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ABSTRACT

Quantum field theory is as ubiquitous and important in modern theoretical
physics today as the calculus was shortly after Newton. And like the calculus
during the eighteenth century, quantum field theory is still considered very
difficult by many, and is still surprising to us all. Although the ultimate foun-
dations of quantum field theory have changed very little in the decades since
its creation, we continue to find ourselves ill-prepared for the remarkable sim-
plicity of the predictions it makes. Among the most striking examples of this
failed intuition has been from the computation of scattering amplitudes (the
‘S-Matrix’) in theories with maximal supersymmetry (‘N = 4’), which are no-
toriously difficult to compute using familiar Feynman diagrams and yet turn
out to be extremely simple and elegant. Recently, this underlying simplic-
ity has been made more manifest through powerful alternative approaches to
quantum field theory, including a recursive on-shell definition of the S-Matrix
of planar N' = 4 to all orders of perturbation theory described in this dis-
sertation. These new developments increasingly suggest the existence of a
fundamentally different and more powerful understanding of quantum field

theory, with broad theoretical implications as well as practical applications.
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Spiritus Movens: Foreshadowing Recent

Progress in Scattering Amplitudes

In 1985, Parke and Taylor pushed the boundaries of theoretical and computational
tools known at the time and succeeded in determining the ‘leading contribution’ to the
scattering amplitude for two incoming gluons to produce four outgoing gluons in quantum
chromodynamics (QCD) [1]. In order to accomplish this Herculean computation, they
first translated the problem into a simpler one by exploiting an artificially-introduced
‘N' = 2 supersymmetry’—an extremely convenient trick, and one which is still used
widely today—and they employed a supercomputer to combine all of the several hun-
dred Feynman diagrams which contribute to the amplitude. Their final answer spanned
eight dense pages, but—as they apologized to their readers—the ‘details of the calcula-
tion” would have to wait for a future, more lengthy work. And yet, somewhat whimsi-
cally, they chose to close their report with the seemingly fantastical hope that they may
somehow “obtain a simple analytic form of the answer, making [the] result not only an
experimentalist’s, but also a theorist’s delight.”

Six months later, they stumbled upon exactly what they had hoped for: they arrived
at “an educated guess” for the same leading part of the scattering amplitude painfully
computed earlier, but not merely for the amplitude involving six gluons, but for ampli-
tudes involving any number of gluons whatsoever [2]. And the answer they proposed was

spectacularly simple: in modern notation, they suggested,

_ _ B (i)
Avuv(1H,2% 0 i, 7, ., nT) = 0234 (1) (0.1)

This formula was meticulously checked against their previous calculation, and found to
agree perfectly.

Perhaps the single most astonishing thing about the now-famous Parke-Taylor formula
(0.1) is the stark contrast between its simplicity—and vast generality—and the eight

dense pages of tabulated contributions they had presented for the six-gluon scattering
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amplitude six months earlier (both formulae, of course being ultimately different ways
of writing the same polynomial). Clearly, the final answer betrays a deep, underlying

simplicity which was completely obfuscated by the way it had been calculated.

In the quarter-century since Parke and Taylor’s discovery, there have been many leaps
forward in our understanding of perturbative quantum field theory; this is especially the
case for theories with maximal supersymmetry (‘A" =4’ and ‘N = §’), but it is also true
for the more banal, non-supersymmetric quantum field theories such as quantum chromo-
dynamics (QCD) (which constitutes much of the background which must be understood
at today’s particle accelerators). It is worth mentioning that to the leading-order of
perturbation theory (referred to as ‘tree-level’) supersymmetry serves only as a powerful
book-keeping device: ultimately, tree-level scattering amplitudes for gluons are the same
whether or not a theory is supersymmetric. At higher orders in perturbation theory—
those involving loops of virtual processes—however, N’ = 4 is quite different from its
non-supersymmetric cousins. Nonetheless, largely because of the important advantages
gained by using supersymmetry at tree-level, amplitudes in N' = 4 play a central role
in virtually all gauge-theory scattering amplitude computations, both in supersymmetric
and non-supersymmetric theories alike. Indeed, it could be said that A/ = 4 has played
an important role in almost all the major breakthroughs in our broad understanding of

quantum field theory over the past two decades.

Much of this new understanding has been facilitated by the development of a number
of rich, alternative formulations of perturbative quantum field theory which have very
little resemblance to their Feynman-diagram ancestral origins. These ‘dual’ descriptions
have made it possible to easily calculate scattering amplitudes of ever-expanding com-
plexity, dramatically increasing the amount of ‘theoretical data’ available for formulating
(and testing) new hypotheses to explain the surprising simplicity discovered at the end
of almost every scattering amplitude computation. Among these new formulations are
the Berends-Giele recursion relations [3]; Witten’s twistor string theory [4]; the CSW [5]
and Risager [6] recursion relations; and the BCFW recursion relations [7]. These frame-
works are all quite distinct from one another, each making quite different properties of
scattering amplitudes manifest. And for the most part—until very recently—there has
been very little understanding of whether, or how these strikingly different descriptions

of quantum field theory could be related to one another, let alone how they could fit



into any larger structure. One salient feature shared by all, however, was the lack of any
intrinsic justification for its existence—any new picture for what scattering amplitudes

were computing or why they were so simple.

The conflict between the manifest simplicity of scattering amplitudes and the tradi-
tional tool-box given to us by Feynman became extremely sharp in 2008, when it was
discovered that scattering amplitudes (at tree-level, and—in a qualified sense—to all
loop-orders) were not merely invariant under the defining superconformal symmetries of
N = 4, but they are also invariant under an entirely-new set of dual superconformal trans-
formations [8,9]. And because arbitrary combinations of the two superconformal symme-
tries are also symmetries, these two in fact generate an infinite-tower of successively-dual
symmetries under which scattering amplitudes are invariant; this infinite-dimensional
symmetry algebra is known as the Yangian. It suddenly became clear that one should
try to reformulate the theory in a way which would keep all these powerful symmetries

manifest.

However, any formulation of quantum field theory based on Feynman diagrams de-
rived from a Lagrangian—a manifestly local function on spacetime—must choose a par-
ticular spacetime in which to make locality manifest, scattering amplitudes computed
with Feynman diagrams are inherently biased toward one particular set of superconfor-
mal symmetries at the cost of obfuscating the others. Manifest locality, and by extension
unitarity—traditionally the salient features of the Feynman expansion—seem directly

opposed to the underlying simplicity of scattering amplitudes in N' = 4.

This strongly suggested that an entirely new formulation of quantum field theory
should exist—especially for the case of N' = 4, but also for quantum field theory more
generally. Such a dual theory was proposed two years ago by Arkani-Hamed et al. [10],
and this formulation has already led to several major breakthroughs in our understanding
of scattering amplitudes and—arguably—in our understanding of quantum field theory
more generally. In this new framework, amplitudes are calculated as contour integrals in
an auxiliary space, the space of k-dimensional planes in n-dimensions, a space known to
mathematicians as the Grassmannian, G(k,n). Shortly after the appearance of [10], it

was shown that Grassmannian contour integrals generate all Yangian invariants [11].

Since the Grassmannian proposal was made, it has led to a near-continuous succession

of major breakthroughs. For example, together with Arkani-Hamed, Cachazo, and Trnka,
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Chapter 1, it was found that formulae derived for scattering amplitudes using the BCFW
recursion relations can be smoothly deformed into the forms computed by either the
Risager or the CSW expansions. Shortly thereafter, we demonstrated how yet another
smooth deformation of the contours for scattering amplitudes connect these forms to
those obtained in Witten’s twistor string theory [12], described in Chapters 2 and 3. And
in Chapter 6, the connection between the Grassmannian integral and all of the known
dual-formulations of quantum field theory will be completed by illustrating how also the

the local Berends-Giele recursion relations can be realized in the Grassmannian, [13].

Giving this framework a foundation independent of traditional quantum field theory,
we will show in Chapter 2 how the particular integrals in the Grassmannian which com-
pute scattering amplitudes arise in a precise way by merely endowing the Grassmannian
with a ‘particle interpretation’: every n-point scattering amplitude can be obtained by
simply ‘adding a particle’ to the contour defining the (n — 1)-point amplitude—in an
essentially unique way, [12]. And so it became possible to imagine ‘boot-strapping’ all
tree-amplitudes in A/ = 4 from only the most elementary by successively adding parti-
cles one at a time. This vision will be fully-realized in Chapter 3 in which we describe
work done together with Trnka, Volovich, and Wen, deriving a new closed-formula for all

tree-amplitudes in N = 4, [14].

But during the past two years, it has become increasingly clear that there is much,
much more to learn from this story than what had been seen at tree-level. For one thing,
it turns out that the contours defining tree-amplitudes can in fact be extended to all or-
ders of perturbation theory by systematically integrating-out particles from lower-order
amplitudes, [15]—giving both a compelling new picture for the origin of quantum me-
chanics, and supplying an incredibly powerful new tool with which to compute scattering
amplitudes to high order. This is described in Chapter 4. It is worth emphasizing this
second—essentially technological—implication of having such a recursive definition of the
S-Matrix: from the moment we understood how to obtain loop-amplitudes from trees,
it required less than twenty-four hours for us to compute amplitudes well-beyond what
was then deemed essentially intractable by experts. Indeed, endowed by this powerful set
of new tools, we were able to present in [15] the ‘two-loop’ (or, next-to-next-to-leading-
order) generalization of equation (0.1)—collapsing the then known result which spanned

ten pages [16]—to essentially a single term—a simplification not unlike that captured in
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equation (0.1) itself.

Indeed, in the time since [15] was published, many new and exciting forms of multi-
loop amplitudes have been found, including a one-line formula for the ‘next-to-next-
to-next-to-leading-order’ (3-loop) corrections to (0.1), and a similarly-compact formula
for all 2-loop ‘NMHV’ amplitudes (a class of amplitudes which—before the advent of
the tools described in Chapter 4—were so challenging that no examples were known in
the literature). These expressions are particularly remarkable because they are free of
any unphysical propagators, and are therefore called ‘local.” This will be discussed in
Chapter 5. In some cases, the remarkable simplicity enjoyed by these local forms of loop
amplitudes have been found to be closely connected with an extremely elegant geometric
interpretation for what they are computing: the volumes of simplicies. This is described
in Chapter 6, also reported in [13]. It is not yet known to what extent this geometric
picture extends beyond some simple examples, but Chapter 6 provides a striking example
of very different organizing principle behind computations in quantum field theory.

The situation today is not unlike the situation in string theory a little over a decade
ago, when many disparate theoretical frameworks were suddenly seen to be different
aspects of a single underlying theory, named M-theory. This unification gave rise to
many important, previously unanticipated breakthroughs. And so it seems to be with the
Grassmannian. Within a relatively short period of time, it may be possible to understand
N = 4 completely. Indeed, it does not seem unreasonable to expect this research to
give rise to important new insights in several branches of pure mathematics, to generate
powerful new tools for practical computations relevant to collider physics, and to continue

to deepen our understanding of quantum field theory in general.



Chapter 1 Contour Deformation
and CSW Recursion

1.1 N =4 SYM and the Grassmannian

A dual formulation for the S-Matrix of N =4 SYM was recently been proposed in [10],
where the leading singularities of the n-particle N¥2MHV amplitudes—to all orders in
perturbation theory—are associated with a remarkably simple integral over the Grass-

mannian G(k,n):

1 A" Coa : 414
ﬁ"’k(W)ZVOI(GLk)/(m---k:)(23---k+1)---(nl-..k—l) 110" (Caav)- (11.1)

a=1
Let us quickly review the notation appearing in (1.1.1). First, the Grassmannian G(k, n)
is the space of k-planes in n dimensions, an element of which can be represented by
a collection of k n-vectors in the n-dimensional space whose span specifies the plane.
These vectors can be put together into the £ x n matrix C,,, where a = 1,...,k and

a=1,...,n. With this, we write

(mymy - - my) = €37%Co s -+ Copm (1.1.2)

for the minor of the k£ x n matrix C,, made from the columns (mq,--- ,my). Since any
k x k linear transformation on these k vectors leaves the k-plane invariant, there is a
G Ly “gauge symmetry” Co, — LECp,; our integral is “gauge-fixed” by dividing by the
volume of G L. The amplitude is given in dual twistor space, W, = (li4, Xa|ﬁa), where [i,
is the (half-Fourier transform) conjugate of Xa, and Ne is @ SUSY Grassmann parameter.

This expression can be trivially transformed back to momentum space—the only

dependence is in the §**(CyoW,) factor, which transforms into
n k
5 (CoaW,) — / A% p T] 0%(p*Caa — Aa) X [ 0%(Caaha) X 6*(Cualla)-  (1.1.3)
a=1 a=1

In words, this equation embodies a simple new way of thinking about momentum con-

servation. The kinematical data is given by specifying n individual A\,’s and Xa’s, each of

6



which has two Lorentz indices. We can think of each (Lorentz) component as specifying
some n-vector in the n-dimensional space of particle labels. Actually, given that the
Lorentz group is SLs X SLsy, the Lorentz-invariant statement is that there is a two-plane
A and another two-plane X; momentum conservation » )\axa = 0 is the statement that
the two-planes A and \ are orthogonal. Equation (1.1.3) interprets this in a different
way, by introducing an auxiliary object—the k-plane C—and forcing C' to contain the

A-plane (the first factor) and be orthogonal to the A-plane (the second factor).

The final, Grassmann J-function in equation (1.1.3) ensures that the object is invari-
ant under all of GL; (and not just SLi). In fact, we could have motivated the entire
construction leading to equation (1.1.1) from this picture of momentum conservation:
the measure in the integral over the Grassmannian is simply the nicest G Lg-invariant
one with manifest cyclic symmetry. Note also that while (1.1.1) makes superconformal
invariance manifest, the momentum-space form involving (1.1.3) makes parity manifest:
the action of parity is just the obvious map between G(k,n) and G(n—k,n). This can be
seen explicitly by choosing a natural gauge-fixing of G Ly, where k of the columns of C'

are set to an orthonormal basis, corresponding to the “link-representation” [10,17].

The geometric picture of momentum conservation motivates yet another representa-
tion of L, , which makes dual superconformal invariance manifest [18,19]. Since mo-
mentum conservation requires that the C-plane contains the A two-plane, it is possible
to re-write the integral as one over only the space of (k —2)-planes, D, which are comple-
mentary to A in C'. This can be done using a gauge-fixing of GLj which forces the first
two rows of the C'-matrix to coincide with the A-plane—thereby manifestly encoding the

fact that the Grassmannian includes the A-plane. A further linear transformation maps

A 2-plane

A

2-plane
Ck

-plane

Figure 1.1: The geometric realization of momentum conservation.
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Figure 1.2: The relationship between momentum-twistors and dual-spacetime points.

Za+2 Lot
Z%/ 4
La Pa+1
-_
= g
/\
\ Ta-NPa-1
ZN S .

k x k minors to (k —2) x (k — 2) minors, and we find that we can write

330 Aara) 5 (X, Aalla)

where
1 dk=2)xn ) ]j’\—Q s44(p. =z
Ruk(Z2) = / do_Iloy 0 DanZa) (1.1.5)
’ ol(GLra) ) (2 k=2)23 - k=1)---(nl --- k=3)

Here, the Z, are the “momentum-twistor” variables introduced by Hodges [20], which
are the most natural variables with which to discuss dual superconformal invariance.
External particles are associated with points x, in the dual space, with p, = x,11 — 4.
The point x, is associated with a line in 7ts associated momentum- “twistor space”; and
since T, — X441 is null, the line in momentum-twistor space associated with x, intersects
the line associated with z,.,. Therefore, we can associate x, with a canonical pair of
momentum-twistors (Z,, Z,_1) defined by the intersection of lines. This is illustrated in
the figure below. The momentum twistor Z, is composed of Z, = (ptq, Aa|74), Where the
variables Xa, N are determined by p,, n,. Explicitly, they are given by
5 (0= 1 e + (et pias + (0t La— D,
(a—1a){aa+1)
1

~ f{a—lame+(@a+1)yn+{a+la—1)n,
e = (a—1a)(aa+1)

(1.1.6)

Dual superconformal transformations [8,19-21] are just linear transformations of the
Z,, which is a manifest symmetry of equation (1.1.5), just as ordinary superconformal
transformations are linear transformations on W, making them a manifest symmetry of
equation (1.1.1). Thus, equation (1.1.1) makes all the important symmetries of N' = 4
SYM amplitudes manifest.



The momentum-space formula for £, is to be interpreted as a contour integral in
(k —2) x (n — k — 2) variables, which can be thought of as specifying the unfixed degrees
of freedom of a (k—2)-plane orthogonal to both the A- and A-planes. In [10], evidence was
given that the residues of the integrand are associated with leading singularities up to 2
loops, motivating the conjecture that all leading singularities are contained as residues.
This conjecture carries even more weight given the realization that all the residues are
both superconformal and dual superconformal invariant, which further means they are
invariant under the full Yangian symmetry [8]. Leading singularities are data associated
with scattering amplitudes that are free of IR-divergences—at loop level, they can be
thought of as being associated with loop integrals over compact contours—and should
therefore reflect all the symmetries of the theory. In fact, the residues of our object can be
thought of as generating (likely all) Yangian invariants that are algebraic functions of the
external spinor-helicity variables. Furthermore, as emphasized in [10], higher-dimensional
residue theorems encode highly non-trivial relations between these invariants, many of

which have striking physical interpretations such as loop-level infrared equations.

It is clear that there is an enormous amount of fascinating structure to be uncovered
in the properties of the individual residues of £, 1, since they are invariants of the most
remarkable integrable structure we have ever seen in physics! Recent work [22,23] as
well as work to appear [24] gives strong evidence that infinite classes of all-loop leading

singularities are indeed contained amongst the residues of L, .

There is however something even more remarkable than the properties of residues
taken individually: they can be combined in such a way as to produce amplitudes with a
local space-time interpretation. Consider for instance NMHV tree amplitudes (k = 3). A
given residue is associated with putting (k—2)(n—k—2) = (n—>5) minors to zero, which
can be labeled as (my) - - - (m,_5), where (m) denotes that the minor (m m+1 m+2) has
been set to zero. In [10], it was shown that a natural BCFW expansion for the NMHV

amplitudes is given by a sum of residues

MRy = D (01)(€2)(05) - (1.1.7)

-~

n — 5 terms

where the sum is over all strictly-increasing series of (n —5) alternating odd (o) and even
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(e) integers; to be explicit the 6-,7- and 8-particle amplitudes are given by

Mexamv = (1) +(3) + (5);
MPamy = (D(2) + (D)) + (1)(6) + (3)(4) + (3)(6) + (5)(6); (1.18)
My = (W2)3)+ M)2)(5) + (M))(7) + (M)()(5) + (1)(4)(7)

+ (1)(6)(7) + (3)(4)(5) + 3)(4)(7) + (3)(6)(7) + (5)(6)(7)

We remind the reader of a fact that will be important repeatedly: residues are naturally
alternating in the arguments, so that e.g. (i1)(ia) = —(i2)(¢1). The P(BCFW) form of
the amplitudes has exactly the same form as BCFW, but switching the role of even and

odd integers:

My = (1" (e)(02)(es) - . (1.1.9)

n — 5 terms

As shown in [10], the equality MBCFW = APBCFW) ig a4 (quite non-trivial) conse-
quence of global residue theorems, which further guarantees the cyclic invariance of the

amplitude.

This presentation of the NMHV amplitudes makes all of its symmetries manifest,
and is strikingly “combinatorial” in nature. One thing that is seemingly not manifest,
however, is that this object has anything whatsoever to do with a local space-time La-
grangian! Each term individually has “non-local” poles, which magically cancel in the
odd/even/odd combination defining the amplitude. The cancelation of these non-local

MBCFW — pPBCEW) “gince the non-

poles can be understood indirectly by the equality
local poles appearing in the two forms turn out to be different. However, this is very far
from establishing that this object comes from a local Lagrangian, and one would certainly

like to see the emergence of space-time in a much more direct and explicit way.

In this chapter, we will argue that the local space-time description of tree scattering
amplitudes is actually hiding in plain sight in the BCFW sum over residues in the Grass-
mannian. We will show that a very natural and canonical contour deformation converts
the BCFW form of tree scattering amplitudes to the CSW/Risager expansion, which is

a direct reflection of the space-time Lagrangian in light-cone gauge!
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1.2 Brief Review of CSW and Risager

To set the stage, let us quickly review the story of the CSW recursion relations [5, 25,
26] and the very closely-related Risager recursion relations [6,27]. The CSW rules are
simply Feynman rules [28], except that the vertices are off-shell continuations of MHV
amplitudes, where the \’s for internal lines with momentum P are defined by

Ap = PJ(], (1.2.10)

where ( is an auxiliary spinor. Note that we use a different notation for this auxiliary
spinor than the usual one in the literature, 7, in order to not confuse this object with the
SUSY Grassmann parameters. The similarity with usual Feynman rules and the hidden
Lorentz invariance of this expansion is not a coincidence: the CSW rules can be derived
from the Yang-Mills Lagrangian by going to a more sophisticated version of light-cone
gauge [28,29]; the auxiliary spinor ( is associated with the light-like direction defining the
light-cone gauge. As usual in light-cone gauge, we have only physical degrees of freedom,
the two polarizations % of the gluons. There are cubic interactions (++ —), (— —+) and
the quartic interaction (+ + ——). From this, it is possible to make a field redefinition
to remove the anti-MHV (4 + —) interaction; this forces the introduction of an infinite
number of new MHV vertices, which must—on-shell—reproduce the MHV amplitudes.
The resulting Lagrangian is precisely the one that gives the CSW rules. The equivalence
between the MHV rules in a light-cone gauge and usual Lorentz-invariant formulation of
the (super) Yang-Mills Lagrangian £ = —itrF 5y+. .. was nicely established in a different
way in [30]. Beginning with a twistor space action with a large amount of gauge symmetry,
one gauge-fixing leads to the usual manifestly Lorentz-invariant Yang-Mills action, while
a different gauge-fixing yields the MHV Lagrangian in light-cone gauge. Thus, the CSW
rules should be thought of as directly reflecting the Yang-Mills Lagrangian in light-cone
gauge, encoding local space-time physics in the most succinct possible way.

For future reference, we remind the reader that the terms in the CSW expansion of
the N¥2MHV amplitude are localized on (k—1) intersecting lines in the Z-twistor space:
the MHV vertices in the CSW diagrams are associated with lines in twistor space, while
the internal lines are associated with points where these lines intersect. Thus, a general
term in the CSW expansion of NMHV amplitudes with particles m, k, and [ of negative

helicity is localized in twistor space as shown below.

11



1+1

7+1

The Risager deformation is closely related, providing an alternate derivation of the
CSW rules that closely parallels the logic leading the BCFW recursion relations [7,31-33].
As with BCFW, it involves a deformation of the spinor helicity variables; specifically, it

begins by canonically deforming the Xi’s for all the negative helicity particles:
X = A+ auzC (1.2.11)
In order to conserve overall momentum, the a; must satisfy the constraint

D ik =0. (1.2.12)

Thus, for k£ negative helicity gluons, the most general Risager deformation is labeled by
(k — 2) parameters. It is possible to show that under this deformation the amplitude
vanishes as z — 00, so that the familiar BCFW logic leads to recursion relations (see,
e.g. [32,34]). Remarkably, Risager showed that repeated recursive use of this deformation
leads to the CSW rules [6].

Below we will study the Risager expansion for MHV amplitudes in the split-helicity
configuration. In this case, the Risager diagrams consist only of ones with a three-point
vertex and the lower-point MHV amplitude connected by a propagator. We will find
it useful to look at Risager deformations in momentum-twistor variables pu,, for which
the general N¥"2MHV split helicity amplitude A(17,27,..., (k=1)",k*,..., (n=1)*,n")
takes the remarkably simple form:

o+ 28,C f =1,...,k2 . arbit
7, = to + 20,¢ for a (B, arbitrary) | (1.2.13)

a fora=+k-1,...,n

Note that this deforms (k — 2) terms, which is exactly the number of independent a’s
in (1.2.11). There are no constraints on the (3, since—by construction—any choice of

e is guaranteed to produce Ao ’s that satisfy momentum conservation. This choice of 3,
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determines the deformation of the negative helicity particles «; as

(i =1)3; 41 + (i+1 8)Bimy + (1=1 i+1);

(L i) 1) (1.2.14)

o; =

1.3 Relaxing ¢-Functions

We now describe the contour deformation that will lead us from the BCFW contour in
the Grassmannian to the space-time Lagrangian in light-cone gauge, passing through the
CSW and Risager expansions of tree amplitudes. We begin with the form of £, ; in
momentum space. It is most convenient to use the momentum-twistor form, since this
explicitly exhibits the (super) momentum-conserving J-functions in the pre-factor, and
we can study instead the object R,, 4.

There is something seemingly unnatural in the expression for R, ;: it is a nice,
holomorphic contour integral, but it has explicit d-function factors! This is not unnatural
at all, since these are in fact to be thought of “holomorphic” dé-functions, which are

properly interpreted as poles. In other words, we may interpret §%(u) as being really

1 1
() = — x —; 1.3.15
() = % o (1.3.15)

or more generally, introducing a pair of auxiliary spinors Y, (, we write

8 (p) = _Ixdl 1.3.16
U= fulcu 10
where we also demand that the contour of integration enforce the poles where [x u| = [( u] = 0.

Note that the expression in equation (1.3.16) is not manifestly Lorentz invariant—but of
course the residue obtained on the pole of both factors is Lorentz invariant. The reason

7 is to emphasize the Lorentz invariance of the final object.

for using the notation “6%(u)
Thus, when we say that the expression for R, is a contour integral in (k—2)(n —k —2)
variables, we really mean that we started with a larger (k — 2)(n — k + 2)-dimensional
integral and have already fixed part of the contour by specifying that it enforces 4(k — 2)
poles associated with the Bosonic parts of the §*(Dg, 2, )-factors. Similarly, what we have
been referring to as “the” residues of R, are really particular residues in this higher-

dimensional integral, evaluated on 4(k — 2) extra poles, with an extra (k —2)(n — k —2)

conditions involving the minors needed to fully-specify the residue.
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This way of thinking about the d-functions explicitly as poles naturally suggests some-
thing very remarkable. We can “relax” any one of the d-functions, using a residue theo-
rem to move the contour off one of its associated poles, and thereby express a manifestly
Lorentz-invariant residue as a sum over non-Lorentz invariant terms which involve putting

an extra minor to zero. Inspired by this, we will take one of the §2-factors and replace it

by

0*(p) = 8([¢ p]) x % (1.3.17)

where we mean that the pole at [¢ u] = 0 is still being enforced while we allow ourselves
the freedom to deform the contour off the pole at [y pu] = 0. Note that while this
expression is not Lorentz-invariant away from both poles, it is independent of the choice
of x. The reason is that on the zero of [( u] = 0, p is proportional to ( and we may write
w=dx (¢, and so [x(]/[xu] = 1/d is x-independent. Thus, relaxing the J-function in
this way expresses a Lorentz-invariant reside as a sum over non-Lorentz invariant terms
which are a function of only a single auxiliary spinor (. Concretely, we can do this for

one of the §%(Dg,pt,) factors—e.g. that of @ = 1-—by making the replacement

52(Drajta) — S(DralC pal) x 2L (1.3.18)

Dia[X ta]
and deforming the contour off the Dy,[x o] pole.

Clearly, this operation can be extended to relax even more d-functions; but we will see
that relaxing just one d-function “blows up” Lorentz-invariant residues into a sum of non-
Lorentz invariant terms with a beautiful physical interpretation. For the NMHV case,
we will see that some of the terms in the sum are precisely the ones that appear in the
CSW expansion of NMHV amplitudes. This is strongly suggested—even without a direct
computation—by the localization properties of these terms both in the Grassmannian and
twistor space, and the precise equality can be easily verified. Other terms in the sum
do not have the appropriate localization properties and are not associated with CSW
terms. The CSW terms have a local space-time interpretation and are therefore free of
non-local poles, while the others do contain non-local poles. In a sense our d-relaxing
contour deformation has performed a particularly powerful partial fraction expansion of
the residue into a sum over local and non-local pieces. Remarkably, in the sum over

residues with the alternating odd/even structure of equation (1.1.9), all the non-CSW

14



terms appear precisely twice with opposite signs and cancel in pairs, while the remaining
terms are exactly the terms of the CSW expansion of the amplitude!

For k > 3, it is easy to see that relaxing a single d-function can not directly produce
CSW terms. Nonetheless, such a canonical operation must have a physical meaning, and
the only natural candidate for a non-manifestly Lorentz invariant form of amplitudes
depending on a single auxiliary spinor is the Risager expansion. This raises a puzzle,
however, since the Risager expansion is not unique, but is labeled by (k — 2) degrees of
freedom. We establish the precise equivalence and understand the origin of these degrees
of freedom for the case of split-helicity MHV amplitudes, where the (k—2) free parameters
of the Risager deformation are seen to be quite non-trivially determined by the degrees of
freedom associated with the GL;_s “gauge symmetry” of the momentum-twistor formula.

As was shown by Risager [6], a recursive application of the Risager recursion even-
tually yields the CSW expansion for general amplitudes. Although we won’t pursue
this direction further in this chapter, this strongly suggests that the CSW expansion
for general amplitudes can be directly obtained by recursively relaxing many J-function

factors.

1.4 NMHYV and CSW from d-Relaxation

I. Preliminaries

Let us work in the momentum-twistor picture, where

dn75D1a
s =M | i

Here the 1 x 1 minors (j) are of course just single variables D;;; we remind the reader
that the linear transformation from the G(k,n) to the G(k-2,n) picture makes the (k —
2) x (k—2) minor (23---k-1)p proportional to the k x k minor (12--- k)¢, so that e.g.

(D1, 2,). (1.4.19)

the minor (2) in the momentum-twistor picture is proportional to the minor (12 3) in the

G(3,n) picture. For convenience we will denote the elements of the 1 x n matrix Dg, as

(D1, Ds, ..., Dy). (1.4.20)

In other words, we remove the index @ when k = 3 since it takes a single value.
A given residue is associated with setting (n — 5) of the minors to zero as is obvious:

after gauge-fixing any one of the D,, setting (n — 5) of the D,’s to zero allows us to use

15



the Bosonic d-function to solve for the remaining four D’s. We denote this residue as

(a1)(as)(as)(aq)(as), which instructs us to write all minors in cyclic order starting from
(1), with (ay),..., (as) left off. As an example with n = 8, (2)(3)(4)(6)(7) denotes the
residue (1)(5)(8) where the minors (1), (5),(8) are set to zero. We remind the reader

once again that residues of functions in several complex variables are antisymmetric
objects, so that the order in which the minors are presented matters, and e.g., (1)(5)(8) =
~(5)(1)(8).

We will be looking at explicit gluon amplitudes in what follows, so we need to in-
tegrate over the SUSY Grassmann parameters to extract these. This is a completely
straightforward exercise. We set the gluons with a € I to have negative helicity, strip-off

the ordinary momentum-conserving d-function, and we write £, = 0*(>_, )\axa)Lnyk

with
1 (k_2)><nDA ﬁ 4 4 D~ Z
Loy = / d o_(detD)" x 0%(DaaZa) (1.4.21)
’ vol(G Ly_s) (12 - k-2)23---k—1)---(nl--- k-3)

where D is a k x k matrix

N Aol R n

Dor=|— | with Doy =O(I = 1) Y Dua(I a); (1.4.22)

ﬁal a=I1+1

here, ©(x) is 1 for x > 0 and 0 otherwise.

Note that while in this expression particle “1” appears to play a special role, it could
be replaced by any other starting point, with all the expressions for L, ; agreeing on the
support of the d-functions.

Returning to the £ = 3 case, a general residue is explicitly given by

(1) (@) (a3) (@n)(as) = / %(daﬁ)%‘*wm%+~-+Da5za5); (1.4.23)

we can relax the d-function for the u-term by making the replacement

[x (]

9 1
0 (Dap“a) — 5(Da[“a C]) X m = Eé(Da[:ua C]) (1424)

Then, we can use a residue theorem to deform the contour off D,[x pa] = 0, or equivalently

off d = 0, and write

(@) (a)(@s)(@0)(as) = 3 [(@00)(@o(a) (@ae) ow)d (005)] . (14:25)

o€Ls
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where the sum is over cyclic permutations of {1,2,3,4,5}. For example,

(@) (@) (as)(ar)d (as)]

is given by
dD,, ---dD, ~ .1
/ D : .. D : <detD>4862(Da1)‘a1 +oot Das>‘a5)5(Da1 [C Mal] +eeet ‘DGS[C MGS])'
al as
Day=0

(1.4.26)

II. Localization Properties of the Grassmannian

Before we demonstrate the complete equivalence of the CSW expansion and the terms
generated by “blowing-up” each residue of the NMHV contour, it is worthwhile to give
an intuitive understanding of why this should work.

One of the strongest hints that there should be a direct connection between the CSW
expansion and L, j is how the localization in twistor-space implied by CSW is mirrored
by a localization within the Grassmannian itself. We can see this directly by Fourier-
transforming the kinematical é-function §**(C,,W,) from the W-twistor variables to

their (ordinary) dual twistor-space variables Z:

k k
H 54I4(CaaWa) N /d4l4za H (54|4(Za — Caaz®). (1.4.27)

a=1 a=1

(These twistors Z, are ordinary twistors, which are the duals of W,, and should not be
confused with momentum-twistors.)

If we think of each column of G(k,n) as projectively defining a point in CP*!, then
the vanishing of a minor of G(k,n)—consecutive or otherwise—is equivalent to some
localization condition among these points in CP*~!. The first nontrivial example of this
can be easily seen for G(3,n), where a minor (i 7 k) = 0 if and only if the corresponding
points 4, j, and k are collinear in CP?. It is not hard to see that the twistor-space
“collinearity operator” e;jxpZ] Z] Z[*, which vanishes whenever the (Bosonic parts of
the) twistors Z;, Z;, and Z, are collinear [4], manifestly annihilates any residue of the
Grassmannian supported where the minor (i j k) vanishes. Similarly, for k& = 4, the
“coplanarity operator” ek Z] Z] Z[* Z|" which test whether Z;, ..., Z; are coplanar, will

annihilate any residue for which the minor (i j k& I) = 0. (Although beyond the scope
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F< PP < <

(123) (234) (345) (451) (512)

of the present discussion, there are many reasons to suspect that localization in the
Grassmannian is very natural and fundamental [35].)

The simplest example to begin with is the 5-point NMHV(=MHV) amplitude. Of
course, this amplitude is entirely fixed by the d-functions, and ordinarily no residue
would be chosen at all. Therefore, the contour deformation corresponding to relaxing
the d-function gives rise to a sum over each of the 5 minors

My = @B ()] + | DB @GN @) + ..
5 (1.4.28)
=) (G i+1j+2)].
j=1

From our discussion above, it is clear that the term in the expansion setting (1 2 3) =
0 forces the points 1, 2, 3 to be collinear in twistor space; it is trivial that NMHV ampli-
tudes are all localized on a CP? inside the CPP? of twistor space, so the line connecting 4, 5
intersects the line containing 1,2, 3 and thus, this term has the localization properties
we expect of a CSW diagram. This is true for all the terms in (1.4.28), and we can make
an association with the terms setting the minors to zero and each of the CSW diagrams
illustrated above.

Before showing the computation that establishes the precise equivalence with the
CSW terms, let us understand this localization picture for general NMHV amplitudes,
starting with the 6-particle case. A given residue (j j+1 j+2) is blown-up into the sum

of 5 terms,

(7 441 j+2) = Y (G j+1 j+2)(k k+1 k+2)] = Y _[(7) (k)] (1.4.29)
k#j k#j
where the term [(5)(j)] vanishes due to antisymmetry (or said another way, because it is a

double pole with vanishing residue). Although we are choosing to write (j j+1 j+2) = (j)

for convenience, these should not be confused with minors in the
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momentum-twistor picture. Let us look at the 5 terms in the blow-up of the residue

(1 2 3); these terms have the the following localizations structure in twistor space:

) 1

(123)(234) (1623)(345) (123)(456) (123)(561) (123)(612)

Note that while the terms [(1)(2)],[(1)(4)],[(1)(6)] do have CSW localization proper-
ties, the terms [(1)(3)] and [(1)(5)] do not. Similarly, the terms [(3)(1)] and [(3)(5)] in
the blow-up of (3), and the terms [(5)(1)], [(5)(3)] in the blow-up of (5) do not have CSW
localization. However, and quite remarkably, these 6 non-local terms cancel each other in
pairs due to the antisymmetric property of the residues, as e.g. [(1)(3)]+[(3)(1)] = 0. The
9 remaining terms all have CSW localization and are indeed in perfect correspondence
with the 9 CSW diagrams for this amplitude!

This pattern holds for all NMHV amplitudes. It is easiest to see this pictorially: let

the sum over residues giving the BCFW form of the amplitude be represented as follows,

e

1<Z<j<7’),

where each term represents (i—1)(7)(j—1)(j)(n), i.e., the open circles correspond to the
minors that are not being set to zero.

Now, when we blow up each residue with our contour deformation, we have a sum
over terms setting an extra minor tacked-on at the end of the chain to zero, which can
be represented in the picture by summing over terms “coloring-in” one of the white dots,
leaving us with 4 minors that are not set to zero. Each of these has some localization
properties, but it is easy to see that the only ones that have CSW localization are the

ones of the form:
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Now let us see what we get from coloring-in a white dot in a general term of our
NMHYV sum. The ones where (n) is colored in automatically has good CSW properties;

these give a subset of CSW diagrams, where the white circles do not include (n):

But in addition to these good terms, there are dangerous terms which do not have
CSW localization properties, arising from coloring-in (i — 1); but each of these pair up
with a similar term where () is colored in, and they cancel in pairs due to antisymmetry

of the residues:

cancel
In pairs

%_1 color-in 7+1 Zif %_1
. \q R
n
g XR
J
%000
T

zi?" ' -
-1 J. 1 color-in 7—1
n

—with the obviously symmetrical statements holding for coloring-in (j). There are also

the diagrams where we color-in (i) which cancel in pairs with the one where i — i — 1,
except for the case where ¢ — 1 = 1, where there is no canceling diagram—Dbut this is

perfect, since the term with i —1 = 1 (and the analogous j = n—1) has CSW localization

1 .
% color-in 2 % 1

I'n I'n
and provide the missing CSW terms with white circles covering (n), giving us the sum
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over all CSW terms

III. Establishing the CSW Equivalence

We finally prove that each of the remaining residues in the sum above precisely corre-
sponds to the corresponding term in the CSW expansion of the NMHV amplitude. To

begin with, it is convenient to introduce the following notation

{a bc} = pa(b c) + wpic a) + p.{a b) (1.4.30)
so that, e.g.,

i = <Z{'++1 1@.;& Z__l}b . (1.4.31)

Let us compute each of the residues (¢)(i + 1)(j)(j + 1)d, corresponding to the van-
ishing of all D’s except D;, D;y1, D;, Djq and d.

Recall that we have three d-functions to impose:

6*(DiXi + Ditidiy1 + DiAj + Djpidj)

(1.4.32)
X 6(Dslps € + Disa[pivr ¢ + Djlpj (] + Djapj €])-
Using GL; to fix D; = 1, it is easy to solve explicitly for the rest of the D’s
o i1
i+1 — . . 3
L Wiit1i+3d [+ 1)
SR R R VI R (R W R vYe
Here [{abc} (] means the Lorentz invariant contraction of spinors.
The three d-functions in (1.4.32) yield a Jacobian
J = ! (1.4.34)
{i+155+1}( .
while the product of D’s in the denominator of the residue becomes
1 i+ 175 5+1}C)3
_ {it17j+1}k] | (1.4.35)

DiDip1D;Djyy [{i+ 1+ 13CJ{i+ 1 j}CJ[{i j 7+ 1} (]
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Finally,
d= <ZiZi+1Zij+1> (1436)

where (Z,Z;112;Z;1) = €5V Z, 17,1 1 Z; k Z 1,1, is the dual conformal invariant inner
product of four momentum-twistors. In fact, this particular combination has a special

meaning,

Z‘Z'_ ZZZz_
<§ ;_31;@ i _11>> = (xj - l’z‘)Q = (pi +pia +--- +pj,1)2 (1.4.37)

which is nothing but the propagator in the corresponding CSW diagram!
1+1

7+1

In this computation we are taking as the minus-helicity particles gluons k,[ and m.
Therefore, the helicity-factor (det D) has the form
~ A A A
(detD)=| ™ 7% 7', (1.4.38)
D,, Dy D,
In the case where particle m is on the right-side and k, [ on the left-side as in the figure
above, referring to equation (1.4.22), we can write
{i+1ii—1}¢(mj) —[{j+1ii—1}C[(mj)
{i+1j7+1}

Dy = Dj(m j) + Dypa(m j+1) =
(1.4.39)

while Dy = D; = 0. Then (det D) = (k1) D,,.
The residue (i)(i + 1)(5)(j + 1)d, which equals J(det D)*/(d D; Di41D;D; 1), becomes

(G +1i+1a}C)(m ) — [{j i+ 14a}¢)m j+ 1) (k1)

(Zi1 Z; 2 ZH{G+ 1+ 13 G+ 17 i+ 13+ 153 i + 14y (] (1.4.40)
A simple computation using, e.g,
ot tpaly = LD
(4+17)
(j+1ii—1} (1.4.41)
G+ Uy o) =

reveals that equation (1.4.40) precisely reproduces the CSW contribution associated to

the corresponding diagram.

22



1.5 Risager from /-Relaxation

For k > 3, it is easy to see that relaxing a single J-function does not directly lead to
the CSW expansion. This is obvious since localization in the Grassmannian associated
with putting k£ x k£ minors to zero for k£ > 3 is not directly associated with localization
on lines in twistor space. The only natural interpretation of our deformation is as the
Risager expansion. An immediate question with this interpretation is precisely how the
(k —2) degrees of freedom of the Risager deformation are reflected in the Grassmannian
picture—exactly which Risager expansion are we landing on? In this section we establish
the correspondence with Risager, and also understand the origin of the Risager degrees
of freedom, by examining MHV amplitudes. This will determine precisely which Risager
expansion must be associated with our contour deformation for general (n, k).

The only Risager diagrams that contribute involve the points 7,72+ 1 and the internal
line P on one side, connected with a propagator to the lower-point MHV amplitude on

the other side
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which can be nicely simplified to the form

. k14
A?lsager = — [ ] —. (1.5.42)
1—1

12 [i—1dii+i+1i+2...[A]]

Here, the deformation parameter z is evaluated where P?(2*) = 0. We will now see that
this expansion is reproduced for the first non-trivial case of the split-helicity 6-particle
MHV amplitude A(17,27,37,47,57,67). The D-matrix in the momentum twistor form

of the Grassmannian is

Dy, Dy D3 Dy D5 D
D 1 Hiz P Pu s Die | (1.5.43)
Day1 Doy Doz Doy Das Do

As before, we will be relaxing one of the §(Di,p,)-factors. Our strategy is to use four

O-function constraints for the second row, and to solve for Das, ..., Do in terms of Dy
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and Dss, and to use the remaining three d-functions to solve for Dyy, ..., Dig in terms
of Dy, D13, and Dy3. Now, in deforming the contour, we will get a sum over terms
where a given minor (j) is set to zero. Here, we use the notation (j) to refer to the
minor (j j+1 -+ j+ k —3). We can use the condition of the vanishing of this minor
to solve for D3 and plug it back into our equations for Dyy, ..., Dig. Notice that we
can gauge-fix the GLs so that e.g. Dqy, Dis, Doy, Doy are anything we like, but we will
leave them arbitrary for now. The reason is that while the sum over all the terms will
be G Ls-invariant, each individual term will not, and as we will see the dependence on
gauge degrees of freedom will precisely mirror the freedom in the Risager deformations.

A somewhat lengthy computation yields a lovely result for the term where the minor

(7) is set to zero; we find that it precisely corresponds to a term in the Risager expansion

()] =A™ (1.5.44)

where the Risager deformation is particularly simple and is given in terms of the following

deformation on momentum twistor variables ji; = p; + £;2¢ with
p1 =Dy, and [ = Da. (1.5.45)

That is, as advertised, the degrees of the freedom in the Risager expansion are contained
in the G La-freedom of the momentum-twistor Grassmannian formula!

Moving on to the 7-point amplitude A(17,27,37,47,57,6%,77) we find exactly the
same pattern: we find that the sum over terms setting a minor to zero precisely matches

the Risager expansion of the amplitude, with the S-deformations now with
B = Mo, B2 = M3, and [3= My, (1.5.46)

where the M;; are determined by the G L3 gauge degrees of freedom as
My=| " 7% (1.5.47)

The case for general split-helicity amplitudes follows the same pattern. We use the D;;,

1,7 =1,...,n —4, as free gauge-fixing parameters. We solve for D;;, ¢+ = 2,...,n — 4,
Jj=mn—3,...,nin terms of gauge-fixed parameters D;;, j = 1,...,n —4, and then solve
for the Dy, 7 =n —2,n —1,n in terms of gauge fixing parameters D;;, j = 1,...,n —4,
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and Dy,_3. Then, for each individual residue characterized by some vanishing minor (j),
we determine Dy,_3, and substitute it back into other D;;. We can then calculate all
minors and Jacobian factors, and compare with the Risager expansion. Remarkably the
two expressions agree using a Risager shift most nicely given in terms of a deformations
of u’s:
Dyy ... Dyjy Dyjr1 ... Dapy
B = : : : : : : . (1.5.48)
Dyp-sqn ... Dy_sj1 Dyp_ajir .. Dp_an-a

Again, the general pattern is that the deformations are constructed just from gauge-
fixing parameters. This just demonstrates the fact that the freedom in choosing Risager

deformations 3; is included in the G'Lj_s redundancy in the Grassmannian.

1.6 Concluding Remarks

We have argued that a simple and canonical “d-relaxing” contour deformation takes us
from the Grassmannian formulation of BCFW tree amplitudes—which has a remark-
ably “combinatorial” form making all symmetries manifest—to the CSW expansion,
which manifests the local space-time Lagrangian in light-cone gauge. Relaxing a sin-
gle d-function already yields the full CSW expansion for NMHV amplitudes, and must
lead to the Risager expansion for general k as we established for the MHV case. It
would be interesting to see this more explicitly, and also to understand whether the re-
cursive application of the Risager expansion leading to the CSW expansion has a natural
interpretation in terms of relaxing multiple J-functions.

The operation we have found gives a natural way of “blowing up” residues into com-
ponents, separating pieces with a local space-time interpretation from the non-local ones.
This allows us to give the sum over Grassmannian residues corresponding to the tree con-
tour a “particle interpretation” in space-time. As we will see in [35], there is a second
natural operation on the sum over residues—rather than blowing each residue up into
many pieces, we can instead unify them together as the zero set of a single map. This man-
ifests an even more surprising feature than a particle interpretation in space-time—the
integral localizes on configurations with a “particle interpretation” in the Grassmannian,

allowing us to construct higher-point tree amplitudes by “adding one particle at a time”
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to lower-point ones. Furthermore, a natural deformation not simply of the contour but
of the integrand itself directly connects our Grassmannian picture with the connected
prescription [36] of Witten’s twistor string theory [4,37-39].

We find it remarkable that almost all the concepts surrounding perturbative scattering
amplitudes in this decade—the twistor string theory, CSW, BCFW and Risager recursion
relations, infrared equations, leading singularities and dual superconformal invariance—
are unified in the Grassmannian integral we have been exploring. The only important
object that has yet to make a direct appearance in this story is the light-like Wilson loop
(see e.g. [40-46])—making this connection will surely tell us how to extract loop-level
information beyond the all-loop leading singularities that are already clearly present in

the Grassmannian.
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Chapter 2 The Unification of Residues
and Grassmannian Dualities

2.1 Scattering Amplitudes and the Grassmannian

A new duality was conjectured in [10] between leading singularities of color-stripped
n-particle N*"2MHV amplitudes in A" = 4 SYM and a simple contour integral of the

form

kxn k 414 n
1 /(d Caa ITocy 8"y CaaWWa) (2.1.1)

E"’k(Wa>:vol(GLk) 12--- k)23 k+1)---(nl---k=1)

where the W, in the (ordinary) dual twistor space and carry all the information about the
external particles. The integral is over k x n matrices C,, modulo a GGLg-action on the
right. This space is also known as the Grassmannian G(k, n)—the space of configurations
of k-planes in C". The rows in the matrix C,, define k n-vectors which together span
a k-plane that contains the origin. Since G Lg-transformations simply reflect a change of
basis for the k-plane, the action of GLj; must be modded-out. The formulation in (2.1.1)
makes manifest that any object computed from L, ; is superconformal invariant.
Fourier-transforming from dual twistors to ordinary momentum-space, one finds that

s 1 / d>nC
T Nol(GLy) ) (12 k) (23 k+1) -+ (n1---k=1)

k
x [ 8*(Caalia)6*(Caaha) / ?pa6*(psCha — Aa) -

a=1

(2.1.2)

Gauge-fixing the G Li-redundancy in such a way that k& columns of the matrix C,, make
up the unit k& x k matrix takes (2.1.2) into the link representation of [17]. This gauge-fixing
makes parity manifest by making it equivalent to the obvious geometric statement that
G(k,n) is isomorphic to G(n — k,n). The d-functions in (2.1.2) restrict the integration
to k-planes that contain the A-plane and are orthogonal to the X—plane. Using a different

gauge-fixing, one can make the first two rows of the C-matrix be identical to the two
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n-vectors defining the A-plane. A simple linear algebra argument together with a further
gauge fixing that leaves a GLj_o subgroup of GLj unfixed reduces the integral to one
over (k — 2)-planes in C", i.e. , over G(k — 2,n) [18]. The resulting form, in terms of a

(k —2) x n matrix D is given by [18,19],

(2.1.3)

1 dk=2)xn ) 11:2 S4l4 Dy 2,
£n,k — AMHV / Ha—l ( )

vol(GLy ) )] (12-+-k-2)(23---k=1)---(n1---k=3)’
where Aypy is the tree-level MHV superamplitude which contains the momentum-
conserving o-function and its superpartner. The remaining integral is now defined in
terms of what are called momentum-supertwistors Z,. These are the objects introduced
by Hodges [20] in order to make dualsuperconformal invariance [21,40,47,48] manifest.

After all é-functions in (2.1.2) are used, L, becomes a contour integral in
(k —2)(n — k — 2) variables. As usual with contour integrals, there is really no inte-
gral at all and we are interested in the residues. Each of these residues is simultaneously
superconformal and dual-superconformal invariant, and is thus invariant under the full
Yangian symmetry of the theory [8,49]. Higher-dimensional analogues of Cauchy’s residue
theorem encode highly non-trivial relations between these invariants. The residues give
a basis for the leading singularities of all loop amplitudes. Evidence for this fact for
up to two-loops was given in [10], and evidence to all orders has been recently given
by [22,23]. Tree-level amplitudes are known to be expressible as sums over one-loop
leading singularities—via the BCFW recursion relations [7,31] (see also, e.g,. [50])—and
therefore they become sums of residues of £, ;. This can be expressed by providing
a contour of integration for £, , which we denote Fﬁk. Note that this contour is not
uniquely defined, since residue theorems can be used to express the same sum in many
different forms. We will nonetheless loosely refer to this equivalence class of contours as
“the” contour.

The contour I's . must have a remarkable property. While the residues are all Yangian
invariant, they do not individually have a local space-time interpretation; for instance,
they are riddled with non-local poles. The non-local poles magically cancel in the sum
over residues of I', ;. In the previous Chapter 1, we showed that a natural contour
deformation “blows up residues” into a sum over local and non-local terms, making the
local spacetime description as manifest as possible by connecting to the light-cone gauge

Lagrangian via the CSW /Risager [5,6,25-27] rules. In this chapter we discuss a natural
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counterpart to this operation: instead of “blowing up” residues, we will see that there is
a natural way of unifying them into a single algebraic variety. This will expose something
perhaps even more surprising than the emergence of local space-time physics: we will
see that the contour Fﬁ,k can be thought of as localizing the integral over G(k,n) to a
sub-manifold with a “particle interpretation” in the Grassmannian. This allows us to
construct higher-point tree amplitudes by simply “adding one particle at a time” to lower-
point ones, with soft limits manifest. Furthermore, this unified form of the amplitude
is intimately connected to CSW localization in twistor space, and—as we will see for

N2MHV-—is generally distinct from any contour derived using BCFW.

Having discovered the possibility of a particle interpretation in the Grassmannian,
it is natural to ask whether there is a formulation that makes such an interpretation
manifest while also keeping manifest cyclic invariance (which would not ordinarily be
completely explicit in a picture which “adds one particle at a time”). This motivates
us to start anew, keeping only the Grassmannian kinematics encoded in the §-function
factor §44(ChqW,). A simple counting argument leads us to an extremely natural way
of implementing the Grassmannian particle interpretation: by integrating over a sub-
manifold in the Grassmannian associated with the “Veronese map” from G(2,n) —
G(k,n). The resulting object can be easily recognized as the connected prescription [52]
for Witten’s twistor string theory [4] (see also [37-39, 53-63]; for a review, see [64]);
indeed this discussion can be thought of as a physical motivation for and derivation of

this theory from the Grassmannian viewpoint.

Cast as integrals over the Grassmannian, the integrand corresponding to our first
discovery of the particle interpretation—motivated by realizing the contour Fﬁ,k as a
single algebraic variety—will not be the same as the second form, leading to the connected
prescription for twistor string theory. In the simplest examples, one can use the global
residue theorem (see e.g. [65]) to show that while the integrands are different, the contour
integrals agree (see e.g. [66]). However, this way of establishing the equality requires
some gymnastics; a significant insight into why this miracle can happen is obtained by
noticing that the two integrands can be smoothly deformed into each other by introducing
a deformation parameter t; we demonstrate t-independence explicitly for both NMHV
and N?MHYV amplitudes. The equality between the objects must then be a consequence

of a more general statement about amplitudes, which should follow from a simple residue
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theorem. We identify this simple residue theorem for all NMHV amplitudes—it is the
same as the “d-relaxing” deformation used in Chapter 1 to expose the CSW recursion
relations.

The outline for this chapter is as follows. In the next two sections we give a general in-
troduction to our two main themes. In section 2.4 we discuss the relationship between the
two different kinds of Grassmannian particle interpretations we encounter. In section 2.5
we discuss NMHYV tree amplitudes. In section 2.6 we move on to the N2MHV amplitudes,
and in particular, give a detailed discussion of the 8-particle N°MHV amplitude. We end

with brief concluding remarks in section 2.7.

2.2 Unification of Residues

We begin by returning to the momentum space formula for £, ;, given in equation (2.1.2).
Gauge-fixing the GLj-invariance, leaves kn — k* = k(n — k) integration variables, and
after imposing all 2n of the d-functions, we end up with an overall momentum-conserving
d-function and an integral over k(n — k) — (2n —4) = (k — 2)(n — k — 2) variables. For

brevity, we will denote this total number of integration variables by M,
M=(k—-2)(n—Fk-2), (2.2.1)

and denote the free variables by 7, ..., 3. In the following, we strip-off all overall factors

and concentrate on

1

/dMT(m...k;)(zg.../{;+1)...(n1...k_1)(7)' (2.2.2)

This is a holomorphic integral—i.e. , it is over 7 and not 7; therefore, it must be inter-

preted as a contour integral in M complex variables.

I. Local Residues

There is a very natural way of defining “local residues” for functions of M complex

variables 7 = (7,..., 7). Consider a rational function of the form

_ g(7)
L= o) e (2.2:3)
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where N > M. A residue is naturally associated with locations 7, in 7 space where M

of the polynomial factors p;, (7i), ..., pi,, (7x) = 0. It is natural to re-write
Pi..ing (T) : 9(1)
fo e g (2.2
Piy (T) “ " Piy (T) ' " Hg;ﬁzl ,,,,, M Dj (T*)
In the neighborhood of such a point we can change variables from (p;,,...,pi,,) —
(u1,...,un), and up to a Jacobian, the integral becomes [ dus/uy -+ - dun/up, which

is naturally defined to have residue 1. We denote the residue as (p;,)(pi,) - - - (pi,, ), given
by

— 7:1 ..... i]w (7—*) (2 2 5)
Tx det <8(pi17“"piM)> (7- ) L.
8(7’17...77'1M) *

Note that this definition of the residue depends on the order in which the polynomials

(pi1>(pi2) e (piM)

enter in the Jacobian and is naturally antisymmetric in the labels: different orders can
give answers which differ by a sign. This is a reflection of the fact that we were supposed
to choose an orientation for the contour. The contour is in fact topologically a collection
of circles T™ = {7 : |p;(7)| = €¢;} and the orientation that produces (2.2.5) is given by
d(arg(pi,)) A - -+ A d(arg(pi,,))-

The NMHV tree amplitudes are given as a sum over these simple local residues.
Consider the n = 7 NMHV amplitude. In [10], the BCFW-contour for the amplitude

was found to be given as

75 =(2)[(3)+(5) + (N + (4) [(5) + (T)] + (6)(7). (2.2.6)
Each term is of the form (7)(j) with (7) representing the minor (i i+1 i+2). The BCFW-
contour for general NMHV amplitudes is of the form

Fﬁ,?, = Z (e1)(o2)(e3) -+ (2.2.7)

-~

n — 5 terms

where the sum is over all strictly-increasing series of (n — 5) alternating even (e) and
odd (o) integers. Again, this form is not unique: as shown in [10]: using residue theorems
one can exchange the role of even and odd integers in this sum in many ways—and this
fact was important to the proof given in [10] of the cyclic-invariance of the entire contour.

For k > 3, it is clear that for large-enough n, the simplistic definition of a local

residue described above is inadequate to localize the integrand: we have n minors, but
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(k — 2)(n — k — 2) variables, which exceeds n for any & > 3 for some sufficiently-large
n. However, as explained in more detail in [10], our object allows for a more refined
notion of “composite residue” which is applicable when there are fewer polynomial factors
than there are variables. This allows residues to be defined for any n and k. A simple

illustration of a composite residue is given by the function of three variables x, vy, z,

1
—x(x ) (2.2.8)
Note that there are only two polynomial factors in the denominator, and so it is not
possible to define a local residue in the standard way. Nonetheless, on the locus where
the first polynomial factor vanishes, = 0, the second polynomial factorizes as y - z, and
one should reasonably define this to have residue 1. Note that such a “composite” residue
is only possible for very special functions: had we replaced the second polynomial factor
with (x + yz + a) for a # 0, no such identification would be possible. Geometrically, for
a = 0, the set of points where both the polynomials vanish splits into two infinite families
(x =0,y =0,2) and (x = 0,y,z = 0), and the point where the residue is defined is the
intersection of these infinite families. As discussed in [10], exactly the same phenomenon
happens with the minors of the £, ;: on the zeros of some of the minors, other minors
factor into pieces, each of which can be individually set to zero to define composite
residues. Already for the 8-point N2MHV-amplitude, some of the objects appearing
the BECW form of the tree amplitude are composite residues. Below, we will find a
very natural way of thinking about composites that is a natural consequence of our new
picture for unifying residues into a single variety: composite residues can be thought of as
ordinary residues, but associated with putting minors made of non-consecutive columns

to zero.

II. Tree-Amplitude Contours as Algebraic Varieties

The NMHYV tree contour defined by T’ 5 in (2.2.7) is perfectly clear as given. However,
there is something somewhat unnatural about it: it is not precisely a “contour” in the
sense used by mathematicians. The reason is that we haven’t presented the set of residues
we are summing-over as a subset of the zeros of a single mapping from CM — CM: in
other words, we haven’t identified a fixed set of M polynomials (fi,..., far), such that

the tree contour is contained in a subset of the solutions to f; = 0. In fact for NMHV

32



amplitudes it is possible to do this for n = 6,7, taking the f’s to be made of products
of the consecutive minors appearing in the denominator of £, ;. However, already for
n = 8, we’ll see that it is impossible to do this using only consecutive minors. Thus, we
seem to reach an impasse: from a mathematical point of view, it would clearly be natural
to “glue” all the residues together as zeros of a single map—to think of the contour as a
single algebraic variety. But the physical contour for tree amplitudes does not seem to
admit such an interpretation.

However, we will see that it is possible to naturally unify the residues into a single
variety—the apparent obstruction to doing so was merely a consequence of the myopia
of only considering minors composed of consecutive columns of C,.

By iteratively adding one particle at a time, we will soon see that the tree-level

amplitude can be given in the form

h(7)

f:/o d Tf1<7_> ) (2.2.9)

where we sum over all the zeros of f = (f1,..., fu) = 0. Note that h(7) is not just a
polynomial, but a ratio of polynomials—otherwise this sum would vanish by the global

residue theorem! The remarkable fact is that, as rational functions,

h 1
= 2.2.10
fi o fm (12-~-k)(23---k—i—l)---(nl---k—l)’ ( )
but the numerator of h and fi,..., fas are polynomials in the minors of C,, of degree

larger than n, and all the non-consecutive minors appearing in the f;’s are cancelled by
those in the numerator of h. This is how they manage to encode the information about
the contour.

For instance, we will show that all NMHV amplitudes can be written in the form

/ ITj=s1(1 2 5)(23 j-1)]
(= D)WG) fo- fr fu’

AB) —

n

(2.2.11)

n

where f, = (fs,..., fn) and each fi : C — C is given by the product of minors,
Fro= (k=2 k=1 k)(k 1 2)(2 3 k=2). (2.2.12)

Similarly, each N?MHV amplitude can be written as

o [Tz [(1235) (285-25-1) (15-251 ) | TI=0 [(1355+1) (127+43)]
”J) (n-1)(1)(3) Fr-Fs- - T
£n=0

, (2.2.13)
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where fn = (f7a7f7b7f8a7f8b7 R 7fna7fnb) with

Fo = (0=3 02 0-1 £)(£=3 € 1 2)((=3 2 3 (-2);
and fo, = (102 0-10)(1¢23)(1 3 (-3 (-2);

(2.2.14)

and for which %, = f, - fi,.

Note that as stated the definitions of h and f include minors built out of non-
consecutive columns. We will see that their presence is crucial for allowing us to unify all
the residues into a single algebraic-variety. As a by-product, they will also teach us how
to think about “ordinary” and “composite” residues of £, in a more uniform way, as
“composite” residues can be understood as ordinary residues involving non-consecutive

minors.

III. Manifest Soft-Limits and the Particle Interpretation

We motivated the gluing-together of tree-amplitude residues into a single variety from a
mathematical point of view. There is also a physical reason to be dissatisfied with the
usual way of presenting tree-amplitudes as a sum over disparate local residues: soft-limits
of the amplitude would then not then manifest themselves as an obvious feature of the
contour. Suppose we take the holomorphic soft-limit of particle n, where A\, — 0 while
keeping Xn fixed. In this limit, the most singular part of the amplitude connects directly
to the lower point amplitude with the usual multiplicative soft factor

(n-11)

N T 1),4”71, (2.2.15)

This means that there must be a connection between Fﬁyk and Fﬁ_ljk; but this is not at
all manifest for the NMHV tree contour given by equation (2.2.7). It is important to
mention that from the mathematical point of view, the inverse operation is in fact more
natural. In other words, it is more natural to think about the inclusion of G(k,n—1) into
G(k,n) than to think about the projection of some contour in G(k,n) down to G(k,n—1).
Indeed, in [24], we will show that there is a natural notion of an “inverse-soft” operation
on individual residues, that maps a residue of £, ;1 to a residue of L, ;. However what
we are after here is a remarkable feature not of individual residues but of the way they

are combined into T'4,.
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Quite beautifully, the unification of residues in equation (2.2.10) allows us to think
of the n-particle amplitude by “adding a particle” to the (n — 1)-particle amplitude in a
way that makes the soft-limits manifest. In fact, we can write

hn hn—l
= x 8 2.2.16
fooefu, o foeful o (Do ( )

and recursively build the contour for higher point amplitudes in this way. Furthermore,
in the soft limit, A, — 0, we find that (after an application of the global residue theorem)
the 7 integral localizes so that

(n-11)

oS T e 1) (2.2.17)

which precisely reproduces the needed soft factor!

IV. Connection to CSW Localization

The attentive reader may have noticed that the forms of f; presented above for the NMHV
and N2MHV amplitudes contain the product of three minors; moreover the denominator
of hy is the product of the three consecutive minors (n—1), (1) and (3). This is not an
accident: these forms are intimately connected to localization of amplitudes on CSW
configurations in twistor space! In order to understand why, let us begin by noting that
it is natural to think of the matrix C,, as a collection of n k-vectors, or n points in C*. In
fact, due to the little group symmetry which rescales each column of C,,, independently,
we can think of these points projectively as n points in CP*~1. Since the contour of
integration is the variety where f = 0, it is natural to ask whether there is anything
special about the points in CP*~! for which f vanishes? In fact, there is an even more
interesting question, which we can best discuss with some new notation. Let us define

the “expectation value” of some “operator” built out of minors of C,,, by

(0) = / ﬁo . (2.2.18)
£=0

Note that with this definition, the amplitude itself is (1), and trivially (f;) = 0. However
there are also other operators with vanishing expectation values. For instance, taking the
operator to be the denominator of h,, we find that ((n-1)(1)(3)) = 0 as a consequence

of the global residue theorem. Omne might ask whether there exists a different way of

35



writing the integral where all these vanishing expectation values are understood on the
same footing trivially, as part of the definition of the contour of integration. In this
case the answer is “yes”: the “0-relaxing” contour-deformation used in Chapter 1 does
this. We see that this form of the amplitude makes a certain localization property of
the amplitude manifest—associated with the vanishing “expectation value” of objects
built out of the product of three minors. If we further use the (independently proven)
information that the amplitude is cyclically invariant, we get a very large number of
constraints, which we can loosely think of as localizing the integral in the Grassmannian.

Now, for k < 4, there is a very close connection between localization in the Grass-
mannian and localization in (Z) twistor space. In order to see this, it suffices to Fourier-
transform the bosonic parts of the kinematical d-functions (54‘4(CaaWa) into the Z twistor

space:
T 5 (Coa) — / 2120 T[4 Z — Cua®). (2.2.19)

Note that for k = 3, the twistor space “collinearity operator” e xZ] Z] Z[* acts on the

amplitude as
(Z:Z;Z) A, = /d‘*z(zzz)f((zjk)) : (2.2.20)

We can think of the “localization in the Grassmannian” implied by ((ijk)) = 0 as
telling us that the points {7, j, k} in the CP? associated with the columns of G(3,n) are
(projectively) collinear. By virtue of equation (2.2.20) this tells us that this sense of
localization in the Grassmannian is sharply reflected as localization in twistor space.
All of this is interesting because the set of twistor space collinearity operators that
test for CSW localization precisely involve products of three of them—which translate
to the vanishing expectation value for the product of three minors in the Grassmannian.
It is very easy to see that for any configuration of n cyclically ordered points localized
on two lines in CP?, the product of three minors (ix j)(ky!)(m z0) vanishes, where
1<x<j<k<y<l<m<z<o. Toprove it, let’s assume that the first two factors
are not equal to zero, which means that (iz j), (ky() can not be collinear. This forces
the points to be distributed on the two lines as in:
But then m, z, 0 are forced to be on the same line, and so the last factor (m z o) = 0. This

shows why two minors are insufficient but three suffice. Furthermore, having sufficiently
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many of the operators of this form vanish is enough to guarantee CSW-localization.
Something similar is true for & = 4. Here the coplanarity operator (Z;Z;Z;,Z;) in twistor
space maps to the 4 X 4 minor (i j k) in the Grassmannian. Perhaps a little surprisingly,
collections of coplanarity operators suffice to ensure CSW-localization on lines. This can
happen if the coplanarity conditions involve non-consecutive points.

For k > 4, it is in general difficult to find a set operators testing localization for
CSW configurations of (k — 1) intersecting lines in the CP* of twistor space; the reason
is that the CP? is too “small”. It is however much easier to talk about localization
to CSW-like configurations of (k — 1) lines in CP*~!, and this is precisely the natural
question associated with vanishing operator expectation values from the Grassmannian
point of view! It is amusing to ask what “Grassmaniann CSW” operators test for this
Grassmannian notion of localization. It is easy to exhibit two large classes of such
operators, always made from the products of three minors for any k. One class is similar
to set we described for k = 3: the product of three (k x k) minors (i---j)(k---1)(m---n)
vanishes for CSW-like configurations in CP*~'. Another class of operators can be easily
constructed recursively. Given any configuration localized on lines in CP*™!, we can
project down along one of the lines to get a another set of points (with some co-incident)

localized on (k — 2) lines in CP*~2 as shown below in an example with k = 4:
3 4 3 4
— 2 567

Since any particle I belongs to a unique line, by considering (k x k) minors that all
include I, we are projecting-down along the line containing I to the problem in CP*2.
Thus the set of operators obtained by attaching column I to the ones just discussed—of
the form ([i---j)(Ik---1)(Im---0)—will also vanish on these configurations. Given
that localization to “Grassmannian” CSW configurations implies localization on CSW
configurations in twistor space, this strongly suggests that this “three-minor” form of the
maps obtained in unifying tree amplitudes should persist for all k.

A very non-trivial check on this picture can be made by examining the simplest
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amplitude with & = 5—the split helicity 10-particle amplitude. There are 20 different
BCFW terms in the amplitude, which can all be easily identified as residues of Ly 5.
We can test for localization in the Grassmannian by computing (Ocsw) for the class
of Grassmannian CSW operators we have just defined. Since we know the form of the
C-matrix explicitly for each residue, this simply amounts to taking each BCFW term
and multiplying it by the relevant product of three minors of its associated C-matrix.
We have checked that the correct linear combination of twenty BCFW terms weighted
with Ocgw in this way indeed vanishes. Something even stronger is true: we checked
that if we leave the coefficients of all 20 BCFW terms arbitrary, demanding that all the
“localization on intersecting lines in CP*” operators annihilate the amplitude completely
fixes the 20 terms up to a single overall scale. We will return to further investigate these

fascinating issues at greater length in a future work.

2.3 Veronese Particle Interpretation

In the previous section, we discovered the particle interpretation and CSW localization
of the tree amplitudes as a happy consequence of gluing together the residues of L, s
contributing to the tree amplitude into a single variety. But the particle interpretation
was not manifest from the outset—nor was the cyclic-invariance of the amplitude.

This motivates us to start anew, and construct a Grassmannian theory which makes
the particle interpretation and cyclic-symmetry as manifest as possible. We will find that
this straightforward exercise leads us essentially uniquely to the connected prescription
[52] of Witten’s twistor string theory [4]. As an additional bonus, in addition to cyclic
symmetry, this formulation will make the famous U;-decoupling identity manifest, which
is a remarkable property of amplitudes that is only “obvious” from the Lagrangian point
of view.

Going back to the beginning, the central object encoding “Grassmannian kinemat-
ics” are the twistor-space d-functions which contain the only dependence on space-time
variables [], 0*#(CaaW,). As seen recently in [22,23], this factor alone goes a long way
in explaining how the (non-trivial) kinematics of leading singularities can be encoded in
L, 1, even without using any specific properties of the measure made from consecutive

minors, so clearly we should stick with this structure. Transforming back to momentum
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space it becomes
[19%(Caaa)d*(Caaiia) / d*p T] 8*(p” Caa — Aa). (2.3.1)

The bosonic d-functions impose (2n — 4) constraints on Cl,, enforcing the geometric
constraint that the k-plane C,, by orthogonal to the 2-plane X and contains the 2-plane
A. Now, in equation (2.1.2), in interpreting the integral over G(k,n) as a contour integral,
we place a further (k—2) x (n—k—2) constraints on C,,, which is equivalent to declaring
that we are performing the integral over a k x (n — k) — (k—2) X (n—k —2) = (2n —4)-
dimensional sub-manifold in G(k,n). We can generalize this idea to define a whole class
of “Grassmannian theories”, which enforce the “kinematic” constraints on the space-
time variables associated with §44(C,,W,). We simply choose some (2n —4) dimensional
subspace ¥ of the Grassmannian, a general point of which we represent as CZ ((;) for

I'=1,...,(2n —4). Then we consider the object
/ (0 [ L3 (Cacom). (23.2)
2 «

where 1(() is a measure factor.

Now, of all such Grassmannian theories, there is a special class that we can motivate
physically as having a “particle interpretation”. Ordinarily, the configuration space for
n-particles is thought of as n copies of a given space on which each of the particles “live”.
In order for a Grassmannian theory to have such a “particle interpretation”, then, we
would like to loosely think of ¥ = (¥as)". Now, dim (X) = (2n — 4) (let us leave the
—4 offset for a moment, and) note that at large n, the only way we can make such an
identification is if dim (Xpas) = 2; and so the most natural choice is Y. = C% The
“—4” can arise from a G Ly-redundancy acting on C?. We can therefore conclude that we
are looking for a (2n — 4) sub-manifold of the Grassmannian, that can be thought of as
a mapping of (C?)"/G L, into G(k,n). It only remains to discuss how to determine this
mapping from (C?)"/GLy — G(k,n) explicitly.

Let us denote a general point in C? by o = (A, B). It is natural to look for a mapping
into a point we will denote by o () in C*¥, such that the G'Lo-action on o turns into some

G Li-action on ¢¥. There is a canonical map from C?> — C*, familiar from elementary
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algebraic geometry which does this precisely and is known as the Veronese map:

Ak—l
A AF2B
o: — =0"(0). (2.3.3)
B :
Bk—l
We can assemble the n k-dimensional vectors o), for a = 1,...,n, into the k x n dimen-

sional matrix CY_ (o] which denotes the Veronese map from (C?)"/GLy — G(k,n)

CViol=| oV[o] oY[oa] -+ oY[on] |; (2.3.4)

or written more succinctly
CY [o] = Ao pot, (2.3.5)

We group all the o, together into 2 X n matrix which, given the G'Ly-action, we can think

of as an element of G(2,n). Thus we can also think of CV as giving the Veronese map
from G(2,n) — G(k,n).

I. Twistor String Theory

In order to complete our story and fully define a Grassmannian theory, we need to
integrate over the two-dimensional vectors o, with a natural G Ly-invariant measure. By
analogy with the simple choice for the G Li-invariant measure chosen in equation (2.1.2),
the simplest possibility is to soak-up the GG Ly weights with a product of consecutive 2 x 2

minors and define

B 1 d*oy - - d%o, OV [y
Tor(W) = vol(GLy) / (0109)(0203) - - - (0,01) 1;[5 (CaaloDVe). (23.6)

In the case of equation (2.1.2) for L, x, the choice of measure with consecutive minors
had much more than aesthetic benefits: only with this choice was it possible to prove
the equivalence with equation (2.1.3) and establish dual superconformal invariance. Sim-
ilarly, in the present case, the choice of measure with the product of the (¢;0;11) in

the denominator makes a remarkable feature of scattering amplitudes manifest which
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is normally only obvious from the spacetime Lagrangian. This property is the famous
“U;-decoupling identity”. While we normally talk about color-stripped amplitudes, in
reality the full amplitude is given by a sum over permutations
A= > Tr(TroTre ... Tw) A(P(1), ..., P(n)). (2.3.7)
PeSy /Ty

When the gauge group is taken to be any product of SU(N;) factors (including U;’s), the
Lagrangian description makes it obvious that the amplitude for producing particles in
the adjoint of SU(N;) from SU(N;)-particles must vanish. This implies many relations
among the partial amplitudes A(P(1),..., P(n)) with different orderings. The simplest
of these relations is called the U;-decoupling identity, which is obtained when the gauge
group is taken to be U, = U; x SU,. Now, the dependence on the external spacetime
variables in §**(CV [o]W,) is fully permutation-invariant; the only factor that breaks the
permutation invariance down to cyclic invariance is the factor (oy09)(0203) - (0,01),
and it is trivial to see that this satisfies the identity necessary for T, ,(W,) to satisty the
Ui-decoupling identity.

We have motivated equation (2.3.6) as a beautiful way of writing a theory enforcing
a Grassmannian “particle interpretation”. It is also nothing other than the connected
prescription [52] for Witten’s twistor string theory [4] (see also [33] where the Grassman-
nian form of the twistor string theory is presented). To see this, we Fourier-transform
from the W, to the Z, variables in order to return to Witten’s original setting:

[15*(C [o]aaVa) = / M TT 6% (20 = OV [0]auz®), (2:3.8)

If we further write o, = (A, Ba) = &4 (1 pa), the GLy-action has a G L;-rescaling the € and
an S Lo-symmetry acting on p, with (1 p) being thought of as inhomogeneous co-ordinates

on CP'. Then, (0;0i11) = (£&i41)(pi — piy1), and we have

k-1
1 dpl to dpn 3|4
Toi(Z.) = / P2, =) 2 9p)(2.3.9
20 = i@ty | o=y L1 (Be = 2 2000.239)
where §*4(Z — 2') is a projective d-function in CP?*:
Bz -2 = / %544 (Z2-¢2). (2.3.10)

Equation (2.3.9) is exactly the connected prescription for computing tree amplitudes

from twistor string theory, integrating over the moduli space (parametrized by the z(®))
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of degree-(k — 1) curves in CP3*. However, notice that from the point of view of the
Grassmannian, there is a more fundamental notion of localization: under the action of
the little group, W, — t,W,, we have Cy, — t;'Chq, and therefore we can think of
each column of C,, projectively as giving a point in CP*~!. The Veronese condition of
equation (2.3.4) is then nothing but the statement that all these points in CP*™! lie on
a degree-(k — 1) mapping of CP* — CP*~!. This localization to degree-(k — 1) curves
in CP*! associated with the Grassmannian implies, via equation (2.3.9), localization on
degree-(k — 1) curves in twistor space.

We can cast the expression for 7, in a form that will most directly facilitate a
comparison with £, ;, by writing 7, as an integral over the full Grassmannian G(k,n),
with (k —2) x (n — k — 2) 0-functions imposing the constraint that the k-planes have
the Veronese form of equation (2.3.4) with a “particle interpretation”. We do this by

formally introducing “1” in the form

1

- - kxn kxk 18 n 1BV .
T / A0 Cd L (det L) [[ 6(Coa — LECY 0] (23.11)

a,a
here the integral over L? is just one over all k x k linear transformations, and by gauge-
fixing to L2 = 67, we get “1” trivially.

We can then integrate over the o,, and we are left with

— kxmn 414
ToslWa) = e / Bn PO (Co W), (2.3.12)
where
1 d’oy - d*o
F(C) = n d>krs 1 s(C,, — LECY [o]). (2.3.13
€)= e / e T o BCL o). (2.3.13)

a,a

Clearly, by construction F'(C') will contain (k—2) x (n—k—2) d-function factors localizing
the integral over the C’s to have the Veronese form. Really these d-functions are to be
thought of holomorphically, in other words, we think of “d(x) — 1/2”, where the contour

of integration is forced to enclose x = 0 (see [51]). Therefore, 7, ; will have the form

1 kxn
VOl(GLk) / d Caa Sl (C) tee SM(C) ‘

Sy=--=8py=0

Toe =

(2.3.14)

We will call the S(C')’s “Veronese operators”, whose vanishing is necessary for the matrix

Cqq to be put into the Veronese form by some G Li-transformation.
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The first non-trivial example to study is the six-particle NMHV amplitude n = 6,k =
3; the computation was first presented in [37,39], having gauge-fixed the G Li-symmetry
on the C’s in the “link representation” where k of the columns of C,, are set to an
orthonormal basis; it is very easy to translate these results in a general G Lj-invariant

form, as has also been recently done in [66]. The result for H(C) is

(135)

H(C) = (123)(345)(561)

(2.3.15)
while there is a single S(C') given by

S(C) = S1aau56(C) = (123)(345)(561)(246) — (234)(456)(612)(351). (2.3.16)

II. Veronese Operators for Conics

The object Si23456(C) will play a fundamental role in the story of the connected pre-
scription, so we pause to discuss its salient properties. For n = 6,k = 3, the Veronese
condition is simply that 6 points on CP? lie on a conic. Now, any 5 generic points de-
termine a conic, and there is clearly a single constraint for a 6™ additional point to lie
on the conic determined by the first 5; this is what S193455 = 0 imposes. We can see that

this is the constraint by looking at the form of the C'V matrix

1 .- 1
V=1 p - ps |, (2.3.17)
Ao R

where we have used the little group freedom to rescale the elements of the first row to all
be 1. Clearly, the Veronese condition should be G Li-invariant, and hence we are looking
for a relationship between the minors of C,, that is a consequence of this special form.
Note any 3 x 3 matrix made from columns of C,, has the Vandermonde form and so the
minors (¢ j k) are very simple: (i j k) = (pi — p;j)(p; — pr)(px — pi). In order to discover
the relationship between minors implied by the Veronese condition in this case, examine
the “star of David” figure below:

Each link in the figure connecting (i j) represents a factor of (p; —p;) (in cyclic order). We
can interpret the product of the links (12)(23)(13) in the figure as the minor —(123),
the product (34)(45)(35) as —(345), the product (56)(61)(51) as —(561), and the
remaining links (24)(46)(26) = —(246). Thus the product of all the links in the figure

43



> l

is (123)(345)(561)(246). However the picture is clearly cyclically invariant, so the
product is also (234)(456)(612)(135), and thus we have found the single relation we

are looking for
Stasase = (123)(345)(561)(246) —(234)(456)(612)(351) = 0. (2.3.18)

Clearly the condition that 6 points lie on a conic is invariant under the permutation of
the points, so that if Sigsas6 = 0, then Spaype)..pe) = 0 as well. In fact something
even stronger is true. Even though it is not manifest, the object Sis3456 is permutation

invariant in its labels (up to the sign of the order of the permutation); in other words,

Spayp@--pe) = (—1)" Si2..6. (2.3.19)

It is trivial to see that S picks up a minus sign under a cyclic shift of the labels 1 — i+ 1,
and it can be further checked that Siossse = —Sa13456 as a simple consequence of the
Schouten identity.

Let us move on to examine the 7-particle NMHV amplitude [37, 39, 66] where the

integrand for 7 is of the form

H(C)
3123456 S123567 (2320)
with
~ (135)(612)(136)(235)
H(C) = (671)(123)(345) (2:3.21)

Here the role of the two S’s in the denominator is clear. The 5 points {1,2,3,5,6}
determine a conic; Sy93456 = 0 enforces that the point 4 lies on this conic, while Sia3567 = 0
enforces that 7 lies on this conic; together they impose that all 7 points lie on the same
conic. Actually there is a loophole in this argument, which nicely explains the role of the

many factors in the numerator of H(C). If the points {1,2,3,5,6} lie on a degenerate
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conic, it is possible for both S’s to vanish without having all 7 points on conic. For
instance, suppose that any four of the points {1,2,3,5,6} are collinear; this would make

each S vanish trivially, even if the other three points are in general positions, for instance,

The numerator factors in H(C') vanish on these “spurious” configurations and ensure
that they don’t contribute to the integrand; in this example, this configuration is killed
by the (235) factor in the numerator of H. It is easy to check that all spurious solutions
are dispatched by factors in the numerator in this way.

For general NMHYV amplitudes, we will have (n—>5) S’s. We stress that there are many
equivalent ways of writing equation (2.3.14), using different collections of (n—>5) Veronese
operators in the denominator to enforce that the n points lie on a conic. For instance,
one canonical choice involves using a fixed set of 5 points {1,2,3,4,5} to determine the
conic, and then simply choosing the (n —5) S’s to be Syag45; for j = 6,...,n. However,
this is not the only possibility; all that is needed is for the labels of the S’s to overlap
sufficiently to guarantee all n points to lie on the same conic; but we will find other

choices to be more natural for our purposes.

III. General Veronese Operators

Moving beyond NMHV amplitudes, we must encounter Veronese operators that enforce
n points to live on a degree-(k — 1) curve in CP*~'. The conditions must again be
G Li-invariant and must therefore be written in terms of & x k£ minors. Fortunately, it is
very easy to see that the conditions are always a collection of constraints of exactly the
same form as Sio3456 = 0, involving the difference of the product of 4 minors. Physically
this is because we can use parity to relate the Veronese conditions for (n, k) to those for
(n,n — k). It is illuminating to see this explicitly, since it also allows us to make contact
with the work of [37]. Parity is manifest in the link representation, so let us study what

the Veronese C'V matrices look like in this representation. Suppose we gauge-fix the
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first k& columns to the k x k identity matrix, and denote the remaining entries as ¢;; for
t=1,....,kand I = k+1,...,n. Instead of finding the explicit GL; transformation
that takes the C'V' matrix to this form, we can note that the ¢;; can be written in a
G Li-invariant way as the ratio of two minors:

(123 kI)
(12---k)

Cir = (2.3.22)

where in the numerator ¢ denotes that the column 4 is not included. Since this ratio is

G Li-invariant, we can compute it directly for the form CV, easily finding

1
cr =2 (2.3.23)
Ri P1 — Pi
where
k k
hr = H(PI —pj), ki = H (pi = pj)- (2.3.24)
J=1 j#i=1

So the Veronese operators must check whether the k x (n — k) variables ¢;; can be
expressed in the form of equation (2.3.22) [37,39]. As discussed in [37], equation (2.3.22)
is equivalent to demanding that the k x (n — k) matrix with entries ¢;;' has rank two,
which is equivalent to demanding that all 3 x 3 sub-determinants of this matrix vanish,
giving rise to conditions on the ¢;; which are sextic polynomials in the variables. However
even without examining these conditions in detail, it is clear the conditions are the same
swapping the matrix ¢;; with its transpose, which is the statement of G(k,n) = G(n—k, n)
(i.e. parity). Now, under parity, a given k x k minor (myms - - - my,) of G(k,n) is mapped
to its complement (my - --my,) in G(n — k,n), where the () denotes that the (n — k)

columns that are not mq, ..., my are used. Explicitly,

(m1 cee mk) = eml"'mkll'“lnfk(ll s ln,k) (2325)

Thus, we see that written in a G Ly-invariant way, the (k —2) x (n — k — 2) Veronese
conditions for some (n, k) are equivalent to the same number of conditions for (n,n — k)
replacing the k& x k minors with their complements. For instance, consider the case
k = 4, where the Veronese operators check whether points lie on the degree-3 curve
known as the twisted cubic. (This has been known for a long time—see, e.g. [67]). Any

6 generic points define a twisted cubic. For 7 points, the case with k = 4 is the same as
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k = 3 that we have already studied: the condition for 7 points to be on a conic can be
written as, e.g., Si23456 = 0, S123567 = 0; so to get the condition for 7 points to lie on a
twisted cubic we may just take the parity conjugate—i.e. replace the factor (123) with
(123) = (4567) and so on. This gives us the pair of conditions for 7 points to lie on
the twisted cubic determined by the first 6. But then we can use this pair of conditions
to test that any number of further points lie on the twisted cubic. In general, for any
k, any k + 2 points like on the degree-k curve, and we can determine the conditions for
(k + 3) points to lie on that curve by looking at the parity conjugate case where (k + 3)
points must like on a conic. These are (k+ 3 —5) = (k — 2) conditions of the form
Siy..ic = 0, which we can translate to the original value of k by replacing 3 X 3 minor
with its [(k + 3) — 3] x [(k + 3) — 3] = k x k complement. Having determined these
(k — 2) conditions for (k + 3) particles to lie on the degree-k curve, we get a total of
(n—(k+3)+1)x (k—2) = (k—2) x (n—k —2) conditions for checking that all n points
lie on the curve.

From this discussion, we may conclude that a manifestly G Li-invariant Grassmannian
formulation of the connected prescription for twistor string theory will necessarily involve
a denominator with (k —2) x (n — k —2) S’s, each of which is given as the difference of

a product of four minors.

2.4 Deformation and Duality

We have now seen two apparently quite different formulations of Grassmannian theories
with a particle interpretation. The first was motivated by unifying the residues of L, j
contributing to the tree amplitude into a single algebraic variety, which allowed us to
think about adding particles one at a time to construct higher-point amplitudes while
keeping the Yangian symmetry manifest. The cyclic invariance of this object is not
completely manifest, although at least for NMHV amplitude, the cyclic invariance of the
amplitude obtained from I'* follows straightforwardly from residue theorems. Finally,
the U;-decoupling identity is not manifest at all.

One might like to see the cyclic symmetry and U;-decoupling identities in a much
more manifest way. This is what the connected prescription for twistor string theory

accomplishes beautifully, by showing that the amplitude is almost permutation invariant,
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only breaking down to cyclic invariance because of the “MHV” factor on the worldsheet

1
(0102)+(ono1)”

Despite appearances, the remarkable statement is that the amplitudes computed in

The price is that dual superconformal invariance is not manifest.

these two apparently very different ways should agree:
FE
Tok = En’"k’k. (2.4.1)

We would like to understand why this miracle can happen, beginning with the NMHV
amplitudes. It is a good start that both forms are written as integrals over a single
variety—but to go further in making the comparison, we need to deal with the problem
that the maps fj involve the product of three minors while the Veronese operators involve
the product of four minors. Clearly we need to find a modified form of the f;, which
involves a fourth minor. We can also motivate the need for finding a modified form of the
fi.s with a fourth minor in another way. Since we will soon be interested in deforming
the fr, in order to have a consistent behavior under the scaling of each column vector of
the matrix C,,—i.e. under little group rescalings—we have to deform each component
of the map fr = (k-2 k-1 k)(k12)(23 k-2) by something that preserves the original
scaling. Note that it is impossible to add a polynomial in the minors to f; to achieve

this. However, we can modify each f; as follows
frodit — (b2 k=1 k)(k 1 2)(2 3 k=2)(1 3 k-1). (2.4.2)

By doing this we can deform it while keeping the map holomorphic. The reader might

worry about the fact that the new factor (1 3 k—1) has introduced new poles. It is not

hard to show that if h,, is modified as

156112 5)(2 3 j=1)] T2 (134)
(n=1)(1)(3) ’

then the proof presented in section III. is not affected.

modif
h., =

(2.4.3)

Even more surprising is the fact that in the new form, fm°dif admits a continuous
family of deformationsin such a way that the amplitude is independent of the deformation
parameter! Let us denote the deformed f°df by Sj.(¢,.) in anticipation to the connection
with the twistor string. More precisely, the deformation we would like to perform is the

following
Sk(ty) = (k=2 k=1 k)(k 1 2)(2 3 k=2)(k-11 3)

(2.4.4)
— te(k=1 k 1)(1 2 3)(3 k=2 k-1)(k 2 k-2),
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where ¢, is a real parameter (the restriction of reality is to ensure that for generic \’s
and \’s, no pole of the form 1/(i i+1 i+2) will be hit by any of the Sy(¢)). (The minus
sign in (2.4.4) is introduced for later convenience.)

Let us denote the family of maps S; = (Sg(ts), ..., Sn(tn)). In a moment, we will
show that the contour integral
/ " r ikl
Se(te)S7(t7) - - - Sp(tn)

S

(2.4.5)

is t-independent using a contour deformation and global residue theorems. Here, H, =
hmodif - When t;, = 1, S(1) becomes the Veronese operator checking the localization of
the six points {k-2, k-1, k,1,2,3} on a conic in CP?, but lacks any convenient geometric
interpretation for ¢ # 0.

We have checked by explicitly computing the factor F(C') from equation (2.3.13),
along the lines of the computations in [37,39], that choosing these Veronese operators
to appear in the holomorphic d-functions, the numerator factor H(C') precisely coincides
with h(C). Thus, t-independence proves the equality of 7,3 an L, 3 equipped with
contour T4 5. As we already remarked, this establishes that the amplitude satisfies the
remarkable U;-decoupling identity.

It only remains to prove the t-independence of the amplitude, which follows from a

straightforward argument using the observations of Chapter 1. Using the notation of

1

Chapter 1, we think of one of the d-function factors as a pole 7,

and we use the global
residue theorem grouping with the (n — 5) 4+ 1 polynomial factors being the (n — 5)
fi’s, together with the remaining three minors in the denominator and d, (n-1)(1)(3)d,
for the last polynomial. Now, as in Chapter 1, we deform the pole away from d = 0,
getting a sum over terms setting (1) = 0,(3) = 0 and (n-1) = 0. Now, in all of our
deformations, the coefficient of ¢ contains a factor (1 2 3), so the term with (1) = 0
kills the t-dependence of all these terms and is trivially ¢-independent. The terms with
(n-1) = 0 and (3) = 0 make t-independent the first and the last of the f’s respectively,
and are seen to be t-independent by induction, down to the n = 6 case which is trivially
seen to be t-independent. Note that this argument can also be thought of as a direct
contour-deformation argument relating the connected prescription of the twistor string

theory to the disconnected prescription given by the CSW rules!

Note that even without this explicit argument, the form of the connected prescription
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given by equation (2.4.5) (at tx = 1) betrays its connection to CSW. The reason is the
presence of the product of three minors (n—1)(1)(3) in the denominator of H,: the global
residue theorem tells us that ((n—1)(1)(3)) = 0, where the “expectation value” is here
defined with the integrand of the connected prescription. But this is a CSW operator!
Furthermore, since the twistor string starting point is manifestly cyclically invariant, we
must have have that ((i—2)(z)(i+2)) = 0 for all 4. This is a much stronger constraint than
the vanishing of the Veronese operators, and is the way the connected prescription alerts
us to CSW localization.

For general k, we expect a similar analysis to hold. Each of the f; can be modified to

be written as a product of 4 minors in the form
frodit — NENEMIM (2.4.6)
We can now consider deformation by a parameter t; of the form
filt) = M{MyMgM; — t; My My M My (24.7)
and at t; = 1, this deformed f; coincides precisely with Veronese operators S;
Sy = MyMiMiM; — M My Mj My . (2.4.8)

Furthermore, for this choice of Veronese operators, the numerator factors in the two

forms should become identical
h(C) = H(C). (2.4.9)

In our discussion of N2MHV amplitudes, we will present very strong evidence supporting
this claim with direct verification through the 10-point amplitude. Given this remarkable
fact, it is very natural to look for a generalization of the very simple contour deforma-
tion argument we gave for NMHV amplitudes to establish the ¢-independence of the
amplitude.

Assuming that the argument holds for all n and k, we find not only a duality between
ok and L, equipped with I’ﬁ’ x» but equality for an infinite class of theories labeled by
the continuous parameter ¢. In a whimsical sense, we might think of ¢ as representing an
“RG” flow. In this analogy the £, ; description at ¢t = 0 is the “ultraviolet” theory, with

the individual residues being the “gluons”, with all symmetries manifest, while the 7,
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description is the “infrared” picture with the unified residues combined into “hadrons”,
where the “macroscopic” properties of the collection of residues—the cyclic symmetries

and U;-decoupling identities—are manifest.

2.5 NMHYV Amplitudes

Having described the central ideas of this chapter in general terms, we turn to examining
them in detail for the simplest non-trivial case of NMHV amplitudes. We will begin
by showing the sum over residues with the even/odd/even structure of given by I'* in
equation (2.2.7) can be unified into a single variety in a natural way. We will then
show that this ansatz can be t-deformed to the amplitude computed from the connected
prescription for twistor string theory. We end the section by comparing these two ways
of unifying the residues into a single variety.

Let’s start by explicitly constructing a holomorphic map f, : C"° — C"° defined
in terms of n — 5 polynomials f = (fs,..., f,) and a function h,, such the tree level
amplitude is given as
A® = / iy T (2.5.1)

" fo-frofa
£,=0

The reason for the offset in the labeling of the polynomials f; will become clear below.

The construction is such that taken as rational functions one has,

ho, 1

Forfroofu (123)(234)---(n12) (2.5.2)

It is natural to try to construct the map f from consecutive minors as those are the
ones that enter in (2.5.2). However, it is easy to see that for n > 8 it is impossible to
construct a holomorphic map from consecutive minors such that the contour given in [10]
is contained in the set of zeros of the map. It is instructive to see the obstruction already

for n = 8. The contour F§3 is given by

Tis = (D@ [B)+ () + (M + G [(5) + (T] + (5)(6)(7)
+ M@ [(5) + (M) +(3)(6)(7) (2.5.3)
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Let’s try to construct a mapping fg : C> — C3, with f; polynomials in the minors (k).
Consider the terms (1)(2)(3), (1)(4)(5) and (3)(4)(5). From the first term we learn that
(1) and (3) must belong to different f;’s, while combining the information from the second
and third we learn that (1) and (3) must be on the same f;, which is a contradiction.

Having seen the need for a different way to construct f, we now show that the
construction is very natural and recursive. The reason it is recursive has a beautiful
physical interpretation: it is equivalent to the operation of adding one particle at a time!

In order to motivate the construction, consider first the six-particle amplitude. (In
this section, k is always 3 and will therefore be frequently suppressed). The contour given
in [10] is I§ 5 = (234) 4 (456) 4 (612). By this we mean three terms, the first of which
is

1

d . 2.5.4
/ T(123)(234)(345)(456)(56 1)(612) (2:5.4)
(234)=0
Clearly, if we define the map fs: C — C as fs = (234)(456)(612), then
(2.5.5)

@ _ [y he(T)
AS _féd e

with hg = 1/(123)(345)(561).
In order to find a recursive way of constructing the map for all n, let us consider the

five particle integrand,

1
2.5.6
(123)(234)(345)(451)(512)’ ( )
and ask what factor would convert this into the six-particle integrand. Clearly,
k=3 _ 1 (451)(512)(234) (257)

56 (561) fi |
where fs = (456)(612)(234), does what is needed. It might be puzzling at first why we
introduced (234) both in the numerator and in the denominator. The reason for this is
clear from the previous discussion. Recall that we have to define hg and fg independently.
Multiplying (2.5.6) by 5§6 we immediately find hg.

We interpret the operation of multiplying by 5§ ;38 that of adding particle six to the
five-particle amplitude. We will see that this interpretation is justified when we show that

in general this corresponds to building an object with the right holomorphic soft-limit.
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I. Recursive Construction

From the six-particle example, we are motivated to construct the n-particle amplitude
recursively as follows. Let f, ) : C" % — C" % be the holomorphic map and h,_; the

meromorphic function such that

P
A = / 4Oy ——0 2.5.8
Fofr o 258)
Fn-1)=0
Then the n-particle amplitude is obtained by “multiplying” the integrand by
1 -2 n-11)(n-112)(23n-2
S = X (n-2n )(n )23n-2) (2.5.9)
(n-)—n (n-1n1) In

with f, = (n=2 n—1 n)(n 1 2)(2 3 n~2). By “multiplying” we mean extending the map
(fe, fr,-+s fn1) toamap f, : C"> — C"° by adding f, as the last component—i.e. ,

forming f, = (fs, f7,-- -, fu_1, fn). Likewise, we have a new h,, given by

(n-2n-11)(n-11 2)(2 3 n-2)

hyy = hy
! (n-1n1)

(2.5.10)

Note that what we are doing can be interpreted as adding the particle n between

(n—1) and 1:

3 e : 3 eemrees :
2 ’Q\ 2 ’Q\
1 K 1 K
' add n \
n-1 ! N n !
n-2 n-1
n—?) . 'o" _2 'o"
“Nennme® i n_3 “Nennme® i

Given that we are dealing with 3 x 3 minors for NMHV amplitudes, it is reasonable
that the “add particle n” operation could involve particles (n — 3) up to 3. There are
a number of choices we could make for how to do this, but the one we have presented
accomplishes the task of unifying the residues in the nicest way that also manifests a
number of important properties that we will discuss at greater length at the end of this

section.
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II. The n =7,8 Amplitudes

For now, let us show how this construction works explicitly for n = 7 and n = 8. The

seven particle NMHYV contour is given by
75 =(2)[(3)+(5) + (D] + (4)[(5) + (T)] + (6)(7). (2.5.11)

Using the recursive construction, we multiply the six-particle hg/ fg by

1 (561)(612)(235)
S = Gk 7 (2.5.12)

with f = (567)(712)(235).
Putting everything together we find the seven-particle amplitude to be

o_ [ o ) (612)235)
A= [ hohm T = e naeseasy 0 30

f7=0

while the map f, = (fs, f) where,
fo(T) = (234)(456)(612) and f7(1) = (567)(712)(235). (2.5.14)

The claim is that the tree-level contour is nothing but the sum over the residues of all
the 9 zeros of f,. At first sight this might seem surprising because by naively simplifying
hz/(fef7) one would find the original object

1
(123)(234)(345)(456)(567)(671)(712)’

integrated over [(2)+(4)][(5)+(7)]. This only gives four terms of the six terms in (2.5.11)

(2.5.15)

and therefore it cannot be the correct amplitude. The resolution to this naive puzzle is
that we should not cancel terms and forget about them! Recall that the map f; is
independent of the function h and we are supposed to carefully study all 9 residues. It
turns out that only six are nonzero, and these add up to the amplitude. Among the six,
four of them are the ones we got from the naive analysis. Let us present the other two.

The first term missed in the naive cancelation is the residue at the point located
where (234) =0 and (235) = 0. Note that (235) is also a factor in the numerator, and
this is why naively may not be expected to contribute. The reason it does contribute
is that when we impose the condition that the points 2,3,5 be (projectively) collinear

and points 2,3,4 be collinear, it follows that 3,4,5 must also be collinear, and hence
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(345) = 0. But (345) is a factor in the denominator of h; and therefore is a pole with
non-vanishing residue. In order to compute the residue in these cases we will use the
following simple result: given linear polynomials, A, B and C' in two variables, such that

C =0 when A = B = 0 one has the identity

A A 1
2 _ 2 _ 2
/ d=t c = / d“t c / d“t C (2.5.16)

|A|=¢1,|Bl=e2 | Bl=e1,|C|=¢2 | Bl=e1,|C|=¢2

for any €; and ey arbitrarily small. This means that what we called the residue at
A = B =0 is the same as the residue at B = C = 0.

Using the identity we find that the pole at (234) = (235) = 0 can also be thought of
as a pole at (234) = (345) = 0. Canceling (235) in the numerator and the denominator
we find that it is what we call residue (2)(3).

The second term is at (612) = (712) = 0. At this point we also have (671) = 0
which is a pole of h;. Using the same identity one finds the residue (6)(7).

All other remaining 3 out of the original 9 residues vanish due to the factors in the
numerator as they do not set any other factors in the poles h; to zero.

Putting together the first four terms we found in the naive analysis plus the two new

terms we find (2.5.11),

2)[B)+ )+ (N + @) [(5) + (] + (6)(7). (2.5.17)

Aside: A Subtlety in the Use of the Global Residue Theorem

Before continuing on to the eight particle example, it is important to discuss a subtlety
which appears in the application of the global residue theorem (GRT) to residue integrals
of the sort we are dealing with. In fact, as we will illustrate for the seven particle example,
a naive application of the global residue theorem leads to a contradiction. Let us recall
that the global residue theorem asserts that given a holomorphic map f : C™ — C™ with
m < n and a holomorphic function s in C™, then for any way of constructing a map
g : C™ — C™ by combining several f;’s into single g;’s such that g only has isolated zeros

then

. 5(7) B
2 / S PR es AT co PO oo Bl (2:5.18)

pEg—1(0)
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where the sum is over all zeros of g and the contour 7" is defined by translating p €
C™ to the origin and having |g;| = ¢; with ¢; a sufficiently small positive real number.
The theorem holds provided there is no contribution at infinity, which is true when
degs <> degg; — (m+1). Suppose that the i"" component of g is given by g; = fifi
for some k and [. Using (2.5.18) one could conclude that
> / dmr—— Z/ d™r —>f() (2.5.19)
p€eTy peTy "
where T’y (or by I';) are the zeros of the map g where g; is replaced by fi (or by f;).
In one complex dimension this is the usual way Cauchy’s theorem is applied. Consider
now the 7-particle amplitude. We can set m = 2, s(7) = (612)(235), and introduce
f5 = (671)(123)(345) in addition to fg and f;. This gives a map f™v : C?* — C?.
According to the theorem we have to construct a map g : C2 — C? out of the three
components of f*¥. One possible choice is g1 = fs and go = f5f7 = (671)(123)(345) f7,
with fs and f7 given in (2.5.14). Recalling that each minor is linear in 7’s we find that
the degree condition for the application of the GRT is satisfied. Using (2.5.19) one finds
/ d*r (671)(6 12)(235) = — / d*r (612) . (2.5.20)

(123)(345) fo f7 (567)(712) f5 fo
{fs,f7} {fs:f6}

The LHS has been shown to give A(73) in the first part of this section. Let us now
compute the RHS where the contour is a sum over the zeros of {(671)(123)(345), fs}-
A straightforward computation reveals that this is the sum over the usual residues of

L, given by

= (0)[(4) + (2) + (M = (D][(4) + (2)] = 3)[(4) + (2)]. (2.5.21)

We can use a GRT as was done in [10] to bring this into a more recognizable form. We
will use that (6)[(1) 4+ (2) + (3) + (4) + (5) + (7)] = 0 in (2.5.21) and a rearrangement of
terms (recalling that (¢)(j) = —(4)(7)) to get

— (M) + (@) +(6)] = B)[4) + (6)] = (5)(6) + (2)(3)- (2.5.22)

The first six terms give rise to the parity-conjugate version of the BCFW-contour as

explained in [10] and therefore equal AY). This means that (2.5.22) equals
AP +(2)(3), (2.5.23)
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which is a contradiction, as advertised. As mentioned at the beginning of the discussion,
there is an implicit assumption in using the GRT (2.5.18) to derive (2.5.19). The implicit
assumption is that I'y, and I'; as sets of points in C™ are disjoint. This is exactly what
fails in our seven particle example. Indeed, note that the point (2) = (3) = 0 appears
in both contours! In order to see this, note that the map defined by ¢g; = fs and
go = (671)(123)(345) fr, with f; = (567)(712)(235), has a double zero at (234) =
(345) = 0 since (235) also vanishes there. This means that while the GRT is valid
as given in (2.5.18), the splitting into two parts must be defined independently in this
situation. In other words, one has to decide where to keep (2)(3). In our construction we
have defined the amplitude in such a way that (2)(3) is kept where the contour is defined
by {fs, fz} and therefore should subtracted from the second form, i.e. ,

(612)

AW = _ /d% TGENAR —(2)(3) . (2.5.24)
{fs.f6}

This is very reminiscent of what happened in [37], where some forms for the connected
prescription gave rise to the amplitude only after subtracting “spurious” configurations.
Note that the same exercise can be repeated but using g1 = f5fs and g = f7. We leave
it to the reader to show that the same phenomena happens when this time the shared
point is given by (6) = (7) = 0. Recall that (2)(3) and (6)(7) were precisely the special

points in the previous discussion of the seven particle amplitude.

Eight-Particle Example

The eight particle amplitude can be analyzed in a similar manner to the seven particle
example. Following the same steps as before we find

. hs(r) . (612)(235)(712)(236)
/dTm with  hg(7) = (781)(123)(345) (2.5.25)

fs=0

while the map fq = (fs, f7, fs) and for which the f; are given by
fo=(234)(456)(612), fr=(567)(712)(235), fs = (678)(812)(236).(2.5.26)

Once again, the naive cancelation of terms when hg/(fsf7fs) is thought of as a rational
function leads the contour [(2) + (4)](5)[(6) + (8)] which is clearly wrong as it misses 6

terms!
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Four of the missing terms are of the same origin as the two missing terms in the seven
particle amplitude. We simply list the map and leave the geometric proofs an elementary

exercises for the reader:

1(234),(235),(678)} —{(234),(345),(678)} = (2)(3)(6);
1(234),(235),(812)} —{(234),(345),(812)} = (2)(3)(8); (2527
{(234),(712),(812)} — {(234),(781),(812)} = (2)(T)(8);
{(456),(712),(812)} — {(456),(781),(812)} = (4)(7)(8).

The final two missing terms are more interesting. One of the missing terms from the
L, -contour is (2)(3)(4) = {(234),(345),(567)}. Note that this singularity has the
geometric interpretation of imposing that points 2,3,4,5,6 and 7 be collinear in the

CIP%-sense.

Let us now look at the map fg at the point (234) = (235) = (236) = 0. Note that
this imposes exactly the same geometric constraint and it is therefore the same point
in (71,72, 73) space. Since by construction we have zeros in hg where (235) = 0 and
(236) = 0 we need two poles in the denominator to vanish. These are (456) in fs and
(345) in hg. Recalling that the residue is computed using a T3-contour |(234)| = €,
|(235)| = €2 and |(236)| = €3 one can show that the answer is the same as if we used the
contour [(234)| = €1, [(345)| = €2 and |(456)| = €3 and therefore the residue is identical
to what we call (2)(4)(5).

Moreover, this also shows that the same point in C? is determine by (456) = (235) =
(236) = 0. This means that this is not a distinct zero of fg and therefore does not give

rise to a new residue.

Exactly the same happens to the second missing term but this time we have to
start with {(612),(712),(812)} and realize that (678) in fs and (781) in hg vanish.

Summarizing the new kind of terms

and collecting all these results we find 10 residues which agree with F§3 given in (2.5.3).
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ITII. General Proof For All n

Let us now prove that

h
A® = /—" 2.5.28
Jrr, (2:5.28)

reproduces the correct tree-level amplitude as defined by Fﬁﬁ for all NMHV amplitudes
in full generality. The proof proceeds by induction. In fact, it is a simple generalization
of the computation we have already seen for eight particles—which is the simplest case
where all the general ingredients appear.

Let us state more precisely what we want to prove. Consider the n-particle amplitude.

Given that as rational functions

1 ho,
= , 2.5.29
D@ @2 D)m) o Fr For T (2:5.29)
all we need to show is that the points in C"~® determined by
EnxOp*Epx---
~ (2.5.30)

(n — 5) factors

are zeros of f,. These zeros are guaranteed to give the right residues while all other
zeros of f, have zero residue by virtue of (2.5.29)! Recall from [10] that the x-product
is such that (i) x (j) = 0if ¢ > j, and

En=2)+@)+...+(2[n/2]) and O,= 1)+ B)+...4+(2[n/2] +1). (2.5.31)

A note on notation: in this discussion we use () for a consecutive minor of the n-particle

amplitude. Any other minor will be written explicitly as (i j k).

Induction Argument
Start by assuming that the statement is true for (n — 1)-particles. In other words, we
can freely start with

1
(1)(2)(3)--- (n-3)(n—2 n-1 1)(n-1 1 2)

(2.5.32)
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and consider only the zeros of f(,,_1) corresponding to

8n71 * Onfl * gnfl *oee

~ (2.5.33)
(n — 6) factors

where the subscript is there to indicate that the minors in (2.5.32) are being used.

Recall that in order to get the n-particle formula all we have to do is to multiply by

hnfl/fﬁ o+ fa—1 by

5B (n-2 n-1 1)(n-1 1 2)(n-2 2 3)

2.5.34
(n—1)—n (n-1n1) f, ( )
with f, = (n-2)(n)(n-2 2 3). For the purpose of the proof, all we need to show is that

all the points in C"~5 given by (2.5.30) are also points in
[En1%Op 1 xEpq*...] X [(n-2) 4+ (n) + (n-2 2 3)]. (2.5.35)

The multiplication sign ‘x’ is there to stress that every single term on the left must be
multiplied by every term on the right (unlike the symbol x).

The first two terms in the last factor of (2.5.35), i.e. , [(n — 2)] and [(n)], directly
give terms in (2.5.30) except when they hit terms of the form [...* (n-112)] or [... %
(n-2 n—1 1) x (n—1 1 2)]. The reason for splitting these two cases will become clear in a
moment.

Terms of the form [...x(n-1 1 2)] x (n—2) vanish because no other consecutive minor
is set to zero, while terms of the form [...x (n—1 1 2)] x (n) make (n-1 n 1) = 0 and
give rise to [...x (n=1)](n) = [...]x (n=1) % (n). The situation is different and much more
interesting for the second class. Note that [...] x (n=2 n—1 1) % (n-1 1 2) x (n-2) and
[...]*x(n=2 n=1 1) x (n=1 1 2) x (n) define the same point in C"~°! This particular point
is precisely the one where minors (n-2) = (n—1) = (n) = 0. This means that they give
rise to the terms in (2.5.30) of the form [...] x (n-2) * (n—1) * (n).

This shows that as sets of points in C*~®
(1% Opy *x &y - | % [(n=2) + (n)] = [Enx Op % Eyx -+ | % [(n-2) + (n)]. (2.5.36)

The only difference between this formula and what we want is a (n—4) term in the final
factor. The reason is that with (n — 5) total factors, the x-product forces any factor

of the form (n—k) with & > 2 in the last factor to vanish in (2.5.30). Moreover, it
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is clear that only one term in (2.5.30) has (n—4) as the final factor. This is the term
(2) % (3) % (4) * ... * (n=5) x (n—4). In order to generate this term, note that (n-2 2 3) =0
in (2.5.35) together with (2) = (3) = ... = (n—1) = 0 implies that (n—4), which explicitly
is given by (n—4 n—3 n-2), vanishes which is what we wanted to show.

As an aside, note that this proof motivates us to write the £,, y-contour as x-multiplication
of the (n — 1)-particle contour by [(n) 4+ (n-2) + (n—4)], in other words, it shows that it

is given as
[(6) + (4) + )]+ [(7) + (5) + B)] % [(8) + (6) + ()] x - - - x [(n) + (n=2) + (n—4)]. (2.5.37)

Note that we have unified the residues of this contour into a single variety; both the
contour itself as well as the unification are not manifestly cyclically invariant. The cyclic
invariance of F§’3 was shown to follow simply from the global residue theorem in [10], and

hence the unified form we have given it also gives rise to a cyclically invariant amplitude.

IV. “Inverse-Soft” Interpretation

It remains to show that the “add one particle at a time” construction we have given has
an interpretation more specifically as an “inverse-soft” operation, by showing that the

multiplicative factor ~S®) turns into the soft factor for particle n in the limit A, — 0.

(n—1)—n
Recall that
3 _ (n-2 n-1 1)(n-1 1 2)(n-2 2 3)
with
fo = (n-2)(n)(n-2 2 3). (2.5.39)

Now, in order to exhibit the soft limit, we will use the global residue theorem, choosing
(n — 6) of the polynomials to be the f’s for the (n — 1)-particle amplitude, and the
remaining polynomial to be f, times the remaining denominator factors, which among
others include the minor (n—1 n 1). The residue theorem gives us a sum over terms
putting the remaining denominator factors to zero. It is easy to show in general (as will
be discussed in detail in [24]), that none of these contributions can be singular in the
soft limit, except the one where the minor (n—1 n 1) is set to zero. Focusing only on this

contribution, it will also be shown that every residue of £, 3 setting (n—1 n 1) and any

61



other collection of minors to zero maps, in the soft limit A\,, — 0, to the usual soft factor
multiplied by the corresponding residue of G(3,n — 1) determined by the vanishing of

these other minors. This guarantees that the soft limits are manifest as claimed.

V. Connection to the Twistor String

As already mentioned in section 2.4, there is a continuous deformation of the map f,)
which does not affect the sum over residues and which gives rise to an integral over
the Grassmannian which can be shown to come from the twistor string formulation of
the amplitude and which wonderfully manifests the cyclic-symmetry and U;-decoupling
identities of the amplitude.

It is instructive to note that both the cyclic invariance and U;-decoupling identities
can be established without performing the explicit calculation relating our form of the
object to the connected prescription. By construction, the Veronese operators localize
the integral over the C,,’s to be over matrices with the Veronese form; computing the
residue tells us to look at what is happening to first order in a Laurent expansion in
(n — 5) variables in the vicinity of the Veronese form. Let us consider such a first-order
perturbation away from the Veronese form given by the following parametrization of the

Cy o matrix,

G+ LY o Gt Y el
§ip §ap2 o Enpn : (2.5.40)
&ipl &p3 . Enp?

C

one finds that the leading order in € of the Veronese polynomials is linear in € and can be
denoted by S;°*™&(1). This means that the following change of variables u;, = S;"*"(1)
from (€1,...,€,_5) to uy is linear and the contour integral around the point S,Leading =0
can be written as follows

G(&, pi) = /d”_5u o , (2.5.41)

U6u7 .. .un

where the contour computes the residue at u; = 0 which gives one. Of course, to get the
final result for the tree amplitude one would still have to integrate over the p’s, but this
form already allows us to see both the cyclic-symmetries and U;-decoupling identity. This

is because straightforward computation of the function G(&;, p;) reveals a very beautiful
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property: it is almost permutation invariant. In fact, it is given by

1
(pr = p2)(p2 — p3) - (pn — p1)

G(&, pi) = x G(&, pi) (2.5.42)

where G (&, pi) is fully permutation invariant! Despite the non-manifest cyclic invariance
of this integrand, this residue s cyclically invariant, and this conclusion is not changed
in performing the integral over p’s giving the tree amplitude. Similarly, since the only
breaking of permutation invariance is in the pre-factor, which is just the same twistor-

string measure guaranteeing the U;-decoupling identity.

2.6 Generalization to N°MHV

Returning to the Grassmannian, it is not difficult to extend our results for general NMHV
amplitudes to higher-k by first using parity-conjugation to obtain the contour for NMHV,
and then view this as the result of having added a particle to an MHV amplitude. It
will be instructive to work this out in detail for N2MHYV, because there are several new
structures that emerge first for £ = 4 that will be important for all higher-k; these new
structures will be discussed in section I.. After deriving a general formula (2.6.10) for the
N2MHV amplitude computed in the Grassmannian, we will check it in detail for the 8-
particle amplitude in section II.. This will allow us to discuss many of the new structures
that emerge beyond NMHV, and which are prerequisite to understanding higher-£.

The method by which we will obtain the contour for N2MHYV is roughly as follows.
We will first write the contour for the 7-particle N2MHV (= NMHV) amplitude by parity-
conjugating the result for £ = 3. We will see that this can be viewed as having been
obtained from the 6-particle N2MHV (= MHV) amplitude by acting with an operator
which adds a particle while preserving k, similar to the operator discussed above to
derive the NMHYV contour. This operator naturally generalizes to higher-n, and through
its repeated application to the 6-particle amplitude, we obtain a closed-form result for
all n.

As discussed in section 2.3, parity acts in the Grassmannian by exchanging C' with its
dual C, and trading all minors for their complements (see near (2.3.25)). For example,
in going from G(3,7) — G(4,7), the minor (123) — (123) = (4567). Knowing this, we
can immediately write down the 7-point N2MHV amplitude from the NMHV amplitude
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given above. It is,

A(4):/ (3457)(4671)
") @e) {((me 15 nE)0e)E6 7]}

Fr=0 ~~ ~~

fe Vi

: (2.6.1)

where we have used E to denote the parity-conjugates of ‘f;’, and we have used a single
label in parentheses to denote any consecutive minors of G(4,n)—e.g., (2) = (2345).
Although equation (2.6.1) is correct as written, we will find it useful to exploit the cyclic-
symmetry of the Grassmannian to bring (2.6.1) into a form more reminiscent of our result
for NMHV. Specifically, by rotating all particle labels in (2.6.1) by j — j — 3, we obtain

an expression remarkably similar to our form of the NMHV amplitude:

e :/ (4712)(1345) (26.2)

1
ar Y
@) (6)(1)(3) 456{123
f7 =0

where we have grouped the (cyclically-rotated) parity-conjugates of fg and f7 into the
object

£ = {0, 10} = {@wur12)@), 6)masas)}, (2.63)

and where 456% v = f;j) . 7(3). To motivate this notation, observe that adding a particle

to an n-point amplitude while preserving k necessarily introduces (k — 2) new integration

variables that must be fixed by the contour, and each f,(fl) accounts for one of these

new variables. For k = 4, therefore, it is the pair of maps { féj), f;f)} = f(74)—taken
) B € N . .

45 6{123 = fz, - f7, which appears in the integrand.

(The indices ‘4567 123’ below .# are meant to make explicit the fact that .# involves the

together—which fixes the contour, and

seven particles numbering 4567 123—presented in this order. This notation will be useful
below, when we consider adding particles to a general n-point amplitude.)

Let us now re-write the 7-particle amplitude in such a way that makes manifest that it
could have been obtained by acting on the 6-particle N>MHV amplitude with an ‘inverse-
soft” operator similar to that discussed above for NMHV. Knowing A(74) from above, this

is very easy to do:

@ _ [ 4@ cw _ ! (4)
A7 /‘46 xS /(1)(2)(3)(4561)(5612)(6123) 637 (2.6:4)
=0

64



where

oty _ (4561)(5612)(6123)(4712)(4235)(1345)

657 (6712) (2.6.5)

1
F
4567 123
Two important aspects of 6§(74) will allow it to be generalized to higher n in a way
which does not alter its form. First, it correctly maps the measure of L4 to that of
L74: by ‘removing’ the three minors of G(4,6) which are not consecutive in G(4,7)—
namely, (4561),(5612), and (6123)— by including them in the numerator of S®; also,
by adding to the measure each of the four consecutive minors of G(4,7) which were not
present in Lg4. One of these minors—(6712)—is manifest in (2.6.5), while the other
three minors involving particle 7 are part of .#. Notice that all the non-consecutive
minors appearing in .% are manifestly part of the numerator of (2.6.5). The second
important aspect of S is that, by including .% in its definition, it describes the contour
of integration for the new integration variables added when going from Lg4 to L74 (of
course, there were no integration variables for the 6-point N?2MHV (= MHV) amplitude).
Let us now see how we can generalize S® to one which adds particle 8 to the 7-
particle amplitude. It turns out there is a 6;76;}/ natural way of doing this. Notice that
for k = 4, the four consecutive minors of G(4,n) involving n—which were not present
in G(4,n-1) and—which must be added to the measure by S involves exactly seven
columns: n-3,...,n,1,2,3. And because 6§>(74) and45 é?l ”s both involve only seven fixed
columns of the Grassmannian, there is a canonical way to generalize these to higher n.

Concretely, in going from the (n — 1)-point amplitude to the n-point amplitude, the

inverse-soft operator must involve the minors
(n-3 n-2 n—1 n), (n-2 n-1n 1), (n-1n12), and (n123) (2.6.6)

in the denominator. It is easy to see how these can be kept manifest in .% through its
natural generalization to .%, by

- f = fu - fu 2.6.7
(n=3)(n—2)(n—1)n 123 ! Na fnb ( )

where

fW = (n-3 n-2 n-1 n)(n-3 n 1 2)(n-3 2 3 n-2);

Na

and £

ny

(2.6.8)

(1 n-2n-1n)(1n 2 3)(13n-3n-2).
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Notice that (2.6.7) is simply the same as (2.6.3) with the substitution {4,5,6,7} —
{n-3,n-2,n~1,n} while keeping {1, 2,3} fixed.

In a similar manner, we can generalize the inverse-soft operator to

@_ (n=3n-2n-11)(n-2n-112)(n-1123)(n-3n12)(n-3 23n-2)(1 3n-3n-2)
SW= (2.6.9)
(n—1)—n (n-1n12)- %,
By repeatedly applying this inverse-soft operator to the 6-particle N?MHV amplitude,
we can obtain any higher-point amplitude we like. Indeed, it is not difficult to obtain
the general result for any number of particles. Doing this explicitly, we find that the
n-particle N2MHV amplitude is given by

e _/ 127 [(1235) (235-25-1) (1-25-15) ] TT=3 [(135+1) (12 +3)]

" (n-1)(1)B3) Fr T T

. (2.6.10)
FiP=0

As we will see below, this ansatz correctly gives the 8-particle N°MHV amplitude, and

it does so in a remarkably-novel way—involving only four one-loop leading singularities

together with sixteen two-loop (all the residues of G(4,8) are at most two-loop leading

singularities, [24]).

I. The Geometry of Residues in the Grassmannian

The 8-particle N2MHV amplitude not only offers us an extremely good test of the ansatz
(2.6.10), but it also allows us the opportunity to discuss some of the more general struc-
tures involved in amplitudes (and their contours) for & > 3. Most of these arise as a
simple consequence of the fact that for £ > 3, minors of the Grassmannian are typically
irreducible polynomials of degree greater than one and therefore vanish along cycles in
G(k,n) which multiply intersect each other (and themselves). This is true of the cycles
defined by the vanishing of the (mostly non-consecutive) minors which define the tree
contour in (2.6.10), and it is true for the purely consecutive minors which are relevant to
Lk

One obvious consequence of the fact that any given set of cycles can multiply-intersect
is that more data is necessary to identify any particular residue than just which minors
vanish on its support. And it is not true in general that distinct residues supported along
the vanishing of the same set of minors are at all related. This fact becomes increasingly

apparent as n grows large, but is already striking for n = 9: for example, while two of
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the five residues supported along by the vanishing of the minors “(1)(2)(3)(4)(6)(8)” are
the leading singularities of four-mass boxes, the other three residues associated with the
vanishing of these minors are simply rational functions.

As discussed in [10], the number of isolated solutions to setting a given set of minors
to zero is described by Littlewood-Richardson formula. For k = 4 these are simply the
Catalan numbers: there are generally 2 solutions to setting 4 minors to zero in G(4,8); 5
solutions to setting 6 minors to zero in G(4,9); 14 solutions for G(4, 10); 42 for G(4,11);
132 for G(4,12); and simple residues cease to exist for n > 12. While we may may able
to get away with labeling the 2 solutions for each set of four minors of G(4,8) by simply
‘17 and ‘2, it is clear that something more is needed in general.

As we will see below, one very powerful way to identify all the distinct residues
in G(k,n) is simply through the projective geometry of the Grassmannian viewed in
the particle interpretation. And, perhaps even more importantly, this geometric data
is closely-related to physically-important information, such as soft-limits (see [24]). Of
course, when each column of the C,, ,-matrix is viewed as a point in CP*~!, every minor
represents some geometric test. Consider the following concrete example, which arises
frequently in G(4,n). It is easy to show that

(2345) = (3456) =0 —> A all the points {2,3,4,5,6} are coplanar; (2.6.11)

B the points {3,4,5} are collinear.
In case A, we know as a consequence that (2346) = 0, for example (similarly for
any other choice of 4 from among {2,3,4,5,6}); and in the case of B, we know as a
consequence that (3458) = 0 (or, more generally, (345m) = 0 for any m). Notice that
the natural way to test either case would be through the vanishing of a non-consecutive
minor. Indeed, one way to uniquely identify every residue of the Grassmannian is to
give an exhaustive list of all the minors—both consecutive and non-consecutive—which
vanish on its support. (This is actually quite obvious: any point in the Grassmannian
can be identified by its Pliicker coordinates, which in turn can be written as a sequence
of (typically non-consecutive) minors.)

One of the most remarkable features of the form of the tree-contour derived in (2.6.10)
is that the non-consecutive minors used to define the contour appear to automatically

collapse any possible ambiguity about which particular residues are included in the con-
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tour. This turns out to be possible because for n > 7, at least one factor among the .%,’s

given in (2.6.7) is always composed entirely of non-consecutive minors!

Another remarkable feature of the contour given in (2.6.10) is that it is given entirely
in terms of ‘simple’ residues—that is, simple residues involving both consecutive and
non-consecutive minors. As we will see, the 8-point contour fixed by the contour in
(2.6.10) turns out to contain 9 residues which are ‘composite’ in terms of consecutive
minors—and yet all of them arise as the simple residues of the contour. Moreover, for
higher n, there are always dim(7) maps among the .#’s which define the contour, and
so: all restdues—composites and non-composites alike—are generated as simple residues

inwvolving both consecutive and non-consecutive minors!

On the Naming of Residues

Before we calculate the actual residues of G(4,8) which contribute to the contour given
above, it is necessary for us to develop some notation to describe the residues concretely.
From our discussion above, it is clear that any residue can be uniquely identified by
giving a sufficiently-exhaustive list of the minors which vanish at its support. Naturally,
we would like to represent this data as concisely as possible. While we will not prove it
here, (see [24]), it turns out that there is a natural, physically-motivated, concise way to
represent all the necessary information: any residue of GG(4,n) can be uniquely identified

by the following:*

1. a list of the consecutive minors which vanish on its support, which we write in the
form, e.g., “(2)(4)(6)(8)” (where the order of these labels determines the sign of

the residue);

2. all triples of consecutive, collinear points, which we indicate by a blue subscript
labeling the middle of the consecutive triple; so, e.g., by “(2)(3)(7)(8),,” We mean
the particular solution to (2)(3)(7)(8) for which the triples (812) and (345) are

collinear;

! This is only strictly true if we consider each conjugate-pair of residues associated with the leading

singularities of a four-mass box as equivalent.
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and, although not strictly necessary to identify each residue, we find it useful® to further

indicate

3. all triples of consecutive points whose parity conjugates are coplanar, indicated with
a red superscript labeling the middle of triple of points; so, e.g., by “(2)(3)(7)(8)°%”
we mean the particular solution to (2)(3)(7)(8) for which all the particles in the
complements of (456) and (781) are coplanar—i.e. , for which (78123) and (23456)

are coplanar.

With this notation, our example (2.6.11) can be rewritten:
2)(3) = . (2.6.12)

As a statement about functions, (2.6.12) reads (3) = (3)'(2) + (3)° (3),, which is to say,
the minor (3) factorizes on the support of (2) (and vice versa).
It is worth keeping in mind that the collinearity and coplanarity operators are actually

stronger constraints than minors alone. Specifically,

e cach (---) implies that (m~1 m m+1 p) = 0 for any p; and in particular, it implies

that the minors (m-1) = (m-2) = 0;

e cach (---)7implies that any minor forming a subset of (¢—1 ¢ ¢ + 1) vanishes; in

particular, it implies that (¢+2) = ... = (¢+n-5) = 0.

Notice that it is possible for a residue to be supported where both factors of a given
minor vanish simultaneously. For example, if (2) = 0 and both (3)% = (3) 4= 0, then
a total of three constraints would be imposed by these two minors. Because of the
symmetry between (3) factorizing on (2) and (2) factorizing on (3), we choose to indicate
this extra constraint by writing [(2)(3)]?1 Notice that either of the labels ()®and () 4 imply
that minors (2) and (3) vanish. An example of this type of composite for n = 8 is the
residue [(2)(3)] (S)E—Which will in fact contribute to the tree contour as we will see below.
Similarly, if we were to know that all of the points 3,4, 5, and 6 were collinear, then we

would have a residue adorned by both (), and (); but (), implies that (3) = (4) = 0,

2This is particularly relevant for n = 8, as it is the ‘parity-conjugate of three points being collinear’;

for higher n, this geometric constraint becomes increasingly constraining.
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while (), implies (2) = (3) = 0, and so minor (3) is doubly-constrained. In this case, we
would name the residue (2)(3)2(4)2% (here, the coplanarity labels are a consequence of
the collinearity).

Although we will not have room to discuss this here (see [24]), in addition to fully-
specifying each distinct residue the Grassmannian, these labels also have an important,
physically-motivated interpretation. They indicate how each particular residue—when
viewed as a function of the kinematical variables—can be constructed out of an analogous
lower-point residue in a canonical way through the action of an ‘inverse-soft operator’
analogous to the one discussed above, but applicable to each individual residue alone
and without reference to the entire amplitude. Specifically, whenever a residue involves
three points being collinear in G(k,n), it is canonically-related to a residue in G(k,n—1)
where the middle particle has been removed. Similarly, because the coplanarity of (n—3)
points is the parity-conjugate of three points being collinear, a coplanarity label indicates
that a residue is canonically-related to a residue of G(k — 1,n — 1) in which the labelled

particle has been removed.

II. The 8-Particle N°MHYV Amplitude

We now are fully prepared to write down and compute the 8-point N2MHV amplitude
as given by the general formula (2.6.10). Explicitly, we have

o [(5671)(7T123)(2356)(1247)(1345)(1258)(1356)
A= MG F: - F - (2619
FV=0
where, from (2.6.7),
T, = [(4)(4712)(2)] x [(1237)(3451)(5671)],
(2.6.14)

and  Fy = [(5)(5812)(5236)] X [(6)(8)(1356)].

This multidimensional contour integral involves a few subtleties beyond those already
encountered for NMHYV contours. As discussed at length above, the principle new sub-
tlety encountered for k = 4 is that the minors which define the contour are generically
quadratic polynomials, whose cycles of zeros typically intersect each other (and them-
selves) multiply. Another novelty first encountered for k = 4 is that it is possible for

some of the minors within the f;’s to factorize on a solution of the others, leading to
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multiple branches which can sometimes can have very different structures. These poten-
tial subtleties are best understood through example. Therefore, in the next subsection,
we will work through a number of the contributions (and potential contributions) to the
tree amplitude coming from the contour above, trying to sample all of the possible types
of contributions.

Before we begin our series of examples, it is useful to lay-out the form we expect
the answer to take, and the type of calculation that will be involved in the evaluating
(2.6.13). Because setting any 4 minors of G(4,8) to zero will typically have 2 isolated
solutions, we may first expect that by pairing any of the three minor-factors of the f;’s
together, we would find < 3%%2 = 162 isolated poles in the Grassmannian ‘encompassed’
by the contour. Of course, the numerator of (2.6.13) ensures that any pole generated by
the f;’s which is not a pole of consecutive minors will have a vanishing residue. Therefore,
we expect that the vast-majority of isolated solutions to f; = 0, for i = 1,...,4 will not
contribute anything to the amplitude. Indeed, it turns out that among all the 3* choices
of factors from among the f;’s (and all of their multiple solutions), only 20 poles will
contribute a non-vanishing residue to the contour—and these terms have been checked
to add-up to precisely the 8-particle amplitude, matching right-down to the sign of every

term.

Example Contributions from the Contour

In order to gain some understanding of how each of the 20 non-vanishing residues are
generated by the contour, it is worthwhile to analyze a few examples in detail. Let us
start by rewriting the maps f; which define the contour in a slightly more transparent
way:

fi=[(2345)(4567)(7124)], f3=1(5678)(2356)(8125)], (2.6.15)

fo=1(1237)(3451)(5671)], f1=1(6781)(8123)(3561)].

Notice that the contour is naturally composed of some 3% parts coming from the simul-
taneous vanishing of any choice of factors from among the f;’s. However, because fs is
entirely composed of non-consecutive minors, most poles of the contour will have van-
ishing residue and contribute nothing to the tree amplitude. The exceptional cases are

those for which the solution to f1 = ... = f4 = 0 is also a pole in L54. The complete
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list of such contributions is given in Table 2.1 at the end of this section. Each of these
contributions is quite easy to understand geometrically, and considering a few exercises

in particular will illustrate the role of projective geometry in the general contour.

e (2345)(3451)(2356)(1356) — (2)(3)2(4)5 ]

Notice that this choice of minors from the f;’s includes only one consecutive minor,
(2345), together with the three non-consecutive minors (1345),(2356), and (1356).
The important thing to notice about these four minors is that they all involve points 3
and 5. This means that the geometry problem at hand is merely the classic problem of
Schubert calculus of finding the set of lines—in this case the lines ‘[3 5]'—which intersect
four given lines in P3.

Here, the four lines which [35] must intersect are [14],[42],[26],[61]. Notice that
these four lines mutually intersect at points 4,2, 6, and 1, forming a closed loop. This is
illustrated on the left-hand side of the figure below. It is not hard to see that the only
two solutions are those shown on the right-hand side of the same figure, [3 5] and [3 5]p.

The solution [3 5], involves all four points {1,2, 3,5} being collinear. While this con-
figuration implies that minors (8) and (1) vanish, it does not provide a fourth constraint
coming from a consecutive minor, and therefore the residue associated with this pole will
vanish in the contour.

The solution [3 5], on the other hand, involves all the points {3, 4, 5,6} being collinear.
Recall that when 3,4,5 are collinear, minors (2) and (3) vanish, and when 4,5,6 are
collinear, minors (3) and (4) vanish. Thus, the minor (3) is doubly-constrained, and we

find that this geometric configuration contributes the residue (2)(3)2(4)% to the ampli-

tude.
2

o (2345)(3451)(2356)(8123) —> [(2)(3))(8)°
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Figure 2.1: The two classes of solutions to setting minors (2345),(1345), and (2356),
to zero. In solution A, line [35] lies on the plane [124] and passes through the point 2;
for B, the line [35] lies on the plane [624] and passes through the point 4.

The first three minors of this problem are the same as in the last problem. Let us start
by considering these minors by themselves. As before, because all three minors involve
the particles 3 and 5, we are looking for the configurations of lines [3 5] which intersect
the three given lines [14],[42], and [26]. There are two families of such solutions which

are illustrated in Figure 2.1. Specifically, these two solutions are:
A the line [35] passes through the point 2 and lies on the plane [142], or
B the line [35] passes through the point 4 and lies on the plane [64 2].

Now let us consider imposing the additional constraint (8123) = 0 to each of the two
cases. In case A, (8123) = 0 implies that the line [81] intersect [23] = [25] = [35].
The only configuration then, is where the line [3 5] lies along [12], which was the same
case we encountered in the previous geometry problem—and one that does not involve
enough consecutive minors to contribute to the amplitude.

For case B, the line [8 1] will intersect the plane [246] at some point through which
[3 5] must pass; this will fix the angular freedom of [3 5] on the plane [24 6]. Therefore, we
have that 3,4, and 5 are collinear, and the points 2, 3,4, 5,6 are coplanar. Both of these
conditions set the minors (2) and (3) to zero, and so the two minors [(2)(3)]?L contribute

a total of three constraints. When combined with minor (8), we obtain the composite

residue [(2)(3)](8)?1

o (2345)(5671)(5678)(8123) = (2)(4)(5)(8), and (2)(6)(5)(8)°

6
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Recall how consecutive minors factorized in the example (2.6.12). Just as in that case,
because minors (5678) and (5671) overlap on three columns, we may conclude that,
on the support of (5), (5671) — (6)3- (4)- What this means for this case is that the
two solutions to (5671) = (5678) = 0 are (4)(5); and (5)(6)%. Combining these two
constraints with the minors (2) and (8) from f; and f4, respectively, we find that the two
solutions are: (2) [(4)6+ (6)3} (5)(8) = (2)(4)(5)(8),+ (2)(6)(5)(8)".

Before we move on to the next example, it is worth emphasizing that the ordering
of minors appearing in the residue “(2)(6)(5)(8)%” was fixed by the ordering of the f;’s:
minor (567 1) appearing in f, contributed the ‘(6),” while f3 contributed minor (5). This

completely fixes the signs of the tree-contour.
o (4567)(5671)(5678)(6781) = (4)(5)%(6)72

Let us start this problem by first considering the three minors (4567), (5678) and
(6781). Here, we have that the line [67] must intersect the three lines [4 5], [58], and
[81]. This case should be familiar from before, and is illustrated in Figure 2.2. There are

two infinite families of solutions:
A. the line [67] passes through the point 5 and lies on the plane [158], or
B. the line [6 7] passes through the point 8 and lies on the plane [458].

Let us first consider case A. Here, we see that there is an apparent problem: when the
points {5,6,7,8,1} are coplanar, we automatically have that minor (5671) = 0, and
so fo vanishes everywhere over this entire infinite ‘sheet’ which solves the first three

constraints! Clearly, when f; = 0 everywhere over a surface, it does not generate a

Figure 2.2: The two classes of solutions to setting minors (4567) = (5678) = (6781) =

0, where the possible configurations for the line [6 7] are indicated.
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transversally-supported pole. Said another way, f» vanishes trivially for this class of
solutions, and only because the non-consecutive minor (5671) vanishes. But this also
vanishes everywhere in the numerator and so it effectively imposes no constraint at all.
In case B, however, (5671) is not manifestly zero. Here, in fact, the vanishing of
(5671) imposes the non-trivial constraint that [67] intersects the point 5. Notice that
this is actually where both of the factors of minor (5671) = 0—one factor which tests
the coplanarity of the points {5,6,7,1} and the other which tests the collinearity of the
points {5,6,7}. For this solution, the line [6 7] must lie along the line [5 8], and hence the
points {5,6,7,8} are all collinear! Similar to our first example above, the collinearity of
{5,6, 7} implies that minors (4) and (5) vanish, while the collinearity of {6, 7,8} implies
that the minors (5) and (6) vanish. This leads to the composite residue (4)(5)2(6)232

67"

Residue Geometry Problem: Residue Geometry Problem:
i Lo 3 N L fo fs

(2)(3)%(4)}5 | (2345)(3451)(2356)(1356) || (2)(3)(5)(6),, | (2345)(3451)(5678)(6781)
[(2)(3)](6)] | (2345)(3451)(2356)(6781) || (2)(5)(3)(6)*% | (2345)(5671)(2356)(6781)
[(2)(3)1(8)7 | (2345)(3451)(2356)(8123) || (2)(3)(5)(8), | (2345)(3451)(5678)(8123)
(2)[(5)(6)]2 | (2345)(5671)(5678)(6781) || (2)(3)(7)(8), | (2345)(3451)(8125)(8123)
(2)[(7)(8)]7 | (2345)(1237)(8125)(8123) || (2)(7)(3)(8)°® | (2345)(1237)(2356)(8123)
(4)(5)%(6)25 | (4567)(5671)(5678)(6781) || (2)(4)(5)(8), | (2345)(5671)(5678)(8123)
[()(5)](8)7 | (4567)(5671)(5678)(8123) || (2)(6)(5)(8)" | (2345)(5671)(5678)(8123)
DIT)(8)] | (4567)(1237)(8125)(8123) || (2)(7)(5)(8)" | (2345)(1237)(5678)(8123)
(6)(7)2(8)g | (7124)(7123)(8125)(8124) | (4)(5)(7)(8), ¢ | (4567)(5671)(8125)(8123)
(2)(1)(5)(8)5 | (2345)(7123)(5678)(8123) || (4)(7)(5)(8)% | (4567)(1237)(5678)(8123)

Table 2.1: All of the non-vanishing residues contributing to the 8-point N2MHV ampli-
tude as given in (2.6.13), and the corresponding ‘geometry problem’ that gives rise to

each.

Summary of 8-Point N°MHYV Results

Continuing to solve the various geometry-problems in this manner, we would eventually

find that the complete contour given in (2.6.13) contributes only 20 non-vanishing residues
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to the tree-amplitude. These 20 terms are as follows:

AW 2)BP@I5 + [(EN6)] + [(EIE)] + )70 + @UNE)]
+ WIME)N, + @IEOF + @EE)5E+ [(DEIe)F + 2)1)6)E);
+ (2)(3)(5)(6) 7 + (2)(B)(3)(6)°% + (2)3)(5)(8), + (2)B)T)(8),, + ((N(B3)(8)°
+ (2)@E)B)g + (2)(6)(B)(8)" + (2)T)(B)(8)” + (4)(B)(T)(8),¢ + (4)(72%(%2

We have checked that this correctly matches the result calculated in field theory. The
geometric origin of each of these terms is summarized in Table 2.1.

One of the remarkable features of (2.6.16) is that among all the residues of the contour,
only 4 are primitive one-loop leading singularities—namely, (2)(3)%4)2% : (4)(5)2(6)(25:;,
(6)(7)2(8)§‘? , and (2)(1)(5)(8);, of which the first three are cyclic-variants of the function
‘X’ of [31], while the last is cyclically-related to ‘V’ (see also [10]). All the other residues
appearing in (2.6.16) are two-loop leading singularities; these and similar facts were
discussed at length in a paper specifically focused on residues in G(k,n) for k > 4, [24].

One may naturally wonder if there is any similarity between the structure of the tree-
contour in (2.6.16) and the even/odd structure of the NMHV contour. In some sense

there is: knowing how each of the factors of each f; contributes to the non-vanishing terms

in (2.6.16), we find that the tree-contour can be re-written (somewhat schematically) as,

A= [(2)+(4)+(6), J [(5)3+(7)5+(1);+(3) 4+(5)6] [(3) 5+(7)1+(5)+(7)4+(3)8] [(4)8 - (6)+(8)] :

By expanding this formula and keeping only the terms that are consistent with the
constraints implied by the collinearity/coplanarity operators, precisely the 20 terms of

the tree-contour given in (2.6.16) are found.

III. Connection to the Twistor String

We can now take our proposal for all N2MHV amplitudes and deform it along the lines
explained in section 5 in order to get an integral over the Grassmannian localized on

C-matrices of the Veronese form. In other words we take

" y7(4). <5ﬂ8(4) coe W

s =0

(2.6.17)
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n—1 n—3

[T[a23)@35-2 -0 -2 =1 HTT[085 +10025 j+3)(135 j+2)(125 j+2)
J=7 j=4

(n=1) (1) (3)
(2.6.18)
and S = {Séf}, S sW, sﬁ?} with
SY = (k=3 k=2 k=1 k) (k=3 k 1 2)(k-3 2 3 k-2)(k-3k—113)
k=3k-1k1)(k-3123)(k-33k-2k-1)(k-3k2k-2);
4 — ( ) ) ) ) (2.6.10)
and SV = (1k-2k-1k)(1k23)(13k-3k-2)(1k-12k-3)
— (1k=1k2)(123k=3)(1 k=3 k=2 k—1)(1 k3 k=2);

and each f,fg represents the product the two Veronese operators S ,ij) -5 ,E?.

The natural question at this point is whether this form agrees with the twistor string
formula. In order to check this we take the twistor string formula equation (2.3.13) and
gauge fix GL, using &1, p1, po and p3 and gauge fix GL4 to some link representation.
Therefore we get an integral of the form [39]

dpadps - dp" dg; B fz{fJ
JGLz/(Pl—P2)(P2 p3) (oo — p1) /H & gd(” > (2.6.20)

where Jor, = &(p1 — p2)(p2 — p3)(ps — p1). Here, i runs over four indices (the ones

chosen for the link representation), while J runs over the remainder n — 4. And we
can now expand around any fixed configuration ¢;; = @E 7/(pi — ps). In other words,
we may take ¢;; = ¢;; + hi;e, where h{; are some generic functions of p’s and g’s, where
a=1,...,2(n—6). Now we take the system of 4(n—4) equations given by the J-functions
as a system that ‘locks’ all 2(n — 6) €’s to zero and all n — 3 p’s and all n — 1 £’s to their

hatted values. This means that (2.6.20) becomes

(D1 — 7o) (P2 — 73) (Ps — 1)

S U Tamn (5, E,0), 2.6.21
(P1 — p2)(p2 — ps)"'(pn—pl)x 4tn—2)(P, €, 0) ( )

ITWlstor String =

where Jy(n—a) (P €) is the Jacobian of the 4(n —4) equations E;; = 5{,/(@ —py)+hie,—

£2£J
Pi—PJ

evaluated on the hatted values and € = 0—i.e. ,

O(Eiy)

Aers,s,p5)" (2:6-22)

Ja(n—a) =

7
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On the Grassmannian side, we gauge-fix GL, in the same way and expand ¢;; = ¢;; + h{;€,.
Using this expansion, each of the 2(n — 6) Veronese operators becomes linear in €’s to

leading order. Therefore we can evaluate the integral (2.6.17) and obtain

IG = %(4)

X J2(n—6)7 (2623)

Cig=Cij
where the Jacobian Jy(,—¢) is given by

oS5y k)
8(61, ey EQ(n_G))

(2.6.24)

e=0
We have checked that Zrwistor—String = Zg for n = 7,8,9 and 10. It would be interesting

to find a general proof for all n.

2.7 Discussion

The expression for L, ; as a contour integral over the Grassmannian G(k,n) makes the
Yangian symmetry [49] of N' =4 SYM manifest. Since conformal and dual superconfor-
mal symmetries act on mutually non-local spaces, it is not surprising that each individual
residue of £, does not have a good local space-time interpretation; rather, there is by
now a great deal of evidence for the conjecture of [10], that the residues compute leading
singularities of scattering amplitudes at all loop orders. Even at tree-level, however, a
central issue is to understand how local space-time physics emerges. As we saw in Chapter
1, for the special contours associated with the tree amplitude, a canonical contour defor-
mation can expose the spacetime Lagrangian in light-cone gauge via the CSW /Risager
rules. But the more fundamental question remains: what is invariantly special about
this contour? Is there a question intrinsic to the Grassmannian that singles it out? In
this chapter we have clearly seen the outlines of the answer to this question. Demanding
that our integral over G(k,n) has a “particle interpretation” in the Grassmannian picks
out a contour that gives us the tree amplitudes with a good space-time interpretation.
The notion of a particle interpretation in the Grassmannian seems more primitive and
fundamental than locality in space-time, since it is formulated in a setting that exhibits
all the symmetries of the theory. Unifying the residues of " ﬁ . into a single variety leads
to an “add one at a time” particle interpretation which makes the Yangian symmetry

manifest. The Veronese particle interpretation is equivalent to the connected prescription
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for twistor string theory. Quite beautifully, these apparently different sorts of Grassman-
nian theories are simply related by a deformation parameter ¢t. The theory at ¢ = 0
corresponds directly to the unified form of £, with contour I';,, while the connected
prescription amplitude 7, ;, corresponds to ¢t = 1. Thinking of ¢ as analogous to RG time,
L, 1 is like the “ultraviolet” theory, where the full Yangian symmetry is manifest, while
Tk is akin to the confined description in the infrared, where the “macroscopic” prop-
erties of the collection of residues—especially the cyclic symmetries and U;-decoupling
identities—are manifest. For NMHV amplitudes a simple residue theorem demonstrates
t-independence, and we expect a generalization of this argument should be possible for
all k. Indeed, while have restricted our discussion in this chapter to NMHV and N2MHV
amplitudes, we fully expect the basic physical picture for tree amplitudes we have pre-
sented in this chapter to generalize for arbitrary k. A number of new issues arise for
k > 4—in particular the distinction between the more natural localization in CP*~! ver-
sus localization in the CP? of twistor space first becomes apparent for k¥ = 5—and we
will return to examine these issues in future work.

We have focused exclusively on tree amplitudes in this chapter, yet clearly the most
exciting feature of £, j, is that it contains all-loop information. Can the “particle interpre-
tation” picture in the Grassmannian be generalized to include full loop-level amplitudes,

not just leading singularities?

79



Chapter 3 The Grassmannian
and the Twistor String:
Unifying all Tree Amplitudes in NV =4

3.1 Introduction

There is now a vast and growing body of evidence to support the duality conjectured
by Arkani-Hamed, Cachazo, Cheung and Kaplan [10] between the leading singularities'’
of planar N*=2MHV scattering amplitudes in N/ = 4 super Yang-Mills and certain
contour integrals denoted L, ; over the Grassmannian manifold G(k,n) of k-planes in
n-dimensions [10-12,18,19,22-24,39,51,63,66,68-71]. Parameterizing G(k,n) in terms
of a k x m matrix C,,—composed of k representative vectors in C" which span a given

plane—ZL, j is given by

1 4" Cyq —
Fr = vol(G'Lg) 7{ (1)(2)(3) -+ (n—1)(n) H 07 (CaaWVa), (3.1.1)

n,k

where a = 1,...,n labels each particle, each W, = (i, X|7~7)a denotes a supertwistor which
encodes the external momenta and helicities, and ()’ represents the 5 k& x k-minor of

C,,. built out of consecutive columns of the matrix C, ,,”
) =0 g+ - Jtk=1) = e 2%y, jCosj41 -+ Cay jrk—1- (3.1.2)

Of course, as a contour integral, equation (3.1.1) is nothing but the sum of the residues
of the poles ‘encompassed’ by the contour of integration I'), ;. The combinations of

residues which compute tree amplitudes can be obtained by a variety of field-theoretic

I Leading singularities are L-loop integrals in field-theory evaluated along T*%-contours which put 4L

internal propagators on-shell.
2We will often use a single label—e.g. ‘(1)’—to denote a consecutive minor beginning with the

indicated column. More generally, a k x k minor constructed out of columns [{1,... 0] Cy, will be

denoted (47 ...0).
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techniques, including the BCFW recursion relations [7,31] (which can be efficiently trans-
lated in terms of the residues of L, ;, [22-24], including the form derived from BCFW
in [50]). It was not until recently, however, that the contours I';, ;, which compute tree
amplitudes in £,, , were understood in a way purely intrinsic to the Grassmannian. This
understanding made manifest a deep connection between the Grassmannian integral £,,
and Witten’s twistor string theory. Because this connection is crucial to our main result,
we briefly review it here before presenting our proposal for the contours which give all
tree amplitudes in N' = 4 super Yang-Mills.

Amplitudes in Witten’s twistor string theory [4] can be computed via the ‘connected
prescription’ written down by Roiban, Spradlin and one of the authors in [52,53, 53] as
integrals of an open string correlator over the moduli space of curves in a supertwistor
space. Although geometrically very beautiful, these integrals turned out to be technically
very difficult to evaluate because of the presence of highly non-linear equations. Using
the link variables described in [39,63], Dolan and Goddard [63] wrote contour integrals
which compute all tree amplitudes as rational functions, and checked explicitly that these
lead to the correct formulae for many particular amplitudes (see also [39]), and for all
split-helicity amplitudes in [70]. The key insight of Dolan and Goddard was to use a
sequence of global residue theorems® which connect the connected prescription contours
to L, . Significantly, the twistor string construction—especially when expressed in the
framework of the connected prescription—carries with it the knowledge of a natural,
preferred choice of integration contour which computes each tree amplitude. But only
by combining the connected prescription with the particle interpretation described in
Chapter 2 does this preferred contour become computationally tractable.

The equivalence between the connected prescription for the twistor string and £,, , was
recently proven for all NMHV amplitudes in [12,66]. These proofs rely on repeated use of
the global residue theorem, and show that the combination of residues contributing to any
NMHV amplitude computed via the twistor string can be re-expressed as a direct sum of
residues of £,, ;. Moreover, an amazing and much stronger property was observed: the two
integrands were in fact related by a smooth deformation which interpolates between the

connected prescription of twistor string theory and the Grassmannian integrand of £, j.

3The global residue theorem is the multi-dimensional generalization of Cauchy’s theorem for ordinary

contour integrals in one complex dimension (see, e.g. [65]).
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The deformation connecting the two descriptions moves the locations of each pole, and
changes the value of each residue; but the sum of residues which define the tree amplitude
is itself found to be invariant. Taking together the results of [12,66], that the twistor
string connected prescription provides a preferred choice of integration contour and that
its integrand may be smoothly deformed to the integrand L, , we conclude therefore
that the twistor string may be used to generally answer the important open question of
determining the appropriate contours in the Grassmannian for computing general tree-
amplitudes in N’ = 4 super Yang-Mills. For this to be the case, it is necessary that the
contour given for the connected prescription continue to make manifest the connection
between the twistor string and the Grassmannian through a contour deformation similar
to that described in [12,66] for NMHV amplitudes.

In this chapter, we propose a new, explicit formula for all N*=2)MHV tree amplitudes
in N =4, generalizing the NMHV results of [12,66]. In section 2 we will present our
main formula, equation (3.2.3), and discuss its smooth deformation to a contour in £, 4.
In section 3 we will describe how this formula can be obtained by iteratively ‘adding
particles’ in a natural way to the first non-trivial tree amplitude, the 6-point NMHV
amplitude, while making sure that soft limits and parity are manifest at every stage. In
section 4 we will make a series of transformations to map our formula to that of [63],

thereby deriving it from twistor string connected prescription.
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3.2 All Tree Amplitudes in N = 4 superYang-Mills

We propose that the general, tree-level, planar, color-stripped, n-point N*~2MHV am-
plitude is given by

k

1 dCyy AW
AP = f{ ad — 0 S (CLaWL), 3.2.3
vol(G'Lg) (n —1)(1)(3) ZF) H ( ) ( )

AL

where the contour .Z\F) = ( is the zero-locus of Z\") : Cr—k=2(k=2) _y C—k=2)(k=2)

defined in terms of the (n — k — 2)(k — 2) Veronese maps FY,

F®) = ﬁ (HFJ) (3.2.4)

l=k+3

where each F g can be written in terms of the minors of C,, according to
Fl= (o] t=20-10) (0] €7 j+1) (0] j+1j+2¢-2) (0] (-1 j j+2)

| , | | (3.2.5)
— (07 jj+1j42) (0 j+2 =2 41) (oF (=1 ¢ j) (o j+1€=27),

with ag representing collectively the columns [1,...,j-1]J[j+{-k, ..., ¢-3] of C,,, and
where 2" is the product of all the non-consecutive minors in the first line of equation (3.2.5);
explicitly,
AP = A% % (0572 n-1 k=2 k-1)

k—2

k—3
X H (0] nj j+1) (o7t n-3 n-2 n-1)] (07, n=1 7 j+2)(0}, j+1 j+2 n-2)].
J=1 !

<.
I

Noticing that all the minors appearing in a given map F ej involve the same set of columns
O'g , and that the rest are organized according to a ‘3x 3’ Veronese operator, we may encode

the structure of equation (3.2.5) by writing’

J —
Fy =03 20502 -1 0 j+41 j+2,

= ([1, . ,j—l] U [j—l—g—k, .. ,5—3]> > Sg,Q =107 541 j+25
where Sy pcqe ¢ represents the primitive Veronese operator which, when acting on P?, tests

(3.2.6)

if the six points a, ..., e lie on a conic,

Saveder = (abe)(cde)(e fa)(bd f)— (bed)(de f)(fab)(cea). (3.2.7)

4This simplified notation can be justified by observing that only 6 of the k + 3 columns which are

relevant to a given Veronese operator F} change from one term to another.
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As will be described below, the structure of the numerators %) is dictated entirely
by the proposed duality between equation (3.2.3) and a related expression in £, ;. Fol-
lowing the theme of [12,66], let us introduce a deformation parameter ti for each map
F},

Fit) = (o =20-10) (0] €jj+1) (o) j+1 j+20-2) (0] €-1j j+2)

o . , , (3.2.8)
—ty (07 jj+1j+2) (o7 j+20-2(-1) (o) (=10 j) (0] j+1(-27).

Then the integral " (t)), with all F} in (3.2.3) replaced by F}(t}), will map precisely
to the one appearing for £, ;, in limit of tZ — 0 for all ¢, j. This is because, together with
the three minors manifest in equation (3.2.3) (namely, (n — 1), (1), and (3)) the factors
which constitute .%.") (t)) when ] — 0 will contribute exactly one copy of each of the

consecutive minors present in the measure of the integral £, ;:

TP = (Flse ) (Bl B (Bles - BEZ) - (Bl BED) (B EE2)

U U U U U
(2),(4) (5) (6) (n—k) (n—=k+1),...,(n=2),(n)

And since " is composed of all the non-consecutive minors present in the first factors

of each F ej , we have that

) %(k) B 1 .
tlfélirt <(n — 1)(1)(3) %’“) T (n—=1)1)3)(©2) (D)(B) - (n—3)(n—2)(n)’ (3.2.9)

making the connection between the twistor string and £,,  manifest.

We strongly suspect that formula (3.2.3) is unchanged by any of the deformations
introduced by the parameters tfé in (3.2.8). For NMHV amplitudes, ti-independenee has
been rigorously proven by a direct application of the global residue theorem, [12,66], and
we suspect that similar arguments can be used to prove tZ—independence more generally.
We have checked this numerically for several nontrivial N2MHV amplitudes, including
the alternating-helicity amplitude for eight gluons, but we leave the question of proving
complete ti—independenoe to future researches.

Let us end this section by presenting explicitly the tZ — 0 limit of the deformed
twistor-string contour (3.2.3), illustrating some of the key differences between the two
formulations. When ti — 0, each Veronese operator factorizes into the product of the
four minors listed in the first line of (3.2.8). In general, all but n — 3 of these factors will

be non-consecutive, and therefore are included among the factors of the numerator AW
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Although it is generally ill-advised to ‘cancel terms’ between the contour-defining maps
defining .%, 5 and the numerator, there is a good physical reason for suspecting that
the ‘fourth’ minors of each of the F}(t) — 0)—which are never consecutive—contribute
no non-vanishing residues to the contour.” As described in [12,51], CSW operators,
when translated into the Grassmannian, are constructed from products of three minors.
Although beyond the scope of the present discussion, ensuring that each pole of the
integrand is composed of three-minor operators helps one to connect the CSW, or ‘dis-
connected’; support of tree amplitudes to the ‘connected’ support of the twistor string
through a series of global residue theorems. At any rate, there is now enough direct
evidence that general tree-contours are entirely supported on the vanishing first three
factors of each F g when tz — 0 to justify the simplification to a ‘3-minor’ form of each

map in the contour.

Taking each té — 0, the twistor-string contour yﬁfk)(t{ ) becomes,

() (4 () 1 dCoa M S

AP ) — AW = f oo T [[o™ (CaaWa), (3:2.10

R WIGL) S G- FP L0 G G210
Frn =0

where

n k—2
FP=1] (Hf;‘) with f] = o) >a ((=2 (=1 0) (0 § j+1) (j+1 j42 €=2), (3.2.11)

=k+3 \j=1

with o7 as before, and where

(k)

IT—es 1150 (07 €15 j+2)
which, as before, represents the product of all non-consecutive minors among the maps
s

Alternatively, we could have started with formula (3.2.10) for AP and obtained

(3.2.12)

formula (3.2.3) for A by “adding a missing minor” to each map of f according to
f=ox(abe)(cde)(e fa)
= F=o0x|(abc)(cde)(e fa)bd f)— (bed)(de f)(fab)(cea)],

(3.2.13)

>The reason why naive cancellation of factors between %ﬁfk) and those in ﬁy(bk) (ti — 0) can be
misleading is described with several examples in Chapter 2; for example, even the poles supported by
purely non-consecutive minors of the Féj ’s can have the interpretation of being supported by consecutive

minors, and thereby contributing a residue to the contour.
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in order to supply a simple geometric meaning to the contour—the maps F’s having the
natural interpretation of testing the localization of points in P*~1),

Both formulae give all tree-level amplitudes in N' = 4 super Yang-Mills in terms of
a specific contour integral. The first one, equation (3.2.3), naturally arises from twistor
string theory, and its contour Z¥) = (§ has a nice geometric meaning: it is the constraint
for n points to lie on a degree-(k — 1) curve in twistor space. On the other hand, the

formula (3.2.10) provides the integration contour for Grassmannian L, , and thereby

ensures that each contribution is itself manifestly Yangian invariant.

3.3 Building the Contour one Particle at a Time

In this section we describe how the general contour for any tree amplitude (3.2.3) can
be obtained by sequentially extending the contour of the first non-trivial amplitude, the
6-point NMHV amplitude, by adding one particle at a time. Before doing so, however,
it will be useful to briefly discuss some of the generally-desirable features that any such
contour-prescription should have.

Let us consider what would be necessary to extend a formula valid for £, ; to one
valid for £,, ;, while keeping k fixed. Recall that the integral £,, ;’s measure is given by the
product of the n consecutive k x k minors of Cy,. The n'® particle, being represented by
the n*® column of C,, participates in k of these consecutive minors; and these k& minors,
taken together, span a range of min(n, 2k — 1) columns of C,,. This suggests that, fixing
k, only for n > 2k—1 will a tree contour be sufficiently general to have a natural extension
to all n. Conveniently however, the n = (2k — 1)-point N*"2MHV amplitude, ,an(gkfl, is
nothing but the parity-conjugate of the n-point N*-3MHV amplitude, déi;,ill, allowing
it to be uniquely related to a contour with strictly lower-k. And so we should not be too
surprised that it is possible to ‘bootstrap’ a formula valid for any fixed k to one valid for
all k£, using parity when n = 2k — 1 as the bridge which connects each k to k& + 1.

Just as there are several equally-valid formulae for the general NMHV tree contour
(see, e.g. [12,39,63,66]), there are several ways of writing the general N*=2MHV tree
contour. The one that we derive here is obtained by starting with the particular NMHV
tree contour given in Chapter 2 and extending it in such a way that the general contour

prescription is invariant under parity for all n, k. As we will see, these criteria lead
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uniquely to the contour given here which defines our general result given in equation

(3.2.3).5

I. NMHYV amplitudes

Let us begin with the simplest amplitude which requires a non-trivial contour to be
specified. The 6-point NMHV amplitude’s contour is essentially unique up to a global
residue theorem, and can be written [10,12,39,63,66],

g1 f{dC A ﬁ54l4(0 Wa) (3310
6 VOl(GLg) e aa<5)(1>(3) ﬁé:i) e aaVVa), 0.
where 5 o
Z¢ =[(4)(6)(2)(135) = (561)(123)(345)(624)] = Sase12s (3.3.15)
and %(3) = (135). )

(Here, we have chosen to de-emphasize the minors which do not appear in the analogous
expressions for L, by colouring them grey, and we have chosen to highlight each of
the consecutive minors which participate in the contour by colouring them red. This
highlighting will be useful when we consider amplitudes involving more particles and
with k£ > 3.)

As demonstrated in Chapter 2, this contour can be extended to all NMHV amplitudes

in the following way,

oL deMH’Z_Gl [(120)(23 1)) T/ [(130-1)] {

VOl(GL3) (n _ 1)(1)<3) ggg) O!;[l 54|4(CaaWa)>

(3.3.16)

where

=

ZB) —

n

[(£—2 (=1 0)(0 1 2)(2 3 0-2)((-1 1 3) — ((=1 £ 1)(1 2 3)(3 (=2 (=1)(¢ 2 f—l)]

~
Il
(=]

I
—=

Se—20-10123.

o~
Il
o

6We have also found other parity-symmetric contour prescriptions by starting from each of the dif-
ferent forms of the NMHYV tree amplitude. We have checked that each of these extensions to all n, k is
unique and that each leads to correct formulae for general tree amplitudes. In addition, there are further
possibilities if one foregoes the connection between L, ; and the twistor string, but these will not be

considered here.
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Notice that the only operator that involves particle n is the last, FZJ::; , and this
operator includes in general all but one of the consecutive minors which involve column
n—namely, all but minor (n — 1). Indeed, each F} can be seen as an operator which
adds particle ¢ to the (¢ — 1)-point contour.

Consider for example the contour for n =7,

327(3) _ {Fﬁl :(4) (612) (2) (513)_(561)(123)(345)(624): 5456123} .
{F7=06) (1) (235)(613)—(671)(123)(356)(725)= Sser123 }
(3.3.17)
By recognizing that 42%7(3) is nothing but the parity-conjugate of 42/7(4), we may use this

contour to directly obtain the contour of the first non-trivial N2MHV tree-amplitude.

II. N’MHV Amplitudes

As mentioned above, because the parity-conjugate’ of the 7-point NMHV amplitude is
the 7-point N2MHV amplitude, we may use the general NMHV contour to obtain our
first non-trivial contour for k = 4,

Fl=(4) (4712) (2) (4613)—(4123)(4356)(4671)(4268)= [4] < S567123
F2=(5) (7) (1345)(1624)—(1234)(1456)(1672)(1357)=[1] > Ss67234

_

From here, there are several ways in which the above contour can be extended to one

for all n. For example, one could make the identification made in Chapter 2, that

F71’2 _ [4] b S567123 N FELQ N [(=3] >4 Sp20-10123 ‘ (3.3.18)

[1] >3 S567234 (1> Se20-1023¢-3
However, this extension of the 7-point N2MHV amplitude leads to a form of the 8-point
N2MHYV contour which is not manifestly self-conjugate under parity, and which therefore
unnecessarily obfuscates the extension to all N*"2MHV amplitudes.® We suggest that

the following extension is more natural,

4l > S 0=3| >1.5y_9 4
F71’2: [4] 567123 . FELQ@ [(-3] 2010123 (3.3.19)

[1][>45567234 [1][><]Sé—2k—1€234

"Here, we should point out that we are using a definition of ‘parity’ that both exchanges the column-
labels of each minor with their complements, and maps each column j — (n 4 1) — j. This appears to

be the most natural definition of parity in the Grassmannian.
8That being said, we have every reason to suspect the formula given in Chapter 2 is in fact just as

correct as the one we present here.

88



Notice that the only difference between the contour prescriptions in (3.3.18) and (3.3.19)

is that the former associates Ssg7234 With Sy_9s_1423,—3 while the latter associates

Sse7234 With Se_9s_1/234.

Using this prescription, we find that the 8-point N2MHV may be written,

4

1 dCyy Y
AV = jé aa S (CLaWVL) | 3.3.20
Ve | me am LGN 3:520)
FMN=0

where Z") = FIF2 . FLF? with the FY given explicitly by

F}= (4 (4712) (2) (4613)—(4123)(4356)(4671)(4268)=[4] < S567123
@ | FF=(1567)(1237)(1345)(1624)—(1234)(1456)(1672)(1357)= [1] >3 S567234
o Fl= (5 (5812)(5623)(5713)—(5123)(5367)(5781)(5268)= [5] < Se78123
F2= (6) (8) (1346)(1724)—(1234)(1467)(1782)(1368)=[1] > Sg78234

(3.3.21)

and 4%%(4) is the product of all non-consective minors of the first factors of the F}’s,

AN = (4712)(1567)(1237)(1345)(5812)(5623)(1346)
x (4613)(1624)(5713)(1724).

(3.3.22)

It is not hard to see that this contour is manifestly parity self-conjugate. (We should
point out that this contour differs from the one given in Chapter 2 by only single minor
appearing in FZ2; however, this minor difference turns out to leave essentially all the
geometry problems described in Chapter 2 unchanged, and so the contour (3.3.21) leads
to precisely the same sum of twenty residues described in Chapter 2, and therefore
reproduces the correct 8-point N2MHYV tree amplitude for all helicity configurations.)
As a further test of the validity of our contour prescription, let us briefly mention the

tree-amplitude obtained for the 9-point N?MHV amplitude. As above, we may write,

1 dCoy HY

o = 7[ aa Hy 51 (Ca W), 3.3.23

Al SRl | R (3329
FM=0

9Here, we have highlighted each of the primary ‘consecutive subparts’ of each of the minors in the
contour by colouring them blue. These tend to be the most important minors when computing a tree

amplitude as a series of ‘geometry problems’ as described in Chapter 2.
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where 99(4) — FIF2 . F}F? - F}F? with each FJ given explicitly by,

Fl= (4) (4712) (2) (4613)—(4671)(4123)(4356)(4725)= [4] > S567123
F2=(1567)(1237)(1345)(1246)—(1672)(1234)(1456)(1735)= [1] > S567234
_ Fl= (5 (5812)(5623)(5713)—(5781)(5123)(5367)(5826)= [5] > Se7s123
? F2=(1678)(1238)(1346)(1247)—(1782)(1234)(1467)(1836)=[1] > Sers2sa|
Fl= (6) (6912)(6723)(6813)—(6891)(6123)(6378)(6927)=[6] > S7g9123
F2=(7) (9) (1347)(1824)—(1892)(1234)(1478)(1937)= [1] > S789234

(3.3.24)

Deforming this contour from the twistor string to Lg4 by sending each tZ — 0—
removing all the contributions shown in coloured grey in (3.3.24)—the problem of com-
puting the tree-amplitude reduces to a series of ‘geometry problems’—finding the local-
ization in the Grassmannian induced by requiring that each of the six maps fg vanish,
and determining which of these configurations are supported entirely by the vanishing of

consecutive minors."’ The six maps f] are given explicitly by,

fé4){f% (1) (T12) (2) )}U{fé (5) <5812><5623>}U{f9;<6><6912><6723>}_

J2=(1567)(1237)(1345 f2=(1678)(1238)(1346) [ 7| f2=(7) (9) (1347)
(3.3.25)

We have found that there are precisely 50 non-vanishing, consecutively-supported residues
along the contour (3.3.24) and that these residues perfectly reproduce the fully-supersymmetric
9-point N?°MHYV tree amplitude.

These 50 residues, together with the ‘geometry problems’ giving rise to each, are
collected in appendix B, where we have followed the conventions of Chapter 2 for the

naming of each residue according to its localization in Cl,,.

III. N*MHV Amplitudes and Beyond

As was the case for the 7-point amplitude, the parity conjugate of the 9-point N°NHV
amplitude represents the first sufficiently-general N3MHV amplitude from which we may
‘bootstrap’ the general N*MHYV result. We will see that by requiring the 9-point N*MHV
amplitude to be iteratively-related to the 8-point N*MHV amplitude—itself obtained as

10 Any configuration along the contour not entirely supported by consecutive minors will have vanishing

. . . . . 4
residue because of the non-consecutive minors which constitute Hé ),
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the parity-conjugate of the 8-point NMHV amplitude—will uniquely fix the structure of
the ansatz for all further amplitudes in N/ = 4 super Yang-Mills.

Taking the parity-conjugate of the 9-point k = 4 contour (3.3.24), we find,

o F81: [45][><]SG78123 F91: [56][><]S789123
ﬁ9(5) = 359(4) =< FZ= [15]dS678234 U F§ = [16]p< Srs9234 ¢ - (3.3.26)
F3 = [12] < Se78345 F$ = [12] 1 S7589345

Notice that only the last three F; g 's—those of the second set above—involve column 9.
Moreover, all of the F gj 's for £ = 8 involve column 8. Therefore, the requirement that
the 9-point N3MHV contour is the extension of the 8-point N*MHV contour, uniquely
fixes the /-dependence of the maps F; g . With this, it is not hard to see that the general
solution for all N>MHV amplitudes must be given by

ZO =T1(F - F2-F?), with { 2= [10-3]:aSpa0r00a oo (3327)

n F} = [-40-31>=1S;20-17123
=8 5
Fy = 12]0S 210345

As one further, concrete illustration of this prescription for the tree-amplitude con-
tour, let us briefly consider the 10-point N*MHV amplitude,

5

%(05): 1 f (doaa %0 H 4\4 CaaW) (3328)

vol(GLs) 9)(1)(3) c/u) a=1
s

where ﬂl(g) = FIF2F} - FYF3F} - FLF2F3), and with each FJ given by

\

(Fl= (4) (45812) (2) (45713)— (45123)(45367)(45781)(45268) = [45]5d Se7s 123
F2=(15678)(12358)(13456)(15724)— (15234)(15467)(15782)(15368) = [15] < Se75 234
F3=(12678)(12348)(12456)(12735)— (12345)(12567)(12783)(12468) = [12] 5 Ss78345
*Fglz (5)  (56912)(23567)(56813)— (56123)(56378)(56891)(56279) = [56]%5789123*
F2=(16789)(12369)(13467)(16824)— (16234)(16478)(16892)(16379) = [16] > S7809234
*Fg’:(12789)(12349)(12457)(12835) (12345)(12578)(12893)(12479) = [12]5< S159345 |
Fly= (6) (671012)(23678)(67913)—(67123)(67389)(679101)(672810)=[67] > Ss910123
F2 = (7) (710123)(13478)(17924)— (17234)(17489)(179102)(173810): [17] < Ss910234
F3 = (8) (1) (12458)(12935)~(12345)(12589)(129103)(124810)= [12) 1 Sso10345 |
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where again jflg’) can be simply read-off from F z] s:

%”185) = (45812)(15678)(15823)(15346)(12678)(12834)(12456)
x (56912)(56237)(16789)(16923)(16347)(12789)(12934)
X (12457)(671012)(67238)(171023)(17348)(12458)
X (45713)(15724)(12735)(56813)(16824)(12835)(67913)(17924)(12935).
Although it would require more space than warranted by an appendix, we have explic-
itly verified that the contour above includes 175 non-vanishing residues which precisely
matches the general, 10-point N*MHV amplitude.

Continuing in this manner, we arrive at the general formula (3.2.3),

k

[T (Caamva),

a=1

k) _ 1 t% dCoo P
" vol(GLg) (n—1)(1)(3) ZP

7P =0

where F = (Fly- Fi2) - (Flyy--- i) (FL-- F&) with each F/ given by

Fg = OZ > Sg,Q =103 5+1 j+2- (3329)

IV. General Properties of the Result

Parity

One of the important features of the general contour obtained in the previous subsections
is that it is manifestly parity-symmetric. By this, we mean that the parity-conjugate of a
given amplitude’s contour is the contour for the parity-conjugate amplitude. For example,
for all n = 2k, the contour given by ﬁ;@zk is manifestly parity self-conjugate.

To see how this works more generally, consider the role played by each of the n
columns of the Grassmannian C,, in the definition of the Veronese map FZJ = ag D>

Se—20-1¢jj+15+2- In general, the n columns break into six contiguous groups,

es es
(12 ---5=1] [j 741 j+2] [j43 - j+(k=0)=1] [j4+(k=€) --- £=3] [0=2 (-1 ] [(+1 --- n],
N———

J J
€oy c€oy

where the columns of C,, which do not participate at all in ng have been coloured grey

to emphasize the ‘gaps’ in the roles played by various columns. Importantly, parity does
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(

not change the ‘contiguousness’ of these six groups, or the roles they played by the six
columns of the primative Veronese map Sy_2s—1¢j;+1j+2 (coloured red above); parity
merely changes the labels we assign each column, and exchanges the k£ — 6 columns
involved in all the minors of F g —those of UZ, coloured blue above—with the n — k — 6

columns involved in none of the minors of Féj —those coloured grey above. That is,

)

/

[1 - j1] [n—j+2 -+ n]
[ 7+1 7+2] [n—j—1 n—j n—j+1]
[J +3 - J+(k_%)_u parity [77+/_]_k T n_j_z]
j ) .. f— k—(n—k) n—f 14 ... )_q_f—
[j+(k=0) - - - £=3] Lo, [n—0+4 - - - n+l—j—k-1]
(=2 (-1 /] [(n—l+1 n—(+2 n—(+3]
[(+1 --- n] \ 11 n—/] )
(3.3.30)
This shows that,
j parity A_j/ _ pn—041) _ j’
oy B= RS = (3.3.31)
so that It
n n k'—2 n k' —2
j parlty (n k j o j o j/
I (fi) e (7)1 (01 7) - 1 (1)
(=k+3 H(nﬂ) (=k+3 =1 k43 O=k'+3 \j'=1
(3.3.32)
where k' = (n — k), which is that which it was required to demonstrate.

Manifest Soft-Limits and the Particle Interpretation

As we have seen, the contour integral giving the n — 1-particle N*=2MHV scattering
amplitude, is related to that giving the n-particle N*~2)MHV scattering amplitude by a
single overall factor which relates 45 to %’jﬁ)l, together with a partial contour specifi-

cation,

7 =0
1 %(7@) %(k) <%ﬂ(/’ﬁ)
= ]{ dCaa——"15 ]{ dCoan 1/ L. (3.3.33)
vol(G Ly) (1)(3) Z*) (n—1) F}-F2...Fk
F*) = Fl=0



where @ = 1,...,n — 1 and the ratio AP /e%’jl(f)l was given explicitly after equation
(3.2.5) in section 2. This separation of the integral is warranted because only the maps
Fl ..., F*?2 involve the variables of the n'® column of C,,. We can anticipate which
contour should be specified for these k—2 variables to extract the soft-limit by considering
the duality between the geometry of the columns of C,,, viewed as points in P*~!, and
Z-twistor-space geometry [12]. In twistor space, the soft-limit is achieved when the three
twistors Z,,_1, Z,, and Z; become (projectively) collinear, and so we can extract the soft
limit from szn(k) by choosing a contour for which the column-vectors Cy,_1,Cyn, and
C,1 become linearly-dependent. This fixes exactly (k — 2) variables of integration, and
so should completely specify the integral factor in (3.3.33) relating AR @4@1-
Recalling the definition of the maps FI}, F2 ... F*=! it is easy to see that when the
columns n—1,n, 1 become linearly-dependent, F2, ..., F*~2 all vanish, while F! factorizes
into simply the product of four minors. Importantly, notice that J“%(k), %”n(f)l, and all the
factors of 3@5@1 are regular in this limit. Because of this, we can apply the global residue
theorem in (3.3.33) to trade F! for the minor (n — 1)-—which does vanish in this limit.
This allows us to view the contour integral for the twistor string entirely in £,, ;, and
refer to some well-known facts [12,24] relating residues in £,, ;. to those of £,,_; ;, to see how
the soft-factor arises. It turns out that the contour which sets three consecutive columns
of the Grassmannian to be linearly dependent is particularly nice, and is nothing but a
holomorphic inverse soft-factor times the ratio of the k consecutive minors containing n

to the £ — 1 minors which were consecutive only prior to ‘adding particle n’ to G(k,n—1).

Recall that this ratio of minors is explicitly built-into the definition of AP

3.4 Transformation to the Twistor String

In this section we demonstrate the equivalence of the twistor string amplitude [36, 53]
(when expressed in link variables as in [39,63]) to our main formula (3.2.3) above. This

is accomplished via repeated application of the identity transformation

5(Sijkrst)5(5ijk’"5“) ~ %

here, ~ is used to indicate that the replacement may be made at the level of the integrand

6(Sijhrst )0 (Sijhreu); (3.4.34)

only strictly for physical configurations along the contour of integration. This transfor-

mation has played an important role in the analysis of [66], [70]. Note that this relation
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indicates a specific change in the contour prescription: the 6(S;jkrsu) on the left-hand
side may localize the integral on fewer (or more) poles than the §(S;jkr+,) on the right,
in which case the extra (or missing) poles on the right-hand side are provided by zeros
the minors in the denominator (or cancelled by zeros of the minors in the numerator).

In the next two subsections we first focus on following the transformation of the
§(F})’s from equation (3.2.3) to the formula (4.12) in [63]. We then collect all the pre-
factors which pile-up along the way and demonstrate precise agreement with [63]. Tt
is very easy to check the agreement between our formula and that of [63] for NMHV
using [66]. We may proceed by induction at step n, beginning with the assumption that
equation (3.2.3) agrees with [63] for the (n—1)-point amplitudes.

I. Transforming the §(F})’s

Let us first transform the d(F})’s from equation (3.2.3) to the corresponding ones in [63].
Because we will use induction, we only need to consider F? and for the simplicity we
will denote it as Fj. In order to compare with the formula in [63] we must first change
the common piece in F}, namely o = [1,...,j-1]J[j+n—k,...,n=3] in (3.2.6), into a
subset of the columns [1,2,...,k]."" In this sense F} is the ‘worst’ of the F’s and F}_5 is
the ‘best’, so the strategy will be to first make all transformations on F}, then to make
all transformations on F», and continue in the same way (as far as possible) until Fj_s.
In this way we gradually transform all of the original d(F})’s into ‘real sextics’ (objects
which are indeed sextics in a certain gauge). In the following we show a first few steps

and then move on to the final conclusion.

e Let us first show how to transform F to FY,

Flz[n—k—l—l n_3][>48123n72n71n

(3.4.35)
—)Fll,: [n—k+2 n_32][>43134n—2n—1 ne
Step one is to use the identity
S(F)3(Fy) ~ JIVS(F))S(Fy), (3.4.36)

"The meaning of this will become clear by looking at the final result, equation (3.4.44).
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where the sextics and the Jacobian are
Fy=n—k+2 - - n—31>S553n ki1 n-2n1n

F=n-k+2-n-=32108 30 ki1 n20n-1n (3.4.37)
n123)(n—2n—-112)

m13n—k+1)(n—2n—-11n—k+1)

This identity follows from (3.4.34) by setting a particular gauge, namely to use G Ly-

JY =n—k+2 - n—3x

symmetry to set k columns [1,2,3,n —k+1,--- ,n — 3] of k X n matrix (C,,) to be an
identity square matrix, and we will denote the gauge as {1,2,3,n —k+1,--- ,n — 3}.
Note that we also transformed Fj, into F}, which generated a Jacobian J which will end
up canceling, so we will not write it explicitly.

Next we further transform F| by using
S(FDS(F 1Y ~ JPs(FNs(FY), (3.4.38)
where
F1(n_1) =n—k+2 - n—=32/>5 30 kt1n2n14,

F{':[n—k’+2---n—32]l>45134n_2n_1n, (3439)
(n—144)(3n—-24)

@ k19 ... pn—37
Ty =ln—k+ n 3J]D4(n_ln_k+1j)(3n_2n—k+1)’

with j = 1 and j = 2. Note that in carrying out this transformation we have made use of
the constrain 5(F1(n71)) which can be obtained by transforming Fﬂ;_l of the (n — 1)-point
amplitudes.

The third step is to transform Fj back to Fy, which generates a Jacobian J 1.

To summarize the construction so far, we have shown how to transform the original
F into a “better” quantity F| at the cost of inserting the Jacobain factor Jl(l)Jl(f) into
the integrand.

e Next we would like to similarly process Fy with F}’. By applying (3.4.34) for the
new F]" and the old F;

F{/:[n—k—l—Q n—32]b<]5’134n72n71n7

(3.4.40)
Fo=n—k+2---n—=31]x5234n-2n1n,
we get the new quantities
F"=n—k+3 - n—323]<S5145n2n1n
(3.4.41)

Fé'/:[n—k‘f‘?) n—313][>45245n72n*1n‘
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The Jacobians generated from this step are
ISV I JMN TP, (3.4.42)

where

n1234)(n—2n-1123)
ml124n—k+2)(n—2n-112n—-k+2)’

(n—1535)(4n—25)
m—1n—k+2j)dn—-2n—k+2)

JV =n—k+3 - n—3x

B =ln—k+3 - n—3]]x (3.4.43)
with j =1,2 and 1 = (2,3), 2 = (1,3).

e We proceed by transforming the original Fj together with the new F{”, Fy’ into
three new quantities FJ, Fy" 2. We continue in this manner until we reach F, ; . In

each step we will always make two-type transformations like the ones described above.

At the end of the day, we have new quantities
Fj = [1727 a/v"' 7k:_2] [><]Sj k—1 k n—2 n—1 n» (3444)

where 1 < j < k — 2. The Jacobians generated during the whole process are products of

(R12 - 042)(n=2n-11 --- (+1)
(nl - Ll+2n-k+)(n2n-11 -+ £ n-k+()’
) _ (e fafa] - n3 7 (n—=1 €43 j)({+2 n-2 (+3)
sz [n—k-+0+ n—-3 j] b (T bl ) (043 n2 ot D)’

Jl(l) = [n-k+{+1 -+ n-3] <

(3.4.45)

where j = (1,2,-++ ,7,-+- £+1),1</<k—-3and 1 <j </
Finally let us choose a gauge {1,2,3,--- ,k}, in which case F; = S y—1 k n—2 n—1 n
may be found in (3.4.44). Thus we have mapped our F?’s to the sextics in [63], and all

we are left to compare is the corresponding prefactor.

II. Collecting Prefactors

Let us now verify that performing the above procedure on our formula (3.2.3)leads to
precisely the same prefactor inside the integral as in [63]. We only need to compare

the ratio between n-point amplitude and (n — 1)-point amplitude which for our formula
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e ] k—1
A = = I S R I R
T T (lal - k-2) Ittty - m 7

j=1
X (n-k+j -+ n-3n1l - j+l)(n-k+j -+ n-21 -+ j=1 j+1 j+2)

X (n—k+i -+ n=3n-11--- j j+2)].
(3.4.46)
The corresponding ratio in twistor string is given by the formula (4.12) of [63] . Taking
into account the Jacobian from the transformations described in the previous subsection,
we find the ratio of our formula (3.2.3) to that in [63] is precisely equal to one. This

completes the proof.
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Chapter 4 The All-Loop Extension
of the BCFW Recursion Relations

4.1 The Loop Integrand for N =4 SYM Amplitudes

Scattering amplitudes in gauge theories have extraordinary properties that are completely
invisible in the textbook formulation of local quantum field theory. The earliest hint
of this hidden structure was the remarkable simplicity of the Parke-Taylor formula for
tree-level MHV amplitudes [2,3]. Witten’s 2003 proposal of twistor string theory [4]
gave a strong impetus to rapid developments in the field, inspiring the development
of powerful new tools for computing tree amplitudes, including CSW diagrams [5] and
BCFW recursion relations [7,21,31,72]. At one-loop, very efficient on-shell methods now
exist [73,74] and at higher-loop level generalizations of the unitarity-based method [75-78]
have made a five-loop computation possible [79], which should soon determine the five-
loop cusp anomalous dimension [80].

The BCFW recursion relations in particular presented extremely compact expressions
for tree amplitudes using building blocks with both local and non-local poles. In a parallel
development, an amazing hidden symmetry of planar N' = 4 SYM-—dual conformal
invariance—was noticed first in multi-loop perturbative calculations [47] and then at
strong coupling [40], leading to a remarkable connection between null-polygonal Wilson
loops and scattering amplitudes [8,40,42,43,45,46,81-84]. It was quickly realized that
the BCFW form of the tree amplitudes manifested both full superconformal and dual
superconformal invariance, which together close into an infinite-dimensional Yangian
symmetry algebra [49]. Understanding the role of this remarkable integrable structure
in the full quantum theory, however, was clouded by the IR-divergences that appear to
almost completely destroy the symmetry at loop-level, leaving only the anomalous action

of the (Bosonic) dual conformal invariance [44,48, 85, 86].
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I. Grassmannian Duality for Leading Singularities

In [10], a strategy for making progress on these questions was suggested. The idea was
to find objects closely associated with scattering amplitudes which are completely free
of IR-divergences; the action of the symmetries would be expected to be manifest on
such objects, and they would provide “data” that might be the output of a putative dual
theory of the S-Matrix.

The leading singularities of scattering amplitudes are precisely objects of this sort.
Thinking of loop amplitudes as multi-dimensional complex integrals, leading singularities
arise from performing the integration not on the usual non-compact ‘contours’ over all
real loop-momenta, but on compact contours ‘encircling’ isolated (and generally complex)
poles in momentum space. As such, they are free of IR-divergences and well-defined at
any loop order, yielding algebraic functions of the external momenta. Leading singulari-
ties were known to have strange inter-relationships and satisfy mysterious identities not
evident in their field-theoretic definition. Morally they are also expected to be Yangian-
invariant, although even this is not completely manifest’. Thus leading singularities seem
to be prime candidates for objects to be understood and computed by a dual theory.

Such a duality was proposed in [10], connecting leading singularities of color-stripped,
n-particle NFMHYV scattering amplitudes in A" = 4 SYM to a simple contour integral over

the Grassmannian G(k,n):
k

1 d*>"C,
nk(Z) = - 61 (CraZa). 4.1.1
Yur(Z) vol(GLk)/(1---k)(2---k:~|—1)---(n---kz—l)Cl_[1 ( ) ( )
Herea = 1,--- ,nlabels the external particles, and Z, are variables in CP?*. The original

formulation of this object worked with twistor variables W, = (W,|7,), and was given as
L ko) = Viur+2(W). This was quickly realized [18] to be completely equivalent to
a second form in momentum twistor space [19], with L, j42(A, \7) = Myt X Yni(2).
Here the variables Z, = (Z,|n,) are the “momentum-twistors” introduced by Hodges
[20], which are the most natural variables with which to discuss dual superconformal
invariance. Furthermore, these momentum twistors are simple algebraic functions of the

external momenta, upon which scattering amplitudes conventionally depend?.

'Indeed we will give a proof of this basic fact in the next section; a different argument for the same

result is given in [87].
2 To quickly establish notation and conventions, the momentum of particle a is given by pt =
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Since the Grassmannian integral is invariant under both ordinary and dual supercon-
formal transformations, it enjoys the full Yangian symmetry of the theory, as has been
proven more directly in [68]. In fact, it has been argued that these contour integrals in
G(k,n) generates all Yangian invariants.® [11,69].

Leading singularities are associated with residues of the Grassmannian integral. Residue
theorems [65] imply many non-trivial and otherwise mysterious linear relations between
leading singularities. These relations are associated with important physical properties
such as locality and unitarity [10].

Further investigations [12] identified a new principle, the Grassmannian “particle in-
terpretation”, which determines the correct contour of integration yielding the BCFW
form of tree amplitudes [50]. Quite remarkably, a deformation of the integrand connects
this formulation to twistor string theory [12,14,66]. Furthermore, another contour defor-
mation produces the CSW expansion of tree amplitudes [51]|, making the emergence of
local space-time a derived consequence from the more primitive Grassmannian starting
point.

The Grassmannian integral and Yangian-invariance go hand-in-hand and are essen-
tially synonymous; indeed, the Grassmannian integral is the most concrete way of think-
ing about Yangian invariants, since not only the symmetries but also the non-trivial
relationship between different invariants are made manifest; even connections to non-
manifestly Yangian-invariant but important physical objects (such as CSW terms) are

made transparent.

Given these developments, we are encouraged to ask again: is there an analogous
structure underlying not just the leading singularities but the full loop amplitudes? Does
Yangian-invariance play a role? And if so, how can we see this through the thicket of

IR-divergences that appear to remove almost all traces of these remarkable symmetries

xh | — a¥, and the point z# in the dual co-ordinate space is associated with the line (Z,—1 Z,) in
the corresponding momentum-twistor space. This designation ensures that the lines (Z,_1 Z,) and
(Za Za+1) intersect, so that correspondingly, !, | —a# = p, is null. (Bosonic) dual-conformal invariants
are made with 4-brackets (a b ¢ d) = ey 2L 2] ZK ZL. An important special case is (i—1 i j—1 j) =
(i1 i) (j—1 j)(z; — x;)?; 2-brackets (ij) are computed using the upper-two components of Z;, Z; and

cancel out in dual-conformal expressions. For more detail see [18-20].
3The residues of G(k,n) are Yangian-invariant for generic momenta away from collinear limits. See

[88,89] for important discussions of the fate of Yangian invariance in the presence of collinear singularities.

101



in the final amplitudes?

II. The Planar Integrand

Clearly, we need to focus again on finding well-defined objects associated with loop
amplitudes. Fortunately, in planar theories, there is an extremely natural candidate: the
loop integrand itself!

Now, in a general theory, the loop integrand is not obviously a well-defined object.
Consider the case of 1-loop diagrams. Most trivially, in summing over Feynman diagrams,
there is no canonical way of combining different 1-loop diagrams under the same integral
sign, since there is no natural origin for the loop-momentum space. The situation is
different in planar theories, however, and this ambiguity is absent. This is easy to see in
the dual z-space co-ordinates [47]. The ambiguity in shifting the origin of loop momenta
is nothing other than translations in x-space; but fixing the x1,...,z, of the external
particles allows us to canonically combine all the diagrams. Alternatively, in a planar
theory it is possible to unambiguously define the loop momentum common to all diagrams
to be the one which flows from particle “1” to particle “2”.

At two-loops and above, we have a number of loop integration variables in the dual
space x,1, ..., z, and the well-defined loop integrand is completely symmetrized in these
variables.

So the loop integrand is well-defined in the planar limit, and any dual theory should be
able to compute it. All the symmetries of the theory should be manifest at the level of the
integrand, only broken by IR-divergences in actually carrying out the integration—the

symmetries of the theory are broken only by the choice of integration contour.

III. Recursion Relations for All Loop Amplitudes

Given that the integrand is a well-defined, rational function of the loop variables and the
external momenta, we should be able to determine it using BCFW recursion relations in
the familiar way®. At loop-level the poles have residues with different physical meaning.

The first kind is the analog of tree-level poles and correspond to factorization channels.

4We note that [90] have conjectured that the loop amplitudes can be determined by CSW rules,

manifesting the superconformal invariance of the theory.
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The second kind has no tree-level analog; these are single cuts whose residues are forward
limits of lower-loop amplitudes. Forward limits are naively ill-defined operations but
quite nicely they exist in any supersymmetric gauge theory, as was shown to one-loop
level in [91]. There it was also argued that forward limits are well-defined to higher orders
in perturbation theory in N = 4 SYM. In principle, this is all we need for computing the
loop integrand in N' = 4 SYM to all orders in perturbation theory. However, our goal
requires more than that. We would like to show that the integrand of the theory can be
written in a form which makes all symmetries—the full Yangian—manifest. The Yangian-
invariance of BCFW terms at tree-level becomes obvious once they are identified with

residues of the Grassmannian integral, we would like to achieve the same at loop-level.

This is exactly what we will do in this chapter. We will give an explicit recursive
construction of the all-loop integrand, in exact analogy to the BCFW recursion relations
for tree amplitudes, making the full Yangian symmetry of the theory manifest.

The formulation also provides a new physical understanding of the meaning of loops,
associated with simple operations for “removing” particles in a Yangian-invariant way:.
Loop amplitudes are associated with removing pairs of particles in an “entangled” way.
We describe all these operations in momentum-twistor space, since this directly corre-
sponds to familiar momentum-space loop integrals; presumably an ordinary twistor space
description should also be possible.

As is familiar from the BCFW recursion relations at tree-level, the integrand is ex-
pressed as a sum over non-local terms, in a form very different than the familiar “rational
function x scalar integral” presentation that is common in the literature. Nonetheless,
the Yangian-invariance guarantees that every term in the loop amplitude has Grassman-
nian residues as its leading singularities.

The integrands can of course be expressed in a manifestly-local form if desired, and
are most naturally written in momentum-twistor space [92,93]. As we will see, the
most natural basis of local integrands in which to express the answer is not composed of
the familiar scalar loop-integrals, but is instead made up of chiral tensor integrals with
unit leading-singularities, which makes the physics and underlying structure much more
transparent.

Of course the integrand is a well-defined rational function which is computed in four-

dimensions without any regulators. The regularization needed to carry out the integra-
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tions is a very physical one, given by moving out on the Coulomb branch [94] of the
theory. This can be beautifully implemented, both conceptually and in practice, with

the momentum-twistor space representation of the integrand [92,93].

Quite apart from the conceptual advantages of this way of thinking about loops,
our new formulation is also completely systematic and practical, taking the “art” out
of the computation of multi-loop amplitudes in N = 4 SYM. As simple applications of
the general recursive formula, we present a number of new multi-loop results, including
the two-loop NMHV 6- and 7-particle integrands. We also include very concise, local
expressions for all 2-loop MHV integrands and for the 5-particle MHV integrand at 3-
loops. All multiplicity results for the so-called “parity even” part of two-loop amplitudes
in the MHV sector were obtained by Vergu in [16], extending previous work done for
S-particles [79] and 6-particles [83,95] in dimensional regularization. The “parity even”
part of the 6-particle amplitude in dimensional regularization has been computed in
work in progress by Kosower, Roiban, and Vergu [96]. Complete integrands have been
computed at two-loop order for 5-particles in [79] using D-dimensional unitarity and for
5- and 6-particles in [95,97] using the leading singularity technique developed in [97,98].
Also using the leading singularity technique, the 5-point 3-loop integrand was presented
n [99]. Combining D-dimensional unitarity with a generalization of quadruple cuts to
higher loop order [98], a method called maximal cuts was introduced in [79] and used
for the computation of the 4-point 5-loop integrand. The 4-point amplitude integrand at
[ = 2,3, 4 loop-level were computed in [100], [101], and [102], respectively. The method
to be used in this chapter is, however, very different both in philosophy and in practice

from the leading singularity or generalized unitarity approaches.

In this chapter, we give a brief and quite telegraphic outline of our arguments and
results; we will present a much more detailed account of our methods and further elab-
orate on many of the themes presented here in upcoming work [35]. In section 4.2, we
describe a number of canonical operations on Yangian invariants—adding and removing
particles, fusing invariants—that generate a variety of important physical objects in our
story. In section 4.3 we describe the origin of Yangian-invariant loop integrals as arising
from the “hidden entanglement” of pairs of removed particles. In section 4.4 we describe
the main result of this Chapter: a generalization of the BCFW recursion relation to all

loop amplitudes in the theory, and discuss some of its salient features through simple
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1-loop examples. In section 4.5 we set the stage for presenting loop amplitudes in a man-
ifestly local form by describing the most natural way of doing this in momentum-twistor
space. In section 4.6 we present a number of new multi-loop integrands computed using
the recursion relation and translated into local form for the convenience of comparing
with known results where they are available. We conclude in section 4.7 with a discus-
sion of a number of directions for future work. We discuss indications that not only the
integrands but also the loop integrals should be “simple”. The idea of determining the
loop integrand for planar amplitudes is a general one that can generalize well beyond
maximally supersymmetric theories with Yangian symmetry, and we also very briefly

discuss these prospects.

4.2 Canonical Operations on Yangian Invariants

As a first step towards the construction of the all-loop integrand for N’ = 4 SYM in
manifestly Yangian form, we study simple operations that can map Yangian invariants
Y, i(Z1,- -+, Z,) toother Yangian invariants. In this discussion it will not matter whether
the Z’s represent variables in twistor-space or momentum-twistor space; we will simply
be describing mathematical operations that mapping between invariants. Combining
these operations in various ways yields many objects of physical significance [35]. The
same physical object will arise from different combinations of these operations in twistor-
space vs. momentum-twistor space; we will content ourselves here by presenting mostly
the momentum-twistor space representations.

As mentioned in the introduction, understanding these operations is not strictly nec-
essary if we simply aim to find a formula for the integrand. The reason is that the
BCFW recursion relations we introduce in section 4.4 can be developed independently
for theories with less supersymmetry, which do not enjoy a Yangian symmetry. Our
insistence in keeping the Yangian manifest however will pay off in two ways. The first is
conceptual: the Yangian-invariant formulation will introduce a new physical picture for
meaning of loops. The second is computational: the Yangian-invariant formulation gives
a powerful way to compute the novel “forward-limit” terms in the BCFW recursions in
momentum-twistor space, using the Grassmannian language.

We will begin by discussing how to add and remove particles in a Yangian-invariant
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way. One motivation is an unusual feature of the Grassmannian integral-the space of
integration depends on the number n of particles. It is natural to try and connect different
n’s by choosing a contour of integration that allows a “particle interpretation”, by which
we mean simply that the variety defining the contour for the scattering amplitudes of
(n+1) particles differs from the one for n particles only by specifying the extra constraints
associated with the new particle [12]. Following this “add one particle at a time”-guideline
completely specifies the contour for all tree amplitudes [12,14], along the way exposing a
remarkable connection with twistor string theory [4,39,52,63,66]. As we will see in this
chapter, loops are associated with interesting “entangled” ways of remowving particles from
higher-point amplitudes. We will then move on to discuss how to “fuse” two invariants
together. Using these operations we demonstrate the Yangian invariance of all leading
singularities, and discuss the important special case of the “BCFW bridge” in some

detail.

I. Adding Particles

Let us start with a general Yangian-invariant object
York(Z1, ..., 2,). (4.2.2)

We will first describe operations that will add a particle to lower-point invariants to get
higher-point invariants known as applying “inverse soft factors” [24], which are so named
because taking the usual soft limit of the resulting object returns the original object.
This can be done preserving k or increasing k — k + 1. We can discuss these in both
twistor- and momentum-twistor space; for the purposes of this chapter we will describe
these inverse-soft factor operations in momentum-twistor space.

The idea is that there are residues in G(k,n) which are trivially related to residues in
G(k,n—1) or G(k—1,n—1). The k-preserving operation Y,_; j — Y, is particularly

simple, being simply the identification
,;’k(Zl, P Zn—ly Zn) = Yn—l,k(zh e ,Zn_l); (423)

that is, where we have simply added particle n as a label (but have not altered the

functional form of Y in any way); thanks to the momentum-twistor variables, momentum
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conservation is automatically preserved. The k-increasing inverse soft factor is slightly

more interesting. There is always a residue of G(k,n) which has a C-matrix of the form

* % 0 0 * % 1
R | (4.2.4)
*

Here, the non-zero elements in the top row, * % % % 1 correspond to particles
1,2,(n —2),(n — 1), n, and we have generic non-zero entries in the lower (k—1) x (n—1)

matrix. The corresponding residue is easily seen to be associated with
'n{,k(’ . Zn—l; Zn; Zl, .. ) = [’I’L—Q n-1nl 2] X Yn—l,k—l(- .. 7271—17 2\1, .. ) (425)

where

M (na(bede) +mylcdea) +nldeab) +ngleabe) +nlabed))
(abed)(bede){cdea){deab)(eabc)

[abcde] = (4.2.6)

~

is the basic ‘NMHV’-like R-invariant® and the Z,-1, are deformed momentum twistor
variables. The Bosonic components of the deformed twistors have a very nice interpre-
tation: Z; is simply the intersection of the line (12) with the plane (n—2 n—1 n), which
we indicate by writing Z; = (n=2 n=1 n)((12): and Z,_; is the intersection of the line
(n-2 n-1) with the plane (12n), written Ty = (n—2 n-1)((n12). Fully supersym-
metrically, we have

Z = m-2n-1n)N(12) = Z(2n-2n-1n) + Z5(n-2 n-1 n 1);

~ (4.2.7)
Zia=m2n-1)N(n12)=2,9n-1n12)+ 2, 1(n12n-2).

II. Removing Particles

We can also remove particles to get lower-point Yangian invariants from higher-point
ones. This turns out to be more interesting than the inverse-soft factor operation, though
physically one might think it is even more straightforward. After all, we can remove a
particle simply by taking its soft limit. However, while this is a well-defined operation on

e.g. the full tree amplitude, it is not a well-defined operation on the individual residues

SWhen two sets of the twistors are consecutive, these “R-invariants” are sometimes written

R,.s1 = [r s—1 s t—1 t]. These invariants were first introduced in [8] in dual super-coordinate space.
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(BCFW terms) in the tree amplitude. The reason is the presence of spurious poles: each
term does not individually have the correct behavior in the soft limit.

Nonetheless, there are completely canonical and simple operations for removing par-
ticles in a Yangian-invariant way. One reduces k — k — 1, the other preserves k. The

k-reducing operation removes particle n by integrating over its twistor co-ordinate
Y (2, Zan) = /d3|4Zn Yor(Z1, ..o, Zn1, Z0). (4.2.8)

This gives a Yangian-invariant for any closed contour of integration—meaning that un-
der the Yangian generators for particles 1,...,n — 1, this object transforms into a total
derivative with respect to Z,. This statement can be trivially verified by directly exam-
ining the action of the level-zero and level-one Yangian generators on the integral. It is
also very easy to verify directly from the Grassmannian integral. Note that depending on
the contour that is chosen, a given higher-point invariant can in general map to several
lower-point invariants.

The k-preserving operation “merges” particle n with one of its neighbors, n — 1 or 1.

For example,
Yri—l,k’(zb - anl) = Yn,k(Zla C. 7Zn71; Zn — anl)' (429)

The Yangian-invariance of this operation is slightly less obvious to see by simply manip-
ulating Yangian generators, but it can be verified easily from the Grassmannian formula.

We stress again that these operations are perfectly well-defined on any Yangian-
invariant object, regardless of whether the standard soft-limits are well defined. Of

course, they coincide with the soft limit when acting on e.g. the tree amplitude.

III. Fusing Invariants

Finally, we mention a completely trivial way of combining two Yangian invariants to
produce a new invariant. Start with two invariants which are functions of a disjoint set
of particles, which we can label Y(Z4,...,2,,) and Y2(Z,41,...,2,). Then, it is easy
to see that the simple product

Y21, 20) = Yi( 21, Zn) X Ya(Zits s Zn) (4.2.10)

is also Yangian-invariant. Only the vanishing under the level-one generators requires a

small comment. Note that the cross terms vanish because the corresponding level-zero
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generators commute and therefore the level-one generators cleanly splits into the smaller

level-one generators.

IV. Leading Singularities are Yangian Invariant

Combining these operations builds new Yangian invariants from old ones; all of which
have nice physical interpretations. An immediate consequence is a simple proof that all
leading singularities are Yangian invariant. For this subsection only, we work in ordinary
twistor space. Then we take any four Yangian invariants for disjoint sets of particles and

we make a new invariant by taking the product of all of them,
YiWr, o W) YaOWVoirs oo s W) YsWiga, oo W) YaWpia, .- W),

We then “merge” m and m+1, [l and [+ 1, p and p+ 1, and ¢ with 1. We then integrate
over m,l,p,q. This precisely yields the twistor-space expression for a “l-loop” leading

singularity topology [22,23].

b
b4

In the figure, a thick black line denotes the merging of the two particles at the ends of
the line, and integrating over the remaining variable. The generalization to all leading
singularities is obvious; for instance, starting with the “l-loop” leading singularity we

have already built, we can use the same merge and integrate operations to build “2-loop”
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leading singularity topologies such as that shown below.

2
;g:>
pos

We conclude that all leading singularities are Yangian invariant. Given that all Yangian
invariants are Grassmannian residues, this proves (in passing) the original conjecture
in [10] that all leading singularities can be identified as residues of the Grassmannian

integral.

V. The BCFW Bridge

A particularly important way of putting together two Yangian invariants to make a third
is the “BCFW bridge” [17,21,34], associated with the familiar “two-mass hard” leading

singularities drawn below in twistor space [17,33,34,103]:

AL

VAN
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3

S

1/@—‘\

Here, the open and dark circles respectively denote MHV and MHV three-particle am-

2

n

plitudes, respectively. We remark in passing that the inverse-soft factor operations men-
tioned above are special cases of the BCFW bridge where a given Yangian invariant is
bridged with an MHV three-point vertex (for the k-preserving case) or an MHV three-
point vertex (for the k-increasing case).

We will find it useful to also see the bridge expressed as a composition of our basic

operations in momentum-twistor space, as
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This is a pretty object since it uses all of our basic operations in an interesting way. In
the figure, the solid arrows pointing inward indicate that particle-“1” is added as an k-
increasing inverse soft factor on Y7, and j+1 is added as a k-increasing inverse soft factor
on Yir. We are also using the merge operation to identify the repeated “1” and “j+41”
labels across the bridge. The internal line, which we label as Z;, is integrated over. The
contour of integration is chosen to encircle the (n-1 n 1 I)-pole from the [n—1 n 1 I j+1}-
piece of the inverse-soft factor on Yy, and the (1 I j+1 j)- and (I j+1 j j—1)-poles from
the [1 I j+1 j j—1]-piece of the inverse soft factor on Yz. The deformation on Z,, induced

by the inverse-soft factor adding particle-1 on Y7, is of the form
Zy Zy= 2+ 22,1, where (Z,2,7;Z;11) = 0. (4.2.11)

This is the momentum-twistor space version of the BCFW deformation, which corre-
sponds to deforming A, Xl in momentum-space. We remind ourselves of this deformation
by placing the little arrow pointing from n — n — 1 in the figure for the bridge. The

momentum-twistor space geometry associated with this object is

which precisely corresponds to the expected BCFW deformation and the corresponding
factorization channel.
We leave a detailed derivation of this picture to [35], but in fact the momentum-

twistor structure of the BCFW bridge can be easily understood. Note that Y}, Yy have
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k-charge ky, kgr, while Y, ® Yr has k-charge k;, + kr + 1; given that the Z; decreases the
k-charge by 1, we must start with Y and Yz and get objects with k-charge (k + 1) and
(kr + 1) on the left and right. This can be canonically done by acting with k-increasing
inverse soft factors; the added particle on Y;, must be adjacent to n in order to affect a
deformation on Z,. Finally, the data associated with the “extra” particles introduced
by the inverse soft factor must be removed in the only way possible, by using the merge

operation. Explicitly, the final result for Y, ® Ygis

BCFW
(YL ® YR>(1,...,n) —n-1n 15 j+1) x Ya(L, ... 5, 1) x Yo(I,j+1,...,n-1,7)
oo (4.2.12)
with
n=m-1n)N(jj+11), and I=(jj+1)N(n-1n1). (4.2.13)

Starting with the tree amplitude M,, k tree °, the BCFW deformation Z,, — 2,422,

can be used to recursively construct tree amplitudes in the familiar way: by writing,

dz —
Mn,k,tree = ? Mmk,tree(z)a (4214)

it is clear that the desired amplitude M\n,kjtree(z) is obtained by summing-over all the
residues of the RHS ezcept the pole at origin z = 0. Notice that there is a non-zero
pole at infinity in this deformation: as z — oo, Z,, — Z,,_1 projectively, and so the tree
amplitude gets a contribution from M, (Zy,..., 2, 1,2,) = M, 1(Z1,...,Z,.1) ". The
pole at z — oo corresponds to the term in the usual momentum-space BCFW formula
using an MHV three-point vertex bridged with M,,_;, which simply acts as a k-preserving
inverse-soft factor The remaining physical poles are of the form (i i+1 j j+1). Under
Z, + Z, + 22,1, we only access the poles where (Z,(2)Z1Z;Z;41) — 0, and the

corresponding residues are computed by the BCFW bridge indicated above, with Y7, Yr

being the lower-point tree amplitudes.

6We remind the reader that we are working in momentum-twistor space, so that what we are calling
Mo here is obtained after stripping off the MHV tree-amplitude factor from the full amplitude in

momentum space.
"Note that z — oo here does not correspond to going to infinity in the familiar momentum-space

version of BCFW. The pole at infinity in ordinary momentum space here corresponds to a pole involving
the infinity twistor (Z,(z) I Z1) = 0. Of course we do not expect such a pole to arise in a dual-conformal
invariant theory, not only at tree-level, but at all-loop order, as will be relevant to our subsequent
discussion. A direct proof of this fact, not assuming dual conformal invariance, should follow from the

“enhanced spin-lorentz symmetry” arguments of [34].
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4.3 Loops From Hidden Entanglement

Let’s imagine starting with some scattering amplitude or Grassmannian residue, and
begin removing particles. The operation that decreases k in particular demands a choice
for the contour of integration. If we remove particle Z4 by integrating over it as [ P2y,
it is natural to choose a T®-contour of integration for the Bosonic d®Z, integral and
compute a simple residue®.

We can then proceed to remove a subsequent particle either by merging, or performing
further integrals [d**Zp and so on. In this way we will simply proceed from higher-
point Grassmannian residues to lower-point ones. In particular, if these operations are
performed on a higher-point tree amplitude, we arrive at lower-point tree amplitudes,
and don’t encounter any new objects.

But we can imagine a more interesting way of removing not just one but a pair of
particles. Consider removing particle A and subsequently removing the adjacent particle
B. Instead of first integrating-out A and then B on separate T%’s, let’s consider an
“entangled” contour of integration, which we will discover to yield, instead of lower-point
Grassmannian residue, a loop integral.

Consider as a simple example removing two particles from the 6-particle N2MHV =
MHYV tree amplitude, Mg 4¢—0(1234AB). Performing the d’*n,, d’*np integrals is trivial,
and this gives

/dgz s (1234)3
AT B 10342,) (342 428) (dzazp1) (242512) (25123)

(4.3.15)

where we have chosen to label the Bosonic momentum twistors with lower-case z’s for
later convenience. As we have claimed, on any closed contour, these integrals should
give a Yangian-invariant answer. Indeed, computing the zp integral by residue on any
contour leaves us with

- (1234)3
/ A 123)(24234) (24341) (24412)

(4.3.16)

8Residues of rational functions in m complex variables are computed by choosing m polynomial
factors f;’s from the denominator and integrating along a particular T™-contour, i.e. the product of m
circles given as the solutions of |f;| = € with € < 1 and near a common zero of the f;’s. See [65] for more

details.
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and computing any of the simple residues of this remaining z, integral gives 1, which is
of course the only Yangian invariant for MHV amplitudes.

We will now see that starting with exactly the same integrand but choosing a different
contour of integration yields, instead of “1”, the 4-particle 1-loop amplitude. Geometri-
cally, the points z4, zp determine a line in momentum-twistor space, which is interpreted
as a point in the dual x-space, or equivalently, a loop-integral’s four-momentum. We will
first integrate over the positions of z4, zp on the line (AB), and then integrate over all
lines (AB).

This contour can be described explicitly by parametrizing z4 p as
24 = , 2B = (4.3.17)

where x will be the loop momentum. The measure is
d2ad®zp = (AadAa)(ApdAg)(Aadp) d s (4.3.18)

The A4, Ap integrals will be treated as contour integrals on CP' x CP!, while the z-integral
will be over real points in the (dual) Minkowksi space.
Using that (zazp j-1 j) = (AaAp)(j-1 j)(z—z;)* our integral becomes

. 202, (1234)(23) (A adAa) (A g)
/ d (x—x1)2(x—x2)2(x—x4)2/ Al 23)(23425) Oadg) (4.3.19)

The factor (24234) is linear in the projective variable A4 while the factor (123zp) is linear
in Ag. This implies that there is a unique way to perform the A4 and Ap integrals by

contour integration, which gives us

2 .2
/ diz T o 15524 . (4.3.20)
- 41

T —x9)%(x — x3)% (1 — x4)?
This is precisely the 1-loop MHV amplitude!

We have thus seen that, removing a pair of particles with this “entangled” contour of
integration, where we first integrate over the position of two points along the line joining
them and then integrate over all lines, naturally produces objects that look like loop
integrals.

There is a nicer way of characterizing this “entangled” contour that is also more

convenient for doing calculations, let us describe it in detail. Given z4, zp, a general
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G Lo-transformation on the 2-vector (z4, zp) moves A, B along the line (AB). Thus, in
integrating over d®z4d®zp, we'd like to “do the G Lo-part of the integral first” to leave us

with an integral that only depends on the line (AB):

™
(AB)
B
A
—
We can do this explicitly by writing
A B
za | cﬁl) 054) Za | (43.21)
JU B 7V R ) g1 >
B Cp Cp B
then
d*24d 25 = (cadca){cpdep){cacp)? % (4.3.22)
vol(GLy) |’
and our integral becomes—this time writing it out fully:
/ ld4ZAd4ZB] (1234)3 / (cadca)(cpdeg) (43.23)
VOI(GLQ) <AB 12> <AB 34> <AB 41> <CACB><CA¢A><CB77Z)B> ’ o
where
A234 Al123
Ya = < ) , Yp = < ) : (4.3.24)
(B234) (B123)

The ¢y, cp integral is naturally performed on a contour ‘encircling’ ¢y = 14,cp = ¥,

yielding ( wAle> = TAB 231> (531} More generally, if “234” and “123” in the definitions of
1, p were to be replaced by arbitrary “abc” and “zyz”, (Yavp) = (Axyz)(Babc) —
(Aabc)(Bxyz) = (AB (abe) () (xyz)) where (abe) () (xyz) is the line corresponding to the

intersection of the planes (abc) and (zyz). We are then left with

/ d*Z d*Z (1234)2 (4.3.25)
vol(GLs) | (AB12)(AB23)(AB34)(AB41)’ o
where the integration region is such that the line (AB) corresponds to a real point in the

(dual) Minkowski space-time. We recognize this object as the 1-loop MHV amplitude,

exactly as above.
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We can clearly perform this operation starting with any Yangian invariant object

Y[Z4, 25, 2Z1,...], which we will graphically denote as:

and write as

/ Y[..., 20, 24,25, 21,..] (4.3.26)
GLs
This object is formally Yangian-invariant, in the precise sense that the integrand will
transform into a total derivative under the action of the Yangian generators for the
external particles. Of course, such integrals may have IR-divergences along some contours
of integration, which is how Yangian-invariance is broken in practice.

The usual way of writing the loop amplitudes as “leading singularity x scalar integral”
ensures that the leading singularities of the individual terms are Yangian-invariant, but
the factorized form seems very un-natural, and there is no obvious action of the symmetry
generators on the integrand. By contrast, the loop integrals we have defined, as we will
see, will not take the artificial “residue x integral” form, but of course their leading singu-
larities are automatically Grassmannian residues. The reason is that a leading singularity
of the (AB)-integral can be computed as a simple residue of the underlying d*z,d%*zp

integral, which is free of IR-divergences and guaranteed to be Yangian-invariant.

4.4 Recursion Relations For All Loop Amplitudes

Having familiarized ourselves with the basic operations on Yangian invariants, we are
ready to discuss the recursion relations for loops in the most transparent way. The loop
integrand is a rational function of both the loop integration variables and the external
kinematical variables. Just as the BCFW recursion relations allow us to compute a
rational function from its poles under a simple deformation, the loop integrand can be

determined in the same way. Consider the [-loop integrand M, ., and consider again
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the (supersymmetric) momentum-twistor deformation

2, 24 22, (4.4.27)
Then
dz —
My e = - M, joe(2) (4.4.28)

and we sum over all the residues of the RHS away from the origin, all of which can
be determined from lower-point/lower-loop amplitudes. This recursion relation can be
derived in a large class of theories and is not directly tied to N' =4 SYM or Yangian-
invariance. However our experience with building Yangian-invariant objects will help us
to understand (and compute) the terms in the recursion relations in a transparent way,
and also easily recognize them as manifestly Yangian-invariant objects.

As in our discussion of the BCFW bridge at tree-level, the pole at infinity is simply
the lower-point integrand with particle n removed. All the rest of the poles in z also have
a simple interpretation: in general, all the poles arise either from (Z,(2) Z1 Z; Z;4,) — 0
or ((AB),Z.(2) Z1) — 0, where (AB), denotes the line in momentum twistor space
associated with the ¢'* loop-variable. The first type of pole simply corresponds to fac-
torization channels, and the corresponding residue is computed by the BCFW bridges

between lower-loop/lower-point amplitudes:

where ny, + ng =n—+2, kp +kr =k —1, {;, + (g = {. Note that we treat all the poles
(including the pole at infinity) on an equal footing by declaring the term with j = 2 to
be given by the k-preserving inverse soft-factor acting on lower-point amplitude.

This is the most obvious generalization of the BCFW recursion relation from trees
to loops, but it clearly can’t be the whole story, since it would allow us to recursively
reduce loop amplitudes to the 3-particle loop amplitude, which vanishes! Obviously, at

loop-level, a “source” term is needed for the recursive formula.

117



I. Single-Cuts and the Forward-Limit

This source term is clearly provided by the second set of poles, arising from
((AB), Z,(2) Z1) — 0. For simplicity of discussion let’s first consider the 1-loop am-
plitude. This pole corresponds to cutting the loop momentum running between n and
1, and is therefore given by a tree-amplitude with two additional particles sandwiched-
between n, 1, with momenta ¢, —¢, summing-over the multiplet of states running around
the loop. These single-cuts associated with “forward-limits” of lower-loop integrands are
precisely the objects that make an appearance in the context of the Feynman tree theo-
rem [91]. The geometry of the forward limit is shown below for both in the dual z-space

and momentum-twistor space:

Here, between particles 5 and 1, we have particles 6,7 with momenta ¢*, —g*, where
" = i — 2% is a null vector. In momentum-twistor space, the null condition means
that the line (76) intersects (15), while in the forward limit both Zg and Z; approach the
intersection point (76) () (15).

In a generic gauge theory, the forward limits of tree amplitudes suffer from collinear
divergences and are not obviously well-defined. However remarkably, as pointed out
in [91], in supersymmetric theories the sum over the full multiplet makes these objects

completely well-defined and equal to single-cuts!

Indeed, we can go further and express this single-cut “forward limit” term in a man-

ifestly Yangian-invariant way. It turns out to to be a beautiful object, combining the
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entangled removal of two particles with the “merge” operation:

Here a particle (n 4+ 1) is added adjacent to A, B as a k-increasing inverse soft factor,
then A, B are removed by entangled integration. The G Ly-contour is chosen to encircle
points where both points A, B on the line (AB) are located at the intersection of the line
(AB) with the plane (n—1 n 1). Note that there is no actual integral to be done here;
the G'Ly-integral is done on residues and is computed purely algebraically. Finally, the
added particle (n 4 1) is merged with 1.

As in our discussion of the BCFW bridge, this form can be easily understood by look-
ing at the deformations induced by the “1” inverse soft factors; the associated momentum-

twistor geometry turns out to be

exactly as needed. The picture is the same for taking the single cut of any Yangian-

invariant object.

Note that we were able to identify the BCFW terms in a straightforward way since
the residues of the poles of the integrand have obvious “factorization” and “cut” inter-
pretations. This is another significant advantage of working with the integrand, since as
is well known, the full loop amplitudes (after integration) have more complicated factor-
ization properties [104]. This is due to the IR-divergences which occur when the loop

momenta becomes collinear to external particles, when the integration is performed.
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II. BCFW For All Loop Amplitudes

Putting the pieces together, we can give the recursive definition for all loop integrands

in planar N' =4 SYM as

BCFW

To be fully explicit, the recursion relation is
Mn7k7[(1,...,n) = Mn_17k7[(1,...,n— 1)
+ > i =t ] M (LG MY (L L Ry)
nr.kr.lr;j
+ / [AB n—-1n 1] X Mn+2,k+1,€—1(17 R ,ﬁ(AB), A, B) (4429)
GLa
where np, + ng = n+ 2, kp + kg = k—1, ¢, + (g = ¢ and the shifted momentum
(super-)twistors that enter are
nj = (n-1n)N(j j+1 1), I;=(j j+1)N(n-1n1);

o~

np)y = (n-1 n)N(AB 1), A= (AB)N(n-1n1).

(4.4.30)

Beyond 1-loop, it is understood that this expression is to be fully-symmetrized with equal
weight in all the loop-integration variables (AB)s; it is easy to see that this correctly
captures the recursive combinatorics. Recall again that G Ls-integral is done on simple
residues and is thus computed purely algebraically; the contour is chosen so that the
points A, B are sent to (AB)[)(n-1 n 1). As we will show in [35], recursively using the
BCFW form for the lower-loop amplitudes appearing in the forward limit allows us to
carry out the GG Ls-integral completely explicitly, but the form we have given here will

suffice for this chapter.

III. Simple Examples

In [35], we will describe the loop-level BCEFW computations in detail; here we will just

highlight some of the results for some simple cases, to illustrate some of the important
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properties of the recursion and the amplitudes that result. We start by giving the BCFW
formula for all one-loop MHV amplitudes.

In this case the second line in the above formula vanishes, and the recursion relation
trivially reduces to a single sum. To compute the NMHV tree amplitudes which enters
through the third line, it is convenient to use the tree BCFW deformation zZ =2 B+z2 A
which leads to

M loor — / / Z ABj j+11] (Z[EB 14 4+1] +> , (4.4.31)

(AB) GLs i<J

d4|4Z d4|4Z
/ /{ volAGL2 B}, (4.4.32)

(AB)

where we have defined

and where the omitted terms are independent of Zg and vanish upon Fermionic-integration.
The G Lo- and Fermion-integrals are readily evaluated, as explained above, reducing this

to

M L-loop _ (AB (12@+1)ﬂ(1jj+1)>
My /Z AB1i)(ABii+1)(ABi+11)(AB1j){(ABj j+1){(ABj+11)’ (4.4.33)

This is the full one-loop integrand for MHV amplitudes.

As expected on general grounds from Yangian-invariance, and also as familiar from
BCFW recursion at tree-level, the individual terms in this formula contain both local
and non-local poles. We will graphically denote a factor (AB xy) in the denominator
by drawing a line (zy); the numerators of tensor integrals (required by dual conformal
invariance) will be denoted by wavy- and dashed-lines—the precise meaning of which will

be explained shortly. In this notation, this result is

Notice that all the terms have 6 factors in the denominator, and hence by dual conformal
invariance we must have two factors containing (AB) in the numerators. These are de-

noted by the wavy lines: the numerator is (AB(1 7 i+1)( (1 j j+1))> = ((A 14 i+1)(B 1 j j+1)—
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(B1ii+1){A1j j+1))? where the power of 2 has been indicated by the line’s multi-
plicity.
Notice that when i + 1 = j, the numerator cancels the two factors (AB1j)? in the

denominator: by a simple use of the Schouten identity it is easy to see that

(A 11 5)(B1jj+1) = (A1j j+1)(B1j-1 /)" = [(AB1j)(1j-1]j+1)]".
(4.4.34)
In general, all of these terms contain both physical as well as spurious poles. Physical
poles are denominator factors of the form (ABii+1) and (i i+1 j j+1) while spurious
poles are all other denominator factors. We often refer to physical poles as local poles
and to spurious poles as non-local. A small explanation for the “non-local” terminology
is in order. Consider the 5-particle amplitude as an example, where there are three terms

in the integrand. These three terms are

(1234)? (AB (123) N (145))?
(AB12)(AB23)(AB34)(AB14) | (AB12)(AB23)(AB31)(AB 14)(AB 45)(AB51)
(3451)?

(AB34)(AB45)(AB51)(AB31) (4.4.35)

The spurious poles are (AB 14) and (AB 13). The line defined by Z; and Z3 corresponds
to a complex point, but what makes (AB13) non-local? The reason is that in field
theory 1/(AB 13) could only come from a loop integration, e.g. it is generated by a local

one-loop integral of the form

/ [d4ZCd4ZD] (CD (512) N (234)) (4.4.36)
vol(GLy) | (CD ABY(CD51)(CD 12)(CD23)(CD 34)" -

(This is also the secret origin of the non-local poles in BCFW at tree-level.)
Back to the 5-particle example, (AB 14) and (AB 31) occur each in two of the three
terms and they cancel in pairs. Indeed upon collecting denominators we find, after

repeated uses of the Schouten identity, the result for the sum

(AB12)(2345)(1345) 4 (AB 23)(1345)(1245) + (AB 13)(1245)(3245) + (AB 45)(1234)(1235)

(AB12)(AB 23)(AB 34)(AB 45)(AB 51)
(4.4.37)

This is furthermore cyclically-invariant, albeit in a nontrivial way involving Schouten
identities.
Let us also briefly discuss the 6-particle NMHV amplitude at 1-loop. The full inte-

grand has 16 terms which differs even more sharply from familiar local forms of writing
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the amplitude. As we will review in the next section, the usual box decomposition of
1-loop amplitudes does not match the full integrand (only the “parity-even” part of the
integrand); even so, there is a natural generalization of the basis of integrals that can be
used to match the full integrand in a manifestly dual conformal invariant form. Any such
representation, however, will have the familiar form “leading singularity /Grassmannian
residue x loop integral”. However, this is not the form we encounter with loop-level
BCFW. Instead, the supersymmetric n-variables are entangled with the loop integration
variables in an interesting way. For instance, one of the terms from the forward limit

contribution to the 6-particle NMHV amplitude integrand is the following,

m(AB1(23)N(456)) + mn2(4561)(AB31) + 13(4561)(AB 12)
+ m(AB(123)11(561)) + n5(AB1(46)(1(123)) + ne(AB1(123)(45))
(4561)(AB 45)(AB 61)(AB 12)(AB 23)(AB 13)(AB 41)(AB (123)N(456)) (AB (123)N\(561))

50|4

The full expression is given in appendix C. Note the presence of the explicit (AB)-
dependence in the argument of the Fermionic d-function. Seemingly miraculously, when
the residues of this integral are computed on its leading singularities, the n-dependence
precisely reproduces the standard NMHV R-invariants. Of course this miracle is guar-

anteed by our general arguments about the Yangian-invariance of these objects.

IV. Unitarity as a Residue Theorem

The BCFW construction of tree-level amplitudes make Yangian-invariance manifest, but
are not manifestly cyclic-invariant. The statement of cyclic-invariance is then a remark-
able identity between rational functions. Of course one could say that the field theory
derivation of the recursion relation gives a proof of these identities, but this is quite a
circuitous argument. One of the initial striking features of the Grassmannian picture for
tree amplitudes was that these identities were instead a direct consequence of the global
residue theorem applied to the Grassmannian integral. This observation ultimately led to
the “particle interpretation” picture for the tree contour, giving a completely autonomous
and deeper understanding of tree amplitudes, removed from the crutch of their field the-
ory origin.

In complete analogy with BCFW at tree-level, the BCFW construction of the loop

integrand is not manifestly cyclically-invariant. Again cyclic-invariance is a remarkable
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identity between rational functions, and again this identity can be thought of as a conse-
quence of the field theory derivation of the recursion relation. But of course we strongly
suspect that there is an extension of the “particle interpretation” picture that gives a
completely autonomous and deeper understanding of loop amplitudes, independent of

any field theoretic derivation.

Just as at tree-level, a first step in this direction is to find a new understanding of the
cyclic-invariance identities. To whit, we have understood how the cyclic-identity for the 1-
loop MHV amplitude can be understood as a residue theorem; we very briefly outline the
argument here, deferring a detailed explanation to [35]. The idea is to identify the terms
appearing in the MHV 1-loop formulas as the residues of a new Grassmannian integral.
All the terms in the MHV 1-loop formula can actually be thought of as arising from
[ ZAdPZ5Y, 0 k—0(Z4, 25, . ..), Where Y, o5—s is computed from the G(2,n + 2)
Grassmannian integral. Note that Z,4, Zp appear in the -functions of the integral in the
combination Cgs2Z4 + CspZp, so the GLy-action on (24, Zp) also acts on (Cga, Csp).

Performing the 4 p and G Lo-integrals leaves us with a new Grassmannian integral:

/d2><(n+2)0 0UCpiZi + CpaZa+ CpnZp)(AB)” (4.4.38)

(12)(23) - - - (nl)

By construction, this integral has a G'Ly-invariance acting on columns (A, B) and (Z4, Zp),
and hence all of is residues are only a function of the line (Z4Zg). In particular all terms
appearing in the MHV 1-loop formula, after GLs integration, are particular residues of

this Grassmannian integral.

As we will discuss at greater length in [35], the equality of cyclically-related BCEW
expressions of the 1-loop amplitude follows from a residue theorem applied to this integral.
In fact, it can be shown that the only combination of these residues that is free of spurious

poles is the physical 1-loop amplitude.

At tree level, the cyclic-identity applied to e.g. NMHV amplitudes ensures the absence
of spurious poles. The same is true at 1-loop level. Since the BCFW formula manifestly
guarantees that one of the single cuts is correctly reproduced, cyclicity guarantees that
all the single cuts are correct. Having all correct single cuts, automatically ensures that
all higher cuts—and in particular unitarity cuts—are correctly reproduced. Unitarity

then finds a deeper origin in this residue theorem.
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4.5 The Loop Integrand in Local Form

We have seen that the loop integrand produced by BCFW consists of a sum over non-
local terms. In order to present the results in a more familiar form, and also as a powerful
check on the formalism, it is interesting to instead re-write the integrand in a manifestly
local way (which will of course spoil the Yangian-invariance of each term). We will do
this for a number of multi-loop examples in the next section, but first we must describe
a new basis of local loop integrals which differs in significant ways from the standard
scalar integrals, but which will greatly simplify the results and make the physics much
more transparent.

Loop amplitudes are normally written as scalar integrals’ with rational coefficients.
Obviously this form can not match the full loop integrand, since scalar integrals are even
under parity but the amplitude is chiral. Let’s consider one-loop integrals to begin the
discussion. In the usual way of discussing the integral reduction procedure, manipulations
at the level of the integrand reduces integrals down to pentagons [105]. The final reduction
to the familiar boxes uses the fact that the parity-odd parts of the integrand integrate
to zero.

We are instead interested in the full integrand, however, and since the amplitudes
aren’t parity symmetric, there is no natural division between “parity-odd” and “parity-
even”. In fact, for the purpose of writing recursion relations, it is crucial to know both.
Furthermore, the BCFW recursion relation guarantees that the loop integrand is dual
conformally invariant and thus most usefully discussed in momentum-twistor space. We
are then led to construct a novel basis of naturally chiral integrals written directly in
momentum-twistor space, as we now briefly describe. These issues will be discussed at
much greater length in [35].

Let’s look at a few quick examples of local integrals written in momentum-twistor
space. We have encountered the simplest example already; the zero mass integral at

1-loop

d'Z,d'Zp (1234)2
/ { vol(AGLz) ] (AB12)(AB23)(AB34)(ABAL)’ (4.5.39)

9Here we abuse terminology and use the term “scalar”, which is appropriate at one-loop, to refer to
possibly tensor integrals at higher-loop order where the tensor structure is the product of “local” factors,

i.e., of the form ((AB), i i+1) and ((AB)¢(AB)g).
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Henceforth, we will drop the integration measure and only write the integrand. The most

general 1-loop integrand is of the form

(ABY))...(ABY,_,)
(AB12){AB23)--- (ABnl)’

(4.5.40)

where Y7, ... YT/, are general 4 x 4 antisymmetric matrices or ‘bitwistors’; with 6
independent components. Momentum-twistors make integral reduction trivial. Suppose
there are 6 or more local propagator factors including (AB j; ji+1) - - (AB jg je+1) in
the denominator. We can always expand all the Y/”’s in a basis of the 6 bitwistors
A ][{Zle] L1 Zj[éZ]‘Q 4, Inserting this expansion into the integrand, each term knocks-
out a propagator from the denominator. Thus we can reduce any integral down to
pentagons.

These will contain 5 “(AB)” factors in the denominator and a single “(AB)” factor in
the numerator. In the literature, z-space loop integrals are written with numerator factors
like (z — x;)?, which in momentum-twistor space correspond to (AB j j+1). However, we

will find more general numerators to be more natural. For instance, a typical pentagon

integrand we consider takes the form

(AB 14)(5123) (2345)
(AB12)(AB 23)(AB 34)(AB 45)(AB 51

(4.5.41)

We can trivially translate this integral into z-space; the numerator is proportional to
(r—m14)?, where x14 is a complex point associated with the line (14) in momentum-twistor
space; specifically, the pentagon-integral (4.5.41) is given by

(14)(23) [0 (2 — 002,02,
(12)(34) /d (2 — 21)2(x — 22)2(x — 23)%(x — 24)2(x — x5)?’ (4.5.42)

with
oy = 1024 = [4)z1[1)
1= (14) '

The complex point x4 is null-separated from z1, x5, x4 and x5; the second point sharing

(4.5.43)

this property is its parity conjugate which will be described shortly. These complex
points play an important role in the story, and it is most convenient to discuss them on
an equal footing with the rest of the points by working directly with momentum-twistor
space integrands.

Notably, unlike standard scalar integrals, this pentagon integral is chiral. Like any

pentagon integral, it has 5 quadruple cuts and twice as many leading singularities. But
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unlike a generic pentagon integral, with this special numerator, half of the leading singu-
larities vanish, and the others are all equal up to sign—hence, we say that this integral
has “unit leading singularities”. All of the local integrals we consider have this quite
remarkable feature.

Local momentum-twistor space integrals can be drawn in exactly the same way as
familiar planar integrals in z-space; we introduce a new bit of notation to denote the

numerator factors. The pentagon integral we just discussed is drawn as,
5

(4.5.44)

3 2
where the dashed line connecting (1,4) denotes the numerator factor (AB 14). We will

also have recourse to use the parity conjugates of these lines. The point Z; in momentum
twistor space is naturally paired with its projective-dual plane W; = (i—1 ¢ i+1), and the
parity conjugate of a line (ij) is the line which is the intersection of the corresponding

planes (ij) = (-1 ¢ i+1) (N (j—=1 j j+1). The numerator factor,
(ABTJ) = (A i1 i i41)(B j=1 j j+1) — (B i-1 i i41){A j=1 j j+1)  (4.5.45)

will be denoted by a wavy-line connecting 4, j.
With this notation we can nicely write the integrand for n-particle 1-loop MHV

amplitudes as

n
) 1
41—
+ + cyclic
1] =
- ] (4.5.46)
(n123)(12 4 i+1) (2 ji~1 1)
X(AB (123) N (j-1 j j+1))
2<i1<n 3<i<ji<n

In this expression we sum over all cyclic integrands, including duplicates, which is related

to the presence of the 1/n pre-factor.

127



For definiteness, we have indicated the numerator factor beneath the corresponding
picture. Recall the familiar form of the MHV amplitude as a sum over all 2-mass easy
boxes; it is amusing that in our form the only boxes are 2-mass hard. The algorithm by

which this form was deduced will be explained shortly.

We pause to point out that the full integrand for some MHV amplitudes have been
computed in the literature, in the context of using the leading singularity method to
determine the integrand [97]. A peculiarity in these papers was that the set of integrals
that were used to match all the leading singularities did not appear to be manifestly
dual conformal invariant—which is particularly ironic, given that the leading singular-
ities themselves are fully Yangian-invariant! This led some authors to the conclusion
that the parity-odd parts of the amplitude are somehow irrelevant, since they not only
integrate to zero on the real contour but are also not dual conformal invariant. Of course,
nothing could be further from the truth: we have seen very clearly that the full integrand
is determined recursively and exhibits the Yangian symmetry of the theory; the decom-
position into parity even and odd parts is artificial. The problem is quite simple, the
basis of scalar integrals has only parity even elements! Therefore, one is trying to model

the full integrand with a very inappropriate basis.

From the momentum-twistor viewpoint, the source of the previous difficulties can be
seen quite explicitly. We have seen that all 1-loop integrals can be reduced to pentagons,
but these are tensor pentagons, i.e. with factors of (AB) in the numerator. Now, it is
possible to further reduce a pentagon with numerator (ABY'), with Y corresponding
to a real line or not, to a scalar pentagon integral, by expanding Y in a basis of the 5
bitwistors appearing in the denominators, together with the infinity twistor /.. But this
breaks manifest dual conformal invariance! Thus the integrands obtained in [95,97, 99
are indeed dual conformal invariant, but the symmetry was obscured by insistence to use

scalar integrals.

Let’s give an example of an interesting two-loop integrand using our notation:

(1345) (5613) (AB 46)(C'D (234) N (612))
(CDG61Y(CD12)(CD23)(CD 34)(AB CD)(AB 34)(AB 45)(AB 56) (AB 61)

(4.5.47)
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which we draw as

At two-loops, there are generally 4 solutions to cutting any eight propagators, and so
this integral has 9 x 4 = 36 different (non-composite) leading singularities. However, the
integral is maximally chiral: putting any choice of eight propagators on shell will have
only one solution with a non-vanishing residue. Moreover, the non-vanishing residues are
equal up to a sign. This non-trivial fact can be understood as following from the global
residue theorem applied to the integral. All the tensor integrals we write in this chapter
are chiral in this sense, and the overall normalization of each has been chosen so that all
its non-vanishing leading singularities are equal to +1.

These chiral momentum-twistor integrals have another remarkable feature: they are
less IR-divergent than generic loop integrals; indeed, many of them are completely IR~
finite. Infrared divergences arise when the loop momenta become collinear with the
external momenta p;. In the dual co-ordinate space, this happens when a loop-integration
variable x lies on the line connecting z; and z;;;. In momentum-twistor space, this
corresponds to configurations where the associated line (AB) passes through the point
Z; while lying in the plane (j—1 j j+1). An integral is IR-finite if the numerator factors
have a zero in the dangerous configurations. There are an infinite class of IR-finite
integrals at any loop order; for instance, it is easy to see that the two-loop example
above is IR-finite. Further discussion of these objects and their role in determining IR-
finite parts of amplitudes like the remainder [81] and ratio [106] functions will be carried
out in [35]. Of course we expect that IR finite quantities, such as the ratio function, are
manifestly finite already at the level of the integrand.

It is interesting that the naively “hardest” multi-loop integrands can be reduced to
finite integrals plus simpler integrals. Consider for instance a general double pentagon

integrand for six particles, of the form

(ABY31)(CDYs)
(CD61)(CD12)(CD23)(CD34)(AB CD)(AB 34)(AB 45)(AB 56)(AB 61)

We can expand Y; in terms of the 6 bitwistors (Z32,),(Z4Z5), (Z5Zs), (Z6Z1) as well

. (4.5.48)
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as the bitwistors corresponding to (46) and its parity conjugate (46). Similarly we can
expand Y, in terms of (Z12,), (Z223),(Z374), (ZsZ1) as well as (31) and (31). Doing this
reduces the integral to finite double-pentagon integrals, plus simpler pentagon-box and
double-box integrals.

Finally, let us describe the general algorithm which we used to find local forms of
the loop integrands. The first step is to construct an algebraic basis of dual conformal-
invariant integrals, over which the integrand is to be expanded. It turns out, quite
remarkably, that for at least 1- and 2-loops an (over-complete) algebraic basis can be con-
structed which contains exclusively integrals with unit leading singularities, in the sense
just defined. We have explicitly constructed such a bases at 1- and 2-loops and arbitrary
n [35]. The second step is to match the integrand as generated by equation (4.4.29) with
a linear combination of the basis integrals. Since the loop integrand is a well-defined
function of external momenta and loop momenta, this can be done by simply evaluating
it at sufficiently many random points. Numerical evaluation of the integrand is itself
quite fast. Finally, this procedure is greatly facilitated by the fact that, when using our
particular integral basis, the coefficients are guaranteed to be pure numbers (or multiple
of leading singularities, for arbitrary N*MHV), as opposed to arbitrary rational functions

of the external momenta.

4.6 Multi-Loop Examples

The recursion relation for loops gives a completely systematic way of determining the
integrand for amplitudes with any (n, k, ). All the required operations are completely
algebraic and can be easily automated. In this section we use the recursion relation to
present a number of multi-loop results.

As we have stressed repeatedly, the individual terms in the BCFW expansion of the
loop integrand have spurious poles and are also not manifestly cyclically-invariant; thus
as a very strong consistency check on our results, necessary for a local form to exist, we
verify that the integrand is free of all spurious poles: the only poles in the integrand
should be of the form (i-1 ¢ j-1 j), ((AB)¢ j-1 j), ((AB)s, (AB)s,). We also explicitly
check cyclic-invariance. Recall that the absence of spurious poles and cyclicity guarantees

that all single-cuts of the amplitude are reproduced, and thus all cuts are automatically
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correctly matched. While preparing this chapter we have explicitly checked that our
recursive determination of the integrand passes these checks up to 14 point N*MHV
amplitudes at 1-loop, 25-point MHV amplitudes at 2-loops, 8-point NMHV amplitudes
at 2-loops, and 5-point MHV amplitude at 3-loops.

We can expand the integral in a local basis of chiral momentum-space integrals with
unit leading singularities using the algorithm briefly described in the previous section.
While the BCFW form of the integrand is almost always more concise than the local
form, the local form is more familiar, so we will present the results in this way. Indeed,
the (modestly) non-trivial work here is only in determining the natural basis for local
integrands. While this is a straightforward exercise using momentum-twistor machinery,
the result is non-trivial, yielding a canonical basis of multi-loop integrals, which we have
constructed explicitly for all n up to 2-loops. In order to present a tree-loop result, we
also found the 5pt basis at three-loops, deferring a complete discussion to [35]. Given
the basis of local integrals with unit leading singularities, generating the integrand and
finding its expansion in the basis is not difficult. The natural basis is over-complete and
so the results can be expressed in a number of equivalent forms. We will choose the forms
that seem canonical and reveal patterns. As we will see, somewhat surprisingly, the local

forms are also often remarkably simple.

I. All 2-Loop MHV Amplitudes

The two-loop amplitude for 4- and 5-particles is given by, respectively,

4 1
+  cyclic
(no repeat) (4.6.49)
3 2
(2341)(3412)(4123)
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and

cyclic
(no repeat) (4.6.50)

2345 (5123) 3412 (3451) 4513
x (AB (512)N(234))

while the 6-particle amplitude is

T e A g

(2345)(6123)(3412) (3456) (4563) (2345)(3462) (3456) (4562)
x (AB (561)(1(234)) x (AB (561)(1(123)) x (AB (561)((123))
: 6 ) 5 6 (4.6.51)
+ + 4 1 + cyclic
, , (no repeat)
(3456) (6123) (4512) (6235)

X (AB (234) (1 (456))
x(C'D (561)((123))

To be completely explicit, we have written the numerator factors accompanying each

given term under its corresponding picture.

What about higher-points? The parity-even part of the integrand has been computed
n [16], though the expressions are lengthy and do not expose a discernible pattern.
However, looking at the full (non-parity invariant) integrand for 4-, 5- and 6-particles in
momentum-twistor space reveals a clear pattern: the structure looks like the “square”

of the 1-loop objects, with double-box, pentagon-box and double-pentagon topologies.
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This motivates a simple conjecture for all 2-loop MHV amplitudes:

J k

+
(4.6.52)
(n123)x (2 7 i-1d)(i-2 i-1 i i41) (27 k)
(124 4+1)(i—1 i i+1i+2) x(AB(123)N(j-1 j j+1)) X (AB (123) N (k-1 k k+1))
x(CD (i-1 i i+1) N (j-1 5 j+1))
2<i1<n 3<i1<7i<n 2<i<j—1<k—1<n

We checked numerically that this matches the 2-loop MHV integrand as calculated by
BCFW directly. Because the recursion relations are easily automated, this can be verified
for any number of particles. We have checked this explicitly for up to 26 particles. It
is worth emphasizing that independent of verifying the local-ansatz, the cancellation
of spurious poles (and propagators) is a particularly strong consistency check for the
recursion relations. For instance, for the 26-point 2-loop MHV amplitude, there are
exactly 99,434 terms in the BCFW recursion, each riddled with spurious poles that
cancel in the sum. Even a single sign-mistake would have spoiled this miracle.

It is interesting to note that the naively “hardest” integrals that appear here—the

double pentagons—have a numerator which renders them completely finite.

II. All 2-Loop NMHYV Amplitudes

Although structurally identical to the 2-loop 5-particle MHV amplitude, it is worth
writing explicitly the 2-loop 5-particle NMHV amplitude; it is,

1
1 5
+ .0 2 +  cyclic
4 (
2 3

5
4

[12345] no repeat) (4.6.53)

3

(2345)(5123)(3412)  (2345)(3451)(4512)
x (AB 31)
Notice how this answer highlights the role played by parity: equations (4.6.53) and

(4.6.50) differ only by the parity of the numerator in the tensor-integral-—and one can be
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Table 4.1: Coefficients of residue (1) = [23456]. Here, “g” rotates each figure by
g : i+ i+1, and P exchanges wavy- and dashed-lines (together with each figure’s corre-

sponding normalization).

5 6 1 5
6 2 5 1
1 4 1 L+e (1+g3P)
—g(1-g)(1-P) 7
5 3 4 2
’ ? (4561) ! (3456)
(6234)(6245) x (AB (345)( ) (561)) x(AB (123) [ ) (345))
x(AB53)(CD (123)( ) (561)) % (AB (612)[ ) (234)) % (AB (456) [ ) (612))
6 6 6
5 4 ° 5
1 3
(1+g°P)
(1+4¢°P) ) —(1+4%P) 1 (149 %) 1
4 3 4 3
(3456) (4563) ° (2345)(3462) ° (3456) (4562) °
% (AB (561)[ ) (234)) x(AB (561) ) (123)) % (AB (561)[ )(123))
5 6 4 5 6 1 5 R 1
1
(1—g+9g%) (1+g%+g%) 1 (1+¢2+4%)
2
4 3 3 2 4 3 2
(3456)2(4512) (2345)(3412)(6123) (3456) (4512)(6123)

obtained from the other simply by exchanging wavy- for dashed-lines. Next we present

the 6-particle 2-loop NMHV amplitude, written in the manifestly-cyclic form,
(1)1; + cyclic, (4.6.54)

where (1) is the Grassmannian residue given by the R-invariant [23456] written explic-

itly in equation (4.2.6). Below, we show the coefficient I; of residue (1).

We next move to the 7-particle NMHV amplitude, which will be presented in the

form,

[(7)(1)I71 + cyclic] + [(7)(2) 7.2 + cyclic] + [(7)(3) 17 5 + cyclic] (4.6.55)

where (7)(7) is the Grassmannian residue given by the R-invariant defined by the comple-

ment of {7,7} in {1,2,...,7}. The expressions for I7, I7 2, I73 are given in appendix D.

134




III. All 3-Loop MHV Amplitudes

The four-point three-loop amplitude is given by the cyclic-sum of the following two classes

of integrands:

(no repeat)  (4.6.56)

(2341)3(3412) (2341)(3412)
x (AB (412)((123))

Although perhaps visually unfamiliar, the second integral above is commonly referred to
as the “tennis-court” because of the way it is usually drawn. We have drawn it the way
we have to highlight the presence of the pentagon sub-integral and the role played by
the tensor-integral’s numerator (which should be read as connecting to vertices “1” and
“27).

Finally, we give the integrals contributing to the full 3-loop MHV amplitude for 5

particles. It is given by the following cyclic-sum of the integrands,

5 ./2 /5
s + 3 ]
: \

\ 2 '
(3451)3 (5123)(4512)(3451) (4512)2 (4512)
x(AB (234)( (512)) x(AB (123)( (345)) x (AB (345) (1 (123)) x(AB (451) () (512))
x(AB (345)( (123))
2 3 (/3
QD + 2 4
1+7r) . '\4 / ' ;
(5123)(4512)(3451)? )(3451)( (3451)(4512)(1234) /(5123) (2345)(3451) /(4512)
(AB (123) N (451)) x{AB (345) () (512)) x(AB (123) (1 (451))
x(CD (234) (N (512))

here, r is the reflection operation that maps i — (6 —i). Notice that deriving this three-
loop amplitude using the loop-level recursion requires both the 1-loop 9-particle N2MHV
integrand, and the 2-loop 7-particle NMHYV integrand; and so the success of getting a
manifestly-cyclic and spurious-pole-free, local object is an indirect check of the validity

of the whole structure at lower-loops and higher points.
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We conclude this quick tour of some simple multi-loop integrands by stressing again
a remarkable feature of all these results. The integrals that appear are special objects
with unit leading singularities—they are thus the most natural basis of local integrals
with which to match the singularities of the theory. As a consequence the coefficients
are also simple objects: “4+1” for MHV amplitudes, and Grassmannian residues with
integer coefficients for more general amplitudes. These objects should be thought of as
the correct building blocks for the local integrand, just as the BCFW terms provide the
building blocks for the integrand in Yangian-invariant form. As we will discuss below, it
is also likely that carrying out the integration will yield “simple” results for these classes

of integrals.

4.7 Outlook

The loop integrand for scattering amplitudes is a well-defined object for any gauge theory
in the planar limit, and in this chapter we have given an explicit recursive prescription
for computing it to any loop order in N' = 4 SYM, in a way which manifests the full
Yangian-invariance of the theory. This provides a complete definition of perturbative
scattering amplitudes in planar N = 4 SYM, with no reference to the Lagrangian, gauge
redundancies or other off-shell notions. Along the way, we have also seen a new physical
picture for how loops can arise purely from on-shell data, associated with removing
pairs of particles in a naturally “entangled” way. From this vantage point, a number of

directions for future work immediately suggest themselves.

I. The Origin of Loops

A few years ago, the tree-level BCFW recursion relations sat at an interesting cross-roads
between the usual formulation of field theory, where space-time locality is manifest, and a
hoped for dual description, where space-time should be emergent. On the one hand, the
recursion relations were directly derived from field theory—without the field-theoretic
motivation, it was hard to imagine the motivation for gluing lower-point objects together
in the prescribed way. On the other hand, the presentation of the amplitude was very
different from anything normally seen in field theory. The amplitudes could be presented

in many different forms, with remarkable identities guaranteeing their equivalence. The
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simplicity of the answers resulted directly from the presence of non-local poles. These
properties, together with the dual super-conformal invariance of all terms in the BCFW
expansions, strongly motivated the search for a dual theory which would make these
features obvious, and which would furthermore give an intrinsic definition of the tree

amplitudes on its own turf.

The Grassmannian duality for leading singularities provides this dual understanding
of tree amplitudes in a satisfying way. The Yangian symmetry is manifest (for all leading
singularities and not just tree amplitudes). The amplitude can be presented in many
forms since it is a contour integral, with many representatives for a given homology
class. The remarkable identities guaranteeing cyclic-invariance (together with important
physical properties at loop-level) indeed find a new interpretation as higher-dimensional
residue theorems. And finally, giving the contour integral over the Grassmannian a
“particle interpretation” poses a natural question, intrinsic to the Grassmannian picture,
whose answer yields the tree amplitude, along the way exposing a (still quite mysterious)
connection with twistor string theory. We strongly suspect that a generalization of this
picture exists that extends the duality to only to incorporate loop amplitudes but also

explain why loops must be computed to begin with.

Our extension of BCFW to all loop orders puts loop amplitudes in the same posi-
tion at the cross-roads between field theory and a sought-after dual description that tree
amplitudes occupied a few years ago. This should set the stage for fully exposing the
dual picture, and we have already made some inroads to uncovering its structure. For
instance we saw that the remarkable identities guaranteeing cyclic-invariance of the MHV
1-loop amplitude indeed have an origin as a residue theorem in a new Grassmannian inte-
gral closely associated to the “master” integral computing leading singularities/Yangian-
invariants. The nature of the “seed” for loops, arising from removing particles, is also
clearly intimately related to the particle interpretation, which has already played a central

role in the emergence of locality at tree-level.

Along these lines, here we give another presentation of the 1-loop MHV amplitudes,
which differs from the form we obtained using the recursion relation. Consider the tree-

level N2MHV amplitude M, j—o(Z1, ..., Zn, Z4, Z5). The 1-loop MHV amplitude arises
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directly from the entangled removal of A and B:

®¢‘

Here it is easy to see, using the BCFW form of the tree amplitude, that there is a unique
G Lo-contour of integration associated with each term. This formula differs term-by-term
from the BCFW form of this amplitude. We can however recognize all the terms as
residues of the same auxiliary Grassmannian integral in equation (4.4.38), and we have
shown that the equivalence to the BCFW form follows from a residue theorem. While this

formula does not directly generalize for other amplitudes, its form is certainly suggestive.

Progress on all these questions would likely be accelerated by finding an explicit
solution to the recursion relation for all (n, k, £), generalizing the explicit solution already

known for tree-amplitudes [50].

As a final comment, our analysis of loops in this chapter has been greatly aided by
working in momentum-twistor space; these variables allow us to recognize loop integrals
in their familiar momentum-space setting. However, given that all the elements in the re-
cursion relation were described in manifestly Yangian-invariant ways, it must be possible
to translate these results into ordinary twistor space. It is likely that the twistor-space
formulation will be most fundamental, amongst other things it could offer a natural

understanding of non-planar loop amplitudes as well.

The results of this chapter also give a renewed hope for extracting loop-information
from twistor-string theory. As we have seen, loop amplitudes can easily hide in plain
sight in subtle ways, masquerading as a formal way of representing “1” in terms of IR-
divergent integrals in (3,1)-signature! It is likely that a deeper understanding of the
contours associated with the “Hodges diagrams” [17,107], already for twistor-space tree-

amplitudes in (3, 1)-signature, will be important to make progress here.
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II. Simplicity of Integrals and IR-Anomalies

Putting aside these highbrow issues, we are confronted with a much more urgent question:
does our understanding of the integrand help us to carry out the integrations to obtain
the physical amplitudes? Are the symmetries of the integrand of any use?

In fact the manifestly Yangian-invariant way of presenting the integrand does strongly
suggests that the integrals themselves will be “simple”. The “super” part of super-
dual conformal invariance is already an extremely powerful constraint. Consider MHV

amplitudes for simplicity. The statement of super-dual conformal invariance is
0 0
Za:nfa_Z({MMHV =0— a—ZEL]MMHV =0 for all a, (4757)

where we use the fact that the MHV amplitude has no 7, dependence. Thus, the only
super-dual conformally invariant amplitude is forced to be a constant! This reflects the
well-known fact that the only Yangian invariant with £ = 0 is the MHV tree amplitude
(=1 in momentum-twistor space). Now, we have expressed the integrand for the MHV
amplitude in a manifestly super-dual conformal (indeed Yangian)-invariant way. Consider

for instance the 1-loop amplitude, which has the form
Mymy = / P2 25 F(Z24, 253 2,), (4.7.58)
with an entangled contour of integration for Z4 p; we suppress the explicit expression

for F. The statement of super-dual conformal invariance is perfectly well-defined at the

level of the integrand, which turns into a total derivative:

2: K Vi _ 314 7 s3l4 kO kO
a na_an - /d' GdPrZ g <77A i+nB J> F. (4.7.59)

After doing the n4 p and G Le-integrals, we have

0 dZsd"Zg (0 . O .,
gz "y = / vol(GLy) <8ZjGA+8Z;§GB)’ (4.7.60)

where we suppress the explicit forms of G 5. We see that super-dual conformal-invariance
continues to be manifest at the level of the Bosonic loop integrand in the dual co-ordinate
space, also at all loop orders.

This symmetry therefore guarantees that no matter how complicated the integrand
looks, on any contour of integration where the integral is completely well-defined, it can

only integrate to a constant, “1”! The integral is not “1” only because we choose a
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contour of integration over lines (AB) corresponding to real (3,1)-signature points in
dual spacetime, and this integral is IR-divergent. We see that IR-divergences are not
an annoying side-feature of loop amplitudes, they are the sole reason these amplitudes
are non-trivial; in this Yangian-invariant form, the loop amplitudes are telling us “I

710 This is a powerful statement that should be turned into an

diverge, therefore I am
engine to simplify the computation of the loop integrals. Due to the IR-divergences,
the Yangian generators will not quite annihilate the loop amplitude, but they should
localize the integral to the IR-divergent regions of loop momentum-space collinear to
the external particles. In the dual co-ordinate space, this is the region localized to the
edges of the null-polygonal Wilson loop. It seems likely that these IR-anomalies fully
control the structure of the amplitude. Amongst other things, they must lie behind the
astonishing simplicity recently uncovered in the structure of the remainder function for
the 2-loop, 6-particle MHV amplitude [108]. In the same line of thought, it is conceivable
that there is a very direct link between the Yangian structure we uncovered and the very
beautiful connections made at strong coupling with integrable systems, Y-systems, TBA
equations and the Yang-Yang functional [109,110]. Already these developments have
allowed a bridge to weak coupling by computing sub-leading corrections to collinear
limits [111-113].

Having said all of this, there is a very important issue that must be addressed to
make progress in directly computing these Yangian-“invariant” but non-local integrals.
The question is of course how to handle IR-regularization for these objects. Dimensional
regularization has long been the preferred method for regulating IR-divergences in gauge
theories, but it does particularly violent damage to the structure of the integrand, and is
not useful for our purposes. Fortunately, there is a better regulator, both conceptually
and computationally. Physically, the IR-divergences are removed by moving out on the
Coulomb branch [94]. This gives a beautifully simple way to regulate the integrals in
momentum-twistor space which is also useful for practical computations [114,115]. With
the loop integrand written in local form, one simply deforms the local propagators as
(AB j-1j) — (AB j-1j) + m*(AB)(j-1 j). The physics is always four dimensional. The
ambiguities in this regulator occur at an irrelevant level O(m?)(log(m?))P. In particular

there are no issues with the notorious “p-terms” in dimensional regularization, and we

10We thank Peter Goddard for this remark.
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don’t encounter the ubiquitous €/e effects either. This is clearly the physically correct
regularization for our set-up.

How should we use this regularization to compute the non-local integrals of interest?
One can glibly regulate all 4-brackets (ABzy) — (ABxy) + m?(AB){xy), but this is
not physically correct: the regularization of the local propagators is reflecting the (local!)
masses induced by Higgsing; and so it is not clear how the non-local propagators should
be regularized. Indeed, we have checked that for the 1-loop MHV amplitudes, this very
naive regularization of the integrals does not produce the standard result. Of course,
since the Yangian invariant form of the full amplitude can be expanded in terms of local
integrals, we can in principle work backwards to see how the correct local regulator affects
the non-local integrand; the question is whether there is a sensible way of computing these
non-local integrals directly. We intend to return to these questions in near future.

We have emphasized that the Yangian-invariant presentation of the loop integrand
strongly suggests that the integrals should be simple. But as we have seen in a number
of examples, even the local forms of the integrand, when written in terms of the natural
chiral basis of momentum-twistor space integrals with unit leading singularities, look
surprisingly elegant. In fact, these integrals with unit leading singularities should also be
“simple”. The reason is precisely that their leading singularities are “1” or “0”; these are
the only possible values of the integrals on any closed contour of integration, independent
of the kinematic variables. This means that e.g. 9/0Z! acting on these integrals should
also be a total derivative with respect to the loop variables, and that they too should
be localized to regions with collinear singularities. Since these are local integrals their
regularization is well defined. Indeed, as we pointed out in our multi-loop examples, the
naively “hardest” integrals are even IR-finite. The integrals for our form of the two-loop
6-point MHV amplitude have been computed analytically for certain cross-ratios by [87],
passing all non-trivial checks. The simplicity of these partial results strongly supports

the idea that the full amplitude computed with these integrals are also simple.

ITII. Other Planar Theories

We end by stressing that many of the ideas in this chapter are likely to generalize beyond
the very special case of N' = 4 SYM. Since the integrand is well-defined in any planar

theory, one can try to determine it with recursion relations just as we have done for N' = 4
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SYM. In [91], it was argued that the single-cuts of the 1-loop amplitude are well-defined
for any theory with at least A/ = 1 SUSY (or N = 2 in the presence of massive particles),
so the BCFW recursion determines amplitudes at least up to 1-loop in these theories too,
with or without maximal SUSY and Yangian-invariance. In non-supersymmetric theo-
ries, further progress on these questions will require a better understanding of single-cuts.
One difficulty is that the naive forward limit of tree amplitudes is ill-defined. It is plau-
sible that this is closely related to presence of rational terms in 1-loop amplitudes, which

have a beautiful and fascinating structure which is strongly suggestive of a deeper origin.
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Chapter 5 Remarkable Simplicity for
Loop Amplituds in Planar N = 4

5.1 Invitation to Local Loop Integrals and Integrands

As described in Chapter 4 the integrand for scattering amplitudes in planar theories is a
well-defined, rational function of external- and loop-momenta at all orders of perturbation
theory [15]. Recently, an explicit recursion for the integrand of planar scattering ampli-
tudes in A/ = 4 SYM was presented in Chapter 4, generalizing the BCFW recursion for
tree amplitudes [7,31]. The integrand is most naturally presented in momentum-twistor
space. All the objects appearing in the recursion relation have simple interpretations
in terms of canonical operations on Yangian-invariants derived from the Grassmannian
integral [10], making the Yangian invariance of the theory (up to total derivatives) man-
ifest at the level of the integrand. It has also been recently realized that the integrand
has a beautiful dual interpretation as a natural supersymmetric Wilson loop, resolving
a long-standing open problem [116,117]. This proposal has been checked to satisfy the
all-loop recursion relation at the level of the integrand [116], providing a proof of the
duality between scattering amplitudes and Wilson-loops [118].

The recursion relation gives a complete definition for the integrand, making no ex-
plicit reference to spacetime notions either in the usual or dual spacetimes. The words
“spacetime”, “Lagrangian”, “path integral” and “gauge symmetry” make no appearance.
A reflection of this fact is that, as familiar from the BCFW computation of tree am-
plitudes, individual terms in the integrand are riddled with non-local poles that cancel
in the sum. But also familiar from BCFW at tree-level, the recursion relation is a very
powerful calculational tool, and has allowed us to gather a huge amount of “data” about
the properties of multi-loop amplitudes.

In this chapter we report on a remarkable property of the loop integrand revealed

by examining this “data”, amplifying a theme already stressed in Chapter 4. Loop
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integrands take an amazingly simple form when expressed in a manifestly local way. This
is surprising, since the enormous complexity of Feynman diagrams is inexorably tied to
locality, while by contrast, the great simplicity of BCFW recursion is inexorably tied
to the presence of non-local poles. What we are finding is a new local form of the
integrand—certainly not following from Feynman diagrams!-—which is even simpler than

the forms obtained from BCFW recursion.

This great simplicity is apparent only when the integrand is written in momentum-
twistor space, using a special set of objects that are almost completely chiral, and have
unit leading singularities. For instance, all 2-loop MHV amplitudes are given as a sum

over a single type of object,

1
A2floop _ -
MHV 2

i<j<k<l<i

(5.1.1)

This result was already presented (albeit in a slightly more clumsy form) in Chapter
4. We will describe these objects in much more detail in the body of this Chapter;
here, it suffices to say that these are simple double-pentagon integrals with a special
tensor-numerator structure which is indicated by the wavy lines, and that the notation
‘4 <j<---<k<7i in the summand should be understood as the sum of all cyclically-
ordered sets of labels i, 7, ...,k for each i € {1,...,n}.

All 2-loop NMHV amplitudes are also associated with similar integrands; indeed, the
n-point NMHV scattering amplitude’s integrand is simply given by,

j 1
2 loop f
NMHV - :
1<j<l<m<k<t 1<j<k<l<i
1<j<k<l<m<i
i<l<m<j<k<i i /
m
tree . ;
X[Z,j,]+1,k,k+1] NMHV(jv"'vkv l,...,’L)
X + ARV (@5 -5 )
+ARS v (ks -5 1)

144



Here, [i j k1m] denotes the familiar dual-superconformal invariant of five particles,

8 ((j klmyn; + (klmiyn; + (Lmijyne + (mij k)ym + (i j k1)nm)
(k)G EIm)(klmay{Imij)(mijk) '

This result dramatically simplifies the way this result was presented in Chapter 4 for the

6- and 7-particle 2-loop NMHYV integrands.

[ijkim] = (5.1.3)

Finally, all 3-loop MHV amplitude integrands are given by a sum over the same types

of objects,
J1 ki
3—loop __ 1 + 1 :
MHV y
32 : i - 22 :
i1<i2<j1< i1<j1<k1<
<jo<ki1<ko<iy <ko<ja<iz<ii

These explicitly-local, manifestly cyclic results for all 2-loop NMHV and 3-loop MHV
amplitudes are new, and stunningly-simple—even simpler than the form produced by the
loop-level recursion formula.

As we will see, these extremely simple expressions are very closely related to the
leading singularity structure of the theory. The reason for the dramatic simplicity of
these results relative to the ones presented in Chapter 4 is that there, each integrand
was straightforwardly expanded in terms of a fixed basis of chiral integrals with unit
leading singularities, while here we are tailoring the objects that appear directly to the
amplitude. The structures are motivated by matching a particularly simple set of leading
singularities of the theory; this is made possible only by using chiral integrands with unit
leading singularities, which is why these objects play such a crucial role in the story.
What is remarkable is that matching only a small subset of leading singularities in this
way suffices to determine the full result. Of course, we confirm this not by laboriously
matching all leading singularities, but rather by directly checking the conjectured local
forms against what we obtain from the all-loop recursion relation.

We do not yet have a satisfactory understanding for the origin of this amazing sim-
plicity. Certainly, these expressions differ from the BCFW form in that they are not
term-by-term Yangian invariant. This suggests the existence of a deeper theory for the
integrand that will directly produce these new local forms, allowing a more direct under-

standing of the emergence of local spacetime physics. We strongly suspect that it is this
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formulation that will also help explain the amazing simplicity [13] seen in the integrals
yielding the physical amplitudes, and also form the point of contact with the remark-
able integrable structures of NV = 4 SYM—Y-systems and Yang-Yang equations—seen

at strong coupling and also in some collinear limits [110,111,119].

In Chapter 6, a geometric picture for scattering amplitudes is advanced, building on a
beautiful paper of Hodges [20], which may shed some light on the origin of these new local
expressions. Hodges interpreted NMHV tree amplitudes as the volume of certain poly-
topes in momentum-twistor space, and showed that a natural class of triangulations of
this polytope correspond to different BCFW representations of the amplitude. In Chap-
ter 6, it is shown that at an even simpler triangulation of the same polytope is possible,
yielding a new, manifestly-local formula for NMHYV tree-amplitudes. Also in Chapter 6, a
completely analogous ‘polytope’ formulation is presented for all 1-loop MHV amplitudes.
Again, one natural set of triangulations leads to the BCFW form of the integrand, while
even simpler triangulations directly lead to a number of new, manifestly local forms for
the integrand. While this polytope picture has not yet been generalized beyond these
most elementary cases of NMHV tree and MHV 1-loop amplitudes, the extremely simple
local forms for higher loop amplitudes we present in this chapter strongly encourages the

thought that an appropriate extension of this idea must be possible.

We should stress that when we say our results for the integrand are “manifestly local”,
we mean that the poles involving the loop integration variables are local. Of course the
integrand should be “ultralocal”, that is, the poles involving both the loop integration
variables as well as the external momenta must be local. The MHV integrands we
present trivially have this property, but for NMHV amplitudes, our expressions involve
the standard R-invariants which have spurious poles as function of the external particle
momenta. Given the beautiful, local form of the NMHV tree amplitude obtained from
the polytope picture [13], it is quite likely that there is an even nicer representation
of loop amplitudes which are not only local but ultralocal. This fascinating possibility

certainly merits further exploration, but is beyond the scope of the present Chapter.

We close this invitation with an outline for the rest of the paper. We begin with a
pedagogical introduction to some of the foundations of the subject in section 5.2 starting
with a review of momentum-twistors and some of the associated projective geometry in

CP?. We also discuss how planar loop integrals are written in momentum-twistor space;
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while our focus in this Chapter is on N’ = 4 SYM, we expect that the momentum-twistor
representation of loop amplitudes will be extremely useful for any planar theory. We
discuss the way that momentum-twistors make integral reduction trivial, and illustrate
this by showing how the 1-loop integrand can be reduced to a sum over pentagon inte-
grals. Finally we discuss leading singularities at 1-loop and beyond in momentum-twistor
language. The standard exercise of determining quadruple-cuts in momentum space is
mapped in momentum-twistor language to a simple, beautiful and classic problem in
enumerative geometry first posed by Schubert in the 1870’s, and we discuss the solution

of these “Schubert problems” in detail.

In section 5.3 we introduce chiral integrals with unit leading singularities which play
a central role in our story. We illustrate how they work starting with the simplest case

of 1-loop MHV amplitudes.

In section 5.4, we discuss another feature of chiral integrals with unit leading singularities—
generic integrals of this form are manifestly infrared finite, and can be used to express

finite objects related to scattering amplitudes, such as the ratio function [§].

In section 5.5, we construct a basis for all 1-loop integrands, whose building blocks
are not the familiar boxes or even pentagons, but a natural set of chiral octagons with
unit leading singularities. We also compute the finite 1-loop integrals explicitly, and use
these results to give a simple formula for the NMHV ratio-function at 1-loop, for any

number of particles.

In section 5.6, we discuss multi-loop amplitudes. We describe our heuristic strategy
for using leading singularities to tailor momentum-twistor integrals to the amplitude, and
show how this works for the 1-loop MHV amplitude, reproducing one of the local forms
first derived using the polytope picture of Chapter 6. We also discuss the 1-loop NMHV
amplitudes in the same way. We then extend these methods to two loops and beyond, and
show how to “glue” the 1-loop expressions together to produce natural conjectures for all
2- and 3-loop MHV amplitudes, as well all 2-loop NMHV amplitudes. These conjectures

are verified by comparing with the integrand derived from the all-loop recursion relation.

A number of appendices discuss various technical points needed in the body of this

Chapter, including a detailed discussion of the 2-loop NMHV and 3-loop MHV integrands.
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5.2 Foundations

In theories with massless particles, a well-known and convenient way of trivializing the
constraint p? = 0 for each particle is to introduce a pair of spinors A(? and X(“), replacing

P (Pa)as = PH(0u)aa = Al )Xg). Of course, this map is not invertible, as any rescaling
{\, A} = {tA,t71\} leaves p invariant. This reflects that these variables come with a new
source of redundancy; in the case of particles with spin, this redundancy is quite welcomed
as it allows the construction of functions that transform with fixed projective weights as
S-matrix elements under Lorentz transformations. This is all well-known under the name
of the spinor-helicity formalism [120-124].

Amplitudes are supported on momenta that satisfy momentum conservation. Clearly,
it would be convenient to find variables where this constraint, ) p, = 0, is trivial. In
planar theories, where color ordering is available, there is a natural way to achieve this,
by choosing instead to express the external momenta in terms of what are known as
dual-space coordinates, writing p, = z, — x,_1, [47].

To see the role played by planarity, consider the standard decomposition of scattering

amplitudes according to the overall color structure, keeping only the leading color part:
A, =Te(T9T*...T)A,(1,2,...,n) + permutations; (5.2.4)

here, each partial amplitude A,,(1,2,...,n) can be expanded in perturbation theory, and
we denote the L-loop contribution by AZ71°°P Partial amplitudes are computed by
summing over Feynman diagrams with a given color-ordering structure.

In this chapter we only consider the planar sector of the theory, and therefore AL~1ooP
will always refer to the leading-color, partial amplitude in the planar limit.

Restricted to a particular partial amplitude, say, A,(1,2,...,n), each momenta can
be expressed as the difference of two “spacetime” points. More precisely, we make the
identification p, = r, — r4_1, with p; = 1 — x,,. It is clear that momenta obtained in
this way automatically satisfy ) p, = 0—and the redundancy introduced in this case
is a translation z, — x, + y by any fixed vector y.

Now, the only poles that can occur in A,(1,2,...,n) are of the form an:a P, ©.€.,

only the sum over consecutive momenta can appear. In the dual variables these become
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Zin:(z 4+1Pm = Tq — 2. The same kind of simplifications happen in planar Feynman
diagrams to all orders in perturbation theory as we will describe.

Now we have the variables {\, \} which make the null condition trivial while ignoring
momentum conservation, while the dual-space variables do the opposite. It is perfectly
natural to wonder if there exists any way to combine these two constructions which makes
both the null-condition and momentum conservation trivial. It turns out that such a set
of variables does exist: they are known as momentum-twistors and were introduced by
Hodges in [20].

The standard twistor construction developed in the 1960’s [125] starts by making a
connection between points in an auxiliary space—twistor-space—and null rays in space-
time. Likewise, a complex line in twistor space is related to a point in spacetime. The

key formula is called the incidence relation, according to which a point x in spacetime

corresponds to set of twistors Z = (A, u) which satisfy
fla = To oA (5.2.5)

Twistors satisfying this relation form a projective line in CP?. Even though Z has the
components of a point in C*, the incidence relation cannot distinguish Z from tZ, and
therefore the space is projectivized.

In order to specify a line in twistor space—and therefore a point in spacetime—all
that is needed is a pair of twistors, say Z4 and Zg, that belong to the line. Given the
twistors, the line or spacetime point is found by solving the four equations coming from
imposing the incidence relation for Z4 and Zz with . It is easy to check that the solution

is,

T — AalBé I AB.allAg
0 ads) (s

(Here, we have made use of the familiar Lorentz-invariant contraction of two spinors
B
(A Ap) = egé)\%)\g).

Hodges’ construction starts with any set of n twistors {Z1, ..., Z,}. Using the asso-

(5.2.6)

ciation z, <> (Z4, Za41), n spacetime points are defined. Quite nicely, it is trivial that

2 = 0 because the corresponding lines, or (CP's), intersect. This is

Pi = (Ta — Ta-1)
illustrated in Figure 5.1.
Given the importance of this latter fact, it is worth giving it a slightly more detailed

discussion than we have so far. If two lines in twistor-space intersect, i.e. share a twistor
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Figure 5.1: Defining the connections between momentum-twistors, dual-coordinates, and

cyclically-ordered external four-momenta

=z ij/ La+1
atlff " -
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Zint, then the corresponding spacetime points, say x and y, associated with the lines are

null-separated. To see this, take the difference of the incidence relations for Z;,

int a int _ a
Mg = T 6 Ning» Mg = Yo & Aint

to get
(7 = Y)aaNip = 0;

m

o

which means that the 2 x 2-matrix (z — y) has a non-vanishing null eigenvector, i.e. Ay,

and therefore the determinant of (x — y) vanishes. But the determinant is proportional
to (z — y)? when z and y are taken as vectors; and therefore z and y are null separated.

As useful background for the rest of the Chapter let us discuss the null-separation
condition, which is a conformally invariant statement, in twistor space. Consider again
two generic spacetime points x and y and choose two representatives of the lines asso-
ciated to them in twistor space, say, (Z4, Zp) and (Z¢, Zp). Treating each twistor as a
vector in C* there is a natural SL, (conformal) invariant that can be constructed. This
is done by contracting all four twistors with the completely antisymmetric tensor €y xz,

to produce
(ZaZpZcZp) = ey 242525 75, (5.2.7)

Clearly, this conformally-invariant quantity must encode information about how z and
y are causally related. The Lorentz invariant separation (x — y)? is not conformally-
invariant because it is not a cross ratio. However, the way to relate the two quantities is
simple

s (ZaZpZcZp)

(x—y)” = Dor s e Ay (5.2.8)

150



This relation is consistent with our earlier finding that if the points x and y are null-
separated, then the twistors Z4, Zp, Z¢ and Zp, are coplanar as points in CP3. In other
words, the two complex lines intersect.

When twistors are used to produce a configuration of points in spacetime which are
pairwise null separated and then used to build momenta, the corresponding twistor space
is called momentum-twistor space [20)].

This twistor construction is in fact slightly more involved when one is interested in
real slices of spacetime. In our discussion so far, we have been assuming that momenta
are complex and hence the dual spacetime is complexified. This is useful for e.g. defining
the usual unitarity cuts of loop amplitudes. In this chapter, the complex version suffices
and we refer the interested reader to [20,92].

A related construction is called dual momentum twistor space. Here ‘dual’ refers to
the usual geometric—Poincaré’—dual of a space. In other words, the dual space is the
space of planes in CP?. Points in the new space which is also a CP? are denoted by W7.
The construction maps points to planes and lines to lines. In Hodges’ construction [20],
there is a natural definition of dual points associated to the planes defined by consecutive
lines of the polygon in momentum twistor space of Figure A.5.

The construction defines a dual polygon by introducing dual momentum twistors W,

defined by

J Kr7L
€1IKLZ g 124 Lo

Wor = B2 Mot1)

(5.2.9)

This definition is made so that W, contains Xa as two of its components.

I. Loop Integrals

The focus of this chapter is loop integrands and integrals. Here too, it is well known that
in planar theories, loop integrals are very naturally expressed in terms of dual spacetime

coordinates. Consider a very simple 1-loop integral, known as a zero mass integral,

4 1
L
N

= /d4L
L2(L - p1)2(L —P1— p2)2(L —P1— P2 — p3)2

(5.2.10)
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where the external momentum at each of the four vertices is null (hence the name) and
N = (p1 + p2)*(p2 + p3)? is a convenient normalization factor. Momentum conservation
gives py = —p1; — p2 — p3; and introducing the dual-coordinates p, = x, — x,_1, it is easy
to see that the unique choice of L that makes translation invariance (in z-space) manifest

is L = x — x4. The integral becomes [47]

where N = (z1 — z3)?(wy — 24)?. Imposing translation-invariance gives rise to the same
integral in x-space regardless of the original definition of L in the loop diagram. In other
words, a different propagator could have been chosen to be L and the form (5.2.11) would
still be the same. This uniqueness plays a crucial role in the definition of the integrand
of the theory.
Integrating over all points x in spacetime is the same as integrating over all CP'’s
in CP3. As before, each line in twistor space can be represented by a pair of twistors
< (Za,Zp). Clearly, any GL2(C) transformation on the A, B “indices” leaves the
line invariant. Therefore the integral over spacetime is the same as the integral over the
pairs (Z4, Zp) modulo GLy. This is nothing but the Grassmannian G(2,4) which can be
parameterized by a 2 x 4 matrix
Zi Zi Zi Z = X X Mi‘ M?A . (5.2.12)
Zy Zp Zh Zy Ap Ab kB KB
We can immediately write a measure which is G'Ly-invariant by integrating over all Z4’s
and Zpg’s together with a combination of 2 x 2 minors of the matrix (5.2.12) with total
weight —4. It turns out that the precise measure that corresponds to a d*z integration

is

P Zad Zs
d* 2.1
/ v / Vol(GLa) X (Aa Ayt (5:2.13)

where (A4 Ag) is the (1 2) minor of (5.2.12)—the determinant of the first two columns of

the 2 x 4 matrix (5.2.12). In the twistor literature this is written as (Aq Ag) = (Z4Zp I)
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where (I.)%” is the infinity twistor which is block diagonal with the only nonzero di-
agonal element equal to €. I is called the infinity twistor because it corresponds to
a choice of the point at infinity in spacetime and therefore a line in twistor space. Its
presence therefore breaks conformal invariance. This is not surprising as the measure d*z
‘knows about’ the metric in spacetime.

Since the integration over lines will appear in many different contexts in this chapter

we introduce a special notation for it. Let’s define
Ay 4
/ / ijAgLfB (5.2.14)
The reason we have not included the factor (A4 Ag)*? in the definition is that in this
chapter we mostly deal with N/ = 4 SYM and in its integrand factors with infinity
twistors cancel.

Going back to the loop integral in z-space (5.2.11), one can introduce the four momen-
tum twistors in Hodges’ construction {7, Zs, Z3, Z4} to describe the external particles.
Using the relation between the Lorentz invariant separations and momentum twistor
invariants in (5.2.8), the integral (5.2.11) becomes

(1234)2

/ (AB12)(AB 23)(AB 34)(AB AL}’
(AB)

(5.2.15)

where (ijkl) stands for the determinant of the 4 x 4 matrix with columns given by four
twistors Z;, Z;, Z;, Z, defined in (5.2.7).

One of the remarkable facts about (5.2.15) is that all factors involving the infinity
twistor have disappeared. This means that the integral is formally conformal invariant
under the conformal group that acts on the dual spacetime. This is why it is said to be
dual conformally invariant (DCI).

Clearly, if we had started with a triangle integral then the factor (Z1172;) = (A1 A\2)
would not have canceled and would have remained with power one in the denominator
as if it were a propagator. Indeed, this viewpoint trivializes the surprising connections
made in the past between the explicit form of triangle and box integrals. In other words,
one can think of a triangle integral as a box where one of the points is at infinity.

Once again, a careful definition of the contour which should correspond to only points

in a real slice of complexified spacetime is not needed in this chapter. It suffices to say
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that on the physical contour, the integrals can have infrared divergences (IR). This is the
reason why we said that the integral was ‘formally’” DCI. We postpone a more detailed
discussion of IR-divergences to section 5.4.

The purpose of this section is to show how momentum twistors are the most natural
set of variables to work with loop amplitudes in planar theories. In order to do this we
will first show how many familiar results can be translated into momentum twistors. Not
infrequently, momentum twistors will completely clarify physics points which have been

misunderstood in the literature.

Integral Reduction at 1-Loop Level

In a general theory, 1-loop integral reduction techniques allow scattering amplitudes to
be expressed as linear combinations of a basic set of scalar integrals'. The integrals have
the topology of bubbles, triangles or boxes.

Let us start this section by translating each of the integrals in the standard basis into

momentum twistor language. Their corresponding form in momentum twistor space is

I T / (i i+1)(j j+1)(k k+1){I 1+1) '
pox ~ ] (ABii+1)(ABj j+1)(AB k k+1){AB [ I+1)’
—j+1 (dB)
1 (i i+1)(j j+1)(k k+1)

Iryiangle = = : 2.1
frienee . / (AB) (AB i i+1)(AB j j+1){AB k k+1)’ (5:2.16)

- —I*1 (AB)

k+1 k

" L (i)
I ubble = o= / . T .
o j+>1<><j i (AB)? (AB i i+1)(AB j j+1)

Note that here we have translated the plain scalar integrals without any normalization
factors. Once again, only boxes are dual conformal invariant except for an overall factor

which only depends on the external data. This factor involving 2-brackets and hence the

! This is true in theories with no rational terms or in general theories for what is known as the cut-
constructible part of them. See [126] for more details. In A" =4 SYM rational terms are absent. This

is why we do not elaborate more on this point.
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infinity twistor can always be removed by a proper normalization as done in the zero-
mass example (5.2.15). Scalar boxes in momentum twistor space have also been recently
studied in [92,93].

A well known fact about N' = 4 SYM is that at 1-loop level, bubbles and triangles
are absent and all one needs are scalar box integrals. However, as we will see, this point
of view is not the most natural one and actually turns out to be misleading.

In order to understand this point, one needs to review the reduction procedures
used to reach this conclusion. Before doing that let us mention some useful facts about
momentum twistors.

In loop integrals, combinations of momentum twistors of the form ZL{Z}Q make an
appearance in every expression (where the brackets mean that the indices are anti-
symmetrized), reflecting the fact that it is the line (AB) that is being integrated-over,
and not the individual twistors Z,4 and Z5.

These two-index objects are a class of more general ones called bitwistors. A generic
bitwistor is a rank-two antisymmetric tensor Y//. Given two bitwistors, ¥ and 57, the
conformally-invariant inner-product is given by (Y V) = e/ Y'Y EL A bitwistor
which can be written in terms of two twistors as Z,[L{ng];] is called simple. It is easy to
show that a bitwistor is simple if and only if Y? = 0 with the product defined as above.

The reason for discussing bitwistors is that they provide a very natural integral re-
duction procedure. The procedure can be applied to integrals at any loop order but in
this section we concentrate on only 1-loop integrals. The procedure we are about to
present is in part the momentum twistor analog of the one introduced by van-Neerven
and Vermaseren in [105].

At 1-loop one starts with general Feynman integrals of the form

I Lr . L#m
H?=1(L - Pi)2

T d*

H1---Um

(5.2.17)

where the tensor T' is made out of polarization vectors, momenta of external particles
and the spacetime metric.

By Lorentz invariance, it is clear that one can decompose integrals of this type as
linear combinations of momentum twistor tensor integrals of the form

1 (ABY;)(ABY:) ... (ABY,,)
/ (AB I,)*=(=m) (AB12)(AB23) .. (ABn—1 n)(ABn1)

(5.2.18)

(AB)
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where Y, are generic bitwistors.

The reduction procedure relies on the fact that a generic bitwistor has six degrees
of freedom and can therefore be expanded in a basis of any six independent bitwistors.
To reduce the integrals in (5.2.18) simply choose any six of the bitwistors that appear
in the denominator, say, Z12,, Z3Z3, ..., ZgZ7 and expand any of the bitwistors in the

numerator as
(YD) = Z{Z) + 0 ZEZ) + ...+ asZL Z]. (5.2.19)

The coefficients can be found by contracting with enough bitwistors two get six indepen-

dent equations. More explicitly, one can consider equations of the form
(Z2Z3Y;) = as(2345) + a5(2356) + 6 (2367).

and solve for the a’s. Once this is done, the factor (ABY;) becomes a linear-combination
of factors in the denominator, thus reducing the degree of the denominator and numerator
by one.

The integral in (5.2.18) is for a general quantum field theory with a planar sector.
One can continue with the integral procedure in this case but it will take us too far away
from the main line of this Chapter. Therefore we concentrate directly on N’ = 4 SYM. In
N =4 SYM it has been known since the 1990’s [75] that all integrals satisfy n —m = 4.
In modern language, this means that the integrals are dual conformally-invariant as
discussed in the simple example of the all massless box integral (5.2.15).

Iterating the reduction procedure, we can write the any amplitude as a sum over
pentagons and boxes. But as far as we have seen, the reduction procedure we have
described so far does not reduce the pentagons any further. Notice that the pentagons
we have described here are not scalar pentagons, but tensor pentagons—and they are
manifestly DCI. However, one is always free to choose a basis of bitwistors including
Y = I, to obtain scalar pentagons, but only at the cost of manifest dual conformal
invariance.

But doesn’t the reduction procedure of van-Neerven and Vermaseren, when applied
to N =4 SYM, allow for a reduction all the way down to only scalar boxes? One might
wonder why our analysis so far does not generate this familiar ‘box-expansion’. The
answer is that the reduction to box-integrals is not valid at the level of the integrand—

only the reduction to boxes and pentagons (scalar or otherwise) is valid at the level
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of the integrand. In order to obtain the all-too familiar box-expansion, it is necessary
to parity-symmetrize the integrand—a step that is only justified when integrated on a
parity-invariant contour, and one which does violence to the highly chiral loop-integrands
of a quantum field theory such as N'=4 SYM.

Here, we should briefly clarify a point which has been unnecessarily confused in
the literature on N = 4. Because integrand-level reduction must terminate with boxes
and pentagons, and box-integrals are both manifestly parity-even and DCI while scalar
pentagons—which have a factor of (AB I.) in the numerator—are not DCI, the cor-
rections to the box-expansion needed to match the full integrand of N' = 4 were first
expressed in terms of parity-odd combinations of scalar pentagons. This led some re-
searchers to suppose that there was some connection between DCI and parity. There is
of course no such connection: as evidenced by the extension of BCFW to all-loop orders,
the full /' = 4 loop-integrand is DCI.

Especially for theories such as N'' = 4 which are DCI, one should strictly avoid
parity-symmetrization at one-loop or higher. Although scalar pentagon integrals are
quite familiar, chiral pentagons are slightly novel—although they have already played
an important role in the literature (see e.g. [15,127]). The first appearance of pentagon

integrals occurs for five particles, and there are essentially two possibilities that arise:
2

l 3 (ABY) x (2345)(4512)
Ao s
)

(AB
5 4

where (2345)(4512) in the numerator is for normalization? and the bitwistor Y is simply

Z1Z3 (this is indicated by the dashed-line in the associated figure); and,
2
(ABY) x (3451)

7 | (AB12)(AB23){AB34){AB45)(AB51)’ (5.2.21)
)

(AB
5 4

2We will see that this normalization follows from the requirement that the integral have unit leading-
singularities, and its sign is fixed by parity relative to the ‘wavy-line’ pentagon drawn below it. In fact,
as we will describe in section 5.3, the dashed-line in the figure dictates both the bitwistor Y = Z; Z3 and

the normalization of the integral.
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where the factor (3451) in the numerator is for normalization, and the bitwistor Y =
‘(512)(1(234)’ is the line in twistor-space which lies along the intersection of the planes
spanned by twistors (Zs, Z1, Z3) and (Zs, Z3, Z;)—which is indicated in the figure by the

‘wavy-line’. As the first of many such examples, it is useful to write-out Y explicitly:

- 0 + 21 Z5(5234) + Z,75(1234), -

where we have used the fact that (2234) = 0. (The translation between statements such
as ‘the line along the intersection of two planes’ and explicit representative formulae such
as the above will be explained in more detail below; here, we merely quote the result in

a way from which we hope it will easy to guess the general case.)

These two integrals are examples of a very important class of integrals that we call chi-
ral integrals with unit leading singularities, or pure integrals. In each case, the bitwistor
appearing in the numerator (together with the integrand’s normalization) is completely
specified by the dashed- or wavy-line in the corresponding figure. We will explain many
of the important features of these integrals together with the way their graphical rep-
resentations in more detail in section 5.3. It is worth noting in passing, however, that
the two integrals are parity conjugates of one another, and special bitwistors ¥ and
Y represent the two lines in twistor-space which simultaneously intersect the four lines
(51),(12),(23), and (34); this means that (Y 51) = (Y 12) = (Y 23) = (Y 34) = 0, and
similarly for Y. Because of this, they represent the two isolated points in (AB)-space for

which these four propagators go on-shell.

Before moving-on to discuss loop integrands, we should emphasize that because the
primary focus of this chapter is the loop integrand—the sum of all the Feynman diagrams,
as a rational function—there is nothing to say about the regulation of IR-divergent in-
tegrals such as the zero-mass box integral and the pentagons integrals given above. The
only integrals we will evaluate explicitly are all manifestly finite (in a precise sense which
will be described in section 5.4), and hence are well-defined without any regulator. How-
ever, it is important to mention that IR-divergent integrals can also easily be regulated
and evaluated. In fact, the most natural way to add a regulator is also a very physical

one, given by moving out on the Coulomb branch [94] of the theory.
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II. The Loop Integrand

A simple but far-reaching consequence of writing each Feynman integral in a loop ampli-
tude using the dual variables is that one can meaningfully combine all integrals appearing
in a particular amplitude under the same integral sign. This leads to the concept of the
loop integrand [15]. We stress again that planarity and the use of dual variables plays a
crucial role in making this possible—for a general theory, there is no natural origin of loop
momentum space and therefore no canonical way of combining all Feynman diagrams
under a common loop integral.

It is easy to characterize the structure of the n particle 1-loop integrand for N = 4
SYM using momentum-twistor space integrals. All the terms in the integrand can be
combined defining a universal denominator containing all n physical propagators of the
form (ABa a+1). If a particular Feynman diagram has fewer propagators, then the
numerator is chosen so as to cancel the extra propagators. The loop amplitude is given
as an an integral over a single rational function,

A — [ _TiaABYDABY]) . (ABY, )
" / (AB12)(AB23)...(ABn-1 n)(ABn1)

(5.2.23)

(AB)

where A,, is the full 1-loop partial amplitude. This formula is already written using the
simplifications that arise in A" = 4 SYM, in other words, it is manifestly DCI. However,
the integrand exists in any planar theory: for a theory which is not DCI, (5.2.23) would
necessarily contain also terms with powers of (AB I).

At higher loops, say L loops, scattering amplitudes are given as linear combination

of integrals of the form

L
/ ﬁ d'e, Hfl NG L (5.2.24)
i=1 [Tizy P(Ck) R(ly, ... 0r)

where N, P, and R are products of Lorentz invariants constructed out of Feynman prop-
agators and which depend on the variables shown and on the external momenta. Written
in this form, there is clearly a large amount of redundancy in the definitions of the internal
loop momenta.

Since we are dealing with only planar integrals, for each Feynman diagram there exists

a dual diagram (the standard dual graph of a planar graph). Consider for example the
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following four-point two-loop integral:

1

(5.2.25)

4

Using x; to denote the dual coordinates of the external momenta and y; to denote the
internal points, one can write any planar L-loop integral in dual coordinates. There is,
however, one slight subtlety in using such a prescription to uniquely define ‘the’ inte-
grand: while the definition of the external points x; is unique, the labeling of the internal
points is not (when L > 1). But the solution to this problem is very simple: we are
always free to completely symmetrize the integrand with respect to all L! permutations
of the internal loop-variable labels. Although we will often write multi-loop integrands
in some particular representative choice of the labels for internal propagators, complete-
symmetrization over all permutations of indices is always implied (including a factor of
1/L! from this symmetrization).

Consider for example the simplest two-loop integral, given above in (5.2.25). Written
in dual-coordinates, the integral would be given by

/(d4y12d4y2> (41 = 23)*(y1 — 24)%( o o B ¢ 32)

U1 — 561)2(92 - l’l)z(yz - $2)2<y2 - :1;3)2(3/1 — Y2

—where the numerator was chosen in order to make the integral dual-conformally invari-
ant, and the factor of 1/2 in the measure reflects the complete-symmetrization.

Of course, as we will see repeatedly throughout this chapter, (multi-)loop integrands
are much more naturally expressed in terms of momentum-twistor variables. To trans-
late the integral (5.2.25) in momentum-twistor variables, we need to associate a pair of

twistors to each of the two loop variables. This we can do by making the association
y1 <> (Za, Zp) and ys < (Ze, Zp). (5.2.26)

Using this notation and the translation of propagators in terms of momentum twistors
given in (5.2.8) one finds
/ (1234)%(2341)
(AB41)(AB12)(AB23)(C'D23)(CD 34)(CD41){ABCD)’

(AB,CD)
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where ‘(AB,CD)’ implies that the integration measure carries with it a factor of 1/2
from the symmetrization of (AB) <+ (C'D). We should mention here that for 3-loops, we
will use (Zg, Zr) to denote the line corresponding to ys—but of course, a convention such
as that of associating (Z4,,, Zp,,) with y,, would be increasingly preferable at high-loop
order.

Before we leave the topic of the loop-integrand in general, we should mention that the
form of the integrand obtained via BCFW as described in Chapter 4 makes it completely
manifest that the loop-integrands in A/ = 4 enjoy the full Yangian symmetry of the
theory. (Of course, the choice of an integration contour which introduces IR-divergences,
such as the physical contour, breaks this symmetry.)

However, just as with the BCFW recursion relations at tree level, the formulae ob-
tained from the recursion do not enjoy manifest locality or manifest cylcic invariance.
The restriction that we impose throughout this work, however, is that loop-integrand
be expanded in a way which makes use of only planar, local propagators. As we have
stressed a number of times, we will find amazingly simple, manifestly cyclically symmet-
ric and local expressions for multi-loop amplitudes, that are significantly simpler and
more beautiful than their BCFW counterparts! Taken together with the parallel results
presented in Chapter 6, this strongly suggests the existence of a formulation for scattering
amplitudes directly yielding these remarkable local forms.

The local formulae presented in this chapter are very closely related to and influenced
by the concept of the leading singularities of scattering amplitudes, which we proceed to

presently describe.

III. Leading Singularities

Definition

The concept of leading singularities was introduced in the 1960’s in the context of massive
scalar theories [128]. More recently, in 2004, the same concept was modified to accom-
modate massless particles and this was exploited for Yang-Mills in [129]. The original
definition of ‘leading-singularity’ refers to a discontinuity of a scattering amplitude across
a singularity of the highest possible co-dimension. At 1-loop, for example, leading singu-

larity discontinuities are computed using a generalization of a unitarity cut, but where
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four propagators are cut instead of two. Using A; for ¢ = 1,...,4 to denote the four
partial amplitudes, each with their associated momentum-conserving d-function, one has

what can be called leading-singularity discontinuity,

(5.2.27)

:/H d'nd C0(6) A({6, i} A=t T}, ) X As({la, o} {65, 73), )

r=1

x Az({€3, M3}, {—Cas Ma}, ) X Aa({la, a}, { =L, i}y )

Here, the integrations over the internal loop momenta are there only to remind us that
we are to sum-over all solutions to the conditions imposed by the d-functions, and the
integral over the Grassmann coordinate 7); of each internal particle ¢; is there to remind
us that we are to sum-over the exchange of all possible internal particles—which in the
case of N’ = 4 means the full super-multiplet.’

This point of view of leading-singularities has been very useful and allows a complete
determination of 1-loop amplitudes in N' = 4 and in N = 8 supergravity amplitudes when
thought of as linear combinations of scalar box integrals with rational coefficients. The
rational coefficients can be computed using the notion of generalized unitarity. Clearly,
the notion of discontinuities is not related to the existence of an integrand and this is
the reason it works in N/ = 8, supergravity where an analog of ‘the integrand’—which
requires a way to combine integrals with different cyclic orderings—has not yet been
found.

As mentioned in our discussion of reduction procedures in N = 4 SYM, the expansion
in terms of boxes cannot give the physical integrand. The physical integrand is defined

as that which coincides with the one from Feynman diagrams, prior any to reduction

3Here, we are using an on-shell superspace formalism which allows us to talk about all particles in
the same super-multiplet as a single 1-particle state. We assume familiarity with this concept, but for

careful definitions, more references and applications see [72].

162



techniques, as rational functions—and, as we will see, the Feynman diagrams of N’ = 4
in a given R-charge sector are chiral.

Once we think about the integrand as being the object we are after, we can try to
model it by using some appropriate basis of functions, dictated by a general reduction
procedure. Clearly, the set of all DCI tensor pentagons and boxes should be enough.
Nevertheless, we will find that such a basis would still possess many of the unattractive
features of the box-expansion, and so we will introduce much more refined choice in

section H.D.

The importance of dealing with a specific rational function is that we can integrate it
on any choice of contour we’d like—not just the real-contour which defines the Feynman
integral. This allows us to define a more refined notion of a leading-singularity—the
previous notion, motivated by generalized unitarity, is much coarser version of the one
we will use now. In [97], this more refined notion was introduced, and it was used to
match the full N' = 4 integrand for several 1-loop and 2-loop examples. However, in [97]
the deep reason for why the idea was working, i.e., the existence of the integrand, was
not appreciated.

Whether written in ordinary momentum space, using dual-coordinates, or using
momentum-twistors, loop integrals can be thought of as complex contour integrals on
C* with the choice of contour corresponding to R*—the real-slice. However, this choice
of contour is known to break many of the symmetries of the theory, and is littered with
IR-divergences, etc. that can be the source of confusion. From various viewpoints, the
most natural contours would instead be those which compute the residues of the inte-
grand. These are always finite, are often vanishing, and make manifest the full Yangian
symmetry of the theory. We refer the reader to [65] for a mathematical definition of
residues in several complex variables; here we hope the reader will find the definitions a
natural generalization of the one-dimensional residues with which everyone is familiar.

Let us present the definition using x variables first. Consider a contour of integrations
with the topology of a T% = (S1)*. In order to compute a particular residue one has to
choose four propagators (z — z,,)?, with i = 1,...,4 and integrate over the 7", defined
by |(x —x,,)| = €; where ¢; are small positive real numbers near one of the solutions. The

circles, St are parametrized by the phases and are given a particular orientation.

The definition of a multidimensional residue is very natural if one defines variables
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u; = (¥ — x,,)%. Performing the change of variables the integral becomes

du; 1
/H Y 2 x {The rest of the integrand} (5.2.28)

where now the contour becomes small circles around u; = 0. J is the Jacobian of the
change of variables. The residue is then the Jacobian times the rest of the integrand
evaluated at u; = 0. The Jacobian

J = det (a<“1’“2’“3’u4)> , (5.2.29)

a(l‘l, X2, T3, I'4)

is clearly antisymmetric in the order of the columns. Different orderings can differ by a
sign and this is related to the orientation of the contour. These signs are important when
discussing the generalization of residue theorems to the multidimensional case, which will
play an important role momentarily.

From now on we call each individual residue a leading-singularity. As before, these are
given by the product of four on-shell tree amplitudes as shown in Figure 5.2. The reason
for the appearance of the tree amplitudes is that the residue of the poles is computed
where the four propagators vanish and therefore internal particles can be taken on-shell.

Leading singularities at higher loop-level can also be defined as residues of a complex,
multidimensional integral over C** where L is the loop order. This means that in order
to define a residue one has to define a T*" torus as a contour of integration. Naively,
residues can only be defined for integrals with at least 4L propagators. However, noticing
that propagators are quadratic in the loop-momentum, one can define composite leading

singularities which involve less than 4L propagators as done in [10, 97, 98], using the

9o
Ho0-

Figure 5.2: A ‘quad-cut one-loop leading-singularity viewed as a T* contour-integral

which ‘encircles’ the point in C* where four-propagators are made on-shell.
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self-intersection of curves defined by the on-shell condition to define isolated points in C*
about which the T#* contour should ‘encircle.’

We will not discuss composite leading singularities in detail here simply because we
will present evidence that when a special set of integrals, we call chiral integrals with unit
leading-singularities, are used, matching non-composite leading-singularities appears to
suffice to fix the entire amplitude. Moreover, we will see that only a very small subset of

non-composite leading-singularities need to be considered to accomplish this.

Chirality of Leading Singularities

It turns out that for nonsingular external momenta, there are exactly two solutions to the
equations (r — z,,)? = 0, with ¢ = 1,...,4, and therefore two residues of each choice of
four propagators. (This has a beautiful geometric interpretation in momentum twistors
as we will see shortly.) This means that for an n-particle amplitude, there are 2(2)
(non-composite) one-loop leading-singularities.

Consider any box integral, say, an integral with two massless legs and two massive,

known as the ‘two-mass-easy’ integral:

j+1

where N is just some normalization that need not concern us presently. The equations
(x—ai1)’ = (@ —2:)" = (r —2;.1)* = (x —2;)* = 0

have two solutions, and therefore a residue can be computed for each such point sepa-
rately. We'll soon see that these two solutions are easily found and differentiated when
written with momentum-twistor variables; but for now, let us suppose the two solutions
have been found, and denote the corresponding contours 7} and T

A very important tool that will make an appearance many times is multidimensional
analogue of Cauchy’s theorem, called the Global Residue Theorem (GRT). The GRT

states that—given a suitable condition at infinity—the sum over all the residues of a
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given rational function vanishes (see chapter 6 of [65]). This means, in the present case,

that
resya (Zome) + resy (Zome) =0 (5.2.31)

Moreover, we can choose the normalization N is such that, say respa(Zome) = 1. Such
a choice is possible for all box integrals, following from the simple fact that all box-
integrals—having only four propagators—must have residues which are proportional
equal and opposite. We refer to this fact by saying that scalar box integrals are not
chiral. The use of the word chiral is justified by the fact that the locations of the lead-
ing singularities, as points in C*, are mapped into each other by parity—which is just
complex conjugation. And so the corresponding contours are mapped into each other up
to orientation by parity. If use (T3')* to denote the parity conjugate contour of T}, then

res(pa). = —resps and the GRT implies that
I'eST{I (Igme) = I'eS(Tfl)* (Igme). (5232)

Let us now consider the leading-singularities of the one-loop integrands of N' = 4
Yang-Mills. We'll see that, as scattering amplitudes of ' = 4 in a given R-charge sector
are chiral, so are the one-loop leading-singularities of field theory! In other words, the two
residues associated with the two solutions of cutting four-propagators are not the same.
Let us see this in an example. The simplest possible example is the five-particle MHV
amplitude®. Let us consider taking the leading singularities of the field-theory integrand

which encircles the point in C* where the following four propagators go on-shell:

! 2
5
%{
G D =@@-—n)=@-m)?=@—x3)?=@—124)>=0. (52.33)
}%3\
4 3

It was noticed already in [129] that on one solution N' = 4 SYM gives the tree amplitude,

Agree while it vanishes on the second.

4The only DCI object for four-particles is the zero-mass box integral. This is why both leading

singularities are equal to the tree amplitude.
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The vanishing of leading singularities can be understood from pure supersymmetry.
Consider an amplitude in the R-charge sector m. Recall the N"2MHYV classification of
amplitudes in A/ = 4: under a rescaling of all 7}, variables by #7,, an N~ 2MHV amplitude
picks up a factor of #*™. From the definition of leading singularities as the product of
tree amplitudes connected by internal on-shell states we see that every internal line
contributes (—1) to the R-charge counting coming from the integration over 7 variables.
At 1-loop, we have four tree-amplitudes and four propagators. If the R-charge of each
tree-amplitude is m; (see Figure 5.2), then the R-charge of the leading singularity is
mq + mo +msz + my — 4.

Returning to the five-particle example, because we are interested in a one-loop MHV
amplitude, all its leading-singularities must have m = 2. The four-particle vertex (in
the upper-left of the figure above) can only have m; = 2 and therefore the three-particle
vertices have to satisfy mo + ms + my = 4. Since the possible values for m for a three-
particle amplitude are 1 and 2, two vertices must have m = 1 and one must have m = 2.

This leaves only the possibilities shown below:

Of these three possible leading-singularities of field theory, it turns out that the first one
is equal to the five-point MHV tree-amplitude, and the latter two vanish for generic ex-
ternal momenta. In fact, whenever one is considering a leading singularity which involves
3-particle vertices, some very simple and powerful rules prove very useful: 1. any leading
singularity involving adjacent three-particle vertices with the same R-charge will vanish
for generic external momenta (momentum conservation in this case, requires that the ex-
ternal particles attached to these vertices must be collinear); and 2. leading singularities
involving three-particle amplitudes are almost always chiral—the only exception being
the four-particle amplitude.

In the case of the five particle example under consideration, we see that the residue
from the contour encircling one of the two solutions to the quad-cut equations in (5.2.33)
is equal to Af{inv, while the conjugate contour integral vanishes. We will explore this

in more detail once we introduce the geometric point of view.
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Dual Formulation of Leading Singularities

In the rest of the Chapter, we will make much use of the fact that leading-singularities
satisfy many relations. These relations can be seen as resulting from residue theorems
of the integrals which compute them. As a final comment before exploring the connec-
tion between leading singularities and the classic enumerative problems in the projective
geometry of momentum twistor space let us briefly introduce the Grassmannian formu-
lation.

In [10], leading singularities were proposed as completely IR-finite quantities that
were likely to contain all the information needed to compute the S-Matrix of NV = 4
SYM. Moreover, it was conjectured that all leading singularities of the theory, which can
be obtained to arbitrarily higher loop order, are computed by a contour integral over a
Grassmannian manifold” G(m, n) called L, ,. Here m determines the R-charge sector of
the theory under consideration.

The integral was first presented in twistor space

_ [ d"Ca o, 0% () CaaWWa)
Lmin(We) /vol(GLm) (12 m)(23 - mtl) - (nl - m1)

In this presentation, residues of this integral are manifestly superconformal invariant

(5.2.34)

(that is, superconformally-invariant in ordinary spacetime). Here we have introduced
the concept of dual super twistor space W = (X, i, ). This particular space will not
play a significant role in this work, so we refer the interested reader to [10,17] for more
details.

This formula can be transformed to momentum-space and then to momentum-twistor
space. Very remarkably, the formula in momentum-twistor space also turns out to be
an integral over a Grassmannian, with the MHV-tree-amplitude arising as the Jacobian

from the change of variables. Specifically,

Em,n‘momentumfspace(Ay Xu ﬁ) = £2,n X Rk,n; (5235)

where k = m — 2 and

_ [ " Daa [To1 0" () DaaZa)
Rin(Za) _/vol(GLk) (12 - k)23 - k+1)---(n1 - k=1)

(5.2.36)

®The Grassmannian G(m,n), a natural generalization of ordinary projective space, is the space of
m-dimensional planes in n-dimensions. Each point in G(m,n) can be represented by the m n-vectors

which span the plane, modulo a GL,, redundancy.
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This representation in momentum twistor space makes dual superconformal invariance
manifest [18,19]. With some more effort one can prove that residues of this formula
are also invariant under level one generators of the Yangian of the dual superconformal
algebra and hence invariant under the whole Yangian [11]. The level one generators are
nothing but the superconformal generators when passed through L ,,.

It has now been proven that all leading singularities are Yangian invariant and that
all Yangian invariants are residues of the integral (5.2.36). From the physical point of
view the problem has been solved. It might also be interesting to go further and prove
that all residues of (5.2.36) correspond to some leading singularity but we will not discuss

this issue any further.

Momentum Twistors and Schubert Problems

Statements like the number of solutions to setting four propagators to zero is two are
non-obvious from the dual space x point of view. In terms of momentum twistors, this
statement turns out be a simple, classic problem of the enumerative geometry of CP?,
solved by Schubert in the 1870’s [130, 131].

Recall that an n-particle 1-loop amplitude can be written as

p [ DADTABY {AB Y
"

AB12)(AB23) - (ABn-1 n)(ABn1)’ (5.2.37)

(AB)

Each one-loop leading-singularity is associated with a point in the space of loop-momenta
for which some choice of four propagators simultaneously become on-shell,
i i+

[+ 1= @+*¢j
P b < (ABii+l) = (ABj j+1) = (ABk k+1) = (ABl I+1) = 0;
%

C‘% j+1
k+1 &k
Because the loop momentum is represented in momentum-twistors as the line (AB), the
solution to these four equations should correspond to a particular configuration for the
line (AB). We will see that for all leading-singularities which involve a three-particle ver-
tex (a ‘massless leg’), the two solutions to four equations above are cleanly distinguished

geometrically, allowing for a richly-chiral description of the integrand.
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Before describing the full problem of putting four propagators on-shell, let us briefly
consider the geometric significance of having a single factor, say (ABii+1), vanish.
Recall that the four-bracket (- - - -) is nothing but the determinant of the 4 x 4 matrix of
components of its four momentum-twistor arguments (viewed as elements of C*). As such,
(ABii+1) = 0 if and only if the vectors Za, Zp, Z;, Z;11 are not linearly independent,
implying the existence of some linear relation among the four twistors of the form a4 Z 4+

apZp + o Zi + a1 Zi = 0. Trivially rearranging we see that
OzAZA + OZBZB = —(OzZZZ + Oéi+1Zi+1), (5238)

which we may read as saying there is a point on the line spanned by Z,, Zg—namely
(vaZ 4+ apZp)—which lies along the line spanned by Z;, Z;,1. Which is to say, the lines
(AB) and (Z;Z;4+1) intersect; and because two intersecting lines describe a plane, we say
that the four points Z4, Zg, Z;, Z; 11 are coplanar.

Therefore, the problem of finding the particular lines (AB) for which four propagators
simultaneously vanish is equivalent to finding the set of lines in CP? which simultaneously
intersect four given lines (which are presumed fixed by the external data). The number
of solutions to this problem is one of the classic examples of the enumerative geometry
developed by Schubert in the 1870’s. For this reason we call these problems Schubert
problems.

The answer to the number of lines which intersect a given four turns out to be
remarkably robust: provided the four lines are sufficiently generic, there are always 2
solutions, and an infinite number otherwise.® (An example of a non-generic configuration
would be one for which three or more of the lines were coplanar; these are never found
for generic external momenta.)

Schubert derived the number of such solutions with an argument that is deceptively
simple. The idea is to consider a particular configuration where it is easy to count
the number of solutions. Schubert intuited that the answers to such enumerative ques-
tions should be topological in nature, and therefore should not depend on the particular
configuration in question. Therefore, one can analyze the most convenient possible con-

figuration (for which the number of solutions is not infinite) and the answer found for

5To be precise, we must count solutions with multiplicity; however, for a generic set of lines in the

problem, the 2 solutions will always be distinct.

170



that case, should be the answer in general. Said another way, the number of solutions to
a given Schubert problem should not change when a particular special configuration is
smoothly moved into a more general position.

Perhaps the easiest configuration for which we can count the number of solutions to
the Schubert problem of finding the lines (AB) that intersect four given lines in CP? is the
zero-mass configuration; it is so-called because it is the configuration which corresponds

to the box integral with zero of its four corners massive,
2 3

(1234)(2341)

A / (AB12){AB23)(AB34)(AB41)’
(AB)

1 4

which is an integral we have seen before. Explicitly, we would like to find all the lines
(AB) which intersect all the four lines (12), (23), (34), and (41). This problem is indeed

easy to solve, and the two solutions are drawn below.

2 3 2 3
N T H
=
1 4 1~ 2 1N 2 1 4

(AB) = (24) (AB) = (13)

Clearly, because (12)(1(23) D Z and (34)()(41) D Z4, the line (AB) = (24) intersects
all four lines, as desired; this is drawn in red above. The same argument also applies to the
second solution, the line (AB) = (13), drawn in blue above. Also in this figure, we have
indicated which leading-singularities have non-vanishing support on the corresponding
(complex) point in the space of loop-momenta which corresponds to the particular line
(AB). As explained above, each three-particle MHV (m = 2)—colored blue in the figure
above—or MHV (m = 1)—colored white—vertex of a leading singularity vanishes for
every leading-singularity, and so which of the 2 three-particle amplitudes is non-vanishing
for this value of the loop-momentum determines the chirality of the contour.

As a convenient way to gain some intuition about momentum-twistor geometry that

will prove useful in the rest of this chapter and to establish some of the notation that
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will be ubiquitous throughout, we will study each of the 1-loop Schubert problems in turn.

One-Mass Schubert Problem:
A ‘one-mass’ 1-loop leading singularity is one for which three of the four legs are

massless, and is associated with the following archetypical box-integral:
2 3

(12 34) (23 45)

— / (AB12)(AB23)(AB34)(AB45)
1 (AB)
4

In momentum-twistor space, the leading-singularities of this integral are associated with

the lines (AB) which intersect the four lines (12),(23), (34), and (45). Considering the

(5.2.39)

configuration of lines, it is not hard to find the two configurations which solve this

Schubert problem:

ﬁM )Z[ii

As before, because (12) ﬂ (23) D Zy and (34) (N (45) D Zj, the line (AB) = (24) intersects
all four lines. The second solution, however, is new. This solution is drawn in blue in
the figure above, and represents the line of the intersection of the planes spanned by
(Z1, Zy, Z3) = (123) and (Z3, Zy, Z5) = (345). Although geometrically clear, it is worth-
while to recall that any generic line in the plane (123) will intersect the lines (12), (23),
and (31), and any generic line in the plane (345) will intersect the lines (34), (45), and
(53). Therefore, the line (AB) = (123) (1 (345) will intersect all four lines, as required.
Similar to the case discussed in the context of the pentagon with a ‘wavy-line’ nu-
merator (5.2.21), the line (123)(1(345) can easily be expanded in terms of ordinary
bitwistors as: (23)(1345) + (31)(2345). This follows from a more general rule which

review presently.
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On the Intersection of Planes in Twistor-Space
In general, the intersection of the planes (abc) () (def) is can be canonically expanded
in either of the following ways:
(abe)N(def) = Z,Zy(cde f) + ZyZ{ade f) + Z.Z,(bde [);
=(abcdyZ.Z;+ (abc f)Z,Z. + {abce)Z; Z,.

(5.2.40)

Alternatively, when expanding a four-bracket of the form (zy (abc) () (def)), the manifest
dependence on the two planes can be preserved at the cost of breaking the manifest

dependence on the line (zy), as follows:

(xy (abc) N (def)) = (xabc)(y def) — (y abe){x def). (5.2.41)

Two-Mass-Easy Schubert Problem
The two-mass-easy Schubert problem is associated with the following one-loop archetyp-
ical box-integral,

2

4
(1235)(2 345)

<~
/ (AB12)(AB23)(AB45)(AB56) ’
1 (AB)
6 5
which has leading singularities supported on the configuration (AB) which intersect all

four of the lines (12),(23), (45), and (56). The two solutions are essentially the same as

(5.2.42)

for the one-mass Schubert problem, and are illustrated in the Figure below:

> 3 2 3, 2 3, > )
4 4
= 1 4 o
1 1 1 |
6 > \6 5 \6 5 6 >
(AB) = (25) (AB) = (123 (456)

Once again, there is a very easy solution, in this case the line (AB) = (25) which
obviously intersects the four lines. And using the same reasoning as int the one-mass
Schubert problem, it is easy to see that the second solution is simply the intersection of

the planes (123)(1(456).
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Two-Mass-Hard Schubert Problem

The two-mass-hard Schubert problem differs from the two-mass easy problem in that
the two massless corners are adjacent—making the Schubert problem slightly less ‘easy’
(which at least partially justifies the name). It is associated with the following archetyp-

ical one-loop integral,
1

(1234)(23 56)

— / (AB12)(AB23)(AB34)(AB56)
5 (AB)

4 3
and has leading singularities supported where the line (AB) intersects the four lines

(12),(23),(34), and (56). The two solutions are shown in the Figure below:

(5.2.43)

1 2 12 2 2
6 "’ - 6
~ 6" 6 ~
5 L 5
+ > 5tq T3 te T3 o4 7
(AB) = (123) N (356) (AB) = (562) N (234)

Let us briefly discuss the first of the two solutions. Here, the line (AB) = (123)((356)
intersects the lines (23), (34) trivially because Z3 C (123)()(356), and it intersects the
lines (12) and (56) because any generic line in the plane (123) intersects (12), and any
generic line in the plane (356) intersects (56).

Three-Mass Schubert Problem
The last Schubert problem that involves a massless corner is known as the ‘three-mass’

problem, and is associated with the following archetypical one-loop integral:

1 2

(1(245) N (672) 3)
(AB12){AB23)(AB 34)(AB 45) -
)

— (5.2.44)

6 3 (AB
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This integral is the most general one which involves a massless corner, and supports
leadings singularities where the line (AB) intersects the four lines (12),(23), (45), and

(67). The two solutions are indicated in the Figure below.

5 4 |5 4 |5 4
(AB) = ((123) N (45), (67) N (123)) (AB) = (245) N (672)

Here, the notation ‘(ab)()(cde)’ has been used to indicate the point in twistor-space
where the line (ab) intersects the plane (cde). We will discuss the expansion of such
geometrically-defined objects more generally at the end of this subsection; for now, let

us merely quote the result:
(ab) (N (cde) = Z,(bede) + Zy{cdea) = — (Zc(de ab) + Zyleabc) + Z.{ab cd>> ;
and similarly,
(cde)N(ab) = Z(deab) + Zyleabey + Z.{abed) = — (Za(bcde> + Zy(cde a>> ;
so that (ab) N (cde) = —(cde) () (ab).
On Schouten-Identities and Projective Geometry
Perhaps the single most useful identity for momentum-twistor geometry is known as

‘the five-term identity:” any arbitrary set of five twistors {Z,, Zy, Z¢, Zq4, Z} will satisfy
the following identity,

Zybede) + Zy(cdea) + Z{deab) + Zyleabc) + Z.(abed) = 0. (5.2.45)

This identity merely reflects the general solution to a homogeneous, linear system of
equations in four-variables, and as such, has analogues in any number of dimensions. For

example, in two dimensions, we have that for any {)\,, \p, A\c} C C?, there is an identity

Aalbe) + Np(ca) + Afab) =0, (5.2.46)
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where we have naturally extended the definition of ‘(--)’ to be the determinant of the
components of the corresponding two-vectors. This two-dimensional identity represents
the general solution to a homogeneous, linear system of equations in 2 unknowns, and

by contracting it with a fourth two-vector \;, we obtain the familiar ‘Schouten identity:’
(day{bc) 4+ (db)(ca) + (dc){ab) = 0. (5.2.47)

This familiar identity of course has an analogue descending from equation (5.2.45).
By contracting equation (5.2.45) with any arbitrary plane (f g h), we find the following

5-term identity which we will therefore call ‘a Schouten identity:’

(fgha)(bede)+(fghb){cdea)+{fghc){deaby+{fghd)(eabc)+(f ghe){abed) =0.

In addition to being quite useful for simplifying formulae, equation (5.2.45) can be
trivially re-arranged to yield the solutions to some of the most often-encountered problems

in momentum-twistor geometry:

1. the expansion of any arbitrary twistor Z, into a basis composed of any four linearly-

independent twistors {7y, Z., Z4, Z.}:

Zybede) = —(Zb<cdea> + Z(deab) + Zyleabe) + Ze<abcd>);

2. the point along the line (ab) which intersects the plane (cde):

(ab)N (cde) = Z,(bede) + Zylcdea) = —(Zc(deab) + Zgleabce) + Ze(abcd>>;

3. the point on the plane (abc) which intersects the line (de):

(abc) (N (de) = Zy(bede) + Zy(cdea) + Z.(deab) = —<Zd<eabc> + Ze(abcd>);

and so-on.
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Matching All Leading Singularities

We close this introductory section to momentum twistor integrals and leading singular-
ities with a physical point. We have seen that the leading singularities of N' = 4 SYM
are chiral while those of scalar boxes are non-chiral. This means that if we want to
construct the integrand of the theory it is impossible to do it using scalar boxes. Mo-
mentum twistors already give the solution to this problem. Since leading singularities
are Yangian invariant and in particular dual conformal invariant (DCI), one should use
the reduction procedure to go down to tensor pentagons and boxes and not any further.
Even going down to scalar pentagons would be doing something brutal to the manifestly
DCI structure of the amplitudes.

In the rest of the Chapter, we will find that by using a special class of integrals known
as chiral unit leading singularity integrals, the full integrand of scattering amplitudes can

be reproduced yielding to stunningly simple forms.

5.3 Chiral Integrals with Unit Leading Singularities

Given the success of the recently introduced recursion relations for the construction of
the integrand to all orders in perturbation theory described in Chapter 4, it is clear that
the physical integrand is the important object to obtain.

In the previous section we showed that the usual constructions of, say, one-loop
amplitudes in N = 4 SYM as a linear combination of scalar boxes cannot possibly be
the physical integrand. Of course, the answer obtained from scalar boxes gives the same
integrals as the one originally defined from Feynman diagrams. However, as we will see,
insisting in obtaining the physical integral leads to stunningly simple formulas for one
and higher loop amplitudes. These new formulas are possible thanks to the use of a new
suit of integrals with very special properties. These are chiral integrals with unit leading

singularities.
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I. Integrals with Unit Leading Singularities, or Pure Integrals

Let us start by given a definition of integrals with unit leading singularities. As we will
see, it is appropriate to call these pure integrals.

Consider a particular DCI L-loop integral and compute all possible residues. If all
non-vanishing residues are the same up to a sign then the integral can be normalized so
that all residues are +1 or 0. When this is done, the integral is said to have unit leading
singularities or to be a pure integral.

We already encountered examples of pure integrals in the previous section. The
zero mass box (5.2.15), the general scalar box (5.2.16) (properly normalized), and the
pentagon integrals in (5.2.20) and (5.2.21).

Using the global residue theorem, we proved in section 2 that boxes are pure inte-
grals. However, it is not obvious that the pentagons in (5.2.20) and (5.2.21) satisfy the
requirement.

Consider first pentagons of the first class

(AB13)N
/ (AB 12)(AB 23)(AB 34)(AB 45)(AB 51) (5.3.48)

(AB)

where N = (1245)(2345).

In order to see that all non-vanishing leading singularities are equal up to a sign let us
use a global residue theorem. In section 2 we gave a very imprecise definition of the global
residue theorem (GRT) which was enough for the purposes of that section. Here we have
to be more precise. The GRT states that given a choice of a map f : C* — C* made from
polynomial factors in the denominator, the sum over all the residues associated with the
zeroes of the map vanishes.

In the present case, consider the map given by f = (fi, fa, f3, f1) where
fi = (AB12), f, = (AB23), fy = (AB34), f, = (AB45)(AB51).

It is easy to see that the map f has four zeroes (see section 2 for more details). The GRT
assures that the sum over the four residues vanishes. How can we prove that residues are
equal if the GRT only gives relations among four residues?

The answer has to do with our choice of numerator. Consider the value of (AB 13) on
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the four zeroes. Each zero is a line which is the solution to some Schubert problem’. The
four solutions are the lines (24), (123)((345), (13) and (512)(1(234) (see the end of the
section or section 2 for the notation). It is a simple exercise to show that (AB 13) vanishes
on the second and third solutions and it is non zero on the first and fourth. This means
that the GRT implies that two leading singularities are equal and opposite in sign. The
first is one of the two solutions to (AB 12) = (AB23) = (AB 34) = (AB 45) = 0 while the
fourth is one of the two solutions to (AB12) = (AB23) = (AB34) = (AB51) = 0. Let
us denote these non-vanishing residues by 7(12),(23),(34),(45) and r(12),(23),(34),(51) respectively.

Therefore the GRT states that

(0 + 7(12),(23),(34),(45)) + (7(12),(23),30),(51) + 0) = 0

which implies the equality of the residues up a sign.

The pentagon integral as 10 leading singularities. This means that more work is
needed to show that it has unit leading singularity. Consider a GRT associated to the
map

Once again, there are four zeroes of this map. Two of them are shared with the map
we constructed before, i.e., (24) and (123)(1(345). The two new solutions are (35) and
(234)( (451). As before, the numerator vanishes on (123)(1(345). Very nicely, it also
vanishes on (35). We can denote by 7(12),(23),(34),(45) and 7(51,(23),(34),(45) the corresponding

non-zero residues. Therefore the GRT gives

(04 7(12),23),34),45)) T (7(51),(23),34),a5) + 0) = 0

This means that the GRT sets equal the non vanishing leading singularity in (AB51) =
(AB23) = (AB34) = (AB45) = 0 with the ones we found before.

This procedure can be continued three more times by shifting the labels in the map by
one. We leave it as an exercise for the reader to verify that in every case, the numerator
vanishes on one solution implying that the GRT sets all non-zero leading singularities to

be the same.

7A Schubert problem was defined in section 2 as the projective geometry problem of finding lines
that intersect four given lines which can be in special configurations called one-mass, two-mass-easy,

two-mass-hard, and three-mass, as well as in generic positions which we call four-mass configurations.
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In order to compute the normalization and also to show how the GRT makes obvious
statements that require computations to be verified, even in this trivial case, let us
compute explicitly the two residues in the first GRT discussed above.

Consider the ones in the first step. In other words, let’s evaluate the residue on the
solution (24) to the system (AB12) = (AB23) = (AB34) = (AB45) = 0. The residue
is given by

(2413)
(2451)((1234)(2345))

(5.3.49)

Here the terms in parenthesis are the Jacobian in the residue computation. A geometric
way to see that the Jacobian has to contain the factors (1234) and (2345) is that on
the special configurations where either one of them vanishes, the number of solutions to
the Schubert problem becomes infinite. For example, consider the configuration where
(1234) = 0. In this case, any line on the plane (123) which passes through Z, solves the
Schubert problem. Using the scaling of each momentum twistor, the Jacobian must be
what we found. It might be instructive to see the full computation of the Jacobian using
momentum twistors. This is carried out in detail in appendix E.

In order to have a properly normalized integral we require (5.3.49) to be equal to one.
This means that N = (5124)(2345) which is the factor first given in section 2 in (5.2.20).

Consider now the residue coming the second Schubert problem, (AB 12) = (AB23) =
(AB34) = (AB51) = 0. The non-zero residue is associated with the solution (512) () (234).
This is a one-mass Schubert problem and one explicit form of Z4 and Zg was given in
section 2. Let us use Z4 = Z5 and Zp = —(1234) Zs + (5234) Z; and compute the residue.
The Jacobian is the same as before but with labels shifted back by one. The residue is
then

(1234)(2513)
(2345)(5124) ((1234)(2513))

(5.3.50)

Using the normalization derived above this quantity equals one as expected.
In section 2 we also presented a second pentagon integral which differs from the first
one only in the choice of numerator. We leave it as an exercise for the reader to repeat

the analysis done here and show that with the new numerator this is a pure integral®.

80f course, one could simply translate the whole problem into dual momentum twistor space to find
exactly the same integral as before. However, it is still an instructive exercise to do it in momentum

twistor space.
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Let us rewrite the integral here with the numerator given in geometric form

N (AB (512) N (234))
/ N AB12)(AB 23)(AB 31) (AB 45) (AB 51} (5.3.51)

(AB)
Now it should be obvious that the comment made in section 2 is true. The special
numerators are made from lines, (13) and (512)((234), which are the two solutions to
a Schubert problem.
In section 4 we study a less trivial example; a hexagon integral where the special
choice of numerator also allows the use of the GRT to show that all non-vanishing
residues are equal. In the hexagon case, checking the statement that all residues are

equal algebraically requires many applications of 4-bracket Schouten identities.

Basic Diagrammatic Notation

We find it convenient to introduce a diagrammatic representation for numerators. Note
that with our definition of dual variables p, = z, — r,_1 and of momentum twistors
Ty > (Za, Zas1), there is a natural diagrammatic relation between loop integrals and
momentum twistor configurations. Consider a general one-loop amplitude as a polygon
with n-sides. Attached to each vertex there is some momentum p,. In momentum
twistor space, we also have an n-sided polygon and attached to each vertex there is a
momentum twisor Z,. Following the intuitive correspondence between the two diagrams
we are led to denote denominators (propagators) as lines connecting points depending on
their geometric configuration. These are denoted by solid lines. In order to distinguish
numerators, we also introduce dashed and wavy lines.

Dashed lines: Numerators which correspond to factors of the form (ABe f), where
(ef) represents a line in momentum twistor space specified by two momentum twistors

Z. and Zy is represented by a dashed line connecting points e and f as in
2

l ° (AB 13)(1245)(2345) .
N / (AB13)(AB 23)(AB31)(AB a5y (AB51) (392
(

AB)

5 4

Wavy lines: We also allow points to represent dual twistors. In this case the second

class of numerators constructed as intersection of planes can also be represented by a line
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connecting two points. In order to distinguish this from the previous case we use wavy
lines. In the example where the numerator corresponds to the line (512)(1(234) or in

dual twistors terminology to the point (13)y, one has

° B (AB (512)((234))(1345)
B / (AB12)(AB23)(AB 34)(AB 45)(AB51)
(AB)

(5.3.53)

II. Chiral Integrals

From the discussion of the pentagons, it is clear that there is a striking difference between
a pentagon with a special numerator and plain scalar box integrals. Even though both
kind of objects can be made pure integrals, each Schubert problem in the case of the
pentagon has a single non-vanishing residue while in the boxes both solutions give rise

to a residue.

When an integral has the property that the residues associated to at least one of its
Schubert problems are not the same, we say that the integral is chiral. The reason for the
terminology comes from the fact that the two contours associated to a given Schubert
problem are exchanged under parity (see section 2 for more details). This means that

one can have chiral, pure, or chiral and pure integrals.

At one-loop, one can have an even more especial class of integrals. When an integral
has a numerator where at most one of the solutions to each Schubert problem gives a

non-zero residue then we say that the integral is completely chiral.

Let us give two more examples in this section. The first is the most general class of
chiral pure pentagon integrals. This is an integral where only two of the five legs needs
to be massless. Moreover, it is clear that in order to write a special numerator the two

massless legs cannot be adjacent. The claim is that the following family of integrals is

182



(completely) chiral and pure.

_ / (AB (i-1ii+1) N (j=1j j+1)) (i j k k+1)
(

ABi-1i)(ABii+1)(AB j-1j)(ABj j+1)(ABk k+1) (5.3.54)

- ]+1 B)
k+1 k

In this case, the GRT can also be applied to show that all residues are the same. In
order to show that the normalization gives unit leading singularities, identities of the
form discussed at the end of this section are needed.

Next, let us give a six-point two-loop example. Consider the following integral

j k

(AB(i-1ii+1) N (=154 +1) G kD)
(ABi-1i)(ABii+1)(AB j-1J)(AB j j+1)(AB CD)
(CD (k-1kk+1)N(I-111+1))
“1CD k=1k){CD k k+1){(CD -1 I{CD 1 1+1)

i l
This integral has the structure of two of the general pentagon integrals joined by the all
massive edge. Consider a residue of the full integral over C® which computes a residue
of the pentagon on the left. The contour integral in Z4 and Zp is the same as before
except that the normalization is different and therefore the residue is not equal to one.
The residue must then be the ration of the two normalizations, i.e., (ijkl)/(ijCD).
Plugging this in the integral over Z¢ and Zp we now find a properly normalized integral
and therefore the remaining part of residue computation gives one.

One might be tempted at this point to think that all completely chiral integrals are
pure. In section 4, we describe in detail the example of a hexagon with a wavy line and
a dashed line in the numerator. This integral is in fact completely chiral but it is not

pure.
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III. Evaluation of Pure Integrals

Evaluating integrals explicitly can be very hard and many techniques have been devel-
oped for this purpose. At one-loop, all integrals appearing in the standard reduction
techniques are known analytically. At higher loops, very few examples have been evalu-
ated analytically. Many of our chiral pure integrals turn out to be completely IR finite
and therefore their evaluation can be made directly four dimensions without any regula-
tors.

Consider the family of pentagon integrals discussed above. The evaluation of the
integrals for generic j and k gives

LGk = / (AB (i=1ii+1) N (j=14 j+1)){i j k k+1)
o (ABi-1i)(ABii+1)(AB j—-1j)(ABj j+1)(ABk k+1)’

(5.3.55)
(4B)
= log (ujgi-1,4-1)log (ugi-14;) + Lia (1 — wjpi—14-1) + Lia (1 — ug i—14)
— Lis (1 — wjp,iy—1) — Lia (1 — i1 p-1) + Lia (1 — wij-1,5-1)
where
(i1 j+1)(kk+111+1)
Uy i = . S
P L ) (Rl i)

For special values of 7 and k the integral becomes IR-divergent and a regulator is needed.

(5.3.56)

We postpone this discussion to section 4.

The reason for presenting the explicit form of the pentagon integrals is to note a
general fact about pure integrals: The explicit evaluation of the integrals must be a
linear combination of functions known as iterated integrals, such as polylogarithms, all
with coefficient one.

It is striking that the coefficients do not depend on kinematic invariants but this is
a consequence of having unit leading singularities. This is the motivation for the termi-
nology: pure integrals. Roughly speaking, the coefficients of the different polylogarithms
are the leading singularities of the integrals. Having a pure integral ensures that no
coefficient can depend on kinematical invariants.

Once again, the hexagon with a wavy and a dashed line in the numerator given in
section 4 will be an example of a completely chiral and IR finite integral which is not pure
and its evaluation gives products of logarithms with different coefficients that depend on

kinematic invariants.
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IV. Example: 1-Loop MHV Amplitudes

Up until know we have been studying integrals individually. This is a good point to
actually use them to determine the full physical integral of the simplest set of amplitudes.
These are one-loop MHV amplitudes. Historically, one-loop MHV amplitudes were the
very first set of amplitudes to be computed for all n as a linear combination of scalar
box integrals [75]. It was found that the answer is very simple; an overall prefactor,
proportional to the tree-level amplitude, and a sum over all one-mass and two-mass-easy
box integrals with coefficient one, when properly normalized. In our modern terminology,
the normalization was such that only pure integrals appear. It was realized that this form
of the amplitude was not equivalent to the Feynman diagram amplitude as an expansion
in the dimensional regularization parameter but it differs from it only at O(e). In our
language this is nothing but the fact that an expansion in terms of box integrals cannot
possible reproduce the physical integrand of the theory as stressed a number of times

already.

Now that we have a set of chiral pure integrals, the natural question is how much more
complicated the amplitude will look like if written in a form that matches the physical

integrand. It turns out that the full integrand is stunningly simple

1—loop __
AMHV -

(5.3.57)

where the propagator (ABn1) is present in all terms. Note that not all integrals in
the sum are chiral pure integrals. There are boundary terms which are box integrals.
Consider for example j = ¢+ 1. In this case the numerator cancels one of the propagators
leaving us with the box. We give no derivation for this formula here and postpone a
more detailed discussion to section 6. A final comment, even though the line (nl) seems

especial, the amplitude is cyclic as it should be!
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5.4 Finite Integrals

We have seen that the chiral integrals with unit leading singularities, naturally written in
momentum-twistor space, provide a natural basis of objects to express the loop integrand.
In this section we will see that they have another beautiful property—most such integrals
are manifestly infrared finite.

Let us begin by illustrating with a simple example. Consider a general 1-loop integral
for 6 particles, which we can write as

/ (ABX)(ABY)

(AB12)(AB23)--- (AB61)’
(AB)

(5.4.58)

Here X, Y are generic bitwistors. Of course, like almost all generic integrals with massless
external legs, this integral is infrared divergent. Recall that the infrared divergences arise
when the loop momentum [ become collinear to a massless external momentum p,, 7.e.
when [ - p, — 0. The extra soft logarithmic divergence can be thought of as an even
more special case of this situation, where the loop momentum becomes collinear to two
consecutive momenta so that [-p,, [-ps11 — 0. In the dual co-ordinate space, the collinear
divergence arises when the loop integration point x approaches one of the edges of the
Wilson loop, connecting z, with x,.1, and of course the extra soft divergence occurs
when z gets close to both the lines (z,_; z,) as well as (z, z,11), that is when it is close
to the point z, itself. But again the IR-divergence is fundamentally a collinear one, with
the soft divergence being thought of as “double-collinear”.

We can finally describe these IR-divergent regions in momentum-twistor language.
The collinear divergence associated with [ - p, — 0 corresponds to the region where the
line (AB) in momentum twistor space, associated to the loop integration point, passes
through Z, while lying the in the plane (Z,_17Z,Z,+1). Note that this region is quite nicely
parity invariant. Recall that in momentum-twistor variables, parity is just the poincare
duality, and exchanges the point Z! with the plane W,; = (Z,_12,Z,11); naturally
paired with Z,. Thus, the condition is that the line (AB)!/ passes through Z!, and also
that the dual line (AB);; passes through W,;.

While a generic integral will indeed be IR-divergent, we see a simple way of getting
completely IR finite integrals. If the bitwistors X,Y are chosen to have a zero in all

the dangerous IR-divergent configurations, then the integrals will be finite. This is very
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simple to achieve. For instance, let us choose X = (13) and Y = (46); we can write out
the integral again as,

6 1

. / (AB13)(AB 46)(5612)(2345) (5.4.50)

(AB12)(AB 23)(ADB 34)(AB 45)(AB 56)(AB 61)
(AB)

4 3
Let us check that the numerator has a zero in all the IR-divergent regions. Consider first
collinearity with ps. We need to see what the numerator does when (AB) passes through
Z3 while lying in the plane (234). However, the numerator factor (AB 13) vanishes simply
if (AB) passes through 1 or 3, regardless of whether or not it also happens to lie in the
plane (234). In this way, we can see that the collinear divergences with 1,3,4,6 are all
killed by the numerator. Next, consider what happens when (AB) passes through 2, lying
in the plane (123). Since (AB) lies in (123), it necessarily intersects the line (13), and
therefore, (AB 13) = 0, regardless of whether or not (AB) also happens to pass through
2. A completely analogous argument holds for the collinear divergence associated with
particle 5.

Thus we see that with this numerator, all the regions with collinear divergences are
killed by the numerator factors, and the integral is completely IR-finite! There are other
choices for X, Y that will do the same job; our argument above also holds if one or both
of the numerator factors (13), (46) were replaced by their parity-conjugates, (612)((234)
and (345) (1 (561), respectively—changing one or more of the dashed-lines in (5.4.59) to
wavy-lines.

Now, these finite integrals are clearly chiral. And when the two numerators are of the
same kind, they have, quite nicely and non-trivially, unit leading singularities. As usual,
verifying by direct computation requires manipulating non-trivial sequences of 4-bracket
Schouten identities, but the result follows much more transparently from an application of
the global residue theorem to this integral. Consider for instance the GRT following from
choosing fi = (AB34), fo = (AB45), f3 = (AB56) and fy = (AB61)(AB 12)(AB 23).
We have three different Schubert problems to consider, with the lines (34), (45), (56)
combined with (61),(12),(23). Consider first the Schubert problem with the four lines
(34), (45), (56), (61). This is a one-mass configuration, and it is easy to see that the nu-
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merator Kills the solution where (AB) is the line (46), only leaving the solution passing
through 5. Let us call this non-vanishing residue r(s4),45),(56),61)- Similarly, for the Schu-
bert problem with lines (34), (45), (56) and (12), the numerator kills the solution passing
through 4 while leaving the one passing through 5; we can call this single non-vanishing
residue 7(34),(45),(56),(12)- Finally, for the Schubert problem with lines (34), (45), (56), (23),
we can see that both solutions—the line 35 as well the line passing through 4—are killed

by the numerator, so both of these residues vanish. The GRT then tells us that

0 + 7(34),(45),56),(61)) + (0 + 7(34),045),56),12)) + (0+0) =0
(0 + 7(34),345),(56),(61)) + (0 + (34 (45).(56),(12)) (5.4.60)

T T(34),(45),(56),(61) = T7(34),(45),(56),(12)

It is possible to repeat this argument for other GRT’s, finding a sequence of 2-term
identities relating all the non-vanishing residues, showing that the integral is not only
chiral but has unit leading singularities. Thus, we see in this instance something that can
be checked also to be true for all other residues: the integral is completely chiral; at most
one of the two solutions to each Schubert problem are non-vanishing, and sometimes
both vanish.

Given that this integral has unit leading singularities, it is instructive to expand it in

terms of boxes, which will then also have unit coefficients. This simple, finite momentum-

twistor integral in fact expands into the sum of nine boxes:

/

ey
IR H R
Pa@:ast
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The seemingly complicated combinations of a large number of boxes have been encoun-
tered before in the computation of finite 1-loop objects, such as the NMHYV ratio func-
tion [8,48,86,106] —the ratio function for the full superamplitude is simply defined to
be

1-loop _  41-loop tree 1—loop
Rn,k - An,k Yk An,k=2 : (5461)

Note that in the box expansion, every integral is individually IR-divergent, the IR-
divergences only canceling in the sum. Moreover, the boxes themselves are not dual
conformal invariant—again, only become dual conformal invariant in the sum. But since
the hexagon in which we are interested is manifestly finite and dual conformal invari-
ant”, we can evaluate it directly—for example, using Feynman parameterization directly

without any regularization. A straightforward computation shows,

7T2

2 = Lip(1 —uy) + Lig(1 — ug) + Lia (1 — ug) + log(us)log(u1) — 3 (5.4.62)

where the u; are the familiar six-point cross-ratios:

 (1234)(4561) (23 45)(56 12) (3456) (61 23)

Sy 3161) 2T e = 3061)(5623)

(2356) (45 12)” (5.4.63)

It is easy to find examples of integrals which are finite and chiral, but which do not
have unit leading singularities. For example, changing one the ‘dashed-line’ numerator
factor (AB13) in the integral above to a ‘wavy-line’ (AB (612)(1(234)) will leave the
integral finite and chiral, but spoil the equality of its leading singularities. Indeed, as

it is also finite and dual-conformally invariant, the ‘mixed” hexagon integral can also be

91n the literature on ratio functions, some authors have found what were claimed to be “finite” com-
binations of boxes that did not end up being dual-conformal invariant. In every case, the combinations
of boxes in question were not honestly IR-finite: the divergences from different regions of the integration
contour canceling between each-other. Such a cancellation is is highly regulator-dependent, and is not

very meaningful.
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evaluated without any regularization, and one finds that,

6 1

(AB (612) (1 (234))(AB 46)

> ’ (AB12)(AB23)(AB34)(AB45)(AB 56) (AB 61)
(AB)

1234 (6134)
( 1345) (1235 >]Og(“1>1°g<“2)‘% (z;ggg;zgg;§5>10g(U3)10g(u1)

6123)
! <W> log(us) log(uz).

In order for GRT's to yield the two-term identities necessary to guarantee that all the
leading singularities are equal up-to a sign, the numerator must force vanishing residues
for all but two Schubert problems. In the case of the ‘mixed-numerator’ hexagon integral,

for example, GRTs can only be used to show that the coefficients of the logarithms sum

(1234) (6134) (6123) \
(i) * (wamm) * (gem) = 0460

It is clear that these chiral momentum-twistor integrals with unit leading singularities

to zero:

give us the simplest and most transparent way of talking about finite integrals.
Just as a trivial example, the 6-point NMHV ratio function, which is typically written

in terms of all 15 six-point box-integrals, with many R-invariants as coeflicients, is given

simply by
( 6 1 )
1—loop 2 > 2
Ramnv il (1+g9+4°) > (5.4.65)
integration
4 3
x ([23456] — [34561) + [45612])

where g : i — i+1 acts on both the integrand and its coefficient. Also recall the definition
of the R-invariants given in section 1,

M (na(bede) +mp(cdea) +ndeab) +ngleabe) +n.(abed))

(abedy(bede){cdea)(deab)(eabc) (5.4.66)

l[abcde] =
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5.5 1-Loop Integrands, Integrals, and Amplitudes

As described in section I., one can use elementary tensor-reduction to express any 1-
loop integrand in NV = 4 in terms of pentagon and box integrands. These of course
would form a complete basis for any 1-loop integrand in N' = 4 SYM. However, such
a basis would necessarily include many integrands which are non-chiral (including all
boxes), and which have non-uniform leading singularities; moreover, such a basis would
allow for linear combinations of IR-divergent integrals to be ultimately IR-finite and
non-vanishing. But we saw in the last section that there are integrands—pentagons and
hexagons with ‘magic’ numerators—which avoid all of these shortcomings, and these
integrands closely mirror the leading singularities of MHV-amplitudes, suggesting that

they may be well-suited to express amplitudes more generally.

It is therefore natural to wonder if there exists a complete basis of 1-loop integrands
involving only chiral, manifestly dual-conformally invariant integrands with unit leading-
singularities, and for which no non-vanishing linear-combination of IR-divergent inte-
grands is IR-finite. We’ll see momentarily that the answer is affirmative, and extremely

beautiful.

Before trying to construct such a basis, however, we can gain some intuition about
what to expect by assessing its size—that is, finding the dimension of the space of planar,
1-loop integrands. Recall that every n-point 1-loop planar integral can be written in the
form

(ABY1)--- (ABY,_y)

/<AB12><A323><A334>---<ABn_1n><ABn1>‘
(AB)

(5.5.67)

When n = 5, the space of 1-loop integrands is just the space of bitwistors Y, which
is six-dimensional—which explains how the complete 5-point 1-loop integrand could be
constructed in [97] through the introduction of a single pentagon integrand.

For n = 6, the most general integrand is a hexagon with (ABY;)(ABY53) in the
numerator. Now, each Y; is a 6-dimensional representation of SUy, and of course 6 ® 6 =
1$915®20. Ordinary multiplication being commutative, the antisymmetric part, the 15-
component, clearly vanishes. By expanding each Y; into a basis of six simple bitwistors,

it is easy to see that the trace component, 1, also vanishes, as (Y;Y;) = 0, when Y; is
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simple. Therefore, the space of 6-point 1-loop integrands is 20-dimensional'".
More generally, it is not hard to see that the dimension, d, of 1-loop integrands is
the same as the dimension of the space of symmetric (n — 4)-fold symmetric, traceless

tensors of 6’s of SU,, which is simply

d— <Z> n (”; 1) (5.5.68)

Recall that box-integrands form a complete basis of parity-even integrands, and that
there are precisely (Z) boxes, all of which are independent. Therefore, we may separate
d in equation (5.5.68), according to d = deyen + doga With deyen = (Z) and dygq = ("4_1).
Once we have a basis of integrands which makes parity manifest, this will allow us to

count the number of relations satisfied by (parity-odd) integrands.

I. The Chiral Octagon: A Basis of 1-Loop Integrands

As we can see from equation (5.5.68), the number of independent integrands grows
asymptotically like O(n?). In contrast, the number of chiral pentagons grows only like
O(n?). It is not hard to see that the simplest class of chiral integrands which number
O(n') are the chiral octagons. As we will see presently, it turns out that chiral octagon-
integrands indeed form an (over)-complete basis for all 1-loop integrands that satisfies

all the desired criteria listed above. The most general chiral octagon integral is given by,

for i<j<k<l<i (5.5.69)

_ / (ABij)(AB(j-17j+1) N (k=1 k k+1))(ABkI){AB (I-1 I 1+1) () (i-1 i i+1))

(ABi-1i)(ABii+1){AB j—1j)(AB j j+1)(AB k=1 k)(AB k k+1)(AB -1 [)(AB 11 +1)
(4B)

Notice that parity acts according to P : Is(i, j, k, 1) — Is(j,k,1,4), making it trivial to
define parity-even /parity-odd sectors:

10We thank Simon Caron-Huot for helpful discussions regarding this counting.
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199G 5 k1) = (i, 4 k1) £ Is(4, k, 1, d) = 1

Notice that these octagon integrands are well-defined for any distinct set of in-
dices {1, j, k,(}, including those for which the ‘octagon’ degenerates into lower-polygons.
For example, when [ = k + 1, the extra (duplicated) propagator in equation (5.5.69),
(ABk k+1) is cancelled by the dashed-line term (ABkl) — (ABkk+1) in the nu-
merator. A complete sampling of degenerate ‘octagons’ is illustrated in Figure 5.3.
One important advantage of this presentation is that all but the most degenerate of
the octagons are manifestly finite. Indeed, only the pentagons—octagons of the from
Is(i,i4+1,1+2,i+3,i+4)—and the lower hexagons in Figure 5.3—octagons of the form
Is(i,i+1,1+2, j)—are IR-divergent. Specifically, we have the following separation into
manifestly IR-finite and IR-divergent basis integrands.

Figure 5.3: The possible degenerations of the general octagon integrand.
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IR-finite:

(5.5.70)

k

It is worth emphasizing that the only IR-finite combinations of IR-divergent integrals in
this basis are parity-odd, which automatically vanish upon integration. Furthermore, as
discussed above, because the criterion for local divergences in the region of integration
is itself parity-invariant,'! parity-odd combinations of integrands are in fact manifestly
locally finite.

Parity-symmetrizing, and parity anti-symmetrizing, it is clear that there (Z) octagon

integrands, evenly split between parity-odd and parity-even. As we described above,

n—1

A ) are linearly-independent, so

among the parity-odd combinations of integrands only (
the octagon basis is strictly over-complete, but there are only non-trivial relations among

integrands in the parity-odd sector.

II. Integration of Manifestly-Finite Octagons

It is not hard to directly evaluate the general octagon integral Ig(i, j, k, ). Consider for

example the case Ig(3,6,9,12) for which all indices are separated by at least 3,

(5.5.71)

Because of the numerator factors, the only non-vanishing leading singularities of this

integral involve cutting at most one of each the pairs of lines {(23), (34)}, {(56), (67)},

HRecall that a local, IR-divergence develops in the region of integration when the line (AB) passes

through a point Z; while simultaneously lying on the plane (Z;-1 Z; Z;11).
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{(89),(910)}, and {(1112),(121)}. Therefore, this integral’s box-expansion is simply
the (manifestly-finite) sum of 16 four-mass box integrals. One disadvantage with this
presentation of the integral, however, is that the four-mass box integral logarithmically-
diverges when any of its four massive corners becomes massless, and yet we saw above
that the general octagon remains manifestly finite upon many such degenerations.
Because of this, we are motivated to replace the four-mass box function with a new
function that is free of any divergences over the physical domain of cross ratios. Letting

112

Ay4(u,v) denote the familiar four-mass box integral'“—a symmetric function in the two

cross-ratios—then let us define the following ‘modified four-mass’ function

Rl ks 1) = v (g t00) — % log (ts 1 .2) 108 (13,51, (5.5.72)
where
As(,0) = Lig(1 — 0, ) — Lis(1 — a_) + % log(v) log(ary /ar_), (5.5.73)
and
T —u—0)?—4
7= v 171 uv_) v m}’ and o = 14+u—v+ \/(?u—u — )2 — duv’ (5:5.74)

here, we have used the four indices {1, j, k, [} to signify the (generally time-like separated)
spacetime points corresponding to the lines (ii+1), (j j+1), (k k+1), and (I [+1) in twistor
space, which together define the cross-ratios

(77 +1k E4+1)(L1+1d3+1)

(ii+17 7+1)(k k+111+1)
- d g, = e ) (5575
GRS A ) ki) T T G R k) (1 ) 557

The principle distinction between £4(i, J,k,1) and the more familiar four-mass box
function is that £4(z’, J,k,1) remains finite even when many of the spacetime points

become null-separated (or even become identified). In particular,

lim <£4(’l, j, k, l)) - L12<1 - uj,k,l,i) and lim (84(2.7.7.7 k7 l)) = L12(1 B ui,j,k:l)'
ui,j,k7l—>0 u]',k’lyi—)o
(5.5.76)
Of course, if we use 3478 to represent Ig(3,6,9,12), for example, then each four-mass

box will contribute a ‘log-log’-term. It may be worried that this will greatly clutter the

12Tf we denote the massive, incoming four-momenta of the box by K, Ky, K3, and K, and define the
canonical Mandelstam variables s = (K; + K2)? and t = (K3 + K3)?, then we are using u and v to

denote the cross ratios K?K2/(st), and K3K3/(st), respectively.
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final expression, but this turns out to not be the case: taken together, these 16 additional

‘log-log’” terms combine into a single such term.

With this new function, the general octagon integral—together with all its degenerations—

becomes extremely simple. Explicitly, the general octagon Ig(i,j, k, ) integral is given

)
log (;k—1ki-1)log (wj1-115-1)

+A,

\

FALG, kD) —=Ay(iy gk, 1) ( (i

= Ay, -1,k 0)  +A4(0, -1,k 1=1)  +A4(i,j-1,k=1,1)  —A4(i, j-1, k-1,1-1)
— A1, 5,k +A4(=1, 4,k 1=1) AL (=1, 4, k=1,1)  —Ag(i-1, j, k=1, 1-1)

(i1, j=1, k, )= Aq(i=1, j=1, k, 1-1) = Ay (i-1, j=1, k=1, 1)+ Ay (i

—Ag(i, G k=10 A4, 4, k-1,1-1)

1, j-1,k-1,1-1)

Although admittedly lengthy, this expression can be considerably compressed in a way

which helps illustrate the relative signs appearing in the formula above,

Is(i,7,k,1) = log (Wik—1ki-1) log (uji—11j-1)+ Z (
O'Z'G{LO}

1)(01+02+03+04)£ (

4 i_017j_027 k'_0-37 l_04)

(5.5.77)

We can see how the modified four-mass function 54(2', Jy k, 1) helps to make all of the

octagon’s degenerations manifest by looking at a few examples explicitly. For example,

consider the 8-point octagon Ig(2,4,6,8); in this case, only 20 of the 34 cross ratios

which play a role in the general answer are non-vanishing, converting virtually all the

generalized four-mass functions Ay,’s into Liy’s.

log (U2,5,6,1) log (U4,7,8,3)

+ A4(2,4,6,8) —Lis (1 — uggrs )-+Lis (
—Lis (1 —ug236)+Lia (1 —ugpr2)+Lis (1 —ug2ss5)—Lis (1 —urass)
—Liy (1 — ugg1,4)+Liz (1 — ug671 ) (
| +Li2 (1 — ugs1,3)—Lia (1 — usg7a

)
)
)
)

(

(
+Lis (1 — U1,4,5,8
—Liy (1 —usg13)+ A4(1,3,5,7)

—Lig (1 —uga58)+Lis (1 —ugas7)

—Lis (1 —u1457)

Even more simplification occurs for the degenerate ‘octagons.” Consider for example

the general finite heptagon integral, given by Ig(i, 7, k, k + 1),

. (
! log (Ui,kfl,k,ifl) log (uj,k,k+1 - 1)

+Lis (1 — g jot1,i) —0
—Lis (1 —wj_1kk+1:) 40
—Lis (1 — @ pt1,i-1) +0
+Lis (1 — uj—1 ppt14i-1) —0
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Ay
Ay(i
Ay
Ayi

i,7, k=1, k+1) +Liy (1 — wjg—154)

i, j-1,k=1,k+1) —Liy (1 —wj_1k-14k:)

i-1,7,k=1,k+1) —Lis (1 — wj_14i-1)
-1,5-1, k=1, k+1)+Lis (1 — vj—1 k—1,ki-1)



Here, because 84(2', J, k, k) = Lis(0) = 0, four of the contributions vanish, and eight of
the modified four-mass box functions simplify to simple Lis’s.
The final class of finite, degenerate octagons are the hexagon integrals—octagons of

the form Ig(i,i + 1,k, k + 1),

i log (s k—1,ki~1) 108 (Uit kk+1,0)
+Lis (1 — w1k kt1.0) —0 —Lis (1 — wps1ii1,6—1) +Lio (1 — i1 k—1,8)
—0 +0 +0 —0
k+1 —Lis (1 — wit1kkt14-1) +0 +&4(z’—1, i4+1, k=1, k+1)—Lis (1 — wit1 4-1ki-1)
+Liy (1 — i ppy1,i-1) —0 —Lis (I — wpgri—1,i0—1) +Lia (1 — % g1 p,i-1)

\

Just as for the case of the 8-point octagon integral, the general hexagon integral simplifies
considerably when potentially-massive corners become massless. As a final illustration,
let us see how the general formula for the octagon given above directly yields the result
quoted in section 5.4 for the 6-point hexagon integral which played such an important

role in the 6-point NMHV ratio function:

(

6 log (u35,6,2) 10g (4,6,1,3)
+Lig (1 —usp13) —0 —Lis(1) +Lis(1)
. =<0 +0 40 —0
—Liy(1) +0 +Liy (1 —ug451)—Lia(1)
4 , | +Lis(1) —0 —Liy(1) +Liy (1 — uzs62)
; = Lig(1 —uge1,3) + Lia(1 —ug451) + Liz(1 — uss62)

+ IOg(U375,672) IOg(U476’173) — 2L12(1>

III. Application: the NMHYV 1-Loop Ratio Function

As should be clear from the previous subsection, any IR-finite object such as the ratio
function will be manifestly finite when expanded in the basis of octagon integrands. More-
over, since the formula for the completely general octagon integral, equation (5.5.77), is
free of discontinuities for all the IR-finite degenerations of the octagon, any finite 1-loop
integrand expressed in the basis of octagons directly translates into a function that is
manifestly dual-conformally invariant.

A very important, manifestly finite function associated with 1-loop scattering ampli-

197



tudes is the ratio function,
R}];loop Al loop Atree A;;gli(;p' (5578)

The most trivial example must be the 5-point 1-loop NMHV ratio function. Expanding

into the basis of octagons, the integrand is easily seen to be given by

2 2
1 3 1 3
Rsa1=[1,2,3,4,5] 6 - + cyclic. (5.5.79)
5 4 5 4

Being a parity-odd combination of pentagons, the ratio function is locally free of any
divergences at the level of the integrand and is therefore manifestly finite—of course,
being parity odd, it also vanishes upon integration.

A less trivial example, and one which we quoted in section 5.4, is the 6-point NMHV 1-
loop ratio function. In section 5.4 only the parity-even contribution to the ratio function

was described; the full integrand is given by,

1 2
5 4
x1([1,2,3,4,5] + [1,2,3,5,6] + [1,2,3,6,4]) %12346
12345 13456 12456+13456

+ cyclic. (5.5.80)

Of course, only the first term in equation (5.5.80) is non-vanishing when integrated along
a parity-invariant contour, reproducing the formula given in equation (5.4.65).
The general formula for the n-point NMHV 1-loop ratio function integrand nicely

separates into a part which is parity-odd, and another which involves only manifestly
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finite integrands. In order to best capture the ratio function succinctly, let us introduce

one small bit of notation and define
{j—13} {1k}
i i+ 1k = Y > i K); (5.5.81)

J={i+1,i+2} K={kk+1}

for example,

[1,{2,3,4},{5,6,7} = [1,2,3,5,6] +[1,2,3,6,7] +[1,2,3,7,5] (5.5.82)

4 [1,3,4,5,6] + [1,3,4,6,7] +[1,3,4,7, 5. -
Notice that the two-index J ranges over all consecutive pairs between ¢ + 1 and j inclu-
sively, while the two-index K also includes a non-consecutively-ordered ‘wrapping’ term.
With this notation, it is very easy to write the n-point NMHV ratio function integrand:
1
RIJoor — 5 S i+ L gk s G k D)

1<j<k<l<i

(5.5.83)

|
S|

> ik LmlIY G, Gk D).

i<j<k<l<m<i

Notice that while the first term in equation (5.5.83) appears to include divergent
‘octagons’; only the finite octagons have non-vanishing coefficients. For five-particles,
for example, the coefficient of the octagon Ig(1,3,4,5) from equation (5.5.83) would be
1,{2,3},{4,5}] =[1,2,3,4,5] 4+ [1,2,3,5,4] = 0.

Combining formula (5.5.83) with the analytic form of the general octagon integral
given in equation (5.5.77) immediately yields a concise, analytic, manifestly dual-conformally
invariant, and manifestly-cyclic form of the 1-loop ratio function for any n.

Let us close this section by given another explicit example. The 7-point NMHV 1-loop

ratio function is straightforwardly found to be,
Ris°P = [1,{2,3},{4,5,6}]1s(1,3,4,6) + [1,{2,3}, {4, 5,6, 7} Is(1,3,4,7) + cyclic,
(5.5.84)

where

Is(1,3,4,6) = { Lip (1 —u1346) +Liz (1 —uga51) +Liz (1 —uger2) +Liz (1 —urz35)
— Lip (1 - U2,4,5,7) —Lip (1 - U3,6,7,2) —Liy (1 - U4,6,7,3) —Liy (1 - U6,1,2,4)
+ log (u1,3,4,7) log (u356.2) }%

Ig(1,3,4,7) = { log (u13,4,7) log (uz672) — Lia(1) —Lig (1 —uy346) —Lia (1 — usgr2)
+ Lig (1 —uy347) +Lis (1 —user2) +Lia (1 —wusprs) —+Lis (1 —ugi24) }
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(Here, we have not neglected an overall factor of %: like in the case of the 6-point ratio
function—the summand in equation (5.5.83) includes exactly two copies of each term;

but this is not generally the case for higher-n).

5.6 Multiloop Amplitudes

In this section, we introduce a new strategy for finding local representations of loop inte-
grands. The idea is closely related to the leading singularity method, but the philosophy
differs in some important ways. In particular we will not be guided by systematically
trying to match all the leading singularities of the integrand. Instead, we will look
at a simple subset of leading singularities defined for generic, large enough number of
particles—no “composite” leading singularities will be considered. We will then find a
natural set of pure integrals designed to match this subset of leading singularities. We
will find that boldly summing over all such objects miraculously suffices to match the
full integrand! In particular, while the pure integrals are motivated for a large-enough
generic number of external particles, their degenerations nicely produce all the needed
lower-point objects as well.

This method is heuristic—we do not yet have a deep understanding for why the
miracles happen. However we have used this strategy successfully to find stunningly
simple expressions for the integrands of all 2- and 3-loop MHV amplitudes as well as all
2-loop NMHV amplitudes, and have checked that the results are correct by comparing
with the form obtained from the all-loop BCFW recursion.

We will begin by illustrating this strategy by going back to 1-loop integrands, which
will motivate structures for 1-loop integrands different from the ones we encountered
in section 3. For the MHV integrand, this new form coincides with one of “polytope
representations” discussed in Chapter 6. We will then use this discussion as a springboard

to our treatment of 2- and 3-loop integrands.

I. A New Form for the MHYV 1-Loop Integrand

Let’s begin by going back to the MHV 1-loop integrand, and motivate a new form for
it inspired by straightforwardly matching its leading singularities, associated with the

familiar two-mass-easy colored diagrams

200



P e B M
corresponding to cutting the propagators
(ABi~1i)(ABii+1)(AB j-15)(ABj j+1) (5.6.85)

The amplitude has unit leading singularity for the first solution of the Schubert problem
(AB) = (ij), and vanishing leading singularity for the second solution where(AB) =
(i=17i4+1) (j=17 j+1). We would like to build the integrand out of objects that have
exactly this property. To beat a dead horse yet again—it is obvious that the two-mass-
easy box does not do this job because it is not chiral. The easiest way to do this is
to simply insert a factor in the numerator, (AB (i-1#i+1)()(j-1jj+1)), that kills the
“wrong” leading singularity. For correct little-group weights, we add a factor (AB X) in
the denominator, where X is an arbitrary bitwistor, and look at an object of the form

(AB (i-1ii+1) N (j-1j j+1))(X i j)
(ABi-1i){(ABii+1)(AB j-1j){ABj j+1){AB X)

I = (5.6.86)

which is just the pentagon already familiar from section 2, where the local propagator

(ABn 1) has been replaced by (AB X). We denote this graphically as

(5.6.87)

Note that there is in general no significance to the presence of the legs adjacent to X in
this picture. We draw it in this way because in the special case where X = (kk+1), the
legs adjacent to X are identified with k,k+1.

Now consider the Schubert problems associated with cutting four physical propa-

4

gators. By construction this object has vanishing leading singularities on the “wrong”
solution, and can easily be seen to have unit leading singularity on the “right” one. Sum-

ming over all the indices i < j—with |i — j| > 2 corresponding to the two-mass easy
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colored graphs—produces an object matching all the physical leading singularities of the
amplitude. Naively this should give us the integrand, but there is a catch: each term
also has “spurious cuts” where (AB X) is one on the cut propogators. Indeed, the sum
we just described does not match the integrand.

However some wonderful magic happens: the sum over all indices ¢ < j, including a
“boundary term "with 7 = i+1, which is not included in the sum over colored graphs,does

reproduce the amplitude! We have

(AB (i-17i+1) N (j=1j7+1)){(X 7 j)

Ay = 5.6.88
MHV ; (ABX)(ABi-1i)(ABii+1)(AB j-1j)(AB j j+1) ( )

or written pictorially
(5.6.89)

This form is manifestly cyclic but has spurious (AB X) poles term-by-term. The sum is
however independent of X. If we choose X to correspond to one of the external point
X = (kk+1), all the poles are manifestly physical but the formula is not manifestly
cyclic invariant.

As mentioned above, this expression follows from a simple “polytope” interpretation
described in Chapter 6. The local formula given in Chapter [15] is obtained by choosing
X = kk+1, summing over all £ and dividing by 1/n. The similar expression in [116]
corresponds to setting X = I, where I, is infinity twistor.

Let us look at the “boundary term” where 7 = ¢+ 1 in more detail—using
(i-1ii+1i+2)(ABii+1) = (AB (i-14i+1) () (¢ i+1i+2)), we can see that it is just a (spu-

rious) box
(i=1ii+1i+2)(X ii+1)
(ABX)(ABi-1){ABiit1)(ABi+1i+2)

It is instructive to explicitly understand the purpose of this boundary term in this simple

(5.6.90)

example, since the same phenomenon will occur in all the rest of our examples in this
section. Let us return to our most naive ansatz, summing only over the pentagons

associated with the colored graphs. Each of the spurious cuts involving (AB X', such as
(ABX)(ABi-1i)(ABii+1)(AB j-1j) (5.6.91)

202



is shared by two pentagons e.g. [; ;1 and I; ;. For generic terms in the sum, these cuts
cancel against each other in pairs. However, in the limiting cases when j = i+2 (or
J = 1-2) the quad-cut is shared by [; ;12 and I;_; ;41 but there is no cancelation between
them because the non-vanishing leading singularities occur for two different solutions
of the Schubert problems. The spurious box of (5.6.90) precisely has non-vanishing
leading singularities for these two Schubert problems and completes the cancelation of
all (AB X)) poles, ensuring the full sum is independent of X. It is quite remarkable
that the “new” object needed to fix the leading singularities and match the amplitude is
simply a degeneration of the pentagon itself.

In our remaining examples, we will not delve into understanding the details of how
all leading singularities match. We will instead take a class of leading singularities as a
guide for the local integrals to consider, and sum over all the relevant objects, including
boundary terms that do not directly correspond to any of the leading singularity pictures
that motivated the construction of the objects to begin with. These formulae are then
verified by comparing with the integrand as computed by BCFW recursion.

Let us finally note a very pretty property of equation (5.6.88): for generic X, all the
pentagons in the double sum are manifestly manifestly IR finite. This ceases to be true
if we make the special choice like X = (12), since the diagrams with ¢ = 2 or j = n have

an additional massless corner which is not controlled by the numerator.

(5.6.92)

i+1

II. The 1-Loop NMHYV Integrand, Revisited

We proceed to use the same strategy to determine a local expression for the NMHV
1-loop integrand, which will yield a quite different form than we obtained in section 3.
We again start with the colored graphs for leading singularities. There are two of them

for NMHV amplitudes:
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and

(5.6.93)

i+l i

Unlike the MHV case where the non-vanishing leading singularities were “1”, here the
non-vanishing leading singularities are the R-invariants. The goal is to find objects with
non-vanishing support on the same Schubert problems as the amplitude, and decorate
these with the appropriate R-invariants to get a nice ansatz for the integrand.

The first colored graph correspond to 2-mass easy Schubert problems and have the
same structure as the MHV case. The leading singularity is just the tree-level amplitude
appearing in the upper-left corner of the figure, A¥SS (7, 7+1, . . . i=1,7). Thus we expect

to have objects in the integrand of the form

i
X Afniy (7, 3 +1, - i=1,4) (5.6.94)

Finding an object matching the physical leading singularities of the second class of

colored diagrams is a more interesting exercise. The cut propogators are
(ABi~1i)(ABii+1){ABj j+1)(AB k k+1) (5.6.95)

The leading singularities vanish for the solution (AB) = (i=144+1) (" (j j+1)(i~13i+1) N (k k+1),
while for (AB) = (ijj+1)( (i k k+1) the leading singularity is [¢, j, 7+1, k, k+1].

Let us consider objects of the form

N(i, g, k)

"J= / (AB XY(ABi—1i)(AB1i+1)(AB j j+1)(AB k k+1)
(ip)

We are searching for a numerator supported on the same leading singularities as the
amplitude. In addition it should also have unit leading singularity on all other spurious
quad-cuts. The reason is that the spurious cuts must cancel in a sum over terms; since

the integrals are multiplied by different R-invariants, the only way this can happen is
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through residue theorem 6-term identities between the R-invariants. For instance the
spurious quad-cut

(AB X)(ABii+1)(AB j j+1){AB k k+1) (5.6.96)

is shared by six different integrals I;;x, 141,k Ljsiks L1k Lriy; and I yq, ; that are

multiplied by six different residues. There is a 6-term identity relating them

i, 7, j+1, k, k+1] 4+ [i+1, 4, j+1, k, k+1] + [7,4,i+1, k, k+1]

+ [j+1, 0,041 k k1] + [k, 4, i+1, 4, 41 + [k+1, 4,041, 5,7+1] = 0

which can only possibly be of help in canceling spurious cuts if the integrands they
multiply have support on the same Schubert problems, with unit leading singularities.
There is one final guiding principle for determining the structure of the numerator
N(i,7,k). The topologies occurring in (5.6.94) are the same as for the MHV amplitude,
while the second class of integrals is “purely” NMHV-like. Since IR-divergences are
universal, it would be nice if the IR-divergences could be completely isolated in the
MHV-like topology. We should then try to choose the numerator N (i, j, k) to be strictly
finite. It would be nice if these integrals could be chosen to be manifestly finite. The only
divergence in (5.6.96) can come from the Z;-corner, i.e. the region when (AB) crosses
point Z; and lies in the plane (i-1ii+1). In order to control this region the numerator
should be of the form N = (AB (i-1ii+1)()(...)). Combined with the unit leading

singularity constraint, the form of the numerator is fixed completely:
N(i,7,k) = (AB (i-1ii+1) N i k) (5.6.97)
with ¥; ;1 a special plane defined according to

Sigk = =[G+ ((kk+1)NX) — (kk+1(ij j+1) N X)] (5.6.98)

1
2
This is in fact the only choice we could have made consistent with little group weights

and the desire to treat the 7, k indices symmetrically. We will denote this by,

l

(AB (i-1ii+1) N2 k)

J= / (ABX)(ABi-14)(ABii+1)(AB j j+1)(AB k k+1)
(AB)
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With these objects in hand, we once again brazenly sum over all ranges of indices,
including “boundary” terms with 7 = 7 & 1 not directly associated with colored graphs
for leading singularities. The same magic happens as we saw in the MHV case—this sum

agrees with the 1-loop NMHV amplitude as computed by BCFW recursion, and we find,

1-loo
ANMH\I; = E <
i<j<k<i (5.6.99)
+Z {
1<g<1

Note also that as in the MHV case, the only IR-divergent integrals are in the boundary

terms. The (generically) finite integrals for I; ; are given by

['i,j,k = —LIQ (1 — ul) — L12 (1 — 'LL2> + ng (1 — Ug) + IOg (U4) IOg (U5)

where the cross ratios are defined as:

(i G (Xi-14) (ii4+1 X ) (k k+1i—11) (i1 1)k k+14i—14)
V= G X0V G H1im1d) T itk k1) (X i=1d) T ik k1) (G jH1i=14)
oy = REAL (=117 j+1) (G i1 X) (ke k+1ii41)
(X i—1i)(kk+1jj+1)’ (Gi+1kk+1)(Xii+1)’

u

5 =

Finally, let us examine the 1-loop NMHV ratio function

1-loop _  41l-loop 1—loop tree
RNMHV - ANMHV - ‘AMHV " YINMHV (56100)

Comparing the expressions 5.6.88 and 5.6.99 we can see that the ratio function has the

tree

same form as NMHV amplitude, except that in the first sum we have AZ5iyy (4,741, ... -1, 7)—

Sty instead of just ARSSv(4,i+1,...75-1,7). The manifest finiteness is obvious.

The only divergent integrals are in the boundary term j = ¢ — 1, but their coefficient

is given by AU (i i+1, ... j=1,7) — AT (1, n) = AU (6,041, .. i-2,i-1) —
v (1, ...,n) = 0. Therefore, the ratio function can be written only using manifestly

finite integrals.
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III. The 2-Loop MHV Amplitude and Its Logarithm

Now we turn to the 2-loop case. First we reproduce the MHV amplitude presented
already in Chapter [15] and in addition we will write an expression for the log of the

amplitude given in an interesting form in terms of non-planar diagrams.

We again start with the possible colored graphs,

(5.6.101)
There are more types of graphs in comparison to 1-loop where we had only boxes. In ad-

dition to two glued boxes (also referred to as “kissing boxes”) we have other topologies—
pentaboxes and double-boxes. They represent cutting the internal (AB C' D) propagator
once and twice respectively, the latter case corresponding to “composite” leading singu-
larities.

Let us concentrate on the first graph. It looks like a “squaring” of the 1-loop cuts
with appropriate ranges for indices. And in fact, the (AB) part and (C'D) part of the
integral are independent, ie. in order to realize the octa-cut of the first colored graph,
we need to set (AB) = (ij) or (AB) = (i-1lii+1)((j-1jj+1) and (CD) = (k¥{) or
(CD) = (k=1kEk+1)( (£ —1££+1). Together we have four possible combinations. The
amplitude (as we see from the colored graph) has support just on one of them (AB) = (i j)
and (C'D) = (k ¢) while for all other it vanishes. It means that the numerator must vanish
whenever (AB) = (i-1ii+1)((j-1jj+1) or (CD) = (k=1kk+1)(\ (¢ — 1£¢+1). This

motivates us to start with an integral of the form

(AB (i=1ii+1) N (=1 j+1)){(X i )
(AB X)(ABi-1)(ABii+1)(AB j—1;)(ABj j+1)
(CD (k=1 k k1) N (=1 LH1)5 (Y kD)
“ICDYVNCD k=1KY(CD k k+1){CD =1 1){CD11+1)

which has exactly this property. However, there is a better candidate. Instead of adding

(ABX) and (CDY) in the denominator, we can add directly the internal propagator
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(ABCD). That allows us to write two numerator factors exactly as we need. Therefore,

we consider,
j k

(AB (i=1ii+1) N (=1 j+1)) (i j k1)
(ABi-1)(ABii+1){AB j—1j)(AB j j+1)(AB CD)
(CD (k=1 k k+1) N (=1 1141))
“1CDk=1kY(CD k k+1)(CDI=L1)(CD1I+1)

i l
Of course, this integral has also many other cuts—both composite and non-composite—
that involve the propagator (AB CD) , and we have to match other colored graphs in
(5.6.101) as well. However, just as in our 1-loop examples, simply summing over all
indices with a planar ordering reproduces the full amplitude as a cyclic sum over just

one integral topology: j k

_ 1 g
2—loop _ =
“AMHV 2

1<j<k<l<i

(5.6.102)

i [
The “boundary terms” in this case occur for for j = i+1 and/or I = k+1. In these cases

the numerator exactly cancels one of the propagators, leaving us with:?

(5.6.103)

Log of the Amplitude

Finally, we give an interesting new expression for the logarithm of the amplitude, using

a non-planar sum of the same set of objects. At 2-loops, the log of the amplitude is

—100 —loo 1 —loo 2
oA = [ A - 5 (tier)’] (5.6.104)

13This simplification was missed in Chapter [15], and the 2-loop MHYV integrand was presented as a

sum over three terms. We would like to thank Johannes Henn for pointing the simplification out to us.
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A beautiful expression for the log of the amplitude is made possible by the existence

of a simple relation between the sum of 1-loop square and 2-loop diagrams:

!
(5.6.105)

The left-hand side is just (Aype?)? while the right-hand side contains not only

~.

the planar diagrams present in Ai;ﬁ?p but also non-planar graphs when for example

1 < k < 7 <. In fact, all planar graphs are equal to 2./4%4_&2}”3 while all non-planar graphs

give us the log of the amplitude in the form

[log Alj® = — E

i<k<jy<l<i

(5.6.106)

i l
The formula found in [127] is the 4pt version of this expression.

Note that naively, all these integrals are IR finite because each individual 1-loop sub-
integral is just a finite pentagon(which can not shrink to a box due to the restriction
j#i+1and ! # k+1). However, the criteria for finiteness we described in section
4 applies to planar integrals, while the log contains non-planar terms which can be IR-
divergent.

Let us focus on the piece of the integrand of the form

(ABX) 1 (CDY)
(ABi-1i)(ABii+1) (ABCD) (CD j-1j){(CDjj+1) (5.6.107)

Here X controls the IR-divergence of the region where the line (AB) intersects point Z;
and lies in the plane (Z,-1Z;Z;4,), just as Y does for (CD) sector. However, if i = j
then (AB) and (C'D) intersect in the point ¢ and the propagator (AB CD) vanishes.
Therefore, finiteness of the 1-loop sub-integrals is not enough. We need an extra condition
that regulates this joint divergence. It is not hard to see that unless (XY) = 0, a (mild)

IR-divergence remains.
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As a result, we can find that almost all integrals in (5.6.106) are finite except for the

class of diagrams:

i+1 i

(5.6.108)

In this case X = (i-27-14) () (ii+1i42) and Y = (i=1ii+1) () (j—=1 7 j+1), so (XY) #

0. However the divergence is mild, as observed in the 4-point result of [127].

IV. All 2-Loop NMHV Amplitudes

We move on to present the integrand for all 2-loop NMHV amplitudes. The 6- and
7- point integrands were presented in Chapter 4, by expanding the BCFW result into a
basis of pure integrals. The parity-even part of the 6- point integrand was presented using
standard (dual) space-time variables in [96]. Here, instead of a brute-force expansion into
a basis of integrals, we follow the same strategy outlined above, obtaining results vastly
simpler than those presented to date, which also generalize to all n.Now

Let us first start by drawing the colored-graphs that contribute for general 2-loop
NMHV amplitude that do not cut the internal propagator ((AB CD)).

[i 7 j4+1 K k+1] [i 5 j+1 K k+1] [ j+1kEk+1]
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Below each colored graph, we have indicated the leading singularity below each. Notice
that the coefficient ANy (7, - .-, k31, ... 1) is the same function as an ordinary tree am-
plitude with particles labelled (j,...,k;l,...i) where k,[ and 7, j are both treated as if
they were adjacently-labelled.

The idea is again to find a set of integrals that each individually have the same leading
singularities as the amplitude on a given set of octa-cuts. The first step is to realize that
the octa-cuts on the first line of 5.6.109 respectively looks like the product of NMHV
1-loop quad-cut x MHV 1-loop quad-cut and MHV 1-loop quad-cuts x MHV 1-loop
quad-cuts. Therefore, one might think that the right integrals to start with look like the
product of pentagons that appear in MHV and NMHYV 1-loop amplitudes. This strategy
worked perfectly in the MHV 2-loop case, where the amplitude was literary made from
double-pentagons whose origin was in the product of two MHV-like pentagons. So the
natural objects to consider here are the same double-pentagons as in MHV 2-loop case

and also other double-pentagons that look like NMHV 1-loop x MHV 1-loop:

The numerators of the first three graphs have the same structure as the ones that ap-

pear in the NMHYV 1-loop integrand. We provide the complete expressions in appendix F.

Note that first three diagrams are really represented just by single diagram with
permuted indices. For instance, the second one can be obtained from the first one if we
require k > 7. So, it is non-planar version of the first graph in the same sense as we saw
in the last subsection in the case of the log of MHV amplitude. We see that these four
graphs are in one-to-one correspondence with the first four colored graphs in 5.6.109. If
we cut all propagators except (AB CD) we get not only the same cuts as are in these
colored graphs, but also the support on the correct Schubert problems. These integrals
are definitely the right ones to start with. In order to get the correct field theory answer
we have to multiply them by the leading singularities of corresponding octa-cuts which
are

Now summing over all allowed indices we get,
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2 @(’ 2

(5.6.109)
all allowed 1<j<k<l<i
3,5,k,l,m . l
X[Z,],]—Fl,k,k—Fl] %\?E?Hv(j7...,k; l...,1)
X Afx?ﬁ’aeHv(' )

where the first diagram really represents three as we mentioned earlier, namely, the

complete set of cyclically ordered figures

The rest of the story proceeds in the by now familiar way. Simply carrying out the
sum over the range of indices corresponding to the colored graphs does not give the
right answer, however, a judicious choice for the range of summation adds the correct
“boundary terms” to give exactly the right answer, and we finally obtain:

j l

2 loop
NMHV -
1<g<l<m<k<i

i<j<k<l<i
1<j<k<l<m<i
i<I<m<j<k<i i /
tree . ;
X[l,],j"‘l,k,k"’l] NI\{HV(jV"?k? l,...,’L)
X + ARy (8 -0 )
Agle\/?HV(kv ce 7l)
(5.6.110)

These two terms represent the general 2-loop NMHV amplitude for any number of

external particles. The explicit forms of the integrals in term of momentum-twistors are

presented in appendix F.
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V. All 3-Loop MHV Amplitudes

Finally, we present the integrand for all 3-loop MHV amplitudes. These amplitudes
were studied in the past, the 4pt formula for the integrand was given in [101] and the
5pt in [99]. The 4pt and 5pt amplitudes were also determined using BCFW recursion
and translated into pure momentm-twistor integrals in Chapter 4. However once again
our new strategy will both yield vastly simpler expressions for these integrands and also
generalize to all n.

We begin as always by drawing the colored graphs that contribute to general 3-loop
amplitude. While there are a large number of them, our experience with the 2-loop
NMHYV calculation tells us that for the purpose of “translating” the graphs into the
integrals, one needs to focus on the colored graphs without internal propagators. There

are just two of these,.,

(5.6.111)

The colored graphs suggest that the correct 3-loop integral must correspond to “gluing”

together three 1-loop MHYV integrals. But these can not be just pentagons because
of number of internal propagators, we would also need hexagons. Fortunately, in the
“polytope picture” of Chapter 6, the most natural form of MHV amplitude is written
using hexagons. We leave the detailed exploration of this gluing procedure to future work.
It suffices to say that we can indeed find objects which have support on the correct leading
dodecacuts (5.6.111). Having identified them, the magic happens again: to get the full 3-
loop amplitude, we need only to identify the correct ranges for the summations involved.

As a result, we can write the general 3-loop MHV amplitude for any number of external

particles as a sum of two structures,
2 Ji

Ji

11<i2<j1<
<ja<ki<ka<iy

i1<j1<k1<
<k <ja<ia<iy

ka

J2
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The explicit formulas for these graphs with all numerator factors are given in the ap-

pendix G.
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Chapter 6 Scattering Amplitudes and
the Geometry of Polytopes

6.1 Towards a Geometry of Scattering Amplitudes

Recent months have seen significant advances in our understanding of perturbative scat-
tering amplitudes in gauge theories, especially for N' = 4 SYM in the planar limit.
A generalization of the BCFW recursion relations [7,31] to all loops has been given
to determine the planar integrand described in Chapter 4 of the theory, naturally for-
mulated in momentum-twistor space [20], making the Yangian symmetry [49] manifest,
and extending the Grassmannian duality for leading singularities [10] to the full the-
ory. The integrand has also been beautifully interpreted [116,117] as a supersymmet-
ric generalization of the null-polygonal Wilson-Loop [40], making dual-superconformal
invariance [8,9,40,47] manifest and providing a general proof [116,132] of the Wilson-
Loop/Amplitude duality [40].

Despite these advances, our understanding of the integrand still leaves something
to be desired. The definition in terms of either scattering amplitudes or the Wilson-
Loop only manifests half of the superconformal symmetries of the theory, obscuring
the infinite-dimensional Yangian symmetry; it also invokes gauge redundancies that are
made necessary by any local Lagrangian description. The BCFW representation of the
amplitude is more compact, and gives a complete definition of the theory making no direct
reference to space-time notions. However it is not manifestly cyclically invariant: there
are many different BCFW forms, depending on the choice of legs for BCFW deformation.
All of this suggests that the various formulations for scattering amplitudes that have been
uncovered so far are different representations of a single underlying object, which awaits
a deeper, more intrinsic and invariant characterization.

In this brief Chapter we take some preliminary steps towards uncovering this un-

derlying structure. We will study the simplest non-trivial amplitudes in the theory-the
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tree-level NMHV amplitudes, and the integrand for the 1-loop MHV amplitudes. Fol-
lowing and generalizing the observations of [20], we will interpret these amplitudes as
the volumes of polytopes in certain extensions of momentum-twistor space. To actually
evaluate the volume, we need to triangulate the polytope into elementary simplicies, and
one natural choice of triangulation leads directly to BCFW (and CSW) representations
of these amplitudes. However we also find even simpler triangulations of the polytopes
that yield completely new expressions for these familiar old friends.
The BCFW representation of the NMHV tree amplitude, written in momentum-
twistor space, is
MNMHV %Z [Lii4+1j5+1] (6.1.1)

1,J
where

6* (na(bede) + - - - + ne{abed))
(bede) (cdea) (deab){eabc) (abed)

[abcde] = (6.1.2)

is the basic “R-invariant” [8] written in momentum-twistor space [19]. Similarly, the

1-loop integrand for MHV amplitudes is [15]
1 . -
MM = 5 D L+l 15 j+1] (6.1.3)
1,]
where we have introduced objects [abc; zyz] via

((Aabe)(Bayz) — (Azyz)(Babe))?
(ABab){ABbc)(ABca){ABxy)(AByz)(ABzz)

[abc; xyz] = (6.1.4)

Note the presence, in both of these formulas, of the special point “1”. The CSW
representation [51,132] of the same amplitude is obtained by replacing “1” in this formula
with a general momentum twistor, Z; — Z,.

The BCFW/CSW expressions for the amplitudes are not manifestly cyclically in-
variant /independent of the auxiliary twistor Z,, nor are they manifestly free of spurious
poles. All these properties only emerge after the summation is performed. There is a nice
algebraic way of seeing this. The basic objects appearing in the formulas satisfy iden-
tities that allow us to express them in different ways. In general, such identities follow
from Grassmannian residue theorems [10]. We can also understand them in the following

simple way. Take any Yangian invariant object Y, x(Z1,- - , Z,), which a residue of the
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Grassmannian integral. Consider its BCFW deformation under 7, — 7, + 22, 1. It
is easy to show that the residues of all the poles in the complex 2z plane are also Grass-
mannian residues, and are therefore Yangian invariant. Thus, an application of Cauchy’s
theorem on the BCFW deformed function of z yields a relation between Yangian invari-
ants.

Starting with the basic NMHV R-invariant [abede], we can slightly generalize this
procedure and consider a general deformation Z, — Z, 4+ 2Z¢. Then, Cauchy’s theorem

yields the familiar 6-term identity
[abede] + [bedef] + [ede fa] + [defab] + [efabe] + [fabed] = 0. (6.1.5)

We can also apply this to the basic objects [abc; xyz]. It is interesting to note here that
that while the [17i41;1j j+1] are indeed Yangian invariant, the general [abc;zyz] are
not. Nonetheless under the deforming 7, — Z, + 244, or Z, — Z, + 27, Cauchy’s

theorem yields 4-term identities

labc; xyz] + [bed; xyz] + [cda; zyz] + [dab; xyz] = 0, 6L
[abc; xyz] + [abe; yzw] + [abe; zwz] 4 [abe; wry] = 0. (010

Suppose we are given some linear combination of the [abcde]’s. Given these identities,
we can have two different linear combinations representing the same function. How then
can we determine if two expressions are equal? More formally, how can we character-
ize the equivalence class of linear combinations of R-invariants, which differ by these
identities?

The key is to note that the R-invariant identity can formally be written using a
“boundary” operation. Imagine what is (for now) a completely formal object, a “5-
simplex” [abedef], which is completely antisymmetric in its indices. Then, the linear
combination of R-invariants entering the 6-term identity is just the “boundary” of this

simplex, and the identity becomes
J [abedef] = 0. (6.1.7)

Now suppose that o and [ are two linear combinations of R-invariants. We wish to
determine if @ = 8 up to 6-term identities; that is we want to determine whether there

exists some simplex ¢ such that
a =+ do. (6.1.8)
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Since 92 = 0, it suffices to check that
Ja = 0p. (6.1.9)

Thus we have learned that while any given representation of an amplitude in terms of a

)

sum of R-invariants is not unique, the “boundary” of the amplitude is invariant. Using
the standard definition of the boundary operation on simplicies, the “boundary” of one

of the R-invariants is
0 [abcde] = [abed] + [bede] + [cdea] + [deab] + [eabc] . (6.1.10)

Note that the boundary is also a list of the poles occurring the definition of the R-
invariant—this is not an accident, as will become clear in the polytope picture of the next
sections.

We can now easily compute the boundary of the BCFW/CSW forms of the NMHV
tree amplitude:

0> [rii+ljj+1] = [ii+1jj+1] (6.1.11)
irj irj

which is a beautifully cyclic object, independent of the point Z,, in one-to-one corre-
spondence with the democratic sum over all the physical poles of the NMHV amplitude!
This is enough to prove that the BCFW/CSW forms of the NMHV amplitude define a
cyclic object free of spurious poles. It is possible to prove something stronger: the only
combination of R-invariants that is free of spurious poles is the NMHV tree amplitude!
This is because if the amplitude is free of spurious poles, its boundary must only contain
“physical” 3-simplicies of the form [ii41j j+1]. Since this is supposed to be a bound-
ary, its boundary must vanish. It is easy to see that the only combination of physical
3-simplicies that it boundary free is _, .[ii+1 7 j+1].

We can do exactly the same exercise for the MHV 1-loop amplitude. The 4-term

identities can be interpreted as
[0(abed), zyx) =0,  [abe, O(zyzw)] = 0. (6.1.12)

This makes it natural to define a boundary operation on [oy; 03] as acting separately on

the two simplicies o1, o9,
0o1; 09 = [001; Do) . (6.1.13)
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The boundary of the individual terms in eqn. (6.1.3) are again in one-to-one correspon-
dence with their poles. The boundary of the BCFW/CSW form of the 1-loop amplitude
is

0 [wii+lixjj+l] =Y [ii+1;5j+1]. (6.1.14)

2y ©J

Again this is a beautifully cyclic object, independent of the point Z,, in one-to-one
correspondence with all the physical poles of the integrand. We can in fact give a slightly
more general expression for the MHV integrand using two reference twistors Z,, Z,,

which has the same boundary, as

MY = %Z [kii41; % j54+1]. (6.1.15)
2%

There are of course many other representations of these amplitudes; again, only the

“boundary” is invariant.

We have gone through this discussion in some detail because these sorts of algebraic
arguments—reflecting Grassmannian residue theorems—generalize readily to more com-
plicated amplitudes [35]. In the rest of this chapter, however, we will pursue a different
line of thought. Taking our cue from [20], we will see that the appearance of “simplicies”
and “boundaries” is not an accident, but has a deeper geometric origin. As we have men-
tioned already, the amplitudes will be interpreted as the volumes of certain polytopes.
Certain triangulations of these polytopes give a very pretty and direct geometric inter-
pretation of the BCFW/CSW representations of the amplitudes. But the picture does
more than simply re-organize algebraic manipulations in geometric terms: a different
triangulation of the polytopes leads to entirely new representations of the amplitudes,
which are both strikingly simple and manifestly cyclic and local.

We will begin our discussions with an extremely simple warm-up exercise familiar

from elementary plane geometry. We then move on to discussing the MHV 1-loop and

NMHYV tree amplitudes.

6.2 Warm-Up: The Area of Polygons in CP?

Consider a simple set of functions
1 {abc)?
2 (Aab)(Abc)(Aca)

[abc] = (6.2.16)
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Here Z,, . and Z,4 are in C3. Since [abc] has weight zero under rescaling a, b, ¢ we can also
think of Z,; . as points in CP?, corresponding to twistors for our “external particles”,
while Z 4 is a reference twistor.

Clearly the [abc]’s are analogous to (a particular Grassmann component of) the R-
invariants [abcde] we are familiar with, and are also very closely related to the [abe; xyz]
objects appearing in the 1-loop MHV amplitude. Let us define an analog of the “ampli-
tude”, A,, via a “BCFW/CSW” formula of the form

Ay =) [xii+1]. (6.2.17)
This expression is manifestly cyclic invariant but term-by-term has “unphysical poles”
(where “physical poles” are only of the form (A j j+1)). However, we can easily see that
the sum is in fact cyclic and only has physical poles. Following our earlier discussion,
we can derive identities satisfied by [abc] by deforming Z, — Z, 4+ 27, to find a 4-term
identity

labc] + [bed) + [eda) 4 [dab] = 0. (6.2.18)
We can think of this formally as
dlabed)] = 0. (6.2.19)
Following our earlier logic, we can define the “boundary” of [abc] itself as
Olabc] = [ab] + [bc] + [cal (6.2.20)

which is in one-to-one correspondence with the poles in [abc]. Finally, we can compute
the “boundary” of the “amplitude” to find
0A, = lii+l] (6.2.21)
which is just the democratic sum over all “physical” boundaries.
These observations make it natural to associate [abc] with a triangle in CP* whose
vertices are Z,, Zy, Z., and the amplitude itself with the interior of the polygon L, with

vertices Z; and edges (Z;, Z;11), as in the figure below for the case of six particles:

2 3 2 3
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Now the [abc] certainly have the same additive structure as the simplicies defined by
the triangles (abc). We should therefore be able to give a formula for [abc| as a function
of the triangle (abc), in a way that preserves this additive structure. This is very easy to
do. The function [abc] is the area of the geometric dual triangle to [abc] in CP?, whose

edges are the dual lines to Z,, Z, Z.:

The amplitude is then simply the area of the geometric dual L, of the polygon L,,:
(12 2 \(23)

5 /(45)

Let us see how this works explicitly by doing some very elementary plane geometry. Let
the twistors Z., . and the reference twistor Z have an upstairs SLs index. We are
interested in the dual space whose co-ordinates W; have a lower S L3 index. Now, suppose
we are given three points W}, W2 W3, As is standard in projective geometry, the point

Z% breaks SLz but leaves an SL, invariant, and defines a projection direction. Putting

0 x
Zh=|o | . Wi=|y (6.2.22)
1 1

we can think of the points (z,y) as lying in a two-dimensional plane, on which the
unbroken SL, acts. The area of the triangle associated with W1 W2 W3 is the SL,

invariant given by
1 72 113 1
Area(W ,W ,W ) = 5 yl y2 y3 (6.2.23)
1 1 1
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which we can write in a projectively invariant way as

1 (W)
2173y — —
Area(W W=W?) = 2(Zp - WWWZp-W2)(Zy-W3)

Note that this is not invariant under rescaling the reference twistor Z 4, which is ap-

(6.2.24)

propriate, since Z4 defines the plane in which the area is defined and the area is not
dimensionless.

Now, suppose we are given instead three points in the original space, Z!, Z[ Z!. Each
of these points is associated with a line in the W space, with e.g. the point a defining the
line Z!W; = 0. The lines a and b intersect at the point (ab) in W space, with co-ordinate
W) = ¢, Z) ZE Thus, the area of this dual triangle is

__ 2
Area([abe]) = %Ji‘éﬁifﬁiﬁ?ﬁ@ - %(Aawgggmc@
With these elementary facts in hand, it is easy to identify the triangulations of the

= [abc]. (6.2.25)

polygon associated with the BCFW /CSW representations of the amplitude, which cor-

—_—

respond to triangulating L,, with the dual triangles [xii+1]. An example of a BCFW

triangulation for the 4-particle amplitude is shown below:

+  [241]

Note that the BCFW triangulation is characterized by not introducing any new lines, but
certainly introduces new vertices. However, we have an even more obvious triangulation
of the same object, introducing a dual reference point W,, and triangulating directly

using the vertices as
(12)
a1
4 2 — 4 ' 2
34)
3 (23) 3 23)
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For a general polygon, the area can be triangulated using the triangles with vertices
(Wi, (i=14), (ii+1)). We can compute the area of this triangle using equation (6.2.24),

giving an n—term expression for the amplitude

=53 7 AT = 2 W iy (6229

Note that in this form, all the poles involving the Z; are manifestly “physical”. This
is obvious, since we have triangulated the polygon only using its vertices, and the di-
vergences of the amplitude can only occur if some vertex (kk + 1) moves off to infinity,
making the area diverge. By contrast, the BCFW/CSW representations introduce new
points in W space, with associated spurious pole which cancel in the sum. Note also
that this triangulation involved a natural reference point W,, analogous to the reference
point Z, in the CSW representation of the amplitude. The result is independent of W,
but term-by-term has a “spurious pole” (Z4 - W,). We can choose W, to coincide with
one of the external points, say W, = (kk+1), giving an (n — 2) term expression with
manifestly physical poles which is however no longer manifestly cyclic invariant.

We close this warm-up section with a few comments. We have drawn pictures of our
polygons on a real 2-dimensional plane, but of course the functions are all holomorphic
and defined on CP?. The complex areas have a very nice interpretation in terms of
contour integrals in CPP? with boundaries on the polygon L, [20]. It is perhaps easiest to
get a feeling for such contour integrals with boundary by considering the simplest case of
a standard integral over one complex variable z, thought of as a projective integral over
CP'. Let’s introduce a variable w; = (x,y) in C2. Consider an integral with boundaries

I, _ I — ().
on z,wy = 0, zywy = 0:

/ _Dw_ (6.2.27)

(2¢ - w)?
Za - w=20
Zp W =
here, we use
d™w
D" lw= ———— 6.2.28
VOl(GLl) ( )
to denote the measure on CP""'. Using inhomogeneous co-ordinates w = (1,z), the
boundaries are at w = —z,/y, and w = —x,/y,. The integrand is simply m, and
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can be trivially integrated on any contour between the two end-points. The result is

Dw  (ab)
/ (ZC . w)2 - <CLC><Cb>' (6.2.29)

2w =20

zp-w =20

This simple result generalizes readily to CP"; for instance our elementary triangle [abc]

is given by
D*W
bc] = —_. 6.2.30
[abc] / (Za W) ( )
Zo - W =0
Zy-W =20
Z.-W =0

This representation of the [abc]’s as a contour integral makes the additive properties and
the 4-term identities manifest, since Z,, Z;, Z. define the boundaries of the integration
region. The full amplitude A,, is expressed as a contour integral with boundaries given
on the dual polygon Zn:
D2W
A= | ———. 6.2.31
/ (Za-W)? ( )

Ly,
In the following sections, we will need the generalization of the simple formula for
the area of triangles in CP? to the general volume of (n — 1)-simplicies in CP" !, again
projected along some specific direction Z4. Specifying the vertices W},--- W2, the

volume is obviously

1 (Wt...wm)
Vol [W}, -+ W] = : 6.2.32
oL [Wr, -, W] (=11 (Za- W) - (Za-Wn) ( )
If instead we specify the (n — 1)-simplex by giving its faces ZI, -+ Z1 the volume is
1 Zy 2\
Vol [Z],---, 2] = 2 ) (6.2.33)

(=W (ZAZy - Zn ) ZaZy - Z) -\ Za Ly L)
Finally, in our discussion of MHV 1-loop amplitudes, we will encounter plane polygons
defined by twistors in CP*. Suppose we are given two reference twistors, Z4, Z5. The Z4
define a plane and thus a CP? inside the CP?. Restricting all the twistors to this plane,

we can then project along the direction Z4 to define the area as we did above. Thus,
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given three twistors Z!, Z!. Z! in CP?, there is an associated area we can label [abc]p. 4,
where the subscript reminds us that we are in the plane defined by Zp and projecting

along Z 4. This area is given by

(Babc)?
b = : 2.34
95l 34 = 7B Aab) (B A (B Aca) (6.2.34)
The area of the corresponding n—gon is
Anpa =Y [xii+tl]p,. (6.2.35)
We can also interpret this as a contour integral as
D3W
Anpa= 6.2.36
Bid / (Zp - W)(Za-W)3 (6.2.36)

where the contour of integration is “S?x Polygon”, where the S! is evaluated around
the pole Zg - W = 0, restricting the integral to the appropriate CP?, leaving us with the
remaining boundary on the polygon L,.

We can also give a “local” triangulation of A,, 5.4 analogous to equation(6.2.26). The
reference point W, in CP? can be obtained by restricting a general reference bi-twistor

X to the Zp plane, via W,; = eUKLZ;E];XKL. This gives us

P < (BX i)(Bi-1ii+1) (62.37)

- BAX)(BAi-1i)(BAii+1)
There are obviously n terms in this sum. Note again that all the poles involving the
Z; are manifestly local. Each term does have a spurious pole (BA X), but of course
these poles all cancel as the result is independent of X. We could make a special choice
where X = (kk + 1) co-incides with one of the vertices of the polygon. This gives us an

expression with only (n — 2) terms and no spurious poles of any kind, which is however

not manifestly cyclically invariant.

6.3 1-Loop MHV Amplitude Integrands

We now give a simple polytope interpretation of the 1-loop MHV integrand. Almost all
the results we need were already discussed in our warm-up. Let us again examine the

1-loop MHV integrand in BCEW/CSW form

5 < (A * 0i+1)(B * jj+1) — (A % jj+1)(B * ii+1))* (6.3.38)

AB * iY(ABii+1)(ABi+1%){AB % j)(ABj j+1){AB j+1 %)

i3
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We will expand the square in the numerator. The first term is given by the sum

(A *x ii+1) (B * jj+1)
ZZ_: (AB x i)/(ABii+1)(ABi+1%) z]: (BA % jY(BAj j+1)(BAj+1%) (6.3.39)

We can recognize these expressions as computing the area A, .4 discussed in the warm-
up section, corresponding to the area of the polygon restricted to the CP? defined by Zp

and projected along Z 4. The above sum becomes

Z [kiitl]p X Z [xj j+1] p.a

@ J

= AnA;B X AnB;A- (6340)

Let’s now look at the cross-term, which has the form

A*zH—l)(B *11+1) (B * jj+1)(A * jj+1)
QZ 4D (6.3.41)

x W AB i1 (ABi+1%) « (BA % J)(BAj j+1(BAj+1%)°

We can also relate this to a polygon areas by using a differential operator

(A% ii+1)(B *ii+l) 1( 0 ) (A % ii+1)?

(AB * iY(ABii+1)(ABi+1%) 2 " 0Z4 ) (AB * i)(ABii+1)(ABi+1%)
(6.3.42)
The cross-term becomes
1 0 . 0 .
b <ZB aZA)Z[*zH—l] X (ZA'%);[*j]+1]
1 0 0
= —§ (ZB . E) AnA;B X (ZA 823) AnB;A- (6343)

We finally have

1 0 0
MivHiIo\épn = AnA;B +AnB;A 2 (ZB 8Z )AnA;B X (ZA 8Z )AnB;A- (6344)

This expression of course makes the cyclic invariance of the integrand completely mani-
fest.

We can interpret the MHV 1-loop integrand as a contour integral in a number of
ways. The direct transcription of the expressions we have given is a contour integral of

the form
/ K(U,V, A, B)D*UD*V (6.3.45)
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where
( )y Vo 4hy ) (BU)?’(AV) (317)2(4v)2 (Bll)(4V)3

The contour of integration is “Polygon xS x S'x Polygon” in the obvious way. This

(6.3.46)

integral representation can be directly derived from a Fourier transformation of the Grass-
mannian formula for the MHV 1-loop integrand given in Chapter 4, but we won’t pursue
this interpretation further in this chapter.

Note that this form does not make it completely obvious that the integral depends
on A, B only through the line (AB), though we can note that Z, - 0/0ZpK = Zp -
0/0Z 4K = 0. There is a more elegant representation as a contour integral, which makes
the dependence on the line (AB) more explicit:

/ D3UD3V
(UVAB)*
where the contour is “Polygon xS?x Polygon”. Note that the integrand is not only

(6.3.47)

explicitly only a function of the line (AB), it is also only a function of the line (UV'); the
integral over the S? leaves us with an integral over the Grassmannian G(2,4).

Finally, returning to eqn. (6.3.44), we can obtain a local form of the MHV 1-loop
integrand using the “local triangulation” of A,, 4.5 given in equation (6.2.37). It is natural
to use two different reference bi-twistors X, Y for triangulating A,, 4.5 and A,, p,4. A short

computation yields

MHV (AB (i) (Y j))(AB (i-1ii+1) (1 (j-1j j+1))
MiZioopn = ZJ (ABX)(ABY)(AB il {ABii+1)(AB j—1 j)(AB j 1) 24
Here
(ABX)N(Y])) = (AX(BY j) — (A« B), (6.3.49)

(AB (i-1ii+1) N (j-1jj+1)) = (Ai-1lii+1)(Bj-1jj+1) — (A + B).
This expression for the amplitude is also manifestly cyclic. Note that, in complete parallel
with the discussion around equation (6.2.37), all the poles involving the Z; twistors are
manifestly local. Each term has a dependence on the X, Y bi-twistors, but these cancel
in the sum which is independent of X, Y. There are a number of obvious special cases of
interests for this new form of the integrand. For instance we can take the two bi-twistors
X and Y to be equal, yielding the form

3 (X ij)(AB (i-1ii+1) (1 (j-17j+1))
(ABX)(ABi-1i)(ABii+1)(AB j-1j)(ABj j+1)

(6.3.50)

i)j
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We can further take X to be a simple bi-twistor corresponding to one of the external
points, for instance X = (nl). With this choice there are no spurious poles of any sort,
but the result is not manifestly cyclic invariant. Averaging over all cyclic images yields

the local form of the integrand given in Chapter 4.

The equality between the local form equation (6.3.48) and the BCFW form of
equation (6.1.3) is a highly non-trivial identity between rational functions that we have
now understood geometrically. As stressed in Chapter 4, the loop integrand is a well-
defined object in the planar limit of any theory, and should manifest all symmetries.
While the BCFW form on the integrand exhibits the Yangian invariance of the theory,
the local form is also crucially needed [15] for a physical IR regularization [92-94] of the

theory. It is therefore very pleasing to see the two forms related in such a direct way.

6.4 NMHYV Tree Amplitudes

We now turn to the NMHV tree amplitude, which has been given a polytope volume
interpretation in [20]. In [20], the description of the polytope was closely associated with
the BCFW representation of the amplitude. We will begin by describing the polytope in

a slightly more invariant way.

As a consequence of the 6-term identity equation (6.1.5) for R-invariants, we can
observe that the [abcde]’s have exactly the same additive properties as 4-simplicies in
CP*. In our warm-up example, we associated the [abc]’s with the area of a dual triangle
in CP?. We would like to do the same for the R-invariants [abcde], but there is a small
difference: each particle i is labeled by a supertwistor (Z!,n®), where a = 1,--- , 4 is the
SU(4) R-symmetry index. In order to proceed we have to associate a point in CP* with
this super-twistor. Fortunately this is easy to do. Let’s introduce an auxiliary set of four

Grassmann variables ¢,, and define an “extended twistor” in CP* by

zl = ' : (6.4.51)




We also introduce the reference twistor

zt = (6.4.52)

_ oo O O O

which preserves the SL, symmetry acting on the bosonic Z!. It is natural to consider

the (bosonic) volume of the 4-simplex whose faces are Z,, 2, Z., 24, Z.:

1 (Z. 2y 2.242.))"
Vo 2=z 2220208 2.2.2.) - (2B 222y O

We use the notation ((Z,2;--- Z.)) to denote the contraction of the extended twistors
with the 5-index €77 tensor, to distinguish it from the 4-brackets (abed) used with
the usual bosonic Z! twistors in CP®. We find trivially that

(¢ - na(bede) + cyclic)?

1
% [Za’ ce ,Ze] = Z (abcd) <bcde> e (eabc> ’

(6.4.54)

This depends on ¢; to get a function of the (Z;,n;) alone we simply integrate over the

®o. This directly yields the R-invariant
[abede] = / d*OV (24, -+, 2] (6.4.55)

Thus, in complete analogy with our warm-up example, we have associated the [abcde]
with (the ¢ integral of) the volume of a simplex in the Wy space geometrically dual to
Z7T space, whose faces are Z,,---, Z.. The algebraic properties of the R-invariants we
have already discussed then precisely reflect the geometry of these simplicies.

We can now give a nice definition for the NMHV amplitude polytope. Let us return
to the BCFW /CSW expression

MM — %Z [xii+1jj+1]. (6.4.56)
]
Mirroring our algebraic arguments from the introductory section, we can think of the
R-invariants [*ii+1j j+1] as defining a 4-simplex in a (Z-space) CP*; the sum over
all these tetrahedra defines a polytope P,. P, is completely characterized by giving its
boundary, which is P, = }_, ; [ii+1j j+1], showing that P, is actually independent of
the point .
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We can think of P, as the “square” of the Wilson-polygon L, in a natural way.
Speaking slightly more generally, suppose we are given two ordered sets of points X =
(x1,m9,+++ ,xy) and Y = (y1, Y2, - , Yn), €ach of which defines an (in general non-planar)
polygon loop in CP*. We can form a 3-simplex [x;z;41y;y;+1] in CP*, by taking pairs of
edges in X and Y. Summing over all these 3-simplicies defines a polyhedron @,,, and it
is easy to check that 0Q), = 0 so @, is a closed 3-volume. As such, we can we can write
Qn=0(X ®Y), where (X ® Y) is a 4-Polytope in CP*, one triangulation of which can
be given as (X ® Y) = 3, ; [xii+1jj+1]. Note that we have used the CP* structure in
an essential way here, in going from @),, being closed to being expressed as the boundary
of a unique 4-dimensional object. Note also that the ® operation behaves as an algebraic
direct product in that it is linear in its two factors. It is also interesting to note that,
while the X,Y polygons are in general non-planar, they nonetheless behave as plane
polygons in this product, as reflected in the fact that X ® Y satisfies 4-term tetrahedral
identities separately in X and Y.

With this definition, the polytope P, associated with the NMHV tree amplitude is
related to the Wilson-Loop Polygon L,, as

1
Pn — §Ln ® Ln‘ (6457)

The NMHV amplitude is [ d*¢ of the volume of the polytope P, geometrically dual to
P,, which we can represent as a contour integral via

DYW

MNMHEV: 4!/d4 /— 6.4.58

B o | G owr (6.4.58)
P,

n

In order to actually compute this volume, we need a triangulation of ﬁn in terms
of elementary 4-simplicies. We may triangulate the polytope in any way we like. The
BCFW representation of the amplitude is one particular choice, which yields the shortest
expressions for the amplitude but has spurious poles. The BCFW triangulation adds no
new planes, but does add new vertices, and the spurious poles are associated with these
“spurious” vertices. The geometrically dual choice—adding no new vertices but adding
spurious planes—will yield expressions for the amplitude that allow us to expose manifest
cyclicity and locality in a new way.

We do this by first triangulating each of the faces of P,. All the boundaries of P,

lie in the planes dual to the Z;; we denote the face contained in this plane by Fj,.
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Conveniently, the faces are 3-polytopes, which will allow us to visualize them easily. We
can triangulate F, = > T}, where each of the T}, is a tetrahedron with 4 vertices.
In order to triangulate lgn, we introduce a reference “suspension point” W,. With each

tetrahedron 7'

]’n,

we associate a 4-simplex 77n just by adding the point W, to the 4
vertices of 77n The sum over all these 4-simplicies then gives a triangulation of P, given
by ﬁ” - Zjn/ 7771

We have a natural choice for the “suspension point” W,. Given that our choice of Z,
leaves the SL, acting on the usual bosonic momentum-twistors invariant, it is natural
to choose W, to also preserve this SL,. Explicitly, we can choose W, = (0,0,0,0,1).
Finally, for a “local” triangulation, we will choose to triangulate the faces only using the
given “physical” vertices (ii+17j+1).

Following [20], let us get acquainted with the faces of 13n by looking at Fj,. The
vertices of Fy,, are all the points of the form (12kk+1) and (2311+1). Two vertices
(2abc), (2zyz) are connected by an edge if the triples (abc), (xyz) share two indices in
common. In the simplest case n = 5, the face F5 is just a tetrahedron with vertices
(1234), (1245), (2345), (2351). For 6 particles, F5 ¢ has six vertices, and while e.g. (2356)
is connected by an edge to (2345), there is no edge connecting (2356) to (1234).

It is very easy to recursively build F;, systematically, starting from the tetrahedron
for Fy5. While the vertices (1234), (1245), (2345) occur in both F,5 and Fhg, the ver-
tex (2351) occurring in Fy5 is absent in Fhg; conversely there are three new vertices
(2356), (1256) and (2356) in Fhg not contained in Fh;. Thus we can obtain Fhg by
starting with Fy5, “chopping off” the vertex (2351) and replacing it with the three new

vertices, as shown below:

(2351)
(2356)  (1256)
% @
(2345) (245 2349 (1245)
(1234) (1234)

(2356)  (1256)

? W
(2345) (1245)
(1234)

231



Similarly, we can go from the Fyg to Fh7 by “chopping off” the vertex (2361), and
continue in this way to define all the F5 .
We now wish to give a local triangulation of the F5,. Let’s illustrate this in pictures

with one local triangulation for the first non-trivial case of Fjg:

(2356) (1256) (2356) (1256) (2356) (1256)

[P = N+ DN
(2345) (1245) (2345) (1245) (2345) (1245)
(1234) (1234) (1234)
(2356) (1256) (1256) (2356) (1256)
T+ + W
(2345) (1245) (2345) (1245) (2345)
(1234) (1234) (1234)

This “local” triangulation is to be contrasted with a “BCFW?” triangulation, which would
adds back the “spurious” point (2351), and represent the prism for Fsg as Fb5 with the
“chopped off” tetrahedron subtracted.

For general n, we can build F;,, from F,,_; by “chopping off” the vertex (23n—11)
and adding the three vertices (23n1),(23n—1n),(12n—1n). This makes it natural to
define

Fyp=Gn+T, (6.4.59)

where T,, is the tetrahedron

(23n-1n) (12n-1n)

3
I

(6.4.60)

(1234)
In going from Fy,,_1 to Fy,, we just chop off the vertex (23n—11) from 7,,_,, thus we

can write
(23n—2n—-1) (12n—2n—1) (23n—2n—-1) (12n—2n—1)

23n—1 (12n—1n
(23n=1n) (1Zn=1n) (23n—1p) (12n—1n)

Fgm == Gn,1 + = anl + Tn + (6461)

(1234) (1234)
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Since Fy,, = G, + T, this gives us a recursive formula for the G,:

(23n—2n—-1) (12n—2n—1) (12n—2n-1) (23n—2n-1) (12n—2n-1)

(23n—1p) (12n—1n) (23n—1n) (12n—1n) (23n—1n)

G =G+ =Gp1+ +
(1234) (1234) (1234)
Note that in the last step we chose one of two possible triangulations of the prism occur-
ring in the first term. This is not fundamental, we have made this choice because it will
lead to the a slightly simpler final form for the amplitude.
We can trivially solve for all the GG,,. Doing this and adding 7}, we find for £y,

(23i-11) (12i—14) (12i—14)

(23ii+1) (23d4+1) (124i+1)
Fop=3Y_ ) + ' (6.4.62)

(1234) (1234)
note that the T, contribution is nicely represented by the term with ¢ = n in the first sum.
Note also that we sum over all ¢ without worrying about any limits since any degenerate
configurations have vanishing volume. Actually it is easy to see that the number of non-
degenerate terms is 2n — 9 since we start with one tetrahedron when n = 5, and then
each increase in n needs one more chopping which generates two more terms.
Obviously this procedure works for any face Fj, just by cycling labels, and the final

result for Fj,, is

(jj+li=14)  (j—1ji—14)

(j j+1iit1) (G j+liit+1)
ij = E +

i

(j—1ji—14) (jj+lii+l)  (j—lji-1i)

(1 jiie)
R (6.4.63)

(J=17+1j+2) (J=17J+1j+2) (J=175+17+2)
Now that we have the triangulation of the faces, we can easily compute the vol-
ume of the triangulations of the polytope itself, involving the addition of our suspen-
sion point W, = (0,0,0,0,1). The volume associated with the tetrahedra appearing in
equation (6.4.63) for the face Fj,,, is
(W (=17 j+15+2) (—1ji—14) (jj+1ii+1) (jj+si—si)))
(J=17J+1j+2)(G—1ji=10)(j+1ii+1)(jj+si—si)

(6.4.64)
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which can easily be computed. There are 16 Z%’s in the numerator and a single dual
twistor W,z. Thus the 5-bracket expands to a sum of terms where one of the Z’s is
contracted with W,, and the remaining 15 are grouped into the product of three 5-
brackets. Since Z; occurs four times, for a non-zero result one of these Z; must be
contracted with W,. There is only one non-vanishing way of grouping the remaining Z’s

into H-brackets, and we find this volume to be

¢ (=14 J+1j+20)((G—1jj+1i—si)){(jj+si—1ii+1))

(G—1jj+1j4+2)(—15i—1a)(jj+1ii+1){(j j+si—si) (6.4.65)
the [ d*¢ integration is trivially done to yield
b =1 g Ly 4 20} gl isih s in LAY - g 4 g
(J—=1jj+1j4+2)(j—15i—10)(Jj+1ii+1){(jj+si—si)
Here, we have defined the Grassmann object
{abede} = n,(bede) + - - - + ne(abed) (6.4.67)

and the four-bracket in the numerator represents the contraction of SU(4)g indices of the
n’s.

We have thus found a manifestly cyclic and local formula for the NMHV tree ampli-
tude

ANMHEY Z nj,{i—=1jj+1j+2i},{j—1jj+1i—si}, {jj+si—1ii+1})
" (J—17j+1j4+2)(j—1ji—=14),(jj+1ii+1){jj+si—si)
(6.4.68)

This expression is amazingly simple, with n(2n —9) non-vanishing terms. Here (2n—9) is

i,j;s==+1

simply the number of tetrahedra in each face we already encountered in equation (6.4.63).
It also has another striking property: despite naturally being written as a function of the
supersymmetric Grassmann 7 variables, the individual terms in the sum are not invari-
ant under supersymmetry transformation (to speak nothing of the Yangian symmetry).
Indeed, the SUSY variation cancels only in a telescopic sum over all the terms.

There are other possible local triangulations of this polytope. For instance, we can
choose the “suspension point” to be one of the vertices of the polytope (kk+1jj+1).
This is analogous to the choice “X = (n1)” for the reference bitwistor in the local form of
the MHV 1-loop integrand, and gives a shorter formula with (n—4)(2n —9) terms, but at

the cost of losing manifest cyclic symmetry. These local forms can finally be compared
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with the BCFW expressions with 3(n — 3)(n — 4) terms, which contain ~ 1 as many

1
1
terms at large n, but don’t make cyclicity or locality manifest.

It is also amusing to give a formula for standard helicity amplitudes; this only requires
computing simple determinants as explained in e.g. [51]. Consider in particular gluon
amplitudes A, (17 ¢~ j~) where particles 1,4, 7 have negative helicity and the rest have
positive helicity. Up to the Parke-Taylor pre-factor, the result is precisely given by the
above formula for MMV "with the 7, replaced by a particular function of the spinor-

helicity variables. Explicitly, we find that

(i) k1) 1<k <i

A”(l_i_j_):<12><23>1---<n1>M’TMHV o kD i<k<g ). (6469

0 otherwise

The split helicity amplitudes are particularly easy to extract for all n:

(12)4(23)* 3 (1344)(13i=si)(2+si—1ii+1)

A(172737) = sy () (1234)(124-14)(237i+1)(22+s i-s 1)

(6.4.70)

i;s==+1

Using (i—1ijj+1) = (i=14)(j j+1)(p; + - - + p;)?, the poles are directly functions of
spinor-helicity variables and take the usual form of Feynman propagators. For n = 6,
this expression is equivalent to a form derived long ago using the Berends-Giele recursion
relations [3]; we now see that this formula and all its variant forms flow from the single

formula, equation (6.4.69), which also generalizes to all helicity configurations and all n.

We conclude our discussion of NMHV amplitudes by remarking that the use of a
bosonic CP* space to describe supersymmetric amplitudes is quite striking. One might
have expected supersymmetric amplitudes to be expressed as an integral over CIP’3|4, and
indeed the R-invariants have a beautiful interpretation as the super-volume of a super-
polytope [20] in CP**. This form is also very closely related to the momentum-twistor
Grassmannian formula [19]. The non-linear way in which Z;, Z; package the supersym-
metric information of the theory into only a single extra dimension is more novel and
interesting, and made the local triangulation leading to equation (6.4.68) possible. We

expect that further generalizations of this idea are needed for higher N¥MHV amplitudes.
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6.5 Discussion

Many of the advances in our understanding of perturbative scattering amplitudes in the
last five years were driven by the discovery of the CSW and BCFW recursion relations
for tree amplitudes. The ability to analytically compute all tree amplitudes enabled the
generation of a huge amount of “data” about the theory, which exposed a number of
new, remarkable and deeply interwoven mathematical structures underlying the physics.
Amongst other things, these insights stimulated the generalization of the early methods
to all loop orders, making a more incisive exploration of the structure of the theory
possible. In this chapter we have continued the exploration of one of the beautiful
structures uncovered in this period.

The polytope picture is clearly intimately related to the Grassmannian formula in mo-
mentum twistor space, giving a lovely geometric understanding of the additive structures
appearing in the amplitudes, which are understood more algebraically as a consequence
of residue theorems in the Grassmannian formalism.

The Grassmannian picture extends to all amplitudes and loop orders, giving expres-
sions that are term-by-term manifestly Yangian-invariant. There is clearly a beautiful
algebraic structure at work in governing the properties of Grassmannian residues and
residue theorems, guaranteeing the emergence of physical properties such as cyclic in-
variance, locality and unitarity. While we have not yet extended the polytope picture to
these more general amplitudes, there are strong reasons to suspect this must be possible,
and we expect that such an extension would give a more geometric understanding of
these algebraic structures.

However, even in the baby examples we have studied in this chapter, it is clear that the
polytope picture does much more than simply geometrize the understanding of relations
between Yangian invariants! While one simple class of polytope triangulations do indeed
provide such an understanding, the even more natural class of triangulations we examined
here have opened the door to a completely new set of objects and ideas, far removed from
their BCFW /CSW origins. The existence of such strikingly simple and manifestly local
forms for the scattering amplitudes is a real surprise. Indeed the tremendous complexity
of standard Feynman diagram calculations is directly related to making locality manifest,

while the tremendous advantages of BCFW seemed inexorably tied to the appearance of
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spurious poles!

This strongly suggests a new set of principles at play. It is tempting to speculate
that these principles will be closely connected to a more physical “spin-chain” picture
for scattering amplitudes. Superficially, the new expressions for the amplitudes we have
found certainly look more closely related to an underlying spin-chain, not only on account
of their manifest cyclicity, but also because of the suggestive way some of the symmetries
are realized. It is also refreshing to move somewhat away from dealing with objects
that are manifestly supersymmetric/Yangian invariant, particularly keeping in mind the
eventual goal of understanding non-supersymmetric theories!

There is clearly some remarkable geometry behind these polytope formulas. It is
particularly striking that in both of the examples we studied, the Wilson-Loop behaves
as if it were a plane polygon, with additive identities like those of the triangles in CP?
explained in our warm-up example.

Finally, the polytope picture also strongly inspired the search for and discovery of
the amazingly simple local expressions for multi-loop integrands described in Chapter 5.
These expressions are far simpler than their BCFW counterparts, and clearly beg for a
much deeper understanding. We hope to see significant progress on these questions in

the near future.
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Appendix A Vernacular of the S-Matriz:
Kinematics and Computational Tools

A.1 Introduction

The on-shell recursion relations for scattering amplitudes described by Britto, Cachazo,
Feng and Witten (BCFW) [7,31] are very well known and have been widely used to com-
pute scattering amplitudes for both purely-theoretical and extremely practical purposes
in a wide variety of theories [134]. They represent one of the major new tools in the
study of quantum field theory. Theoretically, the power and simplicity of the recursive
definitions of scattering amplitudes has allowed for the development of an arguably ‘phe-
nomenological” approach to the advancement of our understanding of quantum field the-
ory: by making once intractable problems essentially effortless, many new questions can
be asked—and answered. And practically, tree-amplitudes for processes involving many
external particles are of importance for the accurate prediction of backgrounds for new
physics at the LHC, for example; BCFW-—along with a variety of other computational
frameworks such as those based on the powerful Berends-Giele recursion relations [3]—has
greatly aided this effort. Considering for example that colour-stripped tree-amplitudes
in N’ = 4 encode all the data of scattering amplitudes in ordinary, non-supersymmetric
massless QCD [135], it is clear that understanding N = 4 is an important step along the
way to understanding QFT in general, and as it is observed in the Standard Model as
backgrounds for new physics at the LHC.

Partly because of the existence and incredible simplicity of recursive definitions of the
S-Matrix, tree-amplitudes in A/ = 4 have been largely understood in the literature for
some time now. Indeed, there exists today a large number of independent presentations of
all perturbative tree-amplitudes in N” = 4, including those based on the BCFW recursion
relations [15, 50, 72], twistor string theory [4, 14,39, 63, 103], contour integrals in the
Grassmannian [10,22], and the CSW recursion relations [5,51,132], for example. Many
of these results were made possible in part through the existence of privately-developed,

powerful computational tools which have proven themselves essential for gaining intuition
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and necessary for checking results. Recently, some of these tools have become publicly
available through the release of the MATHEMATICA package Gluon-Gluino-Trees (GGT),
[135], which is capable of analytically computing all N¥MHYV tree-amplitudes involving
combinations of external gluons and gluinos, and can compute these numerically using
the package ‘S@M,” [136].

With this chapter, we extend the reach of these resources to include all N¥MHV
tree-amplitudes—including those involving squarks—by making available the MATHE-
MATICA package befw, included in [137]. In addition to its complete generality, there are
two principle features of becfw that should make it particularly useful to those who are
interested in gaining intuition about or evaluating tree-amplitudes in N' = 4. First, the
analytic formulae generated by bcfw are often dramatically more compact and easier to
evaluate than any existing formulae obtained using BCFW. These gains in efficiency can
be traced directly to bcfw’s: 1. use of momentum-twistor variables, and 2. representation
of all tree-amplitudes in a fully-supersymmetric way (realized as contour integrals over
the Grassmannian), making any n-point N*MHYV helicity-amplitude easily obtained from
any other. Another feature of bcfw that should make it useful to researchers is its abil-
ity to solve the BCFW-recursions using a wide variety of different recursive ‘schemes,’
leading to a large number of independent analytic formulae for any particular ampli-
tude.! And it may be worth mentioning that the bcfw package has been designed with
hopes of being intuitive-enough to be useful even to those with very little experience with

MATHEMATICA.

One of the functions defined by bcfw is ‘Amp,” which can generate analytic formulae
for any helicity-amplitude in A/ = 4. An example of how Amp can be used is given
in Figure A.1.? Using ‘m’ and ‘p’ to denote each minus-helicity and plus-helicity gluon,
respectively, Amp will generate any purely gluonic N¥MHV amplitude. For amplitudes
involving 2 gluinos together with any number of gluons, a similar, simplified notation can

be used,® where ‘m/2’ and ‘p/2’ indicate the two gluinos; an example of this is given in

For example, we have included as a worked example in the demonstration file included with the
befw package the construction of all 74 linearly-independent, 20-term formulae for the 8-point N2MHV

tree-amplitude, involving a total of 176 different Yangian-invariant objects.
2Also used in these examples is the function ‘nice’ which formats formulae generated by bcfw to be

more readable—for example, by converting ‘ab[1,2]’—(12)’.
3An overall sign for these amplitudes has been implicitly fixed by the convention that the particle
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split-helicity 6-point NMHV amplitude.

[1]:=

[2]:=

c[1]:

c[2]:

Figure A.l: AP (=, — — +.+,+). The

Amp[m,m,m,p,p,p}//nice

Amp[m,m,m,p,p,p}//toSpinorHelicity[G]//nice
(12)3(23)3(3451)3

(12)3(23)3(3561)3

(34)(45)(56)(61)(1234)(2345)(4512)(5123)
(23)2(34)(1|zg334]5)> B

T B (45)(56)(61)(1235)(2356)(5612)(6123)

(12)(23)(3|za5w56]1)

(45)3(56)(6 1) (5|r41712|3) 5235345234

(34)(45)(61)2(5|x41212|3) 5615125612

Figure A.2: A <_, _’¢(_112/32)7 +,+, 1/;5:11)/2) A 6-point NMHV amplitude involving two

gluinos and four gluons.

Amp [m,m,m/2,p,p,p/2} //nice
(1 2>3<2 3>2<345 1>2

In[1]:=

(12)3(23)2(3561)2

OQut[1]:=

(34)(45)(56)(1234)(5123)(4512)

+

(34)(45)(56)(1235)(5612)(6123)

Figure A.2. (The reader will notice that—unless ‘toSpinorHelicity[n]’ is used—the

only two kinematical invariants used by bcfw are the momentum-twistor ‘four-bracket’

(- - - +) and its associated ‘two-bracket’ (-

spinor-helicity invariants in section A.2.)

-}; these will be reviewed along with the

field SUy R-charge short-notation

9+ {} p

vl | {1} p/2(= {4})
s5” | {13} —

e | {55, n/2(<= {1,2,3})
g_ {1,2,3,4} m

Table A.1: Conventions for the arguments of the functions Amp, nAmp, nAmpTerms, etc.

For amplitudes involving more than two gluinos (or any number of squarks), simple
labels such as ‘m” or ‘p/2’ are not sufficiently precise. This is remedied by choosing instead
to label each external particle by its SU, R-charge, where each of the external superfields

are decomposed according to
~ ~~ L (ij ~~ ~  (ijk ~
Ot =g, + me, + i 0+ G + iR (A.1.1)

The syntactical rules which follow from these conventions are summarized in Table A.1,

labelled ‘m/2’ has SUy R-charge (123); refer to Table A.1.
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: CoA@ (1) (1) (1) (13) ,(234) (234) (234) (24)
Flgure A3 A8 <¢+1/27 ¢+1/27 ¢+1/27 ¢0 ) w_1/27 _1/27 2/)_1/2, ¢O ) :
An example 8-point N2MHV helicity-amplitude involving 6 gluinos and 2 squarks.

mii:=  Amp[{1},{1},{1},{1,3},{2,3,4},{2,3,4},{2,3,4},{24}];
%/ /twistorSimplify//nice

(56)2(67)2(1236)(2345)
(81)(1267)(2356)(2367)(3456)

Out[1]:=

. -A6) (1) (1) (1) (1) (123) ) (234) (234) (234)  (234)  (4)
Flgure A4 ‘AlO <¢+1/2>w+1/2>w+1/2>¢+1/2>¢71/27¢71/2’¢71/27¢71/2’w—1/2>w+1/2> :
An example 10-point N®*MHV helicity-amplitude involving only gluinos.

mi= Amp[{1},{1},{1},{1}.,{1,2,3}.,{2,3,4},{2,3,4},{2,3,4},{2,3,4},{4}];

%/ /twistorSimplify//nice
(56)(67)2(78)2(89)2(1239)(2348)(3457)

(10 1)(1289)(2378)(2389)(3467)(3478)(4567)

OQut[1]:=

but we hope they are sufficiently intuitive to be clear by example. Examples of how these
more general helicity-component amplitudes can be specified are given in Figure A.3,
which shows an 8-point N?2MHV helicity-amplitude involving 6 gluinos and 2 squarks,
and Figure A.4, which shows a 10-point N*MHV amplitude involving 10 gluinos. These
examples also illustrate the general-purpose function ‘twistorSimplify,” which can often

greatly simplify momentum-twistor formulae.

This Chapter is outlined as follows. In the next section we will review the kinemat-
ics of momentum-twistors and their connection to ordinary four-momenta and spinor-
helicity variables. In section A.3, we review the tree-level BCFW recursion-relations as
a statement about contour integrals in the momentum-twistor Grassmannian, [18, 19],
and describe a three-parameter family of recursive ‘schemes’ in which the BCFW re-
cursion relations can be implemented. In section A.4 we describe the basic use of the
bcfw package along with its principle functions. (A more thorough walk-through, con-
taining numerous example computations, can be found in the MATHEMATICA notebook
bcfw-vO-walk-through.nb distributed alongside the bcfw package—attached to the sub-
mission file to the arXiv for [137].)
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A.2 Kinematics: Momenta to Momentum-Twistors

(and Back)

By default, all tree-amplitudes generated by the bcfw package are handled internally
as purely-holomorphic functions of the momentum-twistor variables {Z,} introduced
by Andrew Hodges in [20], together with an overall MHV-amplitude pre-factor which
also depends on what is known as the ‘infinity (bi-)twistor,” I, which associates with
each momentum-twistor Z, a Lorentz spinor A2~%? in the fundamental representation of
SLy(C). In addition to the many theoretical advantages of working with momentum-
twistors, there are many indications that tree amplitudes are most compactly-written
and most efficiently-evaluated in terms of momentum-twistors. But before we review this
relatively novel formalism, we should reiterate that bcfw is fully-equipped to work with
kinematics specified in terms of four-momenta or spinor-helicity variables (or momentum-
twistors, of course), and can convert momentum-twistor formulae into those involving
spinor-helicity variables and dual coordinates (but at a substantial cost in efficiency).
Because of this, bcfw should be relatively easy to incorporate into other computational
frameworks.

The connection between ordinary four-momenta p* and momentum-twistors starts

with the association of a (Hermitian) matrix p2¢ with each (real) four-momentum p*,

wa | Pot+ps p1—ip2
p1+ip2  pPo— P3

(A.2.2)

Noticing that pp, = det(p®?), it follows that light-like momenta are represented by
matrices with vanishing determinant. Any such matrix can be written as an outer-

product,

det(p2®) =0 <« p2&=A\2\% (A.2.3)
where A and A are the famous spinor-helicity variables. For real momenta, it is easy to see
that \& = + (M%), where the sign is determined by whether p* has positive or negative
energy, respectively. Of course, this identification is only defined up-to an arbitrary
phase: \ — e\, X = e~ Such re-phasing is induced by the action of little-group for

massless particles in four-dimensions.
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One of the principle advantages to working with spinor-helicity variables is that any

function built out of the SLy(C)-invariants

e Xo) = (ab) = det(Aa)y) S
a N\p) = (a0) = de a\b) — y
AN
. (A.2.4)
- -~ Ao
and  [A Ny = [ab] = det(\, Ny) = | 0 1
Moo

will automatically be Lorentz-invariant up to little-group re-phasing. Amplitudes involv-
ing massless particles, therefore, when written in terms of spinor-helicity variables, will
be functions with uniform weight under A\, — u\, (with weight equal to minus twice the
helicity of particle a).

The next step along the road from momenta to momentum-twistors are dual coordi-

nates < (also known as region momenta) defined (implicitly) through the identification
Pa =Ta — Ta-1- (A25)

(Whenever it is necessary to fix a convention, we will choose z; to be the origin of dual
coordinate space.) One of the most important recent discoveries regarding scattering am-
plitudes in N' = 4 SYM is that, after diving by the n-point MHV tree-amplitude, scatter-
ing amplitudes in N/ = 4 are not just superconformally-invariant in ordinary spacetime,
but are also superconformally-invariant with respect to these dual-coordinates, [8, 9],
and this is made manifest term-by-term in BCFW, [50]. The existence of a conformal
symmetry on this dual space led Andrew Hodges to propose in [20] that amplitudes be
described in the twistor-space associated with these dual coordinates; the twistor space
of dual-coordinates is known as momentum twistor space.

Because each pair of consecutive dual coordinates are null-separated (the momenta
being on-shell), the null-line joining them corresponds to a single momentum-twistor.
And because the pair of dual coordinates (x,, z,—1) encode the null-momentum p,, it is
natural to call the momentum-twistor associated with this null-line ‘Z,’. Making this
identification will associate the line (Z,, Z,_1) in momentum-twistor space with the point
Zq-1, and the line (Z,41, Z,) with the point z,; that these two lines intersect at the twistor
Z, reflects the fact that the points x, and x,_; are null-separated.

Using the conventions just established, we canonically associate a momentum-twistor
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Figure A.5: The map connecting momentum-twistor variables and dual-coordinates.

Za+2 X
Za—l—l / CiJ_r_l__
La Pa+1
\/
=Y ;
/_\
\\ Ta-NPa-1
Za—l """
X
Z, to each momentum p, according to the rule,
3 x x
Pa = AaAa = Tg — Ta_1 — 7, = . = . (A.2.6)
To N2 e

Notice that our convention of choosing x; as the origin of dual-coordinate space trivially

fixes p1= 0. Moreover, because this implies that p, = )\QXQ =Xy — X1 = Xy, We see
H 0

that o = fo)\%(oc (A2 A2)) :< 8 ) as well. Working out the rest of this map explicitly—

as was described in Chapter 1—we find that we may write

0 0 0 0

0 0 0 0 0

0 (23) 0 0 0

o= (Qi') M where  (Qp'), =] 0 24 349 o o0 0
0 (25) (35) (45) 0 0

S 0

0 (2n) (3n) (4n) -+ (n—1n) 0

(Q}l)ab is so-named because it is a ‘Formal-inverse’ of the (singular) map Q,, which

relates the p’s to the s according to Xa = Qb Where

(2n) 1 0 .. .. .. 1
tn 1)(12) 21 2; n1)
31
ar ey © 0 0
O 1 <42> L 0 . . .
Q. = (23) (23)(34) (34) : (A.2.8)
ab . 0 1 I3 3> 1 . 0 . 2.
(34) (34)(45) (45)
. 1
0 . T_l";
1 1 n—1
(n1) 0 0 n—1n) (n—1ny(nl)
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It is worth emphasizing that although Q. is singular, our conventions ensure that
tta = (QF'),, Quettes and Ay = Qg (QF"),, A, which justifies calling (Qz') ., the ‘inverse’
of Qab'

What we have described so far have been ordinary (Bosonic) momentum twistors;

these have a natural extension to momentum-supertwistors defined by

Aa
Zq
Z, = = | w |- (A.2.9)
Na
Na

where the Fermionic n-components of the supertwistors are related to the ordinary
Fermionic parameters 7 which define each superfield (A.1.1) in precisely the same way
that the p variables are related to the X variables. To summarize, the components of the

momentum-supertwistors are related to the ordinary spinor-helicity variables via

N =220 and T =207 (A.2.10)
Xa = Qab,uba and Ha = (Q;})ab S\/b, <A211)
ﬁa = Qabnba and MNa = (Q;l)ab ﬁb- <A212)

Just as spinor-helicity variables went a long way toward trivializing Lorentz-invariance,
momentum-twistors essentially trivialize momentum conservation and dual conformal in-
variance. Momentum conservation is trivial because any set of n (ordered) momentum
twistors will define n null-separated region momenta through the maps given above. Fur-
thermore, up to little-group rescaling, dual-conformal transformations act on momentum-
twistors as SL4(C) transformations, meaning that any function of the (only) natural
S L4(C)-invariant product—namely, ‘det’—will automatically be dual-conformally invari-
ant if it has appropriate little-group weights. This suggests the natural generalization
of the ‘angle-bracket’ (ab) defined for 2-spinors above would be the momentum-twistor

four-bracket (- - - -) defined according to

zb 7zt 7} 7}
72 72 72 72
73 73 73 73
74 zh 74 78

abla, b, c,d| <= (abcd) = <= Det[Zs[[{a,b, c,d}]]]; (A.2.13)




So it would appear that, including also the MHV-amplitude pre-factor, all amplitudes
can be written in terms of four-brackets (- - - -) and two-brackets (- -); but it is easy
to see that the latter is just a special-case of the former. Notice that the map con-
necting a momentum-twistor 7, and ordinary spinor-helicity variables, equation (A.2.6),
is a component-wise definition. Because any such definition is manifestly not SL,(C)-
invariant, this map breaks dual-conformal invariance. We can make this clear by choosing
to write I, explicitly, defining two-brackets via,
ZbzZl 00
Z2 7200
Z3 Z3 10
Z zZb 01

abla,b] <= (ab) = (abl) = <= Det[Zs[[{a, b}, 1;;2]]]. (A.2.14)

Because momentum twistors are still somewhat unfamiliar to many researchers, we
should mention that there is a completely canonical map between four-brackets and
ordinary spinor-helicity variables which follows directly from definition (A.2.6). Rather
than giving this map for a completely general four-bracket, we will see in the next section
that tree-level BCFW only generates formulae involving four-brackets which involve at
least one pair of adjacent momentum-twistors—that is, tree amplitudes involve only

four-brackets of the form (a 7 j+1 b). Using (A.2.6), it is easy to see that
(aj j+10b) = (j+1 j)(alza;z;5|b), (A.2.15)

where we have used the notation z,, = x, — x,.* This further simplifies in the special

case of a four-bracket involving two pairs of adjacent momentum-twistors,
{a=1 a b b+1) = (a=1 a){b b+1)(py + Pay1 + ...+ Do_1 + pp)° (A.2.16)
= (a-1 a){b b+1)80 = {a=1 a) (b b+1)a2_, ,. B

It is worth mentioning that the fact that tree-level BCFW involves only four-brackets
of the form (a j j+1 b) means that in general, every superamplitude in N' = 4 involves

strictly fewer than (Z) kinematical invariants.

A.3 Trees as Contour Integrals in the Grassmannian
The bcfw package describes each n-point N¥MHV tree-amplitude as a contour integral

in the Grassmannian G(k,n) of k-planes in n-dimensions (see [10,12,15,18]),

4This notation (and sign-convention) becomes clearer if z, ; is viewed as the vector from z,to xy.
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ﬂ(m:kJrQ) _ 1 % ankDaa HZ:1 64‘4 (Daaza)
" Vol(GLy) Jf (- k)2 ktl) - (n-- k1)’

anL

nxk k 404
— Z —1 7{ (1d Daa Ha:15 (DMZ“) (A.3.17)

vol(GLy,) k)2 k1) (nee k1)
V€ n,m |Do o —(dMatrix, )|=e
k
= Z {(residuev) H 51 ((dMatrixy)aaUa) } )
Y€, m a=1

where we have used the scripted ‘™" to indicate that this is the tree-amplitude divided
by the (supersymmetric) n-point MHV-amplitude®,

[T2_, 0% (A2i,)

A T (12)(23) - (n-1n)(n 1)’

(A.3.18)

As all the terms generated by the BCFW recursion relations are Yangian-invariant [49],
they are each residues of the integral (A.3.17), [11,68]—computed for contours which
‘encircle’ isolated poles in the Grassmannian . Therefore, each term can be described
as a part of the complete ‘tree-contour’ I'), ,,,. This helps to explain the nomenclature
of bcfw, where each superamplitude stored as a function called ‘treeContour.” Notice
that the coefficients appearing in the Fermionic é-functions of (A.3.17), dMatrix,, directly
represent the isolated pointsin G(k,n) where the integral (A.3.17) develops a pole (of the
appropriate co-dimension) which is to be ‘encircled’ by the contour I, ,,,, each giving rise
to a particular residue of the integral. Of course, knowing the poles—that is, knowing just
the list of points in G(k,n) (and the orientation of the contour about each)—is sufficient
to calculate each residue using the contour integral (A.3.17); but it turns out that this
is in fact unnecessary for our purposes: the BCFW recursion relations directly calculate
the residues themselves in a canonical way.

As described in Chapter 4, when expressed in terms of momentum-twistor variables,

the tree-level BCFW recursion relations become the following.

A=) = gy m) (A.3.19)
+ Y @M, g ) R0 1§ @0 (5 4, L),
nr,mr,
NR,MR

SHere, we are not including the ordinary momentum-conserving J-function, 64()\,1Xa), because all

momentum-twistor amplitudes are automatically on its support.
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where,’

— o (j+1n-1n1)
Zig = 1 -1nl) = 2Z; Zi——
j+1 (]+ j)ﬂ(n n ) J+1+ J <n_1n1]> ?
_ (in-1n1)
Z; = 1 -Inl)=2Z,+Z; 1 ——F—F—~ A.3.2
= DN (-1n1) = 2+ Zpup e, (4.3.20)
= y (nljj+1)
and
50‘4<na<bcde)+7]b(cdea>+nc(deab>+nd(eabc>+ne<abcd>>
Rlabcede] = (A.3.21)

(abced)(bede){cdea){deab)(eabc)

This tree-level BCFW-bridge is illustrated in Figure A.6.

Figure A.6: The momentum-twistor BCFW-bridge (without any rotations).

The shifted momentum-twistors in (A.3.20) should be understood supersymmetri-
cally, and the shifted Fermionic n-variables result in a shifted matrix of coefficients.
Specifically, for terms bridged in the recursion, the residues (evaluated with shifted ar-

guments) are simply multiplied, and the supersymmetric §°1*’s combine according to:

6Tt is worth noting that Z/j; and Z are projectively equivalent; the reason for distinguishing them

as in (A.3.20) is to preserve canonical little-group assignments.
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L L R R
dl,l o dl,nL dl,l dl,’rLR
I I BCFW R R
(lkL.I dkL,nL (lkR,l dk’,R,ﬂ,R ,
df, dfy - di; (@ +CHdE ) df 0 0 0 0
db, o db oeedb, (0, cEdE, ) dE 0 0 0 0
(jji+ln=1n) 0 --- 0O (j+1n—1n1)  (n—1nlj) 0 0 (n1jj+1)  (1jj+1n—1)
0 0 -0 df{j (df{m*cf d{?7) d{?,ﬂz o, (d g+ GldT,) dﬁn
0 0 - 0 AR (dR o+ CRAR .)dR e dR (dR +(RAR ) dr
'kRr,J kr,j+1 J Vkr,j) kr,H2 kr,n2\"kr,n—1 n “kr,n kr,n
with
. {(J+ln-1n1) r_ (yn-1nl) r_ (nljj+1)
Cj+1 = T L I CJ = T T L . and ST, = L . . - - <A322)
: (n-1n1j) (n-1n1j+1) (1jj+1n-1)

Thus, the tree-level BCFW recursion relations amount to little more than cutting-and-
pasting (and re-labeling) matrices, allowing most amplitudes of interest to be recursed

in essentially real-time.

I. Generalized BCFW Recursion Schemes

Although the recursive BCFW formula (A.3.19) fixes ™ given all amplitudes with
strictly fewer particles, (A.3.19) by itself does not uniquely identify any particular sum
of residues. The reason for this is simple (and completely trivial): the lower-point am-
plitudes appearing in the recursion (A.3.19) can be written in any way whatsoever—
with many choices corresponding to all the representatives I',, ,, of each tree-contours’
homology-class. Said another way, in order to use (A.3.19) to obtain a particular contour
for the n-point amplitude, it is necessary to know the particular, representative con-
tours for all lower-point amplitudes; but these lower-point contours need-not have been
recursed in any particular way. In order to obtain an explicit, representative contour
through the use of the BCFW recursion relations—i.e. using (A.3.19)—it is necessary to
give a prescription for how all lower-point amplitudes are also to be recursed.

One especially natural prescription would be to recurse all lower-point amplitudes

exactly according to equation (A.3.19)—with each n-point amplitude having ordered-
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arguments (1,...,n). This is the default recursive scheme used by bcfw and is obtained
with the function treeContour [n,m]=generalTreeContour[0,0,0] [n,m]. This scheme
follows from Figure A.6 where each lower-point amplitude is recursed precisely according
to Figure A.6.

Among the many recursive prescriptions one could imagine, a remarkable degree of
complexity results from simply allowing for arbitrary (and separate) ‘rotations’ of the
amplitudes appearing on the left- and right-hand sides of the BCFW bridge,” and also
allowing for an over-all rotation of the the n-point amplitude being recursed—or equiv-
alently, which legs are deformed in the recursion. Specifically, letting g denote a cyclic-
rotation of (an explicit formula) of an amplitude g : 27, (1,...,n) — ,(2,...,n,1); then
the class of generalized BCFW recursion schemes implemented in bcfw is given by,

generalTreeContour|a,b, c|[n,m] :g~¢ [ﬂﬂfm)] = ¢ [(an(inl)] + Z g° [,QZL(’L”L)] ® q° [%RmR)},
{abe} np,mr BCFW
NR,;MR
where, as with the default contour prescription, this same recursive rule is used for every

lower-point amplitude. This is illustrated in Figure A.7. By varying the parameters

generalTreeContour|a, b, ]

Figure A.7: An illustration of the generalized BCFW recursion-schemes used by bcfu’s
function generalTreeContour[a,b,c]. Here, the legs being deformed in the left-hand
amplitude, for example, should be thought-of as being actively ‘rotated’ clockwise by an

amount ‘a’ relative to the default recursive scheme.

{a,b,c}, one can obtain a very wide-array of analytic formulae for any particular helicity

amplitude. It could be that more general recursion-schemes will eventually prove useful,®

"When making these rotations, the homogeneous term in the recursion, ucf/;le), must be considered

an amplitude occurring on the left.
8For example, one could consider recursive schemes which make use of the parity-conjugate version

of the BCFW-bridge, which make use of reflected (as well as rotated) lower-point amplitudes, or which
allow for rotations of lower-point amplitudes to vary as a function of recursive depth. None of these

generalizations are necessary for n < 9, and we suspect that this is true generally.
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but as far as we have been able to check, this class of recursion schemes has proven
in some sense exhaustive. Specifically, we have checked that for up to 9-particles, this
three-parameter family is sufficient to generate all linearly independent representations
of superamplitudes. For example, there turn out to be 74 linearly-independent formulae
for the 8-point N2MHV tree amplitude, involving 176 Yangian-invariants. All of these

formulae are worked-out explicitly as part of the demonstration file for the bcfw package.

There are three principle reasons why researchers may find this broad-class of tree-
amplitude formulae useful. First, knowing the range of possible tree-amplitude formulae
helps one build intuition about amplitudes in general, and allows one to separate general
properties about amplitudes from the peculiarities of particular formulae. Secondly, hav-
ing many different representations available frees one from using unnecessarily inefficient
representations of particular helicity amplitudes. For example, it is sometimes heard that
“the” BCFW-formula (with the default scheme implicit) for the split-helicity amplitude
is maximally-concise’ (meaning that a maximal number of terms in the tree-contour
vanish); however, fixing a recursive scheme, this is true for at most one particular split-
helicity amplitude—the other split-helicity amplitudes including some for which almost
none of the BCFW terms vanish. And so, it should be possible to use the variety of
representations that can be generated by bcfw to find a ‘best-case’ formula for any par-
ticular helicity amplitude of interest. And finally, because the BCFW formulae obtained
using different recursive schemes often have very few spurious poles in common, it may
be possible to combine a variety of BCFW formulae to avoid encountering spurious poles

while generating Monte-Carlo events for phase-space integration, for example.

It may be helpful to know that the particular recursive-scheme used by Drummond
and Henn to solve the BCFW recursion relations in [50], corresponds to

generalTreeContour [-1,-1,-1]; this scheme is illustrated in Figure A.S.

9This observation is true for the default recursion-scheme used by bcfw; in particular, the helicity
component ,ergm) (—,...,—,+...,+) of generalTreeContour[0,0,0] [n,m] is the gluonic amplitude
with the fewest number of non-vanishing BCFW terms; but this feature is observed for very few of the

more general recursive schemes.
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Figure A.8: Examples of particular recursion schemes, highlighting how the lower-point

amplitudes are rotated.

befw’s default scheme Drummond & Henn’s scheme

generalTreeContour|0, 0, 0] generalTreeContour[—1, —1, —1]

= treeContour

II. Extracting Helicity Component-Amplitudes from Tree-Contours

To compute a particular helicity amplitude from the supersymmetric contour integral, one
need only project-out the desired Grassmann components, as dictated by the definition
of the external superfields @ given in equation (A.1.1). Of course, the component fields
of ®F are given in terms of 7-variables, which, as described in section A.2, are related to

the momentum-supertwistor Grassmann parameters 7, via

Mo = (QF") - (A.3.23)

Because the matrix of coefficients of the Grassmann 7’s for each residue is nothing but

its corresponding dMatrix, we have that

Daoatla = Doy (QY),, Tla = Caalla- (A.3.24)
In terms of the Grassmannian integral (A.3.17), this means that we may write
k k
(residue) H 6% ((Matrix)qen.) = (residue) H 6% ((dMatrix),,(QabInversen))yqi.)
a=1 a=1
k
= (residue) H 6% ((cHatMatrix)qofa) - (A.3.25)
a=1

Upon explicitly including the full MHV super-amplitude we obtain,
2 k

e a=1 (A.3.26)

+2
H 5ol (cMatrixgala) ,

) k
(residue
a=1

)
(12)---(n1)
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where we have defined the matrix C5, according to

a11 612 61n—1 éln
G - K aaa
Caa =] Cr1 Cra -+ Crpor Cryp | = - (A.3.27)
I :
SYRIPS ST VIR

It is worth noting that just as each dMatrix represents an isolated point in the Grass-
mannian of k-planes in n-dimensions, each cMatrix gives an isolated point in the Grass-
mannian of m(= k + 2)-planes in n-dimensions. Indeed, these are the isolated poles
‘encircled’ by the (original) twistor-space Grassmannian contour-integral of [10],

A(m=H+2) 1 ]{ A" Cqq [Tae, 681 (CaaWa)
(1

n = VOl(GLm) ] m)(g .. .m_|_1) . (n .. .m_l)' (A-3-28)

n,m

The momentum-twistor Grassmannian integral (A.3.17) was derived from the original
twistor-space integral (A.3.28) in [18], where it was shown how the MHV-prefactor
arises naturally as the Jacobian of the change-of-variables in going from the (space-time)
twistor-space variables W, to the momentum-twistor-space variables Z,.

Now, having the matrix of coefficients of the n-variables, it is particularly simple to

extract any helicity component amplitude. For example, pure-glue amplitudes are given
by

AT G ) = /d“ﬁj1 oM, [A;m)} : (A.3.29)
" )
3 % (petlematrix [(A11, {31, 3u}]]}) -
Y€l n,m

More generally, each helicity amplitude can be ‘projected-out’ of the superamplitude
by multiplying each residue in the tree-contour by the appropriate set of four (m x m)-
minors of its corresponding matrix Cy,. The list of minors which project-out a particular

helicity component-amplitude is given by the function parseInput[].
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A.4 The bcfw MATHEMATICA Package

A separate MATHEMATICA notebook—distributed along with bcfw.m—has been pre-
pared to introduce the reader to the many functions of bcfw and their primary usage.
We hope that the demonstration notebook is sufficiently self-contained for most users.
In this section, we briefly describe the basic algorithmic structures which underly the
bcfw package, with an emphasis on the features that are likely to prove useful beyond

the limited framework of MATHEMATICA.

I. Setup and Initialization

Initialization of the package is simple: so long as the file being used has been saved to

the same directory as the package’s source bcfw.m, one need only call the following:

m[1]:= SetDirectory[NotebookDirectory[]];
<<bcfw.m

Out[1]:=

Jj j+1

Efficient Tree—Amplitudes in N'=4 SYM
via BCFW in the Momentum—Twistor Grassmannian

Jacob L. Bourjaily, 2010

II. Getting Started with Analytic Tree Amplitudes

To start gaining intuition for how helicity-amplitudes can be specified in bcfw, consider
a very simple example: the 8-point MHV amplitude A§f)(+, +,—,+,+,—,+,+). This

amplitude can easily be found using bcfw through the command,

mf1l:= Amp[p,p,m,p,p,m,p,pJ
ab|3, 6]*
ab[1, 2]ab[2, 3]ab[3, 4|ab[4, 5|ab[5, 6]ab[6, 7]ab[7, 8]ab[8, 1]

Out[1]:=
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To make the result more aesthetically appealing, any output of bcfw can be wrapped
by the function ‘nice[]’ which formats the result so that it is more “human-readable.”

For example, using nice, the above command would return:

m[1]:= Amp[p,p,m,p,p,m,p,pl//nice
(36"
(12)(23)(34)(45)(56)(67)(78)(81)

Out[1]:=

We have chosen to make ‘nice’ formatting an ‘opt-in’ option for users, so that the under-
lying structure is transparent at all times—and in order to avoid the pitfalls of conditional
formatting in MATHEMATICA while maximizing the ease of symbolic manipulation.
Although the analytic formulae for tree amplitudes quickly become too long and com-
plex for visual comprehension, bcfw’s function Amp will in fact write-out any amplitude.

As one further example, consider the 6-point NMHYV alternating helicity amplitude.

n[1]:= Amp[m,p,m,p,m,pl//nice
(15)4((35)(1234) — (34)(1235))4
(12)(23)(34)(45)(56)(61)(1234)(1235)(1245)(1345)(2345)
3

OQut[1]:=

13)(56)
(12)(23)(34)(45)(56)(61)(1235)(1256)(1356)(2356)(2361)
((13)(56)(1345) — (15)((36)(1345) + (34)(1356) + (35)(3461)))*

(12)(23)(34)(45)(56)(6 1)(1345)(1356)(3456)(3461)(4561)

We should emphasize, however, that direct evaluation of the formulae generated by

Amp (or AmpTerms) are often dramatically less efficient than what can be obtained using
nAmp (or nAmpTerms).'” This directly reflects the efficiency gained by the momentum-
twistor Grassmanniannian representation of superamplitudes.!

As described in the previous section, each superamplitude is represented by bcfw as a
contour integral in the momentum-twistor Grassmannian (A.3.17). The particular repre-
sentation of the n-particle N™=2)MHV superamplitude derived via the BCFW recursion

scheme with rotations {a,b, c} is obtained with the function generalTreeContour[a,b,c] [n,m]

10This is true even with fairly intelligent caching. Because of this, researchers interested in transferring
the formulae generated by bcfw to other frameworks should seriously consider using the superamplitudes

directly.
HTo better understand this, observe that each cMatrix includes as its first k-rows the matrix

cHatMatrix=dMatrix.QabInverse[n]; this introduces many new kinematical invariants into each
term—the two-brackets—while simultaneously duplicating each column of dMatrix many times, greatly

obfuscating an underlying simplicity with fundamentally redundant information.
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Table A.2: 6-point NMHV superamplitude .Aé3), given by treeContour[6,3].

Name residue dMatrix

| R[12345] <1234><2345><3451>1<4512><5123><1234> ((2345><3451><4512)<5123)(1234>o)
| R[13456] (1345><3456><4561>1<5613><6134><1345> ((3456>0<4561)(5613)(6134><1345>)
.| R[123506] <1235><2356><3561>1<5612><6123><1235> ((2356><3561><5612>0<6123><1235>)

(see section I.). The default representation—obtained using the default recursion scheme,
with {a,b,c}={0,0,0}, is obtained with treeContour[n,m]. For example, the default
representation of the 6-point NMHV superamplitude is given in Table A.2.

III. Referencing, Generating, or Specifying Kinematical Data

In order to evaluate amplitudes numerically using bcfw, kinematical data must first be
defined. This can be done by calling upon a list of reference momentum-twistors, freshly-

generating random kinematics, or by specifying kinematical data explicitly:

1. useReferences[n]: use a standard set of reference momentum-twistors; these

reference twistors were carefully selected so that
e all components are integer-valued (and small);

e there are no physical or spurious singularities;

e all kinematical invariants are uniformly positive (that is, s, > 0 for all ranges
a...b), and that these invariants are numerically given by ratios of relatively
small integers—leading to amplitudes that are ratios of integers that are ‘not-

too-horrendously-long’;

In Table A.3 we give a sample of the reference momentum-twistors. Because
an arbitrary set of momentum-twistors define on-shell, momentum-conserving kine-

matics, there are no constraints from momentum conservation. Therefore, choosing
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Table A.3: Reference momentum-twistors used in bcfw’s function useReferences[n] .
Zy | Zo| Zs| Za| D5 | Ze| Zr| Zs| Zo| Zw | L | Zi2 | 213 | Z1a | Zis
Z | -3 2] -2 3 0] —1 2 2 4| =2 | =5 | —1 5 6 4
V5 5 6 5 31 -5 2 0 1| -1} =5 2 6| =5 4 6
z3 3] —-1]-1 5 6| —-5|—-6|—-5]—6 4 6 1| -5 =5 | =3
Z4 | -3 | -3 5| -2 0] -5]—-1|-3 1 41 -1 | -4 3] =3 -4

Figure A.9: Evaluation of 10-point N*MHYV helicity amplitudes to infinite precision using
reference momentum-twistors. The timing reflects the fact that the first computation
determined the full superamplitude and projected-out a particular helicity component,

while the second only needed to perform the projection.

useReferences[10];

Inf1):= nAmp [m,m,m,m,m,p,p,p,p,pl//withTiming
Evaluation of the 10-point N3MHV amplitude required 46.7. ms to complete.
out[1]:= 17886892256634020134576330754470391777

280278666971743564282064966167680000
m[2]:= nAmp[m,p,m,p,m,p,m,p,m,pl//withTiming

Evaluation of the 10-point N3MHV amplitude required 8.6. ms to complete.

Out[2]:

5007045380847632725336670465304701314367799201604575059832902148541
213450466354689126392301641566350924968168379805192061706240000

simply the first n twistors from the list in Table A.3 will suffice. It is worth men-
tioning, however, that these reference momentum-twistors are neither canonically

normalized!?, nor do they map to real four-momenta in R3!.

Nonetheless, reference twistors are extremely well-suited for debugging, check-
ing identities, and finding relations to infinite precision. As one can see in Figure A.9,
using befw’s built-in reference momentum-twistors can quickly lead to scattering
amplitudes that are known to infinite-precision. Notice that in Figure A.9, once

the superamplitude has been computed for any helicity-component, all subsequent

12By not having canonical normalization, we mean that there are non-trivial, Lorentz-frame (and
hence also little-group)-dependent kinematical scale-factors in the spinors; however, this tends to only

cause a problem when combining/comparing multiple helicity component-amplitudes.
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Figure A.10: Evaluation of 12-point N*MHYV helicity amplitudes with random kinematics.

useRandomKinematics[12] ;

Inf1):= nAmp [m,p,m,p,m,p,m,p,m,p,m,p]//withTiming

Evaluation of the 12-point N4MHV amplitude required 596. ms to complete.
Out[1]:=
T 074127 — 517181 1
mn[2]:= nAmp[p,m,p,m,p,m,p,m,p,m,p,m]//withTiming

Evaluation of the 12-point N4MHV amplitude required 71.4. ms to complete.
OQut[2]:=
: —274.127 + 5171.81 T

components are obtained quite rapidly.
2. useRandomKinematics[n]: use randomly-generated kinematics in R*!. This func-

tion chooses a random set of (optionally rational or arbitrary-precision) on-shell
four-momenta in R>!, and sets up essentially all the kinematical variables of po-

tential interest, including

momentum-twistors {7} =Zs, given as an (n x 4) matrix—the n rows listing
the four homogeneous components of each momentum-twistor;
useRandomKinematics[n] also defines the ‘dual momentum-twistors
{W/} =Ws, which, although not used by bcfw, may be found useful by some

researchers;

N -
spinor-helicity variables { A\ } =Ls and { A\ } =Lbs, each an (n x 2) matrix of
components; these have been normalized so that No =+ (M\o)", as described in

section A.2;

fourMomenta, an (n X 4) matrix of the components (p°, p®, p¥, p*) of each four-

momentum,;

regionMomenta, the dual-coordinates (described in section A.2), given as a

n-length list of 2 x 2 Hermitian matrices;
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An example of using random kinematics is shown in Figure A.10, where the

two alternating-helicity 12-point N*MHV amplitudes were evaluated. Notice as be-

fore that once the superamplitude has been evaluated, subsequent helicity compo-

nents are quickly extracted. Also, observe that the randomly-generated spinors and

momentum-twistors have been appropriately normalized so that parity-conjugation

results in complex-conjugation of the amplitude.

3. using user-defined kinematics, given in terms of:

(a)

setupUsingFourMomenta [fourMomentalist]: generates momentum-twistors
and spinor-helicity variables for the input list of four-momenta,
fourMomentaList, which must be given as an n-tuple of four-vectors list-
ing the components of each four-momentum; the list of four-momenta must

conserve momentuim;

setupUsingSpinors[Ls,Lbs]: generates momentum-twistors given the spinor-
%
helicity variables Ls= { A } and Lbs= { A\ } each given as an (n x 2) matrix of

components;

setupUsingTwistors[twistorList]: establishes the necessary kinematical

functions given the (unconstrained) list of user-generated momentum-twistors.

Examples of how each of these functions can be used can be found in the

demonstration file included with the bcfw package.

package.

IV. Numerical Evaluation of Tree Amplitudes

As has been emphasized throughout this chapter, the principle sources of bcfw’s effi-
ciency are manifest supersymmetry and the use of momentum-twistor variables, which
are both made manifest in the momentum-twistor Grassmannian integral (A.3.17). Be-
cause these ingredients—or at least their implementation—are quite novel in bcfw, it is

worth describing in some detail how amplitudes are evaluated numerically by the bcfw

The basic evaluation strategy is outlined in Table A.4, where we give the basic eval-
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uation times for each step in the evaluation of the 10-point N3MHV alternating-helicity
tree-amplitude.

Because of the central role played by momentum-twistors, the first step of any nu-
merical evaluation is the establishment of momentum-twistor variables which can then
be used to compute the kinematical invariants that determine any scattering amplitude.
This can be done in a number of different ways—as described in the previous subsection.
Although this should be completely clear from the discussions above, this step is not
very computationally-intensive (and indeed, can be discounted entirely by choosing to
randomly-generate momentum-twistors instead of four-momenta).

Because of the ubiquity of the MHV-amplitude pre-factor, 1/({(12)---(n1)), and the
map (Q;l)ab used to relate the momentum-twistors’ n-variables to the 7 variables of the
external superfields, bcfw evaluates these two objects and stores them globally whenever
new kinematical data is defined.

The first step in the evaluation of any particular helicity amplitude is actually the
evaluation of the full superamplitude—represented as the list of BCFW-terms, where
each is described by the pair {residue, dMatrix} (which is stored in memory as the
function nContour[a,b,c] [n,m]). Because particular helicity amplitudes are usually
specified with respect to the n-variables of the external superfields, the dMatrix of each
residue is then converted to the corresponding cMatrix as described in section A.2.

Once each BCFW-term has been evaluated numerically and stored as the pair
{residue,cMatrix}, it is relatively easy to extract any particular helicity component
amplitude—by multiplying each residue by the appropriate four (m x m) minors of its
corresponding cMatrix. This last step is nothing exotic: it is merely the evaluation of
the Grassmann integrals [ []}", d°*7; which project-out a helicity-component amplitude

from the superamplitude.

V. Example Applications

In the demonstration file which accompanies the bcfw package, several examples are
given which illustrate how bcfw can be used as a tool to verify results, find identities, or
learn about scattering amplitudes more generally. In particular, these examples empha-

size how using integer-valued reference momentum-twistors to compute amplitudes (and
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Table A.4: The general evaluation strategy used by bcfw, with a break-down of
evaluation-time requirements for each step in the case of the alternating-helicity 10-point

N3MHYV tree-amplitude, Aﬁ%) (—, e S R +) (for random kinematics).

1. setupUsingRandomKinematics[10]

(a) generate random (on-shell, rational, momentum-conserving) four-
momenta in R*!; define spinors and momentum-twistors 3.61 ms

(b) evaluate the universal objects nMHVprefactor and nQinverse 1.34 ms
2. nAmp([m,p,m,p,m,p,m,p,m,p]

(a) evaluate the full-superamplitude, which is stored stored as the

function nContour [0,0,0] [10,5] (for possible future use) 23.2 ms

(b) convert each dMatrix to its corresponding cMatrix 3.03 ms

(c) project-out the desired helicity component-amplitude 4.01 ms

Total Time: 35.2 ms

individual BCFW-terms) to infinite-precision can prove quite useful theoretically. The

examples include:

e a verification of supersymmetric Ward identities; in particular, we check one of the

‘cyclic’ identities described in [138] for the 10-point N*MHV amplitude—
0= AR (0 0 0 08 0 057, 01, 67, 00, 6020
+ A10 <¢ 112;)27 ¢+1/27 ¢+1/27 ¢+1/27 ¢+1/27 ¢(24 ¢013 ¢012 7¢ 2?;12)7 (_1234))
+ AR <¢ 112;)27¢+1/27¢+1/2>¢+1/2>¢+1/2> RN SN 23;12)7 (—1234))

(5) (123) (24) (14) (12) (234) (1234)
+A10 (1# 1/27¢+1/2,¢+1/Q,¢+1/Q,¢+1/2,¢ 7¢0 ¢0 ﬂﬁ 1/27 — )

—the verification of which is illustrated in Figure A.11, highlighting the power of

(A.4.30)

knowing amplitudes to infinite precision;

e an explicit verification of the U;-decoupling identity for the 10-point N3MHV tree-
amplitude (which, although a trivial consequence of any Lagrangian field theory, is

a highly non-trivial check of numerical code!'®);

13We thank Freddy Cachazo for this suggestion.
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e a complete classification of the linearly-independent BCFW-generated formulae for

the 8-point N2MHV supersymmetric tree-amplitude.

Figure A.11: Verifying a SUSY Ward identity of the 10-point N3MHV amplitude.

useReferences[10]

Inl1]:= List[nAmp[{l,2,3},{3},{1},{4}7{3}7{274},{1,4},{1,2},{2,3,4},{1,2,3,4}]

nAmp[{l, 2, 3}7 {4}7 {1}’ {4}’ {3}7 {274}7 {17 3}7 {17 2}7 {27 3’4}’ {1’ 2, 374}]v
nAmp({1,2,3}, {4}, {1}, {4},{3}.{2,3},{1,4},{1,2},{2,3,4},{1,2,3,4}],
nimp[{1, 2,3}, {4}, {1}, {3}, {3},{2,4},{1,4},{1,2},{2,3,4},{1, 2, 3,4}]}

28753113503920775424°

1275513453387873135869428633786428491

77923676342112832490222204964602880
40428898488502522106856665437052838463

10951273590541549612279689882333035520'
16319258699414773847825256760953737
10567119835135513498965174929610240

butC1 = { 79370862801471295255

mm[2]:=  Total|Out[1]]

out[2]:= O

A.5 Conclusions

We have described a general, versatile, and efficient implementation of the tree-level
BCFW recursion relations within the framework of MATHEMATICA which has been re-
alized by the bcfw package which is included with the submission of this posting on the
arXiv.'

Having access to an efficient, reliable, flexible, and robust toolbox for computing

scattering amplitudes in N' = 4 has proven an essential resource, and a important source

From the abstract page on the arXiv for the bcfw package [137], choose the link to download “other
formats” (below the option for PDF) and you will find the bcfw package and its associated walk-through
file with many examples included in the ‘source’ for this chapter. Also, you can download bcfw at the

project’s page on http://hepforge.org, where it will be generally maintained by the author.
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of theoretical ‘data.” It is hard to overlook the exciting recent advances that have been
made in our understanding of scattering amplitudes, and many of these results have
relied heavily on being able to decisively rule-out or quickly confirm a wide-array of new
ideas and proposals, leading to many new insights, and helping to establish what has a
chance to become a fundamentally new descriptions of quantum field theory.

We hope that the bcfw package proves itself useful to a wide range of researchers—
both as a reliable and efficient black-box for computing amplitudes, and as an educational
resource for gaining intuition about the still somewhat unfamiliar, but extremely powerful
new tools available to describe amplitude such as the momentum-twistor Grassmannian
that have played an important role in the recent development of our understanding of

scattering amplitudes in N = 4.
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The Nine-Point N°MHV
Tree Amplitude
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Appendix C The BCFW-Form of the
1-Loop 6-Point NMHYV Integrand

In this appendix we present the BCFW form of the 1-loop 6-particle NMHV ampli-

tude. The result is,
SO0+ pa(3456) + 15(4562) + n4(5623

)
(2345) (2356) (3456) (AB12)(AB23)(AB56) (AB61) (AB1(234) ((56)) (AB1(23) ((456))
m(3456) + 0 + n3(4561) + na(5613

+ 75(6134) + 7n6(1345) ) (AB15)?
(AB45)(AB56)(AB61)(AB(345) ((561))(3451) (AB13) (AB1(34) ((561))

+ 15(6234) 4+ n6(2345) ) (AB(561)((123))
2

50\4

)

(

50‘4 m(3456) + 0 + ng(4561) + 74(5613) + n5(6134) + 76(1345) )
(3456) (4561) (AB34)(AB61)(AB(345) (\(561)) (AB31)

50\4 m(3456) + 0 + n3(4561) + nu(5613) + n5(6134) + 76(1345) )1234

(3456)(4561) (6134) (AB12) (AB23)(AB34) (1345) (AB1(34) ()(561))

50‘4 n(3456) + 0 + n3(4561) + na(5613) + 75(6134) + 16(1345)

(6134)(AB34)(AB45)(AB56)(5613)(AB1(34) ((561))
(m 2356) + 72(3561) + 7s(5612) + 0 + ns(6123) + 16(1235) )
(5612)(6123) (ABA5) (AB56)(AB(561) [(123))(3561)(AB4(23) ((561))

50\4

3O (1(2356) + me(3561) + m(5612) + 0 + n5(6123) + 76(1235) ) (AB(234)()(561))2
B( (

(5612)(6123) (AB23)(AB34)(AB56)(AB(561) ((123)) (AB4(23) (561)) (AB5(561) ((23))
m(2356) + 12(3561) + m3(5612) + O + 7s(6123) + me(1235) ) (2345)°
(2356) (5612)(6123) (AB23) (AB34) (AB45) (1235) (AB5(561) ()(23))

+

60\4

60‘4 m(2345)  + ma(3451) + n3(4512) + na(5123) + ns(1234)

(1234) (1245) (2345) (AB45) (AB56) (AB61)(3451) (AB1(123) ﬂ(4o)>

)¢
0 ) {456
50\4 4512) + na(5123) + n5(1234) + 0 ) (ABL4)?
)
)

71(2345) + 12(3451) + m3
(1234)(AB12)(AB34)(AB45

(

V(AB15)(AB1(123) N(45)) (AB4(234) N(51))

m(2345) + mo(3451) + 3(4512) 4+ ma(5123) 4+ 75(1234) + 0
(2345)(AB12)(AB23)(3451)(AB15)(AB4(234) N(51))

m(2345) + no(3451) + n3(d512
(1245)(AB23)(AB34)(AB45

50\ 4

50\4 + om(5123) + 5(1234) + 0

)
Y(5123)(AB1(123) ()(45))

Sl m(AB(23)((456)1) + 12(4561)(AB13) + 1n3(1456)(AB12) (AB15)?
+ m{AB(123)N(561)) + n5(AB(123)((46)1) + U6<A31(123) N(45))
* AB12) (AB45) (AB56) (ABG1) (AB(561) (1(123)) (AB13) (AB14) (AB1(123) ((45)) (AB1) (\(45)(AB) (1(561)23)

504( M(AB23)(456)1) + mp(4561)(AB13)  + 13(1456)(AB12) )
+ m(ABO123)N\(561)) + 7s(AB(123)N(46)1) + n6(AB1(123)N(45))
(4561)(AB12)(AB23)(AB61)(AB13)(AB14)(AB1(23) (\(456))((AB1) (\(45)(AB) (1(561)23)
504< M(ABL234)(\(56)) + m(ABB34)N\(561)1) + n3(ABL(24)(\(561)) )
+ m(AB(561)N(123)) + n5(1234)(AB61) + ns(1234)(AB15)
+ {1231) (AB12) (AB34) (AB56) (AB61) (AB(234) ((561)) (AB(561) (\(123)) (AB14) (AB15)
6"4( m(ABL(234)((56)) + mA(AB(34)N(561)1) + mn3(AB1(24)(N(561))
+ m(AB(561)((123)) + n5(1234)(AB61) + 16(1234)(AB15)
+ {AB12)(AB23)(AB6L) (AB(234) (1(561)) (AB14) (AB15) (AB1(234) (1(56)) (AB1(34) (1(561))
A note on notation: the expression (AB1(56)((234)) refers to (AB1X) where X =

(56) (1 (234) is the point where the line (56) intersects the plane (234), namely, Z5(62 3 4)+
Zs(2345) = — (Z2(3456) + Z3(4562) + Z,(5623)); similarly, ‘(123) ((456)" is Z12(3456)+
Z3(1456) + Z31(2456).

+
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Appendix D The Full 2-Loop Integrand
for the 7-Point NMHV Amplitude

Here we give the explicit formula for the 2-loop 7-particle NMHV amplitude. We
find it most convenient to give a formula for Mo, — M MA%P. We can expand
this in three cyclic classes as [(7)(1)C71] + [(7)(2)Cr2] + [(7)(3)C7,3] + cyclic. We give
the expression for the coefficients C7;,C72,C73 in the tables below. Here “g” refers
to the operation ¢ — ¢ 4+ 1, and P is a parity flip, that exchanges wavy- and dashed-

lines (together with their corresponding normalization), and r is the reflection operation

i (8 —1i).
Table D.1: Coefficients of residue ( =2 3 456].
(4512)(5671)(AB 123 ﬂ(345))(CD64 CD72) (4563) (4713 (7123) (AB51 CD24)
1 )m ~(1+g¢%+g%
(5124)(AB (456 ﬂ (712)) CD| (123)( ) (345)) (2461)(AB (567 ﬂ 712)) CD\ (123)( ) (345))
—(14g*r) ‘)o 1 0(’
(5624) (6714) (AB 123 ﬂ(345 (CD57) (5614)(6714) AB (m12)() 345) (CD57)
6 7 ’
s (1+¢%)(1—g°r)
-(1-y9) 2 Lg2P(1 - gir)
4
3
(1345)(1347)(AB (112)( ) (234)) (4671)(6712)(AB 345 1 (567))
2 8 )
—(14¢*—gP) $5 1—g*r %
1 7 )
(4612)(7123)(AB (345)( ) (567)) (1456) (4567) (AB (712)[ ) (345))
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Table D.2: Coefficients of residue (7)(1) = [2345 6], continued

6

7
2 3
1+ g2 2 (14 gP)(1+g*r) 2 5
3
5 1
4 7 8
(7456)2(AB (671)( ) (345)) (4561)(7123)(AB (345)( ) (712))
7
3 ! 3
2
-1-9)(1+P) 5 1—g3—gr 5
1 6 2 6
7 17
(4561)(4713)(AB (345)[ ) (712)) (4123)(5123)(AB (234)( ) (456))
5 7
4 6 6 1
1 ; ’ —(1- g?r) : 2
3 ] 5 .
(5234)(7124)(AB (345)( ) (671)) (2456) (7456) (AB (567)( ) (123))
. 7 1 ) , X . 5
5 ) 1 ;
(5614 (7123)(AB (567)[ )(712))
3 4
2
1 -(1-9) 5
1
s 6
(4513)(4713)(AB (456)( ) (712))
1+ g4r 1+ g4r
1 7 7
(4123)(4563) (5123) (ABA2) (4123)(71|(234)( ) (456)) (AB53)
(4563) (4567)2
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Table D.3: Coefficients of residue (7)(2) = [13456]

1 :@ .. 6 2
3 : 5 3
(3456)2 (AB24)(AB57)(AB (671)[ )(123)) (1357)(AB (712)[ ) (234))(C D|(456)( ) (671))
3 3
1 | : .
= s —(1- g 2 5
7
° 5 ' 7 6
(3562) (3571)(AB (234)( ) (456)) (3561)(3712)(AB (234)[ ) (712))
7
3 5 ¥
1— ¢S 5 1 7
2 1Yy 4 1
6 3 2
(4123)(5673)(AB (234)( ) (456)) (6345)(7345) (AB (456)[ ) (671))
. 4 5 ] 6 B
—(1—g°r) Ij§ ® —(1—grP) '
i ! 7 ) 3 2
(4123)(6713) (AB (234)[ ) (567)) (6145)(6345) (AB (712)[ )(345))
5 6 7 ' s 6 !
,(1 — gT‘) .0 2 1—gr > e 1
4 4
3 3 2
(1247)(2345) (3456) (AB13) (1345) (3456) (7126) (AB74)
14 gr

3 2

(6345) (6715)(7345) (AB64)
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Table D.4: Coefficients of residue (7)(3) =

[12456]

) 1
- | QI
5
4 3 3 2 1
(3456)(6371) (AB (712)[ ) (234))(C D41)(CD57) (6135)(AB (567)[ ) (712))(C'D|(234)[ ) (456))
—-(1+g% Z 0(’ 2 —(1+ ¢g%Pr) 5 ‘)0 1
(4513)(6713) (AB (712) ﬂ (234))(C'DAT) (1236)(7146)(AB (345)( ) (567)) (CD72)
3 ! 3 4 5 ’
1 5 —(1—g%r) 7
1 ] )
6 1
(4612) (4673) (AB (345)( ) (567)) (1234)(6123)(AB (567) ) (712))
\ 5 6 . 2
3
—1 7 1+ 92 4
3 2 7
1 6
(2345)(6134) (AB (567)( ) (712)) (2671)2(AB (123)( )(567))
7
5 ’ 3
1+ gor :r: 7 -(1-g¢% 5
4 1 2 1y
3 2 6
(6345)(6714) (AB (567)[ ) (345)) (4123)(5673)(AB (234)[ (456
] 7 . 7 1
14 g8 1 —(1—g°r) 2
5 i ) 5 4
3 3
(1346) (7456 (AB (567)( ) (712)) (2346)(7456)(AB (567)( ) (123))
2 3 2 3 \
! 6 5 ' 6
(2671)(4671)(AB (712)[ ) (345)) (2671)(5671)(AB (712)[ ) (456))
(6712)2(6715)
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Table D.5: Coefficients of Ay (in addition to the 2-loop MHV amplitude)

1 2

7
6

-1 . 3 —(1—g*r) .
5
5 4 4
(5124)(AB (456)[ ) (712))(C D|(123)[ )(345)) (1456)(4567) (AB (712)[ )(345))

1 2
7 3

6

(1467)(1567)(AB (345)( ) (567))
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Appendix E Residue Computations in
Momentum-Twistor Space

We gave a heuristic argument for the form of the Jacobian in the computation of the
residue of a pentagon integral. The actual computation is essentially trivial but it might
serve as yet one more way to get used to momentum twistors. This is why we carry it
out in detail in this appendix.

Recall that the non-vanishing residue of the pentagon integral for a contour which

‘encircles’ the isolated pole (AB) = (24) is computed using

(E.0.1)

(AB13)(1245)(23 45)
7{ (AB12)(AB 23)(AB 34)(AB 45)(AB 51)’

=€

I(AB)—(24)

As with all multidimensional residues, the entire computation amounts to Jacobians.
Let us choose to expand Z4 and Zp using the twistors {Zs, Z1, Zo, Z4} as a basis; this
parameterization introduces a Jacobian J = (5124)7% Exploiting the GL,-

AB—(5124)
redundancy of the integrand, may therefore parameterize Z4 and Zp according to

LA =025+ anly + Za;
Zp =125 + PoZy + Za;

(E.0.2)

Of course, the contour being evaluated corresponds to the choice of maps f; given by f =
{(AB12),(AB23),(AB34),(AB45)}; using these coordinates for Z,, Zp, the contour
will be evaluated around the pole at the origin: «; = 8; = 0.

With this, the integral in question has become fully gauge-fixed and concrete:

2 (AB13)(1245)3(23 45)
7{ B BTy (AB23) (AB34Y(AB 45)(AB 51)

lovs|=|Bi|=e€

(E.0.3)

Because the contour encircles the origin, the Jacobian appearing the definition of a mul-
tidimensional residue will be evaluated at the origin. This means that for our purposes,

we need only compute the maps f to linear-order in (o, 3;) to compute the residue.

271



Doing this in complete detail, we see that

fi= (AB12) =ay(5412) +

fs= (AB34) = $1(2534) +(2(2134) +

fi= (AB45) = F2{2145) +
where ‘...” stands for terms quadratic in «;, §;. From this, it is trivial to read-off the
Jacobian:

‘(AB) o0 = (5412)(1423)(2534)(2145) = (1245)%(1234)(2345); (E.0.4)

combining this with the rest of the integrand—e.g. (AB 13) /(AB 51) evaluated on (AB) =
(24)—we find that

(AB13)(1245)(23 45) _ (2413)(1245)3(2345)

f'{ (AB12)(AB23)(AB34)(AB45)(AB51)  (1245)3(1234)(2345)

(AB)—(24) =
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Appendix F All 2-Loop NMHV
Amplitude Integrands

In this appendix, we will provide all the details that go into the formula for the n-point
2-loop NMHV amplitude, which can be graphically represented as follows:

j l
1
2—loop __ .
Axwnv = E @(’ o+ 5 E
1<j<l<m<k<i 1<j<k<l<i
1<j<k<l<m<i
i<l<im<j<k<i :
m l
tree : . ;
X[Z7j,]+1,kf,k+]_] ANMHV(j?"'?k7 l,...,l)
X + AN (6 -+ )
A%\?K/?HV(h ce 71)

(F.0.1)

Of these two terms, only the first requires any comment, because the second summand in-

volves only the familiar double-pentagons which generate the MHV two-loop amplitude’s
integrand.

As indicated by the ranges of the summation, the first sum actually represents a sum

over three distinct cyclic orderings of the labels (i, 7, k,I, m), corresponding to each of

the following cyclically-ordered integrands,

Integrand:

Range: 1<j<l<m<k<it i<l<m<j<k<i i<j<k<l<m<q
Boundary A i+l1=y A =1 A i+l=y
terms : B i-1=Fk+1 B i-1=Fk+1 B i=m
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For each range of indices, there are boundary-terms for which the general integrand’s
numerator must change slightly; these have been indicated in the table above. Given the
ranges and boundaries indicated above, the numerators for these contributions to the

2-loop NMHV amplitude are given by,

term numerator

non-boundary  (AB (i-1ii+1) (N (Xi k)

Aboundary  (ABi+1(i-11) N (Si0)) (F.0.2)
B boundary (ABi=1(ii+1) N (S 0))

~

A&B boundary (ABi+1i-1)(i %, j 1

where in all these cases the special plane ¥; ;. is given by the same object encountered

at one-loop, but with the arbitrary bitwistor X replaced by (Im),

Sip = % (G50 (aRR+) N @) = (k1) (554N (m)) . (F.0.3)
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Appendix G All 3-Loop MHV
Amplitude Integrands

In this appendix, we present the explicit form of the n-point 3-loop MHV amplitude,

which we represent graphically graphically represented as follows:

J1

ky

11<j1<k1<
<ko<jo<ia<iy

11<i2<j1<
<jo<ki1<ko<iy

ka

J2

As described in the body of this Chapter, the ‘boundary terms’ of the summands
above require some comment. We will discuss the two topologies separately, starting
with with the first summand in the equation above. Because when any two of the
indices become identified in the first graph the wavy-line numerators become ill-defined,
special consideration must be made for each of the degenerations allowed in the range
of the summand—that is, all the cases where two or more of the indices are identified.

Separating each type of such degeneration that is allowed in the first summand,
(

L all indices
Ix 3 D2 T, jus o, ks o)
i1 <i2<j1< distinct
<ja<ki<ko<ii
. 1 Ars .
- 3 Xg Z IZ <217Z27j17j27k) (k'l = kQ = ]{I)
: : 11<12<J1<
<jo<k<iy
i j B .. . k‘l = k‘g =k
.<.<'<ll SX% Z Ig‘(ll,lg,j,k) ‘ ‘ ‘
7 K2 ) ) - ) _ _
<js<ks<ha<in ir <ia<j<k<in Ji1=j2=
ki =k =k
1 Al: . . . .
Ixg Z Zi (i, 5, k) 1=7Jo=]
1<j<k<i ) ) .
11=13=1

Here, the overall factor of ‘%’ reflects the Zs-symmetry of the loop integrand (recall
that every term in the sum is understood to be fully-symmetrized with respect to the 3!

permutations of the loop-variable labels); although every term in the summand has the
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same factor of %, the boundary terms for which e.g. k; = ko in the sum are equivalent
to those where j; = js or i1 = iy, allowing us to represent all three degenerations with a
single integrand—Z3' in this case, and similarly for Z3'.

Let us now carefully define the contributions to this class of graph each in turn. First,

we have the generic integrand:

Numerator

o I{(ir,ia, ju, jo, k1, ko) = , Tr [(i1 |[AB1i2)(j1 |CD| j2) (k1 |[EF| k)]

for i1 <ia<j1<ja<ki<ka<ii

Here, we have left implicit the twéive propagators shown in the figure by solid lines,
and the three ‘wavy-line’ numerators (AB (i;—14141+1) () (i2—1i2i2+1)) etc. Observe
that we have introduced a new notation for remaining tensor components of the numer-
ator for this integrand. Letting ‘@’ denote an arbitrary bitwistor, we may define a ‘trace’
over a pair of such auxiliary bitwistors: Tr[(abe)(ecd)] = (abcd); that is, the trace is
nothing but the completely-antisymmetric contraction of bitwistors which are dual to a
pair of auxiliary bitwistors, which are indicated by ‘e’ in the corresponding formula.'

It may be helpful to illustrate the meaning of this numerator using the familiar nota-
tion of Wick contraction; in this notation, the tensor numerator of Z: (i1, ia, j1, jo, k1, k2)

corresponds to: .

Tr [(i1 [AB12)(j1 |C D] j2) (k1 |[EF | k2)] = (AB (i @) [(i2®))(CD (j1 o) [ (G2 ) (EF (k1 o) [ )(k2 °));

alternatively, the numerator can be written in any one of the following equivalent forms

(the equality of which offering further justification for calling this a ‘trace’):
Tr (i1 [AB|i2)(j1|CD| j2) (k1 [EF| k2)]
= (io | (o k1 (k2 14) N(FE)) ) N (DO)] B) - (A & B);
o ket [(kﬂ'l ((i241C) N (BA))) N (FE): D) — (C ¢ D);
kv | (121 (2 ki E) N(DC)) ) N(BA)| F) = (B > F).

=
=

!The idea of ‘tracing’ over auxiliary bitwistors turns out to be a very powerful generalization of the
four-bracket. Indeed, all the four-brackets in this chapter could be translated directly into traces, and

often with considerable simplification.
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As we will see presently, this numerator will change only very slightly for the boundary

terms in the summand. Always leaving the propagators and wavy-line implicit from the

the corresponding figures, the remaining integrands are defined according to the following:
i2 j1

Numerator

[ J Iéq(ll, ig,jl,j27 k‘) <~ Tr [(21 |AB| Z2)(]1 |CD| ]2)(]{7 |]{3—1 k'—|-].| k‘)]

for 11 <ig<ji<jo<k<ii

Numerator

o I (i1, iz, . k) = Tr [(ir |[AB| i) (5 [7-15+1] ) (k [k=1 k+1] k)]

for i1 <ig<j<k<ii

Numerator

e T1(i, 5, k) — Tr (¢ |i-1i+1]4)(j |7-17+1| J)(k |[k-1 k+1] k)]

for i<j<k<i

For the second topology, the boundary terms in the summand lead to just three

separate contributions that must be specifically addressed.

(

' 1 indices
J1 1 By - . .. a.
k 1% 2 E Il (Z17]17k1ak2aj2722) o
i1<j1<ki1< distinct
<ko<ja<ia<iiy
1 . b . o
9 P = 2 oD I2 (11,]1,]{71, k2a22> (kQ =Jo = kg)
2 11<j1<k1<
11<j1<k1< <ko<io<ii
<ko<j2<iz<ii o= i =i
1 B/ - . 1=)1 =1
2 j & 1 X§ Z 13 (217k17k2722) .
» 11<k1< ko = jo = ko
\ <ks<io<iy

As above, the overall factor of ‘%’ reflects the Zy-symmetry of the integrand (we remind
the reader that each term in the summand is to be fully-symmetrized with respect to

the 3! permutations of the loop variables). As before, we have exploited the symmetry of
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the integrand to identify various boundary terms: the degenerations iy = j; and ky = js,
being equivalent in the cyclic sum, they can be combined into the single summand ZF—
which explains its relative factor of 2.

With this, we can directly present the three classes of integrands of the second topol-

ogy which contribute to the 3-loop MHV amplitude:
. Ji

Numerator
(AB (izd1 j2) N (ji=1 j1 ji+1))

d ‘,Z’.lB(ibjl? kl? k27j27 7/2) — i
X (AB (ja=1 ja jo+1) N (j1 k1 k2))

for i1 <j1<ki1<ka<jo<iza<ii

Numerator
o . (AB (ig iy k2) (N (j1=1 1 j1+1))
® 72 (i1, j1, k1, kayia) <= & ,
for i1 <j1<k1<ka<i2<ii X <k2+1 n kl k2>
Numerator
. . <k‘2 ig il i1+1>
.I?,B(217k17k2722) .
for i1 <k1<ko<iz<iy X <k2 +114; ky kg)

i 2=k
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