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We present singlet-Majoron couplings to Standard Model particles through two loops at leading order in
the seesaw expansion, including couplings to gauge bosons as well as flavor-changing quark interactions.
We discuss and compare the relevant phenomenological constraints on Majoron production as well as
decaying Majoron dark matter. A comparison with standard seesaw observables in low-scale settings
highlights the importance of searches for lepton-flavor-violating two-body decays l → l0 þMajoron in
both the muon and the tau sectors.
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I. INTRODUCTION

The Standard Model (SM) has emerged as an incredibly
accurate description of our world at the particle level. Even
its apparently accidental symmetries, baryon number B and
lepton number L, are seemingly of high quality and have
never been observed to be violated. One could, however,
argue that the established observation of nonzero neutrino
masses is not only a sign for physics beyond the SM but
also for possible lepton number violation by two units. This
argument is based on an interpretation of the SM as an
effective field theory (EFT) and the observation that the
leading non-renormalizable operator is Weinberg’s dimen-
sion-five operator ðL̄HÞ2=Λ [1]. This operator violates
lepton number (ΔL ¼ 2) and leads to Majorana neutrino
masses of order hHi2=Λ after electroweak symmetry
breaking, which gives the correct neutrino mass scale for
a cutoff Λ ∼ 1014 GeV. Besides explaining neutrino oscil-
lation data, an EFT scale this high has little impact on other
observables and thus nicely accommodates the absence of
non-SM-like signals in our experiments.
An ever-increasing number of renormalizable realiza-

tions of the Weinberg operator exist in the literature, the
simplest of which arguably being the famous type-I seesaw
mechanism [2] that introduces three heavy right-handed
neutrinos to the SM field content. While the Weinberg
operator explicitly breaks the lepton number, underlying

renormalizable models could have a dynamical origin for
ΔL ¼ 2 via spontaneous breaking of the global Uð1ÞL
symmetry. This leads to the same Weinberg operator and
thus Majorana neutrino masses, but as a result of the
spontaneous breaking of a continuous global symmetry a
Goldstone boson also appears in the spectrum. This
pseudoscalar Goldstone boson of the lepton number sym-
metry was proposed a long time ago and was dubbed the
Majoron [3,4].
The Majoron is obviously intimately connected and

coupled to Majorana neutrinos, but at loop level also
receives couplings to the other SM particles. This makes
it a simple renormalizable example of an axionlike particle
(ALP), defined essentially as a light pseudoscalar with an
approximate shift symmetry. Although not our focus here,
by coupling the Majoron to quarks it is even possible to
identify it with the QCD axion [5–9], thus solving the
strong CP problem dynamically. The main appeal of the
Majoron ALP is that its couplings are not free but rather
specified by the seesaw parameters, which opens up the
possibility to reconstruct the seesaw Lagrangian by meas-
uring the Majoron couplings [10]. This is aided by the fact
that the loop-induced effective operators that couple the
Majoron to the SM are only suppressed by one power of the
lepton-number breaking scale Λ, whereas right-handed
neutrino-induced operators without Majorons are neces-
sarily suppressed by 1=Λ2 [11–17], rendering it difficult to
reconstruct the seesaw parameters in that way.
In this article we complete the program that was started

in the inaugural Majoron article [3] and derive all Majoron
couplings to SM particles. The tree-level and one-loop
couplings were obtained a long time ago; here we go to the
two-loop level in order to calculate the remaining cou-
plings, which include the phenomenologically important
couplings to photons as well as to quarks of different
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generations. Armed with this complete set of couplings we
then discuss various phenomenological consequences and
constraints on the parameters. This includes a discussion of
Majorons as dark matter (DM).
The rest of this article is structured as follows: in Sec. II

we introduce the singlet Majoron model and reproduce the
known tree-level and one-loop couplings. In Sec. III we
present results of our novel two-loop calculations necessary
for the Majoron couplings to gauge bosons and to quarks of
different generations. The phenomenological aspects of all
these couplings are discussed in Sec. IV. Finally, we
conclude in Sec. V.

II. MAJORON COUPLINGS AT TREE LEVEL
AND ONE LOOP

In this article we consider the minimal singlet Majoron
model [3],

L ¼ −L̄yNRH −
1

2
N̄c

RλNRσ þ H:c: − VðH; σÞ; ð1Þ

which introduces three right-handed neutrinos NR coupled
to the SM lepton doublets L and Higgs doublet H, and one
SM singlet complex scalar σ carrying lepton number
L ¼ −2, minimally coupled to the right-handed neutrinos
proportional to the Yukawa matrices y and λ. We do not
specify the scalar potential VðH; σÞ but simply assume that
σ ¼ ðf þ σ0 þ iJÞ= ffiffiffi

2
p

obtains a vacuum expectation value
f, which then gives rise to the right-handed Majorana mass
matrixMR ¼ fλ=

ffiffiffi
2

p
. J is the Majoron, σ0 is a massiveCP-

even scalar with mass around f, assumed to be inaccessibly
heavy in the following. Both MR and the charged-lepton
mass matrix are chosen to be diagonal without loss of
generality, effectively shifting all mixing parameters into y.
Electroweak symmetry breaking via hHi ¼ ðv= ffiffiffi

2
p

; 0ÞT
yields the Dirac mass matrix MD ¼ yv=

ffiffiffi
2

p
. The full 6 ×

6 neutrino mass matrix in the basis ðνcL; NRÞ ¼ VnR is then

L ¼ −
1

2
n̄cRV

T

�
0 MD

MT
D MR

�
VnR þ H:c:

≡ −
1

2
n̄cRMnnR þ H:c:; ð2Þ

where V is the unitary 6 × 6 mixing matrix to the states nR,
which form the Majorana mass eigenstates n ¼ nR þ ncR.
The diagonal mass matrix Mn ¼ diagðm1;…; m6Þ consists
of the physical neutrino masses arranged in ascending
order. Throughout this article, we denote mass matrices
with capital letters Mx and individual mass eigenvalues
with small letters mi. In the mass eigenstate basis, the tree-
level neutrino couplings to J, Z, W−, and h take the form
[18,19]

LJ ¼ −
iJ
2f

X6
i;j¼1

n̄i½CijðmiPL −mjPRÞ

þ CjiðmjPL −miPRÞ þ δijγ5mi�nj;

LZ ¼ gw
4 cos θW

X6
i;j¼1

n̄i=Z½CijPL − CjiPR�nj;

LW ¼ gwffiffiffi
2

p
X6
j¼1

X3
α¼1

ðl̄αBαj=W−PLnj þ n̄jB�
αj=W

þPLlαÞ;

Lh ¼ −
h
2v

X6
i;j¼1

n̄i½CijðmiPL þmjPRÞ

þ CjiðmjPL þmiPRÞ�nj; ð3Þ

where gw ¼ e= sin θW with Weinberg angle θW and

Cij ≡
X3
k¼1

VkiV�
kj; Bαj ≡

X3
k¼1

Vl
αkV

�
kj ¼ V�

αj: ð4Þ

In the last equation we used Vl
αk ¼ 1αk since we work in the

basis where the charged-lepton mass matrix is diagonal.
The 6 × 6 matrix C and the 3 × 6 matrix B satisfy a

number of identities [20,21] that are particularly important
in order to establish ultraviolet (UV) finiteness of ampli-
tudes involving neutrino loops:

C ¼ C† ¼ CC;

BB† ¼ 1; CMnCT ¼ 0;

B†B ¼ C; BMnCT ¼ 0;

BC ¼ B; BMnBT ¼ 0: ð5Þ

So far we have not made any assumption about the scale
of MR. In the following we will work in the seesaw limit
MD ≪ MR, resulting in a split neutrino spectrum with three
heavy neutrinos with mass matrix MR and three light
neutrinos with seesaw mass matrix Mν ≃ −MDM−1

R MT
D,

naturally suppressed compared to the electroweak scale v.
This hierarchy permits an expansion of all relevant matrices
in terms of the small 3 × 3 matrix A≡ U†MDM−1

R , where
U is the unitary 3 × 3 Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix. Parametrically this corresponds to an
expansion in the scale hierarchy v ≪ f which we refer
to as the seesaw expansion. To leading order, the matrices
take the form

C ≃
�
1 − AA† A

A† A†A

�
;

B ≃
�
Uð1 − 1

2
AA†ÞUA

�
;

Mn ≃
�
−AMRAT 0

0 MR

�
: ð6Þ
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Note that AMRAT is diagonal, which imposes constraints
on A and provides an implicit definition of U. These
constraints may be automatically satisfied using the Casas-
Ibarra parametrization [22]; however, more useful for our
purpose is the Davidson-Ibarra parametrization [23], which
uses Mν ¼ −AMRAT and MDM

†
D as the independent

matrices containing all seesaw parameters. Since Mν is
essentially already fixed by neutrino oscillation experi-
ments (modulo the phases, hierarchy, and overall mass
scale), the next step is to experimentally determineMDM

†
D.

As we will see, this could in principle be achieved by
measuring Majoron couplings without ever observing the
heavy right-handed neutrinos.
To this effect let us point out some interesting properties

of the Hermitian matrix MDM
†
D [10]: its determinant is

simply detMDM
†
D ¼ detMn ¼

Q
6
j¼1mj, which is strictly

positive in the model at hand even if one of the light
neutrinos were massless at tree level [24]. Thus, MDM

†
D is

positive definite, which yields a chain of inequalities for the
off-diagonal entries ðMDM

†
DÞij, i ≠ j (see, e.g., Ref. [25]):

jðMDM
†
DÞijj <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMDM

†
DÞiiðMDM

†
DÞjj

q

≤
ðMDM

†
DÞii þ ðMDM

†
DÞjj

2

≤
1

2
trðMDM

†
DÞ: ð7Þ

This provides a useful way to constrain magnitudes of the
elements of MDM

†
D since its trace appears in many

couplings of the Majoron.
From Eq. (3) all loop-induced Majoron couplings are

necessarily proportional to 1=f. But many couplings
contain additional powers of M−1

R ∝ 1=f, which make
them higher order in the seesaw expansion. We will neglect
these suppressed couplings and focus on those that are
down by only one power of 1=f. For the sake of generality,
we determine the Majoron couplings assuming an explicit
shift-symmetry-breaking Majoron mass term − 1

2
m2

JJ
2,

making J a pseudo-Goldstone boson. This mass could
be explicit [26,27] or arise from quantum-gravity effects
[28–30].

A. Neutrino couplings

By inserting Eq. (6) into Eq. (3), the tree-level Majoron
coupling to the light active Majorana neutrinos in the
seesaw limit is

LJ ¼
iJ
2f

X3
j¼1

mjn̄jγ5nj: ð8Þ

These diagonal Majoron couplings to neutrinos are
formally second order in the seesaw expansion

since m1;2;3=f ∼M2
D=ðMRfÞ ∼ ðv=fÞ2. The omitted off-

diagonal Jninj couplings are determined by the matrix
AA†AMRAT=f ∼ ðv=fÞ3, which are further suppressed,
and lead to irrelevantly slow active-neutrino decays
ni → njJ [4].
Assuming for simplicity mJ ≫ m1;2;3, the Majoron’s

partial decay rate into light neutrinos is

ΓðJ → ννÞ ¼ mJ

16πf2
X3
j¼1

m2
j : ð9Þ

For sufficiently large f the Majoron becomes a long-lived
DM candidate [27,29,31–36], discussed in Sec. IV C.
As mentioned earlier, the Majoron couplings to all other

SM particles are leading order in the seesaw expansion, i.e.,
proportional to 1=f, and may easily dominate the phe-
nomenology despite the additional loop suppression [10].
Therefore, a thorough discussion of the Majoron requires
knowledge of all loop-induced couplings that are leading
order in the seesaw expansion. Using the tree-level cou-
plings of Eq. (3) we calculate the loop-induced Majoron
couplings to the rest of the SM particles and provide
them below.

B. Charged fermion couplings

The leading order couplings to charged fermions are
obtained from the one-loop diagrams in Fig. 1. These were
calculated long ago, both in the one-generation case [3] and
in the three-generation case, which leads to off-diagonal
Majoron couplings to leptons [18]. At leading order in the
seesaw expansion, these couplings take a simple form [10],
with (diagonal) quark couplings

LJqq ¼
iJ

16π2v2f
trðMDM

†
DÞðd̄Mdγ5d − ūMuγ5uÞ ð10Þ

and charged lepton couplings

LJll ¼ iJ
16π2v2f

l̄ðMltrðMDM
†
DÞγ5

þ 2MlMDM
†
DPL − 2MDM

†
DMlPRÞl; ð11Þ

where Ml;u;d denote the diagonal mass matrices of the
appropriate SM fermions. In addition to exhibiting decou-
pling in the seesaw limit MR ∼ f → ∞, these couplings

FIG. 1. Loop-induced Majoron couplings to charged fermions
with the Majorana neutrino mass eigenstates ni running in
the loops.
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vanish in the electroweak symmetric limit v → 0 as
expected since J is an electroweak singlet. The quark
couplings can be used to derive the Majoron couplings to
nucleons N ¼ ðp; nÞT , using the values from Ref. [37]:

LJNN ≃
iJtrðMDM

†
DÞ

16π2v2f
N̄

�−1.30mp 0

0 1.24mn

�
γ5N: ð12Þ

At this point let us make some remarks about CP
violation. Already in the one-loop processes above one
encounters loop-induced Majoron mixing with the Brout-
Englert-Higgs boson h, which would result in Majoron
couplings to the scalar bilinear f̄f as opposed to the
pseudoscalar f̄iγ5f. It was noted in Ref. [18] that the
relevant J − h mixing diagrams vanish for mJ ¼ 0. For
mJ ≠ 0 the J − h amplitude is of order ðv=fÞ2 in seesaw
and hence negligible. This can be understood by noting that
CP-violating phases in the Davidson-Ibarra parametriza-
tion reside both in the active-neutrino mass matrix Mν ¼
−AMRAT and in the off-diagonal entries of the Hermitian
matrixMDM

†
D, each containing three complex phases [23].

CP-violating Majoron couplings via Mν are unavoidably
suppressed by Mν=f ∼ ðv=fÞ2, leaving only MDM

†
D as a

potential source. However, closing lepton loops implies an
amplitude dependence on trðMDM

†
DgðMlÞÞ, with some

function gðMlÞ of the charged-lepton mass matrix. Since
the latter is diagonal, the trace depends only on the real
diagonal entries of MDM

†
D, resulting in an effectively CP-

conserving amplitude. The CP phases of MDM
†
D thus only

appear in the off-diagonal Majoron couplings to leptons, at
least to lowest order in the seesaw expansion.

C. Couplings to gauge bosons

At one-loop order, the only nonvanishing couplings to
gauge bosons are to WW and ZZ, with typical diagrams
shown in Fig. 2. However, they are higher order in the
seesaw expansion, which can be understood as follows: the
amplitudes come with a factor of MDM

†
D=f in order to

achieve the necessary NR-νL mixing to close the loop; on
dimensional grounds there is an additional M−2

R suppres-
sion since this is the only high mass scale in the loop.
Explicit one-loop formulas can be found in Refs. [38,39].
The leading seesaw behavior for coupling to gauge bosons
without the M−2

R suppression starts at two-loop order.
At this point it is appropriate to discuss the connection to

anomalies in the minimal Majoron model. There is some
confusion in the literature regarding the question of
whether the Majoron is the Goldstone boson of the
anomaly-free Uð1ÞB−L or the anomalous Uð1ÞL. Both
choices seem equally valid because the baryon number
remains unaltered by the Lagrangian in Eq. (1). Since
according to common lore Goldstone couplings to gauge
bosons are determined by the anomaly structure of the

theory, this leads to a paradox when attempting to guess the
form of Majoron couplings toW and Z. The resolution was
recently presented in Ref. [40], where it was explained that
Goldstone couplings to gauge bosons are driven entirely by
nonanomalous processes. Anomalies still serve as a useful
bookkeeping device for the couplings to vectorlike gauge
bosons such as gluons and photons, but fail for chiral gauge
bosons. Disregarding anomalies it is then necessary to
calculate Goldstone couplings to gauge bosons in pertur-
bation theory, the results of which we present in the next
section. Additionally, we emphasize that the nonvanishing
Majoron coupling to electroweak gauge bosons [Eqs. (24),
(28), and (35) below] does not lead to nonperturbative
violation of the shift symmetry beyond mJ due to the
absence of electroweak instantons without Bþ L violation
[41–43]. Therefore, electroweak instantons cannot generate
Majoron mass.

III. MAJORON COUPLINGS AT TWO LOOPS

In this section we present Majoron couplings for which
the leading seesaw behavior arises at two loops. To
automate the evaluation of some Oð100Þ Feynman dia-
grams contributing to each effective coupling we imple-
mented this model in Feynman gauge including all
Goldstone bosons [19] in FeynRules [44], and generated
the necessary amplitudes with FeynArts [45]. We validated
our implementation by reproducing the tree-level and one-
loop couplings above.
The Feynman diagrams naturally divide into two sets

(see Figs. 3). Set I diagrams contain the one-particle
irreducible (1PI) two-loop diagrams. Set II diagrams
contain the reducible diagrams that are dominated by
J-Z mixing. We used an in-house Mathematica implemen-
tation of expansion by regions as described in Ref. [46] to
carry out a double asymptotic expansion m4;5;6 → ∞,
m1;2;3 → 0 of the two-loop vertex integrals, and to alge-
braically reduce the one-loop [47] and two-loop [48] tensor
integrals in dimensional regularization. We treated γ5
naively, such that it anticommutes with all other Dirac
matrices while also preserving the cyclic property of traces.
Finally, after expanding around four spacetime dimensions,
we summed over fermion generations to extract the leading
seesaw behavior of each Majoron coupling. We found the
couplings to be expressible as simple sums of one-loop
functions and rational terms. In principle, two-loop self-
energy and vacuum integrals may be present, but they

FIG. 2. Loop-induced Majoron couplings toWW and ZZ at one
loop. These diagrams generate couplings that are subdominant in
the seesaw expansion.
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cancel away in the course of reduction, leaving behind
rational terms.
We have checked our results by confirming that all

amplitudes are proportional to the expected tensor struc-
tures, are UV finite upon using the relations of Eq. (5), and
have the expected limiting low-energy/small-mass behav-
ior. Additionally, we confirmed that our results are insen-
sitive to the treatment of γ5 by reevaluating them in several
different ways, including projecting the integrals onto form
factors and also starting from cyclically reordered Dirac
traces, and finding the same answer upon expanding around
four spacetime dimensions.
We pause to comment on how we quote our results for

couplings to gauge bosons fVV 0g¼fgg;γγ;Zγ;ZZ;WþW−g.
We phrase our results in terms of on-shell decay amplitudes

MðJ → Vðk1ÞV 0ðk2ÞÞ ¼ −gJVV 0εμνρσε�μðk1Þε�νðk2Þk1;ρk2;σ:
ð13Þ

It is commonplace to see these amplitudes interpreted as
effective couplings as they appear to match onto EFT
operators of the form [49]

L ¼ −
gJVV 0

4
JVμνṼ 0

μν; ð14Þ

whereVμν is the appropriate field-strength tensor and Ṽμν its
dual. However, we caution the reader that the identification
with effective couplings in this way is somewhat clumsy for
the following reasons. First, matching onto local operators
should be carried out for off-shell Green functions which
have been expanded in the external momenta. Second, our
effective couplings gJVV 0 cannot be viewed in a Wilsonian
sense, since degrees of freedom lighter than the Majoron
contribute in certain mass ranges, nor can it be viewed in the
1PI sense since the couplings include Set II diagrams that are
not one-particle irreducible. Therefore, interpreting our

results as coefficients of effective operators should be done
with care.

A. Coupling to two gluons

Assuming a sufficiently heavy Majoron mJ ≳ ΛQCD, the
coupling to free gluons comes entirely from J-Z mixing
diagrams of Set II in Fig. 3. A straightforward evaluation of
the decay amplitude J → gg at leading order in the seesaw
expansion yields the simple expression

gJgg ¼
αS

16π3v2f
trðMDM

†
DÞ

X
q¼u;d

Tq
3h

�
m2

J

4m2
q

�
; ð15Þ

with Tu
3 ¼ −Td

3 ¼ 1=2 and the loop function

hðxÞ≡ −
1

4x
ðlog½1 − 2xþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx − 1Þ

p
�Þ2 − 1

¼
(

x
3
þ 8x2

45
þ 4x3

35
þOðx4Þ; x → 0;

−1þ ðπþi logð4xÞÞ2
4x þOðx−2Þ; x → ∞:

ð16Þ

For small mJ, the amplitude vanishes as gJgg ∼m2
J and

indicates that at leading order in the derivative expansion the
amplitude matches onto an operator ð∂2JÞGaμνG̃a

μν instead
of JGaμνG̃a

μν as in Eq. (14). This implies that the Majoron
does not solve the strong CP problem, as this operator is
insensitive to a constant shift J → J þ c that could other-
wise be used to cancel the strong CP θ term [40].
Furthermore, contrary to the claim in Ref. [38], Majorons
without tree-level couplings to quarks cannot solve the
strong CP problem even at higher loop order [50,51].

B. Coupling to two photons

The Majoron coupling to photons at the two-loop level
receives contributions from both sets of Feynman diagrams
in Fig. 3,

gJγγ ¼ gIJγγ þ gIIJγγ; ð17Þ

and yields the partial decay rate into two photons,

ΓðJ → γγÞ ¼ jgJγγj2m3
J

64π
: ð18Þ

The contributions from Set II were calculated in
Ref. [10] with the result

gIIJγγ ¼
α

8π3v2f
trðMDM

†
DÞ
X
f

Nf
cQ2

fT
f
3h

�
m2

J

4m2
f

�
; ð19Þ

already simplified with the help of the electroweak anomaly
cancellation condition

P
f N

f
cQ2

fT
f
3 ¼ 0. Here,Nu;d

c ¼ 3 ¼
3Nl

c is the number of colors, Tu
3 ¼ 1=2 ¼ −Td;l

3 the

FIG. 3. Representative two-loop diagrams contributing
to loop-induced Majoron couplings to vector bosons fVV 0g ¼
fgg; γγ; Zγ; ZZ;WþW−g. Set I contains the two-loop 1PI dia-
grams, and Set II contains reducible diagrams dominated by J-Z
mixing. Here, ni and nj are Majorana neutrino mass eigenstates
and f SM fermions (not necessarily all identical).
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isospin, and fQl; Qd;Qug ¼ f−1;−1=3;þ2=3g the elec-
tric charge in units of e ¼ ffiffiffiffiffiffiffiffi

4πα
p

. We complete the
evaluation of gJγγ here by computing the additional con-
tributions arising from Set I diagrams, which give

gIJγγ ¼
α

8π3v2f

X
l

ðMDM
†
DÞllh

�
m2

J

4m2
l

�
: ð20Þ

Just as for the gluon coupling, the amplitude vanishes as
gJγγ ∼m2

J for small Majoron masses, implying that the
leading effective operator this amplitude matches onto in
the derivative expansion is ð∂2JÞFμνF̃μν rather than the
typically occurring JFμνF̃μν.
For mJ ≪ mf we can relate the total Majoron-photon

coupling gJγγ to the dimensionless diagonal fermion cou-
plings of Eqs. (10) and (11), gJffJf̄iγ5f, as

gJγγ ≃ −
αm2

J

12π

X
f

Nf
cQ2

f

gJff
m3

f

; ð21Þ

which agrees with the EFT result of Ref. [52]. Since the
gJff couplings can have different signs and magnitudes, the
Jγγ coupling for mJ < me could be heavily suppressed.
The key point and crucial result of this full two-loop
calculation is that the Jγγ coupling has a richer structure
than anticipated in Ref. [10] based on the evaluation of gIIJγγ
alone. This is illustrated in Fig. 4 where we show jgJγγj × f
for a variety of hierarchies of the diagonal entries
ðMDM

†
DÞll. The SM-fermion mass thresholds together

with the different signs in gJff potentially suppress gJγγ
by orders of magnitude. The typical size of the coupling for

mJ > MeV is jgJγγj∼10−5f−1ðMDM
†
DÞ=ð100GeVÞ2, sim-

ply due to the unavoidable suppression factor α=ð8π3Þ. In
Fig. 4 we used the current-quark masses to evaluate gJγγ;
for mJ ≲ ΛQCD they should be replaced by hadronic loops.
We have not attempted this, but we refer the interested
reader to standard axion literature on the topic [53–55].

C. Coupling to Z and photon

Next we present the Z-photon coupling gJZγ ¼ gIJZγþ
gIIJZγ , which receives contributions from Set I and Set II
diagrams in Fig. 3. The results are

gIJZγ ¼−
α

16π3cWsWv2f

�
trðMDM

†
DÞ

− ð1−4s2WÞ
X
l

�
MDM

†
DÞll

m2
Jhð m2

J
4m2

l
Þ−m2

Zhðm
2
Z

4m2
l
Þ

m2
J−m2

Z

�
;

ð22Þ

gIIJZγ ¼−
α

16π3cWsWv2f
trðMDM

†
DÞ

×
X
f

2Nf
cQfT

f
3ð2Qfs2W −Tf

3Þ
m2

Jhð m2
J

4m2
f
Þ−m2

Zhðm
2
Z

4m2
f
Þ

m2
J−m2

Z
;

ð23Þ

with cW ≡ cos θW and sW ≡ sin θW . We have usedP
fN

f
cQ2

fT
f
3¼0¼P

fN
f
cQfðTf

3Þ2 to simplify the formula.
In the limit mJ, mZ → 0, the amplitude is nonvanishing,

FIG. 4. Jγγ coupling for various hierarchies in the diagonal elements of MDM
†
D. The black solid line shows

ðMDM
†
DÞee ¼ ðMDM

†
DÞμμ ¼ ðMDM

†
DÞττ ¼ ð100 GeVÞ2; the blue dashed line shows ðMDM

†
DÞee ¼ ðMDM

†
DÞμμ ¼ ð100 GeVÞ2,

ðMDM
†
DÞττ ¼ 0 (which corresponds to gJee ¼ gJμμ ¼ 0); the red dotted line shows ðMDM

†
DÞμμ ¼ ðMDM

†
DÞττ ¼ ð100 GeVÞ2,

ðMDM
†
DÞee ¼ 0; and the green dot-dashed line shows ðMDM

†
DÞμμ ¼ ð100 GeVÞ2 ≫ ðMDM

†
DÞee, ðMDM

†
DÞττ.
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gJZγ ∼ −
αtrðMDM

†
DÞ

16π3cWsWv2f
; ð24Þ

and matches onto the effective operator JZμνF̃μν, as in Eq. (14).

D. Coupling to two Z bosons

The Majoron coupling gJZZ ¼ gIJZZ þ gIIJZZ to two Z bosons receives contributions from Sets I and II:

gIJZZ ¼ −
α

32π3c2Ws
2
Wv

2f

�
ð1 − 2s2WÞ2trðMDM

†
DÞ −

2

m2
J − 4m2

Z

X
l

ðMDM
†
DÞllm2

l

�
g

�
m2

J

4m2
l

�
− g

�
m2

Z

4m2
l

�

þ ð2s2Wð1 − 2s2WÞm2
J þ ð1 − 4s2WÞ2m2

ZÞC0ðm2
J; m

2
Z;m

2
Z;ml; ml; mlÞ

��
; ð25Þ

gIIJZZ ¼ α

4π3c2Ws
2
Wv

2f
trðMDM

†
DÞ

1

m2
J − 4m2

Z

X
f

Nf
cT

f
3m

2
f

�
ðTf

3Þ2
�
g

�
m2

J

4m2
f

�
− g

�
m2

Z

4m2
f

��

þ ðs2WQfðTf
3 −Qfs2WÞm2

J þ ðTf
3 − 2Qfs2WÞ2m2

ZÞC0ðm2
J; m

2
Z;m

2
Z;mf;mf;mfÞ

�
; ð26Þ

where

gðxÞ≡
ffiffiffiffiffiffiffiffiffiffiffi
1 −

1

x

r
log½1 − 2xþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx − 1Þ

p
� ð27Þ

and C0 is the scalar three-point Passarino-Veltman function. Despite the appearance of ðm2
J − 4m2

ZÞ−1, the amplitude is
regular at threshold mJ → 2mZ. The coupling gJZZ is nonvanishing in the limit mJ, mZ → 0,

gJZZ ∼ −ð1 − 3s2WÞ
αtrðMDM

†
DÞ

48π3c2Ws
2
Wv

2f
; ð28Þ

and matches onto JZμνZ̃μν.

E. Coupling to two W bosons

Finally, we present results for the two-loop amplitude for J → WþW− in order to extract the coupling gJWW , which
receives contributions from diagrams in Set I and Set II

gJWW ¼ gIJWW þ gII;lJWW þ gII;dJWW þ gII;uJWW; ð29Þ
where we have separated the Set II J-Z mixing contributions based on the type of SM fermions running in the loop. The Set
I diagrams give

gIJWW ¼ α

64π3s2Wv
2f

1

m2
J − 4m2

W

X
l

ðMDM
†
DÞll

m2
W

�
4m4

W −m2
Jm

2
W þ 4m2

lm
2
Wg

�
m2

J

4m2
l

�

þ 4m2
lðm2

W −m2
lÞ
�
− log

�
m2

l

m2
l −m2

W

�
þm2

WC0ðm2
J; m

2
W;m

2
W;ml; ml; 0Þ

��
; ð30Þ

the Set II J-Z mixing diagrams with two charged leptons in the loop give

gII;lJWW ¼ −
α

32π3s2Wv
2f

trðMDM
†
DÞ

m2
W

1

m2
J − 4m2

W

X
l

m2
l

�
m2

Wg

�
m2

J

4m2
l

�

þ ðm2
W −m2

lÞ
�
− log

�
m2

l

m2
l −m2

W

�
þm2

WC0ðm2
J; m

2
W;m

2
W;ml; ml; 0Þ

��
; ð31Þ
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the Set II J-Z mixing diagrams with two down quarks in the loop give

gII;dJWW ¼ −
3α

32π3s2Wv
2f

trðMDM
†
DÞ

m2
W

1

m2
J − 4m2

W

X
i;j

jðVqÞjij2m2
di

�
m2

W

�
g

�
m2

J

4m2
di

�
− g

�
m2

W

m2
di

;
m2

W

m2
uj

��

þ ðm2
W −m2

di
þm2

ujÞ
�
log

�
muj

mdi

�
þm2

WC0ðm2
J; m

2
W;m

2
W;mdi ; mdi ; mujÞ

��
; ð32Þ

and the Set II J-Z mixing diagrams with two up quarks in the loop give

gII;uJWW ¼ 3α

32π3s2Wv
2f

trðMDM
†
DÞ

m2
W

1

m2
J − 4m2

W

X
i;j

jðVqÞijj2m2
ui

�
m2

W

�
g

�
m2

J

4m2
ui

�
− g

�
m2

W

m2
ui

;
m2

W

m2
dj

��

þ ðm2
W −m2

ui þm2
dj
Þ
�
log

�
mdj

mui

�
þm2

WC0ðm2
J; m

2
W;m

2
W;mui ; mui ; mdjÞ

��
: ð33Þ

Here, Vq is the unitary Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix. In the last two formulas, the two-argument
loop function is

gðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ y − 1Þ2 − 4xy

q
log

�
xþ y − 1

2
ffiffiffiffiffi
xy

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ y − 1Þ2

4xy
− 1

s �
: ð34Þ

The coupling is regular at threshold mJ → 2mW , and nonvanishing in the limit mJ, mW → 0,

gJWW ∼ −
3αtrðMDM

†
DÞ

128π3s2Wv
2f

�
1 −

X
i;j

jðVqÞijj2
�m4

ui −m4
dj
þ 2m2

dj
m2

ui logðm2
dj
=m2

uiÞ
ðm2

ui −m2
dj
Þ2

��
; ð35Þ

and matches onto JWþμνW−
μν.

F. Coupling to γ-Higgs and Z-Higgs

Besides the usually considered pseudoscalar couplings
to two gauge bosons discussed above, CP invariance also
allows couplings of J to hZ and hγ. The former arises
already at one-loop level but is seesaw suppressed; the
dominant contributions to both couplings then arise at two-
loop level. Because of the large number of diagrams and
low phenomenological relevance of decays such as h → γJ
compared to the processes derived above we will not,
however, present the results here.

G. Flavor changing quark couplings

At the two-loop level we find off-diagonal Majoron
couplings to quarks, which can lead, for example, to s →
dJ or K → πJ at hadron level. Such flavor-changing
couplings have long been advocated to search for light
bosons and axions [56,57] and have enjoyed increased
attention in recent years [58–61], partly because of an
improved reach at existing and upcoming experiments such
as NA62 and Belle II.
In the Majoron model the relevant flavor-changing

quark-level couplings arise at two loops and involve a
large number of diagrams; see Fig. 5. The leading loga-
rithmic contribution to coupling to down quarks is

LJdd0 ¼ −
1

128π4v4f
tr

�
MD log

�
MR

mW

�
M†

D

�
× ðiJd̄RMdV

†
qM2

uVqdL þ H:c:Þ; ð36Þ

arising from the Set I diagrams in Fig. 5. The couplings are
of minimal-flavor-violating (MFV) type [62], as expected
from the fact that J is quark-flavor blind. The subleading
contribution from the remaining diagrams is given by

Lsub
Jdd0 ¼

−trðMDM
†
DÞ

512π4v4f
ðiJd̄RMdV

†
qFuVqdL þ H:c:Þ; ð37Þ

FIG. 5. Representative two-loop diagrams for off-diagonal
Majoron couplings to quarks.
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where the diagonal matrix Fu has entries

Fu ¼
7m4

u þ 3m2
um2

W − 8m4
W

m2
u −m2

W
þ 4m2

ug

�
m2

J

4m2
u

�

þ 2m2
uðm4

u − 2m2
um2

W þ 2m4
WÞ

ðm2
u −m2

WÞ2
log

�
m2

W

m2
u

�
− 4m2

um2
WC0ð0; 0; m2

J; mu;mW;muÞ: ð38Þ

For sub-TeV Majoron mass and large-enough right-handed
neutrino masses, log ðMR=mWÞ ≳ 1 as is assumed in our
seesaw expansion, the leading logarithmic contribution
LJdd0 dominates over Lsub

Jdd0, which we neglect in the
following for simplicity.
The MFV matrixMdV

†
qM2

uVq relevant for LJdd0 makes it
clear that off-diagonal terms would vanish if all up quarks
were degenerate, so these terms are necessarily propor-
tional to up-quark mass differences. Numerically this
matrix evaluates to

				MdV
†
qM2

uVq

v3

				 ≃
0
B@

0 0 8 × 10−8

7 × 10−8 3 × 10−7 8 × 10−6

7 × 10−5 3 × 10−4 8 × 10−3

1
CA;

ð39Þ

keeping only the largest entries. The biggest amplitude is
therefore b → sJ, which is, however, experimentally less
clean than s → dJ, further discussed in Sec. IVA.
From the dominant flavor-changing down-quark cou-

plings in LJdd0 we immediately obtain the corresponding
flavor-changing up-quark couplings as

LJuu0 ¼ −
1

128π4v4f
tr

�
MD log

�
MR

mW

�
M†

D

�
× ðiJūRMuVqM2

dV
†
quL þ H:c:Þ; ð40Þ

with the markedly smaller MFV coupling matrix

				MuVqM2
dV

†
q

v3

				 ≃
0
B@

0 0 0

3 × 10−10 3 × 10−9 6 × 10−8

7 × 10−7 8 × 10−6 2 × 10−4

1
CA:

ð41Þ

Taken together with the weaker experimental limits on u →
u0J we can ignore these couplings in practice.
From the point of view of the seesaw expansion, the

quark-flavor changing couplings are actually the dominant
Majoron couplings. They only decouple as logðMRÞ=f,
whereas all other couplings decouple at least as 1=f. It was
noted before that Goldstone bosons with effective diagonal
couplings Jmqq̄iγ5q yield flavor-changing quark couplings
at one loop that depend logarithmically on the UV scale

[63,64], whereas an initial coupling JWμνW̃μν does not
have such a dependence [58]. In our case JWμνW̃μν gives
only a seesaw-suppressed contribution to Jqq0, and the
logðMRÞ terms originate from an effective coupling to
Goldstone bosons, JGþG−.

IV. PHENOMENOLOGY

Having obtained all Majoron couplings to leading order
in the seesaw expansion we can discuss existing constraints
and signatures.

A. Light Majorons

We start with the simplest case of a massless Majoron,
which most importantly gives a vanishing coupling to
photons. It proves convenient to phrase our discussion in
terms of the dimensionless parameters

Kαβ ≡ ðMDM
†
DÞαβ

vf
; ð42Þ

as they capture the Majoron couplings in most cases [10].
The off-diagonal entries of MDM

†
D are directly con-

strained by the lepton-flavor-violating (LFV) decays l →
l0J [18,65,66]. For ml0 ≪ ml, the partial widths read

Γðl → l0JÞ
Γðl → l0νlν̄l0 Þ

≃
3

16π2
v2

m2
l
jKll0 j2 ð43Þ

and involve a left-handed final-state lepton, leading to an
anisotropic decay [10]. The constraints in the tau sector are
Brðτ → lJÞ < Oð10−3Þ [67] and lead to [10]

jKτej < 6 × 10−3; jKτμj < 9 × 10−3; ð44Þ

which can be improved by Belle and Belle-II [68–70].
In the muon sector, the best constraints on a Majoron
with anisotropic emission come from μ → eJ [71] (to be
improved with Mu3e [72]) and μ → eJγ [73]. The latter is
also sensitive to mJ ¼ 0 and provides a limit

jKμej < 10−5: ð45Þ

The diagonal couplings Kll of a massless Majoron are
constrained by astrophysics, stellar cooling in particular,
and imply

jKee − Kμμ − Kττj < 2 × 10−5; ð46Þ

trðKÞ < 5 × 10−6; ð47Þ

from the electron [74] and nucleon coupling [75], respec-
tively. The bound on the trace trðKÞ is particularly powerful
since it provides upper bounds on all entries of the positive-
definite K [10] by means of the inequality of Eq. (7). This
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then puts an upper bound on the Majoron coupling to
muons and taus, which is far better than any direct bound
on these couplings. It also ensures that rare decays such as
K → πJ and Z → γJ [54,55,76,77] are unobservably sup-
pressed for a massless Majoron. Two-loop couplings are
hence irrelevant for massless Majorons.
Overall we see that a massless Majoron gives seesaw-

parameter constraints of order MDM
†
D=ðvfÞ ≲ 10−5–10−6.

While this is far off the “natural” value MDM
†
D=ðvfÞ∼

Mν=v∼10−13, it can be realized by assuming certain matrix
structures in MD that suppress Mν ≃ −MDM−1

R MT
D but not

MDM
†
D, to be discussed in more detail in Sec. IV B. As we

have seen, the relevant couplings of a massless Majoron are
those to nucleons and electrons, but even μ → eJ could be
observable.
The phenomenology becomes more interesting for non-

zero Majoron mass, specifically values above ∼10 keV in
order to kinematically evade the stellar cooling constraints.
This is shown in Fig. 6 for Majoron masses above 1 MeV.
In addition to the one-loop lepton-flavor-violating decays
that probe Kαβ we now also have relevant constraints from
the two-loop quark-flavor-violating decays, especially
K → πJ and B → KJ (limits and future sensitivity taken
from Ref. [61], based on Refs. [58,78,79]). These decays
probe the quantity trðMD logðMR=mWÞM†

DÞ, but to simplify
comparison with the other limits we set logðMR=mWÞ ¼ 1
to obtain a limit on trðKÞ. It should be kept in mind,
however, that a larger log enhancement can make these rare

processes even more relevant. Also potentially relevant are
the two-loop Majoron couplings to photons via the effec-
tive coupling gJγγ from Sec. III B. Astrophysical limits on
this coupling are extremely strong formJ ≲ 100 MeV [80];
since gJγγ is m2

J suppressed for mJ ≲MeV, the region
where the photon coupling is important is between MeV
and 100 MeV. This is unfortunately precisely the mass
region where the light quarks that run in the J-γ-γ loops
should be replaced by hadrons; as a very naive way to
incorporate this we simply set mu ¼ md ¼ mπ and ms ¼
mK in Eq. (19). The gJγγ limit in Fig. 6 should therefore not
be taken too seriously. In light of these uncertainties we do
not discuss how the gJγγ coupling depends on the various
diagonal Kll, but rather set them all equal to trðKÞ=3 to
allow a comparison to the other limits. It is clearly possible
to suppress gJγγ significantly in the region of interest by
choosing hierarchical Kll, as shown in Fig. 4.
Also illustrated in Fig. 6 are SN1987 constraints on the

Majoron-nucleon coupling, Eq. (12), adopted from
Ref. [81], which reach up to mJ ∼ 250 MeV and constrain
trðKÞ between 5 × 10−5 and 0.06.
As can be appreciated from Fig. 6, even the strong

astrophysical constraints on Majorons do not rule out
flavor-violating rare decays, with significant experimental
progress expected in the near future. Even the two-loop
suppressed d → d0J decays provide meaningful constraints.
μ → eJ is well constrained already, and we expect it to

eventually become the most sensitive probe of the K matrix
entries formJ < mμ, even beating out stellar cooling limits.
τ → lJ, on the other hand, is mainly relevant for mJ
between ∼100 MeV and mτ. For smaller mJ the flavor-
conserving constraints on K from gJγγ and gJNN become
stronger, which suppresses the LFV modes via the inequal-
ity of Eq. (7). For mJ > mτ, the main rare decays are B →
KJ and Z → Jγ [49], the former is shown in Fig. 6, and the
latter gives irrelevant constraints on the K entries of
order 104.

B. Comparison with seesaw observables

So far we have discussed the interactions of the Majoron,
but, of course, the right-handed neutrinos NR also mediate
non-Majoron processes, discussed at length in the literature
[11–17]. Assuming again that the NR are heavy enough to
be integrated out, the relevant dimension-six operators
involving SM fields all depend on the matrices

MDM−2
R M†

D and MDM−2
R log ðMR=mWÞM†

D; ð48Þ

which drive LFV processes such as l → l0γ as well as
lepton-universality violating effects such as ΓðZ → ll̄Þ=
ΓðZ → l0l̄0Þ, recently discussed thoroughly in Ref. [17]. In
comparison, we have seen above that all Majoron operators
depend on the matrices

FIG. 6. Upper limits on combinations of Kαβ ¼ ðMDM
†
DÞαβ=

ðvfÞ for Majoron masses above MeV. The shaded regions
exclude jKαβj or trðKÞ by nonobserved rare decays, the dashed
lines show the potential future reach; see text for details. K → πJ
and B → KJ further scale with logðMR=mWÞ, which has been set
to 1 here. The black region is a very naive estimate of SN1987
constraints on the diphoton coupling, setting for simplicity
Kll ¼ trðKÞ=3. The yellow region is the SN1987 constraint
on the JNN coupling [81]. The off-diagonal entries have to
satisfy jKαβj < trðKÞ=2; see Eq. (7).
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MDM
†
D

f
and

MD log ðMR=mWÞM†
D

f
: ð49Þ

For f ∼MR, this makes the Majoron operators potentially
dominant, while f ≫ MR suppresses them to an arbitrary
degree [10]. To properly compare Majoron and non-
Majoron processes it is necessary to pick a structure for
MD, which is guided by our experimental reach.
As we have seen above, even future limits on Majoron

production cannot reach the natural seesaw scale
MR ∼ 1014 GeV, and the same is true for other NR-
mediated processes [17]. By no means does this preclude
observable effects, since it is possible to use the matrix
structure of MD to suppress Mν ≃ −MDM−1

R MT
D while

keeping MDM
†
D large [82,83], potentially realizing a

lepton-number symmetry [84] as in the inverse seesaw
[85–87]. Following Refs. [17,88] we can solve Mν ¼ 0 for
MD, which then requires only tiny perturbations δMD to
produce the observable neutrino masses via

Mν ≃ −δMDM−1
R MT

D −MDM−1
R ðδMDÞT: ð50Þ

The key observation is that δMD is negligible in MDM
†
D.

Mν ¼ 0 requires the low-scale seesaw structure

MD ¼ v

0
B@

ξe

ξμ

ξτ

1
CA�

1 z
ffiffiffiffiffi
m5

m4

q
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p ffiffiffiffiffi
m6

m4

q �
; ð51Þ

with complex z and real ξα without loss of generality [17].
1

This product structure of MD implies

ðMDbðMRÞM†
DÞαβ ∝ ξαξβ; ð52Þ

for any function b. The off-diagonal entries are then real
and entirely determined by the diagonal ones:

ðMDbðMRÞM†
DÞαβ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMDbðMRÞM†

DÞααðMDbðMRÞM†
DÞββ

q
: ð53Þ

Notice that this violates the strict inequality derived earlier
in Eq. (7), which assumed nonvanishing neutrino masses.
Equation (53) drastically simplifies the discussion of the

seesaw parameter space, seeing as all observables now only
depend on the three real diagonal entries of MDbðMRÞM†

D
instead of the nine parameters it could contain in general.
Furthermore, all Majoron and non-Majoron parameter
matrices have the same flavor structure and only differ
in their absolute magnitude. Equation (53) also shows that

any low-scale seesaw texture automatically maximizes the
off-diagonal flavor-violating entries of the relevant cou-
pling matrices [Eq. (48) or Eq. (49)].
We compare Majoron and non-Majoron limits in Fig. 7,

the latter adopted from Ref. [17]. We set MR=TeV ¼ 1 as
well as f ¼ 1 TeV and stress again that the Majoron limits
can be suppressed arbitrarily by increasing f. Figure 7 (left)
shows the ðMDM

†
DÞee vs ðMDM

†
DÞττ parameter space,

setting ðMDM
†
DÞμμ ¼ 0. As already noted in Ref. [17],

the non-Majoron limits are completely dominated by
flavor-conserving observables such as Z → eþe− and other
electroweak precision data. LFV such as τ → eγ and
τ → eee reside far in the already excluded region, and
even future improvements, e.g., in Belle-II, do not reach the
allowed parameter space. In comparison, Majorons with
masses between ∼100 MeV and mτ do give relevant
constraints from τ → eJ and will probe significantly more
parameter space with upcoming Belle and Belle-II analyses
[70]. Standard LFV in the τe (and τμ in complete analogy)
sector are hence doomed to be unobservable in the seesaw
model, but the Majoron LFV channels τ → lJ could be
observable and deserve more experimental attention.
Figure 7 (right) shows the ðMDM

†
DÞee vs ðMDM

†
DÞμμ

parameter space, setting ðMDM
†
DÞττ ¼ 0. Standard LFV,

currently dominated by μ conversion in nuclei [90],
provides important constraints on the parameter space,
and all future μe LFV will probe uncharted terrain. For
mJ < mμ, the Majoron channel μ → eJ already sets better
limits than μN → eN and can continue to dominate over
μ → eγ and μ → 3e in the future. Ultimately, μN → eN
conversion in Mu2e [91] and COMET [92] has the best
future reach.

C. Majoron dark matter

Returning to the “standard” high-scale seesaw scenario
with huge hierarchy v ≪ f it is clear that a massive
Majoron can be long lived even on cosmological scales,
e.g., from Eq. (9),

ΓðJ → ννÞ ∼ 1

400 Gyr

�
mJ

MeV

��
109 GeV

f

�
2

: ð54Þ

In this region of parameter space Majorons can form DM
[27,29,31–36], with a production mechanism that can be
unrelated to the small decay couplings [10,27,93,94].
The defining signature of Majoron DM is a flux of

neutrinos from DM decay with Eν ≃mJ=2 and a known
flavor composition [10]. For mJ ≳MeV these neutrino
lines could potentially be observable via charged-current
processes in detectors such as Borexino or Super-
Kamiokande [10], while lower masses are more difficult
to probe [95].
The loop-level couplings generate the much more con-

strained decays J → ff̄0; γγ, which, however, depend on

1To ensureMν ¼ 0 to all orders in the seesaw expansion and at
loop level one has to further impose either m5 ¼ m4 and z ¼ �i
or m6 ¼ m4 and z ¼ 0, both of which correspond to a conserved
lepton number [84,89].
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the matrix K and are hence complementary to the neutrino
signature, as discussed in detail in Ref. [10]. This analysis
used only the Set II of diagrams to calculate J → γγ,
namely the expression proportional to trðKÞ, Eq. (19). The
new full expression presented in Sec. III B leads in general
to a suppression of the diphoton rate and a more involved
dependence on the K matrix entries (Fig. 4). We omit a full
recasting of existing DM → γγ limits onto our J → γγ
expression since it is not very illuminating, but stress that
this diphoton suppression makes the neutrino modes even
more dominant.

V. CONCLUSION

Majorons, the Goldstone bosons of a spontaneously
broken lepton number, were proposed in the early 1980s
in models for Majorana neutrino masses. Since then
experiments have indeed found evidence for nonzero
neutrino masses, although it is not yet clear whether they
are of Majorana type. With the motivation for Majorons as
strong as ever, we have set out in this article to complete the
program that was started almost 40 years ago and calculate
all Majoron couplings to SM particles. The couplings to
neutrinos (tree level) as well as charged leptons and
diagonal quarks (one loop) were known previously. Here
we presented the two-loop couplings to gauge bosons
(Jγγ, JγZ, JZZ, JWW, Jgg) and flavor-changing quarks
(Jdd0, Juu0). Phenomenologically relevant of these are

currently only the Majoron coupling to photons as well as
the Jdd0 couplings behind the rare decays K → πJ
and B → KJ.
Standard seesaw effects in an EFT approach are encoded

in the matrix MDM−2
R M†

D, which drives, for example,
l → l0γ. Majoron couplings, on the other hand, depend
on the matrix MDM

†
D=f, which is parametrically larger in

the seesaw limit and can indeed give better constraints in
parts of the parameter space. For example, while τ → lγ
and other τ LFVare unlikely to be observable in the seesaw
model, τ → lJ can be observably large and deserves more
experimental attention.
The singlet Majoron model together with the coupling

texture of Eq. (51) implied by low-scale seesaw is a very
minimal UV-complete realization of an axionlike particle
and thus a well-defined benchmark model. The dominant
theoretical challenge not addressed here is the replacement
of quarks by hadrons in loops, which we leave for future
work. We expect future studies to elucidate additional
aspects of this model, in particular when the Majoron is
used as a portal to dark matter.
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