . , Ẑn−1, Ẑ1, . . .) (4.2.5)

where

[a b c d e] =
δ0|4(ηa〈b c d e〉+ ηb〈c d e a〉+ ηc〈d e a b〉+ ηd〈e a b c〉+ ηe〈a b c d〉)

〈a b c d〉〈b c d e〉〈c d e a〉〈d e a b〉〈e a b c〉 (4.2.6)

is the basic ‘NMHV’-like R-invariant5 and the Ẑn−1,1 are deformed momentum twistor

variables. The Bosonic components of the deformed twistors have a very nice interpre-

tation: Ẑ1 is simply the intersection of the line (1 2) with the plane (n 2 n 1 n), which

we indicate by writing Ẑ1 ≡ (n 2 n 1 n)
⋂

(1 2); and Ẑn−1 is the intersection of the line

(n 2 n 1) with the plane (1 2n), written Ẑn−1 ≡ (n 2 n 1)
⋂

(n 1 2). Fully supersym-

metrically, we have

Ẑ1 ≡ (n 2 n 1 n)
⋂

(1 2) = Z1〈2 n 2 n 1 n〉+ Z2〈n 2 n 1 n 1〉;

Ẑn−1 ≡ (n 2 n 1)
⋂

(n 1 2) = Zn−2〈n 1 n 1 2〉+ Zn−1〈n 1 2 n 2〉.
(4.2.7)

II. Removing Particles

We can also remove particles to get lower-point Yangian invariants from higher-point

ones. This turns out to be more interesting than the inverse-soft factor operation, though

physically one might think it is even more straightforward. After all, we can remove a

particle simply by taking its soft limit. However, while this is a well-defined operation on

e.g. the full tree amplitude, it is not a well-defined operation on the individual residues

5When two sets of the twistors are consecutive, these “R-invariants” are sometimes written

Rr;s,t ≡ [r s 1 s t 1 t]. These invariants were first introduced in [8] in dual super-coordinate space.
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(BCFW terms) in the tree amplitude. The reason is the presence of spurious poles: each

term does not individually have the correct behavior in the soft limit.

Nonetheless, there are completely canonical and simple operations for removing par-

ticles in a Yangian-invariant way. One reduces k 7→ k − 1, the other preserves k. The

k-reducing operation removes particle n by integrating over its twistor co-ordinate

Y ′n−1,k−1(Z1, . . .Zn−1) =

∫
d3|4Zn Yn,k(Z1, . . . ,Zn−1,Zn). (4.2.8)

This gives a Yangian-invariant for any closed contour of integration—meaning that un-

der the Yangian generators for particles 1, . . . , n− 1, this object transforms into a total

derivative with respect to Zn. This statement can be trivially verified by directly exam-

ining the action of the level-zero and level-one Yangian generators on the integral. It is

also very easy to verify directly from the Grassmannian integral. Note that depending on

the contour that is chosen, a given higher-point invariant can in general map to several

lower-point invariants.

The k-preserving operation “merges” particle n with one of its neighbors, n− 1 or 1.

For example,

Y ′n−1,k(Z1, . . .Zn−1) = Yn,k(Z1, . . . ,Zn−1,Zn 7→ Zn−1). (4.2.9)

The Yangian-invariance of this operation is slightly less obvious to see by simply manip-

ulating Yangian generators, but it can be verified easily from the Grassmannian formula.

We stress again that these operations are perfectly well-defined on any Yangian-

invariant object, regardless of whether the standard soft-limits are well defined. Of

course, they coincide with the soft limit when acting on e.g. the tree amplitude.

III. Fusing Invariants

Finally, we mention a completely trivial way of combining two Yangian invariants to

produce a new invariant. Start with two invariants which are functions of a disjoint set

of particles, which we can label Y1(Z1, . . . ,Zm) and Y2(Zm+1, . . . ,Zn). Then, it is easy

to see that the simple product

Y ′(Z1, . . . ,Zn) = Y1(Z1, . . . ,Zm)× Y2(Zm+1, . . . ,Zn) (4.2.10)

is also Yangian-invariant. Only the vanishing under the level-one generators requires a

small comment. Note that the cross terms vanish because the corresponding level-zero
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generators commute and therefore the level-one generators cleanly splits into the smaller

level-one generators.

IV. Leading Singularities are Yangian Invariant

Combining these operations builds new Yangian invariants from old ones; all of which

have nice physical interpretations. An immediate consequence is a simple proof that all

leading singularities are Yangian invariant. For this subsection only, we work in ordinary

twistor space. Then we take any four Yangian invariants for disjoint sets of particles and

we make a new invariant by taking the product of all of them,

Y1(W1, . . . ,Wm)Y2(Wm+1, . . . ,Wl)Y3(Wl+1, . . . ,Wp)Y4(Wp+1, . . . ,Wq).

We then “merge” m and m+ 1, l and l+ 1, p and p+ 1, and q with 1. We then integrate

over m, l, p, q. This precisely yields the twistor-space expression for a “1-loop” leading

singularity topology [22,23].

In the figure, a thick black line denotes the merging of the two particles at the ends of

the line, and integrating over the remaining variable. The generalization to all leading

singularities is obvious; for instance, starting with the “1-loop” leading singularity we

have already built, we can use the same merge and integrate operations to build “2-loop”
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leading singularity topologies such as that shown below.

We conclude that all leading singularities are Yangian invariant. Given that all Yangian

invariants are Grassmannian residues, this proves (in passing) the original conjecture

in [10] that all leading singularities can be identified as residues of the Grassmannian

integral.

V. The BCFW Bridge

A particularly important way of putting together two Yangian invariants to make a third

is the “BCFW bridge” [17,21,34], associated with the familiar “two-mass hard” leading

singularities drawn below in twistor space [17,33,34,103]:

Here, the open and dark circles respectively denote MHV and MHV three-particle am-

plitudes, respectively. We remark in passing that the inverse-soft factor operations men-

tioned above are special cases of the BCFW bridge where a given Yangian invariant is

bridged with an MHV three-point vertex (for the k-preserving case) or an MHV three-

point vertex (for the k-increasing case).

We will find it useful to also see the bridge expressed as a composition of our basic

operations in momentum-twistor space, as
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=

This is a pretty object since it uses all of our basic operations in an interesting way. In

the figure, the solid arrows pointing inward indicate that particle-“1” is added as an k-

increasing inverse soft factor on YL, and j+1 is added as a k-increasing inverse soft factor

on YR. We are also using the merge operation to identify the repeated “1” and “j+1”

labels across the bridge. The internal line, which we label as ZI , is integrated over. The

contour of integration is chosen to encircle the 〈n 1 n 1 I〉-pole from the [n 1 n 1 I j+1]-

piece of the inverse-soft factor on YL, and the 〈1 I j+1 j〉- and 〈I j+1 j j 1〉-poles from

the [1 I j+1 j j 1]-piece of the inverse soft factor on YR. The deformation on Zn induced

by the inverse-soft factor adding particle-1 on YL is of the form

Zn 7→ Ẑn = Zn + zZn−1, where 〈ẐnZ1ZjZj+1〉 = 0. (4.2.11)

This is the momentum-twistor space version of the BCFW deformation, which corre-

sponds to deforming λn, λ̃1 in momentum-space. We remind ourselves of this deformation

by placing the little arrow pointing from n 7→ n − 1 in the figure for the bridge. The

momentum-twistor space geometry associated with this object is

which precisely corresponds to the expected BCFW deformation and the corresponding

factorization channel.

We leave a detailed derivation of this picture to [35], but in fact the momentum-

twistor structure of the BCFW bridge can be easily understood. Note that YL, YR have
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k-charge kL, kR, while YL⊗ YR has k-charge kL + kR + 1; given that the ZI decreases the

k-charge by 1, we must start with YL and YR and get objects with k-charge (kL + 1) and

(kR + 1) on the left and right. This can be canonically done by acting with k-increasing

inverse soft factors; the added particle on YL must be adjacent to n in order to affect a

deformation on Zn. Finally, the data associated with the “extra” particles introduced

by the inverse soft factor must be removed in the only way possible, by using the merge

operation. Explicitly, the final result for YL ⊗
BCFW

YR is(
YL ⊗

BCFW
YR

)
(1, . . . , n) = [n 1 n 1 j j+1]× YR

(
1, . . . , j, I

)
× YL

(
I, j + 1, . . . , n 1, n̂

)
(4.2.12)

with
n̂ = (n 1 n)

⋂
(j j+1 1), and I = (j j+1)

⋂
(n 1 n 1). (4.2.13)

Starting with the tree amplitude Mn,k,tree
6, the BCFW deformation Zn 7→ Zn+zZn−1

can be used to recursively construct tree amplitudes in the familiar way: by writing,

Mn,k,tree =

∮
dz

z
M̂n,k,tree(z), (4.2.14)

it is clear that the desired amplitude M̂n,k,tree(z) is obtained by summing-over all the

residues of the RHS except the pole at origin z = 0. Notice that there is a non-zero

pole at infinity in this deformation: as z →∞, Zn → Zn−1 projectively, and so the tree

amplitude gets a contribution from Mn(Z1, . . . ,Zn−1,Zn)→Mn−1(Z1, . . . ,Zn−1) 7. The

pole at z → ∞ corresponds to the term in the usual momentum-space BCFW formula

using an MHV three-point vertex bridged with Mn−1, which simply acts as a k-preserving

inverse-soft factor The remaining physical poles are of the form 〈i i+1 j j+1〉. Under

Zn 7→ Zn + zZn−1, we only access the poles where 〈Zn(z)Z1ZjZj+1〉 → 0, and the

corresponding residues are computed by the BCFW bridge indicated above, with YL, YR

being the lower-point tree amplitudes.

6We remind the reader that we are working in momentum-twistor space, so that what we are calling

Mtree here is obtained after stripping off the MHV tree-amplitude factor from the full amplitude in

momentum space.
7Note that z → ∞ here does not correspond to going to infinity in the familiar momentum-space

version of BCFW. The pole at infinity in ordinary momentum space here corresponds to a pole involving

the infinity twistor 〈Zn(z) I Z1〉 = 0. Of course we do not expect such a pole to arise in a dual-conformal

invariant theory, not only at tree-level, but at all-loop order, as will be relevant to our subsequent

discussion. A direct proof of this fact, not assuming dual conformal invariance, should follow from the

“enhanced spin-lorentz symmetry” arguments of [34].
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4.3 Loops From Hidden Entanglement

Let’s imagine starting with some scattering amplitude or Grassmannian residue, and

begin removing particles. The operation that decreases k in particular demands a choice

for the contour of integration. If we remove particle ZA by integrating over it as
∫
d3|4ZA,

it is natural to choose a T 3-contour of integration for the Bosonic d3ZA integral and

compute a simple residue8.

We can then proceed to remove a subsequent particle either by merging, or performing

further integrals
∫
d3|4ZB and so on. In this way we will simply proceed from higher-

point Grassmannian residues to lower-point ones. In particular, if these operations are

performed on a higher-point tree amplitude, we arrive at lower-point tree amplitudes,

and don’t encounter any new objects.

But we can imagine a more interesting way of removing not just one but a pair of

particles. Consider removing particle A and subsequently removing the adjacent particle

B. Instead of first integrating-out A and then B on separate T 3’s, let’s consider an

“entangled” contour of integration, which we will discover to yield, instead of lower-point

Grassmannian residue, a loop integral.

Consider as a simple example removing two particles from the 6-particle N2MHV =

MHV tree amplitude, M6,4,`=0(1234AB). Performing the d0|4ηA, d
0|4ηB integrals is trivial,

and this gives ∫
d3zAd

3zB
〈1234〉3

〈234zA〉〈34zAzB〉〈4zAzB1〉〈zAzB12〉〈zB123〉 (4.3.15)

where we have chosen to label the Bosonic momentum twistors with lower-case z’s for

later convenience. As we have claimed, on any closed contour, these integrals should

give a Yangian-invariant answer. Indeed, computing the zB integral by residue on any

contour leaves us with ∫
d3zA

〈1234〉3
〈zA123〉〈zA234〉〈zA341〉〈zA412〉 (4.3.16)

8Residues of rational functions in m complex variables are computed by choosing m polynomial

factors fi’s from the denominator and integrating along a particular Tm-contour, i.e. the product of m

circles given as the solutions of |fi| = ε with ε� 1 and near a common zero of the fi’s. See [65] for more

details.
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and computing any of the simple residues of this remaining zA integral gives 1, which is

of course the only Yangian invariant for MHV amplitudes.

We will now see that starting with exactly the same integrand but choosing a different

contour of integration yields, instead of “1”, the 4-particle 1-loop amplitude. Geometri-

cally, the points zA, zB determine a line in momentum-twistor space, which is interpreted

as a point in the dual x-space, or equivalently, a loop-integral’s four-momentum. We will

first integrate over the positions of zA, zB on the line (AB), and then integrate over all

lines (AB).

This contour can be described explicitly by parametrizing zA,B as

zA =

 λA

xλA

 , zB =

 λB

xλB

 (4.3.17)

where x will be the loop momentum. The measure is

d3zAd
3zB = 〈λAdλA〉〈λBdλB〉〈λAλB〉2d4x. (4.3.18)

The λA, λB integrals will be treated as contour integrals on CP1×CP1, while the x-integral

will be over real points in the (dual) Minkowksi space.

Using that 〈zAzB j 1 j〉 = 〈λAλB〉〈j 1 j〉(x−xj)2 our integral becomes∫
d4x

x2
13x

2
24

(x−x1)2(x−x2)2(x−x4)2

∫ 〈1234〉〈23〉〈λAdλA〉〈λBdλB〉
〈zA123〉〈234zB〉〈λAλB〉

. (4.3.19)

The factor 〈zA234〉 is linear in the projective variable λA while the factor 〈123zB〉 is linear

in λB. This implies that there is a unique way to perform the λA and λB integrals by

contour integration, which gives us∫
d4x

x2
13x

2
24

(x− x1)2(x− x2)2(x− x3)2(x− x4)2
. (4.3.20)

This is precisely the 1-loop MHV amplitude!

We have thus seen that, removing a pair of particles with this “entangled” contour of

integration, where we first integrate over the position of two points along the line joining

them and then integrate over all lines, naturally produces objects that look like loop

integrals.

There is a nicer way of characterizing this “entangled” contour that is also more

convenient for doing calculations, let us describe it in detail. Given zA, zB, a general
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GL2-transformation on the 2-vector (zA, zB) moves A,B along the line (AB). Thus, in

integrating over d3zAd
3zB, we’d like to “do the GL2-part of the integral first” to leave us

with an integral that only depends on the line (AB):

We can do this explicitly by writing zA

zB

 =

 c
(A)
A c

(B)
A

c
(A)
B c

(B)
B

 ZA

ZB

 ; (4.3.21)

then

d3zAd
3zB = 〈cAdcA〉〈cBdcB〉〈cAcB〉2

[
d4ZAd

4ZB
vol(GL2)

]
, (4.3.22)

and our integral becomes—this time writing it out fully:∫ [
d4ZAd

4ZB
vol(GL2)

] 〈1234〉3
〈AB 12〉〈AB 34〉〈AB 41〉

∫ 〈cAdcA〉〈cBdcB〉
〈cAcB〉〈cAψA〉〈cBψB〉

, (4.3.23)

where

ψA =

 〈A234〉
〈B234〉

 , ψB =

 〈A123〉
〈B123〉

 . (4.3.24)

The cA, cB integral is naturally performed on a contour ‘encircling’ cA = ψA, cB = ψB,

yielding 1
〈ψAψB〉

= 1
〈AB 23〉〈1234〉 . More generally, if “234” and “123” in the definitions of

ψA, ψB were to be replaced by arbitrary “abc” and “xyz”, 〈ψAψB〉 = 〈Axyz〉〈Babc〉 −
〈Aabc〉〈Bxyz〉 ≡ 〈AB (abc)

⋂
(xyz)〉 where (abc)

⋂
(xyz) is the line corresponding to the

intersection of the planes (abc) and (xyz). We are then left with∫ [
d4ZAd

4ZB
vol(GL2)

] 〈1234〉2
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 41〉 , (4.3.25)

where the integration region is such that the line (AB) corresponds to a real point in the

(dual) Minkowski space-time. We recognize this object as the 1-loop MHV amplitude,

exactly as above.
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We can clearly perform this operation starting with any Yangian invariant object

Y [ZA,ZB,Z1, . . .], which we will graphically denote as:

and write as ∫
GL2

Y [. . . ,Zn,ZA,ZB,Z1, . . .] (4.3.26)

This object is formally Yangian-invariant, in the precise sense that the integrand will

transform into a total derivative under the action of the Yangian generators for the

external particles. Of course, such integrals may have IR-divergences along some contours

of integration, which is how Yangian-invariance is broken in practice.

The usual way of writing the loop amplitudes as “leading singularity × scalar integral”

ensures that the leading singularities of the individual terms are Yangian-invariant, but

the factorized form seems very un-natural, and there is no obvious action of the symmetry

generators on the integrand. By contrast, the loop integrals we have defined, as we will

see, will not take the artificial “residue × integral” form, but of course their leading singu-

larities are automatically Grassmannian residues. The reason is that a leading singularity

of the (AB)-integral can be computed as a simple residue of the underlying d3|4zAd
3|4zB

integral, which is free of IR-divergences and guaranteed to be Yangian-invariant.

4.4 Recursion Relations For All Loop Amplitudes

Having familiarized ourselves with the basic operations on Yangian invariants, we are

ready to discuss the recursion relations for loops in the most transparent way. The loop

integrand is a rational function of both the loop integration variables and the external

kinematical variables. Just as the BCFW recursion relations allow us to compute a

rational function from its poles under a simple deformation, the loop integrand can be

determined in the same way. Consider the l-loop integrand Mn,k,`, and consider again
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the (supersymmetric) momentum-twistor deformation

Zn 7→ Zn + zZn−1. (4.4.27)

Then

Mn,k,` =

∮
dz

z
M̂n,k,`(z) (4.4.28)

and we sum over all the residues of the RHS away from the origin, all of which can

be determined from lower-point/lower-loop amplitudes. This recursion relation can be

derived in a large class of theories and is not directly tied to N = 4 SYM or Yangian-

invariance. However our experience with building Yangian-invariant objects will help us

to understand (and compute) the terms in the recursion relations in a transparent way,

and also easily recognize them as manifestly Yangian-invariant objects.

As in our discussion of the BCFW bridge at tree-level, the pole at infinity is simply

the lower-point integrand with particle n removed. All the rest of the poles in z also have

a simple interpretation: in general, all the poles arise either from 〈Zn(z)Z1 Zj Zj+1〉 → 0

or 〈(AB)q Zn(z)Z1〉 → 0, where (AB)q denotes the line in momentum twistor space

associated with the qth loop-variable. The first type of pole simply corresponds to fac-

torization channels, and the corresponding residue is computed by the BCFW bridges

between lower-loop/lower-point amplitudes:

where nL + nR = n + 2, kL + kR = k − 1, `L + `R = `. Note that we treat all the poles

(including the pole at infinity) on an equal footing by declaring the term with j = 2 to

be given by the k-preserving inverse soft-factor acting on lower-point amplitude.

This is the most obvious generalization of the BCFW recursion relation from trees

to loops, but it clearly can’t be the whole story, since it would allow us to recursively

reduce loop amplitudes to the 3-particle loop amplitude, which vanishes! Obviously, at

loop-level, a “source” term is needed for the recursive formula.
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I. Single-Cuts and the Forward-Limit

This source term is clearly provided by the second set of poles, arising from

〈(AB)q Zn(z) Z1〉 → 0. For simplicity of discussion let’s first consider the 1-loop am-

plitude. This pole corresponds to cutting the loop momentum running between n and

1, and is therefore given by a tree-amplitude with two additional particles sandwiched-

between n, 1, with momenta q,−q, summing-over the multiplet of states running around

the loop. These single-cuts associated with “forward-limits” of lower-loop integrands are

precisely the objects that make an appearance in the context of the Feynman tree theo-

rem [91]. The geometry of the forward limit is shown below for both in the dual x-space

and momentum-twistor space:

Here, between particles 5 and 1, we have particles 6, 7 with momenta qµ,−qµ, where

qµ = xµ1 − xµ7 is a null vector. In momentum-twistor space, the null condition means

that the line (76) intersects (15), while in the forward limit both Z6 and Z7 approach the

intersection point (76)
⋂

(15).

In a generic gauge theory, the forward limits of tree amplitudes suffer from collinear

divergences and are not obviously well-defined. However remarkably, as pointed out

in [91], in supersymmetric theories the sum over the full multiplet makes these objects

completely well-defined and equal to single-cuts!

Indeed, we can go further and express this single-cut “forward limit” term in a man-

ifestly Yangian-invariant way. It turns out to to be a beautiful object, combining the
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entangled removal of two particles with the “merge” operation:

Here a particle (n + 1) is added adjacent to A,B as a k-increasing inverse soft factor,

then A,B are removed by entangled integration. The GL2-contour is chosen to encircle

points where both points A,B on the line (AB) are located at the intersection of the line

(AB) with the plane (n 1 n 1). Note that there is no actual integral to be done here;

the GL2-integral is done on residues and is computed purely algebraically. Finally, the

added particle (n+ 1) is merged with 1.

As in our discussion of the BCFW bridge, this form can be easily understood by look-

ing at the deformations induced by the “1” inverse soft factors; the associated momentum-

twistor geometry turns out to be

exactly as needed. The picture is the same for taking the single cut of any Yangian-

invariant object.

Note that we were able to identify the BCFW terms in a straightforward way since

the residues of the poles of the integrand have obvious “factorization” and “cut” inter-

pretations. This is another significant advantage of working with the integrand, since as

is well known, the full loop amplitudes (after integration) have more complicated factor-

ization properties [104]. This is due to the IR-divergences which occur when the loop

momenta becomes collinear to external particles, when the integration is performed.
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II. BCFW For All Loop Amplitudes

Putting the pieces together, we can give the recursive definition for all loop integrands

in planar N = 4 SYM as

= +

To be fully explicit, the recursion relation is

Mn,k,`(1, . . . , n) = Mn−1,k,`(1, . . . , n− 1)

+
∑

nL,kL,`L;j

[j j+1 n−1 n 1] MR
nR,kR,`R

(1, . . . , j, Ij)M
L
nL,kL,`L

(Ij, j+1, . . . , n̂j)

+

∫
GL2

[AB n 1n 1]×Mn+2,k+1,`−1(1, . . . , n̂(AB), Â, B). (4.4.29)

where nL + nR = n + 2, kL + kR = k − 1, `L + `R = ` and the shifted momentum

(super-)twistors that enter are

n̂j = (n 1 n)
⋂

(j j+1 1), Ij = (j j+1)
⋂

(n 1 n 1);

n̂(AB) = (n 1 n)
⋂

(AB 1), Â = (AB)
⋂

(n 1 n 1).
(4.4.30)

Beyond 1-loop, it is understood that this expression is to be fully-symmetrized with equal

weight in all the loop-integration variables (AB)`; it is easy to see that this correctly

captures the recursive combinatorics. Recall again that GL2-integral is done on simple

residues and is thus computed purely algebraically; the contour is chosen so that the

points A,B are sent to (AB)
⋂

(n 1 n 1). As we will show in [35], recursively using the

BCFW form for the lower-loop amplitudes appearing in the forward limit allows us to

carry out the GL2-integral completely explicitly, but the form we have given here will

suffice for this chapter.

III. Simple Examples

In [35], we will describe the loop-level BCFW computations in detail; here we will just

highlight some of the results for some simple cases, to illustrate some of the important
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properties of the recursion and the amplitudes that result. We start by giving the BCFW

formula for all one-loop MHV amplitudes.

In this case the second line in the above formula vanishes, and the recursion relation

trivially reduces to a single sum. To compute the NMHV tree amplitudes which enters

through the third line, it is convenient to use the tree BCFW deformation Z̃B = ZB+zẐA
which leads to

M1−loop
MHV =

∫
(AB)

∫
GL2

∑
j

[AB j j+1 1]×
(∑

i<j

[ÂB 1 i i+1] + . . .

)
, (4.4.31)

where we have defined ∫
(AB)

≡
∫ [

d4|4ZAd4|4ZB
vol(GL2)

]
, (4.4.32)

and where the omitted terms are independent of ZB and vanish upon Fermionic-integration.

The GL2- and Fermion-integrals are readily evaluated, as explained above, reducing this

to

M1−loop
MHV =

∫
(AB)

∑
i<j

〈AB (1 i i+1)
⋂

(1 j j+1)〉2
〈AB 1 i〉〈AB i i+1〉〈AB i+1 1〉〈AB 1 j〉〈AB j j+1〉〈AB j+1 1〉 . (4.4.33)

This is the full one-loop integrand for MHV amplitudes.

As expected on general grounds from Yangian-invariance, and also as familiar from

BCFW recursion at tree-level, the individual terms in this formula contain both local

and non-local poles. We will graphically denote a factor 〈AB xy〉 in the denominator

by drawing a line (xy); the numerators of tensor integrals (required by dual conformal

invariance) will be denoted by wavy- and dashed-lines—the precise meaning of which will

be explained shortly. In this notation, this result is

=

Notice that all the terms have 6 factors in the denominator, and hence by dual conformal

invariance we must have two factors containing (AB) in the numerators. These are de-

noted by the wavy lines: the numerator is 〈AB(1 i i+1)
⋂

(1 j j+1)〉2 ≡ (〈A 1 i i+1〉〈B 1 j j+1〉−
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〈B 1 i i+1〉〈A 1 j j+1〉)2, where the power of 2 has been indicated by the line’s multi-

plicity.

Notice that when i + 1 = j, the numerator cancels the two factors 〈AB 1 j〉2 in the

denominator: by a simple use of the Schouten identity it is easy to see that

[〈A 1 j 1 j〉〈B 1 j j+1〉 − 〈A 1 j j+1〉〈B 1 j 1 j〉]2 = [〈AB 1 j〉〈1 j 1 j j+1〉]2 .
(4.4.34)

In general, all of these terms contain both physical as well as spurious poles. Physical

poles are denominator factors of the form 〈AB i i+1〉 and 〈i i+1 j j+1〉 while spurious

poles are all other denominator factors. We often refer to physical poles as local poles

and to spurious poles as non-local. A small explanation for the “non-local” terminology

is in order. Consider the 5-particle amplitude as an example, where there are three terms

in the integrand. These three terms are

〈1234〉2
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 14〉 +

〈AB (123)
⋂

(145)〉2
〈AB 12〉〈AB 23〉〈AB 31〉〈AB 14〉〈AB 45〉〈AB 51〉

〈3451〉2
〈AB 34〉〈AB 45〉〈AB 51〉〈AB 31〉 . (4.4.35)

The spurious poles are 〈AB 14〉 and 〈AB 13〉. The line defined by Z1 and Z3 corresponds

to a complex point, but what makes 〈AB 13〉 non-local? The reason is that in field

theory 1/〈AB 13〉 could only come from a loop integration, e.g. it is generated by a local

one-loop integral of the form∫ [
d4ZCd

4ZD
vol(GL2)

] 〈CD (512)
⋂

(234)〉
〈CDAB〉〈CD 51〉〈CD 12〉〈CD 23〉〈CD 34〉 . (4.4.36)

(This is also the secret origin of the non-local poles in BCFW at tree-level.)

Back to the 5-particle example, 〈AB 14〉 and 〈AB 31〉 occur each in two of the three

terms and they cancel in pairs. Indeed upon collecting denominators we find, after

repeated uses of the Schouten identity, the result for the sum

−〈AB 12〉〈2345〉〈1345〉+ 〈AB 23〉〈1345〉〈1245〉+ 〈AB 13〉〈1245〉〈3245〉+ 〈AB 45〉〈1234〉〈1235〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉 .

(4.4.37)

This is furthermore cyclically-invariant, albeit in a nontrivial way involving Schouten

identities.

Let us also briefly discuss the 6-particle NMHV amplitude at 1-loop. The full inte-

grand has 16 terms which differs even more sharply from familiar local forms of writing
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the amplitude. As we will review in the next section, the usual box decomposition of

1-loop amplitudes does not match the full integrand (only the “parity-even” part of the

integrand); even so, there is a natural generalization of the basis of integrals that can be

used to match the full integrand in a manifestly dual conformal invariant form. Any such

representation, however, will have the familiar form “leading singularity/Grassmannian

residue × loop integral”. However, this is not the form we encounter with loop-level

BCFW. Instead, the supersymmetric η-variables are entangled with the loop integration

variables in an interesting way. For instance, one of the terms from the forward limit

contribution to the 6-particle NMHV amplitude integrand is the following,

δ0|4

 η1〈AB 1(23)
⋂

(456)〉 + η2〈4561〉〈AB 31〉 + η3〈4561〉〈AB 12〉
+ η4〈AB (123)

⋂
(561)〉 + η5〈AB 1(46)

⋂
(123)〉 + η6〈AB 1(123)

⋂
(45)〉


〈4561〉〈AB 45〉〈AB 61〉〈AB 12〉〈AB 23〉〈AB 13〉〈AB 41〉〈AB (123)

⋂
(456)〉〈AB (123)

⋂
(561)〉

The full expression is given in appendix C. Note the presence of the explicit (AB)-

dependence in the argument of the Fermionic δ-function. Seemingly miraculously, when

the residues of this integral are computed on its leading singularities, the η-dependence

precisely reproduces the standard NMHV R-invariants. Of course this miracle is guar-

anteed by our general arguments about the Yangian-invariance of these objects.

IV. Unitarity as a Residue Theorem

The BCFW construction of tree-level amplitudes make Yangian-invariance manifest, but

are not manifestly cyclic-invariant. The statement of cyclic-invariance is then a remark-

able identity between rational functions. Of course one could say that the field theory

derivation of the recursion relation gives a proof of these identities, but this is quite a

circuitous argument. One of the initial striking features of the Grassmannian picture for

tree amplitudes was that these identities were instead a direct consequence of the global

residue theorem applied to the Grassmannian integral. This observation ultimately led to

the “particle interpretation” picture for the tree contour, giving a completely autonomous

and deeper understanding of tree amplitudes, removed from the crutch of their field the-

ory origin.

In complete analogy with BCFW at tree-level, the BCFW construction of the loop

integrand is not manifestly cyclically-invariant. Again cyclic-invariance is a remarkable
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identity between rational functions, and again this identity can be thought of as a conse-

quence of the field theory derivation of the recursion relation. But of course we strongly

suspect that there is an extension of the “particle interpretation” picture that gives a

completely autonomous and deeper understanding of loop amplitudes, independent of

any field theoretic derivation.

Just as at tree-level, a first step in this direction is to find a new understanding of the

cyclic-invariance identities. To whit, we have understood how the cyclic-identity for the 1-

loop MHV amplitude can be understood as a residue theorem; we very briefly outline the

argument here, deferring a detailed explanation to [35]. The idea is to identify the terms

appearing in the MHV 1-loop formulas as the residues of a new Grassmannian integral.

All the terms in the MHV 1-loop formula can actually be thought of as arising from∫
d3|4ZAd3|4ZBYn+2,k=2(ZA,ZB, . . .), where Yn+2,k=2 is computed from the G(2, n + 2)

Grassmannian integral. Note that ZA,ZB appear in the δ-functions of the integral in the

combination CβAZA + CβBZB, so the GL2-action on (ZA,ZB) also acts on (CβA, CβB).

Performing the ηA,B and GL2-integrals leaves us with a new Grassmannian integral:

∫
d2×(n+2)Cβa

δ4(CβiZi + CβAZA + CβBZB)(AB)2

(12)(23) · · · (n1)
. (4.4.38)

By construction, this integral has aGL2-invariance acting on columns (A,B) and (ZA, ZB),

and hence all of is residues are only a function of the line (ZAZB). In particular all terms

appearing in the MHV 1-loop formula, after GL2 integration, are particular residues of

this Grassmannian integral.

As we will discuss at greater length in [35], the equality of cyclically-related BCFW

expressions of the 1-loop amplitude follows from a residue theorem applied to this integral.

In fact, it can be shown that the only combination of these residues that is free of spurious

poles is the physical 1-loop amplitude.

At tree level, the cyclic-identity applied to e.g. NMHV amplitudes ensures the absence

of spurious poles. The same is true at 1-loop level. Since the BCFW formula manifestly

guarantees that one of the single cuts is correctly reproduced, cyclicity guarantees that

all the single cuts are correct. Having all correct single cuts, automatically ensures that

all higher cuts—and in particular unitarity cuts—are correctly reproduced. Unitarity

then finds a deeper origin in this residue theorem.
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4.5 The Loop Integrand in Local Form

We have seen that the loop integrand produced by BCFW consists of a sum over non-

local terms. In order to present the results in a more familiar form, and also as a powerful

check on the formalism, it is interesting to instead re-write the integrand in a manifestly

local way (which will of course spoil the Yangian-invariance of each term). We will do

this for a number of multi-loop examples in the next section, but first we must describe

a new basis of local loop integrals which differs in significant ways from the standard

scalar integrals, but which will greatly simplify the results and make the physics much

more transparent.

Loop amplitudes are normally written as scalar integrals9 with rational coefficients.

Obviously this form can not match the full loop integrand, since scalar integrals are even

under parity but the amplitude is chiral. Let’s consider one-loop integrals to begin the

discussion. In the usual way of discussing the integral reduction procedure, manipulations

at the level of the integrand reduces integrals down to pentagons [105]. The final reduction

to the familiar boxes uses the fact that the parity-odd parts of the integrand integrate

to zero.

We are instead interested in the full integrand, however, and since the amplitudes

aren’t parity symmetric, there is no natural division between “parity-odd” and “parity-

even”. In fact, for the purpose of writing recursion relations, it is crucial to know both.

Furthermore, the BCFW recursion relation guarantees that the loop integrand is dual

conformally invariant and thus most usefully discussed in momentum-twistor space. We

are then led to construct a novel basis of naturally chiral integrals written directly in

momentum-twistor space, as we now briefly describe. These issues will be discussed at

much greater length in [35].

Let’s look at a few quick examples of local integrals written in momentum-twistor

space. We have encountered the simplest example already; the zero mass integral at

1-loop ∫ [
d4ZAd

4ZB
vol(GL2)

] 〈1234〉2
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 41〉 . (4.5.39)

9Here we abuse terminology and use the term “scalar”, which is appropriate at one-loop, to refer to

possibly tensor integrals at higher-loop order where the tensor structure is the product of “local” factors,

i.e., of the form 〈(AB)` i i+1〉 and 〈(AB)`(AB)k〉.
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Henceforth, we will drop the integration measure and only write the integrand. The most

general 1-loop integrand is of the form

〈AB Y1〉 . . . 〈AB Yn−4〉
〈AB 12〉〈AB 23〉 · · · 〈AB n1〉 , (4.5.40)

where Y IJ
1 , . . . , Y IJ

n−4 are general 4 × 4 antisymmetric matrices or ‘bitwistors’; with 6

independent components. Momentum-twistors make integral reduction trivial. Suppose

there are 6 or more local propagator factors including 〈AB j1 j1+1〉 · · · 〈AB j6 j6+1〉 in

the denominator. We can always expand all the Y IJ ’s in a basis of the 6 bitwistors

Z
[I
j1
Z
J ]

j1+1
, . . . , Z

[I
j6
Z
J ]

j6+1
. Inserting this expansion into the integrand, each term knocks-

out a propagator from the denominator. Thus we can reduce any integral down to

pentagons.

These will contain 5 “(AB)” factors in the denominator and a single “(AB)” factor in

the numerator. In the literature, x-space loop integrals are written with numerator factors

like (x−xj)2, which in momentum-twistor space correspond to 〈AB j j+1〉. However, we

will find more general numerators to be more natural. For instance, a typical pentagon

integrand we consider takes the form

〈AB 14〉〈5123〉〈2345〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉 . (4.5.41)

We can trivially translate this integral into x-space; the numerator is proportional to

(x−x14)2, where x14 is a complex point associated with the line (14) in momentum-twistor

space; specifically, the pentagon-integral (4.5.41) is given by

〈14〉〈23〉
〈12〉〈34〉

∫
d4x

(x− x14)2x2
13x

2
35

(x− x1)2(x− x2)2(x− x3)2(x− x4)2(x− x5)2
, (4.5.42)

with

x14 ≡
|1〉x4|4〉 − |4〉x1|1〉

〈14〉 . (4.5.43)

The complex point x14 is null-separated from x1, x2, x4 and x5; the second point sharing

this property is its parity conjugate which will be described shortly. These complex

points play an important role in the story, and it is most convenient to discuss them on

an equal footing with the rest of the points by working directly with momentum-twistor

space integrands.

Notably, unlike standard scalar integrals, this pentagon integral is chiral. Like any

pentagon integral, it has 5 quadruple cuts and twice as many leading singularities. But
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unlike a generic pentagon integral, with this special numerator, half of the leading singu-

larities vanish, and the others are all equal up to sign—hence, we say that this integral

has “unit leading singularities”. All of the local integrals we consider have this quite

remarkable feature.

Local momentum-twistor space integrals can be drawn in exactly the same way as

familiar planar integrals in x-space; we introduce a new bit of notation to denote the

numerator factors. The pentagon integral we just discussed is drawn as,

1

23

4

5

(4.5.44)

where the dashed line connecting (1, 4) denotes the numerator factor 〈AB 14〉. We will

also have recourse to use the parity conjugates of these lines. The point Zi in momentum

twistor space is naturally paired with its projective-dual plane Wi = (i 1 i i+1), and the

parity conjugate of a line (ij) is the line which is the intersection of the corresponding

planes (ij) ≡ (i 1 i i+1)
⋂

(j 1 j j+1). The numerator factor,

〈AB ij〉 ≡ 〈A i 1 i i+1〉〈B j 1 j j+1〉 − 〈B i 1 i i+1〉〈A j 1 j j+1〉 (4.5.45)

will be denoted by a wavy-line connecting i, j.

With this notation we can nicely write the integrand for n-particle 1-loop MHV

amplitudes as

1

n



+ + cyclic

〈n 1 2 3〉〈1 2 i i+1〉

2 < i < n

〈2 j i 1 i〉
×〈AB (123)

⋂
(j 1 j j+1)〉

3 < i < j ≤ n



. (4.5.46)

In this expression we sum over all cyclic integrands, including duplicates, which is related

to the presence of the 1/n pre-factor.
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For definiteness, we have indicated the numerator factor beneath the corresponding

picture. Recall the familiar form of the MHV amplitude as a sum over all 2-mass easy

boxes; it is amusing that in our form the only boxes are 2-mass hard. The algorithm by

which this form was deduced will be explained shortly.

We pause to point out that the full integrand for some MHV amplitudes have been

computed in the literature, in the context of using the leading singularity method to

determine the integrand [97]. A peculiarity in these papers was that the set of integrals

that were used to match all the leading singularities did not appear to be manifestly

dual conformal invariant—which is particularly ironic, given that the leading singular-

ities themselves are fully Yangian-invariant! This led some authors to the conclusion

that the parity-odd parts of the amplitude are somehow irrelevant, since they not only

integrate to zero on the real contour but are also not dual conformal invariant. Of course,

nothing could be further from the truth: we have seen very clearly that the full integrand

is determined recursively and exhibits the Yangian symmetry of the theory; the decom-

position into parity even and odd parts is artificial. The problem is quite simple, the

basis of scalar integrals has only parity even elements! Therefore, one is trying to model

the full integrand with a very inappropriate basis.

From the momentum-twistor viewpoint, the source of the previous difficulties can be

seen quite explicitly. We have seen that all 1-loop integrals can be reduced to pentagons,

but these are tensor pentagons, i.e. with factors of (AB) in the numerator. Now, it is

possible to further reduce a pentagon with numerator 〈AB Y 〉, with Y corresponding

to a real line or not, to a scalar pentagon integral, by expanding Y in a basis of the 5

bitwistors appearing in the denominators, together with the infinity twistor I∞. But this

breaks manifest dual conformal invariance! Thus the integrands obtained in [95, 97, 99]

are indeed dual conformal invariant, but the symmetry was obscured by insistence to use

scalar integrals.

Let’s give an example of an interesting two-loop integrand using our notation:

〈1345〉〈5613〉〈AB 46〉〈CD (234)
⋂

(612)〉
〈CD 61〉〈CD 12〉〈CD 23〉〈CD 34〉〈AB CD〉〈AB 34〉〈AB 45〉〈AB 56〉〈AB 61〉 (4.5.47)
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which we draw as
1

2

34

5

6

At two-loops, there are generally 4 solutions to cutting any eight propagators, and so

this integral has 9× 4 = 36 different (non-composite) leading singularities. However, the

integral is maximally chiral: putting any choice of eight propagators on shell will have

only one solution with a non-vanishing residue. Moreover, the non-vanishing residues are

equal up to a sign. This non-trivial fact can be understood as following from the global

residue theorem applied to the integral. All the tensor integrals we write in this chapter

are chiral in this sense, and the overall normalization of each has been chosen so that all

its non-vanishing leading singularities are equal to ±1.

These chiral momentum-twistor integrals have another remarkable feature: they are

less IR-divergent than generic loop integrals; indeed, many of them are completely IR-

finite. Infrared divergences arise when the loop momenta become collinear with the

external momenta pj. In the dual co-ordinate space, this happens when a loop-integration

variable x lies on the line connecting xj and xj+1. In momentum-twistor space, this

corresponds to configurations where the associated line (AB) passes through the point

Zj while lying in the plane (j 1 j j+1). An integral is IR-finite if the numerator factors

have a zero in the dangerous configurations. There are an infinite class of IR-finite

integrals at any loop order; for instance, it is easy to see that the two-loop example

above is IR-finite. Further discussion of these objects and their role in determining IR-

finite parts of amplitudes like the remainder [81] and ratio [106] functions will be carried

out in [35]. Of course we expect that IR finite quantities, such as the ratio function, are

manifestly finite already at the level of the integrand.

It is interesting that the näıvely “hardest” multi-loop integrands can be reduced to

finite integrals plus simpler integrals. Consider for instance a general double pentagon

integrand for six particles, of the form

〈AB Y1〉〈CDY2〉
〈CD 61〉〈CD 12〉〈CD 23〉〈CD 34〉〈AB CD〉〈AB 34〉〈AB 45〉〈AB 56〉〈AB 61〉 . (4.5.48)

We can expand Y1 in terms of the 6 bitwistors (Z3Z4), (Z4Z5), (Z5Z6), (Z6Z1) as well
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as the bitwistors corresponding to (46) and its parity conjugate (46). Similarly we can

expand Y2 in terms of (Z1Z2), (Z2Z3), (Z3Z4), (Z6Z1) as well as (31) and (31). Doing this

reduces the integral to finite double-pentagon integrals, plus simpler pentagon-box and

double-box integrals.

Finally, let us describe the general algorithm which we used to find local forms of

the loop integrands. The first step is to construct an algebraic basis of dual conformal-

invariant integrals, over which the integrand is to be expanded. It turns out, quite

remarkably, that for at least 1- and 2-loops an (over-complete) algebraic basis can be con-

structed which contains exclusively integrals with unit leading singularities, in the sense

just defined. We have explicitly constructed such a bases at 1- and 2-loops and arbitrary

n [35]. The second step is to match the integrand as generated by equation (4.4.29) with

a linear combination of the basis integrals. Since the loop integrand is a well-defined

function of external momenta and loop momenta, this can be done by simply evaluating

it at sufficiently many random points. Numerical evaluation of the integrand is itself

quite fast. Finally, this procedure is greatly facilitated by the fact that, when using our

particular integral basis, the coefficients are guaranteed to be pure numbers (or multiple

of leading singularities, for arbitrary NkMHV), as opposed to arbitrary rational functions

of the external momenta.

4.6 Multi-Loop Examples

The recursion relation for loops gives a completely systematic way of determining the

integrand for amplitudes with any (n, k, `). All the required operations are completely

algebraic and can be easily automated. In this section we use the recursion relation to

present a number of multi-loop results.

As we have stressed repeatedly, the individual terms in the BCFW expansion of the

loop integrand have spurious poles and are also not manifestly cyclically-invariant; thus

as a very strong consistency check on our results, necessary for a local form to exist, we

verify that the integrand is free of all spurious poles: the only poles in the integrand

should be of the form 〈i 1 i j 1 j〉, 〈(AB)` j 1 j〉, 〈(AB)`1 (AB)`2〉. We also explicitly

check cyclic-invariance. Recall that the absence of spurious poles and cyclicity guarantees

that all single-cuts of the amplitude are reproduced, and thus all cuts are automatically
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correctly matched. While preparing this chapter we have explicitly checked that our

recursive determination of the integrand passes these checks up to 14 point N4MHV

amplitudes at 1-loop, 25-point MHV amplitudes at 2-loops, 8-point NMHV amplitudes

at 2-loops, and 5-point MHV amplitude at 3-loops.

We can expand the integral in a local basis of chiral momentum-space integrals with

unit leading singularities using the algorithm briefly described in the previous section.

While the BCFW form of the integrand is almost always more concise than the local

form, the local form is more familiar, so we will present the results in this way. Indeed,

the (modestly) non-trivial work here is only in determining the natural basis for local

integrands. While this is a straightforward exercise using momentum-twistor machinery,

the result is non-trivial, yielding a canonical basis of multi-loop integrals, which we have

constructed explicitly for all n up to 2-loops. In order to present a tree-loop result, we

also found the 5pt basis at three-loops, deferring a complete discussion to [35]. Given

the basis of local integrals with unit leading singularities, generating the integrand and

finding its expansion in the basis is not difficult. The natural basis is over-complete and

so the results can be expressed in a number of equivalent forms. We will choose the forms

that seem canonical and reveal patterns. As we will see, somewhat surprisingly, the local

forms are also often remarkably simple.

I. All 2-Loop MHV Amplitudes

The two-loop amplitude for 4- and 5-particles is given by, respectively,

1

23

4

+ cyclic

(no repeat)

〈2341〉〈3412〉〈4123〉

(4.6.49)
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and

1

23

4
5

+

1

2

3

4

5

+ cyclic

(no repeat)

〈2345〉〈5123〉〈3412〉 〈3451〉〈4513〉
×〈AB (512)

⋂
(234)〉

(4.6.50)

while the 6-particle amplitude is

1

23

4 65

+

6

2

1

3

4

5

+

6

1

2

3

4
5

+

6

1

2
3

4

5

〈2345〉〈6123〉〈3412〉 〈3456〉〈4563〉
×〈AB (561)

⋂
(234)〉

〈2345〉〈3462〉
×〈AB (561)

⋂
(123)〉

〈3456〉〈4562〉
×〈AB (561)

⋂
(123)〉

+

1

2
3

4

5
6

+

6

1

23

4

5

+ cyclic

(no repeat)

〈3456〉〈6123〉〈4512〉 〈6235〉
×〈AB (234)

⋂
(456)〉

×〈CD (561)
⋂

(123)〉

(4.6.51)

To be completely explicit, we have written the numerator factors accompanying each

given term under its corresponding picture.

What about higher-points? The parity-even part of the integrand has been computed

in [16], though the expressions are lengthy and do not expose a discernible pattern.

However, looking at the full (non-parity invariant) integrand for 4-, 5- and 6-particles in

momentum-twistor space reveals a clear pattern: the structure looks like the “square”

of the 1-loop objects, with double-box, pentagon-box and double-pentagon topologies.
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This motivates a simple conjecture for all 2-loop MHV amplitudes:

+ +

〈n 1 2 3〉×
〈1 2 i i+1〉〈i 1 i i+1 i+2〉

2 < i < n

〈2 j i 1 i〉〈i 2 i 1 i i+1〉
×〈AB (123)

⋂
(j 1 j j+1)〉

3 < i < j ≤ n

〈2 i j k〉
×〈AB (123)

⋂
(k 1 k k+1)〉

×〈CD (i 1 i i+1)
⋂

(j 1 j j+1)〉
2 < i < j − 1 < k − 1 < n

(4.6.52)

We checked numerically that this matches the 2-loop MHV integrand as calculated by

BCFW directly. Because the recursion relations are easily automated, this can be verified

for any number of particles. We have checked this explicitly for up to 26 particles. It

is worth emphasizing that independent of verifying the local-ansatz, the cancellation

of spurious poles (and propagators) is a particularly strong consistency check for the

recursion relations. For instance, for the 26-point 2-loop MHV amplitude, there are

exactly 99, 434 terms in the BCFW recursion, each riddled with spurious poles that

cancel in the sum. Even a single sign-mistake would have spoiled this miracle.

It is interesting to note that the näıvely “hardest” integrals that appear here—the

double pentagons—have a numerator which renders them completely finite.

II. All 2-Loop NMHV Amplitudes

Although structurally identical to the 2-loop 5-particle MHV amplitude, it is worth

writing explicitly the 2-loop 5-particle NMHV amplitude; it is,

[1 2 3 4 5]



1

23

4
5

+

1

2

3

4

5

+ cyclic

(no repeat)

〈2345〉〈5123〉〈3412〉 〈2345〉〈3451〉〈4512〉
×〈AB 31〉


(4.6.53)

Notice how this answer highlights the role played by parity: equations (4.6.53) and

(4.6.50) differ only by the parity of the numerator in the tensor-integral—and one can be
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Table 4.1: Coefficients of residue (1) = [2 3 4 5 6]. Here, “g” rotates each figure by

g : i 7→ i+1, and P exchanges wavy- and dashed-lines (together with each figure’s corre-

sponding normalization).

1

6

1

23

4

5

1 + g3

−g(1−g)(1−P )

1

2

3

4

5

6

(1 + g3P )

6

1

2

3

4

5

〈6234〉〈6245〉
×〈AB 53〉〈CD (123)

⋂
(561)〉

〈4561〉
×〈AB (345)

⋂
(561)〉

×〈AB (612)
⋂

(234)〉

〈3456〉
×〈AB (123)

⋂
(345)〉

×〈AB (456)
⋂

(612)〉

(1 + g3P )

6

2

1

3

4

5

−(1 + g3P )

6

1

2

3

4
5

(1+g3P )

×(1+g−g3)

6

1

2
3

4

5

〈3456〉〈4563〉
×〈AB (561)

⋂
(234)〉

〈2345〉〈3462〉
×〈AB (561)

⋂
(123)〉

〈3456〉〈4562〉
×〈AB (561)

⋂
(123)〉

(1−g+g2)
1

6

3

2
4

5

(1+g2+g4)

1

23

4 65

1
2

(
1+g2+g4

) 1

2
3

4

5
6

〈3456〉2〈4512〉 〈2345〉〈3412〉〈6123〉 〈3456〉〈4512〉〈6123〉

obtained from the other simply by exchanging wavy- for dashed-lines. Next we present

the 6-particle 2-loop NMHV amplitude, written in the manifestly-cyclic form,

(1)I1 + cyclic, (4.6.54)

where (1) is the Grassmannian residue given by the R-invariant [2 3 4 5 6] written explic-

itly in equation (4.2.6). Below, we show the coefficient I1 of residue (1).

We next move to the 7-particle NMHV amplitude, which will be presented in the

form,

[(7)(1)I7,1 + cyclic] + [(7)(2)I7,2 + cyclic] + [(7)(3)I7,3 + cyclic] (4.6.55)

where (i)(j) is the Grassmannian residue given by the R-invariant defined by the comple-

ment of {i, j} in {1, 2, . . . , 7}. The expressions for I7,1, I7,2, I7,3 are given in appendix D.
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III. All 3-Loop MHV Amplitudes

The four-point three-loop amplitude is given by the cyclic-sum of the following two classes

of integrands:

1

23

4

+

1

2

3

4

+ cyclic

(no repeat)

〈2341〉3〈3412〉 〈2341〉〈3412〉
×〈AB (412)

⋂
(123)〉

(4.6.56)

Although perhaps visually unfamiliar, the second integral above is commonly referred to

as the “tennis-court” because of the way it is usually drawn. We have drawn it the way

we have to highlight the presence of the pentagon sub-integral and the role played by

the tensor-integral’s numerator (which should be read as connecting to vertices “1” and

“2”).

Finally, we give the integrals contributing to the full 3-loop MHV amplitude for 5

particles. It is given by the following cyclic-sum of the integrands,

1

2

3

4

5

+

3

4

51

2

+

2

3

4

5

1

+

5

12

3

4

〈3451〉3

×〈AB (234)
⋂

(512)〉
〈5123〉〈4512〉〈3451〉
×〈AB (123)

⋂
(345)〉

〈4512〉2

×〈AB (345)
⋂

(123)〉
〈4512〉

×〈AB (451)
⋂

(512)〉
×〈AB (345)

⋂
(123)〉

(1 + r)



4

51

2
3

+

3

4

51

2

+

3

2

4

5

1

+

3

4

51

2

〈5123〉〈4512〉〈3451〉2 〈5123〉〈3451〉〈2345〉
×〈AB (123)

⋂
(451)〉

〈3451〉〈4512〉〈1234〉/〈5123〉
×〈AB (345)

⋂
(512)〉

〈2345〉〈3451〉/〈4512〉
×〈AB (123)

⋂
(451)〉

×〈CD (234)
⋂

(512)〉


;

here, r is the reflection operation that maps i 7→ (6− i). Notice that deriving this three-

loop amplitude using the loop-level recursion requires both the 1-loop 9-particle N2MHV

integrand, and the 2-loop 7-particle NMHV integrand; and so the success of getting a

manifestly-cyclic and spurious-pole-free, local object is an indirect check of the validity

of the whole structure at lower-loops and higher points.
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We conclude this quick tour of some simple multi-loop integrands by stressing again

a remarkable feature of all these results. The integrals that appear are special objects

with unit leading singularities—they are thus the most natural basis of local integrals

with which to match the singularities of the theory. As a consequence the coefficients

are also simple objects: “±1” for MHV amplitudes, and Grassmannian residues with

integer coefficients for more general amplitudes. These objects should be thought of as

the correct building blocks for the local integrand, just as the BCFW terms provide the

building blocks for the integrand in Yangian-invariant form. As we will discuss below, it

is also likely that carrying out the integration will yield “simple” results for these classes

of integrals.

4.7 Outlook

The loop integrand for scattering amplitudes is a well-defined object for any gauge theory

in the planar limit, and in this chapter we have given an explicit recursive prescription

for computing it to any loop order in N = 4 SYM, in a way which manifests the full

Yangian-invariance of the theory. This provides a complete definition of perturbative

scattering amplitudes in planar N = 4 SYM, with no reference to the Lagrangian, gauge

redundancies or other off-shell notions. Along the way, we have also seen a new physical

picture for how loops can arise purely from on-shell data, associated with removing

pairs of particles in a naturally “entangled” way. From this vantage point, a number of

directions for future work immediately suggest themselves.

I. The Origin of Loops

A few years ago, the tree-level BCFW recursion relations sat at an interesting cross-roads

between the usual formulation of field theory, where space-time locality is manifest, and a

hoped for dual description, where space-time should be emergent. On the one hand, the

recursion relations were directly derived from field theory—without the field-theoretic

motivation, it was hard to imagine the motivation for gluing lower-point objects together

in the prescribed way. On the other hand, the presentation of the amplitude was very

different from anything normally seen in field theory. The amplitudes could be presented

in many different forms, with remarkable identities guaranteeing their equivalence. The
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simplicity of the answers resulted directly from the presence of non-local poles. These

properties, together with the dual super-conformal invariance of all terms in the BCFW

expansions, strongly motivated the search for a dual theory which would make these

features obvious, and which would furthermore give an intrinsic definition of the tree

amplitudes on its own turf.

The Grassmannian duality for leading singularities provides this dual understanding

of tree amplitudes in a satisfying way. The Yangian symmetry is manifest (for all leading

singularities and not just tree amplitudes). The amplitude can be presented in many

forms since it is a contour integral, with many representatives for a given homology

class. The remarkable identities guaranteeing cyclic-invariance (together with important

physical properties at loop-level) indeed find a new interpretation as higher-dimensional

residue theorems. And finally, giving the contour integral over the Grassmannian a

“particle interpretation” poses a natural question, intrinsic to the Grassmannian picture,

whose answer yields the tree amplitude, along the way exposing a (still quite mysterious)

connection with twistor string theory. We strongly suspect that a generalization of this

picture exists that extends the duality to only to incorporate loop amplitudes but also

explain why loops must be computed to begin with.

Our extension of BCFW to all loop orders puts loop amplitudes in the same posi-

tion at the cross-roads between field theory and a sought-after dual description that tree

amplitudes occupied a few years ago. This should set the stage for fully exposing the

dual picture, and we have already made some inroads to uncovering its structure. For

instance we saw that the remarkable identities guaranteeing cyclic-invariance of the MHV

1-loop amplitude indeed have an origin as a residue theorem in a new Grassmannian inte-

gral closely associated to the “master” integral computing leading singularities/Yangian-

invariants. The nature of the “seed” for loops, arising from removing particles, is also

clearly intimately related to the particle interpretation, which has already played a central

role in the emergence of locality at tree-level.

Along these lines, here we give another presentation of the 1-loop MHV amplitudes,

which differs from the form we obtained using the recursion relation. Consider the tree-

level N2MHV amplitude Mn,k=2(Z1, . . . ,Zn,ZA,ZB). The 1-loop MHV amplitude arises
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directly from the entangled removal of A and B:

=

Here it is easy to see, using the BCFW form of the tree amplitude, that there is a unique

GL2-contour of integration associated with each term. This formula differs term-by-term

from the BCFW form of this amplitude. We can however recognize all the terms as

residues of the same auxiliary Grassmannian integral in equation (4.4.38), and we have

shown that the equivalence to the BCFW form follows from a residue theorem. While this

formula does not directly generalize for other amplitudes, its form is certainly suggestive.

Progress on all these questions would likely be accelerated by finding an explicit

solution to the recursion relation for all (n, k, `), generalizing the explicit solution already

known for tree-amplitudes [50].

As a final comment, our analysis of loops in this chapter has been greatly aided by

working in momentum-twistor space; these variables allow us to recognize loop integrals

in their familiar momentum-space setting. However, given that all the elements in the re-

cursion relation were described in manifestly Yangian-invariant ways, it must be possible

to translate these results into ordinary twistor space. It is likely that the twistor-space

formulation will be most fundamental, amongst other things it could offer a natural

understanding of non-planar loop amplitudes as well.

The results of this chapter also give a renewed hope for extracting loop-information

from twistor-string theory. As we have seen, loop amplitudes can easily hide in plain

sight in subtle ways, masquerading as a formal way of representing “1” in terms of IR-

divergent integrals in (3, 1)-signature! It is likely that a deeper understanding of the

contours associated with the “Hodges diagrams” [17,107], already for twistor-space tree-

amplitudes in (3, 1)-signature, will be important to make progress here.
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II. Simplicity of Integrals and IR-Anomalies

Putting aside these highbrow issues, we are confronted with a much more urgent question:

does our understanding of the integrand help us to carry out the integrations to obtain

the physical amplitudes? Are the symmetries of the integrand of any use?

In fact the manifestly Yangian-invariant way of presenting the integrand does strongly

suggests that the integrals themselves will be “simple”. The “super” part of super-

dual conformal invariance is already an extremely powerful constraint. Consider MHV

amplitudes for simplicity. The statement of super-dual conformal invariance is∑
a

ηKa
∂

∂ZJ
a

MMHV = 0→ ∂

∂ZJ
a

MMHV = 0 for all a, (4.7.57)

where we use the fact that the MHV amplitude has no ηa dependence. Thus, the only

super-dual conformally invariant amplitude is forced to be a constant! This reflects the

well-known fact that the only Yangian invariant with k = 0 is the MHV tree amplitude

(=1 in momentum-twistor space). Now, we have expressed the integrand for the MHV

amplitude in a manifestly super-dual conformal (indeed Yangian)-invariant way. Consider

for instance the 1-loop amplitude, which has the form

MMHV =

∫
d3|4ZAd3|4ZB F (ZA,ZB;Za), (4.7.58)

with an entangled contour of integration for ZA,B; we suppress the explicit expression

for F . The statement of super-dual conformal invariance is perfectly well-defined at the

level of the integrand, which turns into a total derivative:∑
a

ηKa
∂

∂ZJ
a

MMHV =

∫
d3|4ZAd3|4ZB

(
ηKA

∂

∂ZJ
A

+ ηKB
∂

∂ZJ
B

)
F. (4.7.59)

After doing the ηA,B and GL2-integrals, we have

∂

∂ZJ
a

MMHV =

∫
d4ZAd

4ZB
vol(GL2)

(
∂

∂ZJ
A

Ga
A +

∂

∂ZJ
B

Ga
B

)
, (4.7.60)

where we suppress the explicit forms ofGa
A,B. We see that super-dual conformal-invariance

continues to be manifest at the level of the Bosonic loop integrand in the dual co-ordinate

space, also at all loop orders.

This symmetry therefore guarantees that no matter how complicated the integrand

looks, on any contour of integration where the integral is completely well-defined, it can

only integrate to a constant, “1”! The integral is not “1” only because we choose a
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contour of integration over lines (AB) corresponding to real (3, 1)-signature points in

dual spacetime, and this integral is IR-divergent. We see that IR-divergences are not

an annoying side-feature of loop amplitudes, they are the sole reason these amplitudes

are non-trivial; in this Yangian-invariant form, the loop amplitudes are telling us “I

diverge, therefore I am”10. This is a powerful statement that should be turned into an

engine to simplify the computation of the loop integrals. Due to the IR-divergences,

the Yangian generators will not quite annihilate the loop amplitude, but they should

localize the integral to the IR-divergent regions of loop momentum-space collinear to

the external particles. In the dual co-ordinate space, this is the region localized to the

edges of the null-polygonal Wilson loop. It seems likely that these IR-anomalies fully

control the structure of the amplitude. Amongst other things, they must lie behind the

astonishing simplicity recently uncovered in the structure of the remainder function for

the 2-loop, 6-particle MHV amplitude [108]. In the same line of thought, it is conceivable

that there is a very direct link between the Yangian structure we uncovered and the very

beautiful connections made at strong coupling with integrable systems, Y-systems, TBA

equations and the Yang-Yang functional [109, 110]. Already these developments have

allowed a bridge to weak coupling by computing sub-leading corrections to collinear

limits [111–113].

Having said all of this, there is a very important issue that must be addressed to

make progress in directly computing these Yangian-“invariant” but non-local integrals.

The question is of course how to handle IR-regularization for these objects. Dimensional

regularization has long been the preferred method for regulating IR-divergences in gauge

theories, but it does particularly violent damage to the structure of the integrand, and is

not useful for our purposes. Fortunately, there is a better regulator, both conceptually

and computationally. Physically, the IR-divergences are removed by moving out on the

Coulomb branch [94]. This gives a beautifully simple way to regulate the integrals in

momentum-twistor space which is also useful for practical computations [114,115]. With

the loop integrand written in local form, one simply deforms the local propagators as

〈AB j 1 j〉 7→ 〈AB j 1 j〉+m2〈AB〉〈j 1 j〉. The physics is always four dimensional. The

ambiguities in this regulator occur at an irrelevant level O(m2)(log(m2))p. In particular

there are no issues with the notorious “µ-terms” in dimensional regularization, and we

10We thank Peter Goddard for this remark.
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don’t encounter the ubiquitous ε/ε effects either. This is clearly the physically correct

regularization for our set-up.

How should we use this regularization to compute the non-local integrals of interest?

One can glibly regulate all 4-brackets 〈AB xy〉 7→ 〈AB xy〉 + m2〈AB〉〈xy〉, but this is

not physically correct: the regularization of the local propagators is reflecting the (local!)

masses induced by Higgsing; and so it is not clear how the non-local propagators should

be regularized. Indeed, we have checked that for the 1-loop MHV amplitudes, this very

näıve regularization of the integrals does not produce the standard result. Of course,

since the Yangian invariant form of the full amplitude can be expanded in terms of local

integrals, we can in principle work backwards to see how the correct local regulator affects

the non-local integrand; the question is whether there is a sensible way of computing these

non-local integrals directly. We intend to return to these questions in near future.

We have emphasized that the Yangian-invariant presentation of the loop integrand

strongly suggests that the integrals should be simple. But as we have seen in a number

of examples, even the local forms of the integrand, when written in terms of the natural

chiral basis of momentum-twistor space integrals with unit leading singularities, look

surprisingly elegant. In fact, these integrals with unit leading singularities should also be

“simple”. The reason is precisely that their leading singularities are “1” or “0”; these are

the only possible values of the integrals on any closed contour of integration, independent

of the kinematic variables. This means that e.g. ∂/∂ZI
a acting on these integrals should

also be a total derivative with respect to the loop variables, and that they too should

be localized to regions with collinear singularities. Since these are local integrals their

regularization is well defined. Indeed, as we pointed out in our multi-loop examples, the

näıvely “hardest” integrals are even IR-finite. The integrals for our form of the two-loop

6-point MHV amplitude have been computed analytically for certain cross-ratios by [87],

passing all non-trivial checks. The simplicity of these partial results strongly supports

the idea that the full amplitude computed with these integrals are also simple.

III. Other Planar Theories

We end by stressing that many of the ideas in this chapter are likely to generalize beyond

the very special case of N = 4 SYM. Since the integrand is well-defined in any planar

theory, one can try to determine it with recursion relations just as we have done forN = 4
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SYM. In [91], it was argued that the single-cuts of the 1-loop amplitude are well-defined

for any theory with at leastN = 1 SUSY (or N = 2 in the presence of massive particles),

so the BCFW recursion determines amplitudes at least up to 1-loop in these theories too,

with or without maximal SUSY and Yangian-invariance. In non-supersymmetric theo-

ries, further progress on these questions will require a better understanding of single-cuts.

One difficulty is that the näıve forward limit of tree amplitudes is ill-defined. It is plau-

sible that this is closely related to presence of rational terms in 1-loop amplitudes, which

have a beautiful and fascinating structure which is strongly suggestive of a deeper origin.
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Chapter 5 Remarkable Simplicity for
Loop Amplituds in Planar N = 4

5.1 Invitation to Local Loop Integrals and Integrands

As described in Chapter 4 the integrand for scattering amplitudes in planar theories is a

well-defined, rational function of external- and loop-momenta at all orders of perturbation

theory [15]. Recently, an explicit recursion for the integrand of planar scattering ampli-

tudes in N = 4 SYM was presented in Chapter 4, generalizing the BCFW recursion for

tree amplitudes [7,31]. The integrand is most naturally presented in momentum-twistor

space. All the objects appearing in the recursion relation have simple interpretations

in terms of canonical operations on Yangian-invariants derived from the Grassmannian

integral [10], making the Yangian invariance of the theory (up to total derivatives) man-

ifest at the level of the integrand. It has also been recently realized that the integrand

has a beautiful dual interpretation as a natural supersymmetric Wilson loop, resolving

a long-standing open problem [116, 117]. This proposal has been checked to satisfy the

all-loop recursion relation at the level of the integrand [116], providing a proof of the

duality between scattering amplitudes and Wilson-loops [118].

The recursion relation gives a complete definition for the integrand, making no ex-

plicit reference to spacetime notions either in the usual or dual spacetimes. The words

“spacetime”,“Lagrangian”, “path integral” and “gauge symmetry” make no appearance.

A reflection of this fact is that, as familiar from the BCFW computation of tree am-

plitudes, individual terms in the integrand are riddled with non-local poles that cancel

in the sum. But also familiar from BCFW at tree-level, the recursion relation is a very

powerful calculational tool, and has allowed us to gather a huge amount of “data” about

the properties of multi-loop amplitudes.

In this chapter we report on a remarkable property of the loop integrand revealed

by examining this “data”, amplifying a theme already stressed in Chapter 4. Loop
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integrands take an amazingly simple form when expressed in a manifestly local way. This

is surprising, since the enormous complexity of Feynman diagrams is inexorably tied to

locality, while by contrast, the great simplicity of BCFW recursion is inexorably tied

to the presence of non-local poles. What we are finding is a new local form of the

integrand—certainly not following from Feynman diagrams!—which is even simpler than

the forms obtained from BCFW recursion.

This great simplicity is apparent only when the integrand is written in momentum-

twistor space, using a special set of objects that are almost completely chiral, and have

unit leading singularities. For instance, all 2-loop MHV amplitudes are given as a sum

over a single type of object,

A2−loop
MHV =

1

2

∑
i<j<k<l<i

k

li

j

(5.1.1)

This result was already presented (albeit in a slightly more clumsy form) in Chapter

4. We will describe these objects in much more detail in the body of this Chapter;

here, it suffices to say that these are simple double-pentagon integrals with a special

tensor-numerator structure which is indicated by the wavy lines, and that the notation

‘i < j < · · ·< k < i’ in the summand should be understood as the sum of all cyclically-

ordered sets of labels i, j, . . . , k for each i ∈ {1, . . . , n}.
All 2-loop NMHV amplitudes are also associated with similar integrands; indeed, the

n-point NMHV scattering amplitude’s integrand is simply given by,

A2−loop
NMHV =

∑
i<j<l<m≤k<i
i<j<k<l<m≤i
i≤l<m≤j<k<i

l

m
k

i

j

AB

× [i, j, j + 1, k, k + 1]

+
1

2

∑
i<j<k<l<i

k

li

j

×


Atree

NMHV(j, . . . , k; l, . . . , i)

+Atree
NMHV(i, . . . , j)

+Atree
NMHV(k, . . . , l)


(5.1.2)
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Here, [i j k l m] denotes the familiar dual-superconformal invariant of five particles,

[i j k l m] ≡ δ0|4 (〈j k l m〉ηi + 〈k l m i〉ηj + 〈l m i j〉ηk + 〈mi j k〉ηl + 〈i j k l〉ηm)

〈i j k l〉〈j k l m〉〈k l m i〉〈l m i j〉〈mi j k〉 . (5.1.3)

This result dramatically simplifies the way this result was presented in Chapter 4 for the

6- and 7-particle 2-loop NMHV integrands.

Finally, all 3-loop MHV amplitude integrands are given by a sum over the same types

of objects,

A3−loop
MHV =

1

3

∑
i1≤i2<j1≤
≤j2<k1≤k2<i1

j1

j2

k1k2

i1

i2

CDAB

EF

+
1

2

∑
i1≤j1<k1<

<k2≤j2<i2<i1

k1

k2j2
i2

i1
j1

AB

These explicitly-local, manifestly cyclic results for all 2-loop NMHV and 3-loop MHV

amplitudes are new, and stunningly-simple—even simpler than the form produced by the

loop-level recursion formula.

As we will see, these extremely simple expressions are very closely related to the

leading singularity structure of the theory. The reason for the dramatic simplicity of

these results relative to the ones presented in Chapter 4 is that there, each integrand

was straightforwardly expanded in terms of a fixed basis of chiral integrals with unit

leading singularities, while here we are tailoring the objects that appear directly to the

amplitude. The structures are motivated by matching a particularly simple set of leading

singularities of the theory; this is made possible only by using chiral integrands with unit

leading singularities, which is why these objects play such a crucial role in the story.

What is remarkable is that matching only a small subset of leading singularities in this

way suffices to determine the full result. Of course, we confirm this not by laboriously

matching all leading singularities, but rather by directly checking the conjectured local

forms against what we obtain from the all-loop recursion relation.

We do not yet have a satisfactory understanding for the origin of this amazing sim-

plicity. Certainly, these expressions differ from the BCFW form in that they are not

term-by-term Yangian invariant. This suggests the existence of a deeper theory for the

integrand that will directly produce these new local forms, allowing a more direct under-

standing of the emergence of local spacetime physics. We strongly suspect that it is this
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formulation that will also help explain the amazing simplicity [13] seen in the integrals

yielding the physical amplitudes, and also form the point of contact with the remark-

able integrable structures of N = 4 SYM—Y-systems and Yang-Yang equations—seen

at strong coupling and also in some collinear limits [110,111,119].

In Chapter 6, a geometric picture for scattering amplitudes is advanced, building on a

beautiful paper of Hodges [20], which may shed some light on the origin of these new local

expressions. Hodges interpreted NMHV tree amplitudes as the volume of certain poly-

topes in momentum-twistor space, and showed that a natural class of triangulations of

this polytope correspond to different BCFW representations of the amplitude. In Chap-

ter 6, it is shown that at an even simpler triangulation of the same polytope is possible,

yielding a new, manifestly-local formula for NMHV tree-amplitudes. Also in Chapter 6, a

completely analogous ‘polytope’ formulation is presented for all 1-loop MHV amplitudes.

Again, one natural set of triangulations leads to the BCFW form of the integrand, while

even simpler triangulations directly lead to a number of new, manifestly local forms for

the integrand. While this polytope picture has not yet been generalized beyond these

most elementary cases of NMHV tree and MHV 1-loop amplitudes, the extremely simple

local forms for higher loop amplitudes we present in this chapter strongly encourages the

thought that an appropriate extension of this idea must be possible.

We should stress that when we say our results for the integrand are “manifestly local”,

we mean that the poles involving the loop integration variables are local. Of course the

integrand should be “ultralocal”, that is, the poles involving both the loop integration

variables as well as the external momenta must be local. The MHV integrands we

present trivially have this property, but for NMHV amplitudes, our expressions involve

the standard R-invariants which have spurious poles as function of the external particle

momenta. Given the beautiful, local form of the NMHV tree amplitude obtained from

the polytope picture [13], it is quite likely that there is an even nicer representation

of loop amplitudes which are not only local but ultralocal. This fascinating possibility

certainly merits further exploration, but is beyond the scope of the present Chapter.

We close this invitation with an outline for the rest of the paper. We begin with a

pedagogical introduction to some of the foundations of the subject in section 5.2 starting

with a review of momentum-twistors and some of the associated projective geometry in

CP3. We also discuss how planar loop integrals are written in momentum-twistor space;
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while our focus in this Chapter is on N = 4 SYM, we expect that the momentum-twistor

representation of loop amplitudes will be extremely useful for any planar theory. We

discuss the way that momentum-twistors make integral reduction trivial, and illustrate

this by showing how the 1-loop integrand can be reduced to a sum over pentagon inte-

grals. Finally we discuss leading singularities at 1-loop and beyond in momentum-twistor

language. The standard exercise of determining quadruple-cuts in momentum space is

mapped in momentum-twistor language to a simple, beautiful and classic problem in

enumerative geometry first posed by Schubert in the 1870’s, and we discuss the solution

of these “Schubert problems” in detail.

In section 5.3 we introduce chiral integrals with unit leading singularities which play

a central role in our story. We illustrate how they work starting with the simplest case

of 1-loop MHV amplitudes.

In section 5.4, we discuss another feature of chiral integrals with unit leading singularities—

generic integrals of this form are manifestly infrared finite, and can be used to express

finite objects related to scattering amplitudes, such as the ratio function [8].

In section 5.5, we construct a basis for all 1-loop integrands, whose building blocks

are not the familiar boxes or even pentagons, but a natural set of chiral octagons with

unit leading singularities. We also compute the finite 1-loop integrals explicitly, and use

these results to give a simple formula for the NMHV ratio-function at 1-loop, for any

number of particles.

In section 5.6, we discuss multi-loop amplitudes. We describe our heuristic strategy

for using leading singularities to tailor momentum-twistor integrals to the amplitude, and

show how this works for the 1-loop MHV amplitude, reproducing one of the local forms

first derived using the polytope picture of Chapter 6. We also discuss the 1-loop NMHV

amplitudes in the same way. We then extend these methods to two loops and beyond, and

show how to “glue” the 1-loop expressions together to produce natural conjectures for all

2- and 3-loop MHV amplitudes, as well all 2-loop NMHV amplitudes. These conjectures

are verified by comparing with the integrand derived from the all-loop recursion relation.

A number of appendices discuss various technical points needed in the body of this

Chapter, including a detailed discussion of the 2-loop NMHV and 3-loop MHV integrands.
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5.2 Foundations

In theories with massless particles, a well-known and convenient way of trivializing the

constraint p2
a = 0 for each particle is to introduce a pair of spinors λ(a) and λ̃(a), replacing

pµa 7→ (pa)α α̇ ≡ pµa(σµ)αα̇ ≡ λ
(a)
α λ̃

(a)
α̇ . Of course, this map is not invertible, as any rescaling

{λ, λ̃} → {tλ, t−1λ̃} leaves p invariant. This reflects that these variables come with a new

source of redundancy; in the case of particles with spin, this redundancy is quite welcomed

as it allows the construction of functions that transform with fixed projective weights as

S-matrix elements under Lorentz transformations. This is all well-known under the name

of the spinor-helicity formalism [120–124].

Amplitudes are supported on momenta that satisfy momentum conservation. Clearly,

it would be convenient to find variables where this constraint,
∑

a pa = 0, is trivial. In

planar theories, where color ordering is available, there is a natural way to achieve this,

by choosing instead to express the external momenta in terms of what are known as

dual-space coordinates, writing pa ≡ xa − xa−1, [47].

To see the role played by planarity, consider the standard decomposition of scattering

amplitudes according to the overall color structure, keeping only the leading color part:

An = Tr(T a1T a2 . . . T an)An(1, 2, . . . , n) + permutations; (5.2.4)

here, each partial amplitude An(1, 2, . . . , n) can be expanded in perturbation theory, and

we denote the L-loop contribution by AL−loop
n . Partial amplitudes are computed by

summing over Feynman diagrams with a given color-ordering structure.

In this chapter we only consider the planar sector of the theory, and therefore AL−loop
n

will always refer to the leading-color, partial amplitude in the planar limit.

Restricted to a particular partial amplitude, say, An(1, 2, . . . , n), each momenta can

be expressed as the difference of two “spacetime” points. More precisely, we make the

identification pa ≡ xa − xa−1, with p1 = x1 − xn. It is clear that momenta obtained in

this way automatically satisfy
∑

a pa = 0—and the redundancy introduced in this case

is a translation xa → xa + y by any fixed vector y.

Now, the only poles that can occur in An(1, 2, . . . , n) are of the form
∑b

m=a pm, i.e.,

only the sum over consecutive momenta can appear. In the dual variables these become
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∑b
m=a+1 pm = xa − xb. The same kind of simplifications happen in planar Feynman

diagrams to all orders in perturbation theory as we will describe.

Now we have the variables {λ, λ̃} which make the null condition trivial while ignoring

momentum conservation, while the dual-space variables do the opposite. It is perfectly

natural to wonder if there exists any way to combine these two constructions which makes

both the null-condition and momentum conservation trivial. It turns out that such a set

of variables does exist: they are known as momentum-twistors and were introduced by

Hodges in [20].

The standard twistor construction developed in the 1960’s [125] starts by making a

connection between points in an auxiliary space—twistor-space—and null rays in space-

time. Likewise, a complex line in twistor space is related to a point in spacetime. The

key formula is called the incidence relation, according to which a point x in spacetime

corresponds to set of twistors Z = (λ, µ) which satisfy

µα̇ = xα α̇λ
α. (5.2.5)

Twistors satisfying this relation form a projective line in CP3. Even though Z has the

components of a point in C4, the incidence relation cannot distinguish Z from tZ, and

therefore the space is projectivized.

In order to specify a line in twistor space—and therefore a point in spacetime—all

that is needed is a pair of twistors, say ZA and ZB, that belong to the line. Given the

twistors, the line or spacetime point is found by solving the four equations coming from

imposing the incidence relation for ZA and ZB with x. It is easy to check that the solution

is,

xα α̇ =
λA,αµB,α̇
〈λA λB〉

+
λB,αµA,α̇
〈λB λA〉

. (5.2.6)

(Here, we have made use of the familiar Lorentz-invariant contraction of two spinors

〈λA λB〉 ≡ εαβλ
α
Aλ

β

B).

Hodges’ construction starts with any set of n twistors {Z1, . . . , Zn}. Using the asso-

ciation xa ↔ (Za, Za+1), n spacetime points are defined. Quite nicely, it is trivial that

p2
a = (xa − xa−1)2 = 0 because the corresponding lines, or (CP1s), intersect. This is

illustrated in Figure 5.1.

Given the importance of this latter fact, it is worth giving it a slightly more detailed

discussion than we have so far. If two lines in twistor-space intersect, i.e. share a twistor
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Figure 5.1: Defining the connections between momentum-twistors, dual-coordinates, and

cyclically-ordered external four-momenta

Zint, then the corresponding spacetime points, say x and y, associated with the lines are

null-separated. To see this, take the difference of the incidence relations for Zint,

µint
α̇ = xα α̇λ

α
int, µint

α̇ = yα α̇λ
α
int,

to get

(x− y)α α̇λ
α
int = 0;

which means that the 2× 2-matrix (x− y) has a non-vanishing null eigenvector, i.e. λαint,

and therefore the determinant of (x − y) vanishes. But the determinant is proportional

to (x− y)2 when x and y are taken as vectors; and therefore x and y are null separated.

As useful background for the rest of the Chapter let us discuss the null-separation

condition, which is a conformally invariant statement, in twistor space. Consider again

two generic spacetime points x and y and choose two representatives of the lines asso-

ciated to them in twistor space, say, (ZA, ZB) and (ZC , ZD). Treating each twistor as a

vector in C4 there is a natural SL4 (conformal) invariant that can be constructed. This

is done by contracting all four twistors with the completely antisymmetric tensor εIJKL

to produce

〈ZAZBZCZD〉 = εIJKLZ
I
AZ

J
BZ

K
C Z

L
D. (5.2.7)

Clearly, this conformally-invariant quantity must encode information about how x and

y are causally related. The Lorentz invariant separation (x − y)2 is not conformally-

invariant because it is not a cross ratio. However, the way to relate the two quantities is

simple

(x− y)2 =
〈ZAZBZCZD〉
〈λA λB〉〈λC λD〉

. (5.2.8)
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This relation is consistent with our earlier finding that if the points x and y are null-

separated, then the twistors ZA, ZB, ZC and ZD, are coplanar as points in CP3. In other

words, the two complex lines intersect.

When twistors are used to produce a configuration of points in spacetime which are

pairwise null separated and then used to build momenta, the corresponding twistor space

is called momentum-twistor space [20].

This twistor construction is in fact slightly more involved when one is interested in

real slices of spacetime. In our discussion so far, we have been assuming that momenta

are complex and hence the dual spacetime is complexified. This is useful for e.g. defining

the usual unitarity cuts of loop amplitudes. In this chapter, the complex version suffices

and we refer the interested reader to [20,92].

A related construction is called dual momentum twistor space. Here ‘dual’ refers to

the usual geometric—‘Poincaré’—dual of a space. In other words, the dual space is the

space of planes in CP3. Points in the new space which is also a CP3 are denoted by WI .

The construction maps points to planes and lines to lines. In Hodges’ construction [20],

there is a natural definition of dual points associated to the planes defined by consecutive

lines of the polygon in momentum twistor space of Figure A.5.

The construction defines a dual polygon by introducing dual momentum twistors Wa

defined by

(Wa)I =
εIJKLZ

J
a−1Z

K
a Z

L
a+1

〈λa 1 λa〉〈λa λa+1〉
. (5.2.9)

This definition is made so that Wa contains λ̃a as two of its components.

I. Loop Integrals

The focus of this chapter is loop integrands and integrals. Here too, it is well known that

in planar theories, loop integrals are very naturally expressed in terms of dual spacetime

coordinates. Consider a very simple 1-loop integral, known as a zero mass integral,

1

23

4
L

=

∫
d4L

N

L2(L− p1)2(L− p1 − p2)2(L− p1 − p2 − p3)2
(5.2.10)
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where the external momentum at each of the four vertices is null (hence the name) and

N = (p1 + p2)2(p2 + p3)2 is a convenient normalization factor. Momentum conservation

gives p4 = −p1− p2− p3; and introducing the dual-coordinates pa = xa − xa−1, it is easy

to see that the unique choice of L that makes translation invariance (in x-space) manifest

is L = x− x4. The integral becomes [47]

1

23

4

2

4

3

1 =

∫
d4x

N

(x− x1)2(x− x2)2(x− x3)2(x− x4)2
, (5.2.11)

where N = (x1 − x3)2(x2 − x4)2. Imposing translation-invariance gives rise to the same

integral in x-space regardless of the original definition of L in the loop diagram. In other

words, a different propagator could have been chosen to be L and the form (5.2.11) would

still be the same. This uniqueness plays a crucial role in the definition of the integrand

of the theory.

Integrating over all points x in spacetime is the same as integrating over all CP1’s

in CP3. As before, each line in twistor space can be represented by a pair of twistors

x ↔ (ZA, ZB). Clearly, any GL2(C) transformation on the A,B “indices” leaves the

line invariant. Therefore the integral over spacetime is the same as the integral over the

pairs (ZA, ZB) modulo GL2. This is nothing but the Grassmannian G(2, 4) which can be

parameterized by a 2× 4 matrix Z1
A Z2

A Z3
A Z4

A

Z1
B Z2

B Z3
B Z4

B

 =

 λ1
A λ2

A µ1̇
A µ2̇

A

λ1
B λ2

B µ1̇
B µ2̇

B

 . (5.2.12)

We can immediately write a measure which is GL2-invariant by integrating over all ZA’s

and ZB’s together with a combination of 2 × 2 minors of the matrix (5.2.12) with total

weight −4. It turns out that the precise measure that corresponds to a d4x integration

is ∫
d4x⇔

∫
d4ZAd

4ZB
vol(GL2)× 〈λA λB〉4

, (5.2.13)

where 〈λA λB〉 is the (1 2) minor of (5.2.12)—the determinant of the first two columns of

the 2×4 matrix (5.2.12). In the twistor literature this is written as 〈λA λB〉 = 〈ZAZB I∞〉
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where (I∞)KL is the infinity twistor which is block diagonal with the only nonzero di-

agonal element equal to εab. I∞ is called the infinity twistor because it corresponds to

a choice of the point at infinity in spacetime and therefore a line in twistor space. Its

presence therefore breaks conformal invariance. This is not surprising as the measure d4x

‘knows about’ the metric in spacetime.

Since the integration over lines will appear in many different contexts in this chapter

we introduce a special notation for it. Let’s define∫
(AB)

⇔
∫
d4ZAd

4ZB
vol(GL2)

. (5.2.14)

The reason we have not included the factor 〈λA λB〉4 in the definition is that in this

chapter we mostly deal with N = 4 SYM and in its integrand factors with infinity

twistors cancel.

Going back to the loop integral in x-space (5.2.11), one can introduce the four momen-

tum twistors in Hodges’ construction {Z1, Z2, Z3, Z4} to describe the external particles.

Using the relation between the Lorentz invariant separations and momentum twistor

invariants in (5.2.8), the integral (5.2.11) becomes∫
(AB)

〈1234〉2
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 41〉 . (5.2.15)

where 〈ijkl〉 stands for the determinant of the 4× 4 matrix with columns given by four

twistors Zi, Zj, Zj, Zk defined in (5.2.7).

One of the remarkable facts about (5.2.15) is that all factors involving the infinity

twistor have disappeared. This means that the integral is formally conformal invariant

under the conformal group that acts on the dual spacetime. This is why it is said to be

dual conformally invariant (DCI).

Clearly, if we had started with a triangle integral then the factor 〈Z1IZ2〉 = 〈λ1 λ2〉
would not have canceled and would have remained with power one in the denominator

as if it were a propagator. Indeed, this viewpoint trivializes the surprising connections

made in the past between the explicit form of triangle and box integrals. In other words,

one can think of a triangle integral as a box where one of the points is at infinity.

Once again, a careful definition of the contour which should correspond to only points

in a real slice of complexified spacetime is not needed in this chapter. It suffices to say
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that on the physical contour, the integrals can have infrared divergences (IR). This is the

reason why we said that the integral was ‘formally’ DCI. We postpone a more detailed

discussion of IR-divergences to section 5.4.

The purpose of this section is to show how momentum twistors are the most natural

set of variables to work with loop amplitudes in planar theories. In order to do this we

will first show how many familiar results can be translated into momentum twistors. Not

infrequently, momentum twistors will completely clarify physics points which have been

misunderstood in the literature.

Integral Reduction at 1-Loop Level

In a general theory, 1-loop integral reduction techniques allow scattering amplitudes to

be expressed as linear combinations of a basic set of scalar integrals1. The integrals have

the topology of bubbles, triangles or boxes.

Let us start this section by translating each of the integrals in the standard basis into

momentum twistor language. Their corresponding form in momentum twistor space is

IBox = l 1

i i 1

j

j 1

kk 1

l

=

∫
(AB)

〈i i+1〉〈j j+1〉〈k k+1〉〈l l+1〉
〈AB i i+1〉〈AB j j+1〉〈AB k k+1〉〈AB l l+1〉 ;

ITriangle =
i

i� 1 j

j� 1

kk� 1

=

∫
(AB)

1

〈AB〉
〈i i+1〉〈j j+1〉〈k k+1〉

〈AB i i+1〉〈AB j j+1〉〈AB k k+1〉 ; (5.2.16)

IBubble =
i i� 1

jj� 1
=

∫
(AB)

1

〈AB〉2
〈i i+1〉〈j j+1〉

〈AB i i+1〉〈AB j j+1〉 .

Note that here we have translated the plain scalar integrals without any normalization

factors. Once again, only boxes are dual conformal invariant except for an overall factor

which only depends on the external data. This factor involving 2-brackets and hence the

1This is true in theories with no rational terms or in general theories for what is known as the cut-

constructible part of them. See [126] for more details. In N = 4 SYM rational terms are absent. This

is why we do not elaborate more on this point.
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infinity twistor can always be removed by a proper normalization as done in the zero-

mass example (5.2.15). Scalar boxes in momentum twistor space have also been recently

studied in [92,93].

A well known fact about N = 4 SYM is that at 1-loop level, bubbles and triangles

are absent and all one needs are scalar box integrals. However, as we will see, this point

of view is not the most natural one and actually turns out to be misleading.

In order to understand this point, one needs to review the reduction procedures

used to reach this conclusion. Before doing that let us mention some useful facts about

momentum twistors.

In loop integrals, combinations of momentum twistors of the form Z
[I
AZ

J ]
B make an

appearance in every expression (where the brackets mean that the indices are anti-

symmetrized), reflecting the fact that it is the line (AB) that is being integrated-over,

and not the individual twistors ZA and ZB.

These two-index objects are a class of more general ones called bitwistors. A generic

bitwistor is a rank-two antisymmetric tensor Y IJ . Given two bitwistors, Y and Ỹ , the

conformally-invariant inner-product is given by 〈Y Ỹ 〉 = εIJKLY
IJ Ỹ KL. A bitwistor

which can be written in terms of two twistors as Z
[I
AZ

J ]
B is called simple. It is easy to

show that a bitwistor is simple if and only if Y 2 = 0 with the product defined as above.

The reason for discussing bitwistors is that they provide a very natural integral re-

duction procedure. The procedure can be applied to integrals at any loop order but in

this section we concentrate on only 1-loop integrals. The procedure we are about to

present is in part the momentum twistor analog of the one introduced by van-Neerven

and Vermaseren in [105].

At 1-loop one starts with general Feynman integrals of the form

Tµ1...µm

∫
d4L

Lµ1 . . . Lµm∏n
i=1(L− Pi)2

(5.2.17)

where the tensor T is made out of polarization vectors, momenta of external particles

and the spacetime metric.

By Lorentz invariance, it is clear that one can decompose integrals of this type as

linear combinations of momentum twistor tensor integrals of the form∫
(AB)

1

〈AB I∞〉4−(n−m)

〈AB Y1〉〈AB Y2〉 . . . 〈AB Ym〉
〈AB 12〉〈AB 23〉 . . . 〈AB n 1 n〉〈AB n 1〉 (5.2.18)
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where Ya are generic bitwistors.

The reduction procedure relies on the fact that a generic bitwistor has six degrees

of freedom and can therefore be expanded in a basis of any six independent bitwistors.

To reduce the integrals in (5.2.18) simply choose any six of the bitwistors that appear

in the denominator, say, Z1Z2, Z2Z3, . . ., Z6Z7 and expand any of the bitwistors in the

numerator as

(Yj)
IJ = α1Z

I
1Z

J
2 + α2Z

I
2Z

J
3 + . . .+ α6Z

I
6Z

J
7 . (5.2.19)

The coefficients can be found by contracting with enough bitwistors two get six indepen-

dent equations. More explicitly, one can consider equations of the form

〈Z2Z3Yj〉 = α4〈2345〉+ α5〈2356〉+ α6〈2367〉.

and solve for the α′s. Once this is done, the factor 〈AB Yj〉 becomes a linear-combination

of factors in the denominator, thus reducing the degree of the denominator and numerator

by one.

The integral in (5.2.18) is for a general quantum field theory with a planar sector.

One can continue with the integral procedure in this case but it will take us too far away

from the main line of this Chapter. Therefore we concentrate directly on N = 4 SYM. In

N = 4 SYM it has been known since the 1990’s [75] that all integrals satisfy n−m = 4.

In modern language, this means that the integrals are dual conformally-invariant as

discussed in the simple example of the all massless box integral (5.2.15).

Iterating the reduction procedure, we can write the any amplitude as a sum over

pentagons and boxes. But as far as we have seen, the reduction procedure we have

described so far does not reduce the pentagons any further. Notice that the pentagons

we have described here are not scalar pentagons, but tensor pentagons—and they are

manifestly DCI. However, one is always free to choose a basis of bitwistors including

Y = I∞ to obtain scalar pentagons, but only at the cost of manifest dual conformal

invariance.

But doesn’t the reduction procedure of van-Neerven and Vermaseren, when applied

to N = 4 SYM, allow for a reduction all the way down to only scalar boxes? One might

wonder why our analysis so far does not generate this familiar ‘box-expansion’. The

answer is that the reduction to box-integrals is not valid at the level of the integrand—

only the reduction to boxes and pentagons (scalar or otherwise) is valid at the level
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of the integrand. In order to obtain the all-too familiar box-expansion, it is necessary

to parity-symmetrize the integrand—a step that is only justified when integrated on a

parity-invariant contour, and one which does violence to the highly chiral loop-integrands

of a quantum field theory such as N = 4 SYM.

Here, we should briefly clarify a point which has been unnecessarily confused in

the literature on N = 4. Because integrand-level reduction must terminate with boxes

and pentagons, and box-integrals are both manifestly parity-even and DCI while scalar

pentagons—which have a factor of 〈AB I∞〉 in the numerator—are not DCI, the cor-

rections to the box-expansion needed to match the full integrand of N = 4 were first

expressed in terms of parity-odd combinations of scalar pentagons. This led some re-

searchers to suppose that there was some connection between DCI and parity. There is

of course no such connection: as evidenced by the extension of BCFW to all-loop orders,

the full N = 4 loop-integrand is DCI.

Especially for theories such as N = 4 which are DCI, one should strictly avoid

parity-symmetrization at one-loop or higher. Although scalar pentagon integrals are

quite familiar, chiral pentagons are slightly novel—although they have already played

an important role in the literature (see e.g. [15, 127]). The first appearance of pentagon

integrals occurs for five particles, and there are essentially two possibilities that arise:

2

3

45

1

⇐⇒
∫

(AB)

〈AB Y 〉 × 〈2 3 4 5〉〈4 5 1 2〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉 , (5.2.20)

where 〈2 3 4 5〉〈4 5 1 2〉 in the numerator is for normalization2 and the bitwistor Y is simply

Z1Z3 (this is indicated by the dashed-line in the associated figure); and,

2

3

45

1

⇐⇒
∫

(AB)

〈AB Ỹ 〉 × 〈3 4 5 1〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉 , (5.2.21)

2We will see that this normalization follows from the requirement that the integral have unit leading-

singularities, and its sign is fixed by parity relative to the ‘wavy-line’ pentagon drawn below it. In fact,

as we will describe in section 5.3, the dashed-line in the figure dictates both the bitwistor Y ≡ Z1Z3 and

the normalization of the integral.
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where the factor 〈3 4 5 1〉 in the numerator is for normalization, and the bitwistor Ỹ ≡
‘(512)

⋂
(234)’ is the line in twistor-space which lies along the intersection of the planes

spanned by twistors (Z5, Z1, Z2) and (Z2, Z3, Z4)—which is indicated in the figure by the

‘wavy-line’. As the first of many such examples, it is useful to write-out Ỹ explicitly:

Ỹ ≡ (512)
⋂

(234) = Z5Z1〈2 2 3 4〉+ Z1Z2〈5 2 3 4〉+ Z2Z5〈1 2 3 4〉,

= 0 + Z1Z2〈5 2 3 4〉+ Z2Z5〈1 2 3 4〉,
(5.2.22)

where we have used the fact that 〈2 2 3 4〉 = 0. (The translation between statements such

as ‘the line along the intersection of two planes’ and explicit representative formulae such

as the above will be explained in more detail below; here, we merely quote the result in

a way from which we hope it will easy to guess the general case.)

These two integrals are examples of a very important class of integrals that we call chi-

ral integrals with unit leading singularities, or pure integrals. In each case, the bitwistor

appearing in the numerator (together with the integrand’s normalization) is completely

specified by the dashed- or wavy-line in the corresponding figure. We will explain many

of the important features of these integrals together with the way their graphical rep-

resentations in more detail in section 5.3. It is worth noting in passing, however, that

the two integrals are parity conjugates of one another, and special bitwistors Y and

Ỹ represent the two lines in twistor-space which simultaneously intersect the four lines

(51), (12), (23), and (34); this means that 〈Y 51〉 = 〈Y 12〉 = 〈Y 23〉 = 〈Y 34〉 = 0, and

similarly for Ỹ . Because of this, they represent the two isolated points in (AB)-space for

which these four propagators go on-shell.

Before moving-on to discuss loop integrands, we should emphasize that because the

primary focus of this chapter is the loop integrand—the sum of all the Feynman diagrams,

as a rational function—there is nothing to say about the regulation of IR-divergent in-

tegrals such as the zero-mass box integral and the pentagons integrals given above. The

only integrals we will evaluate explicitly are all manifestly finite (in a precise sense which

will be described in section 5.4), and hence are well-defined without any regulator. How-

ever, it is important to mention that IR-divergent integrals can also easily be regulated

and evaluated. In fact, the most natural way to add a regulator is also a very physical

one, given by moving out on the Coulomb branch [94] of the theory.
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II. The Loop Integrand

A simple but far-reaching consequence of writing each Feynman integral in a loop ampli-

tude using the dual variables is that one can meaningfully combine all integrals appearing

in a particular amplitude under the same integral sign. This leads to the concept of the

loop integrand [15]. We stress again that planarity and the use of dual variables plays a

crucial role in making this possible–for a general theory, there is no natural origin of loop

momentum space and therefore no canonical way of combining all Feynman diagrams

under a common loop integral.

It is easy to characterize the structure of the n particle 1-loop integrand for N = 4

SYM using momentum-twistor space integrals. All the terms in the integrand can be

combined defining a universal denominator containing all n physical propagators of the

form 〈AB a a+1〉. If a particular Feynman diagram has fewer propagators, then the

numerator is chosen so as to cancel the extra propagators. The loop amplitude is given

as an an integral over a single rational function,

An =

∫
(AB)

∑
i ci〈AB Y i

1 〉〈AB Y i
2 〉 . . . 〈AB Y i

n−4〉
〈AB 12〉〈AB 23〉 . . . 〈AB n 1 n〉〈AB n 1〉 (5.2.23)

where An is the full 1-loop partial amplitude. This formula is already written using the

simplifications that arise in N = 4 SYM, in other words, it is manifestly DCI. However,

the integrand exists in any planar theory: for a theory which is not DCI, (5.2.23) would

necessarily contain also terms with powers of 〈AB I∞〉.
At higher loops, say L loops, scattering amplitudes are given as linear combination

of integrals of the form ∫ L∏
i=1

d4`i

∏L
j=1N(`j)∏L
k=1 P (`k)

× 1

R(`1, . . . `L)
, (5.2.24)

where N,P, and R are products of Lorentz invariants constructed out of Feynman prop-

agators and which depend on the variables shown and on the external momenta. Written

in this form, there is clearly a large amount of redundancy in the definitions of the internal

loop momenta.

Since we are dealing with only planar integrals, for each Feynman diagram there exists

a dual diagram (the standard dual graph of a planar graph). Consider for example the
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following four-point two-loop integral:

2

34

1

⇐⇒

3

2

1

1 24

2

34

1

(5.2.25)

Using xi to denote the dual coordinates of the external momenta and yi to denote the

internal points, one can write any planar L-loop integral in dual coordinates. There is,

however, one slight subtlety in using such a prescription to uniquely define ‘the’ inte-

grand: while the definition of the external points xi is unique, the labeling of the internal

points is not (when L > 1). But the solution to this problem is very simple: we are

always free to completely symmetrize the integrand with respect to all L! permutations

of the internal loop-variable labels. Although we will often write multi-loop integrands

in some particular representative choice of the labels for internal propagators, complete-

symmetrization over all permutations of indices is always implied (including a factor of

1/L! from this symmetrization).

Consider for example the simplest two-loop integral, given above in (5.2.25). Written

in dual-coordinates, the integral would be given by∫(
d4y1d

4y2

2

)
((x1 − x3)2)2(x2 − x4)2

(y1 − x3)2(y1 − x4)2(y1 − x1)2(y2 − x1)2(y2 − x2)2(y2 − x3)2(y1 − y2)2
+ (y1 ↔ y2),

—where the numerator was chosen in order to make the integral dual-conformally invari-

ant, and the factor of 1/2 in the measure reflects the complete-symmetrization.

Of course, as we will see repeatedly throughout this chapter, (multi-)loop integrands

are much more naturally expressed in terms of momentum-twistor variables. To trans-

late the integral (5.2.25) in momentum-twistor variables, we need to associate a pair of

twistors to each of the two loop variables. This we can do by making the association

y1 ↔ (ZA, ZB) and y2 ↔ (ZC , ZD). (5.2.26)

Using this notation and the translation of propagators in terms of momentum twistors

given in (5.2.8) one finds∫
(AB,CD)

〈1234〉2〈2341〉
〈AB 41〉〈AB 12〉〈AB 23〉〈CD 23〉〈CD 34〉〈CD 41〉〈AB CD〉 ,
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where ‘(AB,CD)’ implies that the integration measure carries with it a factor of 1/2

from the symmetrization of (AB)↔ (CD). We should mention here that for 3-loops, we

will use (ZE, ZF ) to denote the line corresponding to y3—but of course, a convention such

as that of associating (ZAm , ZBm) with ym would be increasingly preferable at high-loop

order.

Before we leave the topic of the loop-integrand in general, we should mention that the

form of the integrand obtained via BCFW as described in Chapter 4 makes it completely

manifest that the loop-integrands in N = 4 enjoy the full Yangian symmetry of the

theory. (Of course, the choice of an integration contour which introduces IR-divergences,

such as the physical contour, breaks this symmetry.)

However, just as with the BCFW recursion relations at tree level, the formulae ob-

tained from the recursion do not enjoy manifest locality or manifest cylcic invariance.

The restriction that we impose throughout this work, however, is that loop-integrand

be expanded in a way which makes use of only planar, local propagators. As we have

stressed a number of times, we will find amazingly simple, manifestly cyclically symmet-

ric and local expressions for multi-loop amplitudes, that are significantly simpler and

more beautiful than their BCFW counterparts! Taken together with the parallel results

presented in Chapter 6, this strongly suggests the existence of a formulation for scattering

amplitudes directly yielding these remarkable local forms.

The local formulae presented in this chapter are very closely related to and influenced

by the concept of the leading singularities of scattering amplitudes, which we proceed to

presently describe.

III. Leading Singularities

Definition

The concept of leading singularities was introduced in the 1960’s in the context of massive

scalar theories [128]. More recently, in 2004, the same concept was modified to accom-

modate massless particles and this was exploited for Yang-Mills in [129]. The original

definition of ‘leading-singularity’ refers to a discontinuity of a scattering amplitude across

a singularity of the highest possible co-dimension. At 1-loop, for example, leading singu-

larity discontinuities are computed using a generalization of a unitarity cut, but where
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four propagators are cut instead of two. Using Ai for i = 1, . . . , 4 to denote the four

partial amplitudes, each with their associated momentum-conserving δ-function, one has

what can be called leading-singularity discontinuity,

(5.2.27)

=

∫ 4∏
r=1

d4η̃rd
4`rδ(`

2
r) A1({`1, η̃1}, {−`2, η̃2}, . . .)×A2({`2, η̃2}, {−`3, η̃3}, . . .)

×A3({`3, η̃3}, {−`4, η̃4}, . . .)×A4({`4, η̃4}, {−`1, η̃1}, . . .) .

Here, the integrations over the internal loop momenta are there only to remind us that

we are to sum-over all solutions to the conditions imposed by the δ-functions, and the

integral over the Grassmann coordinate η̃i of each internal particle `i is there to remind

us that we are to sum-over the exchange of all possible internal particles—which in the

case of N = 4 means the full super-multiplet.3

This point of view of leading-singularities has been very useful and allows a complete

determination of 1-loop amplitudes inN = 4 and inN = 8 supergravity amplitudes when

thought of as linear combinations of scalar box integrals with rational coefficients. The

rational coefficients can be computed using the notion of generalized unitarity. Clearly,

the notion of discontinuities is not related to the existence of an integrand and this is

the reason it works in N = 8, supergravity where an analog of ‘the integrand’—which

requires a way to combine integrals with different cyclic orderings—has not yet been

found.

As mentioned in our discussion of reduction procedures in N = 4 SYM, the expansion

in terms of boxes cannot give the physical integrand. The physical integrand is defined

as that which coincides with the one from Feynman diagrams, prior any to reduction

3Here, we are using an on-shell superspace formalism which allows us to talk about all particles in

the same super-multiplet as a single 1-particle state. We assume familiarity with this concept, but for

careful definitions, more references and applications see [72].
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techniques, as rational functions—and, as we will see, the Feynman diagrams of N = 4

in a given R-charge sector are chiral.

Once we think about the integrand as being the object we are after, we can try to

model it by using some appropriate basis of functions, dictated by a general reduction

procedure. Clearly, the set of all DCI tensor pentagons and boxes should be enough.

Nevertheless, we will find that such a basis would still possess many of the unattractive

features of the box-expansion, and so we will introduce much more refined choice in

section 5.5.

The importance of dealing with a specific rational function is that we can integrate it

on any choice of contour we’d like—not just the real-contour which defines the Feynman

integral. This allows us to define a more refined notion of a leading-singularity—the

previous notion, motivated by generalized unitarity, is much coarser version of the one

we will use now. In [97], this more refined notion was introduced, and it was used to

match the full N = 4 integrand for several 1-loop and 2-loop examples. However, in [97]

the deep reason for why the idea was working, i.e., the existence of the integrand, was

not appreciated.

Whether written in ordinary momentum space, using dual-coordinates, or using

momentum-twistors, loop integrals can be thought of as complex contour integrals on

C4 with the choice of contour corresponding to R4—the real-slice. However, this choice

of contour is known to break many of the symmetries of the theory, and is littered with

IR-divergences, etc. that can be the source of confusion. From various viewpoints, the

most natural contours would instead be those which compute the residues of the inte-

grand. These are always finite, are often vanishing, and make manifest the full Yangian

symmetry of the theory. We refer the reader to [65] for a mathematical definition of

residues in several complex variables; here we hope the reader will find the definitions a

natural generalization of the one-dimensional residues with which everyone is familiar.

Let us present the definition using x variables first. Consider a contour of integrations

with the topology of a T 4 = (S1)4. In order to compute a particular residue one has to

choose four propagators (x − xai)2, with i = 1, . . . , 4 and integrate over the T 4, defined

by |(x−xai)| = εi where εi are small positive real numbers near one of the solutions. The

circles, S1 are parametrized by the phases and are given a particular orientation.

The definition of a multidimensional residue is very natural if one defines variables
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ui = (x− xai)2. Performing the change of variables the integral becomes∫ 4∏
i=1

dui
ui
× 1

J
× {The rest of the integrand} (5.2.28)

where now the contour becomes small circles around ui = 0. J is the Jacobian of the

change of variables. The residue is then the Jacobian times the rest of the integrand

evaluated at ui = 0. The Jacobian

J = det

(
∂(u1, u2, u3, u4)

∂(x1, x2, x3, x4)

)
, (5.2.29)

is clearly antisymmetric in the order of the columns. Different orderings can differ by a

sign and this is related to the orientation of the contour. These signs are important when

discussing the generalization of residue theorems to the multidimensional case, which will

play an important role momentarily.

From now on we call each individual residue a leading-singularity. As before, these are

given by the product of four on-shell tree amplitudes as shown in Figure 5.2. The reason

for the appearance of the tree amplitudes is that the residue of the poles is computed

where the four propagators vanish and therefore internal particles can be taken on-shell.

Leading singularities at higher loop-level can also be defined as residues of a complex,

multidimensional integral over C4L where L is the loop order. This means that in order

to define a residue one has to define a T 4L torus as a contour of integration. Näıvely,

residues can only be defined for integrals with at least 4L propagators. However, noticing

that propagators are quadratic in the loop-momentum, one can define composite leading

singularities which involve less than 4L propagators as done in [10, 97, 98], using the

Figure 5.2: A ‘quad-cut’ one-loop leading-singularity viewed as a T 4 contour-integral

which ‘encircles’ the point in C4 where four-propagators are made on-shell.
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self-intersection of curves defined by the on-shell condition to define isolated points in C4

about which the T 4L contour should ‘encircle.’

We will not discuss composite leading singularities in detail here simply because we

will present evidence that when a special set of integrals, we call chiral integrals with unit

leading-singularities, are used, matching non-composite leading-singularities appears to

suffice to fix the entire amplitude. Moreover, we will see that only a very small subset of

non-composite leading-singularities need to be considered to accomplish this.

Chirality of Leading Singularities

It turns out that for nonsingular external momenta, there are exactly two solutions to the

equations (x − xai)2 = 0, with i = 1, . . . , 4, and therefore two residues of each choice of

four propagators. (This has a beautiful geometric interpretation in momentum twistors

as we will see shortly.) This means that for an n-particle amplitude, there are 2
(
n
4

)
(non-composite) one-loop leading-singularities.

Consider any box integral, say, an integral with two massless legs and two massive,

known as the ‘two-mass-easy’ integral:

j � 1

i � 1

i i � 1

j � 1

j

⇔ I2me =

∫
d4x

N

(x− xi−1)2(x− xi)2(x− xj−1)2(x− xj)2
, (5.2.30)

where N is just some normalization that need not concern us presently. The equations

(x− xi−1)2 = (x− xi)2 = (x− xj−1)2 = (x− xj)2 = 0

have two solutions, and therefore a residue can be computed for each such point sepa-

rately. We’ll soon see that these two solutions are easily found and differentiated when

written with momentum-twistor variables; but for now, let us suppose the two solutions

have been found, and denote the corresponding contours T 4
1 and T 4

2 .

A very important tool that will make an appearance many times is multidimensional

analogue of Cauchy’s theorem, called the Global Residue Theorem (GRT). The GRT

states that—given a suitable condition at infinity—the sum over all the residues of a
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given rational function vanishes (see chapter 6 of [65]). This means, in the present case,

that

resT 4
1
(I2me) + resT 4

2
(I2me) = 0 (5.2.31)

Moreover, we can choose the normalization N is such that, say resT 4
1
(I2me) = 1. Such

a choice is possible for all box integrals, following from the simple fact that all box-

integrals—having only four propagators—must have residues which are proportional

equal and opposite. We refer to this fact by saying that scalar box integrals are not

chiral. The use of the word chiral is justified by the fact that the locations of the lead-

ing singularities, as points in C4, are mapped into each other by parity—which is just

complex conjugation. And so the corresponding contours are mapped into each other up

to orientation by parity. If use (T 4
1 )∗ to denote the parity conjugate contour of T 4

1 , then

res(T 4
1 )∗ = −resT 4

2
and the GRT implies that

resT 4
1
(I2me) = res(T 4

1 )∗(I2me). (5.2.32)

Let us now consider the leading-singularities of the one-loop integrands of N = 4

Yang-Mills. We’ll see that, as scattering amplitudes of N = 4 in a given R-charge sector

are chiral, so are the one-loop leading-singularities of field theory! In other words, the two

residues associated with the two solutions of cutting four-propagators are not the same.

Let us see this in an example. The simplest possible example is the five-particle MHV

amplitude4. Let us consider taking the leading singularities of the field-theory integrand

which encircles the point in C4 where the following four propagators go on-shell:

5

1 2

34

⇐⇒ (x− x1)2 = (x− x2)2 = (x− x3)2 = (x− x4)2 = 0. (5.2.33)

It was noticed already in [129] that on one solution N = 4 SYM gives the tree amplitude,

Atree
5 , while it vanishes on the second.

4The only DCI object for four-particles is the zero-mass box integral. This is why both leading

singularities are equal to the tree amplitude.
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The vanishing of leading singularities can be understood from pure supersymmetry.

Consider an amplitude in the R-charge sector m. Recall the Nm−2MHV classification of

amplitudes inN = 4: under a rescaling of all η̃a variables by tη̃a, an Nm−2MHV amplitude

picks up a factor of t4m. From the definition of leading singularities as the product of

tree amplitudes connected by internal on-shell states we see that every internal line

contributes (−1) to the R-charge counting coming from the integration over η̃ variables.

At 1-loop, we have four tree-amplitudes and four propagators. If the R-charge of each

tree-amplitude is mi (see Figure 5.2), then the R-charge of the leading singularity is

m1 +m2 +m3 +m4 − 4.

Returning to the five-particle example, because we are interested in a one-loop MHV

amplitude, all its leading-singularities must have m = 2. The four-particle vertex (in

the upper-left of the figure above) can only have m1 = 2 and therefore the three-particle

vertices have to satisfy m2 + m3 + m4 = 4. Since the possible values for m for a three-

particle amplitude are 1 and 2, two vertices must have m = 1 and one must have m = 2.

This leaves only the possibilities shown below:

5

1
2

34

2 1

21

5

1
2

34

2 2

11

5

1
2

34

2 1

12

Of these three possible leading-singularities of field theory, it turns out that the first one

is equal to the five-point MHV tree-amplitude, and the latter two vanish for generic ex-

ternal momenta. In fact, whenever one is considering a leading singularity which involves

3-particle vertices, some very simple and powerful rules prove very useful: 1. any leading

singularity involving adjacent three-particle vertices with the same R-charge will vanish

for generic external momenta (momentum conservation in this case, requires that the ex-

ternal particles attached to these vertices must be collinear); and 2. leading singularities

involving three-particle amplitudes are almost always chiral—the only exception being

the four-particle amplitude.

In the case of the five particle example under consideration, we see that the residue

from the contour encircling one of the two solutions to the quad-cut equations in (5.2.33)

is equal to Atree
5,MHV, while the conjugate contour integral vanishes. We will explore this

in more detail once we introduce the geometric point of view.
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Dual Formulation of Leading Singularities

In the rest of the Chapter, we will make much use of the fact that leading-singularities

satisfy many relations. These relations can be seen as resulting from residue theorems

of the integrals which compute them. As a final comment before exploring the connec-

tion between leading singularities and the classic enumerative problems in the projective

geometry of momentum twistor space let us briefly introduce the Grassmannian formu-

lation.

In [10], leading singularities were proposed as completely IR-finite quantities that

were likely to contain all the information needed to compute the S-Matrix of N = 4

SYM. Moreover, it was conjectured that all leading singularities of the theory, which can

be obtained to arbitrarily higher loop order, are computed by a contour integral over a

Grassmannian manifold5 G(m,n) called Lm,n. Here m determines the R-charge sector of

the theory under consideration.

The integral was first presented in twistor space

Lm,n(Wa) =

∫
dnmCαa

vol(GLm)

∏m
α=1 δ

4|4 (
∑n

a=1CαaWa)

(1 2 · · · m)(2 3 · · · m+1) · · · (n 1 · · · m 1)
. (5.2.34)

In this presentation, residues of this integral are manifestly superconformal invariant

(that is, superconformally-invariant in ordinary spacetime). Here we have introduced

the concept of dual super twistor space W = (λ̃, µ, η̃). This particular space will not

play a significant role in this work, so we refer the interested reader to [10, 17] for more

details.

This formula can be transformed to momentum-space and then to momentum-twistor

space. Very remarkably, the formula in momentum-twistor space also turns out to be

an integral over a Grassmannian, with the MHV-tree-amplitude arising as the Jacobian

from the change of variables. Specifically,

Lm,n|momentum−space(λ, λ̃, η̃) = L2,n ×Rk,n, (5.2.35)

where k = m− 2 and

Rk,n(Za) =

∫
dnkDαa

vol(GLk)

∏k
α=1 δ

4|4 (
∑n

a=1 DαaZa)
(1 2 · · · k)(2 3 · · · k+1) · · · (n 1 · · · k 1)

. (5.2.36)

5The Grassmannian G(m,n), a natural generalization of ordinary projective space, is the space of

m-dimensional planes in n-dimensions. Each point in G(m,n) can be represented by the m n-vectors

which span the plane, modulo a GLm redundancy.
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This representation in momentum twistor space makes dual superconformal invariance

manifest [18, 19]. With some more effort one can prove that residues of this formula

are also invariant under level one generators of the Yangian of the dual superconformal

algebra and hence invariant under the whole Yangian [11]. The level one generators are

nothing but the superconformal generators when passed through L2,n.

It has now been proven that all leading singularities are Yangian invariant and that

all Yangian invariants are residues of the integral (5.2.36). From the physical point of

view the problem has been solved. It might also be interesting to go further and prove

that all residues of (5.2.36) correspond to some leading singularity but we will not discuss

this issue any further.

Momentum Twistors and Schubert Problems

Statements like the number of solutions to setting four propagators to zero is two are

non-obvious from the dual space x point of view. In terms of momentum twistors, this

statement turns out be a simple, classic problem of the enumerative geometry of CP3,

solved by Schubert in the 1870’s [130,131].

Recall that an n-particle 1-loop amplitude can be written as

An =

∫
(AB)

∑
i ci〈AB Y i

1 〉〈AB Y i
2 〉 · · · 〈AB Y i

n−4〉
〈AB 12〉〈AB 23〉 · · · 〈AB n 1 n〉〈AB n 1〉 . (5.2.37)

Each one-loop leading-singularity is associated with a point in the space of loop-momenta

for which some choice of four propagators simultaneously become on-shell,

l 1

i i 1

j

j 1

kk 1

l
⇐⇒ 〈AB i i+1〉 = 〈AB j j+1〉 = 〈AB k k+1〉 = 〈AB l l+1〉 = 0;

Because the loop momentum is represented in momentum-twistors as the line (AB), the

solution to these four equations should correspond to a particular configuration for the

line (AB). We will see that for all leading-singularities which involve a three-particle ver-

tex (a ‘massless leg’), the two solutions to four equations above are cleanly distinguished

geometrically, allowing for a richly-chiral description of the integrand.
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Before describing the full problem of putting four propagators on-shell, let us briefly

consider the geometric significance of having a single factor, say 〈AB i i+1〉, vanish.

Recall that the four-bracket 〈· · · ·〉 is nothing but the determinant of the 4× 4 matrix of

components of its four momentum-twistor arguments (viewed as elements of C4). As such,

〈AB i i+1〉 = 0 if and only if the vectors ZA, ZB, Zi, Zi+1 are not linearly independent,

implying the existence of some linear relation among the four twistors of the form αAZA+

αBZB + αiZi + αi+1Zi+1 = 0. Trivially rearranging we see that

αAZA + αBZB = −(αiZi + αi+1Zi+1), (5.2.38)

which we may read as saying there is a point on the line spanned by ZA, ZB—namely

(αAZA+αBZB)—which lies along the line spanned by Zi, Zi+1. Which is to say, the lines

(AB) and (ZiZi+1) intersect; and because two intersecting lines describe a plane, we say

that the four points ZA, ZB, Zi, Zi+1 are coplanar.

Therefore, the problem of finding the particular lines (AB) for which four propagators

simultaneously vanish is equivalent to finding the set of lines in CP3 which simultaneously

intersect four given lines (which are presumed fixed by the external data). The number

of solutions to this problem is one of the classic examples of the enumerative geometry

developed by Schubert in the 1870’s. For this reason we call these problems Schubert

problems.

The answer to the number of lines which intersect a given four turns out to be

remarkably robust: provided the four lines are sufficiently generic, there are always 2

solutions, and an infinite number otherwise.6 (An example of a non-generic configuration

would be one for which three or more of the lines were coplanar; these are never found

for generic external momenta.)

Schubert derived the number of such solutions with an argument that is deceptively

simple. The idea is to consider a particular configuration where it is easy to count

the number of solutions. Schubert intuited that the answers to such enumerative ques-

tions should be topological in nature, and therefore should not depend on the particular

configuration in question. Therefore, one can analyze the most convenient possible con-

figuration (for which the number of solutions is not infinite) and the answer found for

6To be precise, we must count solutions with multiplicity; however, for a generic set of lines in the

problem, the 2 solutions will always be distinct.
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that case, should be the answer in general. Said another way, the number of solutions to

a given Schubert problem should not change when a particular special configuration is

smoothly moved into a more general position.

Perhaps the easiest configuration for which we can count the number of solutions to

the Schubert problem of finding the lines (AB) that intersect four given lines in CP3 is the

zero-mass configuration; it is so-called because it is the configuration which corresponds

to the box integral with zero of its four corners massive,

2 3

41

⇐⇒
∫

(AB)

〈1234〉〈2341〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 41〉 ,

which is an integral we have seen before. Explicitly, we would like to find all the lines

(AB) which intersect all the four lines (12), (23), (34), and (41). This problem is indeed

easy to solve, and the two solutions are drawn below.

2 3

41

⇔

(AB) = (24)

⇔

2 3

41

(AB) = (13)

Clearly, because (12)
⋂

(23) ⊃ Z2 and (34)
⋂

(41) ⊃ Z4, the line (AB) = (24) intersects

all four lines, as desired; this is drawn in red above. The same argument also applies to the

second solution, the line (AB) = (13), drawn in blue above. Also in this figure, we have

indicated which leading-singularities have non-vanishing support on the corresponding

(complex) point in the space of loop-momenta which corresponds to the particular line

(AB). As explained above, each three-particle MHV (m = 2)—colored blue in the figure

above—or MHV (m = 1)—colored white—vertex of a leading singularity vanishes for

every leading-singularity, and so which of the 2 three-particle amplitudes is non-vanishing

for this value of the loop-momentum determines the chirality of the contour.

As a convenient way to gain some intuition about momentum-twistor geometry that

will prove useful in the rest of this chapter and to establish some of the notation that
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will be ubiquitous throughout, we will study each of the 1-loop Schubert problems in turn.

One-Mass Schubert Problem:

A ‘one-mass’ 1-loop leading singularity is one for which three of the four legs are

massless, and is associated with the following archetypical box-integral:

2 3

4
5

1

⇐⇒
∫

(AB)

〈12 34〉〈23 45〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉 . (5.2.39)

In momentum-twistor space, the leading-singularities of this integral are associated with

the lines (AB) which intersect the four lines (12), (23), (34), and (45). Considering the

configuration of lines, it is not hard to find the two configurations which solve this

Schubert problem:

2 3

45

1

⇔

(AB) = (24)

⇔

2 3

45

1

(AB) = (123)
⋂

(345)

As before, because (12)
⋂

(23) ⊃ Z2 and (34)
⋂

(45) ⊃ Z4, the line (AB) = (24) intersects

all four lines. The second solution, however, is new. This solution is drawn in blue in

the figure above, and represents the line of the intersection of the planes spanned by

(Z1, Z2, Z3) ≡ (123) and (Z3, Z4, Z5) ≡ (345). Although geometrically clear, it is worth-

while to recall that any generic line in the plane (123) will intersect the lines (12), (23),

and (31), and any generic line in the plane (345) will intersect the lines (34), (45), and

(53). Therefore, the line (AB) = (123)
⋂

(345) will intersect all four lines, as required.

Similar to the case discussed in the context of the pentagon with a ‘wavy-line’ nu-

merator (5.2.21), the line (123)
⋂

(345) can easily be expanded in terms of ordinary

bitwistors as: (23)〈1 345〉 + (31)〈2 345〉. This follows from a more general rule which

review presently.
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On the Intersection of Planes in Twistor-Space

In general, the intersection of the planes (abc)
⋂

(def) is can be canonically expanded

in either of the following ways:

(abc)
⋂

(def) = ZaZb〈c d e f〉+ ZbZc〈a d e f〉+ ZcZa〈b d e f〉;

= 〈a b c d〉ZeZf + 〈a b c f〉ZdZe + 〈a b c e〉ZfZd.
(5.2.40)

Alternatively, when expanding a four-bracket of the form 〈xy (abc)
⋂

(def)〉, the manifest

dependence on the two planes can be preserved at the cost of breaking the manifest

dependence on the line (xy), as follows:

〈xy (abc)
⋂

(def)〉 = 〈x abc〉〈y def〉 − 〈y abc〉〈x def〉. (5.2.41)

Two-Mass-Easy Schubert Problem

The two-mass-easy Schubert problem is associated with the following one-loop archetyp-

ical box-integral,

2
3

4

5
6

1

⇐⇒
∫

(AB)

〈123 5〉〈2 345〉
〈AB 12〉〈AB 23〉〈AB 45〉〈AB 56〉 , (5.2.42)

which has leading singularities supported on the configuration (AB) which intersect all

four of the lines (12), (23), (45), and (56). The two solutions are essentially the same as

for the one-mass Schubert problem, and are illustrated in the Figure below:

2 3

4

56

1

⇔

(AB) = (25)

⇔

2 3

4

56

1

(AB) = (123)
⋂

(456)

Once again, there is a very easy solution, in this case the line (AB) = (25) which

obviously intersects the four lines. And using the same reasoning as int the one-mass

Schubert problem, it is easy to see that the second solution is simply the intersection of

the planes (123)
⋂

(456).
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Two-Mass-Hard Schubert Problem

The two-mass-hard Schubert problem differs from the two-mass easy problem in that

the two massless corners are adjacent—making the Schubert problem slightly less ‘easy’

(which at least partially justifies the name). It is associated with the following archetyp-

ical one-loop integral,

6

1
2

3
4

5

⇐⇒
∫

(AB)

〈12 34〉〈23 56〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 56〉 , (5.2.43)

and has leading singularities supported where the line (AB) intersects the four lines

(12), (23), (34), and (56). The two solutions are shown in the Figure below:

6

1 2

34

5

⇔

(AB) = (123)
⋂

(356)

⇔
6

1 2

34

5

(AB) = (562)
⋂

(234)

Let us briefly discuss the first of the two solutions. Here, the line (AB) = (123)
⋂

(356)

intersects the lines (23), (34) trivially because Z3 ⊂ (123)
⋂

(356), and it intersects the

lines (12) and (56) because any generic line in the plane (123) intersects (12), and any

generic line in the plane (356) intersects (56).

Three-Mass Schubert Problem

The last Schubert problem that involves a massless corner is known as the ‘three-mass’

problem, and is associated with the following archetypical one-loop integral:

7

1
2

3

45

6

⇐⇒
∫

(AB)

〈1 (245)
⋂

(672) 3〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉 . (5.2.44)
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This integral is the most general one which involves a massless corner, and supports

leadings singularities where the line (AB) intersects the four lines (12), (23), (45), and

(67). The two solutions are indicated in the Figure below.

7

1 2

3

45

6

⇔

(AB) =
(

(123)
⋂

(45), (67)
⋂

(123)
)

⇔
7

1 2

3

45

6

(AB) = (245)
⋂

(672)

Here, the notation ‘(ab)
⋂

(cde)’ has been used to indicate the point in twistor-space

where the line (ab) intersects the plane (cde). We will discuss the expansion of such

geometrically-defined objects more generally at the end of this subsection; for now, let

us merely quote the result:

(ab)
⋂

(cde) ≡ Za〈b c d e〉+ Zb〈c d e a〉 = −
(
Zc〈d e a b〉+ Zd〈e a b c〉+ Ze〈a b c d〉

)
;

and similarly,

(cde)
⋂

(ab) ≡ Zc〈d e a b〉+ Zd〈e a b c〉+ Ze〈a b c d〉 = −
(
Za〈b c d e〉+ Zb〈c d e a〉

)
;

so that (ab)
⋂

(cde) = −(cde)
⋂

(ab).

On Schouten-Identities and Projective Geometry

Perhaps the single most useful identity for momentum-twistor geometry is known as

‘the five-term identity:’ any arbitrary set of five twistors {Za, Zb, Zc, Zd, Ze} will satisfy

the following identity,

Za〈b c d e〉+ Zb〈c d e a〉+ Zc〈d e a b〉+ Zd〈e a b c〉+ Ze〈a b c d〉 = 0. (5.2.45)

This identity merely reflects the general solution to a homogeneous, linear system of

equations in four-variables, and as such, has analogues in any number of dimensions. For

example, in two dimensions, we have that for any {λa, λb, λc} ⊂ C2, there is an identity

λa〈b c〉+ λb〈c a〉+ λc〈a b〉 = 0, (5.2.46)
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where we have naturally extended the definition of ‘〈· ·〉’ to be the determinant of the

components of the corresponding two-vectors. This two-dimensional identity represents

the general solution to a homogeneous, linear system of equations in 2 unknowns, and

by contracting it with a fourth two-vector λd, we obtain the familiar ‘Schouten identity:’

〈d a〉〈b c〉+ 〈d b〉〈c a〉+ 〈d c〉〈a b〉 = 0. (5.2.47)

This familiar identity of course has an analogue descending from equation (5.2.45).

By contracting equation (5.2.45) with any arbitrary plane (f g h), we find the following

5-term identity which we will therefore call ‘a Schouten identity:’

〈f g h a〉〈b c d e〉+〈f g h b〉〈c d e a〉+〈f g h c〉〈d e a b〉+〈f g h d〉〈e a b c〉+〈f g h e〉〈a b c d〉 = 0.

In addition to being quite useful for simplifying formulae, equation (5.2.45) can be

trivially re-arranged to yield the solutions to some of the most often-encountered problems

in momentum-twistor geometry:

1. the expansion of any arbitrary twistor Za into a basis composed of any four linearly-

independent twistors {Zb, Zc, Zd, Ze}:

Za〈b c d e〉 = −
(
Zb〈c d e a〉+ Zc〈d e a b〉+ Zd〈e a b c〉+ Ze〈a b c d〉

)
;

2. the point along the line (ab) which intersects the plane (cde):

(ab)
⋂

(cde) ≡ Za〈b c d e〉+ Zb〈c d e a〉 = −
(
Zc〈d e a b〉+ Zd〈e a b c〉+ Ze〈a b c d〉

)
;

3. the point on the plane (abc) which intersects the line (de):

(abc)
⋂

(de) ≡ Za〈b c d e〉+ Zb〈c d e a〉+ Zc〈d e a b〉 = −
(
Zd〈e a b c〉+ Ze〈a b c d〉

)
;

and so-on.
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Matching All Leading Singularities

We close this introductory section to momentum twistor integrals and leading singular-

ities with a physical point. We have seen that the leading singularities of N = 4 SYM

are chiral while those of scalar boxes are non-chiral. This means that if we want to

construct the integrand of the theory it is impossible to do it using scalar boxes. Mo-

mentum twistors already give the solution to this problem. Since leading singularities

are Yangian invariant and in particular dual conformal invariant (DCI), one should use

the reduction procedure to go down to tensor pentagons and boxes and not any further.

Even going down to scalar pentagons would be doing something brutal to the manifestly

DCI structure of the amplitudes.

In the rest of the Chapter, we will find that by using a special class of integrals known

as chiral unit leading singularity integrals, the full integrand of scattering amplitudes can

be reproduced yielding to stunningly simple forms.

5.3 Chiral Integrals with Unit Leading Singularities

Given the success of the recently introduced recursion relations for the construction of

the integrand to all orders in perturbation theory described in Chapter 4, it is clear that

the physical integrand is the important object to obtain.

In the previous section we showed that the usual constructions of, say, one-loop

amplitudes in N = 4 SYM as a linear combination of scalar boxes cannot possibly be

the physical integrand. Of course, the answer obtained from scalar boxes gives the same

integrals as the one originally defined from Feynman diagrams. However, as we will see,

insisting in obtaining the physical integral leads to stunningly simple formulas for one

and higher loop amplitudes. These new formulas are possible thanks to the use of a new

suit of integrals with very special properties. These are chiral integrals with unit leading

singularities.
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I. Integrals with Unit Leading Singularities, or Pure Integrals

Let us start by given a definition of integrals with unit leading singularities. As we will

see, it is appropriate to call these pure integrals.

Consider a particular DCI L-loop integral and compute all possible residues. If all

non-vanishing residues are the same up to a sign then the integral can be normalized so

that all residues are ±1 or 0. When this is done, the integral is said to have unit leading

singularities or to be a pure integral.

We already encountered examples of pure integrals in the previous section. The

zero mass box (5.2.15), the general scalar box (5.2.16) (properly normalized), and the

pentagon integrals in (5.2.20) and (5.2.21).

Using the global residue theorem, we proved in section 2 that boxes are pure inte-

grals. However, it is not obvious that the pentagons in (5.2.20) and (5.2.21) satisfy the

requirement.

Consider first pentagons of the first class∫
(AB)

〈AB 13〉N
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉 (5.3.48)

where N = 〈12 45〉〈23 45〉.
In order to see that all non-vanishing leading singularities are equal up to a sign let us

use a global residue theorem. In section 2 we gave a very imprecise definition of the global

residue theorem (GRT) which was enough for the purposes of that section. Here we have

to be more precise. The GRT states that given a choice of a map f : C4 → C4 made from

polynomial factors in the denominator, the sum over all the residues associated with the

zeroes of the map vanishes.

In the present case, consider the map given by f = (f1, f2, f3, f4) where

f1 = 〈AB 12〉, f2 = 〈AB 23〉, f3 = 〈AB 34〉, f4 = 〈AB 45〉〈AB 51〉.

It is easy to see that the map f has four zeroes (see section 2 for more details). The GRT

assures that the sum over the four residues vanishes. How can we prove that residues are

equal if the GRT only gives relations among four residues?

The answer has to do with our choice of numerator. Consider the value of 〈AB 13〉 on
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the four zeroes. Each zero is a line which is the solution to some Schubert problem7. The

four solutions are the lines (24), (123)
⋂

(345), (13) and (512)
⋂

(234) (see the end of the

section or section 2 for the notation). It is a simple exercise to show that 〈AB 13〉 vanishes

on the second and third solutions and it is non zero on the first and fourth. This means

that the GRT implies that two leading singularities are equal and opposite in sign. The

first is one of the two solutions to 〈AB 12〉 = 〈AB 23〉 = 〈AB 34〉 = 〈AB 45〉 = 0 while the

fourth is one of the two solutions to 〈AB 12〉 = 〈AB 23〉 = 〈AB 34〉 = 〈AB 51〉 = 0. Let

us denote these non-vanishing residues by r(12),(23),(34),(45) and r(12),(23),(34),(51) respectively.

Therefore the GRT states that

(0 + r(12),(23),(34),(45)) + (r(12),(23),(34),(51) + 0) = 0

which implies the equality of the residues up a sign.

The pentagon integral as 10 leading singularities. This means that more work is

needed to show that it has unit leading singularity. Consider a GRT associated to the

map

f1 = 〈AB 12〉〈AB 51〉, f2 = 〈AB 23〉, f3 = 〈AB 34〉, f4 = 〈AB 45〉.

Once again, there are four zeroes of this map. Two of them are shared with the map

we constructed before, i.e., (24) and (123)
⋂

(345). The two new solutions are (35) and

(234)
⋂

(451). As before, the numerator vanishes on (123)
⋂

(345). Very nicely, it also

vanishes on (35). We can denote by r(12),(23),(34),(45) and r(51),(23),(34),(45) the corresponding

non-zero residues. Therefore the GRT gives

(0 + r(12),(23),(34),(45)) + (r(51),(23),(34),(45) + 0) = 0

This means that the GRT sets equal the non vanishing leading singularity in 〈AB 51〉 =

〈AB 23〉 = 〈AB 34〉 = 〈AB 45〉 = 0 with the ones we found before.

This procedure can be continued three more times by shifting the labels in the map by

one. We leave it as an exercise for the reader to verify that in every case, the numerator

vanishes on one solution implying that the GRT sets all non-zero leading singularities to

be the same.

7A Schubert problem was defined in section 2 as the projective geometry problem of finding lines

that intersect four given lines which can be in special configurations called one-mass, two-mass-easy,

two-mass-hard, and three-mass, as well as in generic positions which we call four-mass configurations.
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In order to compute the normalization and also to show how the GRT makes obvious

statements that require computations to be verified, even in this trivial case, let us

compute explicitly the two residues in the first GRT discussed above.

Consider the ones in the first step. In other words, let’s evaluate the residue on the

solution (24) to the system 〈AB 12〉 = 〈AB 23〉 = 〈AB 34〉 = 〈AB 45〉 = 0. The residue

is given by

N
〈2413〉

〈2451〉(〈1234〉〈2345〉) (5.3.49)

Here the terms in parenthesis are the Jacobian in the residue computation. A geometric

way to see that the Jacobian has to contain the factors 〈1234〉 and 〈2345〉 is that on

the special configurations where either one of them vanishes, the number of solutions to

the Schubert problem becomes infinite. For example, consider the configuration where

〈1234〉 = 0. In this case, any line on the plane (123) which passes through Z4 solves the

Schubert problem. Using the scaling of each momentum twistor, the Jacobian must be

what we found. It might be instructive to see the full computation of the Jacobian using

momentum twistors. This is carried out in detail in appendix E.

In order to have a properly normalized integral we require (5.3.49) to be equal to one.

This means that N = 〈5124〉〈2345〉 which is the factor first given in section 2 in (5.2.20).

Consider now the residue coming the second Schubert problem, 〈AB 12〉 = 〈AB 23〉 =

〈AB 34〉 = 〈AB 51〉 = 0. The non-zero residue is associated with the solution (512)
⋂

(234).

This is a one-mass Schubert problem and one explicit form of ZA and ZB was given in

section 2. Let us use ZA = Z2 and ZB = −〈1234〉Z5 + 〈5234〉Z1 and compute the residue.

The Jacobian is the same as before but with labels shifted back by one. The residue is

then

N
〈1234〉〈2513〉

〈2345〉〈5124〉(〈1234〉〈2513〉) . (5.3.50)

Using the normalization derived above this quantity equals one as expected.

In section 2 we also presented a second pentagon integral which differs from the first

one only in the choice of numerator. We leave it as an exercise for the reader to repeat

the analysis done here and show that with the new numerator this is a pure integral8.

8Of course, one could simply translate the whole problem into dual momentum twistor space to find

exactly the same integral as before. However, it is still an instructive exercise to do it in momentum

twistor space.
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Let us rewrite the integral here with the numerator given in geometric form∫
(AB)

Ñ
〈AB (512)

⋂
(234)〉

〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉 . (5.3.51)

Now it should be obvious that the comment made in section 2 is true. The special

numerators are made from lines, (13) and (512)
⋂

(234), which are the two solutions to

a Schubert problem.

In section 4 we study a less trivial example; a hexagon integral where the special

choice of numerator also allows the use of the GRT to show that all non-vanishing

residues are equal. In the hexagon case, checking the statement that all residues are

equal algebraically requires many applications of 4-bracket Schouten identities.

Basic Diagrammatic Notation

We find it convenient to introduce a diagrammatic representation for numerators. Note

that with our definition of dual variables pa = xa − xa−1 and of momentum twistors

xa ↔ (Za, Za+1), there is a natural diagrammatic relation between loop integrals and

momentum twistor configurations. Consider a general one-loop amplitude as a polygon

with n-sides. Attached to each vertex there is some momentum pa. In momentum

twistor space, we also have an n-sided polygon and attached to each vertex there is a

momentum twisor Za. Following the intuitive correspondence between the two diagrams

we are led to denote denominators (propagators) as lines connecting points depending on

their geometric configuration. These are denoted by solid lines. In order to distinguish

numerators, we also introduce dashed and wavy lines.

Dashed lines: Numerators which correspond to factors of the form 〈AB e f〉, where

(ef) represents a line in momentum twistor space specified by two momentum twistors

Ze and Zf is represented by a dashed line connecting points e and f as in

2

3

45

1

=

∫
(AB)

〈AB 13〉〈1245〉〈2345〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉 (5.3.52)

Wavy lines: We also allow points to represent dual twistors. In this case the second

class of numerators constructed as intersection of planes can also be represented by a line
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connecting two points. In order to distinguish this from the previous case we use wavy

lines. In the example where the numerator corresponds to the line (512)
⋂

(234) or in

dual twistors terminology to the point (13)W , one has

2

3

45

1

=

∫
(AB)

〈AB (512)
⋂

(234)〉〈1345〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉 (5.3.53)

II. Chiral Integrals

From the discussion of the pentagons, it is clear that there is a striking difference between

a pentagon with a special numerator and plain scalar box integrals. Even though both

kind of objects can be made pure integrals, each Schubert problem in the case of the

pentagon has a single non-vanishing residue while in the boxes both solutions give rise

to a residue.

When an integral has the property that the residues associated to at least one of its

Schubert problems are not the same, we say that the integral is chiral. The reason for the

terminology comes from the fact that the two contours associated to a given Schubert

problem are exchanged under parity (see section 2 for more details). This means that

one can have chiral, pure, or chiral and pure integrals.

At one-loop, one can have an even more especial class of integrals. When an integral

has a numerator where at most one of the solutions to each Schubert problem gives a

non-zero residue then we say that the integral is completely chiral.

Let us give two more examples in this section. The first is the most general class of

chiral pure pentagon integrals. This is an integral where only two of the five legs needs

to be massless. Moreover, it is clear that in order to write a special numerator the two

massless legs cannot be adjacent. The claim is that the following family of integrals is
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(completely) chiral and pure.

i + 1 j - 1

j

j + 1

kk + 1

i - 1

i

=

∫
(AB)

〈AB (i 1 i i+1)
⋂

(j 1 j j+1)〉〈i j k k+1〉
〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉〈AB k k+1〉 (5.3.54)

In this case, the GRT can also be applied to show that all residues are the same. In

order to show that the normalization gives unit leading singularities, identities of the

form discussed at the end of this section are needed.

Next, let us give a six-point two-loop example. Consider the following integral

k

li

j

=


〈AB (i 1 i i+1)

⋂
(j 1 j j+1)〉〈i j k l〉

〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉〈AB CD〉
× 〈CD (k 1 k k+1)

⋂
(l 1 l l+1)〉

〈CD k 1k〉〈CD k k+1〉〈CD l 1 l〉〈CD l l+1〉


This integral has the structure of two of the general pentagon integrals joined by the all

massive edge. Consider a residue of the full integral over C8 which computes a residue

of the pentagon on the left. The contour integral in ZA and ZB is the same as before

except that the normalization is different and therefore the residue is not equal to one.

The residue must then be the ration of the two normalizations, i.e., 〈i j k l〉/〈i j CD〉.
Plugging this in the integral over ZC and ZD we now find a properly normalized integral

and therefore the remaining part of residue computation gives one.

One might be tempted at this point to think that all completely chiral integrals are

pure. In section 4, we describe in detail the example of a hexagon with a wavy line and

a dashed line in the numerator. This integral is in fact completely chiral but it is not

pure.
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III. Evaluation of Pure Integrals

Evaluating integrals explicitly can be very hard and many techniques have been devel-

oped for this purpose. At one-loop, all integrals appearing in the standard reduction

techniques are known analytically. At higher loops, very few examples have been evalu-

ated analytically. Many of our chiral pure integrals turn out to be completely IR finite

and therefore their evaluation can be made directly four dimensions without any regula-

tors.

Consider the family of pentagon integrals discussed above. The evaluation of the

integrals for generic j and k gives

I5(i, j, k) =

∫
(AB)

〈AB (i 1 i i+1)
⋂

(j 1 j j+1)〉〈i j k k+1〉
〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉〈AB k k+1〉 , (5.3.55)

= log (uj,k,i−1,j−1) log (uk,i−1,i,j) + Li2 (1− uj,k,i−1,j−1) + Li2 (1− uk,,i−1,i,j)

− Li2 (1− uj,k,i,j−1)− Li2 (1− ui,j−1,k,i−1) + Li2 (1− ui,j−1,j,i−1)

where

ui,j,k,l ≡
〈i i+1 j j+1〉〈k k+1 l l+1〉
〈l l+1 j j+1〉〈k k+1 i i+1〉 (5.3.56)

For special values of j and k the integral becomes IR-divergent and a regulator is needed.

We postpone this discussion to section 4.

The reason for presenting the explicit form of the pentagon integrals is to note a

general fact about pure integrals: The explicit evaluation of the integrals must be a

linear combination of functions known as iterated integrals, such as polylogarithms, all

with coefficient one.

It is striking that the coefficients do not depend on kinematic invariants but this is

a consequence of having unit leading singularities. This is the motivation for the termi-

nology: pure integrals. Roughly speaking, the coefficients of the different polylogarithms

are the leading singularities of the integrals. Having a pure integral ensures that no

coefficient can depend on kinematical invariants.

Once again, the hexagon with a wavy and a dashed line in the numerator given in

section 4 will be an example of a completely chiral and IR finite integral which is not pure

and its evaluation gives products of logarithms with different coefficients that depend on

kinematic invariants.
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IV. Example: 1-Loop MHV Amplitudes

Up until know we have been studying integrals individually. This is a good point to

actually use them to determine the full physical integral of the simplest set of amplitudes.

These are one-loop MHV amplitudes. Historically, one-loop MHV amplitudes were the

very first set of amplitudes to be computed for all n as a linear combination of scalar

box integrals [75]. It was found that the answer is very simple; an overall prefactor,

proportional to the tree-level amplitude, and a sum over all one-mass and two-mass-easy

box integrals with coefficient one, when properly normalized. In our modern terminology,

the normalization was such that only pure integrals appear. It was realized that this form

of the amplitude was not equivalent to the Feynman diagram amplitude as an expansion

in the dimensional regularization parameter but it differs from it only at O(ε). In our

language this is nothing but the fact that an expansion in terms of box integrals cannot

possible reproduce the physical integrand of the theory as stressed a number of times

already.

Now that we have a set of chiral pure integrals, the natural question is how much more

complicated the amplitude will look like if written in a form that matches the physical

integrand. It turns out that the full integrand is stunningly simple

A1−loop
MHV =

∑
i<j

j

n1

i

(5.3.57)

where the propagator 〈AB n 1〉 is present in all terms. Note that not all integrals in

the sum are chiral pure integrals. There are boundary terms which are box integrals.

Consider for example j = i+1. In this case the numerator cancels one of the propagators

leaving us with the box. We give no derivation for this formula here and postpone a

more detailed discussion to section 6. A final comment, even though the line (n1) seems

especial, the amplitude is cyclic as it should be!
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5.4 Finite Integrals

We have seen that the chiral integrals with unit leading singularities, naturally written in

momentum-twistor space, provide a natural basis of objects to express the loop integrand.

In this section we will see that they have another beautiful property—most such integrals

are manifestly infrared finite.

Let us begin by illustrating with a simple example. Consider a general 1-loop integral

for 6 particles, which we can write as∫
(AB)

〈ABX〉〈AB Y 〉
〈AB 12〉〈AB 23〉 · · · 〈AB 61〉 . (5.4.58)

Here X, Y are generic bitwistors. Of course, like almost all generic integrals with massless

external legs, this integral is infrared divergent. Recall that the infrared divergences arise

when the loop momentum l become collinear to a massless external momentum pa, i.e.

when l · pa → 0. The extra soft logarithmic divergence can be thought of as an even

more special case of this situation, where the loop momentum becomes collinear to two

consecutive momenta so that l·pa, l·pa+1 → 0. In the dual co-ordinate space, the collinear

divergence arises when the loop integration point x approaches one of the edges of the

Wilson loop, connecting xa with xa+1, and of course the extra soft divergence occurs

when x gets close to both the lines (xa−1 xa) as well as (xa xa+1), that is when it is close

to the point xa itself. But again the IR-divergence is fundamentally a collinear one, with

the soft divergence being thought of as “double-collinear”.

We can finally describe these IR-divergent regions in momentum-twistor language.

The collinear divergence associated with l · pa → 0 corresponds to the region where the

line (AB) in momentum twistor space, associated to the loop integration point, passes

through Za while lying the in the plane (Za−1ZaZa+1). Note that this region is quite nicely

parity invariant. Recall that in momentum-twistor variables, parity is just the poincare

duality, and exchanges the point ZI
a with the plane WaI = (Za−1ZaZa+1)I naturally

paired with Za. Thus, the condition is that the line (AB)IJ passes through ZI
a , and also

that the dual line (AB)IJ passes through WaI .

While a generic integral will indeed be IR-divergent, we see a simple way of getting

completely IR finite integrals. If the bitwistors X, Y are chosen to have a zero in all

the dangerous IR-divergent configurations, then the integrals will be finite. This is very
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simple to achieve. For instance, let us choose X = (13) and Y = (46); we can write out

the integral again as,

1

2

34

5

6

=

∫
(AB)

〈AB 13〉〈AB 46〉〈5 6 1 2〉〈2 3 4 5〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 56〉〈AB 61〉 (5.4.59)

Let us check that the numerator has a zero in all the IR-divergent regions. Consider first

collinearity with p3. We need to see what the numerator does when (AB) passes through

Z3 while lying in the plane (234). However, the numerator factor 〈AB 13〉 vanishes simply

if (AB) passes through 1 or 3, regardless of whether or not it also happens to lie in the

plane (234). In this way, we can see that the collinear divergences with 1, 3, 4, 6 are all

killed by the numerator. Next, consider what happens when (AB) passes through 2, lying

in the plane (123). Since (AB) lies in (123), it necessarily intersects the line (13), and

therefore, 〈AB 13〉 = 0, regardless of whether or not (AB) also happens to pass through

2. A completely analogous argument holds for the collinear divergence associated with

particle 5.

Thus we see that with this numerator, all the regions with collinear divergences are

killed by the numerator factors, and the integral is completely IR-finite! There are other

choices for X, Y that will do the same job; our argument above also holds if one or both

of the numerator factors (13), (46) were replaced by their parity-conjugates, (612)
⋂

(234)

and (345)
⋂

(561), respectively—changing one or more of the dashed-lines in (5.4.59) to

wavy-lines.

Now, these finite integrals are clearly chiral. And when the two numerators are of the

same kind, they have, quite nicely and non-trivially, unit leading singularities. As usual,

verifying by direct computation requires manipulating non-trivial sequences of 4-bracket

Schouten identities, but the result follows much more transparently from an application of

the global residue theorem to this integral. Consider for instance the GRT following from

choosing f1 = 〈AB 34〉, f2 = 〈AB 45〉, f3 = 〈AB 56〉 and f4 = 〈AB 61〉〈AB 12〉〈AB 23〉.
We have three different Schubert problems to consider, with the lines (34), (45), (56)

combined with (61), (12), (23). Consider first the Schubert problem with the four lines

(34), (45), (56), (61). This is a one-mass configuration, and it is easy to see that the nu-
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merator kills the solution where (AB) is the line (46), only leaving the solution passing

through 5. Let us call this non-vanishing residue r(34),(45),(56),(61). Similarly, for the Schu-

bert problem with lines (34), (45), (56) and (12), the numerator kills the solution passing

through 4 while leaving the one passing through 5; we can call this single non-vanishing

residue r(34),(45),(56),(12). Finally, for the Schubert problem with lines (34), (45), (56), (23),

we can see that both solutions—the line 35 as well the line passing through 4—are killed

by the numerator, so both of these residues vanish. The GRT then tells us that(
0 + r(34),(45),(56),(61)

)
+
(
0 + r(34),(45),(56),(12)

)
+ (0 + 0) = 0

→ r(34),(45),(56),(61) = −r(34),(45),(56),(12)

(5.4.60)

It is possible to repeat this argument for other GRT’s, finding a sequence of 2-term

identities relating all the non-vanishing residues, showing that the integral is not only

chiral but has unit leading singularities. Thus, we see in this instance something that can

be checked also to be true for all other residues: the integral is completely chiral; at most

one of the two solutions to each Schubert problem are non-vanishing, and sometimes

both vanish.

Given that this integral has unit leading singularities, it is instructive to expand it in

terms of boxes, which will then also have unit coefficients. This simple, finite momentum-

twistor integral in fact expands into the sum of nine boxes:

1

2

34

5

6

=



6
1

2

3

45

+
4

5
6

1

23

+

5
6

1

2
3

4

+

6
1

2

3
4

5

+

5

6
1

2

3
4

−
5

6
1

2
3

4

−
4

5 6

1

23

−

5
6

1

2

3
4

−

6
1

2

3

4
5
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The seemingly complicated combinations of a large number of boxes have been encoun-

tered before in the computation of finite 1-loop objects, such as the NMHV ratio func-

tion [8, 48, 86, 106] —the ratio function for the full superamplitude is simply defined to

be

R1−loop
n,k = A1−loop

n,k −Atree
n,k · A1−loop

n,k=2 . (5.4.61)

Note that in the box expansion, every integral is individually IR-divergent, the IR-

divergences only canceling in the sum. Moreover, the boxes themselves are not dual

conformal invariant—again, only become dual conformal invariant in the sum. But since

the hexagon in which we are interested is manifestly finite and dual conformal invari-

ant9, we can evaluate it directly—for example, using Feynman parameterization directly

without any regularization. A straightforward computation shows,

1

2

34

5

6

= Li2(1−u1) + Li2(1−u2) + Li2(1−u3) + log(u3)log(u1)− π
2

3
, (5.4.62)

where the ui are the familiar six-point cross-ratios:

u1 ≡
〈12 34〉〈45 61〉
〈12 45〉〈34 61〉 , u2 ≡

〈23 45〉〈56 12〉
〈23 56〉〈45 12〉 , and u3 ≡

〈34 56〉〈61 23〉
〈34 61〉〈56 23〉 . (5.4.63)

It is easy to find examples of integrals which are finite and chiral, but which do not

have unit leading singularities. For example, changing one the ‘dashed-line’ numerator

factor 〈AB 13〉 in the integral above to a ‘wavy-line’ 〈AB (612)
⋂

(234)〉 will leave the

integral finite and chiral, but spoil the equality of its leading singularities. Indeed, as

it is also finite and dual-conformally invariant, the ‘mixed’ hexagon integral can also be

9In the literature on ratio functions, some authors have found what were claimed to be “finite” com-

binations of boxes that did not end up being dual-conformal invariant. In every case, the combinations

of boxes in question were not honestly IR-finite: the divergences from different regions of the integration

contour canceling between each-other. Such a cancellation is is highly regulator-dependent, and is not

very meaningful.

189



evaluated without any regularization, and one finds that,

1

2

34

5

6

=

∫
(AB)

〈AB (612)
⋂

(234)〉〈AB 46〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 56〉〈AB 61〉

=

( 〈1234〉
〈1345〉〈1235〉

)
log(u1) log(u2) +

( 〈6134〉
〈1345〉〈5613〉

)
log(u3) log(u1)

+

( 〈6123〉
〈1235〉〈3561〉

)
log(u2) log(u3).

In order for GRTs to yield the two-term identities necessary to guarantee that all the

leading singularities are equal up-to a sign, the numerator must force vanishing residues

for all but two Schubert problems. In the case of the ‘mixed-numerator’ hexagon integral,

for example, GRTs can only be used to show that the coefficients of the logarithms sum

to zero: ( 〈1234〉
〈1345〉〈1235〉

)
+

( 〈6134〉
〈1345〉〈5613〉

)
+

( 〈6123〉
〈1235〉〈3561〉

)
= 0. (5.4.64)

It is clear that these chiral momentum-twistor integrals with unit leading singularities

give us the simplest and most transparent way of talking about finite integrals.

Just as a trivial example, the 6-point NMHV ratio function, which is typically written

in terms of all 15 six-point box-integrals, with many R-invariants as coefficients, is given

simply by

R1−loop
NMHV =

post−
integration

(
1 + g + g2

)


1

2

34

5

6

× ([2 3 4 5 6]− [3 4 5 6 1] + [4 5 6 1 2])


, (5.4.65)

where g : i 7→ i+1 acts on both the integrand and its coefficient. Also recall the definition

of the R-invariants given in section 1,

[a b c d e] =
δ0|4(ηa〈b c d e〉+ ηb〈c d e a〉+ ηc〈d e a b〉+ ηd〈e a b c〉+ ηe〈a b c d〉)

〈a b c d〉〈b c d e〉〈c d e a〉〈d e a b〉〈e a b c〉 . (5.4.66)
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5.5 1-Loop Integrands, Integrals, and Amplitudes

As described in section I., one can use elementary tensor-reduction to express any 1-

loop integrand in N = 4 in terms of pentagon and box integrands. These of course

would form a complete basis for any 1-loop integrand in N = 4 SYM. However, such

a basis would necessarily include many integrands which are non-chiral (including all

boxes), and which have non-uniform leading singularities; moreover, such a basis would

allow for linear combinations of IR-divergent integrals to be ultimately IR-finite and

non-vanishing. But we saw in the last section that there are integrands—pentagons and

hexagons with ‘magic’ numerators—which avoid all of these shortcomings, and these

integrands closely mirror the leading singularities of MHV-amplitudes, suggesting that

they may be well-suited to express amplitudes more generally.

It is therefore natural to wonder if there exists a complete basis of 1-loop integrands

involving only chiral, manifestly dual-conformally invariant integrands with unit leading-

singularities, and for which no non-vanishing linear-combination of IR-divergent inte-

grands is IR-finite. We’ll see momentarily that the answer is affirmative, and extremely

beautiful.

Before trying to construct such a basis, however, we can gain some intuition about

what to expect by assessing its size—that is, finding the dimension of the space of planar,

1-loop integrands. Recall that every n-point 1-loop planar integral can be written in the

form ∫
(AB)

〈AB Y1〉 · · · 〈AB Yn−4〉
〈AB 1 2〉〈AB 2 3〉〈AB 3 4〉 · · · 〈AB n 1n〉〈AB n 1〉 . (5.5.67)

When n = 5, the space of 1-loop integrands is just the space of bitwistors Y , which

is six-dimensional—which explains how the complete 5-point 1-loop integrand could be

constructed in [97] through the introduction of a single pentagon integrand.

For n = 6, the most general integrand is a hexagon with 〈AB Y1〉〈AB Y2〉 in the

numerator. Now, each Yi is a 6-dimensional representation of SU4, and of course 6⊗6 =

1⊕15⊕20. Ordinary multiplication being commutative, the antisymmetric part, the 15-

component, clearly vanishes. By expanding each Yi into a basis of six simple bitwistors,

it is easy to see that the trace component, 1, also vanishes, as 〈Yi Yi〉 = 0, when Yi is
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simple. Therefore, the space of 6-point 1-loop integrands is 20-dimensional10.

More generally, it is not hard to see that the dimension, d, of 1-loop integrands is

the same as the dimension of the space of symmetric (n − 4)-fold symmetric, traceless

tensors of 6’s of SU4, which is simply

d =

(
n

4

)
+

(
n− 1

4

)
(5.5.68)

Recall that box-integrands form a complete basis of parity-even integrands, and that

there are precisely
(
n
4

)
boxes, all of which are independent. Therefore, we may separate

d in equation (5.5.68), according to d = deven + dodd with deven =
(
n
4

)
and dodd =

(
n−1

4

)
.

Once we have a basis of integrands which makes parity manifest, this will allow us to

count the number of relations satisfied by (parity-odd) integrands.

I. The Chiral Octagon: A Basis of 1-Loop Integrands

As we can see from equation (5.5.68), the number of independent integrands grows

asymptotically like O(n4). In contrast, the number of chiral pentagons grows only like

O(n2). It is not hard to see that the simplest class of chiral integrands which number

O(n4) are the chiral octagons. As we will see presently, it turns out that chiral octagon-

integrands indeed form an (over)-complete basis for all 1-loop integrands that satisfies

all the desired criteria listed above. The most general chiral octagon integral is given by,

I8(i, j, k, l) ≡
j

k

l

i

for i<j<k<l<i (5.5.69)

=

∫
(AB)

〈AB i j〉〈AB(j 1 j j+1)
⋂

(k 1 k k+1)〉〈AB k l〉〈AB (l 1 l l+1)
⋂

(i 1 i i+1)〉
〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉〈AB k 1 k〉〈AB k k+1〉〈AB l 1 l〉〈AB l l+1〉 .

Notice that parity acts according to P : I8(i, j, k, l) 7→ I8(j, k, l, i), making it trivial to

define parity-even/parity-odd sectors:

10We thank Simon Caron-Huot for helpful discussions regarding this counting.
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I
even/odd
8 (i, j, k, l) ≡ I8(i, j, k, l)± I8(j, k, l, i) =

j

k

l

i

±
j

k

l

i

Notice that these octagon integrands are well-defined for any distinct set of in-

dices {i, j, k, l}, including those for which the ‘octagon’ degenerates into lower-polygons.

For example, when l = k + 1, the extra (duplicated) propagator in equation (5.5.69),

〈AB k k+1〉 is cancelled by the dashed-line term 〈AB k l〉 → 〈AB k k+1〉 in the nu-

merator. A complete sampling of degenerate ‘octagons’ is illustrated in Figure 5.3.

One important advantage of this presentation is that all but the most degenerate of

the octagons are manifestly finite. Indeed, only the pentagons—octagons of the from

I8(i, i+1, i+2, i+3, i+4)—and the lower hexagons in Figure 5.3—octagons of the form

I8(i, i+1, i+2, j)—are IR-divergent. Specifically, we have the following separation into

manifestly IR-finite and IR-divergent basis integrands.

Figure 3: The possible degenerations of the general octagon integrand.

j

k

l

i

l=k+1−−−→ j

k

l

i
j=

i+
1

−−−
→

j

k

l

i

i=l+1
−−−→

i=l+1
−−−→ j

k

l

i
j=

i+
1

−−−
→

i
j

k

l

Notice that these octagon integrands are well-defined for any distinct set of

indices {i, j, k, l}, including those for which the ‘octagon’ degenerates into lower-

polygons. For example, when l = k + 1, the extra (duplicated) propagator in

equation (??), �AB k k+1� is cancelled by the dashed-line term �AB k l� → �AB k k+1�
in the numerator. A complete sampling of degenerate ‘octagons’ is illustrated in

Figure ??.

One important advantage of this presentation is that all but the most degener-

ate of the octagons are manifestly finite. Indeed, only the pentagons—octagons of

the from I8(i, i+1, i+2, i+3, i+4)—and the lower hexagons in Figure ??—octagons

of the form I8(i, i+1, i+2, j)—are IR-divergent. Specifically, we have the following

separation into manifestly IR-finite and IR-divergent basis integrands.

IR-finite:
j

k

l

i

j

k

l

i

j

k

l

i

IR-divergent:

j

k

l

i
i

j

k

l

(5.5)

– 51 –

Figure 5.3: The possible degenerations of the general octagon integrand.
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IR-finite:
j

k

l

i

j

k

l

i

j

k

l

i

IR-divergent:

j

k

l

i

i
j

k

l

(5.5.70)

It is worth emphasizing that the only IR-finite combinations of IR-divergent integrals in

this basis are parity-odd, which automatically vanish upon integration. Furthermore, as

discussed above, because the criterion for local divergences in the region of integration

is itself parity-invariant,11 parity-odd combinations of integrands are in fact manifestly

locally finite.

Parity-symmetrizing, and parity anti-symmetrizing, it is clear that there
(
n
4

)
octagon

integrands, evenly split between parity-odd and parity-even. As we described above,

among the parity-odd combinations of integrands only
(
n−1

4

)
are linearly-independent, so

the octagon basis is strictly over-complete, but there are only non-trivial relations among

integrands in the parity-odd sector.

II. Integration of Manifestly-Finite Octagons

It is not hard to directly evaluate the general octagon integral I8(i, j, k, l). Consider for

example the case I8(3, 6, 9, 12) for which all indices are separated by at least 3,

6

7

8
910

11

12

1

2
3 4

5

. (5.5.71)

Because of the numerator factors, the only non-vanishing leading singularities of this

integral involve cutting at most one of each the pairs of lines {(23), (34)}, {(56), (67)},
11Recall that a local, IR-divergence develops in the region of integration when the line (AB) passes

through a point Zi while simultaneously lying on the plane (Zi−1 Zi Zi+1).
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{(89), (9 10)}, and {(11 12), (12 1)}. Therefore, this integral’s box-expansion is simply

the (manifestly-finite) sum of 16 four-mass box integrals. One disadvantage with this

presentation of the integral, however, is that the four-mass box integral logarithmically-

diverges when any of its four massive corners becomes massless, and yet we saw above

that the general octagon remains manifestly finite upon many such degenerations.

Because of this, we are motivated to replace the four-mass box function with a new

function that is free of any divergences over the physical domain of cross ratios. Letting

∆4(u, v) denote the familiar four-mass box integral12—a symmetric function in the two

cross-ratios—then let us define the following ‘modified four-mass’ function

∆̃4(i, j, k, l) ≡ γ∆4(ui,j,k,l, uj,k,l,i)−
1

2
log(ui,j,k,l) log(uj,k,l,i), (5.5.72)

where

∆4(u, v) ≡ Li2(1− α+)− Li2(1− α−) +
1

2
log(v) log(α+/α−), (5.5.73)

and

γ ≡
√

(1− u− v)2 − 4uv

1− u− v , and α± ≡
2u

1 + u− v ±
√

(1− u− v)2 − 4uv
; (5.5.74)

here, we have used the four indices {i, j, k, l} to signify the (generally time-like separated)

spacetime points corresponding to the lines (i i+1), (j j+1), (k k+1), and (l l+1) in twistor

space, which together define the cross-ratios

ui,j,k,l ≡
〈i i+1 j j+1〉〈k k+1 l l+1〉
〈l l+1 j j+1〉〈k k+1 i i+1〉 and uj,k,l,i ≡

〈j j+1 k k+1〉〈l l+1 i i+1〉
〈i i+1 k k+1〉〈l l+1 j j+1〉 . (5.5.75)

The principle distinction between ∆̃4(i, j, k, l) and the more familiar four-mass box

function is that ∆̃4(i, j, k, l) remains finite even when many of the spacetime points

become null-separated (or even become identified). In particular,

lim
ui,j,k,l→0

(
∆̃4(i, j, k, l)

)
= Li2(1− uj,k,l,i) and lim

uj,k,l,i→0

(
∆̃4(i, j, k, l)

)
= Li2(1− ui,j,k,l).

(5.5.76)

Of course, if we use ∆̃4’s to represent I8(3, 6, 9, 12), for example, then each four-mass

box will contribute a ‘log-log’-term. It may be worried that this will greatly clutter the

12If we denote the massive, incoming four-momenta of the box by K1,K2,K3, and K4, and define the

canonical Mandelstam variables s ≡ (K1 + K2)2 and t ≡ (K2 + K3)2, then we are using u and v to

denote the cross ratios K2
1K

2
3/(st), and K2

2K
2
4/(st), respectively.
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final expression, but this turns out to not be the case: taken together, these 16 additional

‘log-log’ terms combine into a single such term.

With this new function, the general octagon integral—together with all its degenerations—

becomes extremely simple. Explicitly, the general octagon I8(i, j, k, l) integral is given

by,

j

k

l

i

=



log (ui k−1 k i−1) log (uj l−1 l j−1)

+∆̃4(i, j, k, l) −∆̃4(i, j, k, l 1) −∆̃4(i, j, k 1, l) +∆̃4(i, j, k 1, l 1)

−∆̃4(i, j 1, k, l) +∆̃4(i, j 1, k, l 1) +∆̃4(i, j 1, k 1, l) −∆̃4(i, j 1, k 1, l 1)

−∆̃4(i 1, j, k, l) +∆̃4(i 1, j, k, l 1) +∆̃4(i 1, j, k 1, l) −∆̃4(i 1, j, k 1, l 1)

+∆̃4(i 1, j 1, k, l)−∆̃4(i 1, j 1, k, l 1)−∆̃4(i 1, j 1, k 1, l)+∆̃4(i 1, j 1, k 1, l 1)

Although admittedly lengthy, this expression can be considerably compressed in a way

which helps illustrate the relative signs appearing in the formula above,

I8(i, j, k, l) = log (ui k−1 k i−1) log (uj l−1 l j−1)+
∑

σi∈{1,0}

(−1)(σ1+σ2+σ3+σ4)∆̃4(i σ1, j σ2, k σ3, l σ4).

(5.5.77)

We can see how the modified four-mass function ∆̃4(i, j, k, l) helps to make all of the

octagon’s degenerations manifest by looking at a few examples explicitly. For example,

consider the 8-point octagon I8(2, 4, 6, 8); in this case, only 20 of the 34 cross ratios

which play a role in the general answer are non-vanishing, converting virtually all the

generalized four-mass functions ∆̃4’s into Li2’s.

4

5

6
7

8

1

2
3

=



log (u2,5,6,1) log (u4,7,8,3)

+ ∆̃4(2, 4, 6, 8) −Li2 (1− u4,6,7,2)−Li2 (1− u2,4,5,8)+Li2 (1− u2,4,5,7)

−Li2 (1− u8,2,3,6)+Li2 (1− u3,6,7,2)+Li2 (1− u8,2,3,5)−Li2 (1− u7,2,3,5)

−Li2 (1− u6,8,1,4)+Li2 (1− u4,6,7,1)+Li2 (1− u1,4,5,8)−Li2 (1− u1,4,5,7)

+Li2 (1− u6,8,1,3)−Li2 (1− u3,6,7,1)−Li2 (1− u5,8,1,3)+ ∆̃4(1, 3, 5, 7)

Even more simplification occurs for the degenerate ‘octagons.’ Consider for example

the general finite heptagon integral, given by I8(i, j, k, k + 1),

j

k

k � 1

i

=



log (ui,k−1,k,i−1) log (uj,k,k+1,j−1)

+Li2 (1− uj,k,k+1,i) −0 −∆̃4(i, j, k 1, k+1) +Li2 (1− uj,k−1,k,i)

−Li2 (1− uj−1,k,k+1,i) +0 +∆̃4(i, j 1, k 1, k+1) −Li2 (1− uj−1,k−1,k,i)

−Li2 (1− uj,k,k+1,i−1) +0 +∆̃4(i 1, j, k 1, k+1) −Li2 (1− uj,k−1,k,i−1)

+Li2 (1− uj−1,k,k+1,i−1) −0 −∆̃4(i 1, j 1, k 1, k+1)+Li2 (1− uj−1,k−1,k,i−1)
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Here, because ∆̃4(i, j, k, k) = Li2(0) = 0, four of the contributions vanish, and eight of

the modified four-mass box functions simplify to simple Li2’s.

The final class of finite, degenerate octagons are the hexagon integrals—octagons of

the form I8(i, i+ 1, k, k + 1),

i � 1

k

k � 1

i

=



log (ui,k−1,k,i−1) log (ui+1,k,k+1,i)

+Li2 (1− ui+1,k,k+1,i) −0 −Li2 (1− uk+1,i,i+1,k−1) +Li2 (1− ui+1,k−1,k,i)

−0 +0 +0 −0

−Li2 (1− ui+1,k,k+1,i−1) +0 +∆̃4(i 1, i+1, k 1, k+1)−Li2 (1− ui+1,k−1,k,i−1)

+Li2 (1− ui,k,k+1,i−1) −0 −Li2 (1− uk+1,i−1,i,k−1) +Li2 (1− ui,k−1,k,i−1)

Just as for the case of the 8-point octagon integral, the general hexagon integral simplifies

considerably when potentially-massive corners become massless. As a final illustration,

let us see how the general formula for the octagon given above directly yields the result

quoted in section 5.4 for the 6-point hexagon integral which played such an important

role in the 6-point NMHV ratio function:

1

2

3

4

5

6

=



log (u3,5,6,2) log (u4,6,1,3)

+Li2 (1− u4,6,1,3) −0 −Li2(1) +Li2(1)

−0 +0 +0 −0

−Li2(1) +0 +Li2 (1− u2,4,5,1)−Li2(1)

+Li2(1) −0 −Li2(1) +Li2 (1− u3,5,6,2)

= Li2(1− u4,6,1,3) + Li2(1− u2,4,5,1) + Li2(1− u3,5,6,2)

+ log(u3,5,6,2) log(u4,6,1,3)− 2Li2(1).

III. Application: the NMHV 1-Loop Ratio Function

As should be clear from the previous subsection, any IR-finite object such as the ratio

function will be manifestly finite when expanded in the basis of octagon integrands. More-

over, since the formula for the completely general octagon integral, equation (5.5.77), is

free of discontinuities for all the IR-finite degenerations of the octagon, any finite 1-loop

integrand expressed in the basis of octagons directly translates into a function that is

manifestly dual-conformally invariant.

A very important, manifestly finite function associated with 1-loop scattering ampli-
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tudes is the ratio function,

R1−loop
n,k = A1−loop

n,k −Atree
n,k · A1−loop

n,k=2 . (5.5.78)

The most trivial example must be the 5-point 1-loop NMHV ratio function. Expanding

into the basis of octagons, the integrand is easily seen to be given by

R5,3,1 = [1, 2, 3, 4, 5]



2

3

45

1

−

2

3

45

1

+ cyclic. (5.5.79)

Being a parity-odd combination of pentagons, the ratio function is locally free of any

divergences at the level of the integrand and is therefore manifestly finite—of course,

being parity odd, it also vanishes upon integration.

A less trivial example, and one which we quoted in section 5.4, is the 6-point NMHV 1-

loop ratio function. In section 5.4 only the parity-even contribution to the ratio function

was described; the full integrand is given by,

R6,3,1 =

1 2

3

45

6

×1
2

(
[1, 2, 3, 4, 5] + [1, 2, 3, 5, 6] + [1, 2, 3, 6, 4]

)
+


1 2

3

45

6 −

1 2

3

45

6


×1

6
[1, 2, 3, 4, 6]

+


1 2

3

45

6 −

1 2

3

45

6


×1

6

(
[1, 2, 3, 4, 5]− [1, 3, 4, 5, 6]

)
+


1

2 3

4

56

−
1

2 3

4

56


×1

6

(
[1, 2, 4, 5, 6] + [1, 3, 4, 5, 6]

)
+ cyclic. (5.5.80)

Of course, only the first term in equation (5.5.80) is non-vanishing when integrated along

a parity-invariant contour, reproducing the formula given in equation (5.4.65).

The general formula for the n-point NMHV 1-loop ratio function integrand nicely

separates into a part which is parity-odd, and another which involves only manifestly
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finite integrands. In order to best capture the ratio function succinctly, let us introduce

one small bit of notation and define

[i, {i+ 1, . . . , j}, {k, . . . , l}] ≡
{j−1,j}∑

J={i+1,i+2}

{l,k}∑
K={k,k+1}

[i, J,K]; (5.5.81)

for example,

[1, {2, 3, 4}, {5, 6, 7}] = [1, 2, 3, 5, 6] + [1, 2, 3, 6, 7] + [1, 2, 3, 7, 5]

+ [1, 3, 4, 5, 6] + [1, 3, 4, 6, 7] + [1, 3, 4, 7, 5].
(5.5.82)

Notice that the two-index J ranges over all consecutive pairs between i+ 1 and j inclu-

sively, while the two-index K also includes a non-consecutively-ordered ‘wrapping’ term.

With this notation, it is very easy to write the n-point NMHV ratio function integrand:

R1−loop
n,3 =

1

2

∑
i<j<k<l<i

[i, {i+ 1, . . . , j}, {k, . . . , l}]I8(i, j, k, l)

− 1

n

∑
i<j<k<l<m<i

[i, j, k, l,m]Iodd
8 (i, j, k, l).

(5.5.83)

Notice that while the first term in equation (5.5.83) appears to include divergent

‘octagons’, only the finite octagons have non-vanishing coefficients. For five-particles,

for example, the coefficient of the octagon I8(1, 3, 4, 5) from equation (5.5.83) would be

[1, {2, 3}, {4, 5}] = [1, 2, 3, 4, 5] + [1, 2, 3, 5, 4] = 0.

Combining formula (5.5.83) with the analytic form of the general octagon integral

given in equation (5.5.77) immediately yields a concise, analytic, manifestly dual-conformally

invariant, and manifestly-cyclic form of the 1-loop ratio function for any n.

Let us close this section by given another explicit example. The 7-point NMHV 1-loop

ratio function is straightforwardly found to be,

R1−loop
7,3 = [1, {2, 3}, {4, 5, 6}]I8(1, 3, 4, 6) + [1, {2, 3}, {4, 5, 6, 7}]I8(1, 3, 4, 7) + cyclic,

(5.5.84)

where

I8(1, 3, 4, 6) ≡
{

Li2 (1− u1,3,4,6) +Li2 (1− u2,4,5,1) +Li2 (1− u4,6,7,2) +Li2 (1− u7,2,3,5)

− Li2 (1− u2,4,5,7) −Li2 (1− u3,6,7,2) −Li2 (1− u4,6,7,3) −Li2 (1− u6,1,2,4)

+ log (u1,3,4,7) log (u3,5,6,2)
}

;

I8(1, 3, 4, 7) ≡
{

log (u1,3,4,7) log (u3,6,7,2)− Li2(1) −Li2 (1− u1,3,4,6) −Li2 (1− u4,6,7,2)

+ Li2 (1− u1,3,4,7) +Li2 (1− u3,6,7,2) +Li2 (1− u4,6,7,3) +Li2 (1− u6,1,2,4)
}
.
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(Here, we have not neglected an overall factor of 1
2
: like in the case of the 6-point ratio

function—the summand in equation (5.5.83) includes exactly two copies of each term;

but this is not generally the case for higher-n).

5.6 Multiloop Amplitudes

In this section, we introduce a new strategy for finding local representations of loop inte-

grands. The idea is closely related to the leading singularity method, but the philosophy

differs in some important ways. In particular we will not be guided by systematically

trying to match all the leading singularities of the integrand. Instead, we will look

at a simple subset of leading singularities defined for generic, large enough number of

particles—no “composite” leading singularities will be considered. We will then find a

natural set of pure integrals designed to match this subset of leading singularities. We

will find that boldly summing over all such objects miraculously suffices to match the

full integrand! In particular, while the pure integrals are motivated for a large-enough

generic number of external particles, their degenerations nicely produce all the needed

lower-point objects as well.

This method is heuristic—we do not yet have a deep understanding for why the

miracles happen. However we have used this strategy successfully to find stunningly

simple expressions for the integrands of all 2- and 3-loop MHV amplitudes as well as all

2-loop NMHV amplitudes, and have checked that the results are correct by comparing

with the form obtained from the all-loop BCFW recursion.

We will begin by illustrating this strategy by going back to 1-loop integrands, which

will motivate structures for 1-loop integrands different from the ones we encountered

in section 3. For the MHV integrand, this new form coincides with one of “polytope

representations” discussed in Chapter 6. We will then use this discussion as a springboard

to our treatment of 2- and 3-loop integrands.

I. A New Form for the MHV 1-Loop Integrand

Let’s begin by going back to the MHV 1-loop integrand, and motivate a new form for

it inspired by straightforwardly matching its leading singularities, associated with the

familiar two-mass-easy colored diagrams
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i

j

i

j

corresponding to cutting the propagators

〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉 (5.6.85)

The amplitude has unit leading singularity for the first solution of the Schubert problem

(AB) = (ij), and vanishing leading singularity for the second solution where(AB) =

(i 1 i i+1)
⋂

(j 1 j j+1). We would like to build the integrand out of objects that have

exactly this property. To beat a dead horse yet again—it is obvious that the two-mass-

easy box does not do this job because it is not chiral. The easiest way to do this is

to simply insert a factor in the numerator, 〈AB (i 1ii+1)
⋂

(j 1jj+1)〉, that kills the

“wrong” leading singularity. For correct little-group weights, we add a factor 〈ABX〉 in

the denominator, where X is an arbitrary bitwistor, and look at an object of the form

Ii,j =
〈AB (i 1 i i+1)

⋂
(j 1 j j+1)〉〈X i j〉

〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉〈ABX〉 (5.6.86)

which is just the pentagon already familiar from section 2, where the local propagator

〈AB n 1〉 has been replaced by 〈ABX〉. We denote this graphically as

ij

X

(5.6.87)

Note that there is in general no significance to the presence of the legs adjacent to X in

this picture. We draw it in this way because in the special case where X = (k k+1), the

legs adjacent to X are identified with k,k+1.

Now consider the Schubert problems associated with cutting four physical propa-

gators. By construction this object has vanishing leading singularities on the “wrong”

solution, and can easily be seen to have unit leading singularity on the “right” one. Sum-

ming over all the indices i < j—with |i − j| ≥ 2 corresponding to the two-mass easy
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colored graphs—produces an object matching all the physical leading singularities of the

amplitude. Näıvely this should give us the integrand, but there is a catch: each term

also has “spurious cuts” where 〈ABX〉 is one on the cut propogators. Indeed, the sum

we just described does not match the integrand.

However some wonderful magic happens: the sum over all indices i < j, including a

“boundary term ”with j = i+1, which is not included in the sum over colored graphs,does

reproduce the amplitude! We have

A1−loop
MHV =

∑
i<j

〈AB (i 1ii+1)
⋂

(j 1jj+1)〉〈X i j〉
〈ABX〉〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉 (5.6.88)

or written pictorially

A1−loop
MHV =

∑
i<j<i


ij

X

. (5.6.89)

This form is manifestly cyclic but has spurious 〈ABX〉 poles term-by-term. The sum is

however independent of X. If we choose X to correspond to one of the external point

X = (k k+1), all the poles are manifestly physical but the formula is not manifestly

cyclic invariant.

As mentioned above, this expression follows from a simple “polytope” interpretation

described in Chapter 6. The local formula given in Chapter [15] is obtained by choosing

X = k k+1, summing over all k and dividing by 1/n. The similar expression in [116]

corresponds to setting X = I∞ where I∞ is infinity twistor.

Let us look at the “boundary term” where j = i + 1 in more detail—using

〈i 1 i i+1 i+2〉〈AB i i+1〉 = 〈AB (i 1ii+1)
⋂

(i i+1i+2)〉, we can see that it is just a (spu-

rious) box
〈i 1 i i+1 i+2〉〈X i i+1〉

〈ABX〉〈AB i 1 i〉〈AB i i+1〉〈AB i+1 i+2〉 (5.6.90)

It is instructive to explicitly understand the purpose of this boundary term in this simple

example, since the same phenomenon will occur in all the rest of our examples in this

section. Let us return to our most näıve ansatz, summing only over the pentagons

associated with the colored graphs. Each of the spurious cuts involving 〈ABX〉, such as

〈ABX〉〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉 (5.6.91)
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is shared by two pentagons e.g. Ii,j−1 and Ii,j. For generic terms in the sum, these cuts

cancel against each other in pairs. However, in the limiting cases when j = i+2 (or

j = i 2) the quad-cut is shared by Ii,i+2 and Ii−1,i+1 but there is no cancelation between

them because the non-vanishing leading singularities occur for two different solutions

of the Schubert problems. The spurious box of (5.6.90) precisely has non-vanishing

leading singularities for these two Schubert problems and completes the cancelation of

all 〈ABX〉 poles, ensuring the full sum is independent of X. It is quite remarkable

that the “new” object needed to fix the leading singularities and match the amplitude is

simply a degeneration of the pentagon itself.

In our remaining examples, we will not delve into understanding the details of how

all leading singularities match. We will instead take a class of leading singularities as a

guide for the local integrals to consider, and sum over all the relevant objects, including

boundary terms that do not directly correspond to any of the leading singularity pictures

that motivated the construction of the objects to begin with. These formulae are then

verified by comparing with the integrand as computed by BCFW recursion.

Let us finally note a very pretty property of equation (5.6.88): for generic X, all the

pentagons in the double sum are manifestly manifestly IR finite. This ceases to be true

if we make the special choice like X = (12), since the diagrams with i = 2 or j = n have

an additional massless corner which is not controlled by the numerator.

4 i - 1

i

i + 12

3

X

�
X = H12L

4 i - 1

i

i + 1

12

3
(5.6.92)

II. The 1-Loop NMHV Integrand, Revisited

We proceed to use the same strategy to determine a local expression for the NMHV

1-loop integrand, which will yield a quite different form than we obtained in section 3.

We again start with the colored graphs for leading singularities. There are two of them

for NMHV amplitudes:
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i

j

3 1

21

and

k + 1

i

jj + 1

k

2 1

22

(5.6.93)

Unlike the MHV case where the non-vanishing leading singularities were “1”, here the

non-vanishing leading singularities are the R-invariants. The goal is to find objects with

non-vanishing support on the same Schubert problems as the amplitude, and decorate

these with the appropriate R-invariants to get a nice ansatz for the integrand.

The first colored graph correspond to 2-mass easy Schubert problems and have the

same structure as the MHV case. The leading singularity is just the tree-level amplitude

appearing in the upper-left corner of the figure, Atree
NMHV(j, j+1, . . . i 1, i). Thus we expect

to have objects in the integrand of the form

∑
i<j< i

 ×Atree
NMHV(j, j+1, . . . , i 1, i)

ij

X

(5.6.94)

Finding an object matching the physical leading singularities of the second class of

colored diagrams is a more interesting exercise. The cut propogators are

〈AB i 1 i〉〈ABi i+1〉〈ABj j+1〉〈AB k k+1〉 (5.6.95)

The leading singularities vanish for the solution (AB) = (i 1 i i+1)
⋂

(j j+1)(i 1 i i+1)
⋂

(k k+1),

while for (AB) = (i j j+1)
⋂

(i k k+1) the leading singularity is [i, j, j+1, k, k+1].

Let us consider objects of the form

Ii,j,k ≡

i

j
k X

=

∫
(AB)

N(i, j, k)

〈ABX〉〈AB i 1 i〉〈AB i i+1〉〈AB j j+1〉〈AB k k+1〉

We are searching for a numerator supported on the same leading singularities as the

amplitude. In addition it should also have unit leading singularity on all other spurious

quad-cuts. The reason is that the spurious cuts must cancel in a sum over terms; since

the integrals are multiplied by different R-invariants, the only way this can happen is
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through residue theorem 6-term identities between the R-invariants. For instance the

spurious quad-cut

〈ABX〉〈AB i i+1〉〈AB j j+1〉〈AB k k+1〉 (5.6.96)

is shared by six different integrals Ii;j,k, Ii+1;j,k, Ij;i,k, Ij+1;i,k, Ik;i,j and Ik+1;i,j that are

multiplied by six different residues. There is a 6-term identity relating them

[i, j, j+1, k, k+1] + [i+1, j, j+1, k, k+1] + [j, i, i+1, k, k+1]

+ [j+1, i, i+1, k, k+1] + [k, i, i+1, j, j+1] + [k+1, i, i+1, j, j+1] = 0

which can only possibly be of help in canceling spurious cuts if the integrands they

multiply have support on the same Schubert problems, with unit leading singularities.

There is one final guiding principle for determining the structure of the numerator

N(i, j, k). The topologies occurring in (5.6.94) are the same as for the MHV amplitude,

while the second class of integrals is “purely” NMHV-like. Since IR-divergences are

universal, it would be nice if the IR-divergences could be completely isolated in the

MHV-like topology. We should then try to choose the numerator N(i, j, k) to be strictly

finite. It would be nice if these integrals could be chosen to be manifestly finite. The only

divergence in (5.6.96) can come from the Zi-corner, i.e. the region when (AB) crosses

point Zi and lies in the plane (i 1 i i+1). In order to control this region the numerator

should be of the form N = 〈AB (i 1 i i+1)
⋂

(. . . )〉. Combined with the unit leading

singularity constraint, the form of the numerator is fixed completely:

N(i, j, k) ≡ 〈AB (i 1 i i+1)
⋂

Σi,j,k〉 (5.6.97)

with Σi,j,k a special plane defined according to

Σi,j,k ≡
1

2

[
(j j+1 (i k k+1)

⋂
X)− (k k+1 (i j j+1)

⋂
X)
]

(5.6.98)

This is in fact the only choice we could have made consistent with little group weights

and the desire to treat the j, k indices symmetrically. We will denote this by,

i

j
k X

=

∫
(AB)

〈AB (i 1 i i+1)
⋂

Σi,j,k〉
〈ABX〉〈AB i 1 i〉〈AB i i+1〉〈AB j j+1〉〈AB k k+1〉
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With these objects in hand, we once again brazenly sum over all ranges of indices,

including “boundary” terms with j = i ± 1 not directly associated with colored graphs

for leading singularities. The same magic happens as we saw in the MHV case—this sum

agrees with the 1-loop NMHV amplitude as computed by BCFW recursion, and we find,

A1−loop
NMHV =

∑
i<j<k< i

 × [i, j, j + 1, k, k + 1]


i

j
k X

+

∑
i<j< i

 ×Atree
NMHV(j, j+1, . . . , i 1, i)

 .
ij

X

(5.6.99)

Note also that as in the MHV case, the only IR-divergent integrals are in the boundary

terms. The (generically) finite integrals for Ii,j,k are given by

Ii,j,k = −Li2 (1− u1)− Li2 (1− u2) + Li2 (1− u3) + log (u4) log (u5)

where the cross ratios are defined as:

u1 ≡
〈i i+1 j j+1〉〈Xi 1 i〉
〈i i+1X〉〈j j+1 i 1 i〉 , u2 ≡

〈i i+1X〉〈k k+1 i 1 i〉
〈i i+1 k k+1〉〈X i 1 i〉 , u3 ≡

〈i i+1 j j+1〉〈k k+1 i 1 i〉
〈i i+1 k k+1〉〈j j+1 i 1 i〉 ,

u4 ≡
〈X k k+1〉〈i 1 i j j+1〉
〈X i 1 i〉〈k k+1 j j+1〉 , u5 ≡

〈j j+1X〉〈k k+1 i i+1〉
〈j j+1 k k+1〉〈X i i+1〉 ,

Finally, let us examine the 1-loop NMHV ratio function

R1−loop
NMHV = A1−loop

NMHV −A1−loop
MHV · Atree

NMHV (5.6.100)

Comparing the expressions 5.6.88 and 5.6.99 we can see that the ratio function has the

same form as NMHV amplitude, except that in the first sum we haveAtree
NMHV(i, i+1, . . . j 1, j)−

Atree
NMHV instead of just Atree

NMHV(i, i+1, . . . j 1, j). The manifest finiteness is obvious.

The only divergent integrals are in the boundary term j = i − 1, but their coefficient

is given by Atree
NMHV(i, i+1, . . . j 1, j) − Atree

NMHV(1, . . . , n) = Atree
NMHV(i, i+1, . . . i 2, i 1) −

Atree
NMHV(1, . . . , n) = 0. Therefore, the ratio function can be written only using manifestly

finite integrals.
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III. The 2-Loop MHV Amplitude and Its Logarithm

Now we turn to the 2-loop case. First we reproduce the MHV amplitude presented

already in Chapter [15] and in addition we will write an expression for the log of the

amplitude given in an interesting form in terms of non-planar diagrams.

We again start with the possible colored graphs,

1

2

11

2

1

2

1

2

1
12

1 2 2

121

2 1

(5.6.101)
There are more types of graphs in comparison to 1-loop where we had only boxes. In ad-

dition to two glued boxes (also referred to as “kissing boxes”) we have other topologies—

pentaboxes and double-boxes. They represent cutting the internal 〈AB CD〉 propagator

once and twice respectively, the latter case corresponding to “composite” leading singu-

larities.

Let us concentrate on the first graph. It looks like a “squaring” of the 1-loop cuts

with appropriate ranges for indices. And in fact, the (AB) part and (CD) part of the

integral are independent, ie. in order to realize the octa-cut of the first colored graph,

we need to set (AB) = (i j) or (AB) = (i 1 i i+1)
⋂

(j 1 j j+1) and (CD) = (k `) or

(CD) = (k 1 k k+1)
⋂

(` − 1 ` `+1). Together we have four possible combinations. The

amplitude (as we see from the colored graph) has support just on one of them (AB) = (i j)

and (CD) = (k `) while for all other it vanishes. It means that the numerator must vanish

whenever (AB) = (i 1 i i+1)
⋂

(j 1 j j+1) or (CD) = (k 1 k k+1)
⋂

(` − 1 ` `+1). This

motivates us to start with an integral of the form

ji

AB

X

×
lk

CD

Y

=


〈AB (i 1 i i+1)

⋂
(j 1 j j+1)〉〈X i j〉

〈ABX〉〈AB i 1〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉
× 〈CD (k 1 k k+1)

⋂
(l 1 l l+1)〉〈Y k l〉

〈CDY 〉〈CD k 1k〉〈CD k k+1〉〈CD l 1 l〉〈CD l l+1〉


which has exactly this property. However, there is a better candidate. Instead of adding

〈ABX〉 and 〈CDY 〉 in the denominator, we can add directly the internal propagator
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〈AB CD〉. That allows us to write two numerator factors exactly as we need. Therefore,

we consider,

k

li

j

=


〈AB (i 1 i i+1)

⋂
(j 1 j j+1)〉〈i j k l〉

〈AB i 1〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉〈AB CD〉
× 〈CD (k 1 k k+1)

⋂
(l 1 l l+1)〉

〈CD k 1k〉〈CD k k+1〉〈CD l 1 l〉〈CD l l+1〉



Of course, this integral has also many other cuts—both composite and non-composite—

that involve the propagator 〈AB CD〉 , and we have to match other colored graphs in

(5.6.101) as well. However, just as in our 1-loop examples, simply summing over all

indices with a planar ordering reproduces the full amplitude as a cyclic sum over just

one integral topology:

A2−loop
MHV =

1

2

∑
i<j<k<l<i

k

li

j

(5.6.102)

The “boundary terms” in this case occur for for j = i+1 and/or l = k+1. In these cases

the numerator exactly cancels one of the propagators, leaving us with:13

2

121

2 1

(5.6.103)

Log of the Amplitude

Finally, we give an interesting new expression for the logarithm of the amplitude, using

a non-planar sum of the same set of objects. At 2-loops, the log of the amplitude is

[logA]2−loop
MHV =

[
A2−loop

MHV − 1

2

(
A1−loop

MHV

)2
]

(5.6.104)

13This simplification was missed in Chapter [15], and the 2-loop MHV integrand was presented as a

sum over three terms. We would like to thank Johannes Henn for pointing the simplification out to us.
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A beautiful expression for the log of the amplitude is made possible by the existence

of a simple relation between the sum of 1-loop square and 2-loop diagrams:

∑
i < j

ji

AB

X

×

∑
k < l

lk

CD

Y

=

∑
i < j

k < l

k

li

j

(5.6.105)

The left-hand side is just (A1−loop
MHV )2 while the right-hand side contains not only

the planar diagrams present in A2−loop
MHV but also non-planar graphs when for example

i < k < j < l. In fact, all planar graphs are equal to 2A2−loop
MHV while all non-planar graphs

give us the log of the amplitude in the form

[logA]2−loop
MHV = −

∑
i<k<j<l<i

k

li

j

(5.6.106)

The formula found in [127] is the 4pt version of this expression.

Note that näıvely, all these integrals are IR finite because each individual 1-loop sub-

integral is just a finite pentagon(which can not shrink to a box due to the restriction

j 6= i + 1 and l 6= k + 1). However, the criteria for finiteness we described in section

4 applies to planar integrals, while the log contains non-planar terms which can be IR-

divergent.

Let us focus on the piece of the integrand of the form

〈ABX〉
〈AB i 1i〉〈AB i i+1〉 ·

1

〈AB CD〉 ·
〈CDY 〉

〈CD j 1j〉〈CD j j+1〉 (5.6.107)

Here X controls the IR-divergence of the region where the line (AB) intersects point Zi

and lies in the plane (Zi 1ZiZi+1), just as Y does for (CD) sector. However, if i = j

then (AB) and (CD) intersect in the point i and the propagator 〈AB CD〉 vanishes.

Therefore, finiteness of the 1-loop sub-integrals is not enough. We need an extra condition

that regulates this joint divergence. It is not hard to see that unless 〈XY 〉 = 0, a (mild)

IR-divergence remains.
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As a result, we can find that almost all integrals in (5.6.106) are finite except for the

class of diagrams:
i

ji - 1

i

i + 1

(5.6.108)

In this case X = (i 2 i 1 i)
⋂

(i i+1 i+2) and Y = (i 1 i i+1)
⋂

(j 1 j j+1), so 〈XY 〉 6=
0. However the divergence is mild, as observed in the 4-point result of [127].

IV. All 2-Loop NMHV Amplitudes

We move on to present the integrand for all 2-loop NMHV amplitudes. The 6- and

7- point integrands were presented in Chapter 4, by expanding the BCFW result into a

basis of pure integrals. The parity-even part of the 6- point integrand was presented using

standard (dual) space-time variables in [96]. Here, instead of a brute-force expansion into

a basis of integrals, we follow the same strategy outlined above, obtaining results vastly

simpler than those presented to date, which also generalize to all n.Now

Let us first start by drawing the colored-graphs that contribute for general 2-loop

NMHV amplitude that do not cut the internal propagator 〈(AB CD)〉.
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Below each colored graph, we have indicated the leading singularity below each. Notice

that the coefficient Atree
NMHV(j, . . . , k; l, . . . i) is the same function as an ordinary tree am-

plitude with particles labelled (j, . . . , k; l, . . . i) where k, l and i, j are both treated as if

they were adjacently-labelled.

The idea is again to find a set of integrals that each individually have the same leading

singularities as the amplitude on a given set of octa-cuts. The first step is to realize that

the octa-cuts on the first line of 5.6.109 respectively looks like the product of NMHV

1-loop quad-cut × MHV 1-loop quad-cut and MHV 1-loop quad-cuts × MHV 1-loop

quad-cuts. Therefore, one might think that the right integrals to start with look like the

product of pentagons that appear in MHV and NMHV 1-loop amplitudes. This strategy

worked perfectly in the MHV 2-loop case, where the amplitude was literary made from

double-pentagons whose origin was in the product of two MHV-like pentagons. So the

natural objects to consider here are the same double-pentagons as in MHV 2-loop case

and also other double-pentagons that look like NMHV 1-loop × MHV 1-loop:

The numerators of the first three graphs have the same structure as the ones that ap-

pear in the NMHV 1-loop integrand. We provide the complete expressions in appendix F.

Note that first three diagrams are really represented just by single diagram with

permuted indices. For instance, the second one can be obtained from the first one if we

require k > i. So, it is non-planar version of the first graph in the same sense as we saw

in the last subsection in the case of the log of MHV amplitude. We see that these four

graphs are in one-to-one correspondence with the first four colored graphs in 5.6.109. If

we cut all propagators except 〈AB CD〉 we get not only the same cuts as are in these

colored graphs, but also the support on the correct Schubert problems. These integrals

are definitely the right ones to start with. In order to get the correct field theory answer

we have to multiply them by the leading singularities of corresponding octa-cuts which

are

Now summing over all allowed indices we get,
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∑
all allowed
i,j,k,l,m

l

m
k

i

j

AB

× [i, j, j + 1, k, k + 1]

+
1

2

∑
i<j<k<l<i

k

li

j

×


Atree

NMHV(j, . . . , k; l, . . . , i)

+Atree
NMHV(i, . . . , j)

+Atree
NMHV(k, . . . , l)



(5.6.109)

where the first diagram really represents three as we mentioned earlier, namely, the

complete set of cyclically ordered figures

l

m
jk

i

AB

l

m
k

i

j

AB

l

mi

j

k

AB

The rest of the story proceeds in the by now familiar way. Simply carrying out the

sum over the range of indices corresponding to the colored graphs does not give the

right answer, however, a judicious choice for the range of summation adds the correct

“boundary terms” to give exactly the right answer, and we finally obtain:

A2−loop
NMHV =

∑
i<j<l<m≤k<i
i<j<k<l<m≤i
i≤l<m≤j<k<i

l

m
k

i

j

AB

× [i, j, j + 1, k, k + 1]

+
1

2

∑
i<j<k<l<i

k

li

j

×


Atree

NMHV(j, . . . , k; l, . . . , i)

+Atree
NMHV(i, . . . , j)

+Atree
NMHV(k, . . . , l)


(5.6.110)

These two terms represent the general 2-loop NMHV amplitude for any number of

external particles. The explicit forms of the integrals in term of momentum-twistors are

presented in appendix F.
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V. All 3-Loop MHV Amplitudes

Finally, we present the integrand for all 3-loop MHV amplitudes. These amplitudes

were studied in the past, the 4pt formula for the integrand was given in [101] and the

5pt in [99]. The 4pt and 5pt amplitudes were also determined using BCFW recursion

and translated into pure momentm-twistor integrals in Chapter 4. However once again

our new strategy will both yield vastly simpler expressions for these integrands and also

generalize to all n.

We begin as always by drawing the colored graphs that contribute to general 3-loop

amplitude. While there are a large number of them, our experience with the 2-loop

NMHV calculation tells us that for the purpose of “translating” the graphs into the

integrals, one needs to focus on the colored graphs without internal propagators. There

are just two of these:
2

1

1

2
11

2

1 2

1 1

2

11

2

1

2

1

2

1

2 (5.6.111)

The colored graphs suggest that the correct 3-loop integral must correspond to “gluing”

together three 1-loop MHV integrals. But these can not be just pentagons because

of number of internal propagators, we would also need hexagons. Fortunately, in the

“polytope picture” of Chapter 6, the most natural form of MHV amplitude is written

using hexagons. We leave the detailed exploration of this gluing procedure to future work.

It suffices to say that we can indeed find objects which have support on the correct leading

dodecacuts (5.6.111). Having identified them, the magic happens again: to get the full 3-

loop amplitude, we need only to identify the correct ranges for the summations involved.

As a result, we can write the general 3-loop MHV amplitude for any number of external

particles as a sum of two structures,

A3−loop
MHV =

1

3

∑
i1≤i2<j1≤
≤j2<k1≤k2<i1

j1

j2

k1k2

i1

i2

CDAB

EF

+
1

2

∑
i1≤j1<k1<

<k2≤j2<i2<i1

k1

k2j2
i2

i1
j1

AB
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The explicit formulas for these graphs with all numerator factors are given in the ap-

pendix G.
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Chapter 6 Scattering Amplitudes and
the Geometry of Polytopes

6.1 Towards a Geometry of Scattering Amplitudes

Recent months have seen significant advances in our understanding of perturbative scat-

tering amplitudes in gauge theories, especially for N = 4 SYM in the planar limit.

A generalization of the BCFW recursion relations [7, 31] to all loops has been given

to determine the planar integrand described in Chapter 4 of the theory, naturally for-

mulated in momentum-twistor space [20], making the Yangian symmetry [49] manifest,

and extending the Grassmannian duality for leading singularities [10] to the full the-

ory. The integrand has also been beautifully interpreted [116, 117] as a supersymmet-

ric generalization of the null-polygonal Wilson-Loop [40], making dual-superconformal

invariance [8, 9, 40, 47] manifest and providing a general proof [116, 132] of the Wilson-

Loop/Amplitude duality [40].

Despite these advances, our understanding of the integrand still leaves something

to be desired. The definition in terms of either scattering amplitudes or the Wilson-

Loop only manifests half of the superconformal symmetries of the theory, obscuring

the infinite-dimensional Yangian symmetry; it also invokes gauge redundancies that are

made necessary by any local Lagrangian description. The BCFW representation of the

amplitude is more compact, and gives a complete definition of the theory making no direct

reference to space-time notions. However it is not manifestly cyclically invariant: there

are many different BCFW forms, depending on the choice of legs for BCFW deformation.

All of this suggests that the various formulations for scattering amplitudes that have been

uncovered so far are different representations of a single underlying object, which awaits

a deeper, more intrinsic and invariant characterization.

In this brief Chapter we take some preliminary steps towards uncovering this un-

derlying structure. We will study the simplest non-trivial amplitudes in the theory–the
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tree-level NMHV amplitudes, and the integrand for the 1-loop MHV amplitudes. Fol-

lowing and generalizing the observations of [20], we will interpret these amplitudes as

the volumes of polytopes in certain extensions of momentum-twistor space. To actually

evaluate the volume, we need to triangulate the polytope into elementary simplicies, and

one natural choice of triangulation leads directly to BCFW (and CSW) representations

of these amplitudes. However we also find even simpler triangulations of the polytopes

that yield completely new expressions for these familiar old friends.

The BCFW representation of the NMHV tree amplitude, written in momentum-

twistor space, is

MNMHV
n =

1

2

∑
i,j

[1 i i+1 j j+1] (6.1.1)

where

[abcde] =
δ4 (ηa〈bcde〉+ · · ·+ ηe〈abcd〉)
〈bcde〉〈cdea〉〈deab〉〈eabc〉〈abcd〉 (6.1.2)

is the basic “R-invariant” [8] written in momentum-twistor space [19]. Similarly, the

1-loop integrand for MHV amplitudes is [15]

MMHV
1−loop,n =

1

2

∑
i,j

[1 i i+1; 1 j j+1] (6.1.3)

where we have introduced objects [abc;xyz] via

[abc;xyz] =
(〈Aabc〉〈Bxyz〉 − 〈Axyz〉〈Babc〉)2

〈ABab〉〈ABbc〉〈ABca〉〈ABxy〉〈AByz〉〈ABzx〉 . (6.1.4)

Note the presence, in both of these formulas, of the special point “1”. The CSW

representation [51,132] of the same amplitude is obtained by replacing “1” in this formula

with a general momentum twistor, Z1 → Z∗.

The BCFW/CSW expressions for the amplitudes are not manifestly cyclically in-

variant/independent of the auxiliary twistor Z∗, nor are they manifestly free of spurious

poles. All these properties only emerge after the summation is performed. There is a nice

algebraic way of seeing this. The basic objects appearing in the formulas satisfy iden-

tities that allow us to express them in different ways. In general, such identities follow

from Grassmannian residue theorems [10]. We can also understand them in the following

simple way. Take any Yangian invariant object Yn,k(Z1, · · · , Zn), which a residue of the
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Grassmannian integral. Consider its BCFW deformation under Zn → Zn + zZn−1. It

is easy to show that the residues of all the poles in the complex z plane are also Grass-

mannian residues, and are therefore Yangian invariant. Thus, an application of Cauchy’s

theorem on the BCFW deformed function of z yields a relation between Yangian invari-

ants.

Starting with the basic NMHV R-invariant [abcde], we can slightly generalize this

procedure and consider a general deformation Za → Za + zZf . Then, Cauchy’s theorem

yields the familiar 6-term identity

[abcde] + [bcdef ] + [cdefa] + [defab] + [efabc] + [fabcd] = 0. (6.1.5)

We can also apply this to the basic objects [abc;xyz]. It is interesting to note here that

that while the [1 i i+1; 1 j j+1] are indeed Yangian invariant, the general [abc;xyz] are

not. Nonetheless under the deforming Za → Za + zZd, or Zx → Zx + zZw, Cauchy’s

theorem yields 4-term identities

[abc;xyz] + [bcd;xyz] + [cda;xyz] + [dab;xyz] = 0,

[abc;xyz] + [abc; yzw] + [abc; zwx] + [abc;wxy] = 0.
(6.1.6)

Suppose we are given some linear combination of the [abcde]’s. Given these identities,

we can have two different linear combinations representing the same function. How then

can we determine if two expressions are equal? More formally, how can we character-

ize the equivalence class of linear combinations of R-invariants, which differ by these

identities?

The key is to note that the R-invariant identity can formally be written using a

“boundary” operation. Imagine what is (for now) a completely formal object, a “5-

simplex” [abcdef ], which is completely antisymmetric in its indices. Then, the linear

combination of R-invariants entering the 6-term identity is just the “boundary” of this

simplex, and the identity becomes

∂ [abcdef ] = 0. (6.1.7)

Now suppose that α and β are two linear combinations of R-invariants. We wish to

determine if α = β up to 6-term identities; that is we want to determine whether there

exists some simplex σ such that

α = β + ∂σ. (6.1.8)
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Since ∂2 = 0, it suffices to check that

∂α = ∂β. (6.1.9)

Thus we have learned that while any given representation of an amplitude in terms of a

sum of R-invariants is not unique, the “boundary” of the amplitude is invariant. Using

the standard definition of the boundary operation on simplicies, the “boundary” of one

of the R-invariants is

∂ [abcde] = [abcd] + [bcde] + [cdea] + [deab] + [eabc] . (6.1.10)

Note that the boundary is also a list of the poles occurring the definition of the R-

invariant–this is not an accident, as will become clear in the polytope picture of the next

sections.

We can now easily compute the boundary of the BCFW/CSW forms of the NMHV

tree amplitude:

∂
∑
i,j

[∗ i i+1 j j+1] =
∑
i,j

[i i+1 j j+1] (6.1.11)

which is a beautifully cyclic object, independent of the point Z∗, in one-to-one corre-

spondence with the democratic sum over all the physical poles of the NMHV amplitude!

This is enough to prove that the BCFW/CSW forms of the NMHV amplitude define a

cyclic object free of spurious poles. It is possible to prove something stronger: the only

combination of R-invariants that is free of spurious poles is the NMHV tree amplitude!

This is because if the amplitude is free of spurious poles, its boundary must only contain

“physical” 3-simplicies of the form [i i+1 j j+1]. Since this is supposed to be a bound-

ary, its boundary must vanish. It is easy to see that the only combination of physical

3-simplicies that it boundary free is
∑

i,j[i i+1 j j+1].

We can do exactly the same exercise for the MHV 1-loop amplitude. The 4-term

identities can be interpreted as

[∂(abcd), xyx] = 0, [abc, ∂(xyzw)] = 0. (6.1.12)

This makes it natural to define a boundary operation on [σ1;σ2] as acting separately on

the two simplicies σ1, σ2,

∂ [σ1;σ2] = [∂σ1; ∂σ2] . (6.1.13)
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The boundary of the individual terms in eqn. (6.1.3) are again in one-to-one correspon-

dence with their poles. The boundary of the BCFW/CSW form of the 1-loop amplitude

is

∂
∑
i,j

[∗ i i+1; ∗ j j+1] =
∑
i,j

[i i+1; j j+1] . (6.1.14)

Again this is a beautifully cyclic object, independent of the point Z∗, in one-to-one

correspondence with all the physical poles of the integrand. We can in fact give a slightly

more general expression for the MHV integrand using two reference twistors Z∗, Z∗′ ,

which has the same boundary, as

MMHV
1−loop,n =

1

2

∑
i,j

[∗ i i+1; ∗′ j j+1] . (6.1.15)

There are of course many other representations of these amplitudes; again, only the

“boundary” is invariant.

We have gone through this discussion in some detail because these sorts of algebraic

arguments—reflecting Grassmannian residue theorems—generalize readily to more com-

plicated amplitudes [35]. In the rest of this chapter, however, we will pursue a different

line of thought. Taking our cue from [20], we will see that the appearance of “simplicies”

and “boundaries” is not an accident, but has a deeper geometric origin. As we have men-

tioned already, the amplitudes will be interpreted as the volumes of certain polytopes.

Certain triangulations of these polytopes give a very pretty and direct geometric inter-

pretation of the BCFW/CSW representations of the amplitudes. But the picture does

more than simply re-organize algebraic manipulations in geometric terms: a different

triangulation of the polytopes leads to entirely new representations of the amplitudes,

which are both strikingly simple and manifestly cyclic and local.

We will begin our discussions with an extremely simple warm-up exercise familiar

from elementary plane geometry. We then move on to discussing the MHV 1-loop and

NMHV tree amplitudes.

6.2 Warm-Up: The Area of Polygons in CP2

Consider a simple set of functions

[abc] =
1

2

〈abc〉2
〈Aab〉〈Abc〉〈Aca〉 . (6.2.16)
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Here Za,b,c and ZA are in C3. Since [abc] has weight zero under rescaling a, b, c we can also

think of Za,b,c as points in CP2, corresponding to twistors for our “external particles”,

while ZA is a reference twistor.

Clearly the [abc]’s are analogous to (a particular Grassmann component of) the R-

invariants [abcde] we are familiar with, and are also very closely related to the [abc;xyz]

objects appearing in the 1-loop MHV amplitude. Let us define an analog of the “ampli-

tude”, An, via a “BCFW/CSW” formula of the form

An =
∑
i

[∗ i i+1] . (6.2.17)

This expression is manifestly cyclic invariant but term-by-term has “unphysical poles”

(where “physical poles” are only of the form 〈Aj j+1〉). However, we can easily see that

the sum is in fact cyclic and only has physical poles. Following our earlier discussion,

we can derive identities satisfied by [abc] by deforming Za → Za + zZd, to find a 4-term

identity

[abc] + [bcd] + [cda] + [dab] = 0. (6.2.18)

We can think of this formally as

∂[abcd] = 0. (6.2.19)

Following our earlier logic, we can define the “boundary” of [abc] itself as

∂[abc] = [ab] + [bc] + [ca] (6.2.20)

which is in one-to-one correspondence with the poles in [abc]. Finally, we can compute

the “boundary” of the “amplitude” to find

∂An =
∑
i

[i i+1] (6.2.21)

which is just the democratic sum over all “physical” boundaries.

These observations make it natural to associate [abc] with a triangle in CP2 whose

vertices are Za, Zb, Zc, and the amplitude itself with the interior of the polygon Ln with

vertices Zi and edges (Zi, Zi+1), as in the figure below for the case of six particles:
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Now the [abc] certainly have the same additive structure as the simplicies defined by

the triangles (abc). We should therefore be able to give a formula for [abc] as a function

of the triangle (abc), in a way that preserves this additive structure. This is very easy to

do. The function [abc] is the area of the geometric dual triangle to [abc] in CP2, whose

edges are the dual lines to Za, Zb, Zc:

The amplitude is then simply the area of the geometric dual L̃n of the polygon Ln:

Let us see how this works explicitly by doing some very elementary plane geometry. Let

the twistors ZI
a,b,c,··· and the reference twistor ZI

A have an upstairs SL3 index. We are

interested in the dual space whose co-ordinates WI have a lower SL3 index. Now, suppose

we are given three points W 1
I ,W

2
I ,W

3
I . As is standard in projective geometry, the point

ZI
A breaks SL3 but leaves an SL2 invariant, and defines a projection direction. Putting

ZI
A =


0

0

1

 , WI =


x

y

1

 (6.2.22)

we can think of the points (x, y) as lying in a two-dimensional plane, on which the

unbroken SL2 acts. The area of the triangle associated with W 1,W 2,W 3 is the SL2

invariant given by

Area(W 1,W 2,W 3) =
1

2

∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

1 1 1

∣∣∣∣∣∣∣∣ (6.2.23)

221



which we can write in a projectively invariant way as

Area(W 1W 2W 3) =
1

2

〈W 1W 2W 3〉
(ZA ·W 1)(ZA ·W 2)(ZA ·W 3)

. (6.2.24)

Note that this is not invariant under rescaling the reference twistor ZA, which is ap-

propriate, since ZA defines the plane in which the area is defined and the area is not

dimensionless.

Now, suppose we are given instead three points in the original space, ZI
a , Z

I
b , Z

I
c . Each

of these points is associated with a line in the W space, with e.g. the point a defining the

line ZI
aWI = 0. The lines a and b intersect at the point (ab) in W space, with co-ordinate

W
(ab)
I = εIJKZ

J
aZ

K
b . Thus, the area of this dual triangle is

Area([̃abc]) =
1

2

〈(ab)(bc)(ca)〉
〈Aab〉〈Abc〉〈Aca〉 =

1

2

〈abc〉2
〈Aab〉〈Abc〉〈Aca〉 = [abc]. (6.2.25)

With these elementary facts in hand, it is easy to identify the triangulations of the

polygon associated with the BCFW/CSW representations of the amplitude, which cor-

respond to triangulating L̃n, with the dual triangles ˜[∗ i i+1]. An example of a BCFW

triangulation for the 4-particle amplitude is shown below:

Note that the BCFW triangulation is characterized by not introducing any new lines, but

certainly introduces new vertices. However, we have an even more obvious triangulation

of the same object, introducing a dual reference point W∗, and triangulating directly

using the vertices as
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For a general polygon, the area can be triangulated using the triangles with vertices

(W∗, (i 1 i), (i i+1)). We can compute the area of this triangle using equation (6.2.24),

giving an n−term expression for the amplitude

An =
1

2

∑
i

〈W∗ (i 1 i) (i i+1)〉
ZA ·W∗〈A i 1 i〉〈A i i+1〉 =

∑
i

(Zi ·W∗)〈i 1 i i+1〉
(ZA ·W∗)〈A i 1 i〉〈A i i+1〉 . (6.2.26)

Note that in this form, all the poles involving the Zi are manifestly “physical”. This

is obvious, since we have triangulated the polygon only using its vertices, and the di-

vergences of the amplitude can only occur if some vertex (k k + 1) moves off to infinity,

making the area diverge. By contrast, the BCFW/CSW representations introduce new

points in W space, with associated spurious pole which cancel in the sum. Note also

that this triangulation involved a natural reference point W∗, analogous to the reference

point Z∗ in the CSW representation of the amplitude. The result is independent of W∗,

but term-by-term has a “spurious pole” (ZA ·W∗). We can choose W∗ to coincide with

one of the external points, say W∗ = (k k+1), giving an (n − 2) term expression with

manifestly physical poles which is however no longer manifestly cyclic invariant.

We close this warm-up section with a few comments. We have drawn pictures of our

polygons on a real 2-dimensional plane, but of course the functions are all holomorphic

and defined on CP2. The complex areas have a very nice interpretation in terms of

contour integrals in CP2 with boundaries on the polygon L̃n [20]. It is perhaps easiest to

get a feeling for such contour integrals with boundary by considering the simplest case of

a standard integral over one complex variable z, thought of as a projective integral over

CP1. Let’s introduce a variable wI = (x, y) in C2. Consider an integral with boundaries

on zIawI = 0, zIbwI = 0: ∫
za · w = 0

zb · w = 0

Dw

(zc · w)2
(6.2.27)

here, we use

Dn−1w ≡ dnw

vol(GL1)
(6.2.28)

to denote the measure on CPn−1. Using inhomogeneous co-ordinates w = (1, z), the

boundaries are at w = −xa/ya and w = −xb/yb. The integrand is simply 1
(xc+ycz)2

, and
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can be trivially integrated on any contour between the two end-points. The result is∫
za · w = 0

zb · w = 0

Dw

(zc · w)2
=
〈ab〉
〈ac〉〈cb〉 . (6.2.29)

This simple result generalizes readily to CPn; for instance our elementary triangle [abc]

is given by

[abc] =

∫
Za ·W = 0

Zb ·W = 0

Zc ·W = 0

D2W

(ZA ·W )3
. (6.2.30)

This representation of the [abc]’s as a contour integral makes the additive properties and

the 4-term identities manifest, since Za, Zb, Zc define the boundaries of the integration

region. The full amplitude An is expressed as a contour integral with boundaries given

on the dual polygon L̃n:

An =

∫
L̃n

D2W

(ZA ·W )3
. (6.2.31)

In the following sections, we will need the generalization of the simple formula for

the area of triangles in CP2 to the general volume of (n − 1)-simplicies in CPn−1, again

projected along some specific direction ZA. Specifying the vertices W 1
I , · · · ,W n

I , the

volume is obviously

Vol
[
W 1
I , · · · ,W n

I

]
=

1

(n−1)!

〈W 1 · · ·W n〉
(ZA ·W 1) · · · (ZA ·W n)

. (6.2.32)

If instead we specify the (n− 1)-simplex by giving its faces ZI
1 , · · · , ZI

n, the volume is

Vol
[
ZI

1 , · · · , ZI
n

]
=

1

(n−1)!

〈Z1 · · ·Zn〉n
〈ZA Z1 · · ·Zn−1〉〈ZAZ2 · · ·Zn〉 · · · 〈ZAZn · · ·Zn−2〉

.(6.2.33)

Finally, in our discussion of MHV 1-loop amplitudes, we will encounter plane polygons

defined by twistors in CP3. Suppose we are given two reference twistors, ZI
A, Z

I
B. The ZI

B

define a plane and thus a CP2 inside the CP3. Restricting all the twistors to this plane,

we can then project along the direction ZA to define the area as we did above. Thus,
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given three twistors ZI
a , Z

I
b , Z

I
c in CP3, there is an associated area we can label [abc]B;A,

where the subscript reminds us that we are in the plane defined by ZB and projecting

along ZA. This area is given by

[abc]B;A =
〈Babc〉2

〈BAab〉〈BAbc〉〈BAca〉 . (6.2.34)

The area of the corresponding n−gon is

AnB;A =
∑
i

[∗ i i+1]B;A . (6.2.35)

We can also interpret this as a contour integral as

AnB;A =

∫
D3W

(ZB ·W )(ZA ·W )3
(6.2.36)

where the contour of integration is “S1× Polygon”, where the S1 is evaluated around

the pole ZB ·W = 0, restricting the integral to the appropriate CP2, leaving us with the

remaining boundary on the polygon L̃n.

We can also give a “local” triangulation of AnB;A analogous to equation(6.2.26). The

reference point W∗ in CP2 can be obtained by restricting a general reference bi-twistor

X to the ZB plane, via W∗I = εIJKLZ
J
BX

KL. This gives us

AnB;A =
∑
i

〈BX i〉〈B i 1 i i+1〉
〈BAX〉〈BA i 1 i〉〈BA i i+1〉 . (6.2.37)

There are obviously n terms in this sum. Note again that all the poles involving the

Zi are manifestly local. Each term does have a spurious pole 〈BAX〉, but of course

these poles all cancel as the result is independent of X. We could make a special choice

where X = (k k + 1) co-incides with one of the vertices of the polygon. This gives us an

expression with only (n− 2) terms and no spurious poles of any kind, which is however

not manifestly cyclically invariant.

6.3 1-Loop MHV Amplitude Integrands

We now give a simple polytope interpretation of the 1-loop MHV integrand. Almost all

the results we need were already discussed in our warm-up. Let us again examine the

1-loop MHV integrand in BCFW/CSW form∑
i,j

(〈A ∗ i i+1〉〈B ∗ j j+1〉 − 〈A ∗ j j+1〉〈B ∗ i i+1〉)2

〈AB ∗ i〉〈AB i i+1〉〈AB i+1 ∗〉〈AB ∗ j〉〈AB j j+1〉〈AB j+1 ∗〉 . (6.3.38)
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We will expand the square in the numerator. The first term is given by the sum∑
i

〈A ∗ i i+1〉2
〈AB ∗ i〉〈AB i i+1〉〈AB i+1 ∗〉 ×

∑
j

〈B ∗ j j+1〉2
〈BA ∗ j〉〈BAj j+1〉〈BAj+1 ∗〉 . (6.3.39)

We can recognize these expressions as computing the area AnB;A discussed in the warm-

up section, corresponding to the area of the polygon restricted to the CP2 defined by ZB

and projected along ZA. The above sum becomes∑
i

[∗ i i+1]A;B ×
∑
j

[∗ j j+1]B;A

= AnA;B × AnB;A. (6.3.40)

Let’s now look at the cross-term, which has the form

− 2
∑
i,j

〈A ∗ i i+1〉〈B ∗ i i+1〉
〈AB ∗ i〉〈AB i i+1〉〈AB i+1 ∗〉 ×

〈B ∗ j j+1〉〈A ∗ j j+1〉
〈BA ∗ j〉〈BAj j+1〉〈BAj+1 ∗〉 . (6.3.41)

We can also relate this to a polygon areas by using a differential operator

〈A ∗ i i+1〉〈B ∗ i i+1〉
〈AB ∗ i〉〈AB i i+1〉〈AB i+1 ∗〉 =

1

2

(
ZB ·

∂

∂ZA

) 〈A ∗ i i+1〉2
〈AB ∗ i〉〈AB i i+1〉〈AB i+1 ∗〉 .

(6.3.42)

The cross-term becomes

− 1

2

(
ZB ·

∂

∂ZA

)∑
i

[∗ i i+1] ×
(
ZA ·

∂

∂ZB

)∑
j

[∗ j j+1]

= −1

2

(
ZB ·

∂

∂ZA

)
AnA;B ×

(
ZA ·

∂

∂ZB

)
AnB;A. (6.3.43)

We finally have

MMHV
1−loop,n = AnA;B + AnB;A −

1

2

(
ZB ·

∂

∂ZA

)
AnA;B ×

(
ZA ·

∂

∂ZB

)
AnB;A. (6.3.44)

This expression of course makes the cyclic invariance of the integrand completely mani-

fest.

We can interpret the MHV 1-loop integrand as a contour integral in a number of

ways. The direct transcription of the expressions we have given is a contour integral of

the form ∫
K(U, V,A,B)D3UD3V (6.3.45)
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where

K(U, V,A,B) =
1

(B · U)3(A · V )
− 2

(B · U)2(A · V )2
+

1

(B · U)(A · V )3
. (6.3.46)

The contour of integration is “Polygon ×S1 × S1× Polygon” in the obvious way. This

integral representation can be directly derived from a Fourier transformation of the Grass-

mannian formula for the MHV 1-loop integrand given in Chapter 4, but we won’t pursue

this interpretation further in this chapter.

Note that this form does not make it completely obvious that the integral depends

on A,B only through the line (AB), though we can note that ZA · ∂/∂ZBK = ZB ·
∂/∂ZAK = 0. There is a more elegant representation as a contour integral, which makes

the dependence on the line (AB) more explicit:∫
D3UD3V

〈UV AB〉4 (6.3.47)

where the contour is “Polygon ×S2× Polygon”. Note that the integrand is not only

explicitly only a function of the line (AB), it is also only a function of the line (UV ); the

integral over the S2 leaves us with an integral over the Grassmannian G(2, 4).

Finally, returning to eqn. (6.3.44), we can obtain a local form of the MHV 1-loop

integrand using the “local triangulation” of AnA;B given in equation (6.2.37). It is natural

to use two different reference bi-twistors X, Y for triangulating AnA;B and AnB;A. A short

computation yields

MMHV
1−loop,n =

∑
i,j

〈AB ( i)
⋂

(Y j)〉〈AB (i 1 i i+1)
⋂

(j 1 j j+1)〉
〈ABX〉〈AB Y 〉〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉 . (6.3.48)

Here

〈AB(Xi)
⋂

(Y j)〉 = 〈AX i〉〈B Y j〉 − (A↔ B),

〈AB (i 1 i i+1)
⋂

(j 1 j j+1)〉 = 〈A i 1 i i+1〉〈B j 1 j j+1〉 − (A↔ B).
(6.3.49)

This expression for the amplitude is also manifestly cyclic. Note that, in complete parallel

with the discussion around equation (6.2.37), all the poles involving the Zi twistors are

manifestly local. Each term has a dependence on the X, Y bi-twistors, but these cancel

in the sum which is independent of X, Y . There are a number of obvious special cases of

interests for this new form of the integrand. For instance we can take the two bi-twistors

X and Y to be equal, yielding the form∑
i,j

〈X i j〉〈AB (i 1 i i+1)
⋂

(j 1 j j+1)〉
〈ABX〉〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉 . (6.3.50)
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We can further take X to be a simple bi-twistor corresponding to one of the external

points, for instance X = (n1). With this choice there are no spurious poles of any sort,

but the result is not manifestly cyclic invariant. Averaging over all cyclic images yields

the local form of the integrand given in Chapter 4.

The equality between the local form equation (6.3.48) and the BCFW form of

equation (6.1.3) is a highly non-trivial identity between rational functions that we have

now understood geometrically. As stressed in Chapter 4, the loop integrand is a well-

defined object in the planar limit of any theory, and should manifest all symmetries.

While the BCFW form on the integrand exhibits the Yangian invariance of the theory,

the local form is also crucially needed [15] for a physical IR regularization [92–94] of the

theory. It is therefore very pleasing to see the two forms related in such a direct way.

6.4 NMHV Tree Amplitudes

We now turn to the NMHV tree amplitude, which has been given a polytope volume

interpretation in [20]. In [20], the description of the polytope was closely associated with

the BCFW representation of the amplitude. We will begin by describing the polytope in

a slightly more invariant way.

As a consequence of the 6-term identity equation (6.1.5) for R-invariants, we can

observe that the [abcde]’s have exactly the same additive properties as 4-simplicies in

CP4. In our warm-up example, we associated the [abc]’s with the area of a dual triangle

in CP2. We would like to do the same for the R-invariants [abcde], but there is a small

difference: each particle i is labeled by a supertwistor (ZI
i , η

α
i ), where α = 1, · · · , 4 is the

SU(4) R-symmetry index. In order to proceed we have to associate a point in CP4 with

this super-twistor. Fortunately this is easy to do. Let’s introduce an auxiliary set of four

Grassmann variables φα, and define an “extended twistor” in CP4 by

ZIi =

 ZI
i

φ · ηi

 . (6.4.51)

228



We also introduce the reference twistor

ZI0 =


0
0
0
0
1

 (6.4.52)

which preserves the SL4 symmetry acting on the bosonic ZI . It is natural to consider

the (bosonic) volume of the 4-simplex whose faces are Za,Zb,Zc,Zd,Ze:

V [Za, · · · ,Ze] =
1

4!

〈〈ZaZbZcZdZe〉〉4
〈〈Z0ZaZbZcZd〉〉〈〈Z0ZbZcZdZe〉〉 · · · 〈〈Z0ZeZaZbZc〉〉

. (6.4.53)

We use the notation 〈〈ZaZb · · · Ze〉〉 to denote the contraction of the extended twistors

with the 5-index εIJKLM tensor, to distinguish it from the 4-brackets 〈abcd〉 used with

the usual bosonic ZI
a twistors in CP3. We find trivially that

V [Za, · · · ,Ze] =
1

4!

(φ · ηa〈bcde〉+ cyclic)4

〈abcd〉〈bcde〉 · · · 〈eabc〉 . (6.4.54)

This depends on φ; to get a function of the (Zi, ηi) alone we simply integrate over the

φα. This directly yields the R-invariant

[abcde] =

∫
d4φV [Za, · · · ,Ze] . (6.4.55)

Thus, in complete analogy with our warm-up example, we have associated the [abcde]

with (the φ integral of) the volume of a simplex in the WI space geometrically dual to

ZI space, whose faces are Za, · · · ,Ze. The algebraic properties of the R-invariants we

have already discussed then precisely reflect the geometry of these simplicies.

We can now give a nice definition for the NMHV amplitude polytope. Let us return

to the BCFW/CSW expression

MNMHV
n =

1

2

∑
i,j

[∗ i i+1 j j+1] . (6.4.56)

Mirroring our algebraic arguments from the introductory section, we can think of the

R-invariants [∗ i i+1 j j+1] as defining a 4-simplex in a (Z-space) CP4; the sum over

all these tetrahedra defines a polytope Pn. Pn is completely characterized by giving its

boundary, which is ∂Pn =
∑

i,j [i i+1 j j+1], showing that Pn is actually independent of

the point ∗.
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We can think of Pn as the “square” of the Wilson-polygon Ln in a natural way.

Speaking slightly more generally, suppose we are given two ordered sets of points X =

(x1, x2, · · · , xn) and Y = (y1, y2, · · · , yn), each of which defines an (in general non-planar)

polygon loop in CP4. We can form a 3-simplex [xixi+1yjyj+1] in CP4, by taking pairs of

edges in X and Y . Summing over all these 3-simplicies defines a polyhedron Qn, and it

is easy to check that ∂Qn = 0 so Qn is a closed 3-volume. As such, we can we can write

Qn = ∂(X ⊗ Y ), where (X ⊗ Y ) is a 4-Polytope in CP4, one triangulation of which can

be given as (X ⊗ Y ) =
∑

i,j [∗ i i+1 j j+1]. Note that we have used the CP4 structure in

an essential way here, in going from Qn being closed to being expressed as the boundary

of a unique 4-dimensional object. Note also that the ⊗ operation behaves as an algebraic

direct product in that it is linear in its two factors. It is also interesting to note that,

while the X, Y polygons are in general non-planar, they nonetheless behave as plane

polygons in this product, as reflected in the fact that X ⊗ Y satisfies 4-term tetrahedral

identities separately in X and Y .

With this definition, the polytope Pn associated with the NMHV tree amplitude is

related to the Wilson-Loop Polygon Ln as

Pn =
1

2
Ln ⊗ Ln. (6.4.57)

The NMHV amplitude is
∫
d4φ of the volume of the polytope P̃n geometrically dual to

Pn, which we can represent as a contour integral via

MNMHV
n = 4!

∫
d4φ

∫
P̃n

D4W
(Z0 · W)5

. (6.4.58)

In order to actually compute this volume, we need a triangulation of P̃n in terms

of elementary 4-simplicies. We may triangulate the polytope in any way we like. The

BCFW representation of the amplitude is one particular choice, which yields the shortest

expressions for the amplitude but has spurious poles. The BCFW triangulation adds no

new planes, but does add new vertices, and the spurious poles are associated with these

“spurious” vertices. The geometrically dual choice—adding no new vertices but adding

spurious planes—will yield expressions for the amplitude that allow us to expose manifest

cyclicity and locality in a new way.

We do this by first triangulating each of the faces of P̃n. All the boundaries of P̃n

lie in the planes dual to the Zj; we denote the face contained in this plane by Fj,n.
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Conveniently, the faces are 3-polytopes, which will allow us to visualize them easily. We

can triangulate Fj,n =
∑

γ T
γ
j,n, where each of the T γj,n is a tetrahedron with 4 vertices.

In order to triangulate P̃n, we introduce a reference “suspension point” W∗. With each

tetrahedron T γj,n, we associate a 4-simplex T γj,n just by adding the point W∗ to the 4

vertices of T γj,n. The sum over all these 4-simplicies then gives a triangulation of P̃n given

by P̃n =
∑

j,γ T γj,n.

We have a natural choice for the “suspension point”W∗. Given that our choice of Z0

leaves the SL4 acting on the usual bosonic momentum-twistors invariant, it is natural

to choose W∗ to also preserve this SL4. Explicitly, we can choose W∗ = (0, 0, 0, 0, 1).

Finally, for a “local” triangulation, we will choose to triangulate the faces only using the

given “physical” vertices (i i+1 j j+1).

Following [20], let us get acquainted with the faces of P̃n by looking at F2,n. The

vertices of F2,n are all the points of the form (1 2 k k+1) and (2 3 l l+1). Two vertices

(2abc), (2xyz) are connected by an edge if the triples (abc), (xyz) share two indices in

common. In the simplest case n = 5, the face F2,5 is just a tetrahedron with vertices

(1234), (1245), (2345), (2351). For 6 particles, F2,6 has six vertices, and while e.g. (2356)

is connected by an edge to (2345), there is no edge connecting (2356) to (1234).

It is very easy to recursively build F2,n systematically, starting from the tetrahedron

for F2,5. While the vertices (1234), (1245), (2345) occur in both F2,5 and F2,6, the ver-

tex (2351) occurring in F2,5 is absent in F2,6; conversely there are three new vertices

(2356), (1256) and (2356) in F2,6 not contained in F2,5. Thus we can obtain F2,6 by

starting with F2,5, “chopping off” the vertex (2351) and replacing it with the three new

vertices, as shown below:
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Similarly, we can go from the F2,6 to F2,7 by “chopping off” the vertex (2361), and

continue in this way to define all the F2,n.

We now wish to give a local triangulation of the F2,n. Let’s illustrate this in pictures

with one local triangulation for the first non-trivial case of F2,6:

This “local” triangulation is to be contrasted with a “BCFW” triangulation, which would

adds back the “spurious” point (2351), and represent the prism for F3,6 as F2,5 with the

“chopped off” tetrahedron subtracted.

For general n, we can build F2,n from F2,n−1 by “chopping off” the vertex (2 3n−1 1)

and adding the three vertices (2 3n 1), (2 3n−1n), (1 2n−1n). This makes it natural to

define

F2,n = Gn + Tn (6.4.59)

where Tn is the tetrahedron

Tn = (6.4.60)

In going from F2,n−1 to F2,n, we just chop off the vertex (2 3n−1 1) from Tn−1, thus we

can write

F2,n = Gn−1 + = Gn−1 + Tn + (6.4.61)
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Since F2,n = Gn + Tn, this gives us a recursive formula for the Gn:

Gn = Gn−1 + = Gn−1 + +

Note that in the last step we chose one of two possible triangulations of the prism occur-

ring in the first term. This is not fundamental, we have made this choice because it will

lead to the a slightly simpler final form for the amplitude.

We can trivially solve for all the Gn. Doing this and adding Tn we find for F2,n

F2,n =
∑
i

 +

 (6.4.62)

note that the Tn contribution is nicely represented by the term with i = n in the first sum.

Note also that we sum over all i without worrying about any limits since any degenerate

configurations have vanishing volume. Actually it is easy to see that the number of non-

degenerate terms is 2n − 9 since we start with one tetrahedron when n = 5, and then

each increase in n needs one more chopping which generates two more terms.

Obviously this procedure works for any face Fj,n just by cycling labels, and the final

result for Fj,n is

Fj,n =
∑
i

 +

 =
∑
i;s=±1

(6.4.63)

Now that we have the triangulation of the faces, we can easily compute the vol-

ume of the triangulations of the polytope itself, involving the addition of our suspen-

sion point W∗ = (0, 0, 0, 0, 1). The volume associated with the tetrahedra appearing in

equation (6.4.63) for the face Fj,n, is

〈〈W∗ (j−1 j j+1 j+2) (j−1 j i−1 i) (j j+1 i i+1) (j j+s i−s i)〉〉
〈j−1 j j+1 j+2〉〈j−1 j i−1 i〉〈j j+1 i i+1〉〈j j+s i−s i〉 (6.4.64)
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which can easily be computed. There are 16 ZI ’s in the numerator and a single dual

twistor W∗I . Thus the 5-bracket expands to a sum of terms where one of the Z’s is

contracted with W∗, and the remaining 15 are grouped into the product of three 5-

brackets. Since Zj occurs four times, for a non-zero result one of these Zj must be

contracted withW∗. There is only one non-vanishing way of grouping the remaining Z’s

into 5-brackets, and we find this volume to be

φ · ηj〈〈j−1 j j+1 j+2 i〉〉〈〈j−1 j j+1 i−s i〉〉〈〈j j+s i−1 i i+1〉〉
〈j−1 j j+1 j+2〉〈j−1 j i−1 i〉〈j j+1 i i+1〉〈j j+s i−s i〉 (6.4.65)

the
∫
d4φ integration is trivially done to yield

〈ηj, {j−1 j j+1 j + 2 i}, {j−1 j j+1 i−s i}, {j j+s i−1 i i+1}〉
〈j−1 j j+1 j+2〉〈j−1 j i−1 i〉〈j j+1 i i+1〉〈j j+s i−s i〉 . (6.4.66)

Here, we have defined the Grassmann object

{abcde} = ηa〈bcde〉+ · · ·+ ηe〈abcd〉 (6.4.67)

and the four-bracket in the numerator represents the contraction of SU(4)R indices of the

η’s.

We have thus found a manifestly cyclic and local formula for the NMHV tree ampli-

tude

MNMHV
n =

∑
i,j;s=±1

〈ηj, {j−1 j j+1 j+2 i}, {j−1 j j+1 i−s i}, {j j+s i−1 i i+1}〉
〈j−1 j j+1 j+2〉〈j−1 j i−1 i〉, 〈j j+1 i i+1〉〈j j+s i−s i〉 .

(6.4.68)

This expression is amazingly simple, with n(2n−9) non-vanishing terms. Here (2n−9) is

simply the number of tetrahedra in each face we already encountered in equation (6.4.63).

It also has another striking property: despite naturally being written as a function of the

supersymmetric Grassmann η variables, the individual terms in the sum are not invari-

ant under supersymmetry transformation (to speak nothing of the Yangian symmetry).

Indeed, the SUSY variation cancels only in a telescopic sum over all the terms.

There are other possible local triangulations of this polytope. For instance, we can

choose the “suspension point” to be one of the vertices of the polytope (k k+1 j j+1).

This is analogous to the choice “X = (n1)” for the reference bitwistor in the local form of

the MHV 1-loop integrand, and gives a shorter formula with (n−4)(2n−9) terms, but at

the cost of losing manifest cyclic symmetry. These local forms can finally be compared
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with the BCFW expressions with 1
2
(n − 3)(n − 4) terms, which contain ∼ 1

4
as many

terms at large n, but don’t make cyclicity or locality manifest.

It is also amusing to give a formula for standard helicity amplitudes; this only requires

computing simple determinants as explained in e.g. [51]. Consider in particular gluon

amplitudes An(1− i− j−) where particles 1, i, j have negative helicity and the rest have

positive helicity. Up to the Parke-Taylor pre-factor, the result is precisely given by the

above formula for MNMHV
n , with the ηk replaced by a particular function of the spinor-

helicity variables. Explicitly, we find that

An(1− i− j−) =
1

〈12〉〈23〉 · · · 〈n1〉M
NMHV
n

ηk →
〈ij〉〈k1〉 1 < k ≤ i

〈kj〉〈i1〉 i < k ≤ j

0 otherwise

 . (6.4.69)

The split helicity amplitudes are particularly easy to extract for all n:

An(1− 2− 3−) =
〈12〉4〈23〉4

〈12〉〈23〉 · · · 〈n1〉
∑
i;s=±1

〈1 3 4 i〉〈1 3 i s i〉〈2+s i−1 i i+1〉
〈1234〉〈1 2 i 1 i〉〈2 3 i i+1〉〈2 2+s i s i〉 . (6.4.70)

Using 〈i−1 i j j+1〉 = 〈i 1 i〉〈j j+1〉(pi + · · · + pj)
2, the poles are directly functions of

spinor-helicity variables and take the usual form of Feynman propagators. For n = 6,

this expression is equivalent to a form derived long ago using the Berends-Giele recursion

relations [3]; we now see that this formula and all its variant forms flow from the single

formula, equation (6.4.69), which also generalizes to all helicity configurations and all n.

We conclude our discussion of NMHV amplitudes by remarking that the use of a

bosonic CP4 space to describe supersymmetric amplitudes is quite striking. One might

have expected supersymmetric amplitudes to be expressed as an integral over CP3|4, and

indeed the R-invariants have a beautiful interpretation as the super-volume of a super-

polytope [20] in CP3|4. This form is also very closely related to the momentum-twistor

Grassmannian formula [19]. The non-linear way in which Zi,Z0 package the supersym-

metric information of the theory into only a single extra dimension is more novel and

interesting, and made the local triangulation leading to equation (6.4.68) possible. We

expect that further generalizations of this idea are needed for higher NkMHV amplitudes.
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6.5 Discussion

Many of the advances in our understanding of perturbative scattering amplitudes in the

last five years were driven by the discovery of the CSW and BCFW recursion relations

for tree amplitudes. The ability to analytically compute all tree amplitudes enabled the

generation of a huge amount of “data” about the theory, which exposed a number of

new, remarkable and deeply interwoven mathematical structures underlying the physics.

Amongst other things, these insights stimulated the generalization of the early methods

to all loop orders, making a more incisive exploration of the structure of the theory

possible. In this chapter we have continued the exploration of one of the beautiful

structures uncovered in this period.

The polytope picture is clearly intimately related to the Grassmannian formula in mo-

mentum twistor space, giving a lovely geometric understanding of the additive structures

appearing in the amplitudes, which are understood more algebraically as a consequence

of residue theorems in the Grassmannian formalism.

The Grassmannian picture extends to all amplitudes and loop orders, giving expres-

sions that are term-by-term manifestly Yangian-invariant. There is clearly a beautiful

algebraic structure at work in governing the properties of Grassmannian residues and

residue theorems, guaranteeing the emergence of physical properties such as cyclic in-

variance, locality and unitarity. While we have not yet extended the polytope picture to

these more general amplitudes, there are strong reasons to suspect this must be possible,

and we expect that such an extension would give a more geometric understanding of

these algebraic structures.

However, even in the baby examples we have studied in this chapter, it is clear that the

polytope picture does much more than simply geometrize the understanding of relations

between Yangian invariants! While one simple class of polytope triangulations do indeed

provide such an understanding, the even more natural class of triangulations we examined

here have opened the door to a completely new set of objects and ideas, far removed from

their BCFW/CSW origins. The existence of such strikingly simple and manifestly local

forms for the scattering amplitudes is a real surprise. Indeed the tremendous complexity

of standard Feynman diagram calculations is directly related to making locality manifest,

while the tremendous advantages of BCFW seemed inexorably tied to the appearance of
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spurious poles!

This strongly suggests a new set of principles at play. It is tempting to speculate

that these principles will be closely connected to a more physical “spin-chain” picture

for scattering amplitudes. Superficially, the new expressions for the amplitudes we have

found certainly look more closely related to an underlying spin-chain, not only on account

of their manifest cyclicity, but also because of the suggestive way some of the symmetries

are realized. It is also refreshing to move somewhat away from dealing with objects

that are manifestly supersymmetric/Yangian invariant, particularly keeping in mind the

eventual goal of understanding non-supersymmetric theories!

There is clearly some remarkable geometry behind these polytope formulas. It is

particularly striking that in both of the examples we studied, the Wilson-Loop behaves

as if it were a plane polygon, with additive identities like those of the triangles in CP2

explained in our warm-up example.

Finally, the polytope picture also strongly inspired the search for and discovery of

the amazingly simple local expressions for multi-loop integrands described in Chapter 5.

These expressions are far simpler than their BCFW counterparts, and clearly beg for a

much deeper understanding. We hope to see significant progress on these questions in

the near future.
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Appendix A Vernacular of the S-Matrix:
Kinematics and Computational Tools

A.1 Introduction

The on-shell recursion relations for scattering amplitudes described by Britto, Cachazo,

Feng and Witten (BCFW) [7,31] are very well known and have been widely used to com-

pute scattering amplitudes for both purely-theoretical and extremely practical purposes

in a wide variety of theories [134]. They represent one of the major new tools in the

study of quantum field theory. Theoretically, the power and simplicity of the recursive

definitions of scattering amplitudes has allowed for the development of an arguably ‘phe-

nomenological’ approach to the advancement of our understanding of quantum field the-

ory: by making once intractable problems essentially effortless, many new questions can

be asked—and answered. And practically, tree-amplitudes for processes involving many

external particles are of importance for the accurate prediction of backgrounds for new

physics at the LHC, for example; BCFW—along with a variety of other computational

frameworks such as those based on the powerful Berends-Giele recursion relations [3]—has

greatly aided this effort. Considering for example that colour-stripped tree-amplitudes

in N = 4 encode all the data of scattering amplitudes in ordinary, non-supersymmetric

massless QCD [135], it is clear that understanding N = 4 is an important step along the

way to understanding QFT in general, and as it is observed in the Standard Model as

backgrounds for new physics at the LHC.

Partly because of the existence and incredible simplicity of recursive definitions of the

S-Matrix, tree-amplitudes in N = 4 have been largely understood in the literature for

some time now. Indeed, there exists today a large number of independent presentations of

all perturbative tree-amplitudes in N = 4, including those based on the BCFW recursion

relations [15, 50, 72], twistor string theory [4, 14, 39, 63, 103], contour integrals in the

Grassmannian [10, 22], and the CSW recursion relations [5, 51, 132], for example. Many

of these results were made possible in part through the existence of privately-developed,

powerful computational tools which have proven themselves essential for gaining intuition
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and necessary for checking results. Recently, some of these tools have become publicly

available through the release of the Mathematica package Gluon-Gluino-Trees (GGT),

[135], which is capable of analytically computing all NkMHV tree-amplitudes involving

combinations of external gluons and gluinos, and can compute these numerically using

the package ‘S@M,’ [136].

With this chapter, we extend the reach of these resources to include all NkMHV

tree-amplitudes—including those involving squarks—by making available the Mathe-

matica package bcfw, included in [137]. In addition to its complete generality, there are

two principle features of bcfw that should make it particularly useful to those who are

interested in gaining intuition about or evaluating tree-amplitudes in N = 4. First, the

analytic formulae generated by bcfw are often dramatically more compact and easier to

evaluate than any existing formulae obtained using BCFW. These gains in efficiency can

be traced directly to bcfw’s: 1. use of momentum-twistor variables, and 2. representation

of all tree-amplitudes in a fully-supersymmetric way (realized as contour integrals over

the Grassmannian), making any n-point NkMHV helicity-amplitude easily obtained from

any other. Another feature of bcfw that should make it useful to researchers is its abil-

ity to solve the BCFW-recursions using a wide variety of different recursive ‘schemes,’

leading to a large number of independent analytic formulae for any particular ampli-

tude.1 And it may be worth mentioning that the bcfw package has been designed with

hopes of being intuitive-enough to be useful even to those with very little experience with

Mathematica.

One of the functions defined by bcfw is ‘Amp,’ which can generate analytic formulae

for any helicity-amplitude in N = 4. An example of how Amp can be used is given

in Figure A.1.2 Using ‘m’ and ‘p’ to denote each minus-helicity and plus-helicity gluon,

respectively, Amp will generate any purely gluonic NkMHV amplitude. For amplitudes

involving 2 gluinos together with any number of gluons, a similar, simplified notation can

be used,3 where ‘m/2’ and ‘p/2’ indicate the two gluinos; an example of this is given in

1For example, we have included as a worked example in the demonstration file included with the

bcfw package the construction of all 74 linearly-independent, 20-term formulae for the 8-point N2MHV

tree-amplitude, involving a total of 176 different Yangian-invariant objects.
2Also used in these examples is the function ‘nice’ which formats formulae generated by bcfw to be

more readable—for example, by converting ‘ab[1,2]’7→‘〈1 2〉’.
3An overall sign for these amplitudes has been implicitly fixed by the convention that the particle
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Figure A.1: A(3)
6 (−,−,−,+,+,+). The split-helicity 6-point NMHV amplitude.

In[1]:= Amp
[
m,m,m,p,p,p

]
//nice

In[2]:= Amp
[
m,m,m,p,p,p

]
//toSpinorHelicity[6]//nice

Out[1]:=
〈1 2〉3〈2 3〉3〈3 4 5 1〉3

〈3 4〉〈4 5〉〈5 6〉〈6 1〉〈1 2 3 4〉〈2 3 4 5〉〈4 5 1 2〉〈5 1 2 3〉 +
〈1 2〉3〈2 3〉3〈3 5 6 1〉3

〈3 4〉〈4 5〉〈5 6〉〈6 1〉〈1 2 3 5〉〈2 3 5 6〉〈5 6 1 2〉〈6 1 2 3〉

Out[2]:= − 〈2 3〉2〈3 4〉〈1|x63x34|5〉3
〈4 5〉3〈5 6〉〈6 1〉〈5|x41x12|3〉s23s34s234

− 〈1 2〉〈2 3〉〈3|x25x56|1〉3
〈3 4〉〈4 5〉〈6 1〉2〈5|x41x12|3〉s61s12s612

Figure A.2: A(3)
6

(
−,−, ψ(123)

−1/2,+,+, ψ
(4)
+1/2

)
. A 6-point NMHV amplitude involving two

gluinos and four gluons.

In[1]:= Amp
[
m,m,m/2,p,p,p/2

]
//nice

Out[1]:=
〈1 2〉3〈2 3〉2〈3 4 5 1〉2

〈3 4〉〈4 5〉〈5 6〉〈1 2 3 4〉〈5 1 2 3〉〈4 5 1 2〉 +
〈1 2〉3〈2 3〉2〈3 5 6 1〉2

〈3 4〉〈4 5〉〈5 6〉〈1 2 3 5〉〈5 6 1 2〉〈6 1 2 3〉

Figure A.2. (The reader will notice that—unless ‘toSpinorHelicity[n]’ is used—the

only two kinematical invariants used by bcfw are the momentum-twistor ‘four-bracket’

〈 · · · · 〉 and its associated ‘two-bracket’ 〈 · · 〉; these will be reviewed along with the

spinor-helicity invariants in section A.2.)

field SU4 R-charge short-notation

g+ {} p

ψ
(i)
+1/2 {i} p/2(⇐⇒ {4})
s

(ij)
0 {i, j} —

ψ
(ijk)
−1/2 {i, j, k} m/2(⇐⇒ {1, 2, 3})
g− {1, 2, 3, 4} m

Table A.1: Conventions for the arguments of the functions Amp, nAmp, nAmpTerms, etc.

For amplitudes involving more than two gluinos (or any number of squarks), simple

labels such as ‘m’ or ‘p/2’ are not sufficiently precise. This is remedied by choosing instead

to label each external particle by its SU4 R-charge, where each of the external superfields

are decomposed according to

Φ+ = g+ + η̃i ψ
(i)
+1/2 + η̃iη̃j φ

(ij) + η̃iη̃j η̃k ψ
(ijk)
−1/2 + η̃1η̃2η̃3η̃4 g− . (A.1.1)

The syntactical rules which follow from these conventions are summarized in Table A.1,

labelled ‘m/2’ has SU4 R-charge (123); refer to Table A.1.
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Figure A.3: A(4)
8

(
ψ

(1)
+1/2, ψ

(1)
+1/2, ψ

(1)
+1/2, φ

(13)
0 , ψ

(234)
−1/2, ψ

(234)
−1/2, ψ

(234)
−1/2, φ

(24)
0

)
.

An example 8-point N2MHV helicity-amplitude involving 6 gluinos and 2 squarks.

In[1]:= Amp
[
{1},{1},{1},{1,3},{2,3,4},{2,3,4},{2,3,4},{2 4}

]
;

%//twistorSimplify//nice

Out[1]:=
〈5 6〉2〈6 7〉2〈1 2 3 6〉〈2 3 4 5〉

〈8 1〉〈1 2 6 7〉〈2 3 5 6〉〈2 3 6 7〉〈3 4 5 6〉

Figure A.4: A(5)
10

(
ψ

(1)
+1/2, ψ

(1)
+1/2, ψ

(1)
+1/2, ψ

(1)
+1/2, ψ

(123)
−1/2, ψ

(234)
−1/2, ψ

(234)
−1/2, ψ

(234)
−1/2, ψ

(234)
−1/2, ψ

(4)
+1/2

)
.

An example 10-point N3MHV helicity-amplitude involving only gluinos.

In[1]:= Amp
[
{1},{1},{1},{1},{1,2,3},{2,3,4},{2,3,4},{2,3,4},{2,3,4},{4}

]
;

%//twistorSimplify//nice

Out[1]:=
〈5 6〉〈6 7〉2〈7 8〉2〈8 9〉2〈1 2 3 9〉〈2 3 4 8〉〈3 4 5 7〉

〈10 1〉〈1 2 8 9〉〈2 3 7 8〉〈2 3 8 9〉〈3 4 6 7〉〈3 4 7 8〉〈4 5 6 7〉

but we hope they are sufficiently intuitive to be clear by example. Examples of how these

more general helicity-component amplitudes can be specified are given in Figure A.3,

which shows an 8-point N2MHV helicity-amplitude involving 6 gluinos and 2 squarks,

and Figure A.4, which shows a 10-point N3MHV amplitude involving 10 gluinos. These

examples also illustrate the general-purpose function ‘twistorSimplify,’ which can often

greatly simplify momentum-twistor formulae.

This Chapter is outlined as follows. In the next section we will review the kinemat-

ics of momentum-twistors and their connection to ordinary four-momenta and spinor-

helicity variables. In section A.3, we review the tree-level BCFW recursion-relations as

a statement about contour integrals in the momentum-twistor Grassmannian, [18, 19],

and describe a three-parameter family of recursive ‘schemes’ in which the BCFW re-

cursion relations can be implemented. In section A.4 we describe the basic use of the

bcfw package along with its principle functions. (A more thorough walk-through, con-

taining numerous example computations, can be found in the Mathematica notebook

bcfw-v0-walk-through.nb distributed alongside the bcfw package—attached to the sub-

mission file to the arXiv for [137].)
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A.2 Kinematics: Momenta to Momentum-Twistors

(and Back)

By default, all tree-amplitudes generated by the bcfw package are handled internally

as purely-holomorphic functions of the momentum-twistor variables {Za} introduced

by Andrew Hodges in [20], together with an overall MHV-amplitude pre-factor which

also depends on what is known as the ‘infinity (bi-)twistor,’ I∞, which associates with

each momentum-twistor Za a Lorentz spinor λα=1,2
a in the fundamental representation of

SL2(C). In addition to the many theoretical advantages of working with momentum-

twistors, there are many indications that tree amplitudes are most compactly-written

and most efficiently-evaluated in terms of momentum-twistors. But before we review this

relatively novel formalism, we should reiterate that bcfw is fully-equipped to work with

kinematics specified in terms of four-momenta or spinor-helicity variables (or momentum-

twistors, of course), and can convert momentum-twistor formulae into those involving

spinor-helicity variables and dual coordinates (but at a substantial cost in efficiency).

Because of this, bcfw should be relatively easy to incorporate into other computational

frameworks.

The connection between ordinary four-momenta pµ and momentum-twistors starts

with the association of a (Hermitian) matrix pα α̇ with each (real) four-momentum pµ,

pµ 7→ pαα̇ ≡ pµσαα̇µ =

 p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

 . (A.2.2)

Noticing that pµpµ = det(pα α̇), it follows that light-like momenta are represented by

matrices with vanishing determinant. Any such matrix can be written as an outer-

product,

det(pα α̇) = 0 ⇐⇒ pα α̇ ≡ λαλ̃α̇, (A.2.3)

where λ and λ̃ are the famous spinor-helicity variables. For real momenta, it is easy to see

that λ̃α̇ = ± (λα)∗, where the sign is determined by whether pµ has positive or negative

energy, respectively. Of course, this identification is only defined up-to an arbitrary

phase: λ 7→ eiθλ, λ̃ 7→ e−iθλ̃. Such re-phasing is induced by the action of little-group for

massless particles in four-dimensions.
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One of the principle advantages to working with spinor-helicity variables is that any

function built out of the SL2(C)-invariants

〈λa λb〉 ≡ 〈ab〉 ≡ det(λaλb) =

∣∣∣∣∣∣ λ
1
a λ1

b

λ2
a λ2

b

∣∣∣∣∣∣ ,
and [λ̃a λ̃b] ≡ [ab] ≡ det(λ̃a λ̃b) =

∣∣∣∣∣∣ λ̃
1̇
a λ̃1̇

b

λ̃2̇
a λ̃2̇

b

∣∣∣∣∣∣ ,
(A.2.4)

will automatically be Lorentz-invariant up to little-group re-phasing. Amplitudes involv-

ing massless particles, therefore, when written in terms of spinor-helicity variables, will

be functions with uniform weight under λa 7→ uλa (with weight equal to minus twice the

helicity of particle a).

The next step along the road from momenta to momentum-twistors are dual coordi-

nates xα α̇a (also known as region momenta) defined (implicitly) through the identification

pa ≡ xa − xa−1. (A.2.5)

(Whenever it is necessary to fix a convention, we will choose x1 to be the origin of dual

coordinate space.) One of the most important recent discoveries regarding scattering am-

plitudes in N = 4 SYM is that, after diving by the n-point MHV tree-amplitude, scatter-

ing amplitudes in N = 4 are not just superconformally-invariant in ordinary spacetime,

but are also superconformally-invariant with respect to these dual-coordinates, [8, 9],

and this is made manifest term-by-term in BCFW, [50]. The existence of a conformal

symmetry on this dual space led Andrew Hodges to propose in [20] that amplitudes be

described in the twistor-space associated with these dual coordinates; the twistor space

of dual-coordinates is known as momentum twistor space.

Because each pair of consecutive dual coordinates are null-separated (the momenta

being on-shell), the null-line joining them corresponds to a single momentum-twistor.

And because the pair of dual coordinates (xa, xa−1) encode the null-momentum pa, it is

natural to call the momentum-twistor associated with this null-line ‘Za’. Making this

identification will associate the line (Za, Za−1) in momentum-twistor space with the point

xa−1, and the line (Za+1, Za) with the point xa; that these two lines intersect at the twistor

Za reflects the fact that the points xa and xa−1 are null-separated.

Using the conventions just established, we canonically associate a momentum-twistor
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Figure A.5: The map connecting momentum-twistor variables and dual-coordinates.

Za to each momentum pa according to the rule,

pa = λaλ̃a = xa − xa−1 ⇐⇒ Za ≡

 λαa

x α̇
a α λ

α
a

 ≡
 λαa

µα̇a

 . (A.2.6)

Notice that our convention of choosing x1 as the origin of dual-coordinate space trivially

fixes µ1=
(

0

0

)
. Moreover, because this implies that p2 = λ2λ̃2 = x2 − x1 = x2, we see

that µ2 = x α̇
2α λ

α
2 (∝ 〈λ2 λ2〉) =

(
0

0

)
as well. Working out the rest of this map explicitly—

as was described in Chapter 1—we find that we may write

µa =
(
Q−1
F

)
ab
λ̃b, where

(
Q−1
F

)
ab

=



0 0 0 · · · · · · · · · 0

0 0 0 0 · · · · · · 0

0 〈2 3〉 0 0
. . .

. . . 0

0 〈2 4〉 〈3 4〉 0 0
. . . 0

0 〈2 5〉 〈3 5〉 〈4 5〉 0
. . . 0

...
...

...
...

. . .
. . . 0

0 〈2n〉 〈3n〉 〈4n〉 · · · 〈n− 1n〉 0


.

(A.2.7)(
Q−1
F

)
ab

is so-named because it is a ‘Formal-inverse’ of the (singular) map Qab which

relates the µ’s to the λ̃’s according to λ̃a = Qabµb where

Qab =



〈2n〉
〈n 1〉〈1 2〉

1
〈1 2〉 0 · · · · · · · · · 1

〈n 1〉
1
〈1 2〉

〈3 1〉
〈1 2〉〈2 3〉

1
〈2 3〉 0 · · · · · · 0

0 1
〈2 3〉

〈4 2〉
〈2 3〉〈3 4〉

1
〈3 4〉 0

. . .
...

... 0 1
〈3 4〉

〈5 3〉
〈3 4〉〈4 5〉

1
〈4 5〉

. . . 0

0
...

. . .
. . .

. . .
. . . 1

〈n−1n〉
1
〈n 1〉 0 · · · · · · 0 1

〈n−1n〉
〈1n−1〉

〈n−1n〉〈n 1〉


. (A.2.8)
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It is worth emphasizing that although Qab is singular, our conventions ensure that

µa =
(
Q−1
F

)
ab

Qbcµc, and λ̃a = Qab

(
Q−1
F

)
bc
λ̃c, which justifies calling

(
Q−1
F

)
ab

the ‘inverse’

of Qab.

What we have described so far have been ordinary (Bosonic) momentum twistors;

these have a natural extension to momentum-supertwistors defined by

Za ≡

 Za

ηa

 ≡


λa

µa

ηa

 , (A.2.9)

where the Fermionic η-components of the supertwistors are related to the ordinary

Fermionic parameters η̃ which define each superfield (A.1.1) in precisely the same way

that the µ variables are related to the λ̃ variables. To summarize, the components of the

momentum-supertwistors are related to the ordinary spinor-helicity variables via

λα=1,2
a = Z1,2

a , and µα̇=1,2
a = Z3,4

a , (A.2.10)

λ̃a = Qabµb, and µa =
(
Q−1
F

)
ab
λ̃b, (A.2.11)

η̃a = Qabηb, and ηa =
(
Q−1
F

)
ab
η̃b. (A.2.12)

Just as spinor-helicity variables went a long way toward trivializing Lorentz-invariance,

momentum-twistors essentially trivialize momentum conservation and dual conformal in-

variance. Momentum conservation is trivial because any set of n (ordered) momentum

twistors will define n null-separated region momenta through the maps given above. Fur-

thermore, up to little-group rescaling, dual-conformal transformations act on momentum-

twistors as SL4(C) transformations, meaning that any function of the (only) natural

SL4(C)-invariant product—namely, ‘det’—will automatically be dual-conformally invari-

ant if it has appropriate little-group weights. This suggests the natural generalization

of the ‘angle-bracket’ 〈a b〉 defined for 2-spinors above would be the momentum-twistor

four-bracket 〈 · · · · 〉 defined according to

ab[a, b, c, d]⇐⇒ 〈a b c d〉 ≡

∣∣∣∣∣∣∣∣∣∣∣

Z1
a Z1

b Z1
c Z1

d

Z2
a Z2

b Z2
c Z2

d

Z3
a Z3

b Z3
c Z3

d

Z4
a Z4

b Z4
c Z4

d

∣∣∣∣∣∣∣∣∣∣∣
⇐⇒ Det[Zs[[{a, b, c, d}]]]; (A.2.13)
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So it would appear that, including also the MHV-amplitude pre-factor, all amplitudes

can be written in terms of four-brackets 〈 · · · · 〉 and two-brackets 〈 · · 〉; but it is easy

to see that the latter is just a special-case of the former. Notice that the map con-

necting a momentum-twistor Za and ordinary spinor-helicity variables, equation (A.2.6),

is a component-wise definition. Because any such definition is manifestly not SL4(C)-

invariant, this map breaks dual-conformal invariance. We can make this clear by choosing

to write I∞ explicitly, defining two-brackets via,

ab[a, b]⇐⇒ 〈a b〉 ≡ 〈a b I∞〉 ≡

∣∣∣∣∣∣∣∣∣∣∣

Z1
a Z1

b 0 0

Z2
a Z2

b 0 0

Z3
a Z3

b 1 0

Z4
a Z4

b 0 1

∣∣∣∣∣∣∣∣∣∣∣
⇐⇒ Det[Zs[[{a, b}, 1; ; 2]]]. (A.2.14)

Because momentum twistors are still somewhat unfamiliar to many researchers, we

should mention that there is a completely canonical map between four-brackets and

ordinary spinor-helicity variables which follows directly from definition (A.2.6). Rather

than giving this map for a completely general four-bracket, we will see in the next section

that tree-level BCFW only generates formulae involving four-brackets which involve at

least one pair of adjacent momentum-twistors—that is, tree amplitudes involve only

four-brackets of the form 〈a j j+1 b〉. Using (A.2.6), it is easy to see that

〈a j j+1 b〉 = 〈j+1 j〉〈a|xa jxj b|b〉, (A.2.15)

where we have used the notation xa b ≡ xb − xa.4 This further simplifies in the special

case of a four-bracket involving two pairs of adjacent momentum-twistors,

〈a 1 a b b+1〉 = 〈a 1 a〉〈b b+1〉(pa + pa+1 + . . .+ pb−1 + pb)
2

≡ 〈a 1 a〉〈b b+1〉sa···b ≡ 〈a 1 a〉〈b b+1〉x2
a−1 b.

(A.2.16)

It is worth mentioning that the fact that tree-level BCFW involves only four-brackets

of the form 〈a j j+1 b〉 means that in general, every superamplitude in N = 4 involves

strictly fewer than
(
n
4

)
kinematical invariants.

A.3 Trees as Contour Integrals in the Grassmannian
The bcfw package describes each n-point NkMHV tree-amplitude as a contour integral

in the Grassmannian G(k, n) of k-planes in n-dimensions (see [10, 12,15,18]),

4This notation (and sign-convention) becomes clearer if xa b is viewed as the vector from xato xb.

246



A (m=k+2)
n =

1

vol(GLk)

∮
Γn,m

dn×kDαa

∏k
α=1 δ

4|4 (DαaZa)
(1 · · · k)(2 · · · k+1) · · · (n · · · k 1)

,

=
∑

γ∈Γn,m

 1

vol(GLk)

∮
|Dαa−(dMatrixγ)|=ε

dn×kDαa

∏k
α=1 δ

4|4 (DαaZa)
(1 · · · k)(2 · · · k+1) · · · (n · · · k 1)

 ,

=
∑

γ∈Γn,m

{
(residueγ)

k∏
α=1

δ0|4
(

(dMatrixγ)αaηa

)}
,

(A.3.17)

where we have used the scripted ‘A (m)
n ’ to indicate that this is the tree-amplitude divided

by the (supersymmetric) n-point MHV-amplitude5,

A(2)
n =

∏2
α=1 δ

0|4(λαa η̃a)
〈1 2〉〈2 3〉 · · · 〈n 1n〉〈n 1〉 . (A.3.18)

As all the terms generated by the BCFW recursion relations are Yangian-invariant [49],

they are each residues of the integral (A.3.17), [11, 68]—computed for contours which

‘encircle’ isolated poles in the Grassmannian . Therefore, each term can be described

as a part of the complete ‘tree-contour’ Γn,m. This helps to explain the nomenclature

of bcfw, where each superamplitude stored as a function called ‘treeContour.’ Notice

that the coefficients appearing in the Fermionic δ-functions of (A.3.17), dMatrixγ, directly

represent the isolated points in G(k, n) where the integral (A.3.17) develops a pole (of the

appropriate co-dimension) which is to be ‘encircled’ by the contour Γn,m, each giving rise

to a particular residue of the integral. Of course, knowing the poles—that is, knowing just

the list of points in G(k, n) (and the orientation of the contour about each)—is sufficient

to calculate each residue using the contour integral (A.3.17); but it turns out that this

is in fact unnecessary for our purposes: the BCFW recursion relations directly calculate

the residues themselves in a canonical way.

As described in Chapter 4, when expressed in terms of momentum-twistor variables,

the tree-level BCFW recursion relations become the following.

A (m=k+2)
n = A (m)

n−1 (A.3.19)

+
∑
nL,mL
nR,mR

A (mL)
nL

(1, . . . , j, ĵ+1)R[n 1n 1 j j+1]A (mR)
nR

(ĵ, j+1, . . . , n 1, n̂),

5Here, we are not including the ordinary momentum-conserving δ-function, δ4(λaλ̃a), because all

momentum-twistor amplitudes are automatically on its support.
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where,6

Ẑj+1 = (j+1 j)
⋂

(n 1n 1) ≡ Zj+1 + Zj
〈j+1n 1n 1〉
〈n 1n 1 j〉 ,

Ẑj = (j j+1)
⋂

(n 1n 1) ≡ Zj + Zj+1
〈j n 1n 1〉
〈n 1n 1 j+1〉 ,

Ẑn = (nn 1)
⋂

(1 j j+1) ≡ Zn + Zn−1
〈n 1 j j+1〉
〈1 j j+1n 1〉 ,

(A.3.20)

and

R[a b c d e] ≡
δ0|4
(
ηa〈b c d e〉+ ηb〈c d e a〉+ ηc〈d e a b〉+ ηd〈e a b c〉+ ηe〈a b c d〉

)
〈a b c d〉〈b c d e〉〈c d e a〉〈d e a b〉〈e a b c〉 . (A.3.21)

This tree-level BCFW-bridge is illustrated in Figure A.6.

-1 -1a b11 0 0 nn

=j+1
j =�

BCFW

L R

j j� 1

nL

nR1L

1R
=

Figure A.6: The momentum-twistor BCFW-bridge (without any rotations).

The shifted momentum-twistors in (A.3.20) should be understood supersymmetri-

cally, and the shifted Fermionic η-variables result in a shifted matrix of coefficients.

Specifically, for terms bridged in the recursion, the residues (evaluated with shifted ar-

guments) are simply multiplied, and the supersymmetric δ0|4’s combine according to:

6It is worth noting that Ẑj+1 and Ẑj are projectively equivalent; the reason for distinguishing them

as in (A.3.20) is to preserve canonical little-group assignments.
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dL1,1 · · · · · · · · · dL1,nL

...
... L ...

...

dLkL,1 · · · · · · · · · dLkL,nL

⊗
BCFW


dR1,1 · · · · · · · · · dR1,nR

...
... R ...

...

dRkR,1 · · · · · · · · · dRkR,nR


︸ ︷︷ ︸ww�


dL1,1 dL1,2 · · · dL1,j−1

(
dL1,j+ζ

L
j+1d

L
1,j+1

)
dL1,j+1


0 · · · 0 0 0

...
... L ...

...
...

...
. . .

...
...

...

dLkL,1 dLkL,2 · · ·dLkL,j−1
(
dLkL,j+ζ

L
j+1d

L
kL,j+1

)
dLkL,j+1 0 · · · 0 0 0

〈j j+1n 1n〉 0 · · · 0 〈j+1n 1n 1〉 〈n 1n 1 j〉 0 · · · 0 〈n 1 j j+1〉 〈1 j j+1n 1〉
0 0 · · · 0


dR1,j

(
dR1,j+1+ζRj d

R
1,j

)
dR1,j+2 · · · dR1,n−2

(
dR1,n−1 + ζRn d

R
1,n

)
dR1,n

...
...

. . .
...

...
...

... R ...
...

...

0 0 · · · 0 dRkR,j

(
dRkR,j+1+ζ

R
j d

R
kR,j

)
dRkR,j+2 · · · dRkR,n−2

(
dRkR,n−1+ζ

R
n d

R
kR,n

)
dRkR,n


with

ζLj+1 ≡
〈j+1n 1n 1〉
〈n 1n 1 j〉 , ζRj ≡

〈j n 1n 1〉
〈n 1n 1 j+1〉 , and ζRn ≡

〈n 1 j j+1〉
〈1 j j+1n 1〉 . (A.3.22)

Thus, the tree-level BCFW recursion relations amount to little more than cutting-and-

pasting (and re-labeling) matrices, allowing most amplitudes of interest to be recursed

in essentially real-time.

I. Generalized BCFW Recursion Schemes

Although the recursive BCFW formula (A.3.19) fixes A (m)
n given all amplitudes with

strictly fewer particles, (A.3.19) by itself does not uniquely identify any particular sum

of residues. The reason for this is simple (and completely trivial): the lower-point am-

plitudes appearing in the recursion (A.3.19) can be written in any way whatsoever—

with many choices corresponding to all the representatives Γn,m of each tree-contours’

homology-class. Said another way, in order to use (A.3.19) to obtain a particular contour

for the n-point amplitude, it is necessary to know the particular, representative con-

tours for all lower-point amplitudes; but these lower-point contours need-not have been

recursed in any particular way. In order to obtain an explicit, representative contour

through the use of the BCFW recursion relations—i.e. using (A.3.19)—it is necessary to

give a prescription for how all lower-point amplitudes are also to be recursed.

One especially natural prescription would be to recurse all lower-point amplitudes

exactly according to equation (A.3.19)—with each n-point amplitude having ordered-

249



arguments (1, . . . , n). This is the default recursive scheme used by bcfw and is obtained

with the function treeContour[n,m]=generalTreeContour[0,0,0][n,m]. This scheme

follows from Figure A.6 where each lower-point amplitude is recursed precisely according

to Figure A.6.

Among the many recursive prescriptions one could imagine, a remarkable degree of

complexity results from simply allowing for arbitrary (and separate) ‘rotations’ of the

amplitudes appearing on the left- and right-hand sides of the BCFW bridge,7 and also

allowing for an over-all rotation of the the n-point amplitude being recursed—or equiv-

alently, which legs are deformed in the recursion. Specifically, letting g denote a cyclic-

rotation of (an explicit formula) of an amplitude g : An(1, . . . , n) 7→ An(2, . . . , n, 1); then

the class of generalized BCFW recursion schemes implemented in bcfw is given by,

generalTreeContour[a, b, c][n, m] :g−c
[
A (m)
n

]
=
{a,b,c}

ga
[
A (m)
n−1

]
+
∑
nL,mL
nR,mR

ga
[
A (mL)
nL

] ⊗
BCFW

gb
[
A (mR)
nR

]
,

where, as with the default contour prescription, this same recursive rule is used for every

lower-point amplitude. This is illustrated in Figure A.7. By varying the parameters

-1

-1 -1

n-1n c

a b

1

0 0

0

a b

c n

�
BCFW

L R

j j� 1

nL
nR1L

1R

generalTreeContour[a, b, c]

Figure A.7: An illustration of the generalized BCFW recursion-schemes used by bcfw’s

function generalTreeContour[a,b,c]. Here, the legs being deformed in the left-hand

amplitude, for example, should be thought-of as being actively ‘rotated’ clockwise by an

amount ‘a’ relative to the default recursive scheme.

{a,b,c}, one can obtain a very wide-array of analytic formulae for any particular helicity

amplitude. It could be that more general recursion-schemes will eventually prove useful,8

7When making these rotations, the homogeneous term in the recursion, A
(m)
n−1 , must be considered

an amplitude occurring on the left.
8For example, one could consider recursive schemes which make use of the parity-conjugate version

of the BCFW-bridge, which make use of reflected (as well as rotated) lower-point amplitudes, or which

allow for rotations of lower-point amplitudes to vary as a function of recursive depth. None of these

generalizations are necessary for n ≤ 9, and we suspect that this is true generally.
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but as far as we have been able to check, this class of recursion schemes has proven

in some sense exhaustive. Specifically, we have checked that for up to 9-particles, this

three-parameter family is sufficient to generate all linearly independent representations

of superamplitudes. For example, there turn out to be 74 linearly-independent formulae

for the 8-point N2MHV tree amplitude, involving 176 Yangian-invariants. All of these

formulae are worked-out explicitly as part of the demonstration file for the bcfw package.

There are three principle reasons why researchers may find this broad-class of tree-

amplitude formulae useful. First, knowing the range of possible tree-amplitude formulae

helps one build intuition about amplitudes in general, and allows one to separate general

properties about amplitudes from the peculiarities of particular formulae. Secondly, hav-

ing many different representations available frees one from using unnecessarily inefficient

representations of particular helicity amplitudes. For example, it is sometimes heard that

“the” BCFW-formula (with the default scheme implicit) for the split-helicity amplitude

is maximally-concise9 (meaning that a maximal number of terms in the tree-contour

vanish); however, fixing a recursive scheme, this is true for at most one particular split-

helicity amplitude—the other split-helicity amplitudes including some for which almost

none of the BCFW terms vanish. And so, it should be possible to use the variety of

representations that can be generated by bcfw to find a ‘best-case’ formula for any par-

ticular helicity amplitude of interest. And finally, because the BCFW formulae obtained

using different recursive schemes often have very few spurious poles in common, it may

be possible to combine a variety of BCFW formulae to avoid encountering spurious poles

while generating Monte-Carlo events for phase-space integration, for example.

It may be helpful to know that the particular recursive-scheme used by Drummond

and Henn to solve the BCFW recursion relations in [50], corresponds to

generalTreeContour[-1,-1,-1]; this scheme is illustrated in Figure A.8.

9This observation is true for the default recursion-scheme used by bcfw; in particular, the helicity

component A
(m)
n (−, . . . ,−,+ . . . ,+) of generalTreeContour[0,0,0][n,m] is the gluonic amplitude

with the fewest number of non-vanishing BCFW terms; but this feature is observed for very few of the

more general recursive schemes.
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Figure A.8: Examples of particular recursion schemes, highlighting how the lower-point

amplitudes are rotated.

bcfw’s default scheme
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n-1n1

0 0

0 n

�
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L R
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a b

j j� 1

nL
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generalTreeContour[0, 0, 0]

≡ treeContour

Drummond & Henn’s scheme

�
BCFW

L R

-1

-1 -1

n-1c

a b

n1n

j j� 1

nL

nR1L

1R

generalTreeContour[−1,−1,−1]

II. Extracting Helicity Component-Amplitudes from Tree-Contours

To compute a particular helicity amplitude from the supersymmetric contour integral, one

need only project-out the desired Grassmann components, as dictated by the definition

of the external superfields Φ+
a given in equation (A.1.1). Of course, the component fields

of Φ+
a are given in terms of η̃-variables, which, as described in section A.2, are related to

the momentum-supertwistor Grassmann parameters ηa via

η̃a =
(
Q−1
F

)
ab
ηb. (A.3.23)

Because the matrix of coefficients of the Grassmann η’s for each residue is nothing but

its corresponding dMatrix, we have that

Dαaηa = Dα b

(
Q−1
F

)
ba
η̃a ≡ Ĉαaη̃a. (A.3.24)

In terms of the Grassmannian integral (A.3.17), this means that we may write

(residue)
k∏

α=1

δ0|4 ((dMatrix)αaηa) = (residue)
k∏

α=1

δ0|4 ((dMatrix)α b(QabInverse[n])b aη̃a)

≡ (residue)
k∏

α=1

δ0|4 ((cHatMatrix)αaη̃a) . (A.3.25)

Upon explicitly including the full MHV super-amplitude we obtain,

=⇒ (residue)

〈1 2〉 · · · 〈n 1〉
2∏

α=1

δ0|4 (λαaη̃a)
k∏

α=1

δ0|4 ((cHatMatrix)αaη̃a)

≡ (residue)

〈1 2〉 · · · 〈n 1〉
k+2∏
α̂=1

δ0|4 (cMatrixα̂ aη̃a) ,

(A.3.26)
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where we have defined the matrix Cα̂ a according to

Cα̂ a ≡



Ĉ1 1 Ĉ1 2 · · · Ĉ1n−1 Ĉ1n

...
...

. . .
...

...

Ĉk 1 Ĉk 2 · · · Ĉk n−1 Ĉk n

λ1
1 λ1

2 · · · λ1
n−1 λ1

n

λ2
1 λ2

2 · · · λ2
n−1 λ2

n


≡

 Ĉαa

λαa

 . (A.3.27)

It is worth noting that just as each dMatrix represents an isolated point in the Grass-

mannian of k-planes in n-dimensions, each cMatrix gives an isolated point in the Grass-

mannian of m(= k + 2)-planes in n-dimensions. Indeed, these are the isolated poles

‘encircled’ by the (original) twistor-space Grassmannian contour-integral of [10],

A(m=k+2)
n =

1

vol(GLm)

∮
Γn,m

dn×mCα̂ a
∏m

α̂=1 δ
4|4 (Cα̂ aWa)

(1 · · ·m)(2 · · ·m+1) · · · (n · · ·m 1)
. (A.3.28)

The momentum-twistor Grassmannian integral (A.3.17) was derived from the original

twistor-space integral (A.3.28) in [18], where it was shown how the MHV-prefactor

arises naturally as the Jacobian of the change-of-variables in going from the (space-time)

twistor-space variables Wa to the momentum-twistor-space variables Za.
Now, having the matrix of coefficients of the η̃-variables, it is particularly simple to

extract any helicity component amplitude. For example, pure-glue amplitudes are given

by

A(m)
n (. . . , j−1 , . . . , j

−
m, . . .) =

∫
d0|4η̃j1 · · · d0|4η̃jm

[
A(m)
n

]
; (A.3.29)

=
∑

γ∈Γn,m

(residueγ)

〈1 2〉 · · · 〈n 1〉
(
Det[cMatrixγ[[All, {j1, . . . , jm}]]]

)4

.

More generally, each helicity amplitude can be ‘projected-out’ of the superamplitude

by multiplying each residue in the tree-contour by the appropriate set of four (m×m)-

minors of its corresponding matrix Cα̂ a. The list of minors which project-out a particular

helicity component-amplitude is given by the function parseInput[].
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A.4 The bcfw Mathematica Package

A separate Mathematica notebook—distributed along with bcfw.m—has been pre-

pared to introduce the reader to the many functions of bcfw and their primary usage.

We hope that the demonstration notebook is sufficiently self-contained for most users.

In this section, we briefly describe the basic algorithmic structures which underly the

bcfw package, with an emphasis on the features that are likely to prove useful beyond

the limited framework of Mathematica.

I. Setup and Initialization

Initialization of the package is simple: so long as the file being used has been saved to

the same directory as the package’s source bcfw.m, one need only call the following:

In[1]:= SetDirectory[NotebookDirectory[]];

<<bcfw.m

Out[1]:=

!
BCFW

L R

n1

j j + 1

Efficient Tree-Amplitudes inN =4 SYM
via BCFW in the Momentum-Twistor Grassmannian

Jacob L. Bourjaily, 2010

Printed by Mathematica for Students

II. Getting Started with Analytic Tree Amplitudes

To start gaining intuition for how helicity-amplitudes can be specified in bcfw, consider

a very simple example: the 8-point MHV amplitude A(2)
8 (+,+,−,+,+,−,+,+). This

amplitude can easily be found using bcfw through the command,

In[1]:= Amp[p,p,m,p,p,m,p,p]

Out[1]:=
ab[3, 6]4

ab[1, 2]ab[2, 3]ab[3, 4]ab[4, 5]ab[5, 6]ab[6, 7]ab[7, 8]ab[8, 1]
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To make the result more aesthetically appealing, any output of bcfw can be wrapped

by the function ‘nice[]’ which formats the result so that it is more “human-readable.”

For example, using nice, the above command would return:

In[1]:= Amp[p,p,m,p,p,m,p,p]//nice

Out[1]:=
〈3 6〉4

〈1 2〉〈2 3〉〈3 4〉〈4 5〉〈5 6〉〈6 7〉〈7 8〉〈8 1〉

We have chosen to make ‘nice’ formatting an ‘opt-in’ option for users, so that the under-

lying structure is transparent at all times—and in order to avoid the pitfalls of conditional

formatting in Mathematica while maximizing the ease of symbolic manipulation.

Although the analytic formulae for tree amplitudes quickly become too long and com-

plex for visual comprehension, bcfw’s function Amp will in fact write-out any amplitude.

As one further example, consider the 6-point NMHV alternating helicity amplitude.

In[1]:= Amp[m,p,m,p,m,p]//nice

Out[1]:=
〈1 5〉4(〈3 5〉〈1 2 3 4〉 − 〈3 4〉〈1 2 3 5〉)4

〈1 2〉〈2 3〉〈3 4〉〈4 5〉〈5 6〉〈6 1〉〈1 2 3 4〉〈1 2 3 5〉〈1 2 4 5〉〈1 3 4 5〉〈2 3 4 5〉
− (〈1 3〉〈5 6〉〈1 2 3 5〉 − 〈1 5〉(〈3 6〉〈1 2 3 5〉+ 〈3 5〉〈2 3 6 1〉))4

〈1 2〉〈2 3〉〈3 4〉〈4 5〉〈5 6〉〈6 1〉〈1 2 3 5〉〈1 2 5 6〉〈1 3 5 6〉〈2 3 5 6〉〈2 3 6 1〉
+

(〈1 3〉〈5 6〉〈1 3 4 5〉 − 〈1 5〉(〈3 6〉〈1 3 4 5〉+ 〈3 4〉〈1 3 5 6〉+ 〈3 5〉〈3 4 6 1〉))4

〈1 2〉〈2 3〉〈3 4〉〈4 5〉〈5 6〉〈6 1〉〈1 3 4 5〉〈1 3 5 6〉〈3 4 5 6〉〈3 4 6 1〉〈4 5 6 1〉
We should emphasize, however, that direct evaluation of the formulae generated by

Amp (or AmpTerms) are often dramatically less efficient than what can be obtained using

nAmp (or nAmpTerms).10 This directly reflects the efficiency gained by the momentum-

twistor Grassmanniannian representation of superamplitudes.11

As described in the previous section, each superamplitude is represented by bcfw as a

contour integral in the momentum-twistor Grassmannian (A.3.17). The particular repre-

sentation of the n-particle N(m−2)MHV superamplitude derived via the BCFW recursion

scheme with rotations {a,b,c} is obtained with the function generalTreeContour[a,b,c][n,m]

10This is true even with fairly intelligent caching. Because of this, researchers interested in transferring

the formulae generated by bcfw to other frameworks should seriously consider using the superamplitudes

directly.
11To better understand this, observe that each cMatrix includes as its first k-rows the matrix

cHatMatrix=dMatrix.QabInverse[n]; this introduces many new kinematical invariants into each

term—the two-brackets—while simultaneously duplicating each column of dMatrix many times, greatly

obfuscating an underlying simplicity with fundamentally redundant information.
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Table A.2: 6-point NMHV superamplitude A(3)
6 , given by treeContour[6,3].

Name residue dMatrix

1. R[1 2 3 4 5]
1

〈1 2 3 4〉〈2 3 4 5〉〈3 4 5 1〉〈4 5 1 2〉〈5 1 2 3〉〈1 2 3 4〉
(
〈2 3 4 5〉〈3 4 5 1〉〈4 5 1 2〉〈5 1 2 3〉〈1 2 3 4〉0

)
2. R[1 3 4 5 6]

1

〈1 3 4 5〉〈3 4 5 6〉〈4 5 6 1〉〈5 6 1 3〉〈6 1 3 4〉〈1 3 4 5〉
(
〈3 4 5 6〉0〈4 5 6 1〉〈5 6 1 3〉〈6 1 3 4〉〈1 3 4 5〉

)
3. R[1 2 3 5 6]

1

〈1 2 3 5〉〈2 3 5 6〉〈3 5 6 1〉〈5 6 1 2〉〈6 1 2 3〉〈1 2 3 5〉
(
〈2 3 5 6〉〈3 5 6 1〉〈5 6 1 2〉0〈6 1 2 3〉〈1 2 3 5〉

)

(see section I.). The default representation—obtained using the default recursion scheme,

with {a,b,c}={0,0,0}, is obtained with treeContour[n,m]. For example, the default

representation of the 6-point NMHV superamplitude is given in Table A.2.

III. Referencing, Generating, or Specifying Kinematical Data

In order to evaluate amplitudes numerically using bcfw, kinematical data must first be

defined. This can be done by calling upon a list of reference momentum-twistors, freshly-

generating random kinematics, or by specifying kinematical data explicitly:

1. useReferences[n]: use a standard set of reference momentum-twistors; these

reference twistors were carefully selected so that

• all components are integer-valued (and small);

• there are no physical or spurious singularities;

• all kinematical invariants are uniformly positive (that is, sa...b > 0 for all ranges

a . . . b), and that these invariants are numerically given by ratios of relatively

small integers—leading to amplitudes that are ratios of integers that are ‘not-

too-horrendously-long’;

In Table A.3 we give a sample of the reference momentum-twistors. Because

an arbitrary set of momentum-twistors define on-shell, momentum-conserving kine-

matics, there are no constraints from momentum conservation. Therefore, choosing
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Table A.3: Reference momentum-twistors used in bcfw’s function useReferences[n].

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15

Z1
a −3 2 −2 3 0 −1 2 2 4 −2 −5 −1 5 6 4

Z2
a 5 6 5 3 −5 2 0 1 −1 −5 2 6 −5 4 6

Z3
a 3 −1 −1 5 6 −5 −6 −5 −6 4 6 1 −5 −5 −3

Z4
a −3 −3 5 −2 0 −5 −1 −3 1 4 −1 −4 3 −3 −4

Figure A.9: Evaluation of 10-point N3MHV helicity amplitudes to infinite precision using

reference momentum-twistors. The timing reflects the fact that the first computation

determined the full superamplitude and projected-out a particular helicity component,

while the second only needed to perform the projection.

In[1]:=

useReferences[10];

nAmp[m,m,m,m,m,p,p,p,p,p]//withTiming

Out[1]:=

Evaluation of the 10-point N3MHV amplitude required 46.7. ms to complete.

17886892256634020134576330754470391777

280278666971743564282064966167680000

In[2]:= nAmp[m,p,m,p,m,p,m,p,m,p]//withTiming

Out[2]:=

Evaluation of the 10-point N3MHV amplitude required 8.6. ms to complete.

−5007045380847632725336670465304701314367799201604575059832902148541
213450466354689126392301641566350924968168379805192061706240000

simply the first n twistors from the list in Table A.3 will suffice. It is worth men-

tioning, however, that these reference momentum-twistors are neither canonically

normalized12, nor do they map to real four-momenta in R3,1.

Nonetheless, reference twistors are extremely well-suited for debugging, check-

ing identities, and finding relations to infinite precision. As one can see in Figure A.9,

using bcfw’s built-in reference momentum-twistors can quickly lead to scattering

amplitudes that are known to infinite-precision. Notice that in Figure A.9, once

the superamplitude has been computed for any helicity-component, all subsequent

12By not having canonical normalization, we mean that there are non-trivial, Lorentz-frame (and

hence also little-group)-dependent kinematical scale-factors in the spinors; however, this tends to only

cause a problem when combining/comparing multiple helicity component-amplitudes.
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Figure A.10: Evaluation of 12-point N4MHV helicity amplitudes with random kinematics.

In[1]:=

useRandomKinematics[12];

nAmp[m,p,m,p,m,p,m,p,m,p,m,p]//withTiming

Out[1]:=

Evaluation of the 12-point N4MHV amplitude required 596. ms to complete.

−274.127− 5171.81 I

In[2]:= nAmp[p,m,p,m,p,m,p,m,p,m,p,m]//withTiming

Out[2]:=

Evaluation of the 12-point N4MHV amplitude required 71.4. ms to complete.

−274.127 + 5171.81 I

components are obtained quite rapidly.

2. useRandomKinematics[n]: use randomly-generated kinematics in R3,1. This func-

tion chooses a random set of (optionally rational or arbitrary-precision) on-shell

four-momenta in R3,1, and sets up essentially all the kinematical variables of po-

tential interest, including

• momentum-twistors {−→Z } ≡Zs, given as an (n× 4) matrix—the n rows listing

the four homogeneous components of each momentum-twistor;

useRandomKinematics[n] also defines the ‘dual’ momentum-twistors

{−→W} ≡Ws, which, although not used by bcfw, may be found useful by some

researchers;

• spinor-helicity variables {−→λ } ≡Ls and {
−→̃
λ } ≡Lbs, each an (n× 2) matrix of

components; these have been normalized so that λ̃a = ± (λa)
∗, as described in

section A.2;

• fourMomenta, an (n×4) matrix of the components (p0, px, py, pz) of each four-

momentum;

• regionMomenta, the dual-coordinates (described in section A.2), given as a

n-length list of 2× 2 Hermitian matrices;
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An example of using random kinematics is shown in Figure A.10, where the

two alternating-helicity 12-point N4MHV amplitudes were evaluated. Notice as be-

fore that once the superamplitude has been evaluated, subsequent helicity compo-

nents are quickly extracted. Also, observe that the randomly-generated spinors and

momentum-twistors have been appropriately normalized so that parity-conjugation

results in complex-conjugation of the amplitude.

3. using user-defined kinematics, given in terms of:

(a) setupUsingFourMomenta[fourMomentaList]: generates momentum-twistors

and spinor-helicity variables for the input list of four-momenta,

fourMomentaList, which must be given as an n-tuple of four-vectors list-

ing the components of each four-momentum; the list of four-momenta must

conserve momentum;

(b) setupUsingSpinors[Ls,Lbs]: generates momentum-twistors given the spinor-

helicity variables Ls≡ {−→λ } and Lbs≡ {
−→̃
λ } each given as an (n× 2) matrix of

components;

(c) setupUsingTwistors[twistorList]: establishes the necessary kinematical

functions given the (unconstrained) list of user-generated momentum-twistors.

Examples of how each of these functions can be used can be found in the

demonstration file included with the bcfw package.

IV. Numerical Evaluation of Tree Amplitudes

As has been emphasized throughout this chapter, the principle sources of bcfw’s effi-

ciency are manifest supersymmetry and the use of momentum-twistor variables, which

are both made manifest in the momentum-twistor Grassmannian integral (A.3.17). Be-

cause these ingredients—or at least their implementation—are quite novel in bcfw, it is

worth describing in some detail how amplitudes are evaluated numerically by the bcfw

package.

The basic evaluation strategy is outlined in Table A.4, where we give the basic eval-
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uation times for each step in the evaluation of the 10-point N3MHV alternating-helicity

tree-amplitude.

Because of the central role played by momentum-twistors, the first step of any nu-

merical evaluation is the establishment of momentum-twistor variables which can then

be used to compute the kinematical invariants that determine any scattering amplitude.

This can be done in a number of different ways—as described in the previous subsection.

Although this should be completely clear from the discussions above, this step is not

very computationally-intensive (and indeed, can be discounted entirely by choosing to

randomly-generate momentum-twistors instead of four-momenta).

Because of the ubiquity of the MHV-amplitude pre-factor, 1/(〈1 2〉 · · · 〈n 1〉), and the

map
(
Q−1
F

)
ab

used to relate the momentum-twistors’ η-variables to the η̃ variables of the

external superfields, bcfw evaluates these two objects and stores them globally whenever

new kinematical data is defined.

The first step in the evaluation of any particular helicity amplitude is actually the

evaluation of the full superamplitude—represented as the list of BCFW-terms, where

each is described by the pair {residue, dMatrix} (which is stored in memory as the

function nContour[a,b,c][n,m]). Because particular helicity amplitudes are usually

specified with respect to the η̃-variables of the external superfields, the dMatrix of each

residue is then converted to the corresponding cMatrix as described in section A.2.

Once each BCFW-term has been evaluated numerically and stored as the pair

{residue,cMatrix}, it is relatively easy to extract any particular helicity component

amplitude—by multiplying each residue by the appropriate four (m×m) minors of its

corresponding cMatrix. This last step is nothing exotic: it is merely the evaluation of

the Grassmann integrals
∫ ∏m

i=1 d
0|4η̃i which project-out a helicity-component amplitude

from the superamplitude.

V. Example Applications

In the demonstration file which accompanies the bcfw package, several examples are

given which illustrate how bcfw can be used as a tool to verify results, find identities, or

learn about scattering amplitudes more generally. In particular, these examples empha-

size how using integer-valued reference momentum-twistors to compute amplitudes (and
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Table A.4: The general evaluation strategy used by bcfw, with a break-down of

evaluation-time requirements for each step in the case of the alternating-helicity 10-point

N3MHV tree-amplitude, A(5)
10

(
−,+,−,+,−,+,−,+,−,+

)
(for random kinematics).

1. setupUsingRandomKinematics[10]

(a) generate random (on-shell, rational, momentum-conserving) four-

momenta in R3,1; define spinors and momentum-twistors 3.61 ms

(b) evaluate the universal objects nMHVprefactor and nQinverse 1.34 ms

2. nAmp[m,p,m,p,m,p,m,p,m,p]

(a) evaluate the full-superamplitude, which is stored stored as the

function nContour[0,0,0][10,5] (for possible future use) 23.2 ms

(b) convert each dMatrix to its corresponding cMatrix 3.03 ms

(c) project-out the desired helicity component-amplitude 4.01 ms

Total Time: 35.2 ms

individual BCFW-terms) to infinite-precision can prove quite useful theoretically. The

examples include:

• a verification of supersymmetric Ward identities; in particular, we check one of the

‘cyclic’ identities described in [138] for the 10-point N3MHV amplitude—

0 = A(5)
10

(
ψ

(123)
−1/2, ψ

(3)
+1/2, ψ

(1)
+1/2, ψ

(4)
+1/2, ψ

(3)
+1/2, φ

(24)
0 , φ

(14)
0 , φ

(12)
0 , ψ

(234)
−1/2, g

(1234)
−

)
+A(5)

10

(
ψ

(123)
−1/2, ψ

(4)
+1/2, ψ

(1)
+1/2, ψ

(4)
+1/2, ψ

(3)
+1/2, φ

(24)
0 , φ

(13)
0 , φ

(12)
0 , ψ

(234)
−1/2, g

(1234)
−

)
+A(5)

10

(
ψ

(123)
−1/2, ψ

(4)
+1/2, ψ

(1)
+1/2, ψ

(4)
+1/2, ψ

(3)
+1/2, φ

(23)
0 , φ

(14)
0 , φ

(12)
0 , ψ

(234)
−1/2, g

(1234)
−

)
+A(5)

10

(
ψ

(123)
−1/2, ψ

(4)
+1/2, ψ

(1)
+1/2, ψ

(3)
+1/2, ψ

(3)
+1/2, φ

(24)
0 , φ

(14)
0 , φ

(12)
0 , ψ

(234)
−1/2, g

(1234)
−

)
(A.4.30)

—the verification of which is illustrated in Figure A.11, highlighting the power of

knowing amplitudes to infinite precision;

• an explicit verification of the U1-decoupling identity for the 10-point N3MHV tree-

amplitude (which, although a trivial consequence of any Lagrangian field theory, is

a highly non-trivial check of numerical code!13);

13We thank Freddy Cachazo for this suggestion.
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• a complete classification of the linearly-independent BCFW-generated formulae for

the 8-point N2MHV supersymmetric tree-amplitude.

Figure A.11: Verifying a SUSY Ward identity of the 10-point N3MHV amplitude.

In[1]:=

useReferences[10]

List
[
nAmp[{1, 2, 3}, {3}, {1}, {4}, {3}, {2,4}, {1,4}, {1, 2}, {2, 3, 4}, {1, 2, 3, 4}]

nAmp[{1, 2, 3}, {4}, {1}, {4}, {3}, {2,4}, {1,3}, {1, 2}, {2, 3, 4}, {1, 2, 3, 4}],

nAmp[{1, 2, 3}, {4}, {1}, {4}, {3}, {2,3}, {1,4}, {1, 2}, {2, 3, 4}, {1, 2, 3, 4}],

nAmp[{1, 2, 3}, {4}, {1}, {3}, {3}, {2,4}, {1,4}, {1, 2}, {2, 3, 4}, {1, 2, 3, 4}]
]

Out[1]:=

{
79370862801471295255

28753113503920775424
,

1275513453387873135869428633786428491

77923676342112832490222204964602880
,

−40428898488502522106856665437052838463
10951273590541549612279689882333035520

,

−16319258699414773847825256760953737
1057119835135513498965174929610240

}
In[2]:= Total[Out[1]]

Out[2]:= 0

A.5 Conclusions

We have described a general, versatile, and efficient implementation of the tree-level

BCFW recursion relations within the framework of Mathematica which has been re-

alized by the bcfw package which is included with the submission of this posting on the

arXiv.14

Having access to an efficient, reliable, flexible, and robust toolbox for computing

scattering amplitudes in N = 4 has proven an essential resource, and a important source

14From the abstract page on the arXiv for the bcfw package [137], choose the link to download “other

formats” (below the option for PDF) and you will find the bcfw package and its associated walk-through

file with many examples included in the ‘source’ for this chapter. Also, you can download bcfw at the

project’s page on http://hepforge.org, where it will be generally maintained by the author.
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of theoretical ‘data.’ It is hard to overlook the exciting recent advances that have been

made in our understanding of scattering amplitudes, and many of these results have

relied heavily on being able to decisively rule-out or quickly confirm a wide-array of new

ideas and proposals, leading to many new insights, and helping to establish what has a

chance to become a fundamentally new descriptions of quantum field theory.

We hope that the bcfw package proves itself useful to a wide range of researchers—

both as a reliable and efficient black-box for computing amplitudes, and as an educational

resource for gaining intuition about the still somewhat unfamiliar, but extremely powerful

new tools available to describe amplitude such as the momentum-twistor Grassmannian

that have played an important role in the recent development of our understanding of

scattering amplitudes in N = 4.
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Appendix B The Nine-Point N2MHV
Tree Amplitude

Residue Geometry Problem:

f1
7 f2

7 f1
8 f2

8 f1
9 f2

9

(2)(3)2(4)2(5)9 1
4 5 6 (4567)(5671)(5678)(1346)(2367)(1347)

(4)(5)2(6)2(7)2 3
6 7 8 (4567)(5671)(5678)(6781)(6789)(7891)

(6)(7)2(8)2(9)4 5
8 9 1 (1247)(1237)(1258)(6781)(9126)(9123)

(2)(3)2(4)(7)94 5 (4567)(3451)(2356)(1346)(2367)(7891)

(2)(3)2(4)(9)94 5 (4567)(3451)(2356)(1346)(9126)(9123)

(4)(5)2(6)(9)26 7 (4567)(5671)(5678)(6781)(6789)(9123)

(2)(5)(6)2(7)37 8 (2345)(5671)(5678)(6781)(6789)(7891)

(2)(7)(8)2(9)59 1 (2345)(1237)(1258)(1238)(9126)(9123)

(4)(7)(8)2(9)59 1 (4567)(1237)(1258)(1238)(9126)(9123)

[(2)(3)][(6)(7)]4 8 (2345)(3451)(2356)(6781)(6789)(7891)

[(2)(3)][(8)(9)]1 4 (2345)(3451)(2356)(1238)(9126)(9123)

[(4)(5)][(8)(9)]1 6 (4567)(5671)(5678)(1238)(9126)(9123)

(2)(3)2(4)(6)(7)4 5 8 (4567)(3451)(2356)(1346)(6789)(7891)

(2)(3)2(4)(8)(9)4 5 1 (4567)(3451)(2356)(1346)(9126)(9123)

(2)(3)(5)(6)2(7)4 7 8 (2345)(3451)(5678)(6781)(6789)(7891)

(2)(3)(7)(8)2(9)4 9 1 (2345)(3451)(1258)(1238)(9126)(9123)

(4)(5)2(6)(8)(9)6 7 1 (4567)(5671)(5678)(6781)(9126)(9123)

(4)(5)(7)(8)2(9)6 9 1 (4567)(5671)(5678)(1238)(9126)(9123)

(1)(2)2(3)(6)(9)82 4 (2345)(3451)(2356)(1346)(6789)(9123)

(9)(1)2(2)(5)(8)71 2 (2345)(3451)(5678)(1238)(9126)(9123)

(1)(2)[(5)(6)](9)2 7 (2345)(3451)(5678)(6781)(6789)(9123)

(2)(3)2(4)(6)(9)4 5 (4567)(3451)(2356)(1346)(9126)(9123)

[(2)(3)](5)(6)(9)4 7 (2345)(3451)(5678)(6781)(6789)(9123)

(2)(3)[(5)(6)](9)4 7 (2345)(3451)(5678)(6781)(6789)(9123)

(2)(3)(5)[(8)(9)]1 4 (2345)(3451)(5678)(1238)(9126)(9123)

Residue Geometry Problem:

f1
7 f2

7 f1
8 f2

8 f1
9 f2

9

(2)(4)(5)2(6)(9)6 7 (4567)(5671)(5678)(6781)(6789)(9123)

(2)(4)(5)[(8)(9)]1 6 (4567)(5671)(5678)(1238)(9126)(9123)

[(2)(3)](4)(6)(7)94 (4567)(3451)(2356)(6781)(6789)(7891)

[(2)(3)](4)(8)(9)94 (4567)(3451)(2356)(1238)(2367)(9123)

[(4)(5)](6)(8)(9)26 (4567)(5671)(5678)(1238)(6789)(9123)

(2)[(5)(6)](7)(9)37 (2345)(5671)(5678)(6781)(6789)(9123)

(2)(3)(5)[(6)(7)]38 (2345)(5671)(5678)(6781)(6789)(7891)

(2)(3)(7)[(8)(9)]51 (2345)(1237)(2356)(1238)(9126)(9123)

(2)(5)(7)[(8)(9)]51 (2345)(1237)(5678)(1238)(9126)(9123)

(4)(5)(7)[(8)(9)]51 (4567)(1237)(5678)(1238)(9126)(9123)

[(2)(3)](6)(7)(9)4 (2345)(3451)(2356)(6781)(6789)(9123)

[(2)(3)](6)(8)(9)4 (2345)(3451)(2356)(1238)(6789)(9123)

(2)(3)(5)(6)(8)(9)1 4 7 (2345)(3451)(5678)(6781)(9126)(9123)

(2)(3)(4)(5)(6)(7)3 9
6 (4567)(5671)(5678)(6781)(6789)(7891)

(4)(5)(6)(7)(8)(9)2 5
8 (4567)(1237)(5678)(1238)(6789)(9123)

(1)(2)(3)(5)(6)(9)82 (2345)(3451)(5678)(1346)(6789)(9123)

(2)(3)(4)(5)(8)(9)96 (4567)(5671)(5678)(1238)(2367)(9123)

(2)(3)(6)(7)(8)(9)58 (2345)(1237)(2356)(1238)(6789)(9123)

(2)(5)(6)(7)(8)(9)58 (2345)(1237)(5678)(1238)(6789)(9123)

(2)(5)(6)(7)(8)(9)39 (2345)(5671)(5678)(6781)(6789)(9123)

(1)(2)(5)(6)(8)(9)2 (2345)(3451)(5678)(1238)(6789)(9123)

(2)(3)(5)(6)(8)(9)4 (2345)(3451)(5678)(1238)(6789)(9123)

(2)(4)(5)(6)(8)(9)6 (4567)(5671)(5678)(1238)(6789)(9123)

(2)(3)(4)(7)(8)(9)5 9 (2345)(1237)(2356)(1238)(2367)(7891)

(2)(3)(5)(6)(7)(9)3 (2345)(5671)(5678)(6781)(6789)(7891)

nine_point_table.pdf   1   2/6/10   11:06 PM
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Appendix C The BCFW-Form of the
1-Loop 6-Point NMHV Integrand

In this appendix we present the BCFW form of the 1-loop 6-particle NMHV ampli-

tude. The result is,
δ0|4

(
0 + η2〈3456〉 + η3〈4562〉 + η4〈5623〉 + η5〈6234〉 + η6〈2345〉

)
〈AB(561)

⋂
(123)〉2

〈2345〉〈2356〉〈3456〉〈AB12〉〈AB23〉〈AB56〉〈AB61〉〈AB1(234)
⋂

(56)〉〈AB1(23)
⋂

(456)〉

+
δ0|4

(
η1〈3456〉 + 0 + η3〈4561〉 + η4〈5613〉 + η5〈6134〉 + η6〈1345〉

)
〈AB15〉2

〈AB45〉〈AB56〉〈AB61〉〈AB(345)
⋂

(561)〉〈3451〉〈AB13〉〈AB1(34)
⋂

(561)〉

+
δ0|4

(
η1〈3456〉 + 0 + η3〈4561〉 + η4〈5613〉 + η5〈6134〉 + η6〈1345〉

)
〈3456〉〈4561〉〈AB34〉〈AB61〉〈AB(345)

⋂
(561)〉〈AB31〉

+
δ0|4

(
η1〈3456〉 + 0 + η3〈4561〉 + η4〈5613〉 + η5〈6134〉 + η6〈1345〉

)
〈1234〉2

〈3456〉〈4561〉〈6134〉〈AB12〉〈AB23〉〈AB34〉〈1345〉〈AB1(34)
⋂

(561)〉

+
δ0|4

(
η1〈3456〉 + 0 + η3〈4561〉 + η4〈5613〉 + η5〈6134〉 + η6〈1345〉

)
〈6134〉〈AB34〉〈AB45〉〈AB56〉〈5613〉〈AB1(34)

⋂
(561)〉

+
δ0|4

(
η1〈2356〉 + η2〈3561〉 + η3〈5612〉 + 0 + η5〈6123〉 + η6〈1235〉

)
〈4561〉2

〈5612〉〈6123〉〈AB45〉〈AB56〉〈AB(561)
⋂

(123)〉〈3561〉〈AB4(23)
⋂

(561)〉

+
δ0|4

(
η1〈2356〉 + η2〈3561〉 + η3〈5612〉 + 0 + η5〈6123〉 + η6〈1235〉

)
〈AB(234)

⋂
(561)〉2

〈5612〉〈6123〉〈AB23〉〈AB34〉〈AB56〉〈AB(561)
⋂

(123)〉〈AB4(23)
⋂

(561)〉〈AB5(561)
⋂

(23)〉

+
δ0|4

(
η1〈2356〉 + η2〈3561〉 + η3〈5612〉 + 0 + η5〈6123〉 + η6〈1235〉

)
〈2345〉2

〈2356〉〈5612〉〈6123〉〈AB23〉〈AB34〉〈AB45〉〈1235〉〈AB5(561)
⋂

(23)〉

+
δ0|4

(
η1〈2345〉 + η2〈3451〉 + η3〈4512〉 + η4〈5123〉 + η5〈1234〉 + 0

)
〈4561〉2

〈1234〉〈1245〉〈2345〉〈AB45〉〈AB56〉〈AB61〉〈3451〉〈AB1(123)
⋂

(45)〉

+
δ0|4

(
η1〈2345〉 + η2〈3451〉 + η3〈4512〉 + η4〈5123〉 + η5〈1234〉 + 0

)
〈AB14〉2

〈1234〉〈AB12〉〈AB34〉〈AB45〉〈AB15〉〈AB1(123)
⋂

(45)〉〈AB4(234)
⋂

(51)〉

+
δ0|4

(
η1〈2345〉 + η2〈3451〉 + η3〈4512〉 + η4〈5123〉 + η5〈1234〉 + 0

)
〈2345〉〈AB12〉〈AB23〉〈3451〉〈AB15〉〈AB4(234)

⋂
(51)〉

+
δ0|4

(
η1〈2345〉 + η2〈3451〉 + η3〈4512〉 + η4〈5123〉 + η5〈1234〉 + 0

)
〈1245〉〈AB23〉〈AB34〉〈AB45〉〈5123〉〈AB1(123)

⋂
(45)〉

+

δ0|4

 η1〈AB(23)
⋂

(456)1〉 + η2〈4561〉〈AB13〉 + η3〈1456〉〈AB12〉
+ η4〈AB(123)

⋂
(561)〉 + η5〈AB(123)

⋂
(46)1〉 + η6〈AB1(123)

⋂
(45)〉

 〈AB15〉2

〈AB12〉〈AB45〉〈AB56〉〈AB61〉〈AB(561)
⋂

(123)〉〈AB13〉〈AB14〉〈AB1(123)
⋂

(45)〉〈(AB1)
⋂

(45)(AB)
⋂

(561)23〉

+

δ0|4

 η1〈AB(23)
⋂

(456)1〉 + η2〈4561〉〈AB13〉 + η3〈1456〉〈AB12〉
+ η4〈AB(123)

⋂
(561)〉 + η5〈AB(123)

⋂
(46)1〉 + η6〈AB1(123)

⋂
(45)〉


〈4561〉〈AB12〉〈AB23〉〈AB61〉〈AB13〉〈AB14〉〈AB1(23)

⋂
(456)〉〈(AB1)

⋂
(45)(AB)

⋂
(561)23〉

+

δ0|4

 η1〈AB1(234)
⋂

(56)〉 + η2〈AB(34)
⋂

(561)1〉 + η3〈AB1(24)
⋂

(561)〉
+ η4〈AB(561)

⋂
(123)〉 + η5〈1234〉〈AB61〉 + η6〈1234〉〈AB15〉


〈1234〉〈AB12〉〈AB34〉〈AB56〉〈AB61〉〈AB(234)

⋂
(561)〉〈AB(561)

⋂
(123)〉〈AB14〉〈AB15〉

+

δ0|4

 η1〈AB1(234)
⋂

(56)〉 + η2〈AB(34)
⋂

(561)1〉 + η3〈AB1(24)
⋂

(561)〉
+ η4〈AB(561)

⋂
(123)〉 + η5〈1234〉〈AB61〉 + η6〈1234〉〈AB15〉


〈AB12〉〈AB23〉〈AB61〉〈AB(234)

⋂
(561)〉〈AB14〉〈AB15〉〈AB1(234)

⋂
(56)〉〈AB1(34)

⋂
(561)〉

A note on notation: the expression 〈AB 1 (56)
⋂

(234)〉 refers to 〈AB1X〉 where X =

(56)
⋂

(234) is the point where the line (56) intersects the plane (234), namely, Z5〈6 2 3 4〉+
Z6〈2 3 4 5〉 = − (Z2〈3 4 5 6〉+ Z3〈4 5 6 2〉+ Z4〈5 6 2 3〉); similarly, ‘(123)

⋂
(456)’ is Z12〈3 4 5 6〉+

Z23〈1 4 5 6〉+ Z31〈2 4 5 6〉.

265



Appendix D The Full 2-Loop Integrand
for the 7-Point NMHV Amplitude

Here we give the explicit formula for the 2-loop 7-particle NMHV amplitude. We

find it most convenient to give a formula for M2loop
NMHV − M treeM2loop

MHV . We can expand

this in three cyclic classes as [(7)(1)C7,1] + [(7)(2)C7,2] + [(7)(3)C7,3] + cyclic. We give

the expression for the coefficients C7,1, C7,2, C7,3 in the tables below. Here “g” refers

to the operation i 7→ i + 1, and P is a parity flip, that exchanges wavy- and dashed-

lines (together with their corresponding normalization), and r is the reflection operation

i 7→ (8− i).
Table D.1: Coefficients of residue (7)(1) = [2 3 4 5 6].

1

2

3

4
5

6

7

1

−(1− g)

1

2

34

5

7
6

〈4512〉〈5671〉〈AB (123)
⋂

(345)〉〈CD64〉〈CD72〉 〈4563〉〈4713〉〈7123〉〈AB51〉〈CD24〉

1

2

3

45

7

6

1

−(1 + g2 + g4)

2

3

4
5

6

7

1

〈5124〉〈AB (456)
⋂

(712)〉〈CD|(123)
⋂

(345)〉 〈2461〉〈AB (567)
⋂

(712)〉〈CD|(123)
⋂

(345)〉

−(1 + g4r)

5

6

7
1

2

3

4

1

1

3

2

45

6

7

〈5624〉〈6714〉〈AB (123)
⋂

(345)〉〈CD57〉 〈5614〉〈6714〉〈AB (712)
⋂

(345)〉〈CD57〉

−(1− g)

1

2

3

4

7
6

5 (1 + g2)(1− g2r)
+g2P (1− g4r)

4

5

6

7

1
32

〈1345〉〈1347〉〈AB (712)
⋂

(234)〉 〈4671〉〈6712〉〈AB (345)
⋂

(567)〉

−(1 + g2 − gP )

4

5

6
7

1

2
3

1− g4r

1

3

2

4

5

6
7

〈4612〉〈7123〉〈AB (345)
⋂

(567)〉 〈1456〉〈4567〉〈AB (712)
⋂

(345)〉
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Table D.2: Coefficients of residue (7)(1) = [2 3 4 5 6], continued

1 + g2

7

3

2

1

4

5

6

(1 + gP )(1 + g4r)

4

5

7
6

1

2
3

〈7456〉2〈AB (671)
⋂

(345)〉 〈4561〉〈7123〉〈AB (345)
⋂

(712)〉

−(1− g)(1 + P )

4

5

7
6

1

3

2

1− g3 − gr

4

5

1 7
62

3

〈4561〉〈4713〉〈AB (345)
⋂

(712)〉 〈4123〉〈5123〉〈AB (234)
⋂

(456)〉

−1

6
5

7

1
2

3

4

−(1− g2r)

1
7

2

4
3

5

6

〈5234〉〈7124〉〈AB (345)
⋂

(671)〉 〈2456〉〈7456〉〈AB (567)
⋂

(123)〉

−(1 + g2)

2
17

3

4

5

6

1− g

5

6

7

1

2
43

〈3456〉〈7456〉〈AB (567)
⋂

(234)〉 〈5614〉〈7123〉〈AB (567)
⋂

(712)〉

1

5

6

1
7

2

3
4

−(1− g)

4

5

7
6

1

3

2

〈1234〉〈5624〉〈AB (567)
⋂

(123)〉 〈4513〉〈4713〉〈AB (456)
⋂

(712)〉

1 + g4r

4

5

1 7
62

3

1 + g4r

4

5

7
61

2

3

〈4123〉〈4563〉〈5123〉〈AB42〉 〈4123〉〈71|(234)
⋂

(456)〉〈AB53〉

−(1 + g2)
3

2
17

45

6

〈4563〉〈4567〉2
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Table D.3: Coefficients of residue (7)(2) = [1 3 4 5 6]

1

6
7

1

2
3

4

5

−1

1

2

3
4

5

6

7

〈3456〉2〈AB24〉〈AB57〉〈AB (671)
⋂

(123)〉 〈1357〉〈AB (712)
⋂

(234)〉〈CD|(456)
⋂

(671)〉

−1

3

4

5

7

6

2

1

−(1− g3)

3

5

4

7
6

1

2

〈3562〉〈3571〉〈AB (234)
⋂

(456)〉 〈3561〉〈3712〉〈AB (234)
⋂

(712)〉

1− g6r

4

5

6

1 7
2

3

1

6

7

3 2
14

5

〈4123〉〈5673〉〈AB (234)
⋂

(456)〉 〈6345〉〈7345〉〈AB (456)
⋂

(671)〉

−(1− g6r)

5
4

6

7
1

2

3

−(1− grP )

7
6

1

3
2

4

5

〈4123〉〈6713〉〈AB (234)
⋂

(567)〉 〈6145〉〈6345〉〈AB (712)
⋂

(345)〉

−(1− gr)

1

2

3

4

5
76

1− gr

7

1

3
2

4

5
6

〈1247〉〈2345〉〈3456〉〈AB13〉 〈1345〉〈3456〉〈7126〉〈AB74〉

1 + gr

6

7

3 2
14

5

〈6345〉〈6715〉〈7345〉〈AB64〉
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Table D.4: Coefficients of residue (7)(3) = [1 2 4 5 6]

1 + g6r

1

2

3
4

5

6

7

−1

6

7

1
2

3

4

5

〈3456〉〈6371〉〈AB (712)
⋂

(234)〉〈CD41〉〈CD57〉 〈6135〉〈AB (567)
⋂

(712)〉〈CD|(234)
⋂

(456)〉

−(1 + g3)

1

2

34

6

5

7

−(1 + g2Pr)

7

1

2
3

4

5

6

〈4513〉〈6713〉〈AB (712)
⋂

(234)〉〈CD47〉 〈1236〉〈7146〉〈AB (345)
⋂

(567)〉〈CD72〉

1

4

5

6

1

7

3

2

−(1− g6r)

6

7

1

2

3
54

〈4612〉〈4673〉〈AB (345)
⋂

(567)〉 〈1234〉〈6123〉〈AB (567)
⋂

(712)〉

−1

6

7

1
2

3

4
5

1 + g2

2

5

4

3

6

7

1

〈2345〉〈6134〉〈AB (567)
⋂

(712)〉 〈2671〉2〈AB (123)
⋂

(567)〉

1 + g6r

6

7

3 2
14

5

−(1− g3)

4

5

6

1 7
2

3

〈6345〉〈6714〉〈AB (567)
⋂

(345)〉 〈4123〉〈5673〉〈AB (234)
⋂

(456)〉

1 + g6r

7

1

3
24

5

6

−(1− g2r)

1
7

2

3
4

5

6

〈1346〉〈7456〉〈AB (567)
⋂

(712)〉 〈2346〉〈7456〉〈AB (567)
⋂

(123)〉

−(1− g4r)

3
2

4

6
5

7

1

−(1 + g2)

4
32

5

6

7

1

〈2671〉〈4671〉〈AB (712)
⋂

(345)〉 〈2671〉〈5671〉〈AB (712)
⋂

(456)〉

−(1 + g2)
5

4
32

67

1

〈6712〉2〈6715〉
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Table D.5: Coefficients of Atree (in addition to the 2-loop MHV amplitude)

−1

2

3

45

7

6

1

−(1− g4r)

1

3

2

4

5

6
7

〈5124〉〈AB (456)
⋂

(712)〉〈CD|(123)
⋂

(345)〉 〈1456〉〈4567〉〈AB (712)
⋂

(345)〉

1

3
21

4

5

6

7

〈1467〉〈1567〉〈AB (345)
⋂

(567)〉
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Appendix E Residue Computations in
Momentum-Twistor Space

We gave a heuristic argument for the form of the Jacobian in the computation of the

residue of a pentagon integral. The actual computation is essentially trivial but it might

serve as yet one more way to get used to momentum twistors. This is why we carry it

out in detail in this appendix.

Recall that the non-vanishing residue of the pentagon integral for a contour which

‘encircles’ the isolated pole (AB) = (24) is computed using∮
|(AB)−(24)|=ε

〈AB 13〉〈12 45〉〈23 45〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉 , (E.0.1)

As with all multidimensional residues, the entire computation amounts to Jacobians.

Let us choose to expand ZA and ZB using the twistors {Z5, Z1, Z2, Z4} as a basis; this

parameterization introduces a Jacobian J
AB→(5 1 2 4)

= 〈5 1 2 4〉−2. Exploiting the GL2-

redundancy of the integrand, may therefore parameterize ZA and ZB according to

ZA ≡α1Z5 + α2Z1 + Z2;

ZB ≡β1Z5 + β2Z1 + Z4;
(E.0.2)

Of course, the contour being evaluated corresponds to the choice of maps fi given by ~f ≡
{〈AB 12〉, 〈AB 23〉, 〈AB 34〉, 〈AB 45〉}; using these coordinates for ZA, ZB, the contour

will be evaluated around the pole at the origin: αi = βi = 0.

With this, the integral in question has become fully gauge-fixed and concrete:∮
|αi|=|βi|=ε

d2αid
2βi

〈AB 13〉〈12 45〉3〈23 45〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉 . (E.0.3)

Because the contour encircles the origin, the Jacobian appearing the definition of a mul-

tidimensional residue will be evaluated at the origin. This means that for our purposes,

we need only compute the maps ~f to linear-order in (αi, βi) to compute the residue.

271



Doing this in complete detail, we see that

f1 = 〈AB 12〉 = α1〈5 4 1 2〉 + . . .

f2 = 〈AB 23〉 = α1〈5 4 1 3〉 +α2〈1 4 2 3〉 + . . .

f3 = 〈AB 34〉 = β1〈2 5 3 4〉 +β2〈2 1 3 4〉 + . . .

f4 = 〈AB 45〉 = β2〈2 1 4 5〉 + . . .

where ‘. . .’ stands for terms quadratic in αi, βi. From this, it is trivial to read-off the

Jacobian:

J
∣∣∣
(AB)=(24)

= 〈5 4 1 2〉〈1 4 2 3〉〈2 5 3 4〉〈2 1 4 5〉 = 〈1 2 4 5〉2〈1 2 3 4〉〈2 3 4 5〉; (E.0.4)

combining this with the rest of the integrand—e.g. 〈AB 13〉/〈AB 51〉 evaluated on (AB) =

(24)—we find that∮
|(AB)−(24)|=ε

〈AB 13〉〈12 45〉〈23 45〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉 = −〈2 4 1 3〉〈1 2 4 5〉3〈2 3 4 5〉

〈1 2 4 5〉3〈1 2 3 4〉〈2 3 4 5〉 = 1.
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Appendix F All 2-Loop NMHV
Amplitude Integrands

In this appendix, we will provide all the details that go into the formula for the n-point

2-loop NMHV amplitude, which can be graphically represented as follows:

A2−loop
NMHV =

∑
i<j<l<m≤k<i
i<j<k<l<m≤i
i≤l<m≤j<k<i

l

m
k

i

j

AB

× [i, j, j + 1, k, k + 1]

+
1

2

∑
i<j<k<l<i

k

li

j

×


Atree

NMHV(j, . . . , k; l, . . . , i)

+Atree
NMHV(i, . . . , j)

+Atree
NMHV(k, . . . , l)


(F.0.1)

Of these two terms, only the first requires any comment, because the second summand in-

volves only the familiar double-pentagons which generate the MHV two-loop amplitude’s

integrand.

As indicated by the ranges of the summation, the first sum actually represents a sum

over three distinct cyclic orderings of the labels (i, j, k, l,m), corresponding to each of

the following cyclically-ordered integrands,

Integrand:

l

m
k

i

j

AB

l

m
jk

i

AB

l

mi

j

k

AB

Range: i < j < l < m ≤ k < i i ≤ l < m ≤ j < k < i i < j < k < l < m ≤ i

Boundary

terms :

 A i+1 = j

B i 1 = k+1


 A i = l

B i 1 = k+1


 A i+1 = j

B i = m
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For each range of indices, there are boundary-terms for which the general integrand’s

numerator must change slightly; these have been indicated in the table above. Given the

ranges and boundaries indicated above, the numerators for these contributions to the

2-loop NMHV amplitude are given by,

term numerator

non-boundary 〈AB (i 1 i i+1)
⋂

(Σi,j,k)〉
A boundary 〈AB i+1(i 1 i)

⋂
(Σi,j,k)〉

B boundary 〈AB i 1(i i+1)
⋂

(Σi,j,k)〉
A&B boundary 〈AB i+1 i 1〉〈iΣi,j,k〉

(F.0.2)

where in all these cases the special plane Σi,j,k is given by the same object encountered

at one-loop, but with the arbitrary bitwistor X replaced by (lm),

Σi,j,k ≡
1

2

[
(j j+1)

(
(i k k+1)

⋂
(lm)

)
− (k k+1)

(
(i j j+1)

⋂
(lm)

)]
. (F.0.3)
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Appendix G All 3-Loop MHV
Amplitude Integrands

In this appendix, we present the explicit form of the n-point 3-loop MHV amplitude,

which we represent graphically graphically represented as follows:

A3−loop
MHV =

1

3

∑
i1≤i2<j1≤
≤j2<k1≤k2<i1

j1

j2

k1k2

i1

i2

CDAB

EF

+
1

2

∑
i1≤j1<k1<

<k2≤j2<i2<i1

k1

k2j2
i2

i1
j1

AB

As described in the body of this Chapter, the ‘boundary terms’ of the summands

above require some comment. We will discuss the two topologies separately, starting

with with the first summand in the equation above. Because when any two of the

indices become identified in the first graph the wavy-line numerators become ill-defined,

special consideration must be made for each of the degenerations allowed in the range

of the summand—that is, all the cases where two or more of the indices are identified.

Separating each type of such degeneration that is allowed in the first summand,

1

3

∑
i1≤i2<j1≤
≤j2<k1≤k2<i1

j1

j2

k1k2

i1

i2

CDAB

EF

=



1× 1
3

∑
i1<i2<j1<

<j2<k1<k2<i1

IA1 (i1, i2, j1, j2, k1, k2)

 all indices

distinct


3×1

3

∑
i1<i2<j1<
<j2<k<i1

IA2 (i1, i2, j1, j2, k) (k1 = k2 ≡ k)

3×1
3

∑
i1<i2<j<k<i1

IA3 (i1, i2, j, k)

(
k1 = k2 ≡ k
j1 = j2 ≡ j

)

1× 1
3

∑
i<j<k<i

IA4 (i, j, k)


k1 = k2 ≡ k
j1 = j2 ≡ j
i1 = i2 ≡ i


Here, the overall factor of ‘1

3
’ reflects the Z3-symmetry of the loop integrand (recall

that every term in the sum is understood to be fully-symmetrized with respect to the 3!

permutations of the loop-variable labels); although every term in the summand has the
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same factor of 1
3
, the boundary terms for which e.g. k1 = k2 in the sum are equivalent

to those where j1 = j2 or i1 = i2, allowing us to represent all three degenerations with a

single integrand—IA2 in this case, and similarly for IA3 .

Let us now carefully define the contributions to this class of graph each in turn. First,

we have the generic integrand:

• IA1 (i1, i2, j1, j2, k1, k2)
for i1<i2<j1<j2<k1<k2<i1

⇐⇒

j1

j2

k1k2

i1

i2

CDAB

EF

Numerator

Tr [(i1 |AB| i2)(j1 |CD| j2)(k1 |EF | k2)]

Here, we have left implicit the twelve propagators shown in the figure by solid lines,

and the three ‘wavy-line’ numerators 〈AB (i1 1 i1 i1+1)
⋂

(i2 1 i2 i2+1)〉 etc. Observe

that we have introduced a new notation for remaining tensor components of the numer-

ator for this integrand. Letting ‘•’ denote an arbitrary bitwistor, we may define a ‘trace’

over a pair of such auxiliary bitwistors: Tr [(a b •)(• c d)] ≡ 〈a b c d〉; that is, the trace is

nothing but the completely-antisymmetric contraction of bitwistors which are dual to a

pair of auxiliary bitwistors, which are indicated by ‘•’ in the corresponding formula.1

It may be helpful to illustrate the meaning of this numerator using the familiar nota-

tion of Wick contraction; in this notation, the tensor numerator of IA1 (i1, i2, j1, j2, k1, k2)

corresponds to: ⋂

Tr [(i1 |AB| i2)(j1 |CD| j2)(k1 |EF | k2)] ≡ 〈AB (i1 •)
⋂

(i2 •)〉〈CD (j1 •)
⋂

(j2 •)〉〈EF (k1 •)
⋂

(k2 •)〉;

alternatively, the numerator can be written in any one of the following equivalent forms

(the equality of which offering further justification for calling this a ‘trace’):

Tr [(i1 |AB| i2)(j1 |CD| j2)(k1 |EF | k2)]

≡ 〈i2 j1

[(
j2 k1

(
(k2 i1A)

⋂
(FE)

))⋂
(DC)

]
B〉 − (A↔ B);

= 〈j2 k1

[(
k2 i1

(
(i2 j1C)

⋂
(BA)

))⋂
(FE)

]
D〉 − (C ↔ D);

= 〈k2 i1

[(
i2 j1

(
(j2 k1E)

⋂
(DC)

))⋂
(BA)

]
F 〉 − (E ↔ F ).

1The idea of ‘tracing’ over auxiliary bitwistors turns out to be a very powerful generalization of the

four-bracket. Indeed, all the four-brackets in this chapter could be translated directly into traces, and

often with considerable simplification.
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As we will see presently, this numerator will change only very slightly for the boundary

terms in the summand. Always leaving the propagators and wavy-line implicit from the

the corresponding figures, the remaining integrands are defined according to the following:

• IA2 (i1, i2, j1, j2, k)
for i1<i2<j1<j2<k<i1

⇐⇒

j1

j2

k

i1

i2

CDAB

EF

Numerator

Tr [(i1 |AB| i2)(j1 |CD| j2)(k |k 1 k+1| k)]

• IA3 (i1, i2, j, k)
for i1<i2<j<k<i1

⇐⇒

j

ki1

i2

CD

AB

EF

Numerator

Tr [(i1 |AB| i2)(j |j 1 j+1| j)(k |k 1 k+1| k)]

• IA4 (i, j, k)
for i<j<k<i

⇐⇒

j

k

i

AB CD

EF

Numerator

Tr [(i |i 1 i+1| i)(j |j 1 j+1| j)(k |k 1 k+1| k)]

For the second topology, the boundary terms in the summand lead to just three

separate contributions that must be specifically addressed.

1

2

∑
i1≤j1<k1<

<k2≤j2<i2<i1

k1

k2j2
i2

i1
j1

AB =



1× 1
2

∑
i1<j1<k1<

<k2<j2<i2<i1

IB1 (i1, j1, k1, k2, j2, i2)

 all indices

distinct


2×1

2

∑
i1<j1<k1<
<k2<i2<i1

IB2 (i1, j1, k1, k2, i2) (k2 = j2 ≡ k2)

1×1
2

∑
i1<k1<

<k2<i2<i1

IB3 (i1, k1, k2, i2)

(
i1 = j1 ≡ i1
k2 = j2 ≡ k2

)

As above, the overall factor of ‘1
2
’ reflects the Z2-symmetry of the integrand (we remind

the reader that each term in the summand is to be fully-symmetrized with respect to

the 3! permutations of the loop variables). As before, we have exploited the symmetry of
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the integrand to identify various boundary terms: the degenerations i1 = j1 and k2 = j2,

being equivalent in the cyclic sum, they can be combined into the single summand IB2 —

which explains its relative factor of 2.

With this, we can directly present the three classes of integrands of the second topol-

ogy which contribute to the 3-loop MHV amplitude:

• IB1 (i1, j1, k1, k2, j2, i2)
for i1<j1<k1<k2<j2<i2<i1

⇐⇒

k1

k2j2
i2

i1
j1

AB

Numerator

〈AB (i2 i1 j2)
⋂

(j1 1 j1 j1+1)〉
×〈AB (j2 1 j2 j2+1)

⋂
(j1 k1 k2)〉

• IB2 (i1, j1, k1, k2, i2)
for i1<j1<k1<k2<i2<i1

⇐⇒

k1

j2 � k2i2

i1
j1

AB

Numerator

〈AB (i2 i1 k2)
⋂

(j1 1 j1 j1+1)〉
×〈k2+1 j1 k1 k2〉

• IB3 (i1, k1, k2, i2)
for i1<k1<k2<i2<i1

⇐⇒

k1

j2 � k2i2

i1 � j1

Numerator

〈k2 i2 i1 i1+1〉
×〈k2+1 i1 k1 k2〉

278



Bibliography

[1] S. J. Parke and T. R. Taylor, “Gluonic Two Goes To Four,” Nucl. Phys. B269

(1986) 410. 1

[2] S. J. Parke and T. R. Taylor, “An Amplitude for n Gluon Scattering,” Phys. Rev.

Lett. 56 (1986) 2459. 1, 99

[3] F. A. Berends and W. T. Giele, “Recursive Calculations for Processes with n

Gluons,” Nucl. Phys. B306 (1988) 759. 2, 99, 235, 238

[4] E. Witten, “Perturbative Gauge Theory as a String Theory in Twistor Space,”

Commun. Math. Phys. 252 (2004) 189–258, arXiv:hep-th/0312171. 2, 17, 26, 29,

38, 41, 81, 99, 106, 238

[5] F. Cachazo, P. Svrcek, and E. Witten, “MHV Vertices and Tree Amplitudes in

Gauge Theory,” JHEP 09 (2004) 006, arXiv:hep-th/0403047. 2, 11, 28, 99, 238

[6] K. Risager, “A Direct Proof of the CSW Rules,” JHEP 12 (2005) 003,

arXiv:hep-th/0508206. 2, 11, 12, 15, 28

[7] R. Britto, F. Cachazo, B. Feng, and E. Witten, “Direct Proof of Tree-Level

Recursion Relation in Yang- Mills Theory,” Phys. Rev. Lett. 94 (2005) 181602,

arXiv:hep-th/0501052. 2, 12, 28, 81, 99, 143, 215, 238

[8] J. M. Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev, “Dual

Superconformal Symmetry of Scattering Amplitudes in N = 4 Super-Yang-Mills

Theory,” Nucl. Phys. B828 (2010) 317–374, arXiv:0807.1095 [hep-th]. 3, 8, 9,

28, 99, 107, 147, 189, 215, 216, 243

[9] N. Berkovits and J. Maldacena, “Fermionic T-Duality, Dual Superconformal

Symmetry, and the Amplitude/Wilson Loop Connection,” JHEP 09 (2008) 062,

arXiv:0807.3196 [hep-th]. 3, 215, 243

[10] N. Arkani-Hamed, F. Cachazo, C. Cheung, and J. Kaplan, “A Duality For The

S-Matrix,” JHEP 03 (2010) 020, arXiv:0907.5418 [hep-th]. 3, 6, 7, 9, 10, 27, 28,

31, 32, 51, 52, 56, 59, 61, 67, 76, 78, 80, 87, 100, 101, 110, 143, 164, 168, 215, 216,

238, 246, 253

279

http://dx.doi.org/10.1103/PhysRevLett.56.2459
http://dx.doi.org/10.1103/PhysRevLett.56.2459
http://dx.doi.org/10.1016/0550-3213(88)90442-7
http://dx.doi.org/10.1007/s00220-004-1187-3
http://arxiv.org/abs/hep-th/0312171
http://dx.doi.org/10.1088/1126-6708/2004/09/006
http://arxiv.org/abs/hep-th/0403047
http://arxiv.org/abs/\unhbox \voidb@x \hbox {hep-th/0508206}
http://arxiv.org/abs/\unhbox \voidb@x \hbox {hep-th/0508206}
http://dx.doi.org/10.1103/PhysRevLett.94.181602
http://arxiv.org/abs/hep-th/0501052
http://arxiv.org/abs/hep-th/0501052
http://dx.doi.org/10.1016/j.nuclphysb.2009.11.022
http://arxiv.org/abs/0807.1095
http://dx.doi.org/10.1088/1126-6708/2008/09/062
http://arxiv.org/abs/0807.3196
http://arxiv.org/abs/0807.3196
http://dx.doi.org/10.1007/JHEP03(2010)020
http://arxiv.org/abs/0907.5418


[11] J. M. Drummond and L. Ferro, “The Yangian Origin of the Grassmannian

Integral,” JHEP 12 (2010) 010, arXiv:1002.4622 [hep-th]. 3, 80, 101, 169, 247

[12] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, and J. Trnka, “Unification of

Residues and Grassmannian Dualities,” JHEP 01 (2011) 049, arXiv:0912.4912

[hep-th]. 4, 80, 81, 82, 84, 85, 86, 87, 94, 101, 106, 246

[13] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. Hodges, and J. Trnka, “A Note

on Polytopes for Scattering Amplitudes,” arXiv:1012.6030 [hep-th]. 4, 5, 146

[14] J. L. Bourjaily, J. Trnka, A. Volovich, and C. Wen, “The Grassmannian and the

Twistor String: Connecting All Trees in N = 4 SYM,” JHEP 01 (2011) 038,

arXiv:1006.1899 [hep-th]. 4, 101, 106, 238

[15] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, S. Caron-Huot, and J. Trnka,

“The All-Loop Integrand For Scattering Amplitudes in Planar N = 4 SYM,”

JHEP 01 (2011) 041, arXiv:1008.2958 [hep-th]. 4, 5, 143, 157, 159, 202, 207, 208,

216, 228, 238, 246

[16] C. Vergu, “The Two-Loop MHV Amplitudes in N = 4 Supersymmetric Yang-

Mills Theory,” arXiv:0908.2394 [hep-th]. 4, 104, 132

[17] N. Arkani-Hamed, F. Cachazo, C. Cheung, and J. Kaplan, “The S-Matrix in

Twistor Space,” JHEP 03 (2010) 110, arXiv:0903.2110 [hep-th]. 7, 27, 110, 138,

168

[18] N. Arkani-Hamed, F. Cachazo, and C. Cheung, “The Grassmannian Origin Of

Dual Superconformal Invariance,” JHEP 03 (2010) 036, arXiv:0909.0483

[hep-th]. 7, 28, 80, 100, 101, 169, 241, 246, 253

[19] L. Mason and D. Skinner, “Dual Superconformal Invariance, Momentum Twistors

and Grassmannians,” JHEP 11 (2009) 045, arXiv:0909.0250 [hep-th]. 7, 8, 28,

80, 100, 101, 169, 216, 235, 241

[20] A. Hodges, “Eliminating Spurious Poles from Gauge-Theoretic Amplitudes,”

arXiv:0905.1473 [hep-th]. 8, 28, 100, 101, 146, 149, 151, 215, 216, 219, 223, 228,

231, 235, 242, 243

280

http://dx.doi.org/10.1007/JHEP12(2010)010
http://arxiv.org/abs/1002.4622
http://dx.doi.org/10.1007/JHEP01(2011)049
http://arxiv.org/abs/0912.4912
http://arxiv.org/abs/0912.4912
http://arxiv.org/abs/1012.6030
http://dx.doi.org/10.1007/JHEP01(2011)038
http://arxiv.org/abs/1006.1899
http://arxiv.org/abs/1006.1899
http://dx.doi.org/10.1007/JHEP01(2011)041
http://arxiv.org/abs/1008.2958
http://arxiv.org/abs/0908.2394
http://dx.doi.org/10.1007/JHEP03(2010)110
http://arxiv.org/abs/0903.2110
http://dx.doi.org/10.1007/JHEP03(2010)036
http://arxiv.org/abs/0909.0483
http://arxiv.org/abs/0909.0483
http://dx.doi.org/10.1088/1126-6708/2009/11/045
http://arxiv.org/abs/0909.0250
http://arxiv.org/abs/0905.1473
http://arxiv.org/abs/0905.1473


[21] A. Brandhuber, P. Heslop, and G. Travaglini, “A Note on Dual Superconformal

Symmetry of the N = 4 Super Yang-Mills S-Matrix,” Phys. Rev. D78 (2008)

125005, arXiv:0807.4097 [hep-th]. 8, 28, 99, 110

[22] J. Kaplan, “Unraveling Ln,k: Grassmannian Kinematics,” JHEP 03 (2010) 025,

arXiv:0912.0957 [hep-th]. 9, 28, 38, 80, 81, 109, 238

[23] M. Bullimore, L. J. Mason, and D. Skinner, “Twistor-Strings, Grassmannians and

Leading Singularities,” JHEP 03 (2010) 070, arXiv:0912.0539 [hep-th]. 9, 28, 38,

80, 81, 109

[24] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, C. Cheung, J. Kaplan, and

J. Trnka, “Notes on Inverse Soft Factors.” unpublished. 9, 34, 61, 66, 67, 68, 70,

76, 80, 81, 94, 106

[25] F. Cachazo, P. Svrcek, and E. Witten, “Gauge Theory Amplitudes in Twistor

Space and Holomorphic Anomaly,” JHEP 10 (2004) 077, arXiv:hep-th/0409245.

11, 28

[26] F. Cachazo, P. Svrcek, and E. Witten, “Twistor Space Structure of One-Loop

Amplitudes in Gauge Theory,” JHEP 10 (2004) 074, arXiv:hep-th/0406177. 11,

28

[27] K. Risager, “Unitarity and On-Shell Recursion Methods for Scattering

Amplitudes,” arXiv:0804.3310 [hep-th]. 11, 28

[28] P. Mansfield, “The Lagrangian Origin of MHV rules,” JHEP 03 (2006) 037,

arXiv:hep-th/0511264. 11

[29] A. Gorsky and A. Rosly, “From Yang-Mills Lagrangian to MHV Diagrams,”

JHEP 01 (2006) 101, arXiv:hep-th/0510111. 11

[30] R. Boels, L. Mason, and D. Skinner, “From Twistor Actions to MHV Diagrams,”

Phys. Lett. B648 (2007) 90–96, arXiv:hep-th/0702035. 11

[31] R. Britto, F. Cachazo, and B. Feng, “New Recursion Relations for Tree

Amplitudes of Gluons,” Nucl. Phys. B715 (2005) 499–522,

arXiv:hep-th/0412308. 12, 28, 76, 81, 99, 143, 215, 238

281

http://dx.doi.org/10.1103/PhysRevD.78.125005
http://dx.doi.org/10.1103/PhysRevD.78.125005
http://arxiv.org/abs/0807.4097
http://dx.doi.org/10.1007/JHEP03(2010)025
http://arxiv.org/abs/0912.0957
http://arxiv.org/abs/0912.0957
http://dx.doi.org/10.1007/JHEP03(2010)070
http://arxiv.org/abs/0912.0539
http://dx.doi.org/10.1088/1126-6708/2004/10/077
http://arxiv.org/abs/hep-th/0409245
http://dx.doi.org/10.1088/1126-6708/2004/10/074
http://arxiv.org/abs/hep-th/0406177
http://arxiv.org/abs/0804.3310
http://arxiv.org/abs/hep-th/0511264
http://arxiv.org/abs/hep-th/0511264
http://arxiv.org/abs/hep-th/0510111
http://dx.doi.org/10.1016/j.physletb.2007.02.058
http://arxiv.org/abs/hep-th/0702035
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.030
http://arxiv.org/abs/hep-th/0412308
http://arxiv.org/abs/hep-th/0412308


[32] C. Cheung, “On-Shell Recursion Relations for Generic Theories,” JHEP 03

(2010) 098, arXiv:0808.0504 [hep-th]. 12

[33] L. J. Mason and D. Skinner, “Scattering Amplitudes and BCFW Recursion in

Twistor Space,” JHEP 01 (2010) 064, arXiv:0903.2083 [hep-th]. 12, 41, 110

[34] N. Arkani-Hamed and J. Kaplan, “On Tree Amplitudes in Gauge Theory and

Gravity,” JHEP 04 (2008) 076, arXiv:0801.2385 [hep-th]. 12, 110, 112

[35] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, S. Caron-Huot, and J. Trnka. In

preparation, 2010. 18, 25, 104, 105, 111, 120, 124, 125, 129, 130, 131, 219

[36] R. Roiban, M. Spradlin, and A. Volovich, “A Googly Amplitude from the

B-Model in Twistor Space,” JHEP 04 (2004) 012, arXiv:hep-th/0402016. 26, 94

[37] L. Dolan and P. Goddard, “Gluon Tree Amplitudes in Open Twistor String

Theory,” JHEP 12 (2009) 032, arXiv:0909.0499 [hep-th]. 26, 29, 43, 44, 45, 46,

49, 57

[38] N. Berkovits, “An Alternative String Theory in Twistor Space for N = 4

Super-Yang-Mills,” Phys. Rev. Lett. 93 (2004) 011601, arXiv:hep-th/0402045.

26, 29

[39] M. Spradlin and A. Volovich, “From Twistor String Theory To Recursion

Relations,” Phys. Rev. D80 (2009) 085022, arXiv:0909.0229 [hep-th]. 26, 29, 43,

44, 46, 49, 77, 80, 81, 86, 87, 94, 106, 238

[40] L. F. Alday and J. M. Maldacena, “Gluon Scattering Amplitudes at Strong

Coupling,” JHEP 06 (2007) 064, arXiv:0705.0303 [hep-th]. 26, 28, 99, 215

[41] A. Gorsky and A. Zhiboedov, “Aspects of the N = 4 SYM Amplitude – Wilson

Polygon Duality,” Nucl. Phys. B835 (2010) 343–363, arXiv:0911.3626 [hep-th].

26

[42] J. M. Drummond, G. P. Korchemsky, and E. Sokatchev, “Conformal Properties of

Four-Gluon Planar Amplitudes and Wilson loops,” Nucl. Phys. B795 (2008)

385–408, arXiv:0707.0243 [hep-th]. 26, 99

282

http://dx.doi.org/10.1007/JHEP03(2010)098
http://dx.doi.org/10.1007/JHEP03(2010)098
http://arxiv.org/abs/0808.0504
http://dx.doi.org/10.1007/JHEP01(2010)064
http://arxiv.org/abs/0903.2083
http://dx.doi.org/10.1088/1126-6708/2008/04/076
http://arxiv.org/abs/0801.2385
http://dx.doi.org/10.1088/1126-6708/2004/04/012
http://arxiv.org/abs/hep-th/0402016
http://dx.doi.org/10.1088/1126-6708/2009/12/032
http://arxiv.org/abs/0909.0499
http://dx.doi.org/10.1103/PhysRevLett.93.011601
http://arxiv.org/abs/hep-th/0402045
http://dx.doi.org/10.1103/PhysRevD.80.085022
http://arxiv.org/abs/0909.0229
http://arxiv.org/abs/0705.0303
http://dx.doi.org/10.1016/j.nuclphysb.2010.04.003
http://arxiv.org/abs/0911.3626
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.041
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.041
http://arxiv.org/abs/0707.0243


[43] J. M. Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev, “On Planar

Gluon Amplitudes/Wilson Loops Duality,” Nucl. Phys. B795 (2008) 52–68,

arXiv:0709.2368 [hep-th]. 26, 99

[44] J. M. Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev, “Conformal

Ward Identities for Wilson Loops and a Test of the Duality with Gluon

Amplitudes,” Nucl. Phys. B826 (2010) 337–364, arXiv:0712.1223 [hep-th]. 26, 99

[45] J. M. Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev, “The Hexagon

Wilson Loop and the BDS Ansatz for the Six- Gluon Amplitude,” Phys. Lett.

B662 (2008) 456–460, arXiv:0712.4138 [hep-th]. 26, 99

[46] J. M. Drummond, J. Henn, G. P. Korchemsky, and E. Sokatchev, “Hexagon

Wilson Loop = Six-Gluon MHV Amplitude,” Nucl. Phys. B815 (2009) 142–173,

arXiv:0803.1466 [hep-th]. 26, 99

[47] J. M. Drummond, J. Henn, V. A. Smirnov, and E. Sokatchev, “Magic Identities

for Conformal Four-Point Integrals,” JHEP 01 (2007) 064,

arXiv:hep-th/0607160. 28, 99, 102, 148, 152, 215

[48] H. Elvang, D. Z. Freedman, and M. Kiermaier, “Dual Conformal Symmetry of

1-Loop NMHV Amplitudes in N = 4 SYM Theory,” arXiv:0905.4379 [hep-th].

28, 99, 189

[49] J. M. Drummond, J. M. Henn, and J. Plefka, “Yangian Symmetry of Scattering

Amplitudes in N = 4 Super Yang-Mills Theory,” JHEP 05 (2009) 046,

arXiv:0902.2987 [hep-th]. 28, 78, 99, 215, 247

[50] J. M. Drummond and J. M. Henn, “All Tree-Level Amplitudes in N = 4 SYM,”

JHEP 04 (2009) 018, arXiv:0808.2475 [hep-th]. 28, 81, 101, 138, 238, 243, 251

[51] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, and J. Trnka, “Local Spacetime

Physics from the Grassmannian,” JHEP 01 (2011) 108, arXiv:0912.3249 [hep-th].

42, 80, 85, 101, 216, 235, 238

283

http://dx.doi.org/10.1016/j.nuclphysb.2007.11.007
http://arxiv.org/abs/0709.2368
http://arxiv.org/abs/0709.2368
http://dx.doi.org/10.1016/j.nuclphysb.2009.10.013
http://arxiv.org/abs/0712.1223
http://dx.doi.org/10.1016/j.physletb.2008.03.032
http://dx.doi.org/10.1016/j.physletb.2008.03.032
http://arxiv.org/abs/0712.4138
http://dx.doi.org/10.1016/j.nuclphysb.2009.02.015
http://arxiv.org/abs/0803.1466
http://arxiv.org/abs/0803.1466
http://arxiv.org/abs/hep-th/0607160
http://arxiv.org/abs/hep-th/0607160
http://arxiv.org/abs/0905.4379
http://dx.doi.org/10.1088/1126-6708/2009/05/046
http://arxiv.org/abs/0902.2987
http://arxiv.org/abs/0902.2987
http://dx.doi.org/10.1088/1126-6708/2009/04/018
http://arxiv.org/abs/0808.2475
http://dx.doi.org/10.1007/JHEP01(2011)108
http://arxiv.org/abs/0912.3249


[52] R. Roiban, M. Spradlin, and A. Volovich, “On the Tree-Level S-Matrix of

Yang-Mills Theory,” Phys. Rev. D70 (2004) 026009, arXiv:hep-th/0403190. 29,

38, 41, 81, 106

[53] R. Roiban, M. Spradlin, and A. Volovich, “All Googly Amplitudes from the

B-Model in Twistor Space,” JHEP 04 (2004) 012, arXiv:hep-th/0402016. 29, 81,

94

[54] E. Witten, “Parity Invariance for Strings in Twistor Space,” Adv. Theor. Math.

Phys. 8 (2004) 779–796, arXiv:hep-th/0403199. 29

[55] C. Vergu, “On the Factorisation of the Connected Prescription for Yang-Mills

Amplitudes,” Phys. Rev. D75 (2007) 025028, arXiv:hep-th/0612250. 29

[56] S. Gukov, L. Motl, and A. Neitzke, “Equivalence of Twistor Prescriptions for

Super Yang- Mills,” Adv. Theor. Math. Phys. 11 (2007) 199–231,

arXiv:hep-th/0404085. 29

[57] L. J. Dixon, “Twistor String Theory and QCD,” PoS HEP2005 (2006) 405,

arXiv:hep-ph/0512111. 29

[58] L. J. Mason, “Twistor Actions for Non-Self-Dual Fields: A Derivation of

Twistor-String Theory,” JHEP 10 (2005) 009, arXiv:hep-th/0507269. 29

[59] N. Berkovits and E. Witten, “Conformal Supergravity in Twistor-String Theory,”

JHEP 08 (2004) 009, arXiv:hep-th/0406051. 29

[60] L. Dolan and J. N. Ihry, “Conformal Supergravity Tree Amplitudes from Open

Twistor String Theory,” Nucl. Phys. B819 (2009) 375–399, arXiv:0811.1341

[hep-th]. 29

[61] J. Bedford, “On Perturbative Field Theory and Twistor String Theory,”

arXiv:0709.3478 [hep-th]. 29

[62] L. Mason and D. Skinner, “Heterotic Twistor-String Theory,” Nucl. Phys. B795

(2008) 105–137, arXiv:0708.2276 [hep-th]. 29

284

http://dx.doi.org/10.1103/PhysRevD.70.026009
http://arxiv.org/abs/hep-th/0403190
http://arxiv.org/abs/hep-th/0402016
http://arxiv.org/abs/hep-th/0403199
http://dx.doi.org/10.1103/PhysRevD.75.025028
http://arxiv.org/abs/hep-th/0612250
http://arxiv.org/abs/hep-th/0404085
http://arxiv.org/abs/hep-th/0404085
http://arxiv.org/abs/hep-ph/0512111
http://arxiv.org/abs/hep-ph/0512111
http://arxiv.org/abs/hep-th/0507269
http://arxiv.org/abs/hep-th/0406051
http://dx.doi.org/10.1016/j.nuclphysb.2009.04.003
http://arxiv.org/abs/0811.1341
http://arxiv.org/abs/0811.1341
http://arxiv.org/abs/0709.3478
http://arxiv.org/abs/0709.3478
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.010
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.010
http://arxiv.org/abs/0708.2276


[63] L. Dolan and P. Goddard, “Tree and Loop Amplitudes in Open Twistor String

Theory,” JHEP 06 (2007) 005, arXiv:hep-th/0703054. 29, 80, 81, 82, 86, 87, 94,

95, 97, 98, 106, 238

[64] F. Cachazo and P. Svrcek, “Lectures on Twistor Strings and Perturbative

Yang-Mills Theory,” PoS RTN2005 (2005) 004, arXiv:hep-th/0504194. 29

[65] P. Griffiths and J. Harris, Principles of Algebraic Geometry. Wiley, New York,

1978. 29, 81, 101, 113, 163, 166

[66] D. Nandan, A. Volovich, and C. Wen, “A Grassmannian Etude in NMHV

Minors,” JHEP 07 (2010) 061, arXiv:0912.3705 [hep-th]. 29, 43, 44, 80, 81, 82,

84, 86, 87, 94, 95, 101, 106

[67] H. White, “Seven Points on a Twisted Cubic Curve,” Proc. Natl. Acad. Sci. 1

(1915) 464. 46

[68] J. M. Drummond and L. Ferro, “Yangians, Grassmannians and T-duality,” JHEP

07 (2010) 027, arXiv:1001.3348 [hep-th]. 80, 101, 247

[69] G. P. Korchemsky and E. Sokatchev, “Superconformal Invariants for Scattering

Amplitudes in N = 4 SYM Theory,” Nucl. Phys. B839 (2010) 377–419,

arXiv:1002.4625 [hep-th]. 80, 101

[70] L. Dolan and P. Goddard, “General Split Helicity Gluon Tree Amplitudes in

Open Twistor String Theory,” JHEP 05 (2010) 044, arXiv:1002.4852 [hep-th].

80, 81, 94
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