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Abstract

The first part of this thesis contains two new techniques for the calculation of scattering
amplitudes in quantum field theories. These methods were inspired by the recent proposal
of a correspondence between the weakly coupled regime of the maximally supersymmetric
four dimensional gauge theory and a string theory in twistor space.

We show how generalised unitarity cuts in D=4− 2ε dimensions can be used to calcu-
late efficiently complete one-loop scattering amplitudes in non-supersymmetric Yang-Mills
theory. This approach naturally generates the rational terms in the amplitudes, as well as
the cut-constructible parts. We then show that the ideas of the Britto, Cachazo, Feng and
Witten tree-level on-shell recursion relation can also be applied to the calculation of finite
one-loop amplitudes in pure Einstein gravity.

The second part of this thesis is a study of the nonabelian phenomena associated with
D-branes. Specifically we study the nonabelian bionic brane intersection in which a stack
of many coincident D1-branes expand via a non-commutative spherical configuration into
a collection of higher dimensional D-branes orthogonal to the original stack of D1-branes.

We suggest a construction of monopoles in dimension 2k+1 from fuzzy funnels. We then
perform two charge calculations related to this construction. This leads to a new formula
for the symmetrised trace quantity. This new formula for the symmetrised trace is then
used to study the collapse of a spherical bound state of D0-branes.
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Introduction

The first three chapters of this thesis are concerned with twistor inspired methods in pertur-
bative quantum field theory. Chapter 1 contains an introduction to this subject. Chapter
2 shows that generalised unitarity in D-dimensions can be used to compute amplitudes in
one-loop QCD. Chapter 3 shows that finite one-loop gravity amplitudes can be computed
using on-shell recursion. The remaining two chapters are about fuzzy funnels. Chapter 4
contains a study of the duality between monopoles and fuzzy funnels. In Chapter 5 we
consider finite n effects on the collapse of fuzzy spheres.

Chapter 1 provides an introduction to the remarkable recent progress in understanding
perturbative quantum field theory which was initiated by Witten’s proposal of a duality
between weakly coupled N =4 Super Yang-Mills and a string theory in twistor space CP3|4.
This duality explains the remarkable simplicity of certain amplitudes which is hidden by
standard Feynman diagram calculations. The unexpected beauty of scattering amplitudes is
exposed by writing colour stripped amplitudes in the spinor helicity formalism. The notion
of a twistor and the twistor transform of the maximally helicity violating amplitude (MHV)
are then reviewed. We then summarise the twistor space localisation of general amplitudes
and describe the string theoretic proposal. The twistor string theory has inspired many
new and efficient field theory techniques for the calculation of amplitudes. We review the
remarkable new insight that tree and loop level amplitudes can be built by joining multiple
MHV amplitudes together. Finally we review the twistor inspired field theory techniques
of generalised unitarity and on-shell recursion.

In chapter 2 we show how generalised unitarity cuts in D= 4 − 2ε dimensions can be
used to calculate efficiently complete one-loop scattering amplitudes in non-supersymmetric
Yang-Mills theory. This approach naturally generates the rational terms in the amplitudes,
as well as the cut-constructible parts. We test the validity of our method by re-deriving
the one-loop ++++, −+++, −−++, −+−+ and +++++ gluon scattering amplitudes
using generalised quadruple cuts and triple cuts in D dimensions. We observe that triple
cuts are sufficient to compute complete amplitudes. Thus we can avoid the calculation of
two-particle cuts which are the most technically challenging to evaluate. In principle this
new method can be applied to more complicated and currently unknown amplitudes which
are important for the experimental programmes at hadron colliders.
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In chapter 3 we show that the ideas of the Britto, Cachazo, Feng and Witten tree-
level on-shell recursion relation can also be applied to the calculation of finite one-loop
amplitudes in pure Einstein gravity. We show how to compute the five and six point all-
plus one-loop gravity amplitudes without having to consider boundary terms. We then
consider the recursive construction of the known one-loop −+++ gravity amplitude and
observe that the factorisation properties in complex momenta of this gravity amplitude are
similar to those of the one-loop −+++ amplitude in Yang-Mills. The new issue that arises
for the amplitude with a single negative helicity is the appearance of the one-loop three-
point all-plus nonstandard factorisation which gives single and double pole contributions
to the amplitude. We then attempt to calculate the unknown one-loop −++++ gravity
amplitude using on-shell recursion. Unfortunately we do not understand the single pole
under the double pole contributions of the three-point one-loop all-plus factorisation in this
amplitude so are unable to calculate the full answer. We review an unsuccessful proposal
for this missing term, and an unsuccessful attempt to avoid the nonstandard factorisations
using auxiliary recursion relations.

In chapter 4 we consider the nonabelian bionic brane intersection in which a stack of
many coincident D1-branes expand via a non-commutative spherical configuration into a
collection of higher dimensional D-branes orthogonal to the original stack of D1-branes. We
suggest a construction of monopoles in dimension 2k+1 from fuzzy funnels. For k = 1 this
construction coincides with Nahm’s construction of monopoles, which is an adaptation of
the Atiyah, Drinfeld, Hitchin and Manin construction of instantons. For k = 1, 2, 3 this gives
a finite n realisation of the duality between D1-brane and D(2k + 1)-brane world-volume
pictures of the non-commutative bionic brane intersection. We then perform two charge
calculations related to this construction. First we calculate the charge of the monopole
and get an answer in precise agreement with the size of the matrices in the fuzzy funnel.
Secondly we calculate the charge of the fuzzy funnel. To get this charge to agree with the
size of the matrices in the monopole beyond leading orders in 1/n, we propose a speculative
use of the symmetrised trace. A matching of the terms of the symmetrised trace with the
number of branes expected from the charge calculation then leads to a new and surprisingly
simple formula for the symmetrised trace quantity.

In chapter 5 we consider finite n effects on the time evolution of fuzzy 2-spheres moving
in flat space-time. We use the new formula for the symmetrised trace found in chapter 4 to
show that exotic bounces of the kind seen in the 1/n expansion do not exist at finite n.
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CHAPTER 1

PERTURBATIVE FIELD THEORY AND

TWISTORS

1.1 Introduction

There are many interesting things yet to be understood about four-dimensional quantum
gauge theories like QCD. It has long been thought that phenomena such as quark con-
finement were related to strings. In 1974 ’t Hooft [3] presented a purely diagrammatic
argument suggesting that a gauge theory should have a dual description as a string theory.
This proposal did not identify which string theory is equivalent to four-dimensional gauge
theory and little progress was made until in 1997 Maldacena [4] proposed that the maxi-
mally supersymmetric gauge theory N =4 Super Yang-Mills was equivalent in the ’t Hooft
sense to Type IIB superstring theory on the target space AdS5 × S5.

The ’t Hooft expansion relates the strongly-coupled regime of a gauge theory to a weakly-
coupled string theory. The Maldacena correspondence therefore provides a perturbative
window into non-perturbative physics. Other dualities including mirror symmetry and
Montonen-Olive duality have demonstrated that the character of quantum field theories is
radically different in different parameter regimes. It would therefore be fascinating both
theoretically and phenomenologically to find a duality complementary to Maldacena’s, giv-
ing a weakly-coupled string theoretic description of the weakly-coupled gauge theory. A key
step in this direction was made in 2003 by Witten [5]. He suggested a remarkable duality
between weakly-coupled N =4 super Yang Mills and a weakly-coupled B-model topological
string theory on the super Calabi-Yau manifold CP3|4. Intriguingly, the target space CP3|4

has six bosonic real dimensions which are related to the usual four dimensional space-time
of the quantum field theory by the twistor construction of Penrose [6].

In principle the perturbative analysis of a gauge theory in terms of Feynman diagrams
is under control, but in practice the number of such diagrams grows very rapidly with the
number of external legs and the number of loops. Strikingly, after simplifying the huge
number of Feynman diagrams, the final answer is often simple and elegant. This strongly
hints at the existence of an underlying dual string theoretic description and was the challenge
set by Parke and Taylor in 1986 [7] when they discovered the expression for the tree-level
maximally helicity violating (MHV) amplitude. An MHV amplitude is one where all but
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CHAPTER 1. PERTURBATIVE FIELD THEORY AND TWISTORS

two of the external gluons have the same helicity. When the MHV amplitude is written in
the spinor helicity formalism, it is given by a simple holomorphic function of just one of
the two spinors needed to describe the massless particles. Witten observed that all tree-
level gauge theory amplitudes, after a Fourier transform to twistor space, are supported on
holomorphically embedded algebraic curves. For the case of MHV amplitudes these curves
are simply straight lines. This beautiful geometrical localisation is totally hidden by the
Feynman diagram expansion and led to the string theoretic proposal that gauge theory
amplitudes could be obtained by integrating over the moduli space of D1-brane instantons.

Witten’s insight has motivated a revolution in our understanding of perturbative gauge
theory. Some of the most fruitful advances inspired by twistor string theory have been
powerful new diagrammatic rules for field theory calculations. In March 2004, Cachazo,
Svrček and Witten (CSW) [8] proposed elevating the MHV amplitude to an effective vertex
in a new perturbative expansion of the tree-level Yang-Mills theory. They observed that
amplitudes with more than two negative helicity gluons could be computed by joining
these effective vertices together with scalar propagators. In twistor string theory there
are several different prescriptions for integrating over curves. When calculating tree level
gauge theory amplitudes, one can either use a single instanton of degree d, or alternatively
d completely disconnected curves each of degree one connected by twistor propagators.
The disconnected prescription gives the remarkably efficient MHV diagram construction.
For example, the amplitude with three negative helicity and three positive helicity gluons
involves 220 Feynman diagrams [9, 10], but can be reconstructed from just 6 diagrams in
CSW’s diagrammatic approach.

Despite its many successful achievements, twistor string theory leaves us with many
interesting open questions. It is clear that the twistor string theory proposed by Witten
fails at loop level because amplitudes receive contributions from closed string, conformal
supergravity states [11]. Surprisingly, a formalism which glues tree-level MHV vertices
together to form loops has been proposed by Brandhuber, Spence and Travaglini (BST) [12]
and used to correctly reproduce the one-loop MHV amplitude in supersymmetric Yang-
Mills. The twistor space localisation of gauge theory amplitudes therefore persists beyond
tree level to the quantum theory. Their method unified the MHV vertex construction
with the celebrated unitarity-based, cut-constructibility approach of Bern, Dixon, Dunbar
and Kosower (BDDK) [13, 14]. This strongly suggests that there may be a version of
twistor string theory dual to pure N = 4 super Yang-Mills at loop level. Another open
problem associated with the duality at loop level is how the infrared singularities of the
gauge theory amplitudes arise in the string theory. In the one-loop amplitude the infra-
red divergent terms are those where one of the MHV vertices is a four-particle vertex. In
twistor space this corresponds to a localisation on a disjoint union of lines. So it is possible
that the transformation to twistor space also disentangles the infra-red divergences of the
amplitudes.
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The rest of this chapter provides an introduction to the recent progress in understanding
perturbative field theory. In the next section we define amplitudes via the Feynman rules.
In sections 1.2.2 and 1.2.3 we introduce colour stripping and the spinor helicity formalism,
which are two notational techniques that expose the hidden beauty of scattering amplitudes.
The notion of a twistor and the twistor transform of the MHV amplitude are reviewed in
section 1.3. We then summarise the twistor space localisation of amplitudes with more
than two negative helicity gluons and briefly describe the string theoretic proposal that
provides a natural framework for the twistor space properties of amplitudes. In section
1.4 we review the twistor string inspired MHV rules, which calculate tree-level amplitudes
with more than two negative helicity gluons by sewing MHV amplitudes together and also
correctly compute the one-loop MHV amplitude in supersymmetric theories by joining a
pair of tree-level MHV amplitudes together to form a loop.

In addition to the MHV rules, the twistor string has inspired many new and efficient
methods for the calculation of scattering amplitudes. One of these new techniques is the
notion of generalised four-dimensional unitarity [15]. We review the background to this
powerful tool in section 1.6. In Chapter 2 we present the new technique of D = 4 − 2ε
generalised unitarity. We show how generalised unitarity cuts inD=4−2ε dimensions can be
used to calculate efficiently complete one-loop scattering amplitudes in non-supersymmetric
Yang-Mills theory. This approach naturally generates the rational terms in the amplitudes,
as well as the cut-constructible parts. Chapter 2 is based on the work [1].

The recursion relation of Britto, Cachazo, Feng and Witten (BCFW) [16,17] is another
elegant and systematic method for the computation of tree-level Yang-Mills amplitudes.
In section 1.7 we review the proof of this recursion relation and some of its applications.
In chapter 3 we show that the ideas of BCFW recursion extend with many complications
to the finite amplitudes of one-loop pure Einstein gravity. This generalisation has a close
connection with the use of recursion relations in the calculation of the rational parts of one-
loop QCD amplitudes by Bern, Dixon and Kosower (BDK) [18]. This idea is remarkable
because it enables one to calculate very efficiently at one-loop without really performing
any loop integrals.

The calculation and understanding of scattering amplitudes is interesting because as well
as uncovering the hidden beauty of field theory and linking gauge theory to string theory, it
has also allowed us to calculate more efficiently in realistic theories of nature. Asymptotic
freedom [19, 20] allows us to calculate scattering amplitudes as a perturbative expansion
in the strong coupling constant αs(µ), evaluated at a large momentum scale µ where the
theory is weakly coupled. However, at hadron colliders the leading order tree-amplitudes
do not suffice to get a reasonable uncertainty and corrections from next to leading order
are important. A precise knowledge of QCD backgrounds for events involving several jets
is needed for maximising the potential for the discovery of physics beyond the Standard
Model at colliders like the Large Hadron Collider.
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1.2 Amplitudes in perturbative field theory

1.2.1 Feynman rules

The Lagrangian for a non-abelian gauge theory is

L = ψ̄(iγµ∂µ −m)ψ − 1
4
(∂µA

a
ν − ∂νA

a
µ)2 + gAa

µψ̄γ
µtaψ

−gfabc(∂µA
a
ν)A

µbAνc − 1
4
g2(feabAa

µA
b
ν)(f

ecdAµaAνd) (1.1)

Observable quantities are then calculated using perturbation theory. The textbook tech-
nique for performing this procedure is to draw and then compute Feynman diagrams. The
Feynman diagrams for a non-abelian gauge theory in Feynman gauge are given by:

Fermion vertex:

= igγµta

Three-point gluon vertex:

=

gfabc[gµν(k − p)ρ

+gνρ(p− q)µ

+gρµ(p− k)ν ]

Four-point gluon vertex:

=

−ig2[fabef cde(gµρgνσ − gµσgνρ)

+facef bde(gµνgρσ − gµσgνρ)

+fadef bce(gµνgρσ − gµρgνσ)]

Ghost vertex:

= −gfabcpµ

Fermion propagator Gluon propagator

=
i(γµpµ +m)δab

p2 −m2 + iε
=
−igµνδab

p2 + iε

The first part of this thesis is about the calculation of amplitudes, however we will not use
the Lagrangian or the Feynman rules very much at all. One of the themes of the thesis
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is that the Feynman rules hide the simplicity of scattering amplitudes. In the next two
sections we introduce colour stripping and the spinor helicity formalism. These are the
formalisms which originally exposed the surprising simplicity of scattering amplitudes.

1.2.2 Colour stripped amplitudes

In pure Yang-Mills an n-point amplitude is a function of the ith gluon’s momentum vector
pi, polarisation vector εi and colour index ai. At tree level, the interactions are planar, so
a gluon amplitude can be written as a sum of single trace terms. This observation leads to
the colour decomposition of the gluon tree amplitude [9, 10,21].

Atree
n (pi, εi, ai) = gn−2

∑

σ∈Sn/Zn

Tr(T aσ(1) . . . T aσ(n))An(σ(p1, ε1), . . . , σ(pn, εn)) (1.2)

where g is the gauge coupling and the An(pi, εi) are called colour-ordered partial amplitudes.
These partial amplitudes do not carry any colour structure, but contain all the kinematic
information of the amplitude. Sn is the group of permutations of n objects and Zn is the
subgroup of cyclic permutations, which preserve the cyclic orderings in the trace.

It is simpler to study these partial amplitudes than the full amplitude because they only
receive contributions from diagrams with cyclically ordered gluons. This is called colour
ordering. In colour ordered amplitudes, the poles and cuts can only occur in momentum
channels made out of sums of cyclically adjacent gluons. Hence the analytic structure of
partial amplitudes is simpler than that of the full amplitude.

At one-loop both single trace and double trace structures are generated. The colour
decomposition of the n-gluon one-loop amplitude is given by [22]:

Aone-loop
n (pi, εi, ai) = gn

[ ∑

σ∈Sn/Zn

Nc Tr(T aσ(1) . . . T aσ(n))An;1(σ(p1, ε1), . . . , σ(pn, εn))

+
bn/2c+1∑

c=2

∑

σ∈Sn/Sn;c

Tr(T aσ(1) . . . T aσ(c−1))(T aσ(c) . . . T aσ(n))

×An;c(σ(p1, ε1), . . . , σ(pn, εn))
]

(1.3)

where An;c(pi, εi) are the partial amplitudes. Zn and Sn;c are the subgroups of Sn which
preserve the single and double trace structures. The An;1 are called primitive amplitudes.
Just like the tree-level partial amplitudes the An;1 are colour ordered. The An;c for c > 1
can be written as sums of permutations of the primitive An;1 amplitudes1. For the rest
of this thesis, when studying Yang-Mills amplitudes, we will ignore colour structure and
consider colour ordered amplitudes.

1See section 7 and appendix III of [13] for more details.
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1.2.3 The spinor helicity formalism

In this section we review the spinor helicity formalism [23] for the description of quantities
involving massless particles. This formalism is responsible for the existence of compact
expressions for tree and loop amplitudes. It introduces a new set of kinematic objects,
spinor products, which neatly capture the collinear behaviour of these amplitudes.

The complexified Lorentz group is locally isomorphic to

SO(3, 1,C) ∼= Sl(2,C)× Sl(2,C) (1.4)

so finite dimensional representations of the Lorentz group are classified by (p, q) where p and
q are integer or half-integer valued. We write λa, a = 1, 2 for a spinor transforming in the
(1
2 , 0) representation and λ̃ȧ, ȧ = 1, 2 for a spinor transforming in the (0, 1

2) representation.
The spinor indices of type (1

2 , 0) are raised and lowered using the antisymmetric tensors
εab and εab which satisfy ε12 = 1 and εacεcb = δa

b. The λ̃ spinors transforming in the
representation (0, 1

2) are analogously raised and lowered using the antisymmetric tensor εȧḃ

and its inverse εȧḃ.

λa = εabλb , λa = εabλ
b and λ̃ȧ = εȧḃλ̃ḃ , λ̃ȧ = εȧḃλ̃

ḃ (1.5)

There is a scalar product for two spinors λ and λ′ in the (1
2 , 0) representation and an

analogous scalar product for two spinors λ̃ and λ̃′ in the (0, 1
2) representation

〈λλ′〉 = εab λ
aλ′ b and [λ̃ λ̃′ ] = εȧḃ λ̃

ȧλ̃′ ḃ (1.6)

These scalar products are antisymmetric in their two variables. Vanishing of the scalar
product 〈λλ′〉 = 0 implies λ ∝ λ′ and similarly [λ̃ λ̃′ ] = 0 implies λ̃ ∝ λ̃′. All the λs and λ̃s
in this formalism are commuting spinors. Note that they are not Grassmann variables.

The vector representation of SO(3, 1,C) is the (1
2 ,

1
2) representation. So a momentum

vector pµ, µ = 0, . . . , 3 can be represented as a bi-spinor paȧ with two spinor indices a and
ȧ transforming in the different spinor representations. More explicitly any four-vector pµ

can be written as a 2×2 matrix,
paȧ = pµσ

µ
aȧ (1.7)

where σµ = (1, ~σ) and ~σ are the usual 2×2 Pauli matrices. In this new notation we have

pµpµ = det(paȧ) (1.8)

If we now impose that the four-vector pµ is massless, p2 = 0, then the determinant of the
associated 2×2 matrix is zero and the rank of this matrix is less than or equal to one. So
a four-momentum pµ being massless is equivalent to the fact that it can be written as the
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product of two (commuting) spinors

paȧ = λaλ̃ȧ (1.9)

For a given massless vector pµ the spinors λa and λ̃ȧ are unique up to a scaling.

(λ, λ̃) → (tλ, t−1λ̃) for t ∈ C , t 6= 0 (1.10)

For real momenta in Minkowski space

λ̄ = ±λ̃ (1.11)

where the ± depends on whether the four-vector is future or past pointing. Thus the spinors
λ are usually called ‘holomorphic’ and the spinors λ̃ ‘anti-holomorphic’. If we use complex
momenta then the spinors λ and λ̃ are independent.

It is customary, when writing amplitudes, to shorten the spinor helicity notation for
different particles i and j to 〈λiλj〉 = 〈ij〉 and [λ̃i λ̃j ] = [ij]. It is common to shorten the
spinor helicity formalism further using 〈ij〉[jk] = 〈i|j|k].

We now introduce some useful identities for manipulating quantities written in the spinor
helicity formalism. First we have the Schouten identity

〈ij〉〈kl〉 = 〈ik〉〈jl〉 − 〈il〉〈jk〉 (1.12)

Amplitudes are often written in terms of traces of Dirac γ matrices.

〈ij〉[ji] = tr(
1
2
(1 + γ5)k/ik/j) = 2ki.kj (1.13)

〈ij〉[jl]〈lm〉[mi] = tr(
1
2
(1 + γ5)k/ik/jk/lk/m) (1.14)

〈ij〉[jl]〈lm〉[mn]〈np〉[pi] = tr(
1
2
(1 + γ5)k/ik/jk/lk/mk/nk/p) (1.15)

The Fierz rearrangement is:
〈i|γµ|j]〈k|γµ|l] = 2〈ik〉[lj] (1.16)

Given a spinor helicity decomposition of the momentum paȧ = λaλ̃ȧ, we have enough
information to determine the polarisation vector, up to a gauge transformation, of a gluon
of specific helicity. For a positive helicity gluon we have the polarisation vector:

ε+aȧ =
ρaλ̃ȧ

〈ρ λ〉 (1.17)

where ρ is a negative chirality spinor that is not a multiple of λ. For a negative helicity
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gluon we have the polarisation vector:

ε−aȧ =
λaρ̃ȧ

[λ, ρ]
(1.18)

where ρ̃ is any positive chirality spinor that is not a multiple of λ̃. With these definitions
the polarisation vectors have no unphysical longitudinal modes as they obey the constraint
pµε

µ =0. The gauge invariance εµ → εµ + wpµ of the polarisation vector is manifest in this
description since ε+ is independent of ρ up to a gauge transformation. To see this notice
that the ρ lives in a two dimensional space spanned by λ and ρ, so a change in ρ is of the
form δρ = αρ + βλ. The polarisation vector ε+ is invariant under the α term and the β
term corresponds to a gauge transformation of the polarisation vector:

δe+aȧ = β
λaλ̃ȧ

〈ρ λ〉 (1.19)

Finally, calculating the linearised field strength Fµν = ∂µAν−∂νAµ for a particle of helicity
+1 with Aaȧ = ε+aȧexp(ixc ċλ

cλ̃ċ) gives the answer:

Faȧbḃ = εabλ̃ȧλ̃ḃexp(ixc ċλ
cλ̃ċ) (1.20)

In bi-spinor notation the field strength is Faȧbḃ = εabf̃ȧḃ + εȧḃfab where fab and f̃ȧḃ are re-
spectively the self-dual and anti-self-dual parts of F . So the polarisation vector ε+ correctly
gives an anti-self-dual field strength.

When an amplitude is written in the spinor helicity formalism it often takes a very
simple form. The most famous example of this is the MHV amplitude. The tree-level Yang-
Mills scattering amplitude with all outgoing gluons having positive helicity vanishes. The
amplitudes with one negative helicity gluon and all the rest positive helicity also vanishes. In
any supersymmetric Yang-Mills theory the vanishing of these amplitudes can be seen from a
supersymmetric Ward identity [24,25]. The tree-level gluon amplitudes of a supersymmetric
theory and a non-supersymmetric theory are, of course, the same, so these amplitudes also
vanish in pure Yang-Mills. The first nonzero amplitude is called the maximally helicity
violating (MHV) amplitude and has two negative helicity gluons with all the rest having
positive helicity. Once the momentum conserving delta function has been stripped off the
MHV amplitude it is a very simple function of only the holomorphic spinors λi.

A(1+, 2+, . . . , n− 1+, n+) = 0 (1.21)

A(1+, 2+, . . . , i−, . . . , n− 1+, n+) = 0 (1.22)

A(1+, 2+, . . . , i−, . . . , j−, . . . , n− 1+, n+) = i
〈ij〉4

〈12〉〈23〉 . . . 〈n− 1n〉〈n 1〉 (1.23)
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1.3 Twistors

1.3.1 The twistor transform

We define a twistor in the same way as Witten [5]. The spinor variables (λ,λ̃) are related
to the twistor variables (λ,µ) by the following half Fourier transform:

λ̃ȧ → i
∂

∂µȧ

∂

∂λ̃ȧ
→ iµȧ (1.24)

The choice to Fourier transform λ rather than λ̃ is an arbitrary one. Writing things in twistor
variables breaks the symmetry between positive and negative helicities. Later we will see
that the holomorphicity of the MHV amplitude has a natural geometrical interpretation in
twistor space. However with this choice of Fourier transform, the antiholomorphicity of the
amplitude with two positive helicity gluons and all the rest negative helicity will be hidden.
These anti-MHV amplitudes are usually called ‘googly’2.

This asymmetry will also be manifest in twistor inspired constructions such as the
CSW rules which we will review in section 1.4.1. In this method the construction of MHV
amplitudes is trivial, but the googly amplitudes are each constructed differently depending
on the number of negative helicity gluons they contain. For example the five-point googly
amplitude −−−+ + has one more negative helicity gluon than an MHV amplitude and is
constructed by joining two MHV amplitudes together. The six-point googly amplitude is
next-to, next-to MHV and constructed by sewing three MHV amplitudes together.

We now consider the effect of the transformation (1.24) on the representation of the
Lorentz and conformal symmetry generators. In spinor variables the Lorentz generators are
first order differential operators:

Jab =
i

2

(
λa

∂

∂λb
+ λb

∂

∂λa

)
, J̃ȧḃ =

i

2

(
λ̃ȧ

∂

∂λ̃ḃ
+ λ̃ḃ

∂

∂λ̃ȧ

)
(1.25)

In twistor variables these generators remain first order:

Jab =
i

2

(
λa

∂

∂λb
+ λb

∂

∂λa

)
, J̃ȧḃ =

i

2

(
µȧ

∂

∂µḃ
+ µḃ

∂

∂µȧ

)
(1.26)

In spinor variables the momentum and special conformal transformation generators are
respectively a multiplication operator and a second order differential operator. In twistor

2The term googly is borrowed from cricket where it refers to the ball bowled out of the back of the hand
by a leg spin bowler which spins the opposite way to the stock delivery.
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variables, however, these generators take a more standard form both becoming first order:

Paṡ = λaλ̃ȧ , Kaȧ =
∂2

∂λa∂λ̃ȧ
(1.27)

Paṡ = iλa
∂

∂µȧ
, Kaȧ = iµȧ

∂

∂λa
(1.28)

Finally, the dilatation operator is an inhomogeneous operator in the spinor variables:

D =
i

2

(
λa

∂

∂λa
+ λ̃ȧ

∂

∂λ̃ȧ
+ 2

)
(1.29)

In twistor variables the operator is homogeneous:

D =
i

2

(
λa

∂

∂λa
− µȧ

∂

∂µȧ

)
(1.30)

This simple representation of the four dimensional conformal group in twistor variables is
easy to understand. The conformal group of Minkowski space is SO(4, 2) which is the same
as SU(2, 2). The complexification of this group to Sl(4,C), has an obvious four dimensional
representation acting on the twistor Z = (λ1, λ2, µ1̇, µ2̇). Twistor space is thus C4.

Tree amplitudes of gluons and more generally the quantum observables of N =4 super
Yang-Mills are conformally invariant quantities. So it is natural to hope that they will have
a simple description in twistor variables.

1.3.2 The MHV amplitude in twistor space

Following Witten [5], we now consider the properties of amplitudes after they have been
half Fourier transformed to twistor space.

A(λi, λ̃i) → A(λi, µi) ≡ 1
(2π)2n

∫ n∏

i=1

d2λ̃iexp

(
i

n∑

i=1

µi ȧλ̃
ȧ
i

)
A(λi, λ̃i) (1.31)

The simplest case is the MHV amplitude (1.23). The MHV amplitude only contains an-
gle brackets and thus only has dependence on the space of λ̃i spinors through the usual
momentum-conserving δ-function which multiplies the amplitude. Now recall the following
identity for the Dirac delta function

δ(x) =
1
2π

∫ ∞

−∞
dk eikx (1.32)

We can use this to write the usual momentum conserving delta function as:

δ4

(
n∑

i=1

pi

)
=

1
(2π)4

∫
d4xaȧexp


ixbḃ

n∑

j=1

λb
j λ̃

ḃ
j


 (1.33)
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where the integral is over the ordinary four dimensional space time. Thus the twistor
transform A(λi, µi) of the MHV amplitude is:

=
1

(2π)2n+4

∫ n∏

i=1

d2 λ̃iexp

(
i

n∑

i=1

µi ȧλ̃
ȧ
i

)∫
d4xaȧexp


ixbḃ

n∑

j=1

λb
j λ̃

ḃ
j


AMHV

n (λi)

=
1

(2π)2n+4

∫
d4xaȧAMHV

n (λi)
∫ n∏

i=1

d2λ̃i exp


i

n∑

i=1

µi ȧλ̃
ȧ
i + ixbḃ

n∑

j=1

λb
j λ̃

ḃ
j




= AMHV
n (λi)

1
(2π)4

∫
d4x

n∏

i=1

δ2(µi ȧ + xaȧλ
a
i ) (1.34)

So we are led to consider the following equation:

µȧ + xaȧλ
a = 0 (1.35)

This equation is familiar from the twistor literature, where it plays a central role and is
known as the incidence relation. Traditionally the equation (1.35) is the definition of a
twistor. For a given x the equation (1.35) is regarded as an equation for λ and µ which
defines a degree one, genus zero curve. Complexified Minkowski space is the moduli space
of such curves. The transformed amplitude (1.34) will vanish unless (1.35) is satisfied for all
the gluons. So all n points (λi,µi) in an MHV amplitude must lie on a degree one, genus zero
curve determined by xaȧ. See Figure 1.1. Alternatively, if λ and µ are given, then equation
(1.35) is an equation for x. The set of solutions is a two complex dimensional subspace
of complexified Minkowski space that is null and self-dual. In the twistor literature this
subspace is called an α-plane. Twistor space is the moduli space of these α-planes. An
α-plane being null means that any tangent vector to the α-plane is null. An α-plane being
self-dual means that the tangent bi-vector is self-dual.

Figure 1.1: The result that MHV amplitudes are supported on degree one, genus zero curves
in twistor space is equivalent to the fact that the MHV amplitude is a function of only the
λs and not of the λ̃s.

At this point we should be more precise about what we mean by twistor space. The
space called twistor space in the last paragraph is in fact projective twistor space CP3 and
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not the full twistor space C4. The wave function of a massless particle with helicity h scales
under (λ, λ̃) → (tλ, t−1λ̃) as t−2h. For example (1.20) describes a particle of helicity +1
and scales like t−2. So a scattering amplitude will obey the following differential equation
for every particle i of helicity hi:

(
λa

i

∂

∂λa
i

− λ̃ȧ
i

∂

∂λ̃ȧ
i

)
A(λi, λ̃i, hi) = −2hiA(λi, λ̃i, hi) (1.36)

Rewriting this equation in twistor variables it becomes:

(
λa

i

∂

∂λa
i

+ µȧ
i

∂

∂µȧ
i

)
A(λi, µi, hi) = −(2hi + 2)A(λi, µi, hi) (1.37)

The operator on the left hand side of (1.37) is ZI ∂
∂ZI where ZI

i = (λ1
i , λ

2
i , µ

1̇
i , µ

2̇
i ) is the

twistor. So under ZI
i → tZI

i amplitudes transform like t−(2hi+2). Since amplitudes are
homogeneous functions of degree −(2hi + 2) in the twistor variable ZI

i we can identify
points of twistor space C4 projectively and consider projective twistor space CP3.

Witten [5] proposed that the localisation of the tree-level MHV amplitudes extends
naturally to general amplitudes with q negative helicity gluons and l loops by suggesting
that in twistor space they are supported on holomorphic curves of the degree d and genus
g. Where d and g are given in terms of q and l by:

d = q − 1 + l

g ≤ l (1.38)

The tree-level MHV amplitude is the case q = 2 and l = 0 corresponding to d = 1 and
g = 0.

Figure 1.2: The twistor space localisation of tree amplitudes. Diagram (a) shows the local-
isation of an amplitude with three negative helicity gluons and diagram (b) an amplitude
with four negative helicity gluons.

In general it is difficult to explicitly half Fourier transform amplitudes as was done for
the MHV amplitude in (1.34). However the collinear and coplanar conditions on a set of
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points in twistor space correspond via the twistor transform (1.24) to differential equations
in the usual spinor variables [5]. For example the condition on three points ZI

i , Z
I
j , Z

I
k in

CP3 to be collinear is that:

0 = FijkL = εIJKLZ
K
i Z

K
j Z

K
k , L = 1, . . . , 4 (1.39)

After twistor transforming this becomes a differential operator. For L = 4 we have:

Fijk = 〈ij〉 ∂

∂λ̃1̇
k

+ 〈ki〉 ∂

∂λ̃1̇
j

+ 〈jk〉 ∂

∂λ̃1̇
i

(1.40)

Given a known amplitude differential operators can be applied to find the support of the
amplitude in twistor space. This confirmed the picture in Figure (1.2).

1.3.3 Twistor string theory

In [5] Witten proposed that the weakly coupled N = 4 gauge theory was dual to a string
theory with the super twistor space CP3|4 as the target manifold. The target spaces CP3|4

and AdS5×S5 both have the symmetry group PSU(2, 2|4) of N =4 super Yang-Mills. The
space CP3|N is also a Calabi-Yau super manifold if and only if N =4. This enables one to
define a topological B-model with target CP3|4. The topological string is quite different to
the usual super string theory of Maldacena’s duality [4] between strongly coupled N = 4
super Yang-Mills and type IIB super strings on AdS5×S5. The B-model has fewer dynamical
degrees of freedom than the full super string theories, having only massless states rather
than a full tower of massive ones.

With space filling branes, the open strings on CP3|4 reproduce the spectrum of N = 4
super Yang-Mills. However, the topological B-model does not give the full set of interactions
of the gauge theory. While the + + − vertex is present, the − − + vertex is absent and
one has to add D1-instantons to get this interaction. The closed strings of the B-model
describe the variations of the complex structure in the target manifold. These closed strings
give conformal supergravity [11], which is a non-unitary theory. It also appears that this
gravitational theory cannot be decoupled from the gauge theory and thus the twistor string
does not describe N = 4 gauge theory at loop level. Recently twistor strings involving
Einstein gravity, rather than conformal supergravity, have been constructed [26]. It may
also be possible to decouple the closed strings in these new models.

Despite these unsatisfactory elements of the duality, Rioban, Spradlin and Volovich have
extracted tree amplitudes with many negative helicities from the B-model by integrating
over connected curves [27–29]. It was shown that integrating over connected curves is
equivalent to integrating over disconnected curves in [30]. The analysis of these disconnected
curves led to the efficient CSW rules which are reviewed in the next section.

26



CHAPTER 1. PERTURBATIVE FIELD THEORY AND TWISTORS

1.4 Field theoretic MHV rules

1.4.1 The tree level CSW rules.

The geometrical structure in twistor space of the amplitudes, drawn in Figure (1.2), was also
the root of a further important development. In [8], Cachazo, Svrček and Witten (CSW)
proposed a novel perturbative expansion for on-shell amplitudes in Yang-Mills, where the
MHV amplitudes are lifted to vertices, joined by simple scalar propagators i/P 2 in order to
form amplitudes with an increasing number of negative helicities. It is natural to think of
an MHV amplitude as a local interaction, since the line in twistor space on which an MHV
amplitude localises corresponds to a point in Minkowski space via the incidence relation.
All possible diagrams made of MHV amplitudes with a cyclic ordering of external legs have
to be summed. Applications at tree level confirmed the validity of the method and led to
the derivation of various new amplitudes in gauge theory [8, 31–37].

To generalise the MHV amplitude to a vertex we need to explain what is meant by
λa when paȧ is not massless, as is the case for all the internal legs that join the MHV
amplitudes together. The CSW ‘off-shell’ prescription defining the λa for internal lines
carrying momentum paȧ is to use:

λa = paȧη
ȧ (1.41)

where ηȧ is an arbitrary negative chirality spinor. The same η is used for all ‘off-shell’ lines
in all diagrams contributing to a given amplitude.

As an example of the CSW construction we now consider the five point − − − + +
amplitude. This amplitude is googly, so the amplitude is given by (1.23), but using λ̃

spinors in place of the λ spinors:

A(1−, 2−, 3−, 4+, 5+) = i
[45]3

[12][23][34][51]
(1.42)

In the twistor picture the −−−+ + amplitude is viewed as a next-to-MHV amplitude. In
CSW’s construction, next-to-MHV amplitudes are made by joining two MHV amplitudes
together. The diagrams in the CSW construction of this five-point next-to-MHV amplitude
are given in Figure 1.3. The diagram in Figure 1.3a gives the following product of two tree
amplitudes and a scalar propagator:

(
i

〈12〉3
〈2k〉〈k5〉〈51〉

)
i

〈34〉[43]

(
i
〈k3〉3
〈34〉〈4k〉

)
(1.43)

We now use the CSW ‘off-shell’ prescription (1.41) to define the brackets involving k.

〈2k〉 → 〈2|k|η] = 〈2|3 + 4|η] (1.44)
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Figure 1.3: The MHV diagrams associated with the CSW construction of the simplest next-
to-MHV tree-level amplitude A(1−, 2−, 3−, 4+, 5+). It is conventional to consider amplitudes
where all the momenta are outgoing, so an internal leg joining two amplitudes will have
different helicities labels at each end.

The brackets 〈k5〉, 〈k3〉, 〈4k〉 are similarly dealt with yielding the answer for Figure 1.3a:

i
〈12〉3〈3|4|η]3

〈15〉〈34〉2[34]〈2|3 + 4|η]〈5|3 + 4|η]〈4|3|η] (1.45)

The remaining three diagrams in Figure 1.3 are given by the three terms:

i
〈23〉2〈1|2 + 3|η]3

〈45〉〈51〉[23]〈4|2 + 3|η]〈2|3|η]〈3|2|η] + i
〈12〉2〈3|1 + 2|η]3

〈34〉〈45〉[12]〈5|1 + 2|η]〈1|2|η]〈2|1|η]
+i

〈23〉3〈1|5|η]3
〈34〉〈15〉2[15]〈4|1 + 5|η]〈2|1 + 5|η]〈5|1|η] (1.46)

The sum of the four terms in (1.45) and (1.46) agree with the known answer (1.42). This
can be checked numerically by taking the arbitrary spinor to be |η] = |4] + |5] and using
the VegasShift[n] Mathematica program in Appendix B. It can be also be shown that the
construction is independent of the arbitrary reference spinor η.

The CSW construction can of course be applied to amplitudes which are neither MHV or
googly. The first example of this is the next-to-MHV six point amplitude. This amplitude
is constructed from six CSW diagrams, where as a Feynman rules calculation involves 220
diagrams [9, 10]. The efficient CSW construction including the ‘off-shell’ prescription for
the internal legs can be proved simply and directly by realising that the CSW rules are an
example of BCFW on shell recursion [38]. This will be reviewed in section 1.7.3.
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1.4.2 The one loop BST rules

In [8], a heuristic derivation of the CSW method was given from the twistor string theory.
Rather unfortunately, the latter only appears to describe the scattering amplitudes of Yang-
Mills at tree level [11], as at one loop states of conformal supergravity enter the game,
and cannot be decoupled in any known limit. The duality between gauge theory and
twistor string theory is thus spoilt by quantum corrections. Surprisingly, it was found by
Brandhuber, Spence and Travaglini (BST) that the MHV method does succeed in correctly
reproducing the one-loop MHV scattering amplitude [12].

Figure 1.4: The BST construction of the MHV one-loop amplitude in N = 4 super Yang-
Mills by sewing two tree-level MHV amplitudes together.

The BST method is given schematically by the diagram in Figure 1.4. The one-loop
MHV amplitude is computed from:

A =
∑

m1 m2

∫
dMAL(−l1,m1, . . . ,m2, l2)AR(−l2,m2 + 1, . . . ,m1 − 1, l1) (1.47)

where the full N =4 multiplet can run in the loop. AL and AR are MHV amplitudes with
the CSW ‘off shell’ prescription Li = li + ziη. The measure dM is given by

dM = (2π)4δ(4)(L2 − l1 + Pl)
d4L1

L2
1

d4L2

L2
2

(1.48)

Using the decomposition d4L
L = dz

z d4l δ(+)(l2), BST showed that the measure dM can be
written as the product of two parts. The first part is a dispersive integral, which reconstructs
the amplitude from its discontinuities. The second part is a Lorentz-invariant phase-space
measure that computes the discontinuity of the diagram across the branch cut in the same
way as the two-particle unitarity cuts method of BDDK [13, 14]. This method will be
reviewed in section 1.5. The calculation of BST has many similarities to the unitarity based
approach of BDDK. The main practical difference is that the MHV rules reproduce the cut-
constructible parts of an amplitude directly without having to worry about over counting.
In this sense the BST construction is a diagrammatic method.
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The twistor space picture of one-loop amplitudes is now in complete agreement with
that emerging from these MHV methods, which suggests that the amplitudes at one loop
have localisation properties on unions of lines in twistor space in agreement with (1.38).
An initial puzzle [39] was indeed clarified and explained in terms of a certain ‘holomorphic
anomaly’, introduced in [40], and further analysed in [41–45]. A proof of the MHV method
at tree level was given in [17] and more directly in [38]. At loop level it remains a (well-
supported) conjecture. Further understanding of the loop level MHV construction via the
Feynman tree theorem was gained in [46].

The initial successful application of the MHV method toN =4 SYM [12] was followed by
calculations of MHV amplitudes in N =1 SYM [47,48], and in pure Yang-Mills [49], where
the four-dimensional cut-constructible part of the infinite sequence of MHV amplitudes was
derived. However, amplitudes in non-supersymmetric Yang-Mills theory also have rational
terms which escape analyses based on MHV diagrams at one loop [49] or four-dimensional
unitarity [13,14]. It would be interesting to extend the MHV construction to higher loops.

1.4.3 Mansfield’s proof of the CSW rules

It is possible to construct a canonical transformation that takes the usual Yang-Mills action
into one whose Feynman diagram expansion generates the CSW rules. This transformation
was found by Mansfield [50]. The light-front quantisation of Yang-Mills leads to a formu-
lation of Yang-Mills in terms of only the physical degrees of freedom. There are no ghosts.
If one chooses the gauge A0 = 0 in light-front coordinates and integrates out the remaining
unphysical degree of freedom, one is left with a simple action:

S =
4
g2

∫
dx0 d3x tr

(
Az∂0∂0̄Az̄ − [Dz̄, ∂0̄Az]∂−2

0̄
[Dz, ∂0̄Az̄]

)
(1.49)

This Lagrangian can be written as a sum of four terms L2 +L++−+L−−+ +L−−++ where
L2 is a kinetic term corresponding to a scalar propagator and the other three terms are
interaction vertices labelled by their helicity content. Mansfield showed that it was possible
to perform a transformation that eliminates the googly vertex L++− and at the same time
generate the missing MHV vertices of the CSW rules. This transformation writes the kinetic
term and the three point googly interaction of the old field A, as the kinetic term of a new
field B:

L2[A] + L++−[A] = L2[B] (1.50)

The transformation used by Mansfield is a canonical transformation in which B+ is a func-
tional of Az on the quantisation surface, but not Az̄. The remaining two terms of the
Lagrangian L−−+[A] + L−−++[A] when written in terms of B± give the infinite series of
MHV vertices that occur in the CSW rules. Further developments in this area can be found
in the papers [51,52]. In principle this idea should generalise to the quantum theory.
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1.5 BDDK’s two-particle unitarity cuts

Unitarity is a well known and useful tool in quantum field theory. Unitarity applied at the
level of Feynman diagrams usually goes under the name of the ‘Optical Theorem’. See for
example [53–57]. If we write the S-matrix as S = 1 + iA then unitarity of the S-matrix
implies, for example, that the imaginary part of a one loop amplitude can be found by
considering the product of two tree amplitudes.

S†S = 1 ⇒ Im(A) ∼ A†A (1.51)

Each Feynman diagram contributing to an S-matrix element is real unless some de-
nominator vanishes, so that the iε prescription for treating poles becomes relevant. Thus
Feynman diagrams have an imaginary part only when the virtual particles in the diagram
go on shell. Let F (s) be a Feynman diagram, where s is a momentum invariant. We
now consider F (s) as an analytic function of the complex variable s, even though we are
only interested in the result for external particles with real momentum. Let s0 be the
threshold energy for the production of the lightest multi-particle state. For real s < s0 the
intermediate state cannot go on shell, so F (s) is real:

F (s) =
(
F (s∗)

)∗ (1.52)

Both sides of this equation are analytic functions of s, so we can analytically continue to
the entire complex s plane. For s > s0 this implies:

ReF (s+ iε) = ReF (s− iε) , ImF (s+ iε) = −ImF (s− iε) (1.53)

Thus, there is a branch cut across the real axis for s > s0. The iε prescription in the
Feynman propagator means that the physical scattering amplitude should be evaluated
above the cut at s+ iε.

The simplicity of tree-level amplitudes in Yang-Mills was exploited by Bern, Dixon,
Dunbar and Kosower (BDDK) in order to build one-loop scattering amplitudes [13,14]. By
applying unitarity at the level of amplitudes, rather than Feynman diagrams, these authors
were able to construct many one-loop amplitudes in supersymmetric theories, such as the
infinite sequence of MHV amplitudes in N = 4 and in N = 1 super Yang-Mills (SYM).
The unitarity method of BDDK by-passes the use of Feynman diagrams and its related
complications, and generates results of an unexpectedly simple form. For instance, the one-
loop MHV amplitude in N =4 SYM is simply given by the tree-level expression multiplied
by a sum of ‘two-mass easy’ box functions, all with coefficient one.

Amplitudes in supersymmetric theories are of course special. They do contain ratio-
nal terms, but these are uniquely linked to terms which have cuts in four dimensions.
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In other words, these amplitudes can be reconstructed uniquely from their cuts in four-
dimensions [13, 14] - a remarkable result. These cuts are of course four-dimensional tree-
level amplitudes, whose simplicity is instrumental in allowing the derivation of analytic,
closed-form expressions for the one-loop amplitudes.

Figure 1.5: The s channel cut of a one-loop amplitude.

We now illustrate the computation of branch cut containing terms via the cutting pro-
cedure by considering the s-channel cut of a four point amplitude drawn in Figure 1.5.

ImAone-loop(1, 2, 3, 4)
∣∣∣
s-cut

=
∫
d4−2εl δ(+)(l24)δ

(+)(l22)

×Atree(−l4, 1, 2, l2)Atree(−l2, 3, 4, l4) (1.54)

Now suppose the amplitude has the form Aone-loop = c log(−s) + · · · = c(log|s| − iπ) + · · ·
The phase-space integral (1.54) computes the iπ term. We want both terms, so we replace
the phase-space integral by an unrestricted loop integral in which the the delta functions
have been replaced with propagators. This procedure is usually called ‘reconstruction of
the Feynman integral’:

A(1, 2, 3, 4)
∣∣∣
s-cut

=
∫
d4−2εl

i

l24

i

l22
Atree(−l4, 1, 2, l2)Atree(−l2, 3, 4, l4)

∣∣∣
s-cut

(1.55)

Equation (1.54) involves only the imaginary part, but equation (1.55) contains both the
real and imaginary parts. This process of ‘reconstructing the Feynman integral’ will be
pushed further in chapter 2 to understand the new D-dimensional generalised unitarity
cuts. Equation (1.55) is only valid for terms with an s-channel branch cut. A similar cut
must be performed to compute the terms with a t-channel cut. In this way all terms with
cuts can be found. Combining the two cuts into a single function in a way that avoids over
counting gives the complete amplitude.

32



CHAPTER 1. PERTURBATIVE FIELD THEORY AND TWISTORS

In non-supersymmetric theories, amplitudes can still be reconstructed from their cuts,
but on the condition of working in 4−2ε dimensions, with ε 6= 0 [58–60]. This is a powerful
statement, but it also implies the rather unpleasant fact that one should in principle work
with tree-level amplitudes involving gluons continued to 4 − 2ε dimensions, which are not
simple.

An important simplification is offered by the well-known supersymmetric decomposition
of one-loop amplitudes of gluons in pure Yang-Mills. Given a one-loop amplitude Ag with
gluons running the loop, one can re-cast it as

Ag = (Ag + 4Af + 3As) − 4(Af +As) + As . (1.56)

Here Af (As) is the amplitude with the same external particles as Ag but with a Weyl
fermion (complex scalar) in the adjoint of the gauge group running in the loop.

This decomposition is useful because the first two terms on the right hand side of (1.56)
are contributions coming from an N = 4 multiplet and (minus four times) a chiral N = 1
multiplet, respectively; therefore, these terms are four-dimensional cut-constructible, which
simplifies their calculation enormously. The last term in (1.56), As, is the contribution
coming from a scalar running in the loop. The key point here is that the calculation of
this term is much easier than that of the original amplitude Ag. It is this last contribution
which is the focus of chapter 2 of this thesis.

The root of the simplification lies in the fact that a massless scalar in 4− 2ε dimensions
can equivalently be described as a massive scalar in four dimensions [59, 60]. Indeed, if L
is the (4 − 2ε)-dimensional momentum of the massless scalar (L2 = 0), decomposed into a
four-dimensional component l(4) and a −2ε-dimensional component l(−2ε), L := l(4) + l(−2ε),
one has L2 := l2(4) + l2(−2ε) = l2(4) − µ2, where l2(−2ε) := −µ2 and the four-dimensional and
−2ε-dimensional subspaces are taken to be orthogonal.

The tree-level amplitudes entering the (4−2ε)-dimensional cuts of a one-loop amplitude
with a scalar in the loop are therefore those involving a pair of massive scalars and gluons.
Crucially, these amplitudes have a rather simple form. Some of these amplitudes appear in
[59,60]; furthermore, a recent paper [61] describes how to efficiently derive such amplitudes
using a recursion relation similar to that of BCFW. This recursion relation will be reviewed
in section 1.7.2.

Using two-particle cuts in 4− 2ε dimensions, together with the supersymmetric decom-
position mentioned above, various amplitudes in pure Yang-Mills were derived in recent
years, starting with the pioneering works [59, 60]. In chapter 2 we show that this analy-
sis can be performed with the help of an additional tool: generalised (4− 2ε)-dimensional
unitarity.
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1.6 Generalised Unitarity

The twistor string proposal of Witten [5] has inspired many new techniques for the calcu-
lation of scattering amplitudes in gauge theory and gravity. As reviewed in section 1.2.3
it is efficient to write amplitudes in the spinor-helicity formalism and many of these new
techniques make use of an analytic continuation of these spinors to complex momenta at
intermediate steps. For example the use of complex momenta allows for the use of on-shell
three-point amplitudes at intermediate steps. For a three-point on shell amplitude we have
the following kinematic constraints

0 = P 2
1 = 2P2.P3 = 〈23〉[32]

0 = P 2
2 = 2P3.P1 = 〈31〉[13]

0 = P 3
1 = 2P1.P2 = 〈12〉[21]

For real momenta in Minkowski space, the spinors are also related by the additional con-
straint λ̃ = ±λ̄ and so any three-point amplitude must vanish. If we now use complex
momenta the λ and λ̃ are independent and thus only one of the conditions λ1 ∝ λ2 ∝ λ3

and λ̃1 ∝ λ̃2 ∝ λ̃3 could hold and we can use the other non-proportional spinors to formally
define three-point amplitudes. For example, we can define the three-point on-shell tree-level
Yang-Mills amplitudes by

A
(tree)
3 (1−, 2−, 3+) = i

〈12〉3
〈23〉〈31〉 and λ̃1 ∝ λ̃2 ∝ λ̃3

A
(tree)
3 (1+, 2+, 3−) = i

[12]3

[23] [31]
and λ1 ∝ λ2 ∝ λ3 (1.57)

Working with complex momenta has enabled a dramatic generalisation of the two-
particle cut constructibility techniques to multiple cuts. [56, 57, 62–64] Constructing an
amplitude using two-particle cuts can be quite complicated since there are often many func-
tions which share the same branch cut. The various scalar integrals of the final amplitude
also have many different branch cuts so one coefficient appears in multiple cut equations.
Two-particle cuts also require complicated Passarino-Veltman reduction to write the tensor
integrals of the cut integrals in terms of the scalar integrals of the final amplitude. This
reduction results in large expressions for the rational coefficients of the scalar integrals. Of-
ten these complicated expressions are equivalent to simple formulae suggesting that there
is a more elegant way of computing them [44].

The idea which realises this goal, is to simply cut more propagators than the two which
are cut in a two-particle cut. This is called generalised unitarity. Just as a two-particle cut
replaces two propagators by two delta functions, a generalised cut replaces more propagators
by delta functions. Simultaneously cutting more legs reduces the overlap between the
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various cuts, thus making the disentanglement of the coefficients from the various cuts
much simpler. Since the additional delta functions give more on-shell conditions with which
to manipulate the cut integrand, generalised unitarity also reduces the complexity of the
required Passarino-Veltman reduction. In order to cut these extra legs it is crucial to use
three point vertices and therefore complexified momenta.

1.6.1 Quadruple cuts in N =4 Super Yang-Mills

Generalised cuts most dramatic application is to the one-loop amplitudes of N = 4 Super
Yang-Mills [15]. The one-loop amplitudes of N = 4 Super Yang-Mills can be written as a
linear combination of only scalar box integrals with rational coefficients [13]. There are no
triangle and bubble integrals. The scalar box integrals can be thought of as the basis of a
vector space. Each one-loop amplitude is then a vector which can be written as a linear
combination of members of this basis. Performing the quadruple cut of an amplitude is
then a way of projecting this vector onto a specific member of the basis computing the
corresponding coefficient. Each scalar box integral is associated with a unique quadruple
cut. So for N = 4 Super Yang-Mills quadruple cuts can be thought of as a diagrammatic
method. Replacing all of the four propagators of a scalar box integral with delta functions
completely localises the integral onto the two solutions of the four on-shell conditions and no
Passarino-Veltman reduction is required. Quadruple cuts have thus reduced the calculation
of one-loop amplitudes in N =4 Super Yang-Mills to multiplication of four tree amplitudes.

Figure 1.6: A simple quadruple cut to evaluate the coefficient of a one-mass box in the
five-point MHV amplitude in N =4 Super Yang-Mills.

We now present an explicit example of the use of a quadruple cut in the calculation
of the coefficient of a one-mass box integral in a one-loop MHV amplitude of N =4 super
Yang-Mills. We consider the quadruple cut drawn in Figure 1.6. This particular example
of a quadruple cut is simple because only gluons propagate in the loop. In general all
the particles in the N = 4 multiplet can run in the loop of a quadruple cut. The helicity
assignments of the internal legs in a quadruple cut must be chosen so that the three point
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vertices used do not give rise to unphysical constraints on the external momenta. For the
particular one-mass box in Figure 1.6 the only possible helicity assignment is the one given
in the diagram and with this helicity assignment it is only possible for gluons to propagate
in the loop.

To calculate the coefficient of the one-mass box in the amplitude we simply multiply
four on-shell gluon tree amplitudes together.

A(l+5 , 1
−, l+1 )A(l−1 , 2

−, l+2 )A(l−2 , 3
+, l+3 )A(l−3 , 4

+, 5+, l−5 )

=
(
i

[l1l5]3

[l51][1l1]

)(
i
〈l12〉3

〈2l2〉〈l2l1〉
)(

i
[3l3]3

[l3l2][l23]

)(
i

〈l3l5〉3
〈l34〉〈45〉〈5l5〉

)
(1.58)

We now use momentum conservation and on-shell conditions to eliminate as many of the ls
as possible. The numerator of (1.58) simplifies to:

〈2|l1l5l3|3]3 = 〈2|l1l5(4 + 5)|3]3

= 〈2|l11(4 + 5)|3]3

= −〈2|l112|3]3

= −〈2|l1|1]3〈12〉3[23]3

The denominator of (1.58) simplifies to:

−〈4|l3l2l1|1]〈2|l2|3]〈5|l5|1]〈45〉 = −〈4|32l1|1]〈2|l1|3]〈5|l1|1]〈45〉
= −〈2|l1|1]2〈5|l1|3]〈43〉[32]〈45〉

So the quadruple cut (1.58) has the value

〈12〉3[23]2

〈34〉〈45〉
〈2|l1|1]
〈5|l1|3]

(1.59)

Now recall the conditions (1.57) on three point vertices in complex momenta. The three-
point vertices involving the external legs 1 and 2 give the conditions λl1 ∝ λ1 and λ̃l1 ∝ λ̃2

which can be used to eliminate the remaining dependence on the loop momenta:

〈2|l1|1]
〈5|l1|3]

=
〈21〉[21]
〈51〉[23]

(1.60)

Thus the quadruple cut (1.58) gives the coefficient of the scalar box integral to be:

Atree(1−, 2−, 3+, 4+, 5+)(p1 + p2)2(p2 + p3)2 (1.61)

This answer was originally calculated using two-particle unitarity cuts in [13]. It has also
been calculated using loop-level MHV rules in [12]. In general it is not always possible to
eliminate the loop momentum from the quadruple cut in such a simple fashion and one
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has to explicitly solve the four on-shell conditions for the loop momentum in terms of the
external particles [15]. There are generally two solutions to this problem and the amplitude
is given by averaging over these two solutions.

The four dimensional quadruple cuts reviewed above have much in common with the D-
dimensional quadruple cuts that are presented in chapter 2. However the four dimensional
cuts only compute amplitudes to the leading orders in ε, where as the D-dimensional cuts
that will be introduced in chapter 2 correctly compute to all orders in ε. For example the
quadruple cut considered in Figure 1.6 should contain a pentagon term if true to all orders
in ε, but there is no pentagon term in (1.61). These higher order in ε contributions are
important in, for example, the study of iterative cross order relations that relate the higher
order in ε terms in the one-loop amplitude to higher loop amplitudes [65–68]. For MHV
amplitudes in N = 4 super Yang-Mills the dimension shifting relationship of [60] can be
used in conjunction with the D-dimensional generalised unitarity method in chapter 2 to
compute to all orders in ε.

1.6.2 Triple cuts in N =1 Super Yang-Mills

Generalised unitarity was also applied to N =1 SYM, in particular to the calculation of the
next-to-MHV amplitude with adjacent negative-helicity gluons [69]. These amplitudes can
be expressed solely in terms of triangles, and were computed in [69] using triple cuts3.

We now consider the simple example of the triple cut of a the MHV amplitude in
N = 1 Super Yang-Mills with the two negative helicity gluons adjacent. This example
was instrumental in our understanding of the procedure of ‘reconstructing the Feynman
integral’ which enabled us to understand how to compute the D-dimensional triple cuts of
chapter 2. The MHV amplitude with adjacent negative helicity gluons has been computed
using two particle cuts [59, 60] and MHV rules [47, 48] and is particularly simple as it does
not contain any box integral terms. The absence of boxes can also be seen immediately
by considering the quadruple cuts and realising that all helicity assignments result in an
unphysical constraint on the external momenta.

The two helicity assignments contributing to this triple cut are given in Figure 1.7. The
amplitudes in this cut involve many positive helicity gluons, a single negative helicity gluon
and a pair of fermions f or a pair of scalars s. These amplitudes are related to the usual
gluon amplitudes by:

A(. . . g−i . . . f
−
j . . . f+

k ) =
〈ik〉
〈ij〉A

gluons (1.62)

A(. . . g−i . . . s
−
j . . . s

+
k ) =

〈ik〉2
〈ij〉2A

gluons (1.63)

3A new calculation based on localisation in spinor space was also introduced in [70].
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Figure 1.7: The diagrams in the triple cut of the one-loop MHV amplitude for N =1 Super-
Yang Mills.

The triple cut contains four terms corresponding to a fermion and a scalar running in the
loop of the two diagrams in Figure 1.7:

triple cut =
〈1|ml1|2〉〈1|l2l3|1〉〈2|l1l3|2〉

P 2Q2〈23〉 . . . 〈n 1〉 − 〈2|ml1|2〉〈1|l2l3|1〉〈2|l1l3|1〉
P 2Q2〈23〉 . . . 〈n 1〉

+
〈1|ml1|2〉〈1|l2l3|1〉〈2|l1l3|2〉

P 2Q2〈23〉 . . . 〈n 1〉 − 〈1|ml1|1〉〈1|l2l3|2〉〈2|l1l3|2〉
P 2Q2〈23〉 . . . 〈n 1〉

=
Atree

n (1−, 2−, 3+, . . . , n+)
(p1 + p2)2

tr+(12 l1m) (1.64)

Unlike the quadruple cuts, which completely localise the integral, triple cuts cut only three
of the propagators and there is still some integration left to do. In this example it appears
we are left with the following integral:

∫
d4−2εl δ+(l21)δ

+(l22)δ
+(l23) l

µ
1 (1.65)

However, calculation of this integral reveals that it is proportional to mµ and therefore the
triple cut (1.64) vanishes. So initially, it appears that triple cuts do not allow us to compute
the amplitude. The correct procedure is to ‘reconstruct the Feynman integral’ by replacing
the delta functions in (1.65) by propagators to give the integral:

∫
d4−2εl

lµ1
l21l

2
2l

2
3

(1.66)

Inserting the result of this integral into (1.64) yields an answer in agreement with two-
particle cuts [59,60] and MHV rules [47,48].
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1.7 The BCFW recursion relation

Another new technique for calculating amplitudes is the Britto, Cachazo, Feng and Witten
(BCFW) recursion relation for tree-level Yang-Mills amplitudes [16,17]. This elegant tech-
nique is based on only two very general properties of amplitudes, analyticity [53, 57] and
factorisation on multi-particle poles and hence the idea of BCFW recursion is applicable
in many different contexts. Scattering amplitudes can be regarded as analytic functions of
many complex variables, the (complexified) kinematic invariants they depend on. However,
in order to fully use the powerful theorems of complex analysis, it is useful to map scat-
tering amplitudes to a function of one complex variable. To this end, BCFW considered
the following deformation of an amplitude which shifts the spinors of two of the n massless
external particles labelled i and j and involves a complex parameter z:

λi → λi

λ̃i → λ̃i − zλ̃j

λj → λj + zλi

λ̃j → λ̃j (1.67)

This deformation does not make sense for real momenta in Minkowski space which satisfy
λ̃ = ±λ̄, but is fine for complex momenta. Under this shift, the shifted momenta pi(z) and
pj(z) remain on-shell for all z and pi(z) + pj(z) = pi(0) + pj(0). So the shifted amplitude
A(1, . . . , pi(z), . . . , pj(z), . . . , n) is an on-shell amplitude for all z. In BCFW recursion the
deformed amplitude A(z) proves useful for calculating the undeformed amplitude of physical
interest A(0). It is possible and often useful to consider more general deformations than
(1.67) which still preserve momentum conservation for all z. For example more exotic shifts
have shown that the tree-level CSW rules [38] are an instance of BCFW recursion and
multiple shifts have been used to eliminate boundary terms in a generalisation of BCFW
recursion to one-loop QCD amplitudes [18].

The BCFW recursion relation emerges from considering the following integral where the
contour of the integral C is the circle at infinity,

1
2πi

∮

C
dz
A(z)
z

(1.68)

Assuming that A(z) → 0 as z →∞ then the Cauchy residue theorem writes the amplitude
we wish to calculate A(0) as a sum of residues of A(z)/z,

A(0) = −
∑

poles of A(z)/z
excluding z=0

Res
{
A(z)
z

}
(1.69)

For tree-level Yang-Mills, A(z) has only simple poles. The pole at z = zpole is associated
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with the shifted momentum invariant (pa(z) + · · · + pb(z))2 becoming zero. The residue
at this pole is then given by factorising the shifted amplitude on this pole in the shifted
momentum invariants,

Res
{
A(z)
z

}
=

∑

h

Ah
L(z=zpole)

i

(pa + · · ·+ pb)2
A−h

R (z=zpole) (1.70)

where the sum is over the possible helicity h of the intermediate state. The left and right
shifted amplitudes AL and AR are, of course, only defined for z = zpole when the shifted
momentum invariant (pa(z)+· · ·+pb(z))2 is zero. The inverse squared momentum associated
with the pole which appears between the left and right shifted amplitudes, is reminiscent of
a scalar propagator and is evaluated with unshifted kinematics. Since a shifted momentum
invariant involving both (or neither) of the shifted legs i and j will remain unshifted and
not give rise to a pole, the shifted legs i and j will always appear on opposite sides of
the factorisation. So this procedure constructs an n-point amplitude from amplitudes with
fewer legs. The use of complex momenta is essential throughout for the shifts to make sense
and also the factorisation onto three point amplitudes.

Figure 1.8: A diagrammatic representation of the BCFW recursion relation. The sum is
over all factorisations into pairs of amplitudes and the possible helicity of the intermediate
state.

1.7.1 A four-point example

In this section we review an explicit example of BCFW recursion. We show how to compute
the tree-level four-point MHV Yang-Mills amplitude A(1−, 2+, 3−, 4+) from the three-point
amplitudes given in equation (1.57). To do this we use the standard BCFW shifts in (1.67)
with i = 1 and j = 2. It is standard to denote the shifted spinors i and j with hats.

The first thing to do is to consider which shifted momentum invariants can vanish
causing the shifted amplitude to develop singularities. In our case there is just one shifted
momentum invariant which can vanish (1̂ + 4)2 = (2̂ + 3)2. In this four-point example the
singularity in the shifted amplitude is caused by individual shifted spinor brackets vanishing.
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The shifted brackets [1̂4] and 〈2̂3〉 both vanish at the same point zpole in the complex z plane.

zpole =
[14]
[24]

= −〈23〉
〈13〉 (1.71)

Now we want to understand the factorisation at this pole. Recall the kinematic conditions
for three point amplitudes in complex momenta given in (1.57). At the pole we have the
condition |1̂] ∝ |4], which implies that the 1̂ and 4 legs are part of a three-point A(1̂−, k̂−, 4+)
amplitude. Similarly, |2̂〉 ∝ |3〉 at the pole implies that the 2̂ and 3 legs are part of the
three-point A(3−, k̂+, 2̂+) amplitude. So the single recursive diagram in this construction
is the one given in Figure 1.9.

Figure 1.9: The recursive diagram in the BCFW construction of A(1−, 2+, 3−, 4+).

To calculate the four point amplitude A(1−, 2+, 3−, 4+) we simply multiply the two
three-point amplitudes, evaluated with shifted kinematics at z = zpole, by the scalar prop-
agator for the diagram,

A(1−, 2+, 3−, 4+) = A(1̂−, k̂−, 4+)
i

〈23〉[32]
A(3−, k̂+, 2̂+)

=

(
i
〈1k̂〉3
〈k̂4〉〈41〉

)
i

〈23〉[32]

(
i

[2k̂]3

[23][3k̂]

)

=
i

〈41〉〈23〉[23]2
〈1|k̂|2]3

〈4|k̂|3]

=
i

〈41〉〈23〉[23]2
〈1|3|2]3

〈4|2̂|3]

= i
〈13〉3

〈41〉〈23〉〈2̂4〉 (1.72)

where we have eliminated k̂ using the momentum conservation formula k̂ = 2̂+3. To remove
the remaining hat from this expression we use the value of z at the pole (1.71),

〈2̂4〉 = 〈24〉+ zpole〈14〉
= 〈24〉 − 〈23〉〈14〉

〈13〉 = 〈24〉 − 〈21〉〈34〉
〈13〉 +

〈24〉〈31〉
〈13〉 =

〈12〉〈34〉
〈13〉 (1.73)

where the simplification uses the Schouten identity (1.12). Using (1.73) in (1.72) gives a
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result in agreement with (1.23):

A(1−, 2+, 3−, 4+) = i
〈13〉4

〈12〉〈23〉〈34〉〈41〉 (1.74)

1.7.2 Generalisations of BCFW recursion

The idea of the BCFW recursion relation has been generalised to many other situations
in perturbative field theory. These include tree-level amplitudes with fermions and scalars
[71,72] tree-level gravity amplitudes [73,74] and tree-level amplitudes with massive particles
[61]. The recursion relation has been generalised to compute the rational part of one-loop
QCD amplitudes [18,75–78]. On-shell recursion has also be used to determine the coefficients
of integral functions appearing in one-loop scattering amplitudes of gauge theories [79].

Once the three-point vertices of a theory in complex momenta have been specified, no
further information is required to use BCFW recursion to compute all the higher point
tree-amplitudes. The generalisation of BCFW recursion to tree-level gravity [73, 74] uses
the following three-point gravity amplitudes which are just the square of the Yang-Mills
amplitudes:

M3(1−, 2−, 3+) =
(
i
〈12〉3
〈23〉〈31〉

)2

and λ̃1 ∝ λ̃2 ∝ λ̃3 (1.75)

M3(1+, 2+, 3−) =
(
i

[12]3

[23] [31]

)2

and λ1 ∝ λ2 ∝ λ3 (1.76)

A complication that arises in the generalisation of BCFW recursion to other field theories
is understanding the behaviour of the shifted amplitude at large z. In [17] the vanishing
at infinity of an appropriately shifted Yang-Mills amplitude was proved by analysing the
Feynman diagrams. For tree-level gravity there is no complete proof of the absence of
boundary terms. In the appendix of [74] the KLT relations were used to prove that A(z) → 0
as z →∞ for amplitudes with up to eight gravitons. The KLT relations [80] relate tree-level
Yang-Mills amplitudes to tree-level gravity amplitudes.

It is also possible to perform BCFW recursion for tree amplitudes with two adjacent
massive scalars and many massless gluons [61]. These tree-level amplitudes will be impor-
tant in the next chapter, as they are the building blocks of the new method ofD-dimensional
generalised unitarity for the calculation of complete one-loop QCD amplitudes. In this case
the three-point amplitudes are given by:

A3(l+1 , k
+, l−2 ) = A3(l−1 , k

+, l+2 ) =
〈q1|l1|k]
〈q1k〉 (1.77)

A3(l+1 , k
−, l−2 ) = A3(l−1 , k

−, l+2 ) =
〈k|l1|q2]

[kq2]
(1.78)
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Where l1 and l2 are the massive scalars and k is a massless gluon. q1 and q2 are arbitrary
reference vectors that are not proportional to k. Higher point amplitudes can be built
recursively from these three-point amplitudes using standard BCFW shifts on the massless
external legs. As in the massless case the shifted amplitude has simple poles coming from
internal propagators 1/P (z)2. The only difference in this case is that the propagator is now
a massive one.

In chapter 3 we will present a generalisation of BCFW recursion to the one-loop finite
amplitudes of pure Einstein gravity. This generalisation has much in common with the
generalisation of BCFW recursion to the rational parts of one-loop QCD amplitudes of [18].

1.7.3 Risager’s proof of the CSW rules

The CSW rules for Yang-Mills tree amplitudes are just one instance of BCFW recursion.
This elegant proof of the CSW construction was discovered by Risager [38]. Instead of using
the standard BCFW shifts (1.67) Risager used more exotic shifts that give precisely the
CSW diagrammatics. These shifts were then used to provide a CSW style construction for
tree-level gravity [81].

The choice of BCFW shifts that coincide with the CSW rules are those that affect the
shifted momentum invariants corresponding to the propagators in the set of CSW diagrams
and none of the others. To construct CSW rules for a next-to-MHV amplitude the shifted
momentum invariants must contain at least one negative helicity gluon and the compliment
of the shifted momentum invariants must also contain at least one negative helicity gluon.
This set of invariants are affected by a shift on every negative helicity gluon. For the
three-point googly amplitudes not to contribute only the anti-holomorphic spinors must be
shifted.

For the CSW construction of a next-to-MHV amplitude, Risager found some explicit
shifts. A next-to-MHV amplitude has three negative helicity gluons. These gluons will be
labelled 1, 2, 3. We start by considering the following sum of three standard BCFW shifts:

η → η + z1r1λ1 + z2r2λ2 + z3r3λ3

λ̃1 → λ̃1 − z1r1η̃

λ̃2 → λ̃2 − z2r2η̃

λ̃3 → λ̃3 − z3r3η̃ (1.79)

This sum of shifts preserves momentum conservation. If we now choose z1 =z2 =z3 =z and
r1 =〈23〉, r2 =〈31〉, r3 =〈12〉 then η becomes unshifted. This can be seen by contracting the
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shifted η with an arbitrary spinor a and using the Schouten identity (1.12).

〈η̂a〉 = 〈ηa〉+ z
(〈23〉〈a1〉+ 〈31〉〈a2〉+ 〈12〉〈a3〉)

= 〈ηa〉+ z
(〈2a〉〈31〉 − 〈21〉〈3a〉+ 〈31〉〈a2〉+ 〈12〉〈a3〉)

= 〈ηa〉 (1.80)

Thus we have the shifts that we require to split a next-to-MHV amplitude into a sum of
diagrams containing all the possible pairs of MHV amplitudes:

λ̃1 → λ̃1 − z〈23〉η̃
λ̃2 → λ̃2 − z〈31〉η̃
λ̃3 → λ̃3 − z〈12〉η̃ (1.81)

where η̃ is completely arbitrary spinor. Of course the η in these shifts is the same η as
appeared in the CSW ‘off-shell’ prescription (1.41). BCFW recursion gives an on-shell
explanation of CSW’s ‘off-shell’ prescription. The off-shell prescription is just the process
of writing the shifted internal legs of the on-shell recursive diagram in terms of the unshifted
external legs. For example if one is calculating the − − − + + amplitude using Risager’s
shifts, one has the same diagrams as occur in Figure 1.3. Figure 1.3a gives the same algebra
as (1.43) where the internal leg k is always on-shell and usually denoted by k̂. One then
eliminates the k̂ from the various brackets like this:

〈2k̂〉 =
〈2|k̂|η]
[k̂η]

=
〈2|3̂ + 4|η]

[k̂η]

=
〈2|3 + 4|η]

[k̂η]
(1.82)

where the [k̂η] in the denominator of (1.82) will cancel overall since the expression (1.43)
has the same number of k̂s in the numerator as the denominator. So (1.82) exactly parallels
the example of CSW’s ‘off-shell’ prescription in (1.44).

In chapter 3 we will use Risager’s shifts for a different purpose. In chapter 3 we will
present a generalisation of BCFW recursion to the one-loop finite amplitudes in pure Ein-
stein gravity. Using the standard BCFW shifts to calculate the all-plus one-loop amplitude
in pure gravity recursively results in a boundary term, however using Risager’s shifts to
shift only the holomorphic spinors does not involve a boundary term.
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CHAPTER 2

GENERALISED UNITARITY FOR PURE

YANG-MILLS

The main point of this chapter is the observation that generalised unitarity is actually
a useful concept also in 4 − 2ε dimensions; in turn this means that generalised (4 − 2ε)-
dimensional unitarity is relevant for the calculation of non-supersymmetric amplitudes at
one loop. In particular in this chapter we will be able to compute amplitudes in non-
supersymmetric Yang-Mills by using quadruple and triple cuts in 4− 2ε dimensions. This
is advantageous for at least three reasons. First of all, working with multiple cuts simplifies
considerably the algebra, because several on-shell conditions can be used at the same time;
furthermore, for the case of quadruple cuts the integration is actually completely frozen [15]
so that the coefficient of the relevant box functions entering the amplitude can be calculated
without performing any integration at all. Lastly, the tree-level sub-amplitudes which are
sewn together in order to form the multiple cut of the amplitude are simpler than those
entering the two-particle cuts of the same amplitude. In principle further progress with this
approach will not require major new conceptual advances, and the method will be directly
applicable to more complicated and currently unknown amplitudes.

2.1 Generalised Unitarity in D = 4−2ε Dimensions

Conventional unitarity and generalised unitarity in four dimensions have been shown to be
extremely powerful tools for calculating one-loop and higher-loop scattering amplitudes in
supersymmetric gauge theories and gravity. At one-loop, conventional unitarity amounts to
reconstructing the full amplitude from the knowledge of the discontinuity or imaginary part
of the amplitude. In this process the amplitude is cut into two tree-level, on-shell amplitudes
defined in four dimensions, and the two propagators connecting the two sub-amplitudes are
replaced by on-shell delta-functions which reduce the loop integration to a phase space
integration. In principle this cutting technique is only sensitive to terms in the amplitude
that have discontinuities, like logarithms and polylogarithms, and in general any cut-free,
rational terms are lost. However, in supersymmetric theories all rational terms turn out to
be uniquely linked to terms with discontinuities, and therefore the full amplitudes can be
reconstructed in this fashion [13,14].
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Furthermore, in supersymmetric theories the one-loop amplitudes are known to be linear
combinations of scalar box functions, linear triangle functions and linear bubble functions,
with the coefficients being rational functions in spinor products. So the task is really to
find an efficient way to fix those coefficients with as few manipulations and/or integrations
as possible.

The method based on conventional unitarity introduced by BDDK in [13, 14] does not
evaluate the phase space integrals explicitly (from which the full amplitude would be ob-
tained by performing a dispersion integral), rather it reconstructs the loop integrand from
which one is able to read off the coefficients of the various integral functions. In practice
this means that for a given momentum channel the integrand (which is a product of two
tree amplitudes) is simplified as much as possible using the condition that the two internal
lines are on-shell, and only in the last step the two delta-functions are replaced by the
appropriate propagators which turn the integral from a phase space integral back to a fully-
fledged loop integral. The resulting integral function will have the correct discontinuities in
the particular channel, but, in general, it will also have additional discontinuities in other
channels. Nevertheless, working channel by channel one can extract linear equations for
the coefficients which allow us in the end to determine the complete amplitude. However,
because of the problem of the additional, unwanted discontinuities, this does not provide a
diagrammatic method, i.e. one cannot just sum the various integrals for each channel since
different discontinuities might be counted with different weights.

It is natural to contemplate if there exist other complementary, or more efficient methods
to extract the above mentioned rational coefficients of the various integral functions, and if
in particular we can replace more than two propagators by delta functions, so that the loop
integration is further restricted - or even completely localised. The procedure of replacing
several internal propagators by δ(+)-functions is well known from the study of singularities
and discontinuities of Feynman integrals, and goes under the name of generalised unitarity
[56, 57]. What turns generalised unitarity into a powerful tool is the fact that generalised
cuts of amplitudes can be evaluated with less effort than conventional two-particle cuts.

The most dramatic simplification arises from using quadruple cuts in one-loop ampli-
tudes in N = 4 SYM. In this case it is known that the one-loop amplitudes are simply given
by a sum of scalar box functions without triangles or bubbles [13]. Each quadruple cut
singles out a unique box function, and because of the presence of the four δ(+)-functions the
loop integration is completely frozen; hence, the coefficient of this particular box is simply
given by the product of four tree-level scattering amplitudes [15]. An important subtlety
arises here because quadruple cuts do not have solutions in real Minkowski space; therefore
at intermediate steps one has to work with complexified momenta.

At this point we can push the analogy with the ‘reconstruction of the Feynman integrand’
a step further. Using the on-shell conditions we can pull out the prefactor which is just
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the product of four tree-level amplitudes in front of the integral, and the integrand of the
remaining loop integral becomes just a product of four δ(+)-functions. If we now promote
the integral to a Feynman integral by replacing all δ(+)-functions by the corresponding
propagators 1 we arrive at the integral representation of the appropriate box function. Note
that no over-counting issue arises, because each quadruple cut selects a unique box function,
and the final result is obtained by summing over all quadruple cuts. In some sense, one can
really think of this as a true diagrammatic prescription.

As we reduce the amount of supersymmetry to N = 1, life becomes a bit more com-
plicated, since the one-loop amplitudes are linear combinations of scalar box, triangle and
bubble integral functions. No ambiguities related to rational terms occur however, thanks
to supersymmetry. It is therefore natural to attack the problem in two steps: First, use
quadruple cuts to fix all the box coefficients as described in the previous paragraph. Second,
use triple cuts to fix triangle and bubble coefficients. Note that the triple cuts also have
contributions from the box functions which have been determined in the first step. The
three δ(+)-functions are not sufficient to freeze the loop integration completely, and it is
advantageous to use again the “reconstruction of the Feynman integrand” method, i.e. use
the on-shell conditions to simplify the integrand as much as possible, and lift the integral to
a full loop integral by reinstating three propagators. The resulting integrand can be written
as a sum of (integrands of) scalar boxes, triangles and bubbles, after standard reduction
techniques, like Passarino-Veltman, have been employed.

At this point it is useful to distinguish three types of triple cuts according to the number
of external lines attached to each of the three tree-level amplitudes. If p of the three
amplitudes have more than one external line attached, we call the cut a p-mass triple
cut. Let us start with the 3-mass triple cut. The box terms can be dropped as they
have been determined using quadruple cuts, the coefficients of three-mass triangles can be
read off directly, and the remaining terms, which are bubbles or triangles with a different
triple cut, are dropped as well. Special care is needed for 1-mass and 2-mass triple cuts.
First let us note that any bubble can be written as a linear combination of scalar and
linear 1-mass triangles or scalar and linear 2-mass triangles depending on whether the
bubble depends on a two-particle invariant, t[2]

i = (pi + pi+1)2, or on a r-particle invariant,
t
[r]
i = (pi + . . .+pi+r−1)2, with r > 2. Therefore, what we want to argue is that two-particle

cuts are not needed and that 1-mass, 2-mass and bubbles can be determined from the 1-
mass and 2-mass triple cuts. Now every 1-mass triple cut is in one-to-one correspondence
with a unique two-particle channel t[2]

i = (pi+pi+1)2 and allows us to extract the coefficients
of 1-mass triangles and bubbles by only keeping terms in the integral depending on that
particular t[2]

i and dropping all boxes and triangles/bubbles not depending on that particular
variable. The 2-mass triple cut is associated with two momentum invariants, say P 2 and

1We thank David Kosower for discussions on this point.
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Q2, and we only keep 2-mass triangles and bubbles that depend on those two invariants.

In non-supersymmetric theories we have to face the problem that the amplitudes contain
additional rational terms that are not linked to terms with discontinuities. This statement is
true if we only keep terms in the amplitude up to O(ε0). If we work however in D = 4− 2ε
dimensions and keep higher orders in ε, even rational terms R develop discontinuities of
the form R(−s)−ε = R − ε log(−s)R + O(ε2) and become cut-constructible2. In practice,
this means that, in our procedure, whenever we cut internal lines by replacing propagators
by δ(+)-functions we have to keep the cut lines in D dimensions, and in order to proceed
we need to know tree-amplitudes with two legs continued to D dimensions. Because of
the supersymmetric decomposition of one-loop amplitudes in pure Yang-Mills, which was
reviewed in the Introduction, we only need to consider the case of a scalar running in the
loop. Furthermore, the massless scalar in D dimensions can be thought of as a massive
scalar in four dimensions L2 = l2(4) + l2(−2ε) = l2(4)−µ2 whose mass has to be integrated
over [59, 60]. Interestingly, a term in the loop integral with the insertion of “mass” term
(µ2)m can be mapped to a higher-dimensional loop integral in 4 + 2m− 2ε dimensions with
a massless scalar [59, 60]. Some of the required tree amplitudes with two massive scalars
and all positive helicity gluons have been calculated in [59,60] using Feynman diagrams and
recursive techniques, and more recently all amplitudes with up to four arbitrary helicity
gluons and two massive scalars have been presented in [61].

The comments in the last paragraph make it clear that generalised unitarity techniques
can readily be generalised to D dimensions and be used to obtain complete amplitudes in
pure Yang-Mills and, more generally, in massless, non-supersymmetric gauge theories. The
integrands produced by the method described for four dimensional unitarity will now contain
terms multiplied by (µ2)m and, therefore, the set of integral functions appearing in the
amplitudes includes, in addition to the four-dimensional functions, also higher-dimensional
box, triangle and bubble functions (some explicit examples of higher-dimensional integral
functions can be found in Appendix A). For example the one-loop ++++ gluon amplitude,
which vanishes in SYM, is given by a rational function times a box integral with µ4 inserted,
I4[µ4] = (−ε)(1− ε)I8−2ε

4 = −1/6+O(ε). Hence this amplitude is a purely rational function
in spinor variables.

In the following sections we will describe in detail how this procedure is applied in
practice Specifically, using generalised unitarity in 4 − 2ε dimensions we will re-calculate
the all-orders in ε expressions of all one-loop, four gluon scattering amplitudes in non-
supersymmetric Yang-Mills, that is ++++, −+++, and the two MHV amplitudes −−++
and −+−+; and finally, the five-gluon all-plus helicity amplitude +++++. These am-
plitudes have already been computed to all orders in ε in [59], and we find in all cases
complete agreement with the results of that paper. The examples we consider are comple-

2The idea of using unitarity in D = 4− 2ε dimensions goes back to [58], and was used in [59,60].
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mentary, as they show that this method can be applied to infrared finite amplitudes that are
purely rational (whose supersymmetric counter parts vanish), as well as to infrared diver-
gent amplitudes containing both rational and cut-constructible terms. These calculations
are described in Section 3 and Section 4. In Appendix A we have collected some useful
definitions and formulae.

2.2 The one-loop ++++ amplitude

The one-loop ++++ amplitude with a complex scalar running in the loop is the simplest
of the all-plus gluon amplitudes, and was first derived in [82] using the string-inspired
formalism. The expression in 4− 2ε dimensions, valid to all-orders in ε, is computed in [59]
and is given by

Ascalar
4 (1+, 2+, 3+, 4+) =

2i
(4π)2−ε

[12][34]
〈12〉〈34〉 K4 (2.1)

where3

K4 := I4[µ4] = −ε(1− ε)ID=8−2ε
4 = −1

6
+O(ε) (2.2)

In this chapter we closely follow the conventions of [59], with

ID=4−2ε
n [f(p, µ2)] := i(−)n+1(4π)2−ε

∫
d4l

(2π)4
d−2εµ

(2π)−2ε

f(l, µ2)
(l2 − µ2) · · · [(l −∑n−1

i=i Ki)2 − µ2]
(2.3)

where Ki are external momenta (which, in colour-ordered amplitudes, are sums of adja-
cent null momenta of the external gluons) and f(l, µ2) is a generic function of the four-
dimensional loop momentum l and of µ2.

The amplitude with four positive helicity gluons is part of the infinite sequence of all-
plus helicity gluons, for which a closed expression was conjectured in [83,84]. The result for
all n is given by

An(+, . . . ,+) = − i

48π2

∑

1≤i1<i2<i3<i4≤n

〈i1i2〉 [i2i3] 〈i3i4〉 [i4i1]
〈12〉 〈23〉 · · · 〈n1〉 (2.4)

or alternatively

An = − i

96π2

∑

1≤i1<i2<i3<i4≤n

si1i2si3i4 − si1i3si2i4 + si1i4si2i3 − 4iε(i1i2i3i4)
〈12〉 〈23〉 · · · 〈n1〉 (2.5)

where ε(abcd) := εµνρsa
µbνcρdσ. As ε→ 0, (2.1) becomes

A4 =
i

48π2

s12s23

〈12〉〈23〉〈34〉〈41〉 (2.6)

3Notice also that [12][34]/(〈12〉〈34〉) = −s12s23/(〈12〉〈23〉〈34〉〈41〉).
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We see that this amplitude (2.1) consists of purely rational terms, which are cut-free in four
dimensions. We now show how to derive (2.1) from quadruple cuts in D=4−2ε dimensions.

Figure 2.1: One of the two quadruple-cut diagrams for the amplitude 1+2+3+4+. This
diagram is obtained by sewing tree amplitudes (represented by the blue bubbles) with an
external positive-helicity gluon and two internal scalars of opposite ‘helicities’. There are two
such diagrams, which are obtained one from the other by flipping all the internal helicities.
These diagrams are equal so that the full result is obtained by doubling the contribution from
the diagram in this Figure. The same remark applies to all the other diagrams considered
in this chapter.

Consider the quadruple-cut diagram in Figure 2.1, which is obtained by sewing four
three-point scattering amplitudes4 with one massless gluon and two massive scalars of mass
µ2. From [61] we take the three-point amplitudes for one positive-helicity gluon and two
scalars:

A(l+1 , k
+, l−2 ) = A(l−1 , k

+, l+2 ) =
〈q|l1|k]
〈qk〉 (2.7)

where l1 + l2 + k = 0. Here |q〉 is an arbitrary reference spinor not proportional to |k〉. It
is easy to see [61] that (2.7) is actually independent of the choice of |q〉.

The D-dimensional quadruple cut of the amplitude ++++ is obtained by combining
four three-point tree-level amplitudes,

〈q1|l1|1]
〈q11〉

〈q2|l2|2]
〈q22〉

〈q3|l3|3]
〈q33〉

〈q4|l4|4]
〈q44〉 (2.8)

The reference momenta qi, i = 1, . . . , 4 in each of the four ratios in this expression may be

4In the following for the purpose of calculating the (generalised) cuts we drop factors of i appearing in
the usual definition of tree-amplitudes and propagators. For quadruple and two-particle cuts this does not
affect the final result, while for triple cuts this introduces an extra (−1) factor which we reinstate at the end
of every calculation.
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chosen arbitrarily. Then, using momentum conservation,

l2 = l1 − k2 , l4 = l3 − k4 (2.9)

the fact that the external momenta are null, and that the internal momenta square to µ2,
it is easy to see that

〈q1|l1|1]
〈q11〉

〈q2|l2|2]
〈q22〉 = −µ2 [12]

〈12〉 (2.10)

and similarly
〈q3|l3|3]
〈q33〉

〈q4|l4|4]
〈q44〉 = −µ2 [34]

〈34〉 (2.11)

so that the above expression (2.8) becomes simply

µ4 [12][34]
〈12〉〈34〉 (2.12)

Finally, we lift the quadruple-cut box to a box function by reinstating the appropriate
Feynman propagators. These propagators then combine with the additional factor of µ4

in (2.12) to yield the factor iK4/(4π)2−ε which is proportional to the scalar box integral
defined in (2.2). Including an additional factor of 2 due to the fact that there is a complex
scalar propagating in the loop, the amplitude (2.1) is reproduced correctly.

Figure 2.2: One of the possible three-particle cut diagrams for the amplitude 1+2+3+4+.
The others are obtained from this one by cyclic relabelling of the external particles.

Next we inspect three-particle cuts. One of the three tree-level amplitudes we sew in the
triple-cut amplitude is an amplitude with two positive-helicity gluons and two scalars [60]

A(l+1 , 1
+, 2+, l−2 ) = µ2 [12]

〈12〉[(l1 + k1)2 − µ2]
(2.13)

Consider, for example, the three-particle cut defined by 1+, 2+, (3+, 4+), see Figure 2.2.
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Using (2.7) and (2.13), the product of the three tree-level amplitudes gives

〈q1|l1|1]
〈q11〉

〈q2|l1|2]
〈q22〉

µ2[34]
〈34〉[(l2 − k3)2 − µ2]

(2.14)

with l2 = l1 − k2. As for the quadruple cut, it is easily seen that, on this triple cut,

〈q1|l1|1]
〈q11〉

〈q2|l1|2]
〈q22〉 = −µ2 [12]

〈12〉 (2.15)

where we used l21 = l22 = l24 = µ2. The triple-cut integrand then becomes

− [12][34]
〈12〉〈34〉

µ4

[(l2 − k3)2 − µ2]
(2.16)

which, after replacing the three δ(+) functions by propagators, integrates to (2.1), where
we have included an additional (−1) factor following the comments in footnote 4 of this
chapter. The factor of 2 in (2.1) comes from summing over the two ‘scalar helicities’. The
same result comes from evaluating the remaining triple cuts.

We remark that in the case of the quadruple cut we did not even need to insert the
solutions of the on-shell conditions for the loop momenta into the expression coming from
the cut. This is not true in general; for example, for the five gluon amplitude discussed
below the sum over solutions will be essential to obtaining the correct amplitude.

2.3 The one-loop −+++ amplitude

The one-loop four gluon scattering amplitude −+++, with a complex scalar running in the
loop, is given to all orders in ε by [59]

Ascalar
4 (1−, 2+, 3+, 4+) =

2i
(4π)2−ε

[24]2

[12]〈23〉〈34〉[41]
st

u

[
t(u− s)
su

J3(s) +
s(u− t)
tu

J3(t)

− t− u

s2
J2(s)− s− u

t2
J2(t) +

st

2u
J4 +K4

]
(2.17)

We will now show how to derive this result using generalised unitarity cuts.

First consider the quadruple cut (see Figure 2.3). The product of tree amplitudes gives

〈1|l1|q1]
[1q1]

〈q2|l2|2]
〈q22〉

〈q3|l3|3]
〈q33〉

〈q4|l4|4]
〈q44〉 (2.18)
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Figure 2.3: The quadruple cut for the amplitude 1−2+3+4+.

It is straightforward to show that, on the quadruple cut,

〈q3|l3|3]
〈q33〉

〈q4|l4|4]
〈q44〉 = −µ2 [34]

〈34〉
〈1|l1|q1]
〈1q1〉

〈q2|l2|2]
〈q22〉 =

[23]
[31]

(
− µ2 〈31〉

〈23〉 − [2|l1|1〉
)

and hence the quadruple cut in Figure 2.3 gives

Q(1+, 2+, 3+, 4−) = µ2 [3 4]
〈3 4〉

[2 3]
[3 1]

[
µ2 〈3 1〉
〈2 3〉 + [2|l1|1〉

]
(2.19)

In order to compare with (2.17) it is useful to notice that

[34]
〈34〉

[23]
[31]

〈31〉
〈23〉 =

[24]2

[12]〈23〉〈34〉[41]
st

u
:= N (2.20)

We conclude that the first term in (2.19) generates

i

(4π)2−ε

(
[24]2

[12]〈23〉〈34〉[41]
st

u

)
K4 (2.21)

where the prefactor in (2.21) comes from the definition (2.2) and (2.3) for the function K4.

The second term in (2.19) corresponds to a linear box integral, which we examine now.
We notice that the quadruple cut freezes the loop integration on the solution for the cut.
In the linear box term in (2.19) we will then replace l1 in [2|l1|1〉 by the solutions of the
cut, and sum over the different solutions.
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Specifically, in order to solve for the cut-loop momentum l1 one has to require

l21 = l22 = l23 = l24 = µ2 ,

l1 = l4 − k1 , l2 = l1 − k2 , l3 = l2 − k3 , l4 = l3 − k4 (2.22)

In order to solve these conditions, it proves useful [15] to use the four linearly independent
vectors k1, k2, k3 and K, where

Kµ := εµνρσ k
ν
1 k

ρ
2 k

σ
3 (2.23)

Setting
l1 = ak1 + bk2 + ck3 + dK (2.24)

one finds

a =
t

2u
, b =

1
2
, c = − s

2u
, (2.25)

d = ±
√
−st+ 4µ2u

stu2

where
s = (k1 + k2)2 , t = (k2 + k3)2 , u = (k1 + k3)2 (2.26)

and s+ t+ u = 0. Then one has

[2|l1|1〉 −→ [2| l
+
1 + l−1

2
|1〉 = c · [2|3|1〉 = − s

2u
[23]〈31〉 (2.27)

where l±1 denotes the two solutions for the quadruple cut. The square root drops out of
the calculation (as it should, given that the amplitude is a rational function). We conclude
that the second term in (2.19) gives5

i

(4π)2−ε

(
[24]2

[12]〈23〉〈34〉[41]
st

u

)
st

2u
J4 (2.28)

where
Jn := In[µ2] (2.29)

Again, the prefactor in (2.28) arises from the definition (2.3). In total the quadruple cut
(2.19) gives

2i
(4π)2−ε

N
(
K4 +

st

2u
J4

)
(2.30)

where we have again included a factor of two for the contribution of a complex scalar. This
result matches exactly all the box functions appearing in (2.17).

5Recall that in our conventions t := 〈23〉[32].
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Figure 2.4: The two inequivalent triple cuts for the amplitude 1−2+3+4+.

We now move on to consider triple cuts. We start by considering the triple cut in Figure
2.4(a), which we label as (1−, 2+, (3+, 4+)). It may be shown that this triple cut yields the
following expression:

TC(1−, 2+, (3+, 4+)) = µ2 [3 4]
〈3 4〉

[2 3]
[3 1]

(
−µ2 〈3 1〉

〈2 3〉 − [2|l1|1〉
)

1
(l2 − k3)2 − µ2

−µ2 [3 4]
〈3 4〉

[2|l1|1〉
〈2 3〉[3 1]

(2.31)

The first line in (2.31) clearly contains the (negative of the) term already studied with
quadruple cuts – see (2.19) (For an explanation of the relative minus sign see again footnote
4 of this chapter).

We now reconsider the linear box term (second term in the first line of (2.31)), and
study its Passarino-Veltman (PV) reduction. As we shall see, this box appears also in other
triple cuts See (2.43). Let us consider the linear box integral

Aµ :=
∫
d4l1
(2π)4

d−2εµ

(2π)−2ε

µ2 lµ1
(l21 − µ2)[(l1 − k2)2 − µ2][(l1 − k2 − k3)2 − µ2][(l1 + k1)2 − µ2]

(2.32)
On general grounds the integral is a linear combination of three of the external momenta,

Aµ = αkµ
1 + βkµ

2 + γkµ
3 (2.33)
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For the coefficients we find

α = − i

(4π)2−ε

1
2u

[
− tJ4 − 2J3(s) + 2J3(t)

]
(2.34)

β =
i

(4π)2−ε

1
2
J4

γ = − i

(4π)2−ε

1
2u

[
sJ4 − 2J3(s) + 2J3(t)

]

Taken literally, this means that from the linear box in (2.31) we not only get the J4 function
but, altogether:

iN
(4π)2−ε

(
st

2u
J4 − t

u
J3(s) +

t

u
J3(t)

)
(2.35)

Summarising, the PV reduction of the first line of the triple cut (2.31), lifted to a Feynman
integral, gives:

iN
(4π)2−ε

(
K4 +

st

2u
J4 − t

u
J3(s) +

t

u
J3(t)

)
(2.36)

The last term in (2.36) is clearly spurious – it does not have the right triple cut, and has
appeared because we lifted the cut-integral to a Feynman integral; hence we will drop it.
In conclusion, the triple cut (1−, 2+, (3+, 4+)) in Figure 4a leads to

iN
(4π)2−ε

(
K4 +

st

2u
J4 − t

u
J3(s)

)
(2.37)

We now consider the last term in (2.31), which generates a linear triangle, whose PV
reduction we consider now. The linear triangle is proportional to

Bµ :=
∫
d4l1
(2π)4

d−2εµ

(2π)−2ε

µ2 lµ1
(l21 − µ2)[(l1 − k2)2 − µ2][(l1 + k1)2 − µ2]

(2.38)

On general grounds,
Bµ = θkµ

1 + τkµ
2 (2.39)

and hence
[2|B |1〉 = 0 (2.40)

We conclude that the second line in (2.31) gives a vanishing contribution, so that the content
of this triple cut is encoded in (2.37).

Next we consider the triple cut labelled by ((1−, 2+), 3+, 4+) and represented in Figure
2.4b, which gives

TC((1−, 2+), 3+, 4+) = µ2 [3 4]
〈3 4〉

[2 3]
[3 1]

[
−µ2 〈3 1〉

〈2 3〉 +
〈1 2〉
〈2 3〉 〈3|l2|2]

]
1

(l2 + k2)2 − µ2

+µ2 [3 4]
〈3 4〉

〈1|3 1 l2 − 2 3 l2|2]
〈1 2 〉[1 2] 〈2 3〉 [3 1]

(2.41)
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The first term of (2.41) clearly corresponds to the functionK4 already fixed using quadruple
cuts. The second term can be rewritten as follows. Introducing l1 := l2 + k2, we have

〈12〉
〈23〉〈3|l2|2] = − [2|l2|1〉 +

〈13〉
〈23〉 [(l2 + k2)2 − µ2] (2.42)

therefore we can rewrite (2.41) as

TC((1−, 2+), 3+, 4+) = µ2 [3 4]
〈3 4〉

[2 3]
[3 1]

(
−µ2 〈3 1〉

〈2 3〉 − [2|l1|1〉
)

1
(l2 + k2)2 − µ2

+ µ2 [3 4]
〈3 4〉

( 〈1|3 1 l2 − 2 3 l2|2]
〈1 2 〉[1 2] 〈2 3〉 [3 1]

− [23]
[31]

〈31〉
〈23〉

)
(2.43)

We know already that the PV reduction of the first line of (2.43) corresponds to (2.36) –
with the term containing J3(t) removed – so we now study the second line, which will give
new contributions.

The second term in the second line corresponds to a scalar triangle, more precisely it
gives a contribution

− iN
(4π)2−ε

J3(s) (2.44)

The first term corresponds to a linear triangle, and now we perform its PV reduction. The
relevant integral is

Cµ :=
∫
d4l2
(2π)4

d−2εµ

(2π)−2ε

µ2 lµ2
(l22 − µ2)[(l2 − k3)2 − µ2][(l2 + k1 + k2)2 − µ2]

(2.45)

On general grounds,
Cµ = λ kµ

3 + κ (k1 + k2)µ (2.46)

A quick calculation shows that

λ = − i

(4π)2−ε

[
J3(s) − 2

s
J2(s)

]
, κ =

i

(4π)2−ε

1
s
J2(s) (2.47)

The first term in the second line of (2.43) gives then

iN
(4π)2−ε

(
−u
s
J3(s) +

u− t

s
J2(s)

)
(2.48)

where N is defined in (2.20). Altogether, the second line of (2.43) gives

iN
(4π)2−ε

(
−

(
1 +

u

s

)
J3(s) +

u− t

s
J2(s)

)
(2.49)
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whereas from the first line of the same equation we get

iN
(4π)2−ε

(
K4 +

st

2u
J4 − t

u
J3(s)

)
(2.50)

where we have dropped the term J3(t) for reasons explained earlier.

We conclude that the function which incorporates all the right cuts in the channels
considered so far is equal to the sum of (2.49) and (2.50), which gives

iN
(4π)2−ε

(
K4 +

st

2u
J4 − t

u
J3(s) −

(
1 +

u

s

)
J3(s) +

u− t

s2
J2(s)

)
(2.51)

Using −t/u− 1− u/s = s/u− u/s, (2.51) becomes

iN
(4π)2−ε

(
K4 +

st

2u
J4 +

( s
u
− u

s

)
J3(s) +

u− t

s2
J2(s)

)
(2.52)

To finish the calculation one has to consider the two remaining triple cuts. The remaining
cuts are (4+, 1−, (2+, 3+)) and ((4+, 1−), 2+, 3+). These cuts can be obtained from the
previously considered cuts by exchanging s with t.

Our conclusion is therefore that the function (including the usual factor of 2) with the
correct quadruple and triple cuts is:

2iN
(4π)2−ε

(
K4 +

st

2u
J4 +

( s
u
− u

s

)
J3(s) +

u− t

s2
J2(s) (2.53)

+
( t
u
− u

t

)
J3(t) +

u− s

t2
J2(t)

)

This agrees precisely with (2.1) using the identities

t(u− s)
su

=
s

u
− u

s
,

s(u− t)
tu

=
t

u
− u

t
(2.54)

2.4 The one-loop −−++ amplitude

We now turn our attention to the one-loop four point amplitudes with two negative helicity
gluons. We start by considering the one-loop amplitude Ascalar

4 (1−, 2−, 3+, 4+), which is
given by [59]6

Ascalar
4 (1−, 2−, 3+, 4+) = 2

Atree
4

(4π)2−ε

(
− t

s
K4 +

1
s
J2(t) +

1
t
I6−2ε
2 (t)

)
(2.55)

6Here for simplicity we drop the functions I1 and I2(0), which are zero in the massless case [59]. We also
include a factor of two as we are considering complex scalars.
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Figure 2.5: The quadruple cut for the amplitude 1−2−3+4+.

To begin with, we consider the quadruple cut of the amplitude in Figure 2.5. It is given
by

〈1|l1|q1]
[1 q1]

〈2|l1|q2]
[2 q2]

〈q3|l3|3]
〈q3 3〉

〈q4|l4|4]
〈q4 4〉 (2.56)

By choosing q1 = 2, q2 = 1, q3 = 4, q4 = 3, (2.56) can be rewritten as

i
t

s
Atree

4 µ4 (2.57)

where

Atree
4 = i

〈1 2〉3
〈2 3〉〈3 4〉〈4 1〉 (2.58)

Reinstating the four cut propagators and integrating over the loop momentum, (2.57) gives

− Atree
4

(4π)2−ε

(
t

s
K4

)
(2.59)

where K4 is defined in (2.2).

Next we consider triple cuts. We begin our analysis with the triple cut in Figure 2.6(a).
This yields

µ2[3 4]
〈3 4〉2(l2 · 3)

〈1|l1|q1]
[1 q1]

〈2|l1|q2]
[2 q2]

= −µ4 〈1 2〉[3 4]
[1 2]〈3 4〉

1
2(l2 · 3)

(2.60)

which, upon reinstating the cut propagators and performing the loop momentum integration
gives

− Atree
4

(4π)2−ε

(
t

s
K4

)
(2.61)

This function had already been detected with the quadruple cut, as discussed earlier.
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Figure 2.6: The two inequivalent triple cuts for the amplitude 1−2−3+4+.

Next we move on to consider the triple cut in Figure 2.6(b). This yields

〈1|l3|4]2

2 t (l3 · 4)
〈2|l1|q1]
[2 q1]

〈q2|l2|3]
〈q2 3〉 (2.62)

We can re-cast (2.62) as follows. Firstly, we write

〈1|l3|4]〈q2|l3|3]
〈q2 3〉 = µ2 〈1|4|3]

〈3 4〉 − 2(l3 · 4)〈1|l3|3]
〈3 4〉 (2.63)

and secondly

〈1|l3|4]〈2|l1|q1]
[2 q1]

= µ2 〈2|1|4]
[1 2]

− 2(l3 · 4)〈2|1|4]
[1 2]

+
2(l3 · 4)〈2|l3|4]

[1 2]
(2.64)

The expression (2.62) becomes a sum of six terms Ti, i = 1, . . . , 6, where

T1 =
〈1|4|3]〈2|1|4]µ4

t〈3 4〉[1 2]2(l3 · 4)

T2 = −〈1|4|3]〈2|1|4]µ2

t〈3 4〉[1 2]

T3 =
〈1|4|3]〈2|l3|4]µ2

t〈3 4〉[1 2]
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T4 = −〈2|1|4]〈1|l3|3]µ2

t〈3 4〉[1 2]

T5 =
〈2|1|4]〈1|l3|3]2(l3 · 4)

t〈3 4〉[1 2]

T6 = −〈1|l3|3]〈2|l3|4]2(l3 · 4)
t〈3 4〉[1 2]

(2.65)

Next we replace the delta functions with propagators, and integrate over the loop momen-
tum. To evaluate the integrals, we use the linear, quadratic and cubic triangle integrals in
4− 2ε dimensions listed in the Appendix. The integration of the expressions gives

T1 → − Atree
4

(4π)2−ε

(
t

s
K4

)

T2 → − Atree
4

(4π)2−ε

(
− t

s
J3(t)

)

T3 → − Atree
4

(4π)2−ε

(
t

s
J3(t)− 1

s
J2(t)

)

T4 → − Atree
4

(4π)2−ε

(
− 1
s
J2(t)

)

T5 → − Atree
4

(4π)2−ε

(
t

2s
I2(t) +

u

s
I6−2ε
3 (t)

)

T6 → − Atree
4

(4π)2−ε

(
− t

4s
I2(t)−

(
3
2s

+
1
t

)
I6−2ε
2 (t)− u

s
I6−2ε
3 (t)

)
(2.66)

We now use (A.26) in [59] or (A.7) of this thesis, relating J2(t) to I2(t) and I6−2ε
2 (t). This

gives:

T5 + T6 → −Atree
4

(
1
s
J2(t)− 1

t
I6−2ε
2 (t)

)
(2.67)

Adding up the six Ti terms, and including the usual factor of two, we obtain

− 2Atree
4

(4π)2−ε

(
t

s
K4 − 1

s
J2(t)− 1

t
I6−2ε
2 (t)

)
(2.68)

which precisely agrees with (2.55).

2.5 The one-loop −+−+ amplitude

Now we consider the one-loop amplitude with a complex scalar in the loop,Ascalar
4 (1−, 2+, 3−, 4+),

which is given by [59]
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Ascalar
4 (1−, 2+, 3−, 4+) = −2

1
(4π)2−ε

Atree
4

(
st

u2
K4 − s2t2

u3
I6−2ε
4 +

st

u2
I6−2ε
3 (t) (2.69)

+
st

u2
I6−2ε
3 (s)− st(s− t)

u3
J3(t)− st(t− s)

u3
J3(s) +

s

u2
J2(t) +

t

u2
J2(s)

+
s

tu
I6−2ε
2 (t) +

t

su
I6−2ε
2 (s) +

ts2

u3
I2(t) +

st2

u3
I2(s)

)

Figure 2.7: The quadruple cut for the amplitude 1−2+3−4+.

The relevant quadruple cut is represented in Figure 2.7, and gives:

〈1|l1|q1]
[1 q1]

〈q2|l2|2]
〈q2 2〉

〈3|l3|q3]
[3 q3]

〈q4|l4|q4]
〈q4 4〉

=
1

[1 3]〈2 4〉
(
〈1 3〉µ2 + 〈1 2〉〈3|l1|2]

)(
[2 4]µ2 − [3 4]〈3|l1|2]

)

= iAtree
4

(
stµ4

u2
+

2s2t〈3|l1|2]µ2

u2〈3|1|2]
+
s3t〈3|l1|2]2

u2〈3|1|2]2

)
(2.70)

where

Atree
4 = i

〈13〉4
〈12〉〈23〉〈34〉〈41〉 (2.71)

Averaging over the two solutions of the quadruple cut we obtain the following expression:

iAtree
4

(
st

u2
µ4 +

2s2t2

u3
µ2 +

s3t3

2u4

)
(2.72)

After reinstating the four cut propagators and integrating over the loop momentum, (2.72)
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gives
1

(4π)2−ε
Atree

4

(
− st

u2
K4 − 2s2t2

u3
J4 − s3t3

2u4
I4

)
(2.73)

We now use the identity (A.26) in [59] or see (A.5) of this thesis. We ignore all functions
that do not have a quadruple cut to write this quadruple cut as:

1
(4π)2−ε

Atree
4

(
− st

u2
K4 +

s2t2

u3
I6−2ε
4

)
(2.74)

Figure 2.8: The only independent triple cut for the amplitude 1−2+3−4+ (the others are
obtained from this one by cyclic relabelling of the external gluons).

We now consider triple cuts. There is only one independent triple cut, and we consider,
for instance, the triple cut in Figure 2.8, which gives

〈1|l3|4]2

2 t (l3 · 4)
〈3|l3|q2]
[3 q2]

〈q1|l1|2]
〈q1 2〉 (2.75)

Using straightforward spinor manipulations, and taking into account properties of the cut
momenta, one finds that the above expression may be expanded as a product of two sets of
terms. The first is

〈1|l3|4]〈3|l3|q2]
[3 q2]

=
µ2〈3|1|4]

[1 3]
− t〈3|l3|4]

[1 3]
+

2(l3 · 4)〈3|l3|4]
[1 3]

(2.76)

whereas the second is

〈1|l3|4]〈q1|l1|2]
〈q1 2〉 =

µ2〈1|4|2]
〈2 4〉 +

〈4|1|2]〈1|l3|4]
〈2 4〉 − 2(l3.4)〈1|l3|2]

〈2 4〉 (2.77)
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The expression (2.75) becomes then a sum of nine terms Ri, i = 1, . . . , 9, where

R1 =
〈1|4|2]〈3|1|4]µ4

t[1 3]〈2 4〉2(l3 · 4)

R2 =
〈4|1|2]〈3|1|4]〈1|l3|4]µ2

t[1 3]〈2 4〉2(l3 · 4)

R3 = −〈3|1|4]〈1|l3|2]µ2

t[1 3]〈2 4〉

R4 = − 〈1|4|2]〈3|l3|4]µ2

[1 3]〈2 4〉2(l3 · 4)

R5 = −〈4|1|2]〈3|l3|4]〈1|l3|4]
[1 3]〈2 4〉2(l3 · 4)

R6 =
〈3|l3|4]〈1|l3|2]

[1 3]〈2 4〉

R7 =
〈1|4|2]〈3|l3|4]µ2

t[1 3]〈2 4〉

R8 =
〈4|1|2]〈3|l3|4]〈1|l3|4]

t[1 3]〈2 4〉

R9 = −〈3|l3|4]〈1|l3|2]2(l3 · 4)
t[1 3]〈2 4〉 (2.78)

The term R5 becomes a quadratic box integral when the three delta functions are replaced
with propagators. We can use the properties of the cut momenta to re-write R5 as a sum
of terms which will give a box integral, a linear box integral and a linear triangle integral
as follows,

R5 = − 〈4|1|2][4|3 1|4]µ2

[1 3]2〈2 4〉2(l3 · 4)
+

t〈4|1|2][4|3 l3|4]
[1 3]2〈2 4〉2(l3 · 4)

− 〈4|1|2][4|3 l3|4]
[1 3]2〈2 4〉 (2.79)

We now replace the delta functions with propagators and integrate over the cut momenta.
Note that one must drop any terms without cuts in the t-channel. This must be used for
all the linear box integrals that appear above. Using the results for the linear box and the
linear, quadratic and cubic triangle integrals in 4 − 2ε dimensions listed in the Appendix
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gives

R1 → − Atree
4

(4π)2−ε

(
st

u2
K4

)

R2 → − Atree
4

(4π)2−ε

(
s2t2

2u3
J4 − s2t

u3
J3(t)

)

R3 → − Atree
4

(4π)2−ε

(
− st

u2
J3(t) +

s

u2
J2(t)

)

R4 → − Atree
4

(4π)2−ε

(
s2t2

2u3
J4 +

st2

u3
J3(t)

)

R5 → − Atree
4

(4π)2−ε

(
s2t2

u3
J4 +

s3t3

2u4
I4 +

s2t3

u4
I3(t) +

s2t

u3
I2(t)

)

R6 → − Atree
4

(4π)2−ε

(
st

2u2
I2(t)

)

R7 → − Atree
4

(4π)2−ε

(
s

u2
J2(t)

)

R8 → − Atree
4

(4π)2−ε

(
− s2

u2
I6−2ε
3 (t)

)

R9 → − Atree
4

(4π)2−ε

(
− st

4u2
I2(t) +

(
s

2u2
− s2

u2t

)
I6−2ε
2 (t) +

s2

u2
I6−2ε
3 (t)

)
(2.80)

Now we use (A.26) in [59] or see (A.5),(A.6) and (A.7) of this thesis. Ignoring all terms
without cuts in the t-channel, it is easy to show that the sum of these nine terms leads to
the result

At−cut(1−, 2+, 3−, 4+) = − 1
(4π)2−ε

Atree
4

(
st

u2
K4 − s2t2

u3
I6−2ε
4 +

st

u2
I6−2ε
3 (t)

− st(s− t)
u3

J3(t) +
s

u2
J2(t) +

s

tu
I6−2ε
2 (t) +

ts2

u3
I2(t)

)
(2.81)

Next, one must also include the corresponding terms coming from the s-channel version
of the of triple cut in Figure 8. This just yields (2.81) with t replaced by s. Combining
these two expressions, without double-counting the box contributions (which appear in both
cuts), and including the usual factor of two, one precisely reproduces the amplitude for this
process (2.69)
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2.6 The one-loop +++++ amplitude

The five-gluon all-plus one loop amplitude, with a scalar in the loop, is given by [85]

A5(1+, 2+, 3+, 4+, 5+) =
i

96π2C5

[
s12s23 + s23s34 + s34s45 + s45s51

+s51s12 + 4iε(1234)
]

(2.82)

where C5 := 〈12〉〈23〉〈34〉〈45〉〈51〉 and ε(abcd) := εµνρσ a
µbνcρdσ.

An expression for the five-gluon amplitude valid to all orders in ε appears in [60],

Ascalar
5;1 (1+, 2+, 3+, 4+, 5+) =

i

C5

ε(1− ε)
(4π)2−ε

[
s23s34I

(1),8−2ε
4 + s34s45I

(2),8−2ε
4

+ s45s51I
(3),8−2ε
4 + s51s12I

(4),8−2ε
4 + s12s23I

(5),8−2ε
4

+4i(4− 2ε) ε(1234)I10−2ε
5

]
(2.83)

The result (2.82) is obtained from (2.83) by taking the ε→ 0 limit, where [60]

ε(1− ε)I8−2ε
4 → 1

6
, ε(1− ε)I10−2ε

5 → 1
24

, ε(1− ε)I10−2ε
6 → 0 (2.84)

Figure 2.9: One of the quadruple cuts for the amplitude 1+2+3+4+5+.

Here we will find that we can reproduce the full amplitude using only quadruple cuts in
4− 2ε dimensions. Let us start by considering the diagram in Figure 2.9, which represents
the quadruple cut where gluons 4 and 5 enter the same tree amplitude. The momentum
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constraints on this quadruple cut are given by

l21 = l22 = l23 = l24 = µ2 ,

l1 = l4 − k1 , l2 = l1 − k2 , l3 = l2 − k3 , l4 = l3 − k4 − k5 (2.85)

It will prove convenient to solve for the momentum l3, which we expand in the basis of
vectors k1, k2, k3 and K, where K is defined in (2.23). One finds that the solution of (2.85)
is given by7

l3 = ak1 + bk2 + ck3 + dK (2.86)

with

a =
t

2u
, b = −1

2
, c = −1− s

2u
, (2.87)

d = ±
√
−st+ 4µ2u

stu2

where the kinematical invariants s, t, u are again defined by (2.26), but now s + t + u =
(k4 + k5)2.

Considering the diagram in Figure 9, the product of tree-level amplitudes entering the
quadruple cut can be written as

〈q1|l1|1]
〈q11〉

〈q2|l2|2]
〈q22〉

〈q3|l3|3]
〈q33〉

µ2 [45]
〈45〉 [(l3 − k4)2 − µ2]

(2.88)

Using (2.10), and choosing q3 =2, (2.88) can be recast as

− µ4 [12]
〈12〉

[45]
〈45〉

1
〈23〉

〈2|l3|3]
(l3 − k4)2 − µ2

=
µ4

〈12〉〈23〉〈34〉〈45〉〈51〉
Tr−(5123l34)

(l3 − k4)2 − µ2

= − µ4

〈12〉〈23〉〈34〉〈45〉〈51〉
Tr+(123l343) + Tr+(123l342)

(l3 − k4)2 − µ2
(2.89)

Using momentum conservation, and

Tr+(abcd) = 2
[
(ab)(cd) − (ac)(bd) + (ad)(bc) + iε(abcd)

]
(2.90)

it is easy to see that

Tr+(123l343) + Tr+(123l342)
(l3 · k4)

= 4(12)(23) − 4i
(34) ε(12l33) − (12) ε(234l3)

(l3 · k4)
(2.91)

7We notice that, had we solved for l1, the solution would have taken the form (2.24) with the same
coefficients a, b, c, d of (2.25) - but with u defined by u = −s− t− (k4 + k5)

2.
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We set
V (l3) = iε(12l33)(3 · 4) − iε(234l3)(1 · 2) (2.92)

Now we wish to sum the expression (2.89) over the solutions (2.87), including a factor of 1/2.
Writing these solutions as l±3 = x± y, where y contains the term involving the momentum
K, it is straightforward to show that

1
2

∑

l±3

Tr+(123l343) + Tr+(123l342)
(l3 · k4)

= 4 (1 · 2)(2 · 3) − 4
V (x)(x · 4) − V (y)(y · 4)

(x · 4)2 − (y · 4)2
(2.93)

and
V (x)(x · 4) − V (y)(y · 4)

(x · 4)2 − (y · 4)2
= − i

2
µ2ε(1234)

[
1

(l+3 · 4)
+

1
(l−3 · 4)

]
(2.94)

Summarising, we have found that

1
2

∑

l±3

Tr+(123l343) + Tr+(123l342)
(l3 · k4)

= 4 (1 · 2)(2 · 3) + 2iµ2ε(1234)
[

1
(l+3 · 4)

+
1

(l−3 · 4)

]

= s12 s23 − 4iµ2ε(1234)
[

1
(l+3 − k4)2 − µ2

+
1

(l−3 − k4)2 − µ2

]
(2.95)

From (2.89), we see that the full amplitude in the quadruple cut is obtained by multiplying
(2.95) by −µ4/C5. Next, we lift the cut integral to a full Feynman integral, and get

− 2
µ4

C5

[
s12 s23 − 4iµ2ε(1234)

(
1

(l+3 − k4)2 − µ2
+

1
(l−3 − k4)2 − µ2

)]

→ − i

C5(4π)2−ε

[
I

(5),4−2ε
4 [µ4] s12 s23 + 8iI4−2ε

5 [µ6] ε(1234)
]

=
i

C5

ε(1− ε)
(4π)2−ε

[
s12 s23 I

(5),8−2ε
4 + 4i (4− 2ε) ε(1234)I10−2ε

5

]
(2.96)

where the factor of 2 in the first line of (2.96) comes from adding, as usual, the two possible
quadruple cuts of the amplitude (which are equal, since they are obtained one from the
other by simply flipping all the internal ‘scalar helicities’).

Let us now discuss the result we have found. The first term in the last line of (2.96)
gives the s12s23 term in (2.83). The other quadruple cut diagrams, which come from cyclic
relabelling of the external legs, will similarly generate the other ε(1234)-independent terms
in (2.83). Finally, the ε(1234) term in (2.96) – a pentagon integral term – matches the
ε(1234) term in (2.83).

Thus we have shown that the five gluon amplitude +++++ may be reconstructed
directly using quadruple cuts in 4− 2ε dimensions.
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2.7 Future directions

2.7.1 Higher point QCD amplitudes

Recently there has been much interest in techniques which enable efficient calculation of
the unknown six point gluon amplitudes. See [77,78,86]. It would be useful to understand,
at next-to-leading order, events such as the W + 4 jet background to top-quark production
for the experimental program at the Large Hadron Collider. It is therefore important to
push the D-dimensional generalised unitarity technique to higher point amplitudes.

Using D-dimensional generalised unitarity to compute higher point amplitudes involves
some subtleties that it would be interesting to understand. In this section we give a concrete
example which involves the six point all-plus one-loop amplitude. This amplitude has been
calculated using D-dimensional two-particle unitarity cuts in [60].

Ascalar
6 (1+, 2+, 3+, 4+, 5+, 6+) =

ε(1− ε)
2(4π)2−ε

i

〈12〉〈23〉〈34〉〈45〉〈56〉〈61〉

×

−

∑

1≤i1<i2≤6

tr[k/i1k/i1+1,i2−1k/i2k/i2+1,i1−1]I8−2ε
4:i1;i2

+ (4− 2ε)
6∑

i=1

ε(i+ 1, i+ 2, i+ 3, i+ 4)I(i),10−2ε
5

+ (4− 2ε)tr[123456]I10−2ε
6

]
(2.97)

Figure 2.10: A puzzling quadruple cut of the six point all-plus amplitude.
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The quadruple cut in Figure 2.10 gives the answer:

µ2[12]
〈12〉[(l6 − k1)2 − µ2]

µ2[34]
〈34〉[(l2 − k3)2 − µ2]

〈q1|l5|5]
〈q15〉

〈q2|l6|6]
〈q26〉

= µ6 [12][34][56]
〈12〉〈34〉〈56〉

1
[(l6 − k1)2 − µ2][(l2 − k3)2 − µ2]

(2.98)

It is tempting to interpret the quadruple cut in (2.98) as giving a just hexagon integral
term. At first sight this appears to be different to the known amplitude (2.97), which
gives a different coefficient for the hexagon integral and also involves a pentagon term that
appears to be absent from this quadruple cut. It would be interesting to understand how
the equations (2.98) and (2.97) are consistent with each other.

We have observed in this chapter that full amplitudes can be computed by just consid-
ering quadruple cuts and triple cuts and that ordinary two-particle cuts are not needed.
This surprising result is very significant, since two-particle cuts are by far the most techni-
cally challenging to calculate. It would be very interesting to understand the more general
systematics of when triple cuts are sufficient.

2.7.2 Higher loops, integrability and the AdS/CFT correspondence

Maldacena’s correspondence [4] relates the seemingly intractable planar limit of N =4 super
Yang-Mills at strong coupling to free strings in AdS5 × S5. Supersymmetry protects some
quantities, but it is less clear how the simplicity of the strongly coupled regime might be
manifested in the perturbative series of unprotected quantities like amplitudes. A strong
hint of this simplicity has been observed in iterative cross-order relations in higher-loop
amplitudes [65,66]. Remarkably the two-loop four-point amplitude can be written in terms
of the one-loop amplitude.

M (2)
n (ε) =

1
2

[
M (1)

n

]2
+ f (2)(ε)M (1)

n (2ε) + C(2) + E(2)
n (ε) (2.99)

whereM (l)
n is the n-point l-loop MHV gluon amplitude divided by the tree amplitude. There

is a similar iterative formula which writes the three-loop four-point amplitude in terms of
the two-loop and one-loop four-point amplitudes [67]. This led to the conjecture that the
formula for the all-loop MHV amplitude is the exponential of the one-loop answer:

Mn = exp

[ ∞∑

l=1

al
ε

(
f (l)(ε)M (1)

n (lε) + C(l) +E(l)
n (ε)

)]
(2.100)

These formulae are based on sophisticated four-point and five-point, two-loop and three-loop
unitarity computations.
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These iterative gluon amplitude relations involve the function f (l)(ε). This function is
in fact related to the large spin anomalous dimension of the leading-twist operator in the
gauge theory:

Tr(DsZ2) + · · · (2.101)

where s is the spin of the operator and the leading-twist refers to the 2. In the limit s→∞
this anomalous dimension is expected to scale logarithmically:

∆ = s+ f(g)log(s) +O(s0) (2.102)

The function f(g) is the ε0 term in f (l)(ε) of the iterative gluon amplitude formula. The
function f(g) is only a function of the ’t Hooft coupling g2 = g2

YMN . In a remarkable
calculation [87] the anomalous dimension of the leading-twist operator, for arbitrary spin,
was calculated to three loops in QCD. It appears that the most transcendental part of this
QCD answer is the N =4 super Yang-Mills result [88]. The large s anomalous dimensions
calculated using the iterative gluon amplitude technique are in agreement with this answer.

The anomalous dimensions of operators in N = 4 super Yang-Mills are believed to be
integrable and can be calculated using the Bethe ansatz. See for example [89]. At one-loop,
the leading-twist spin s anomalous dimension is given by:

∆ =
s∑

k=1

1
u2

k + 1
4

,

(
uk + i

2

uk − i
2

)2

=
s∏

j=1
j 6=k

uk − uj − i

uk − uj + i
(2.103)

It is conjectured that the one-loop Bethe ansatz can be extended to all loops via the following
deformation of the spectral parameter u:

u = x+
g2

2x
, x± = x(u± i

2) (2.104)

The all loop Bethe ansatz is:

∆ =
s∑

k=1

i

x+
k

− i

x−k
,

(
x+

k

x−k

)2

=
s∏

j=1
j 6=k

uk − uj − i

uk − uj + i
(2.105)

Remarkably Eden and Staudacher [90] have managed to write these equations, for large s,
in terms of an integral equation. This allows explicit calculation of the f(g) function:

f(g) = 4g2 + 16g4

∫ ∞

0
dt
J1(gt)
gt

σ(t) (2.106)

where J is a Bessel function and the density of the Bethe roots σ(t) satisfies the integral
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equation:

σ(t) = − t

et/
√

2 − 1

[
1
2
J1(gt)
gt

+ g2

∫ ∞

0
dt′

(
J1(gt)J0(gt′)− J0(gt)J1(gt′)

gt− gt′

)
σ(t′)

]
(2.107)

These equations can be easily be solved order by order to a very high number of loops using
a program such as Mathematica. The answer to four loops is:

f(g) = 4g2 − 4ζ(2)g4 + (4ζ(2)2 + 12ζ(4))g6

−(4ζ(2)3 + 24ζ(2)ζ(4) + 4ζ(3)2 + 50ζ(6))g8 + · · · (2.108)

The first three loops are in agreement with the result derived from QCD using the transcen-
dentality principle [88]. The four loop result is new and Bern et al. have announced that
they are currently testing it using unitarity techniques and the iterative gluon amplitude
approach. If (2.108) breaks down, then BMN scaling and the transcendentality principle
both breakdown at four loops [90]. It would also be very interesting to understand the Eden
Staudacher equation for large g to see if it matches the energy of the appropriate spinning
string as predicted by Maldacena’s AdS/CFT correspondence [91]:

energy = f(g) = 2
√

2g +
3
π

log(2) +O
(

1
g

)
(2.109)

The AdS/CFT correspondence tells us that certain field theories reorganise themselves
into a higher-dimensional dual description, but we do not really understand how this hap-
pens. It is thought that the underlying mechanism is open/closed string duality in which
the stack of D-branes in the open string theory are traded for a warped geometry with
only closed strings. The duality between Chern-Simons gauge theory on S3 and topolog-
ical strings on the resolved conifold is an example in which the holes in the open string
description explicitly close up to form closed string world-sheets [92]. Unfortunately the
’t Hooft expansion of N = 4 super Yang-Mills has not yet been understood explicitly in
such terms. Greater understanding of the twistor string proposal and of open/closed string
duality, along the lines of [93], will perhaps enable us to also view the large N duality of
N =4 super Yang-Mills in a manner close to the well understood topological examples.
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CHAPTER 3

ON-SHELL RECURSION RELATIONS FOR

ONE-LOOP GRAVITY

3.1 Introduction

The idea of the BCFW recursion relation [16, 17] was introduced in section 1.7. BCFW
recursion exploits a complex deformation of an amplitude and the Cauchy residue theorem
to construct an amplitude from a set of factorisations which involve amplitudes with fewer
legs. BCFW recursion was originally considered in the context of tree-level Yang-Mills
amplitudes. As BCFW recursion is based on the very general properties of analyticity
[53–57] and factorisation on multi-particle poles, it is applicable in many different contexts in
perturbative field theory [61,71–74]. In this chapter we consider the generalisation of BCFW
recursion to one-loop finite amplitudes in pure gravity. Pure gravity is renormalisable at one-
loop [94]. See the review [95] for what is known about the renormalisability of (super)gravity
theories in various dimensions.

In the last chapter we presented the method of D-dimensional generalised unitarity which
calculates an amplitude to all orders in ε where the dimensional regularisation parameter is
defined to be 4− 2ε. In the ε→ 0 limit these amplitudes contain two types of term: Those
which have a branch cut and those which are purely rational functions, independent of ε.
This can be seen explicitly using the formulae in equation (A.4) of appendix A. As reviewed
in section 1.5 of the introduction, calculating with four dimensional unitarity cuts only
gives the terms of the nonsupersymmetric amplitude which have cuts in four dimensions,
but misses the rational parts of the amplitude (which are not linked to the cut containing
terms).

Remarkably, the ideas of BCFW recursion can be applied to the calculation of these
rational parts of QCD amplitudes. This has been studied in the series of papers [18,75–78].
A low point one-loop amplitude calculated using Feynman rules, unitarity or even the gener-
alised unitarity of the last chapter, can be used to compute the rational terms of the higher
point amplitudes recursively. Calculating the rational terms of an amplitude in this way
avoids many of the complications of D-dimensional unitarity, including the disentangling
of the various cuts, the complicated Passarino-Veltman reduction, and the involvement of
higher-point integral functions such as pentagons. In this way BCFW recursion offers the
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remarkable possibility of calculating loop amplitudes without really performing the loop
integrations.

In [18], Bern Dixon and Kosower (BDK) initiated the use of BCFW recursion to calculate
the rational parts of one-loop amplitudes by considering the QCD all-plus amplitude and
the amplitude with a single negative helicity gluon. Since these amplitudes vanish at tree-
level, they are infrared finite at one-loop. So these one-loop amplitudes are purely rational
functions, as tree-level amplitudes are.

In tree-level Yang-Mills, the structure of multi-particle factorisation means that in gen-
eral only simple-poles result from performing shifts on an amplitude [17]. As explained
in [18] the same is almost true for the rational terms of one-loop QCD amplitudes. The
splitting amplitudes in all helicity configurations except (+ + +) and (−−−) only involve
lone powers of spinor products and hence only single-poles. The (+ + +) splitting function
has the form [ab]/〈ab〉2 [13]. So the three-point one-loop all-plus factorisations will give rise
to double poles, when the shifted 〈ab〉 vanishes. These factorisations, along with all the
other three-point one-loop factorisations, are called nonstandard factorisations and are the
main complicating factor in the extension of BCFW recursion to one-loop.

Since QCD tree-level amplitudes with more than three legs and less than two negative
helicity gluons vanish, the one-loop all-plus amplitude is finite and also has no multi-particle
poles. So the shifted all-plus amplitude only has simple-poles coming from the collinear
singularity of the tree-level (−; ++) splitting amplitude. Once shifts without a boundary
term have been found, the all-plus amplitudes can be constructed recursively by sewing
all-plus loop amplitudes with fewer legs to tree amplitudes [18]. In section 3.2 we show that
the all-plus one-loop gravity amplitudes behave in a similar way.

Remarkably the ideas of BCFW recursion can be extended to more general QCD one-
loop amplitudes such as the amplitude with a single negative-helicity gluon [18]. As can be
seen by, for example, performing the BCFW shifts on a known amplitude, there is an added
complication in this one-loop recursion as performing a shift results in the appearance of a
double pole. As explained in [18] these double poles are precisely due to the appearance of
three-point all-plus one-loop vertices. BCFW’s use of the Cauchy residue theorem does, of
course, extend to this case since although the double-pole in A(z) does not have a residue,
recall that we are integrating A(z)/z which does have a residue

Res
z = a

{
1

z(z − a)2

}
= − 1

a2
(3.1)

Factorisation at a double pole will therefore take the form:

AL
1

(
P 2

)2
AR (3.2)
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It is clear even on dimensional grounds that AL and AR cannot both be amplitudes. So
the three-point one-loop all-plus factorisation will involve a vertex with the dimensions of
an amplitude times a momentum squared. As pointed out in [18] this may seem puzzling
at first sight, but it can be understood from the structure of the one-loop three-vertex used
for obtaining, one-loop splitting amplitudes [13,96,97]:

A
(1)
3 (1+, 2+, 3+) = −i Np

96π2

[12][23][31]
K2

12

(3.3)

So the three-point one-loop all-plus amplitude is either zero or infinite even in complex
momenta as it involves both the λ and λ̃ variables. To compute the recursive double pole
terms associated with the three-point all-plus factorisations, BDK propose the use of the
following vertex, which has the right dimensions and is only a function of the λ̃ variables:

V
(1)
3 (1+, 2+, 3+) = − i

96π2
[12][23][31] (3.4)

In section 3.3 we will observe that the double poles in the one-loop − + ++ pure gravity
amplitude can be understood in an analogous way. For one-loop gravity we use the vertex:

W
(1)
3 (1+, 2+, 3+) = C([12][23][31])2 (3.5)

where we will fix the numerical coefficient C of this vertex by comparison with the known
−+++ gravity amplitude. This amplitude was calculated using D-dimensional two-particle
unitarity cuts in [98]. These three-point all-plus gravity factorisations are only double poles
in complex momenta. In real momenta the double pole terms in the − + + + + gravity
amplitude look like [ab]4/〈ab〉2, so there is no pole at all. The one-loop gravity splitting
functions vanish.

The three-point one-loop all-plus factorisation also contains a single pole term [18]. The
description of this ‘single pole under the double pole term’ is more tricky. In [18] BDK
arrived at a candidate single pole under the double pole by proposing that the single pole
differed from the double pole by a factor of the form:

S(a1, K̂
+, a2)K2 S(b1,−K̂−, b2) (3.6)

In this factor, K2 is the propagator that is responsible for the pole in the shifted amplitude.
This factor, when multiplying the double pole, cancels one of the two K2 in the double pole
term to give a single-pole term. The legs b1 and b2 are the external legs on the three-point
all-plus vertex. In [18] experimentation revealed that the legs a1 and a2 are to be identified
with the external legs of the tree amplitude part of the recursive diagram which are colour
adjacent to the propagator. The ‘soft factors’ are given by:

S(a, s+, b) =
〈ab〉

〈as〉〈sb〉 , S(a, s−, b) = − [ab]
[as][sb]

(3.7)
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In section 3.3.1 we will explicitly review this construction for the simplest case of the four-
point one-loop − + ++ Yang-Mills amplitude. We demonstrate in section 3.3.2 that a
remarkably similar procedure can also be applied to the single poles in the −+++ one-loop
gravity amplitude.

We then attempt to construct the unknown one-loop − + + + + gravity amplitude
using on shell recursion in section 3.4. Unfortunately our understanding of the three-
point all-plus nonstandard factorisations gained from studying the known −+++ one-loop
gravity amplitude has not allowed us to generalise to this unknown case yet. We have
been unable to find ‘single pole under the double pole’ terms which are consistent with the
symmetries and limits of the amplitude. A method for calculating Yang-Mills amplitudes
avoiding all nonstandard factorisations was given in [77]. We review this method in section
3.6 and calculate the −+ + + + Yang-Mills amplitude using only standard factorisations.
Unfortunately, extension of these ideas to the −+ + + + one-loop gravity amplitude does
not immediately work, but we are hopeful that ideas along these lines will soon enable the
construction of this amplitude.

3.2 The all-plus amplitude

An ansatz for the n point one-loop amplitude in pure Einstein gravity in which all the
external gravitons have the same outgoing helicity was presented in [99]. This ansatz agrees
with explicit computations via D-dimensional unitarity cuts for n ≤ 6 [100]. This amplitude
corresponds to self-dual configurations of the field strength. The amplitude is also related
to the one-loop ‘maximally helicity-violating’ (MHV) amplitude in N =8 supergravity via
the ‘dimension-shifting’ relation of [100]. The explicit expression for this amplitude is:

M (1)
n (1+, 2+, . . . , n+) = − i

(4π)2
1

960

∑

1≤a<b≤n
M,N

h(a,M, b)h(b,N, a)tr[k/ak/Mk/bk/N ] (3.8)

In this formula, a and b are massless legs and M and N are two sets forming a distinct
nontrivial partition of the remaining n − 2 legs. The first few half soft functions h(a, S, b)
are given by

h(a, {1}, b) =
1

〈a1〉2〈1b〉2

h(a, {1, 2}, b) =
[12]

〈12〉〈a1〉〈1b〉〈a2〉〈2b〉
h(a, {1, 2, 3}, b) =

[12][23]
〈12〉〈23〉〈a1〉〈1b〉〈a3〉〈3b〉 +

[23][31]
〈23〉〈31〉〈a2〉〈2b〉〈a1〉〈1b〉

+
[31][12]

〈31〉〈12〉〈a3〉〈3b〉〈a2〉〈2b〉 (3.9)
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In the following sections we show that the five and six point amplitudes can be con-
structed recursively. Inspection of the all-plus amplitude (3.8) shows that the standard
BCFW shifts [17] give a boundary term. The following shifts, which first appeared in [38],
eliminate a boundary term for suitable choices of η

λ̂1 = λ1 + z[23]η

λ̂2 = λ2 + z[31]η

λ̂3 = λ3 + z[12]η (3.10)

When we construct the five-point all-plus gravity amplitude recursively from the four point
we use η=λ4 + λ5. For construction of the six-point all-plus amplitude from the five-point
amplitude we use η= λ4 + λ5 + λ6. We choose the shifts (3.10) because they do not give
any boundary term, but these shifts were invented for another purpose. In [38] they were
used to show that the CSW rules [8] for tree-level gauge theory are just a specific instance
of the BCFW [17] recursion relation. See section 1.7.3 of this thesis. These shifts were then
used to obtain a CSW-style formalism for calculating graviton scattering amplitudes in [81].
Applying the shifts (3.10) to the all-plus amplitude (3.8) gives a shifted amplitude M (1)

n (z)
with only simple-poles. In the next sections we show that the residues at these poles can
be computed from standard recursion relation diagrams.

3.2.1 The five-point all-plus amplitude

In this section we use on-shell one-loop recursion to recompute the known five-point all-plus
amplitude from the known four-point all-plus amplitude. The four-point all-plus amplitude
(3.8) is given explicitly by

M
(1)
4 (1+, 2+, 3+, 4+) = − i

(4π)2
1
60

(
[12] [34]
〈12〉〈34〉

)2

(s2 + st+ t2) (3.11)

Where s = (p1 + p2)2 and t = (p2 + p3)2. This four-point all-plus amplitude was first
computed using D-dimensional unitarity-cuts in [98].

In the construction of the five-point all-plus amplitude, the shifts (3.10) give rise to nine
different diagrams corresponding to the nine different angle brackets that the shifts can
make singular. Using the symmetric choice of η = λ4 +λ5 there are only two distinct types
of diagram to compute and then the remaining diagrams are straight forward permutations
of these two diagrams. All the recursive diagrams contain a four-point one-loop amplitude
joined to a tree-level + +− amplitude. The first type of diagram has two shifted external
legs attached to the tree-level ++− diagram. There are three of these diagrams associated
with the three simple-poles 〈1̂2̂〉= 〈2̂3̂〉= 〈3̂1̂〉= 0 in the shifted amplitude. The diagram
associated with the pole 〈1̂2̂〉=0 is given in Figure 3.1. The second type of diagram has a
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shifted and an unshifted leg attached to the tree-level ++− amplitude. There are six of this
type of diagram associated with the simple-poles 〈1̂4〉= 〈1̂5〉= 〈2̂4〉= 〈2̂5〉= 〈3̂4〉= 〈3̂5〉=0
in the shifted amplitude. The diagram associated with 〈1̂5〉=0 is given in Figure 3.2.

Figure 3.1: The diagram in the recursive expression for M (1)
5 (1+, 2+, 3+, 4+, 5+) associated

with the pole 〈1̂2̂〉 = 0. The amplitude labelled by a T is a tree-level amplitude and the one
labelled by L is a one-loop amplitude.

The diagram in Figure 3.1 contributes

M
(1)
4 (3̂+, 4+, 5+, K̂+

12)
i

K12
M

(0)
3 (1̂+, 2̂+,−K̂−

12) (3.12)

Where the three-point tree amplitude is given by

M
(0)
3 (1+, 2+, 3−) = −i

(
i

[12]3

[23][31]

)2

(3.13)

substituting this tree-level amplitude and the one-loop result (3.11) into (3.12) yields

− i

(4π)2
1
60

[34]4[12]5

〈12〉

(〈3̂4〉2[34]2 + 〈3̂4〉[34]〈45〉[45] + 〈45〉2[45]2
)

〈5|K̂|1]2〈5|K̂|2]2

We can eliminate K̂12 from this expression using

〈5|K̂|1]2 = 〈2̂5〉2[12]2 and 〈5|K̂|2]2 = 〈1̂5〉2[12]2

Figure 3.1 gives 〈1̂2̂〉=0 which corresponds to a pole in the complex z-plane at

z = − 〈12〉
〈η|1 + 2|3]

It is then easy to show that

〈2̂5〉 =
[34]〈45〉〈η2〉
〈η|1 + 2|3]

〈1̂5〉 =
[34]〈45〉〈η1〉
〈η|1 + 2|3]

〈3̂4〉 = 〈34〉 − 〈12〉[12]〈η4〉
〈η|1 + 2|3]
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using η = λ4 + λ5 gives the final contribution from Figure 3.1 and (3.12).

− i

(4π)2
1
60

[12]
(
[34]− [35]

)4

〈12〉(〈14〉+ 〈15〉)2(〈24〉+ 〈25〉)2

{(
〈34〉 − 〈12〉[12]

[34]− [35]

)2

[34]2

+
(
〈34〉 − 〈12〉[12]

[34]− [35]

)
[34]〈45〉[45] + 〈45〉2[45]2

}
(3.14)

The contributions from the diagrams corresponding to the poles 〈2̂3̂〉= 0 and 〈3̂1̂〉= 0 are
given by cyclically permuting the external legs {1, 2, 3}.

Figure 3.2: The diagram in the recursive expression for M (1)
5 (1+, 2+, 3+, 4+, 5+) associated

with the pole 〈1̂5〉 = 0.

We now consider the second type of diagram. Figure 3.2 contributes

M
(1)
4 (2̂+, 3̂+, 4+, K̂+

15)
i

K15
M

(0)
3 (5+, 1̂+,−K̂−

15) (3.15)

again using (3.11) this yields

− i

(4π)2
1
60

[23]4[15]5

〈15〉

(〈2̂3̂〉2[23]2 + 〈2̂3̂〉[23]〈3̂4〉[34] + 〈3̂4〉2[34]2
)

〈4|K̂|1]2〈4|K̂|5]2

We can eliminate K̂15 from this expression using

〈4|K̂|1]2 = 〈45〉2[15]2 and 〈4|K̂|5]2 = 〈1̂4〉2[15]2

Figure 3.1 gives 〈1̂5〉 = 0 which corresponds to a pole in the complex z-plane at

z = − 〈15〉
[23]〈η5〉

It is then easy to show that

〈1̂4〉 =
〈45〉〈η1〉
〈η5〉

〈2̂3̂〉 = 〈23〉 − 〈15〉〈η|2 + 3|1]
[23]〈η5〉
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〈3̂4〉 = 〈34〉 − 〈15〉[12]〈η4〉
[23]〈η5〉

using η = λ4 + λ5 gives the final contribution from Figure 3.2 and (3.15).

− i

(4π)2
1
60

[15][23]4

〈15〉〈45〉2(〈14〉+ 〈15〉)2

{(
〈23〉[23] + 〈15〉([14]− [15])

)2

+
(
〈23〉[23] + 〈15〉([14]− [15])

)(
〈34〉[34] +

〈15〉[12][34]
[23]

)

+
(
〈34〉[34] +

〈15〉[12][34]
[23]

)2
}

(3.16)

The contributions from the diagrams corresponding to the poles 〈2̂5〉= 0 and 〈3̂5〉= 0 are
obtained by cyclically permuting the external legs {1, 2, 3}. The diagram corresponding to
the pole 〈1̂4〉=0 is obtained from the 〈1̂5〉=0 diagram by interchanging legs 4 and 5. The
remaining diagrams corresponding to the poles 〈2̂4〉=0 and 〈3̂4〉=0 are then obtained by
cyclically permuting the external legs {1, 2, 3} of the 〈1̂4〉=0 diagram.

We have checked numerically that each of the terms in the recursion relation agree with
the residues of the shifted known answer (3.8) and so the sum of the nine recursion relation
terms are in agreement with the thirty terms of the known answer (3.8).

See Appendix B for a Mathematica program that can be used to compare amplitudes
numerically. The command evalnormal[X] can be used for this purpose. The Appendix
also contains a command, evalshift[X] that can be used to compare the individual residues
of amplitudes under various shifts.

3.2.2 The six-point all-plus amplitude

In this section we recompute the known six-point all-plus amplitude from the five-point all-
plus amplitude. We again use Risager shifts (3.10), but now choose η = λ4+λ5+λ6. Just like
the previous five-point case all diagrams contain a one-loop all-plus amplitude and a ++−
tree-level amplitude. There are again two types of diagram. The first type of diagram
corresponds to having two shifted legs attached to the three-point tree-level amplitude.
There are three of these diagrams associated with the three poles 〈1̂2̂〉= 〈2̂3̂〉= 〈3̂1̂〉= 0.
The diagram associated with the pole 〈2̂3̂〉 = 0 is given in Figure 3.3. The second type
of diagram corresponds to having a shifted and an unshifted leg attached to the three-
point tree-level amplitude. There are nine of these diagrams associated with the nine poles
〈1̂4〉= 〈1̂5〉= 〈1̂6〉= 〈2̂4〉= 〈2̂5〉= 〈2̂6〉= 〈3̂4〉= 〈3̂5〉= 〈3̂6〉=0. The diagram associated with
the pole 〈1̂6〉=0 is given in Figure 3.4.
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Figure 3.3: The diagram in the recursive expression for M (1)
5 (1+, 2+, 3+, 4+, 5+, 6+) associ-

ated with the pole 〈2̂3̂〉 = 0.

The first type of recursive diagram is given in Figure 3.3. This contributes:

M
(1)
5 (4+, 5+, 6+, 1̂+, K̂+

23)
i

K23
M

(0)
3 (2̂+, 3̂+,−K̂−

23) (3.17)

The M (1)
5 (+ + + + +) amplitude contains thirty terms (3.8). Fortunately the symmetries

in the shifts and the choice for |η〉= |4〉+ |5〉+ |6〉 reduce these thirty terms to the following
ten terms plus the two cyclic permutations involving {4, 5, 6} of these ten terms.

8i
(4π)2

[
− [23]〈46〉[46]3〈56〉[56]3

(〈45〉[45] + 〈56〉[56] + 〈46〉[46]
)

〈23〉〈1̂4〉〈1̂5〉〈2̂4〉〈2̂5〉

− [23][14]3[15]3〈1̂4〉〈1̂5〉(〈1̂4〉[14] + 〈1̂5〉[15] + 〈45〉[45]
)

〈23〉〈46〉〈56〉〈2̂4〉〈2̂5〉〈3̂6〉2

− [23][16]
(〈2̂4〉[24] + 〈3̂4〉[34]

)3(〈2̂5〉[25] + 〈3̂5〉[35]
)3

〈23〉〈46〉〈56〉〈1̂4〉〈1̂5〉〈1̂6〉〈3̂4〉2〈2̂5〉2

+
[23]〈45〉[45]3[15]3〈1̂5〉(〈1̂4〉[14] + 〈1̂5〉[15] + 〈45〉[45]

)

〈23〉〈46〉〈1̂6〉〈2̂4〉〈1̂2̂〉〈3̂6〉2

+
[23]〈46〉[46]3[16]3〈1̂6〉(〈1̂4〉[14] + 〈1̂6〉[16] + 〈46〉[46]

)

〈23〉〈45〉〈1̂5〉〈2̂4〉〈1̂2̂〉〈3̂5〉2

− [23][56]
(〈45〉[45] + 〈56〉[56] + 〈46〉[46]

)3(〈2̂4〉[24] + 〈3̂4〉[34]
)3

〈23〉〈45〉〈46〉〈56〉〈1̂5〉〈1̂6〉〈3̂1̂〉2〈2̂4〉2

− [23][16]〈45〉[45]3
(〈2̂5〉[25] + 〈3̂5〉[35]

)3

〈23〉〈46〉〈1̂4〉〈1̂6〉〈2̂6〉〈1̂2̂〉〈3̂5〉2

− [23][15]〈46〉[46]3
(〈2̂6〉[26] + 〈3̂6〉[36]

)3

〈23〉〈45〉〈1̂4〉〈1̂5〉〈2̂5〉〈1̂2̂〉〈3̂6〉2

− [23][56][14]3〈1̂4〉(〈45〉[45] + 〈56〉[56]〈46〉[46]
)3

〈23〉〈45〉〈46〉〈56〉〈2̂5〉〈2̂6〉〈3̂1̂〉2

− [23][56][14]3〈1̂4〉(〈2̂4〉[24] + 〈3̂4〉[34]
)3

〈23〉〈56〉〈1̂5〉〈1̂6〉〈2̂5〉〈2̂6〉〈3̂4〉2

]
(3.18)
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The diagram in Figure 3.3 is associated with 〈2̂3̂〉=0 or equivalently with

z = − 〈23〉
〈η|2 + 3|1]

(3.19)

using this value for z it is then simple to rewrite the brackets containing hats in (3.18) in
terms of the external legs. We have checked numerically that the expression (3.18) plus the
permutations agrees with the residue at 〈2̂3̂〉=0 of the known amplitude (3.8)

Figure 3.4: The diagram in the recursive expression for M (1)
5 (1+, 2+, 3+, 4+, 5+, 6+) associ-

ated with the pole 〈1̂6〉 = 0.

The second type of recursive diagram is given in Figure 3.4. This contributes:

M
(1)
5 (2̂+, 3̂+, 4+, 5+, K̂+

16)
i

K16
M

(0)
3 (6+, 1̂+,−K̂−

16) (3.20)

Just like the other term, the M (1)
5 (+ + + + +) amplitude contains thirty terms, but the

symmetries of the shifts and the choice of |η〉 = |4〉+ |5〉+ |6〉 reduce these thirty terms to
the following set of terms and permutations:

8i
(4π)2

[
− [16][23]3[34]3〈2̂3̂〉〈3̂4〉(〈1̂5〉[15] + 〈56〉[56])

〈16〉〈45〉〈56〉2〈2̂5〉〈1̂2̂〉〈1̂4〉

+
[16][25]3[45]3〈45〉〈2̂5〉(〈3̂1̂〉[31] + 〈3̂6〉[36])

〈16〉〈2̂3̂〉〈3̂4〉〈1̂4〉〈1̂2̂〉〈3̂6〉2

+
[16][35][24]3〈2̂4〉(〈1̂4〉[14] + 〈46〉[46])3

〈16〉〈46〉2〈3̂5〉〈2̂5〉〈2̂3̂〉〈1̂5〉〈3̂1̂〉

− [16][35][24]3〈2̂4〉(〈1̂2̂〉[12] + 〈2̂6〉[26])3

〈16〉〈45〉〈3̂4〉〈3̂5〉〈2̂6〉2〈3̂1̂〉〈1̂5〉

+
[16][35](〈1̂4〉[14] + 〈46〉[46])3(〈1̂2̂〉[12] + 〈2̂6〉[26])3

〈16〉〈45〉〈3̂5〉〈2̂3̂〉〈2̂5̂〉〈3̂4〉〈2̂6〉2〈1̂4〉2

]
(3.21)

We also include three other sets of terms which are the same as (3.21) but with 2, 3 swapped,
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4, 5 swapped and with 2, 3 and 4, 5 swapped

8i
(4π)2

[
[16][45][23]3〈2̂3̂〉(〈3̂1̂〉[31] + 〈3̂6〉[36])3

〈16〉〈45〉〈2̂4〉〈2̂5〉〈1̂4〉〈1̂5〉〈3̂6〉2

− [16][24]3[25]3〈2̂4〉〈2̂5〉(〈3̂1̂〉[31] + 〈3̂6〉[36])
〈16〉〈3̂4〉〈3̂5〉〈1̂4〉〈1̂5〉〈3̂6〉2

]
(3.22)

We also include another set of terms which are the same as (3.22) but with 2, 3 swapped.

8i
(4π)2

[
[16][24]3[34]3〈2̂4〉〈3̂4〉(〈1̂5〉[15] + 〈56〉[56])

〈16〉〈56〉2〈2̂5〉〈3̂5〉〈1̂2̂〉〈3̂1̂〉

+
[16][23][45]3〈45〉(〈1̂5〉[15] + 〈56〉[56])3

〈16〉〈56〉2〈2̂4〉〈3̂4〉〈2̂3̂〉〈1̂2̂〉〈3̂1̂〉

]
(3.23)

We also include another set of terms which are the same as (3.23) but with 4, 5 swapped.

8i
(4π)2

[
[16][45](〈1̂2̂〉[12] + 〈2̂6〉[26])3(〈3̂1̂〉[31] + 〈3̂6〉[36])3

〈16〉〈45〉〈2̂4〉〈2̂5〉〈3̂4〉〈3̂5〉〈2̂6〉2〈3̂1̂〉2

− [16][23](〈1̂4〉[14] + 〈46〉[46])(〈1̂5〉[15] + 〈56〉[56])
〈16〉〈46〉2〈2̂4〉〈2̂5〉〈3̂4〉〈3̂5〉〈1̂5〉2〈2̂3̂〉

]
(3.24)

So (3.21) plus permutations contributes 20 terms, (3.22) plus permutations contributes 4
terms, (3.23) plus permutations contributes 4 terms and (3.24) contributes 2 terms. So we
correctly have a contribution from all 30 terms in the five-point all-plus amplitude. The
diagram in Figure 3.4 is associated with 〈1̂6〉=0, or equivalently with:

z = − 〈16〉
[23]〈η6〉 (3.25)

We have checked numerically that the sum of these terms agrees with the residue of the
shifted known amplitude (3.8).

We have shown that the five and six point all-plus amplitudes can be calculated using
on-shell recursion. It would be interesting if it were possible to find some shifts that left the
stucture of the all-plus one-loop amplitudes (3.8) written in terms of the half soft functions
(3.9) explicit. The half soft functions satisfy the recursion relation [100]:

∑

A⊂C
B≡C−A

h(q, A, r)h(q,B, r)〈q|KAKB|q〉〈r|KAKB|r〉 = −K2
C h(q, C, r) (3.26)

It would be interesting if it were possible to find some shifts that exploited this recursion
relation in some way. It would be good to use BCFW recursion to calculate the n-point
all-plus gravity amplitude for all n.
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3.3 The one-loop −+ ++ amplitude

3.3.1 −+ ++ in Yang-Mills

In [18] the five, six and seven-point one-loop Yang-Mills amplitudes with a single negative
helicity gluon were derived from on-shell recursion. Unlike the all-plus amplitude of the
previous section these amplitudes contain the significant complication of the three-point
all-plus nonstandard factorisation from which there is both a double pole and a single pole
contribution. In this section we review their construction for the simplest four-point case.
The −+ ++ amplitude was first calculated by other methods in [82].

A
(1)
4 (1−, 2+, 3+, 4+) =

i

96π2

〈24〉[24]3

[12]〈23〉〈34〉[41]
(3.27)

We will consider recursion based on the standard BCFW shifts on |1] and |2〉:

λ1 → λ1

λ̃1 → λ̃1 − zλ̃2

λ2 → λ2 + zλ1

λ̃2 → λ̃2 (3.28)

These shifts applied to the amplitude do not give a boundary term and give a shifted
amplitude which is singular at a single point in the complex z-plane.

〈2̂3〉 = 〈13〉(z − b) , [1̂4] = [42](z − b)

where b = −〈23〉
〈13〉 =

[14]
[24]

(3.29)

So applying the shifts (3.28) to the known amplitude (3.27) yields:

A
(1)
4 (1̂−, 2̂+, 3+, 4+)(z) =

i

96π2

〈12〉[24]
〈34〉〈31〉

(
1

(z − b)2
+
〈13〉〈14〉
〈34〉〈12〉

1
(z − b)

)
(3.30)

We can now write the original amplitude A(1)
4

(
1̂−, 2̂+, 3+, 4+

)
(0) as a sum of residues of the

poles that occur in the function A
(1)
4

(
1̂−, 2̂+, 3+, 4+

)
(z)/z. In this case there is only one

pole at z = b. Following [18] this single residue will be explained recursively by splitting it
up into two parts. The first part comes from the double pole in (3.30) and the second part
comes from the single pole in (3.30). There will be a one-to-one map between the terms of
this expansion and the terms of a recursion relation based on the shifts (3.28).

A
(1)
4 (1−, 2+, 3+, 4+) =

i

96π2

[〈12〉〈13〉[24]
〈23〉2〈34〉 +

〈12〉〈13〉[24]
〈23〉2〈34〉

〈14〉〈23〉
〈12〉〈34〉

]
(3.31)
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Figure 3.5: The recursive construction of A(1)
4 (1−, 2+, 3+, 4+) via shifting |1] and |2〉 involves

this nonstandard factorisation diagram.

We now review the origin of the two terms in (3.31) from a BCFW recursion relation.
Recalling that both terms are associated with 〈2̂3〉 = [1̂4] = 0 the corresponding diagram
is in Figure 3.5.

BDK [18] reproduced the double-pole term in (3.31) recursively from Figure 3.5 using
the one-loop all-plus vertex V (1)

3 (+ + +) which was introduced in (3.4).

A
(0)
3 (4+, 1̂+, K̂−

23)
i

(K2
23)2

V
(1)
3 (−K̂+

23, 2̂
+, 3+) =

i

96π2

〈1|K̂|2]〈1|K̂|3]
〈14〉〈23〉2[23]

〈K̂1〉
〈K̂4〉

=
i

96π2

〈12〉〈13〉[24]
〈23〉2〈34〉 (3.32)

The ‘single pole under the double pole’ term in (3.31) differs from the double pole term
by the factor:

〈14〉〈23〉
〈12〉〈34〉 (3.33)

As reviewed in the introduction, the candidate explanation (3.6) for this factor given in [18]
uses the ‘soft factors’ given in equation (3.7) with the following prescription:

S(1̂, K̂+
23, 4)K2

23 S(2̂,−K̂−
23, 3) =

〈14〉〈23〉[23]2

〈1|K̂|3]〈4|K̂|2]
=
〈14〉〈23〉
〈12〉〈34〉 (3.34)

3.3.2 −+ ++ in Gravity

The −+++ one-loop gravity amplitude was calculated using two-particle unitarity cuts with
a D-dimensional scalar running in the loop in [98]. We use the normalisation conventions
of [100].

M
(1)
4 (1−, 2+, 3+, 4+) =

i

(4π)2
1

180

( 〈12〉[23][24]
[12]〈23〉〈24〉

)2

(s2 + st+ t2) (3.35)

Remarkably the recursive procedure for Yang-Mills which was reviewed in the last section
extends very simply to this gravity case. Just as in the Yang-Mills case we consider the
standard BCFW shifts on |1] and |2〉 given in (3.28). Applying these shifts to the known
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amplitude does not give a boundary term and introduces singularities at two different points
in the complex z-plane.

〈2̂4〉 = 〈14〉(z − a) where a = −〈24〉
〈14〉 (3.36)

〈2̂3〉 = 〈13〉(z − b) where b = −〈23〉
〈13〉 (3.37)

When we later reconstruct this amplitude from a recursion relation the residues at these
two points will come from different diagrams. It is not a surprise that there are more
recursive diagrams in gravity than there are in Yang-Mills, because in gravity there is no
cyclic ordering of legs like there is for the colour ordered amplitudes of Yang-Mills. Under
the shifts (3.28) the amplitude (3.35) becomes

M
(1)
4

(
1̂−, 2̂+, 3+, 4+

)
(z) =

i

(4π)2
1

180

[〈12〉4[23]2[24]2

〈13〉2〈14〉2
1

(z − a)2(z − b)2

+
〈12〉3[23]3[24]2

〈13〉〈14〉2[12]
1

(z − a)2(z − b)

+
〈12〉2[23]4[24]2

〈14〉2[12]2
1

(z − a)2

]
(3.38)

We now separate out the different poles using the following partial fraction expansions:

1
(z − a)2(z − b)2

=
1

(a− b)2(z − a)2
− 2

(a− b)3(z − a)

+
1

(a− b)2(z − b)2
+

2
(a− b)3(z − b)

1
(z − a)2(z − b)

=
1

(a− b)(z − a)2
− 1

(a− b)2(z − a)
+

1
(a− b)2(z − b)

where a− b can be simplified using the Schouten identity:

a− b = −〈24〉
〈14〉 +

〈23〉
〈13〉 = −〈12〉〈34〉

〈13〉〈14〉 (3.39)

We can now write the shifted amplitude as a sum of terms associated with the various
different types of pole at different locations.

M
(1)
4

(
1̂−, 2̂+, 3+, 4+

)
(z) =

i

(4π)2
1

180

[〈12〉2[23]2[24]2

〈34〉2
1

(z − a)2

+
〈12〉〈13〉〈14〉[23]2[24]2

〈43〉3
1

z − a

+
〈12〉2[23]2[24]2

〈34〉2
1

(z − b)2

+
〈12〉〈13〉〈14〉[23]2[24]2

〈34〉3
1

z − b

]
(3.40)
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Finally we can write the original amplitude M (1)
4

(
1̂−, 2̂+, 3+, 4+

)
(0) as a sum of residues

of the function M
(1)
4

(
1̂−, 2̂+, 3+, 4+

)
(z)/z at the poles of various types and locations in

complex z-plane.

M
(1)
4 =

i

(4π)2
1

180

[〈12〉2〈14〉2[23]2[24]2

〈24〉2〈34〉2 double-pole, z = a (3.41)

+
〈12〉2〈14〉2[23]2[24]2

〈24〉2〈34〉2
(
−〈13〉〈24〉
〈12〉〈43〉

)
single-pole, z = a (3.42)

+
〈12〉2〈13〉2[23]2[24]2

〈23〉2〈34〉2 double-pole, z = b (3.43)

+
〈12〉2〈13〉2[23]2[24]2

〈23〉2〈34〉2
(
−〈14〉〈23〉
〈12〉〈34〉

)]
single-pole, z = b (3.44)

We will now reconstruct these four terms from the diagrams of a recursion relation. There
will be two diagrams corresponding to the two locations, in the complex z-plane, where there
are poles in the shifted amplitude M (1)

4

(
1̂−, 2̂+, 3+, 4+

)
(z). The pole at z=a is associated

with [1̂3] = 〈2̂4〉= 0 and corresponds to Figure 3.6a. The other pole at z= b is associated
with [1̂4]=〈2̂3〉=0 and corresponds to Figure 3.6b.

Figure 3.6: The recursive construction of M (1)
4 (1−, 2+, 3+, 4+) via shifting |1] and |2〉 in-

volves these two nonstandard factorisation diagrams.

The double-pole term in (3.43) can be reconstructed recursively from Figure 3.6b using
the new three-point one-loop all-plus gravity vertex W (1)

3 (+ + +) which up to a constant is
the square of the Yang-Mills vertex and was introduced in (3.5)

M
(0)
3 (1̂−, K̂−

23, 4
+)

i

(K2
23)2

W
(1)
3 (2̂+, 3+,−K̂+

23) = −C 〈1|K̂|3]2〈1|K̂|2]2

〈23〉2〈41〉2
〈1K̂〉2
〈4K̂〉2 (3.45)

We will later fix the numerical constant C by comparison with the known answer (3.43).
We now use the following relations to write the K̂ in terms of the external legs.

〈1|K̂|3]2 = 〈1|2̂ + 3|3]2 = 〈12〉2[23]2

〈1|K̂|2]2 = 〈1|2̂ + 3|2]2 = 〈13〉2[23]2

〈1K̂〉2
〈4K̂〉2 =

〈1|K̂|2]2

〈4|K̂|2]2
=
〈1|2̂ + 3|2]2

〈4|2̂ + 3|2]2
=
〈13〉2
〈34〉2 (3.46)
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So (3.45) reproduces the spinor algebra of the known double pole residue at z = b (3.43).

−C 〈12〉2〈13〉2[23]2[24]2

〈23〉2〈34〉2 (3.47)

By comparison with (3.43) we can fix C in the new vertex W (1)
3 (+ + +) to be:

C = − i

(4π)2
1

180
(3.48)

The other term (3.44) corresponding to Figure 3.6b is the residue of the single-pole
underneath the double pole at z = b. This single-pole term differs from the double-pole
term (3.43) and (3.45) up to a sign in the same way as in the Yang-Mills amplitude (3.31):

−〈14〉〈23〉
〈12〉〈34〉 = −S(1̂, K̂+

23, 4)K2
23S(2̂,−K̂−

23, 3) (3.49)

where the ‘soft factors’ are the same as were used for Yang-Mills (3.7). This suggests the
following candidate for the single pole under the double pole in gravity:

−M (0)
3 (1̂−, K̂−

23, 4
+)S(1̂, K̂+

23, 4)
i

K2
23

S(2̂,−K̂−
23, 3)W (1)

3 (2̂+, 3+,−K̂+
23) (3.50)

Figure 3.6a is the same as figure 3.6b, but with the external legs 3 and 4 interchanged. The
two terms (3.41) and (3.42), associated with the point z=a, correspond to the Figure 3.6a
and are similarly found by interchanging legs 3 and 4.

3.4 The one-loop −+ + + + Gravity amplitude

The − + + + + one-loop gravity amplitude is unknown. We now attempt to construct it
using on-shell recursion. We use the shifts (3.28) on |1] and |2〉 and hope that they will not
involve a boundary term. In Yang-Mills, shifts of the form [−,+〉 have been observed to
be free of large-parameter contributions [77,101]. This observation extends to the −+ ++
gravity amplitude and we hope that it extends further to the −++++ gravity amplitude.

The shifts (3.28) give nine different recursive diagrams. The shifted amplitude has
simple-poles associated with [1̂3]= [1̂4]= [1̂5]=0. The simple pole associated with [1̂5]=0
corresponds to the standard recursive diagram in Figure 3.7. The shifted amplitude will
also have simple-pole associated with 〈2̂3〉 = 〈2̂4〉 = 〈2̂5〉 = 0. The simple pole associated
with 〈2̂3〉=0 corresponds to the standard factorisation diagram in Figure 3.8. Finally there
are also nonstandard factorisations in the shifted amplitude corresponding to the poles
associated with 〈2̂3〉= 〈2̂4〉= 〈2̂5〉=0. These nonstandard factorisations contain a one-loop
three-point all-plus vertex and contribute double poles and also single poles under these
double poles. The diagram for the nonstandard factorisation associated with the a pole at
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〈2̂3〉=0 is given in Figure 3.9. There are just three types of diagram to calculate; Figures
3.7, 3.8 and 3.9. The remaining diagrams can be obtained from these by permuting the
external legs {3, 4, 5}.

Figure 3.7: The diagram in the recursive expression for M (1)
5 (1−, 2+, 3+, 4+, 5+) correspond-

ing to a simple-pole associated with [1̂5]=0.

First consider Figure 3.7. This contributes:

M
(0)
3 (1̂−, K̂−

15, 5
+)

i

K2
15

M
(1)
4 (2̂+, 3+, 4+,−K̂+

15) (3.51)

where the M (0)
3 (−−+) amplitude is given by the square of the Yang-mills amplitude times

−i and the M (1)
4 (+ + ++) amplitude was given in (3.11). So (3.51) yields:

− i

(4π)2
1
60

[23]2

〈51〉3[51]
〈1|K̂|4]2

(
〈1K̂〉
〈5K̂〉

〈1K̂〉
〈4K̂〉

)2 (
[23]2 +

[23]〈34〉[34]
〈2̂3〉 +

〈34〉2[34]2

〈2̂3〉2
)

We now use the following relations to eliminate K̂15.

〈1|K̂|4]2 = 〈15〉2[45]2

〈1K̂〉2
〈5K̂〉2 =

[25]2

[12]2

〈1K̂〉2
〈4K̂〉2 =

〈15〉2[25]2

〈34〉2[23]2

Figure 3.7 is associated with 0 = [1̂5], or equivalently to a pole located at z = [15]/[25]. It
is then easy to show that:

〈2̂3〉 =
〈34〉[45]

[25]

So the final contribution of Figure 3.7 resulting from (3.51) is:

− i

(4π)2
1
60

〈15〉[25]4

〈34〉2[12]2[15]

(
[23]2[45]2 + [23][34][45][25] + [34]2[25]2

)
(3.52)

There is no colour ordering in gravity, so Figure 3.7 is invariant under swapping the external
legs labelled 3 and 4. Use of the Schouten identity shows that the result (3.52) is also
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invariant under swapping 3 and 4.

Figure 3.8: The diagram in the recursive expression for M (1)
5 (1−, 2+, 3+, 4+, 5+) correspond-

ing to a simple-pole associated with 〈2̂3〉=0.

Next we consider Figure 3.8. This contributes:

M
(1)
4 (1̂−, 4+, 5+, K̂+

23)
i

K2
23

M
(0)
3 (2̂+, 3+,−K̂−

23) (3.53)

Where the M (0)
3 (+ + −) amplitude is the square of the Yang-Mills one times −i and the

M
(1)
4 (−+ ++) amplitude was given in (3.35). So (3.53) yields:

i

(4π)2
1

180
〈14〉2[45]2[23]5

〈45〉2〈23〉
1

〈4|K̂|2]2

(
[4K̂]
[3K̂]

)2 (
〈14〉2 +

〈14〉〈45〉[45]
[1̂4]

+
〈45〉2[45]2

[1̂4]2

)
(3.54)

We use the following relations to eliminate K̂23

〈4|K̂|2]2 = 〈34〉2[23]2

[4K̂]2

[3K̂]2
=

〈15〉2[45]2

〈12〉2[23]2

Figure 3.8 is associated with 0 = 〈2̂3〉, or equivalently to a pole located at z = −〈23〉/〈13〉.
It is then easy to show that:

[1̂4] = −〈35〉[45]
〈13〉

So the final contribution of Figure 3.8 resulting from (3.53) is:

i

(4π)2
1

180
〈14〉2〈15〉2[23][45]4

〈12〉2〈23〉〈35〉2〈34〉2〈45〉2
(
〈14〉2〈35〉2 + 〈14〉〈45〉〈53〉〈13〉+ 〈45〉2〈13〉2

)
(3.55)

Figure 3.8 is invariant under swapping the external legs labelled 4 and 5. Use of the Schouten
identity shows that the result (3.55) is also invariant under swapping 4 and 5.

Finally we consider contributions from the diagram in Figure 3.9. This diagram contains
a three-point all-plus vertex so there will be two contributions from this diagram. As we
saw in the four-point example the three-point all-plus vertex gives a single and a double
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Figure 3.9: The diagram in the recursive expression for M (1)
5 (1−, 2+, 3+, 4+, 5+) correspond-

ing to the double-pole associated with 〈2̂3〉=0.

pole term. First consider the double-pole term.

M
(0)
4 (1̂−, K̂−

23, 4
+, 5+)

i

(K2
23)2

W
(1)
3 (2̂+, 3+,−K̂+

23) (3.56)

where the one-loop three-point all-plus vertex W
(1)
3 (+ + +) is the new vertex which was

introduced in (3.5) and the M (0)
4 (−−++) amplitude is given via the following KLT relation:

M
(0)
4 (1−, 2−, 3+, 4+) = i〈12〉[12]A(0)

4 (1−, 2−, 3+, 4+)A(0)
4 (1−, 2−, 4+, 3+)

= −i 〈12〉7[12]
〈13〉〈14〉〈23〉〈24〉〈34〉2 (3.57)

So (3.56) yields:

C
〈1|K̂|2]2〈1|K̂|3]2

〈14〉〈15〉〈23〉2〈45〉2 〈1|K̂|1̂]
〈1K̂〉〈1K̂〉
〈4K̂〉〈5K̂〉

We now use the following relations to eliminate the hats.

〈1|K̂|2]2 = 〈13〉2[23]2 , 〈1|K̂|3]2 = 〈12〉2[23]2 , 〈1|K̂|1̂] = 〈45〉[45]

〈1K̂〉
〈4K̂〉 = −〈13〉

〈34〉 ,
〈1K̂〉
〈5K̂〉 = −〈13〉

〈35〉

So the double-pole contribution (3.56) from Figure 3.9 is:

C
〈12〉2〈13〉4[23]4[45]

〈14〉〈15〉〈23〉2〈34〉〈35〉〈45〉 (3.58)

We fixed the coefficient C in (3.48) by comparison with the known −+++ one-loop gravity
amplitude. Figure 3.9 is invariant under swapping the external legs labelled 4 and 5. The
result (3.58) is also invariant under swapping 4 and 5.

The other contribution from Figure 3.9 is from the ‘single-pole underneath the double-
pole’ term. Unfortunately this final term posses a problem. Inspired by the corresponding
term (3.44) in the known − + ++ gravity amplitude we might guess that this ‘single-pole
under the double-pole’ term differs from the double-pole term by a now familiar factor of
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the form introduced in (3.6). Recall that this factor has the form:

S(a1, K̂
+, a2)K2 S(b1,−K̂−, b2) (3.59)

Experimentation in Yang-Mills [18] led to a1 and a2 being the legs colour adjacent to the
propagator in the tree-level amplitude of the recursive diagram. This prescription cannot
extend to gravity since there is no colour ordering of the external legs. If we are to use a
factor of this form in gravity we have to choose two of the three external legs attached to
the tree diagram in Figure 3.9 to be a1 and a2. In the −+++ gravity amplitude we did not
encounter this decision because the tree amplitude in the recursive diagram only has two
external legs. However, since a factor of this form is antisymmetric under swapping a1 and
a2, even in the −+++ gravity example, the lack of ordering of the external particles means
that this factor has an ambiguous sign. For Figure 3.9 there are three possible choices:

S(1̂, K̂+
23, 4)K2

23S(2̂,−K̂−
23, 3) = − 〈14〉〈23〉[23]2

〈1|K̂|3]〈4|K̂|2]
=
〈14〉〈23〉
〈12〉〈34〉 (3.60)

S(1̂, K̂+
23, 5)K2

23S(2̂,−K̂−
23, 3) = − 〈15〉〈23〉[23]2

〈1|K̂|3]〈5|K̂|2]
=
〈15〉〈23〉
〈12〉〈35〉 (3.61)

S(5, K̂+
23, 4)K2

23S(2̂,−K̂−
23, 3) =

〈23〉〈45〉[23]2

〈5|K̂|2]〈4|K̂|3]
= −〈13〉〈23〉〈45〉

〈12〉〈34〉〈35〉 (3.62)

It is perhaps natural to guess that a sum of these terms might give the correct ‘single pole
under the double pole’ term. Figure 3.9 is symmetric under swapping legs 4 and 5, so we
require a sum of factors which share this symmetry. An appropriate sum of factors is:

±
(〈14〉〈23〉
〈12〉〈34〉 +

〈15〉〈23〉
〈12〉〈35〉

)
(3.63)

However this proposal is incorrect as it does not give an amplitude which is symmetric
under the interchange of legs 2 and 3. It is usually believed that an amplitude with the
correct collinear and soft behaviour is the correct amplitude, but we have been unable to
find a guess of this final term with the correct properties.

There are at least three possible ways that we might be able to calculate the missing
‘double pole under single pole’ terms. We could learn how to describe these factorisations
by studying the factorisations of known amplitudes in Yang-Mills and then hope to extend
these ideas to gravity. Some further examples of ‘single pole under double pole’ terms in
Yang-Mills and gravity can be found in the next section. In section 3.6 we will review an
unsuccessful attempt to use auxiliary recursions to completely avoid these problematic non-
standard factorisations. Finally we could calculate the amplitude using traditional unitarity
based techniques.
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3.5 The description of nonstandard factorisations

Any recursive diagram containing a three-point one-loop part is termed a nonstandard
factorisation [77]. Nonstandard factorisations are the complicating feature in the extension
of the BCFW recursion relation from tree level amplitudes to the rational parts of one-loop
amplitudes. For example factorisations involving the three-point all-plus amplitude give
two types of term, a double pole term and a single pole under the double pole term. While
the description of the double pole in terms of a three-point all-plus vertex appears to be
independent of the choice of shifts, the description of the ‘single pole under the double pole’
as differing from the double pole term by a single factor of the form SP 2S is not universal,
even in Yang-Mills. It only seems to work for the simplest BCFW shift on |1] and |2〉.

3.5.1 −+ + + + in Yang-Mills with |1], |3〉 shifts

The −+ + + + Yang-Mills amplitude is given by

A
(1)
5 (1−, 2+, 3+, 4+, 5+) = i

Np

96π2

1
〈34〉2

[
− [25]3

[12][51]
+
〈14〉3[45]〈35〉
〈12〉〈23〉〈45〉2 −

〈13〉3[32]〈42〉
〈15〉〈54〉〈23〉2

]

(3.64)
We now consider the standard BCFW shifts on |1] and |3〉. We apply these shifts to the
amplitude and use partial fractions to separate the various poles. If we then put z=0 we
have rewritten the amplitude in a form where there is a one to one correspondence between
terms in this expansion of the amplitude and the terms of the recursion relation associated
with the shifts.

A = i
Np

96π2

[
[35]3

〈24〉2[15][13]
(3.65)

+
[23]3

〈45〉2[12][13]
(3.66)

+
〈25〉〈14〉3[45]

〈13〉〈23〉〈45〉2〈24〉2 (3.67)

− 〈12〉2〈13〉[23]
〈45〉〈51〉〈24〉〈23〉2

(
1 + 2

〈14〉〈23〉
〈13〉〈24〉

)
(3.68)

− 〈25〉〈14〉3[25]
〈13〉〈34〉〈24〉2〈45〉2 (3.69)

− 〈13〉〈14〉3[43]
〈12〉〈51〉〈24〉〈54〉〈34〉2

(
1− 2

〈12〉〈34〉
〈13〉〈42〉 +

〈15〉〈34〉
〈13〉〈45〉

)]
(3.70)

The terms in this expansion are in one-to-one correspondence with the diagrams in Figure
3.10. The term (3.65) corresponds to diagram 3.10(a). The term (3.66) corresponds to
diagram 3.10(b). The term (3.67) corresponds to diagram 3.10(c). The term (3.68) cor-
responds to diagram 3.10(d). The term (3.69) corresponds to diagram 3.10(e). The term
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(3.70) corresponds to diagram 3.10(f).

Figure 3.10: The diagrams in the recursive expression for A(1)
5 (1−, 2+, 3+, 4+, 5+) with shifts

on |1] and |3〉.

The recursive description of the terms (3.65) to (3.70) is well understood with the excep-
tion of the two factors relating the ‘single pole under double pole’ terms to the corresponding
double pole terms. Thus we require a full explanation of the factors in (3.68) and (3.70).
These factors can be explained as a sum of BDK style SP 2S terms.

The ‘single pole under double pole’ factor in the term (3.68) is ‘explained’ in a BDK
fashion by looking at the diagram in Figure 3.10(d) and considering the legs colour adjacent
to the propagator:

±S(1̂, k+, 4)K23S(2, k−, 3̂) = ± 〈14〉
〈1k̂〉〈k̂4〉〈23〉[23]

[23]

[2k̂][k̂3]

= ±〈14〉〈23〉[23]2

〈1|k̂|2]〈4|k̂|3]

= ±〈14〉〈23〉
〈13〉〈24〉 (3.71)

where ± is included as we are unsure of the correct way to assign a sign to this term. We
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cannot think of an explanation or rule for the factor of 2 that must appear in (3.68).

The spinor algebra that appears in factors in (3.70) can be similarly ‘explained’, but for
the diagram in Figure 3.10(f) we do not consider the colour adjacent legs to the propagator.
The first factor in (3.70) is equal to:

±S(1̂, k+, 2)K34S(3̂, k−, 4) = ± 〈12〉
〈1k̂〉〈k̂2〉〈34〉[34]

[34]

[3k̂][k̂4]

= ±〈12〉〈34〉[34]2

〈1|k̂|4]〈2|k̂|3]

= ±〈12〉〈34〉
〈13〉〈24〉 (3.72)

We cannot think of a sensible explanation for the factor of 2 that appears in front of this
first term in (3.70). The second factor in (3.70) is equal to:

±S(1̂, k+, 5)K34S(3̂, k−, 4) = ± 〈15〉
〈1k̂〉〈k̂2〉〈34〉[34]

[34]

[3k̂][k̂4]

= ±〈15〉〈34〉[34]2

〈1|k̂|4]〈5|k̂|3]

= ±〈15〉〈34〉
〈13〉〈45〉 (3.73)

It would be interesting to find an explanation for the factors in (3.68) and (3.70).

3.5.2 −+ ++ in gravity with |1], |2〉, |3〉, |4〉 shifts

In this section we give an example of a set of shifts for which the ‘single pole under the
double pole’ in the −+ ++ gravity amplitude (3.35) are not of the form SP 2S:

|1] → |1]− z(|2] + |3] + |4])

|a〉 → |a〉+ z|1〉 for a = 2, 3, 4 (3.74)

The ‘single pole under the double pole’ associated with 〈2̂3̂〉 = 0 differs from the double
pole by a factor of the form:

〈14〉〈23〉
〈12〉〈13〉

1
〈23〉+ 〈34〉+ 〈42〉

(
−2
〈13〉
〈14〉(〈21〉+ 〈14〉) + (〈21〉+ 〈13〉)

)
(3.75)

In these shifts SP 2S is equal to:

S(1̂, k̂+, 4̂)k23S(2̂, k̂−, 3̂) =
〈14〉〈23〉
〈13〉〈12〉

〈21〉+ 〈13〉
〈23〉+ 〈34〉+ 〈42〉 (3.76)

So in these shifts the ‘single pole under the double pole’ does not have the form SP 2S.

95



CHAPTER 3. ON-SHELL RECURSION RELATIONS FOR ONE-LOOP GRAVITY

3.6 Avoiding nonstandard factorisations

It is possible to calculate amplitudes in Yang-Mills without having to consider nonstandard
factorisations [77]. See also the review [101] of this remarkable method. These papers point
out that it is possible to find shifts which avoid non-standard factorisations, but that these
shifts will generically have a boundary term. Using a pair of shifts in two independent
complex parameters the authors then exploited this fact to calculate complete amplitudes
avoiding the consideration of any nonstandard factorisations. We now briefly review their
method for the simple case of a purely rational amplitude. The pair of shifts are called the
primary shift and the auxiliary shift:

primary shift: [j, l〉
{
λ̃j → λ̃j − zλ̃l

λl → λl + zλj

(3.77)

auxiliary shift: [a, b〉
{
λ̃a → λ̃a − wλ̃b

λb → λb + wλa

(3.78)

The primary shift is chosen to have no nonstandard factorisations, but it will have a bound-
ary term and the auxiliary shift will have no boundary term, but it will include non-standard
factorisations. These two shifts give rise to two recursion relations for the amplitude:

A(1)
n (0) = Inf

[j,l〉
An +RD,recursive [j, l〉

n (3.79)

A(1)
n (0) = RD,recursive [a, b〉

n +RD,non-standard [a, b〉
n (3.80)

We now apply the primary shift to the recursion relation for the auxiliary shift (3.80) to
extract the large z behaviour of the primary shift:

Inf
[j,l〉

An = Inf
[j,l〉

RD,recursive [a, b〉
n + Inf

[j,l〉
RD,non-standard [a, b〉

n (3.81)

where the Inf operation is defined to be the constant term in the expansion of the shifted
term about z = ∞. We wish to avoid calculating terms involving nonstandard factorisations
so we will assume that the following condition holds.

Inf
[j,l〉

RD,non-standard [a, b〉
n = 0 (3.82)

Since we do not, in general, know how to calculate the terms involving nonstandard factori-
sations it is, of course, difficult to check explicitly if the condition (3.82) holds for a given
pair of shifts. However, if one calculates an amplitude assuming that (3.82) holds and the
resulting amplitude has the correct collinear and soft behaviour, then the amplitude is cor-
rect and the condition (3.82) must have been true. Thus if we assume the condition (3.82)
and use (3.81) to calculate the boundary term in (3.79) we can calculate the amplitude
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without considering any nonstandard factorisations:

An(0) = Inf
[j,l〉

RD,recursive [a, b〉
n +RD,recursive [j, l〉

n (3.83)

3.6.1 The −+ + + + Yang-Mills amplitude

The following simple example exhibiting the possibility of calculating an amplitude using
auxiliary recursions to avoid all nonstandard factorisations is not mentioned in [77], but is
closely related to examples that they do consider in their paper. First recall that the known
answer for the amplitude is

A
(1)
5 (1−, 2+, 3+, 4+, 5+) = i

Np

96π2

1
〈34〉2

[
− [25]3

[12][51]
+
〈14〉3[45]〈35〉
〈12〉〈23〉〈45〉2 −

〈13〉3[32]〈42〉
〈15〉〈54〉〈23〉2

]

The three terms above will be called term 1, term 2 and term 3 for the purposes of this
section. As shown in [18], if we consider the standard BCFW shifts on |1] and |2〉 then
term 1 and term 2 come from standard factorisations and term 3 comes from a nonstandard
factorisation. See Figure 3.11. Term 1 comes from the pole associated with [1̂5] = 0. Term
2 and term 3 both come from the pole associated with 〈2̂3〉 = 0. Term 2 is a standard
factorisation, but term 3 involves the nonstandard three-point one-loop all-plus vertex.
In [18] term 3 was computed by understanding this nonstandard factorisation as a sum of
two terms called a double pole term and single pole under the double pole term.

Figure 3.11: The diagrams in the |1] |2〉 shift of A(1)
5 (1−, 2+, 3+, 4+, 5+).

In this section we show how to use auxiliary recursions to calculate the amplitude without
considering either of the two types of term associated with the three-point one-loop all-plus
nonstandard factorisations. We will consider the following pair of shifts. The primary [j, l〉
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shift is on |4] and |5〉. This shift has no nonstandard factorisations, but does have boundary
term. The auxiliary [a, b〉 shift is on |1] and |2〉. This shift has no boundary term, but does
have nonstandard factorisations. From the discussion in the previous paragraph we know
that

RD,recursive [a, b〉
n = term 1 + term 2 (3.84)

RD,non-standard [a, b〉
n = term 3 (3.85)

Since we are recalculating a known amplitude we can explicitly check if the condition (3.82)
is satisfied. If we perform the [j, l〉 shift on term 3 (put hats on |4] and |5〉) and then consider
large z then the term is O(1/z) so the condition (3.82) is satisfied:

Inf
[j,l〉

RD,non-standard [a, b〉
n = Inf

[j,l〉
term 3 = 0 (3.86)

So it will be possible to calculate the −+ + + + Yang-Mills amplitude without considering
any nonstandard factorisations using this pair of shifts.

Now we summarise the details of actually calculating the amplitude. First we use (3.84)
to calculate the first term in (3.83):

Inf
[j,l〉

RD,recursive [a, b〉
n = Inf

[j,l〉

(
term 1 + term 2

)
= term 1 + term 2 (3.87)

As explained in the previous section, this part should be thought of as the boundary term
in the primary shift. Finally we have to calculate the recursive diagrams in the primary
[j, l〉 shift on |4] and |5〉. There is only one diagram associated with these shifts. This is
the diagram corresponding to a pole at 〈15̂〉 = 0. See Figure 3.12. Calculating this diagram
gives the second term in (3.83).

RD,recursive [j, l〉
n = term 3 (3.88)

So putting (3.87) and (3.88) into the equation (3.83) constructs the full amplitude.

An(0) = term 1 + term 2 + term 3 (3.89)

Figure 3.12: The diagram in the |4] |5〉 shift of A(1)
5 (1−, 2+, 3+, 4+, 5+).
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Unfortunately trying to follow this example directly to calculate the one-loop −++++
gravity amplitude does not work. In gravity a shift generally involves more factorisations
since in gravity there is no cyclic ordering condition on the external legs like there is in
Yang-Mills. Using the primary shift on |4] and |5〉 will not work for gravity since some
of these extra factorisations are nonstandard. The shift on |4] and |5〉 involves the poles
associated with 〈5̂2〉 = 0 and 〈5̂3〉 = 0. These include contributions from the three-point
one-loop all-plus factorisation.

Despite the fact that the procedure for avoiding nonstandard factorisations in Yang-
Mills does not immediately extend to gravity, we are hopeful that the results from various
shifts can be combined in some way to compute the unknown ‘single pole under double pole’
terms in −++++ gravity amplitude. The results for the other simple BCFW shifts of the
−+ + + + are collected in appendix B.2. Appendix B.2.1 contains the recursive diagrams
in the |4], |5〉 shift. Appendix B.2.2 contains the diagram in the |2], |1〉 shift.

Calculating the −++++ amplitude using old methods such as D-dimensional unitarity,
or D-dimensional generalised unitarity would tell us the answer for the missing ‘single-pole
underneath the double pole’ terms. Understanding the − + + + + gravity example would
perhaps shed light on the general description of this type of nonstandard factorisation term.
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CHAPTER 4

THE ADHM CONSTRUCTION AND D-BRANE

CHARGES

In this chapter we suggest a construction of monopoles in dimension 2k + 1 from fuzzy
funnels. For k = 1 this construction coincides with Nahm’s construction of monopoles [102],
which is an adaptation of the Atiyah, Drinfeld, Hitchin and Manin (ADHM) construction
of instantons [103]. For k = 1, 2, 3 this gives a finite n realisation of the duality between
D1-brane and D(2k+ 1)-brane world-volume pictures of the non-commutative bionic brane
intersection [104–106]. We then perform two charge calculations related to this construction.
First we calculate the charge of the monopole and get an answer in precise agreement with
the size of the matrices in the fuzzy funnel. Secondly we calculate the charge of the fuzzy
funnel. To get this charge to agree with the size of the matrices in the monopole beyond
leading orders in 1/n we propose a speculative use of the symmetrised trace. A matching
of the terms of the symmetrised trace with the number of branes expected from the charge
calculation then leads to a new and surprisingly simple formula for the symmetrised trace
quantity.

4.1 Introduction

It is well known that the world-volume theory of N coincident D-branes, arising from
open strings stretching between the D-branes, is a nonabelian U(N) gauge theory [107].
The massless world-volume theory of the D-branes also contains scalar fields describing
the transverse fluctuations of the branes. For many coincident D-branes these coordinates
are matrix-valued in the adjoint of the U(N) gauge group. The matrix-valued coordinates
can be interpreted in terms of non-commutative geometry. The world-volume dynamics
of these D-branes has revealed the phenomena of the dielectric effect [108, 109], where D-
branes expand via non-commutative configurations into higher dimensional D-branes. The
first example of the dielectric effect was that D0-branes in an external RR four-form field
expand into a non-commutative two-sphere. This configuration is interpreted as a bound
state of D0 and D2-branes. For a review of nonabelian phenomena on D-branes see [110].
An introduction to the large subject of D-brane physics can be found in [111].

In this chapter we consider the static configurations of many coincident D1-branes ex-
panding along their world-line into an orthogonal collection of coincident D(2k+1)-branes.
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In contrast to the dielectric effect this configuration has no nontrivial background fields.
There are two different world-volume descriptions of this brane configuration, one coming
from a solution to the world-volume theory of the D1-branes and the other from a solution
to the world-volume theory of the D(2k+1)-branes. The duality between these different de-
scriptions of the same configuration of branes was considered in the limit where the number
of D1-branes is large in the references [104], [105], [106] for the cases k = 1, 2, 3 respectively.

The D1-brane world-volume picture of this configuration is to consider solutions with
only 2k+1 of the transverse scalars Φi(s) turned on, where 0 < s <∞ is the world-volume
coordinate on the set of coincident straight semi-infinite D1-branes. As shown in [104–106]
there is a solution called a fuzzy funnel which involves the ansatz

Φi(s) = f(s)Xi(k, n) (4.1)

where the Xi(k, n), with i = 1, . . . , 2k + 1, are the matrix coordinates of the fuzzy S2k

at level n = 1, 2, 3, . . . The Fuzzy two-sphere was first introduced in [112]. Generalisation
to the fuzzy four-sphere appeared in [113, 114]. Extension to higher dimensions occurred
in [115,116].

For the fuzzy two sphere, the matrix coordinates Xi are simply a representation of the
lie algebra of SU(2). The use of non-abelian coordinates rather than the normal commu-
tative coordinates reduces the infinite space of functions on the ordinary sphere to a finite
dimensional subset defining a fuzzy sphere. The space of functions on the two-sphere can be
written as a polynomial expansion in the three coordinates on three dimensional flat space
xi, with the additional two-sphere constraint xixi = 1, giving a set of functions of the form:

f(xi) = f (0) + f
(1)
i1
xi1 + f

(2)
i1i2

xi1xi2 + · · ·+ f
(r)
i1...ir

xi1 . . . xir + · · · (4.2)

where the coefficients f (r)
i1...ir

are totally symmetric and traceless. Just as the commutative
coordinates satisfy the constraint xixi = 1, the matrices in the representations of SU(2)
satisfy a similar condition:

XiXi = n(n+ 2) (4.3)

where the Xi are matrices of dimension n+ 1. If we normalise the Xi so that they satisfy
XiXi = 1, then the commutator of the Xi will vanish in the large n limit and we will recover
ordinary commuting coordinates. The emergence of the ordinary sphere as the dimension
of the representation of SU(2) increases, can also be seen from the space of functions.
The effect of changing the commutative coordinates to noncommutative coordinates is to
truncate the set of functions (4.2). For example, if we use the two dimensional representation
of SU(2), given by the Pauli matrices, then any polynomial in these matrices which is
quadratic or higher degree, can be written in terms of a single Pauli matrix using the
relation σiσj = 2δij + iεijkσk. Thus the space of functions is reduced to a set given by
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just the f (0) and f
(1)
i terms of the expansion (4.2). This space of function has dimension

1 + 3 = 4. In general [112] the n+1 dimensional representation truncates the expansion
(4.2) at the nth term. The functions f (r) for r > n will be absent. We now count the size of
this space of functions. The number of degrees of freedom in the symmetric traceless f (r)

i1...ir

is given by:
1
r!

r∏

i=1

(i+ 2)− 1
(r − 2)!

r−2∏

i=1

(i+ 2) = 2r + 1 (4.4)

We now add up the degrees of freedom in f (0) to f (n) to get dimension of the truncated
space of functions:

n∑

r=0

(2r + 1) = (n+ 1)2 (4.5)

So the space of functions of the fuzzy two-sphere at level n has dimension N2 = (n + 1)2

which is the same as the size of the matrices in the fuzzy sphere.

The generalisation of the fuzzy two-sphere to the fuzzy 2k-sphere [115, 116] involves
the matrices Xi, which are related to the representation of SO(2k + 1) with k dimensional
highest weight state (n

2 ,
n
2 , . . . ,

n
2 ). For n an even integer this representation corresponds to

the Young tableaux which is rectangular with k rows and n
2 columns. The dimension of the

representation of SO(2k + 1) with highest weight vector (λ1, . . . , λk) is given by the Weyl
character formula1:

dim2k+1 =
∏

1≤i<j≤k

l2i − l2j
m2

i −m2
i

k∏

i=1

li
mi

(4.6)

where
li = λi + k − i+

1
2

, mi = k − i+
1
2

(4.7)

The fuzzy sphere Xi [115, 116] correspond to the representation with highest weight state
(n

2 ,
n
2 , . . . ,

n
2 ) and thus their dimension is given by:

N(k, n) =
∏

1≤i<j≤k

n+ 2k − (i+ j) + 1
2k − (i+ j) + 1

k∏

l=1

n+ 2k − 2l + 1
2k − 2l + 1

(4.8)

Just like the fuzzy two-sphere case, the use of these noncommutative coordinates truncates
the space of functions on the classical 2k-sphere to a subset defining the fuzzy sphere. In
the limit n→∞ the full infinite set of functions on the sphere is recovered, but for n finite
the space of functions has dimension N(k, n)2 [115]. In fact in the large n limit, a space of
higher dimension than a sphere emerges [118]. Since the size of the fuzzy sphere matrices
Xi grows like N(k, n) ∼ n

k(k+1)
2 , this higher dimensional space is k(k + 1)-dimensional and

given by the coset space2 SO(2k + 1)/U(k) [118]. The generalisation of the relation (4.3)

1See for example page 408 of [117].

2This coset space is actually the twistor space of the 2k-sphere. See for example [119].
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to these higher dimensional spheres takes the form:

Xi(k, n)Xi(k, n) = c(k, n)1N(k,n) , c(k, n) = n(n+ 2k) (4.9)

where the quantity c(k, n) is usually referred to as the quadratic Casmir since:

[Xi, Xj ][Xj , Xi] = 2k c(k, n)1N(k,n) (4.10)

The alternative picture of this brane configuration comes from the D(2k + 1)-brane
world-volume theory and is a monopole solution. This involves turning on a gauge field and
a single matrix valued transverse scalar field. The original papers on the D3-brane spike
are [120–122]. For the D5-brane monopole see appendix B of [105]. The generalisation
to higher dimensional branes appeared in [123]. It was argued in the papers [104–106]
that these different descriptions should agree for large n. The arguments for this appear
in, for example, the discussion at the end of [104]. The nature of the agreement is that
the number of branes in the two descriptions match at large n. The two descriptions are
valid in complimentary regions of the configuration. The solution to the D1-brane world-
volume is valid far from the position of the D(2k+ 1)-brane when the radius of the spike is
small. The D(2k+1)-brane solution is a good description in regions of the D(2k+1)-brane
world-volume a long way from the centre of the monopole.

However, there are indications that a more precise relationship should hold. For the D1-
branes expanding into a D3-brane (the k = 1 case) there are three excited matrix valued
transverse scalar fields. The condition for minimum energy, coming from the action of [110],
is that they satisfy Nahm’s equation:

∂Φi

∂σ
= iεijk[Φj ,Φk] (4.11)

See section 2 of [105]. One can also derive this equation from the requirement that some su-
persymmetry is preserved [104]. Since the work of Nahm [102] it has been known that there
is an invertible transform that takes the matrix solutions to Nahm’s equation and constructs
a monopole solution in a gauge theory with a precise gauge group and with a precise charge.
The charge of the monopole is simply given by the size of the Φi matrices. Nahm’s con-
struction of monopoles is an adaption of the ADHM construction of instantons [103]. This
was shown to be relevant to D-brane intersections in the papers [124–127]. In [128] Nahm’s
adaptation of the ADHM construction was identified with a bound state of D1-branes and
D3-branes. The ADHM construction was used to understand the AdS/CFT correspondence
in [129–131]. More recently there has been work explaining that the ADHM construction is
Tachyon condensation [132–134]. D-brane and M theory inspired generalisations of Nahm’s
equation have also been considered in [135–138].

In Section 4.2.1 we review Nahm’s construction for the k = 1 configuration, where the
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D1-branes expand into D3-branes. This example of Nahm’s construction is well known. See
for example section 4.5 of [139]. In this case the Nahm data, or solution to the D1-brane
world-volume theory, is a fuzzy funnel made of fuzzy two-spheres. For the fuzzy two-sphere
the Xi are just the lie algebra of SU(2) times a radial profile function:

Φi(s) =
1
s
Xi i = 1, 2, 3 (4.12)

Nahm’s construction takes these N by N matrices and constructs of a U(1) Dirac monopole
with charge N = n + 1 from them. The step from Nahm data to the monopole involves
finding the space of normalisable solutions to a certain Dirac operator which depends on the
Nahm data. The monopole gauge field is then constructed from this space of normalisable
solutions. For fuzzy two-sphere Nahm data, this Dirac equation has a single normalisable
solution. The single eigenvector means that the monopole will have gauge group U(1) and
its charge will be the size of the matrices in the Nahm data which is N=n+ 1.

In this D1 ⊥ D3 example, the single normalisable solution of the Dirac equation corre-
sponds to the eigenvector of the following matrix, which has eigenvalue nf − r :

fXi(1, n)⊗Xi(1, 1) + 1N(1,n)×N(1,n) ⊗ xiXi(1, 1) (4.13)

where in this k = 1 case, the xi for i = 1, 2, 3 are the world volume coordinates on the flat
orthogonal D3-brane and r =

√
(x2

1 + x2
2 + x2

3). We would now like to guess what to do for
k ≥ 2. It is natural that the construction of the monopole in the higher dimensional cases
involves finding the space of eigenvectors with eigenvalues nf − r of the matrix:

fXi(k, n)⊗Xi(k, 1) + 1N(k,n)×N(k,n) ⊗ xiXi(k, 1) (4.14)

Where the xi for i = 1, . . . , 2k+1 are the world-volume coordinates on the D(2k+1)-brane
and now r =

√
(x2

1 + · · ·+x2
2k+1). The D-brane duality studies in [104–106] strongly suggest

that Nahm’s construction for the D1 ⊥ D3 system, which starts from the fuzzy two sphere,
should generalise to the higher dimensional cases. That is, monopoles in higher dimensions
can be constructed from higher dimensional fuzzy spheres.

It turns out that the matrix (4.14) does have nf − r as an eigenvalue and the dimension
of the eigenspace is N(k − 1, n + 1). Arguments to show this are given in section 4.2.2.
This leads us to construct a monopole from the space of N(k − 1, n+ 1) eigenvectors. The
constructed gauge field is given by:

Aµ(xi) =
1

2r(r + x2k+1)
Γµν(k, n)xν , A2k+1(xi) = 0 (4.15)
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where the indices µ, ν = 1, . . . , 2k. The matrices Γµν(k, n) are defined by:

Γab(k, n) = − i
2
[Xa(k − 1, n+ 1), Xb(k − 1, n+ 1)]

Γc 2k(k, n) = Xc(k − 1, n+ 1) (4.16)

where the indices a, b, c = 1, . . . , 2k − 1. This monopole has appeared in [123], but now it
is proposed to be linked precisely with the Nahm data for the fuzzy sphere (4.1).

We then perform two charge calculations as a consistency check of the proposed construc-
tion. The first charge calculation is the kth Chern class of the D(2k+1)-brane world-volume
monopole:

1
k!

( 1
2π

)k
∫

S2k

Tr(F k) (4.17)

This counts the number of D1-branes in the monopole solution to the D(2k + 1)-branes
world-volume theory since the Ramond-Ramond two-form couples to the kth Chern class
in the Chern-Simons part of the world-volume action. As in the usual ADHM construction,
consistency requires that the charge of the monopole must equal the size of the Nahm data
matrices Xi from which it was constructed. So the monopole charge should be N(k, n).
We show that this is the case in section 4.3.1 using an identity that relates N(k, n) to
N(k − 1, n+ 1), which we prove in section 4.3.2.

The other charge calculation we consider is for the fuzzy funnel solution of the D1-
branes world-volume theory. This appears in section 4.3.3. We compute the coupling of the
N(k, n) D1-branes to the Ramond-Ramond potential C2k+2. This counts the number of
D(2k + 1)-branes in the fuzzy funnel solution to the D1-branes world-volume theory. The
relevant term comes for the Chern-Simons term in the action of [108,109]:

ikλkµ1

k!

∫
StrP

[
(iΦiΦ)kC2k+2

]
(4.18)

The consistency of the ADHM construction requires that the number of D(2k+1)-branes is
N(k− 1, n+ 1) which in the ADHM construction was the dimension of the eigenspace with
eigenvector nf − r. The dimension of this eigenspace is equal to the size of the matrices in
the monopole that gets constructed.

This second charge calculation does not yield precisely N(k − 1, n+ 1), but does agree
for the first two orders in the 1/n expansion. This appears to be a non-trivial check of
the n + 1 argument in the N(k − 1, n + 1). We then observe a possible mechanism for
corrections to the sub-leading terms of this charge calculation so that there is agreement
with the answer N(k−1, n+1). The details of this suggestion are at the start of section 4.4.
The 1/n corrections proposed come from the symmetrised trace and were first calculated
for the fuzzy two-sphere in [140]. The symmetrised trace quantity first appeared in [141].
The observation of a matching between the required corrections and the first few orders of
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the symmetrised trace suggests an all orders prediction for the symmetrised trace quantity.
It is surprising that this is possible given the apparent complexity of the symmetrised trace
quantity when written in terms of chord diagrams [140]. This prompted a guess of an exact
formula for the symmetrised trace. For the fuzzy two-sphere the proposed answer is very
simple:

1
N

Str(XiXi)m =





2(2m+ 1)
n+ 1

n
2∑

i=1

(2i)2m for n even

2(2m+ 1)
n+ 1

n+1
2∑

i=1

(2i− 1)2m for n odd

(4.19)

The existence of a systematic construction of the general term in the symmetrised trace was
anticipated on page 9 of [104]. We have checked that (4.19) is true up to m = 6, but have
no general proof. The dynamics of fuzzy two-spheres will be studied using this formula in
chapter 5.

In summary, the proposal is that a fuzzy S2k funnel made of N(k, n) D1-branes expands
into a collection of precisely N(k − 1, n+ 1) D(2k + 1)-branes. This is an extension of the
previous results that appeared in [104–106] which proposed the leading large n terms of this
relation.

4.2 The ADHM construction

4.2.1 Review of Nahm’s construction for D1 ⊥ D3

In this section we review Nahm’s construction of Monopoles [102]. A useful review on
monopoles can be found in [142]. We consider the case of the construction that takes a
representation of SU(2) and constructs a U(1) monopole. This example is well known in
the literature, see for example section 4.5 of [139]. The brane configuration that corresponds
to this construction is D1 ⊥ D3 bion [104].

The starting point for Nahm’s construction consists of one dimensional scalar fields
Φi(s) where i = 1, 2, 3 which satisfy Nahm’s equation (4.11). In D-brane language this is
a solution to the world-volume theory of many coincident D1-branes. The construction of
the Monopole then proceeds in two steps. The first step is to calculate all the normalisable
solutions to the following Dirac equation:

(Φi(s) + xi)⊗Xi(1, 1)|u(xi, s)〉 =
∂

∂s
|u(xi, s)〉 (4.20)

where we have used the fuzzy sphere notation Xi(1, 1) for the usual Pauli matrices to save
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having multiple notations for the same matrices. The normalisable condition is that:

∫ ∞

0
ds〈u(xi, s)|u(xi, s)〉 < ∞ (4.21)

The normalisable solutions to the (4.20) form a vector space with an orthonormal basis
{|uα(xi, s) >} where the index α runs over the elements of the basis. The second step in
Nahm’s construction is to calculate the fields of the monopole using the formula:

(φ(xi))αβ =
∫ ∞

0
ds〈uα(xi, s)|s|uβ(xi, s)〉

(Ai(xi))αβ = i

∫ ∞

0
ds〈uα(xi, s)| ∂

∂xi
|uβ(xi, s)〉 (4.22)

We now consider the D1 ⊥ D3 bion case in which a U(1) monopole is constructed from
the following Nahm data which is just the fuzzy two sphere representation of SU(2):

Φi(s) =
1
s
Xi(1, n) (4.23)

To explicitly construct the monopole corresponding to this Nahm data, we have to first
find the solutions to the Dirac equation (4.20). As we have already pointed out in the
introduction this amounts to finding the eigenvalues of the matrix (4.13). Recall that this
matrix has the form:

fXi(1, n)⊗Xi(1, 1) + 1N(1,n)×N(1,n) ⊗ xiXi(1, 1)

To calculate the eigenvalues of (4.13), we first use spherical symmetry to rotate this matrix
into the following matrix:

fXi(1, n)⊗Xi(1, 1) + r1⊗X3(1, 1) (4.24)

where r =
√

(x2
1 + x2

2 + x2
3). The standard way to label the irreducible representations of

SU(2) is in terms of the representations spin j, where 2j = n The states of the spin j

representation are then |j,m〉 where m = j, j − 1, . . . ,−j.

J2|j,m〉 = j(j + 1)|j,m〉
J3|j,m〉 = m|j,m〉 (4.25)

The matrix (4.24) is a product of two representations of SU(2) which can be decomposed
as a sum of two irreducible representations as follows:

spin(j)⊗ spin(1
2) = spin(j + 1

2)⊕ spin(j − 1
2) (4.26)
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Two of the eigenvectors and eigenvalues of the matrix are easily found:

(
fXi(1, n)⊗Xi(1, 1) + r1⊗X3(1, 1)

)
|j + 1

2 , j + 1
2〉 = (nf + r)|j + 1

2 , j + 1
2〉(

fXi(1, n)⊗Xi(1, 1) + r1⊗X3(1, 1)
)
|j + 1

2 ,−j − 1
2〉 = (nf − r)|j + 1

2 , j + 1
2〉

The eigenvector with eigenvalue nf − r will be the single normalisable solution to the Dirac
equation from which we will construct the monopole. The remaining eigenvalues can be
found by considering the following pair of vectors:

|j + 1
2 ,m〉 = a|j,m− 1

2〉|12 , 1
2〉+ b|j,m+ 1

2〉|12 ,−1
2〉

|j − 1
2 ,m〉 = −b|j,m− 1

2〉|12 , 1
2〉+ a|j,m+ 1

2〉|12 ,−1
2〉 (4.27)

where

a =

(
j +m+ 1

2

2j + 1

) 1
2

, b =

(
j −m+ 1

2

2j + 1

) 1
2

(4.28)

The second part of the matrix (4.24) acts on these states as follows:

1⊗X3(1, 1)|j + 1
2 ,m〉 = a|j,m− 1

2〉|12 , 1
2〉 − b|j,m+ 1

2〉|12 ,−1
2〉

= (a2 − b2)|j +
1
2
,m〉 − 2ab|j − 1

2
,m〉

1⊗X3(1, 1)|j − 1
2 ,m〉 = −b|j,m− 1

2〉|12 , 1
2〉 − a|j,m+ 1

2〉|12 ,−1
2〉

= −2ab|j + 1
2 ,m〉 − (a2 − b2)|j + 1

2 ,m〉 (4.29)

thus the eigenvalue problem has been reduced to finding the eigenvalues of the following
two by two matrix:

(
2jf + (a2 − b2)r −2abr

−2abr −2(j + 1)f − (a2 − b2)r

)
(4.30)

The eigenvalues of this matrix are:

−f ±√((2j + 1)2f2 + r2 + 2(2j + 1)(a2 − b2)fr)

= −f ±√((2j + 1)2f2 + r2 + 4mfr) (4.31)

The only normalisable solution of the Dirac equation is the one corresponding to the
eigenvector with eigenvalue nf−r. It is then simple to use this eigenvector and the integrals
(4.22) to get the gauge field of a U(1) monopole with charge n+ 1.
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4.2.2 Generalisation to higher dimensions

As explained in the introduction there is a natural generalisation of the D1 ⊥ D3 case to
the higher dimensional D1 ⊥ D(2k+ 1) situation. This involves finding the eigenvectors of
the matrix (4.14) which has the form:

fXi(k, n)⊗Xi(k, 1) + 1⊗ xiXi(k, 1)

The eigenvalues of this matrix are:

nf − r , nf + r , (−1)pf ±√((n+ p)2f2 + r2 + 2frq) (4.32)

where p = 1, . . . , k and q = n − 1, n − 3, . . . ,−n + 1. This claim is based on the following
group representation decomposition. The matrix (4.14) is formed from a product of two
representations of SO(2k+ 1) which can be written as a sum of irreducible representations
of SO(2k + 1). This is where the possible values for p in (4.32) come from. Each of these
irreducible representations of SO(2k + 1) can be written as a sum of irreducible represen-
tations of SO(2k). This is where the possible values of q in (4.32) come from. Writing the
matrix (4.14) with respect to a suitable ordering of this basis of SO(2k) representations
makes it block diagonal. The largest blocks in this block diagonal form are two by two, so
the eigenvalue problem is reduced to a set of at worst quadratic equations. The two by two
blocks are made from two vectors from copies of the same representation of SO(2k) coming
from different representations of SO(2k + 1).

We now explain why the eigenspace with eigenvalue nf−r has dimension N(k−1, n+1).
To do this we need the Weyl character formula [117] for SO(2k). This formula tells us the
dimension of representation of SO(2k) with highest weight vector (λ1, . . . , λk):

dim2k =
∏

1≤i<j≤k

l2i − l2j
mi −mj

(4.33)

where li = λi + k − i and mi = k − i. The product of the representations of SO(2k + 1)
with k dimensional highest weight vectors (n

2 , . . . ,
n
2 ) and (1

2 , . . . ,
1
2) contains the repre-

sentation with highest weight vector (n+1
2 , . . . , n+1

2 ). This representation of SO(2k + 1)
contains two copies of the representation of SO(2k) with k dimensional highest weight
vector (n+1

2 , . . . , n+1
2 ). The eigenvectors of the matrix (4.14) with eigenvalue nf − r are

precisely one of these representations of SO(2k). The other copy of this representation are
the eigenvectors with eigenvalue nf + r. As can be seen from (4.33) the dimension of the
representation of SO(2k) with k dimensional highest weight vector (n+1

2 , . . . , n+1
2 ) is equal

to the dimension of the representation of SO(2k− 1) with k− 1 dimensional highest weight
vector (n+1

2 , . . . , n+1
2 ) which is the definition of N(k − 1, n+ 1).
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4.2.3 Construction of the Monopole

For n = 0, the Nahm data is trivial Φi(s) = 0. It is well known that trivial Nahm data
results in the construction of a non trivial Monopole [142]. For n = 0 the Dirac equation
reduces to:

xiXi(k, 1)|u(xi, s)〉 =
∂

∂s
|u(xi, s)〉 (4.34)

The matrix xiXi(k, 1) has 2k−1 eigenvectors |v+
α (xi)〉 (α = 1, . . . , 2k−1) of eigenvalue r and

2k−1 eigenvectors |v−α (xi)〉 of eigenvalue −r. The vectors |uα(xi, s)〉 = g(xi)e±rs|v±α (xi)〉
then solve (4.34) where g(xi) is an arbitrary function of the xi. However, the solutions
with the factor e+rs are not normalisable whilst those with the factor e−rs are. Thus the
normalisable solutions to (4.34) are:

|uα(xi, s)〉 = (2r)
1
2 e−rs|v−α (xi)〉 (4.35)

where g(xi) = (2r)
1
2 was determined by choosing unit normalisation. We now find a explicit

form for the |v−α (xi)〉. The matrix xiXi(k, 1) can be written in terms of Xa(k − 1, 1):

xiXi(k, 1) =

(
x2k+112k−1 x2k12k−1 − ixaXa(k − 1, 1)

x2k12k−1 + ixaXa(k − 1, 1) −x2k+112k−1

)
(4.36)

Thus an orthonormal set of the 2k−1 eigenvectors of xiXi(k, 1) with eigenvalue −r is given
explicitly in terms of Xa(k − 1, 1) by:

|v−α (xi)〉 =



−

(
1

2r(r+x2k+1)

) 1
2 (
x2k12k−1 − ixaXa(k − 1, 1)

)
wα

(
r+x2k+1

2r

) 1
2

wα


 (4.37)

where {wα} are a set of 2k−1 vectors each of dimension 2k−1 with components (wα)β = δαβ.
The second step in the construction is to compute the Monopole gauge field from these
normalised solutions to (4.34)

(φ(xi))αβ =
∫ ∞

0
ds〈uα(xi, s)|s|uβ(xi, s)〉 =

1
2r
δαβ (4.38)

(Ai(xi))αβ = i

∫ ∞

0
ds〈uα(xi, s)| ∂

∂xi
|uβ(xi, s)〉 = i〈v−α (xi)| ∂

∂xi
|v−β (xi)〉 (4.39)

It is then simple to show that:

Aµ(xi) =
1

2r(r + x2k+1)
Γµν(k, 0)xν , A2k+1(xi) = 0 (4.40)

Unfortunately we have been unable to find an argument for the construction of the general
case, but checking a few examples has confirmed (4.15).
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4.3 Charge calculations

4.3.1 Monopole charge calculation

In this section we calculate the kth Chern class of the monopole. We hope the the charge
of the monopole we have constructed (4.15) is equal to the size of the fuzzy sphere matrices
which provided the starting point for the construction. This is what normally occurs in
the Nahm or ADHM construction. So we hope that the charge of the monopole defined on
a stack of N(k − 1, n + 1) D(2k + 1)-branes will yield precisely N(k, n). This calculation
extends the work in [123].

1
k!

( 1
2π

)k
∫

S2k

Tr(F k) (4.41)

The field strength for the Monopole is given in the appendix of [123]. At the point xµ = 0,
x2k+1 = r it has the form:

Fµν =
1

4r2
Γµν(k, n)

Fµ2k+1 = 0 (4.42)

To calculate the kth Chern class, we first consider the matrix:

M = εµ1...µ2k
Γµ1µ2(k, n) . . .Γµ2k−1µ2k

(k, n)

= 2εa1 2k a2a3...a2k−2a2k−1
Γa1 2k(k, n)Γa1a2(k, n) . . .Γa2k−2a2k−1

(k, n)

+2εa1a2a3 2k ...a2k−2a2k−1
Γa1a2(k, n)Γa3 2k(k, n) . . .Γa2k−2a2k−1

(k, n)

+ · · ·
+2εa1a2a3a4...a2k−1 2kΓa1a2(k, n)Γa3a4(k, n) . . .Γa2k−12k(k, n)

= 2k(−i)k−1εa1...a2k−1
Xa1(k − 1, n+ 1) . . . Xa2k−1

(k − 1, n+ 1) (4.43)

Now recall an identity from the appendix of [116].

εi1...i2k+1
Xi1(k, n) . . . Xi2k+1

(k, n) = C(k, n)Xi(k, n)Xi(k, n) (4.44)

where

C(k, n) = −(2i)kk!
k−1∏

l=1

(n+ 2l) (4.45)

Now recalling the fuzzy sphere constraint equation (4.9) from the introduction to this chap-
ter, we see that the matrix M is a multiple of the identity matrix:

M = −2kk!
k∏

l=1

(n+ 2l − 1)1N(k−1,n+1) (4.46)
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The volume of a 2k-sphere is:

Ω2k = 2k+1πk
k∏

l=1

1
2l − l

(4.47)

Thus the monopole charge is:

− 1
4kk!

(
1
2π

)k

Ω2kTr(M) = N(k − 1, n+ 1)

(
k∏

l=1

n+ 2l − 1
2l − 1

)
21−k (4.48)

It turns out that the right hand side of the above equation is equal to N(k, n), as we had
hoped for. This identity is proved in the next section.

4.3.2 Proof of the identity involving N(k, n) and N(k − 1, n + 1)

In this section we show that the following identity is true.

N(k, n) = N(k − 1, n+ 1)
( k∏

l=1

n+ 2l − 1
2l − 1

)
21−k (4.49)

N(k, n) is given by the formula (4.8).

N(k − 1, n+ 1) =
∏

1≤i<j≤k−1

n+ 2k − (i+ j)
2k − (i+ j)− 1

k−1∏

l=1

n+ 2k − 2l
2k − 2l − 1

(4.50)

The first product in N(k − 1, n+ 1) can be written as

∏

1≤i<j≤k−1

n+ 2k − (i+ j + 1) + 1
2k − (i+ j + 1)

=
∏

(i,j)∈S1

n+ 2k − (i+ j) + 1
2k − (i+ j)

(4.51)

Where S1 = {(i, j) | 1 ≤ i < j ≤ k and j− i 6= 1}. The second product in N(k−1, n+1)
can be written as

k−1∏

l=1

n+ 2k − (l + l + 1) + 1
2k − (l + l + 1)

=
∏

(i,j)∈S2

n+ 2k − (i+ j) + 1
2k − (i+ j)

(4.52)

Where S2 = {(i, j) | 1 ≤ i < j ≤ k and j − i = 1}. So we can now write N(k − 1, n+ 1)
as a single product

N(k − 1, n+ 1) =
∏

1≤i<j≤k

n+ 2k − (i+ j) + 1
2k − (i+ j)

(4.53)
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This expression has the same numerator as the first product in N(k, n), see (4.8), so we can
write

N(k, n) = N(k − 1, n+ 1)
∏

1≤i<j≤k

2k − (i+ j)
2k − (i+ j) + 1

k∏

l=1

n+ 2k − 2l + 1
2k − 2l + 1

(4.54)

We can evaluate the first product on the right hand side of (4.54)

∏

1≤i<j≤k

2k − (i+ j)
2k − (i+ j) + 1

=

k−1
k × k

k+1 × k+1
k+2 × · · · × 2k−4

2k−3 × 2k−3
2k−2

×k−2
k−3 × k−3

k−4 × k−4
k−5 × · · · × 2k−5

2k−4
...

...
...

×2
3 × 3

4

×1
2

=
(k − 1)(k − 2) . . . 1

(2k − 2)(2k − 4) . . . 2

= 21−k (4.55)

We can rewrite the second product on the right hand side of (4.54)

k∏

l=1

n+ 2k − 2l + 1
2k − 2l + 1

=
k∏

l=1

n+ 2l − 1
2l − 1

(4.56)

The identity (4.49) now follows from putting (4.55) and (4.56) into (4.54).

4.3.3 Fuzzy funnel charge calculation.

In this section we calculate the number of higher dimensional branes in the stack of D1-
branes that form the fuzzy funnel. The suggested monopole construction takes the stack
of N(k, n) D1-branes and constructs a monopole defined on a stack of N(k − 1, n + 1)
D(2k+ 1)-branes. Recall that the reason for this was based on the fact that the dimension
of the eigenspace of the matrix (4.14) with eigenvalue nf − r was N(k − 1, n + 1). So we
hope that the result of this charge calculation will also be N(k−1, n+1). We are interested
in the following Ramond-Ramond coupling [104–106]:

Swz =
ikλkµ1

k!

∫
tr P

[
(iΦiΦ)kC2k+2

]

=
ikλk+1µ1

k!

∫
dt ds tr

(
εi1···i2k+1

Φi1 . . .Φi2k

dΦi2k+1

ds

)
C2k+2

0...2k+1 (4.57)

To calculate the charge associated with this coupling, we first consider the matrix:

A = εi1···i2k+1
Φi1 . . .Φi2k

dΦi2k+1

ds
(4.58)
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where the fuzzy funnel is given by

Φi(s) = f(s)Xi(k, n) (4.59)

the definition of the ‘Physical radius’ F is given by

f =
F

λc(k, n)
1
2

(4.60)

where the definition of c(k, n) is in (4.9). Now we use equation (4.44) from the appendix
to [116] to give:

A = C(k, n)c(k, n)−k+ 1
2λ−2k−1F 2k dF

ds
1N(k,n) (4.61)

now we use
µ1 = (2πλ)kµ2k+1 (4.62)

and the volume of the 2k-sphere from equation (4.47) to write the action Swz as:

ik

2k!
C(k, n)c(k, n)−k+ 1

2N(k, n)
k∏

l=1

(2l − 1)
∫

dtdFF 2kΩ2kC
2k+2
0...2k+1 (4.63)

The integral part of the above equation represents a single D(2k+ 1)-brane, so the number
of branes is give by:

number of branes =
ik

2k!
C(k, n)c(k, n)−k+ 1

2N(k, n)
k∏

l=1

(2l − 1)

= 2k−1N(k, n)
( k∏

l=1

(2l − 1)
)
c(k, n)−k+ 1

2

( k−1∏

l=1

(n+ 2l)
)

= N(k − 1, n+ 1)c(k, n)−k+ 1
2

2k−1∏

l=1

(n+ l) (4.64)

We had hoped that the number of branes would be precisely N(k − 1, n + 1), but there is
only agreement for large n:

c(k, n)−k+ 1
2

2k−1∏

l=1

(n+ l) = 1 +
[
2k

(
− k +

1
2

)
+

2k−1∑

l=1

l
] 1
n

+O
( 1
n2

)

= 1 +O
( 1
n2

)
(4.65)

Thus, we have agreement with N(k − 1, n+ 1) for the first two orders:

number of branes = N(k − 1, n+ 1)
[
1 +O

( 1
n2

)]
(4.66)
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4.4 Symmetrised trace calculations

As we have seen, it is possible to view the fuzzy sphere matrices Xi as the transverse
coordinates of the world-volume theory of a stack of D1-branes expanding into a stack of
D(2k + 1)-branes. There is also a dual realisation of this system in which the D1-branes
appear as a monopole in the world-volume theory of the D(2k + 1)-brane. One can use
the ADHM construction to construct the Monopole dual to the fuzzy sphere transverse
coordinates. If one takes the N(k, n)-dimensional fuzzy sphere matrices representing a
stack of N(k, n) D1-branes as ADHM data for a monopole then one naturally constructs a
monopole defined on a stack of N(k − 1, n + 1) D(2k + 1)-branes. Reassuringly when you
then calculate the charge of the monopole you have just constructed you get the answer
N(k, n). This is a nice consistency check of the ADHM construction.

As demonstrated in the last section, it is also possible to calculate the charge of the
fuzzy sphere transverse coordinates, by looking at the RR coupling, but in this case you do
not get N(k − 1, n+ 1) as you would hope,

number of D(2k + 1)-branes = N(k − 1, n+ 1)
∏2k−1

i=1 (n+ i)

ck−
1
2

(4.67)

but there is agreement for the first two orders in the large n expansion:

number of D(2k + 1)-branes = N(k − 1, n+ 1)
[
1 +O

( 1
n2

)]
(4.68)

We now consider this RR charge calculation more carefully. First we consider the
k = 1 case. Based on the ADHM construction we expect the number of D3-branes to be
N(0, n+ 1)=1. However, equation (4.67) suggests:

number of D3-branes =
n+ 1

c
1
2

(4.69)

Suppose that the numerator in the above is correct, but that the denominator is correct only
at large n and that it receives corrections at lower order to make the number of D3-branes
exactly one. Then these corrections need to satisfy:

1 = (n+ 1)(c−
1
2 + x1c

− 3
2 + x2c

− 5
2 + · · · ) (4.70)

It is easy to show that we need x1 = −1
2 and x2 = 3

8 , by Taylor expanding and using that
c = n(n+ 2) for k = 1. Therefore, we would like to have a group theoretic justification for
the series:

c−
1
2 − 1

2
c−

3
2 +

3
8
c−

5
2 + · · · (4.71)

There exists a formula for the first three terms in the large n expansion of the k = 1
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symmetrised trace operator [140], namely

1
N(1, n)

Str(XiXi)m = cm− 2
3
m(m−1)cm−1+

2
45
m(m−1)(m−2)(7m−1)cm−2+ · · · (4.72)

Now, if we make the choice m=−1
2 in (4.72) we get precisely (4.71). However, this suggests

that if this choice is correct, then we should have an all orders prediction for the action of
the symmetrised trace operator. Thus, for k=1 we predict that

1
N(1, n)

Str(XiXi)m
∣∣∣
m=− 1

2

' 1
(n+ 1)

(4.73)

where for future reference we consider the left hand side to be equal to the symmetrised
trace in a large-n series expansion, as appeared in [140].

Checking the conjecture (4.73) beyond the first three terms in a straightforward fashion,
by techniques similar to those employed in [140], proves difficult. This involves either adding
up a large number of chord diagrams, or complicated combinatorics if one uses the highest
weight method.

An alternative approach involves first writing down the conjecture based on brane count-
ing for general k, since the methods of [140] turn out to generalise from the k = 1 to the
general k case. The conjecture for general k, based on the brane counting, follow immedi-
ately from (4.67) is:

1
N(k, n)

Str(XiXi)m
∣∣∣
m=−k+ 1

2

'
2k−1∏

i=1

1
(n+ i)

(4.74)

Note that the right hand side of this equation appears in the factor outside the sum in
(4.100) and (4.101). Notice also that the above expression concerns the large n expansion
of the symmetrised trace considered at m = −k + 1

2 .

One can then repeat the k = 1 calculation of [140] for general k, to check the first
three terms of this conjecture. The details of these chord diagram calculations appear in
the next section. We first calculated Str(XiXi)m for m = 2, 3, 4. Then we find the first
three terms in the symmetrised trace, large n expansion using these results. We can check
that the conjecture (4.74) is true for the first three terms in the symmetrised trace large n
expansion, for general k as well as for k = 1.

As the first three terms of (4.74) matched for general k, we then performed the long
calculation to check the fourth term in the expansion, for general k. This calculation involves
evaluating Str(XiXi)m for m = 5, 6. The result of this calculation shows that there is also
agreement for the fourth term in the large n expansion of (4.74).
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4.4.1 Chord diagram calculations

In this section we calculate the Str(XiXi)m quantity for m=1, 2, 3, 4, 5, 6. The fuzzy two-
sphere case k = 1 appeared in [140] for m = 1, 2, 3, 4. Just as in [140] it is convenient to
summarise the algebra involved in these calculation using chord diagrams. Chord diagrams
are constructed from the following vertex description of a matrix.

(Xi)ab =
a b

i

Where i = 1, . . . , 2k+ 1 and a, b = 1, . . . , N . The chord diagrams are then made by joining
legs corresponding to the the summed indices of the matrices. The circle round the outside
of a chord diagram joins up the a, b type indices and the chords across the circle join i, j

type indicies. The simplest example of a chord diagram is the one with a single chord.

&%

'$r

r
= tr(XiXi) = cN (4.75)

To calculate Str(XiXi)m we need to calculate the chord diagrams with m chords. For
m=2 there are just two of these diagrams. The simplest chord diagram with two chords is
given by:

&%

'$r

r

r

r
= tr (XiXiXjXj) = c2N (4.76)

To evaluate the other chord diagram with two chords the following identity is useful:

[Xi, Xj ]Xj = 4kXi (4.77)

The second chord diagram with two chords is given by:

&%

'$r

r
rr = tr (XiXjXiXj)

= tr (XiXi, XjXj)− tr (Xi[Xi, Xj ]Xj)

= c2N − 4k tr (XiXi)

= c2N − 4kcN

= c(c− 4k)N (4.78)

Finally we need to find the multiplicity with which each chord diagram appears in the
quantity Str(XiXi)m. Using the cyclic property of the trace we do not have to consider the
full set of (2m)! permutations of 2m objects, but we can just consider strings of numbers
which contain the numbers (1, 1, 2, 2, 3, 3, . . . ,m,m) with a special type of ordering. For a
given m, one writes down strings working from left to right using the rule that one is not
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allowed to write down the first copy of the number j until at least one copy of each of the
numbers less than j has been written down. For m = 2 the set of these strings is:

{(1122), (1212), (1221)} (4.79)

These strings of numbers are turned into chord diagrams by writing the numbers in the
string round the outer circle of the chord diagram and joining the two copies of each number
with a chord. The first string (1122) corresponds to the chord diagram (4.76). The second
string (1212) corresponds to chord diagram (4.78) and the final string (1221) corresponds
to another copy of the first chord diagram (4.76). Thus we have

1
N

Str(XiXi)2 =
1
N

(
2
3

&%

'$r

r

r

r
+

1
3

&%

'$r

r
rr
)

=
1
N

(
2
3
c2N +

1
3
(c− 4k)cN

)

= c2 − 4
3
kc (4.80)

For k = 1 this is in agreement with the calculations of [140].

The calculation of Str(XiXi)m rapidly increases in complexity asm increases. Form = 3
there are 5 different chord diagrams.

&%

'$r
r

r
r

r r
,

&%

'$r

r

r

r

r

r
,

&%

'$r

r

r

r
r

r
,

&%

'$
rr

r

r

r

r
,

&%

'$r

r

r
r

"
"

"" r
r
b

b
bb

(4.81)

The first two diagrams are easily evaluated

&%

'$r
r

r
r

r r
=

&%

'$r

r

r

r

r

r
= c3

The third and fourth diagrams are evaluated using the identity (4.77):

&%

'$r

r

r

r
r

r
= c

&%

'$r

r
rr = c2(c− 4k) ,

&%

'$
rr

r

r

r

r
= (c− 4k)

&%

'$
rr

r

r
= c(c− 4k)2

To evaluate the final chord diagram we use the identity:

[Xk, [Xi, Xj ]] = 4(δkiXj − δkjXi) (4.82)

We evaluate the final star shaped chord diagram using the string of numbers notation

123123 = [1, 2]3123 + 213123

= [[1, 2], 3]123 + 3[1, 2]123 + 213123

= 4× (1122− 2121) + 312123− 321123 + 213123 (4.83)

118



CHAPTER 4. THE ADHM CONSTRUCTION AND D-BRANE CHARGES

In chord diagram notation the previous relation is:

&%

'$r

r

r
r

"
"

"" r
r
b

b
bb

= 4

&%

'$r

r

r

r
− 4

&%

'$
rr

r

r
+

&%

'$r

r

r

r
r

r
−

&%

'$r

r

r

r

r

r
+

&%

'$r

r

r

r
rr

= c3 − 12kc2 + 16k(k + 1)c

We now calculate the multiplicity of these 5 chord diagrams in the Str(XiXi)3. This involves
the following 15 strings.

{(112233), (112323), (112332), (121233), (121323),

(121332), (122133), (122313), (122331), (123123),

(123132), (123231), (123213), (123312), (123321)} (4.84)

Putting these calculations together yields the answer to 1
N Str(XiXi)3 :

=
1
N

(
2
15

&%

'$r
r

r
r

r r
+

6
15

&%

'$r

r

r

r
r

r
+

3
15

&%

'$r

r

r

r

r

r
+

3
15

&%

'$
rr

r

r

r

r
+

1
15

&%

'$r

r

r
r

"
"

"" r
r
b

b
bb

)

= c3 − 4kc2 +
16
15
k(4k + 1)c (4.85)

For m=4 the calculation is much more tricky as there are 105 different strings and 18
different chord diagrams3. 11 of the 18 chord diagrams have one chord which does not cross
any of the others. The contribution to Str(XiXi)4 from these diagrams is given by:

=
2

105
&%

'$r r r
rrrr

r
+

8
105

&%

'$rr
r r

r

r
r

r
+

8
105

&%

'$rr
r r

r

r

r
r +

8
105

&%

'$
r
r

r
rr

rr
r

+
8

105
&%

'$
r
r

r
rr

r
r

r
+

8
105

&%

'$
r
r

r

r

r

rr

r
+

8
105

&%

'$
r
r

r

r

r

r
r

r
+

8
105

&%

'$
r
r

r

r

r

r
r

r

+
8

105
&%

'$
r
r

r

r r

rr

r +
4

105
&%

'$
r
r

r

r

T
T
TTr

r
·

·
··

r
r +

4
105

&%

'$
r
r

r

r

r

r

r
r

=
14
105

c4 +
28
105

c2

&%

'$r

r
rr +

24
105

c

&%

'$
rr

r

r

r

r
+

8
105

c

&%

'$r

r

r
r

"
"

"" r
r
b

b
bb

(4.86)

There are 4 chord diagrams in which all the chords cross at least one other chord, but
there is at least one chord that crosses just a single other chord. These 4 diagrams can

3Thanks to Simon Nickerson for a computer program that computes the multiplicities of the various
chord diagrams in the quantity Str(XiXi)

m
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be simplified using the identity (4.77). The contribution to Str(XiXi)4 from these 4 chord
diagrams is given by:

=
4

105
&%

'$r

r
r

r

r

r
r

r
+

8
105

&%

'$r

r

r

r
r

r r
r+ 8

105
&%

'$r

r

r

r

r

rr r
+

4
105

&%

'$r

r

r

r

r

r
r r

= (c− 4k)

(
4

105
&%

'$r

r

r

r
r

r
+

8
105

&%

'$
rr

r

r

r

r
+

8
105

&%

'$
r

r
b

b
bb

r

r
r

r
"

"
""

+
4

105
&%

'$
rr

r

r

r

r

)
(4.87)

The 3 remaining chord diagrams can be evaluated using (4.82)

&%

'$r

r

r

r

r
r

b
b

bb

r
r

"
"

""
= 12314234

= [1, 2]314234 + 21314234

= [[1, 2], 3]14234 + 3[1, 2]14234 + 21314234

= 4× (114224− 214214) + 31214234− 32114234

= 4

&%

'$
r

r
b

b
bb

r

r

r
r

"
"

""
− 4

&%

'$r

r

r

r

r

r
+

&%

'$r

r

r

r
r

r r
r−

&%

'$r

r

r

r

r

r
r

r
+

&%

'$r

r

r

r

r

rr r
= 4c3 + (c− 4(k + 1))(c3 − 12kc2 + 16k(k + 1)c)− 4kc(c− 4k)2

&%

'$r

r

r

r

r r
r r = 12314324

= [1, 2]314324 + 21314324

= [[1, 2], 3]14324 + 4[1, 2]14324 + 21314324

= 4× (114224− 214124) + 31214324− 32114324 + 21314324

= 4

&%

'$r

r

r

r

r

r
− 4

&%

'$r

r

r

r
r r+

&%

'$r

r

r

r

r

rr r
−

&%

'$r

r

r

r

r

r

r

r
+

&%

'$r

r

r

r
r

r
r

r
= 4c3 − 4k(c3 − 12kc2 + 16k(k + 1)c) + c(c− 4(k + 1))(c− 4k)2

&%

'$r

r

T
T
TT

r

r

r

r

·
·

··

rr = 12341234

= [1, 2]341234 + 21341234

= [[1, 2], 3]41234 + 3[1, 2]41234 + 21341234

= 4× (141224− 241214) + 31241234− 32141234 + 21341234

= 4

&%

'$r

r

r

r
r

r
− 4

&%

'$r

r

r

r
r r+

&%

'$r

r

r

r

r

r r r
−

&%

'$r

r

r

r

r

r
r r+

&%

'$r

r

r

r

r
r

b
b

bbr
r

"
"

""

= 96kc2 − 256ck2 − 24kc3 + c4 + 112c2k2 − 128ck3 − 64ck

These last 3 chord diagrams appear in the quantity Str(XiXi)4 with multiplicity 4
105 , 2

105

and 1
105 respectively.
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The final answer for m=4 is:

1
N

Str(XiXi)4 = c4 − 8kc3 +
16
5
k(7k + 2)c2 − 64

105
k(34k2 + 24k + 5)c (4.88)

The cases m=5, 6 are very long calculations. Instead of presenting the details we just
present the answers4. For m = 5 there are 945 different strings and 105 different chord
diagrams.

1
N

Str(XiXi)5 = c5

−40
3
kc4

+
16
3

(13k + 4)kc3

−64
63

(158k2 + 126k + 31)kc2

+
256
945

(496k3 + 672k2 + 344k + 63)kc (4.89)

For m=6 there are 10395 different strings and 902 different chord diagrams.

1
N

Str(XiXi)6 = c6

−20kc5

+
16
3

(31k + 10)kc4

−64
63

(677k2 + 582k + 157)kc3

+
256
315

(1726k3 + 2616k2 + 1541k + 336)kc2

− 1024
10395

(11056k4 + 24256k3 + 22046k2 + 9476k + 1575)kc (4.90)

4.4.2 The large n expansion of Str(XiXi)
m

In this section we use the results of the previous section for specific values of m to calculate
the first four terms in the large n expansion of Str(XiXi)m for arbitrary m. The first three
terms in the large n expansion of Str(XiXi)m for arbitrary m and k = 1 appeared in [140].
The fourth term in the large n expansion and the generalisation of all these terms to k > 1
which are calculated here are new results.

We guess that the coefficient of cm−i term in Str(XiXi)m is a polynomial in m of order
2i, but we cannot prove this. If this is true, then we have the following simple anzatz
involving polynomials where there are some known factors and some unknown factors. The

4Thanks to Simon Nickerson for a computer program that writes many of the six chord diagrams in terms
of five chord diagrams
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known factors in these polynomials come from the fact that the series has to terminate
so that there are never negative powers of c for m = 1, 2, 3, . . . The remaining unknown
functions of k can then be found using the results from the last section of Str(XiXi)m for
m = 1, 2, 3, 4, 5, 6.

1
N
Str(XiXi)m = cm

+y1(k)m(m− 1)cm−1

+
(
y2(k)m+ y3(k)

)
m(m− 1)(m− 2)cm−2

+
(
y4(k)m2 + y5(k)m+ y6(k)

)
m(m− 1)(m− 2)(m− 3)cm−3

+O(cm−4)

We now find the unknown functions y1(k), y2(k) . . . y6(k) using the results of Str(XiXi)m

for m = 2, 3, 4, 5, 6 calculated in the previous section. The answer for Str(XiXi)2 in (4.80)
gives an equation for the unknown function y1(k).

y1(k) = −2
3
k (4.91)

The calculations of Str(XiXi)m for m = 3, 4 give 2 equations for the unknowns y2(k) and
y3(k).

O(c1) term in (4.85) 3!(3y2 + y3) = 16
15k(4k + 1)

O(c2) term in (4.88) 4!(4y2 + y3) = 16
5 k(7k + 2)

The solution is

(
y2

y3

)
=

(
3 1
4 1

)−1 (
8
45(4k + 1)k
2
15(7k + 2)k

)

=
2
45

(
(5k + 2)k
(k − 2)k

)
(4.92)

The calculation of Str(XiXi)m form = 4, 5, 6 gives 3 equations for the unknowns y4(k), y5(k)
and y6(k).

O(c) term in (4.88) 4!(16y2
4 + 4y5 + y6) = − 64

105(34k2 + 24k + 5)k
O(c2) term in (4.89) 5!(25y2

4 + 5y5 + y6) = −64
63(158k2 + 126k + 31)k

O(c3) term in (4.90) 6!
2 (36y2

4 + 6y5 + y6) = −64
63(677k2 + 582k + 157)k

So we need to calculate:




y4

y5

y6


 =




16 4 1
25 5 1
36 6 1




−1 


− 8
315(34k2 + 24k + 5)k

− 8
945(158k2 + 126k + 31)k

− 8
2835(677k2 + 582k + 157)k
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The solution is 


y4

y5

y6


 =

1
2835




(−140k2 − 168k − 64)k
(−84k2 + 216k + 192)k
(128k2 + 96k − 104)k


 (4.93)

It is now easy to check the original conjecture (4.74). The left hand side of (4.74) involves
the large n expansion of Str(XiXi)m evaluated at m = −k + 1

2 . Thus, the first three terms
in the left had side of (4.74) are:

1
N

Str(XiXi)m
∣∣∣
m=−k+1/2

= c−k+ 1
2

∞∑

j=0

fj

cj

where the coefficients f1, f2 and f3 are given explicitly by:

f1 = y1(k)m(m− 1)
∣∣∣
m=−k+ 1

2

= −2
3
k
(
k − 1

2

)(
k +

1
2

)

f2 =
(
y2(k)m+ y3(k)

)
m(m− 1)(m− 2)

∣∣∣
m=−k+ 1

2

=
1
45

(10k2 − 3k + 2)k
(
k − 1

2

)(
k +

1
2

)(
k +

3
2

)

f3 =
(
y4(k)m2 + y5(k)m+ y6(k)

)
m(m− 1)(m− 2)(m− 3)

∣∣∣
m=−k+ 1

2

=
1

2835
(−24 + 34k − 61k2 + 56k3 − 140k4)

×
(
k − 1

2

)(
k +

1
2

)(
k +

3
2

)(
k +

5
2

)
(4.94)

To check (4.74) we must expand the right hand side of (4.74) as a function of c:

2k−1∏

l=1

1
n+ l

=
1√

(k2 + c)

k−1∏

l=1

1
c+ 2kl − l2

= c−k+ 1
2

∞∑

j=0

gj

cj
(4.95)

where the coefficients gj are easily calculated and given by:

g1 = −2
3
k
(
k − 1

2

)(
k +

1
2

)

g2 =
1
45

(10k2 − 3k + 2)k
(
k − 1

2

)(
k +

1
2

)(
k +

3
2

)

g3 =
1

2835
(−24 + 34k − 61k2 + 56k3 − 140k4)

×k
(
k − 1

2

)(
k +

1
2

)(
k +

3
2

)(
k +

5
2

)
(4.96)

Thus there is precise agreement between the coefficients fj in and gj , so equation (4.74)
holds for the first three terms.
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4.4.3 An exact formula for the symmetrised trace

The simple answer for the symmetrised trace in (4.74) is totally hidden by the complexity of
the chord diagram calculations. This suggested that the general formula for the symmetrised
trace could also be simple. By looking at the result of Str(XiXi)m for m = 1, 2, 3, 4, 5, 6
calculated in the previous section and setting k = 1 it is easy to come up with a simple
guess for the answer:

1
N

Str(XiXi)m =





2(2m+ 1)
n+ 1

n
2∑

i=1

(2i)2m for n even

2(2m+ 1)
n+ 1

n+1
2∑

i=1

(2i− 1)2m for n odd

(4.97)

Unfortunately we have been unable to prove this formula. However, this formula agrees with
the chord diagram calculations from the last chapter which is a good check. The existence
of a systematic construction of the symmetrised trace was anticipated on page 9 of [104].

The formula (4.97) is remarkable because, for example, it reduces the long calculations
of the large n expansion in [140] and the last section of this thesis to a very simple expansion
based on the Euler Maclaurin formula. The Euler Maclarin formula approximates a sum
by an integral, plus an infinite series of corrections involving the Bernoulli numbers B2i:

p∑

i=1

f(i) =
∫ p+1

0
dx f(x)− 1

2

(
f(p+ 1) + f(0)

)

+
j∑

i=1

1
(2i)!

B2i

(
f (2i−1)(p+ 1)− f (2i−1)(0)

)

− 1
(2j)!

∫ 1

0
dxB2j(x)

p∑

ν=0

f (2j)(x+ ν) (4.98)

We now use this formula and the guess (4.97) to calculate the large n expansion of the
symmetrised trace:

1
N

Str(XiXi)m =
n2m+1

n+ 1

[(
1 +

2
n

)2m+1
− (2m+ 1)

1
n

(
1 +

2
n

)2m

+
1
3
(2m+ 1)(2m)

1
n2

(
1 +

2
n

)2m−1

− 1
45

(2m+ 1)(2m)(2m− 1)(2m− 2)
1
n4

(
1 +

2
n

)2m−3
+ · · ·

]

(4.99)

This expansion in n can easily be rewritten in terms of c = n(n + 2k) to reproduce the

124



CHAPTER 4. THE ADHM CONSTRUCTION AND D-BRANE CHARGES

functions yi(k), which were calculated in the last section. Calculating the terms of the
expansion in this way is far simpler than performing the chord diagram calculations. The
agreement of the answer (4.99) with the chord diagram answer is convincing evidence that
the guess (4.97) is true.

This success of the guess (4.97) for the case k = 1 led the following guess for k ≥ 1 .
The formula for the symmetrised trace for all m, k and n even is:

1
N

Str
(
XiXi)m =

2k
∏k

i1=1(2m− 1 + 2i1)

(k− 1)!
∏2k−1

i2=1 (n + i2)

n
2∑

i3=1

[ k−1∏

i4=1

((n
2

+ i4
)2
− i23

)
(2i3)2m

]
(4.100)

where the k = 1 case is given above (in this case the product over i4 = 1, . . . , k − 1 is just
defined to be the number 1).

Similarly for all m, k and n odd we have:

1
N

Str
(
XiXi)m =

2k
∏k

i1=1(2m− 1 + 2i1)

(k− 1)!
∏2k−1

i2=1 (n + i2)

n+1
2∑

i3=1

[ k−1∏

i4=1

((n
2

+ i4
)2
−

(
i3 − 1

2

)2)
(2i3 − 1)2m

]

(4.101)

This formula can again be checked against the chord diagram calculations. In the next
chapter we will use the formula (4.97) to study the collapse of a fuzzy spheres.
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CHAPTER 5

FINITE N EFFECTS ON THE COLLAPSE OF

FUZZY SPHERES

5.1 Introduction

A new formula for the symmetrised trace was presented in the last Chapter. In this chapter
we use this new formula to study the finite n effects on the collapse of a spherical bound
state of D0-branes described by a fuzzy sphere. The symmetrised trace prescription for the
non-Abelian action of multiple D0-branes was proposed in [141] and extended to include
background RR fluxes in [109]. An interesting time dependent system, in which the need
for an exact prescription arises, is a spherical bound state of N D0-branes with a spherical
D2-brane, for finite values of N . This can be studied both from the point of view of the
Abelian D2 DBI action and the non-Abelian D0-DBI action. The latter configuration also
has an M-theory analogue, that of a time dependent spherical M2-brane, which has been
studied in the context of matrix theory [143,144]. In [140] it was shown that the D0-brane
construction, based on the fuzzy 2-sphere, agrees with the Abelian D2-construction at large
N . 1/N corrections coming from the symmetrised trace and a finite N example were also
studied. Here we develop further the study of finite N . The need for the non-linear DBI
action as opposed to the Yang-Mills limit of the lower dimensional brane was recognised in
a spatial D1 ⊥ D3 analog of the D0−D2 system [104].

In this chapter we extend the calculation of symmetrised traces from the spin half
example of [140] to general representations of SO(3). These results allow us to study in
detail the finite N physics of the time-dependent fuzzy two-sphere. We begin our finite N
analysis with a careful discussion on how to extract the physical radius from the matrices of
the non-Abelian ansatz. The standard formula used in the Myers effect isR2 = Tr(ΦiΦi)/N .
Requiring consistency with a constant speed of light, independent of N , leads us to propose
an equation in section 5.2, which agrees with the standard formula in large N commutative
limits, but disagrees in general. Section 5.3 gives finite N formulae for the energy and
Lagrangian of the time-dependent fuzzy two-sphere. We also give the conserved pressure
which is relevant for the D1 ⊥ D3 system. In section 4, we study the time of collapse as a
function of N . In the region of large N , for fixed initial radius R0, the time decreases as
N decreases. However, at some point there is a turn-around in this trend and the time of
collapse for spin half is actually larger than at large N . We also investigate the quantity

126



CHAPTER 5. FINITE N EFFECTS ON THE COLLAPSE OF FUZZY SPHERES

E2 − p2, where E is the energy and p the momentum. This quantity is of interest when we
view the time-dependent D-brane as a source for space-time fields. E is the T 00 component
of the stress tensor, and p is the T 0r component as we show by a generalisation of arguments
previously used in the context of BFSS matrix theory. For the large N formulae, E2 − p2

is always positive. At finite N , this can be negative, although the speed of radial motion is
less than the speed of light. Given the relation to the stress tensor, we can interpret this
as a violation of the dominant energy condition. The other object of interest is the proper
acceleration along the trajectory of a collapsing D2-brane. We find analytic and numerical
evidence that there are regions of both large R and small R, with small and relativistic
velocities respectively, where the proper accelerations can be small. This is intriguing since
the introduction of stringy and higher derivative effects in the small velocity region can
be done with an adiabatic approximation, but it is interesting to consider approximation
methods for the relativistic region.

In section 5.5, we discuss the higher fuzzy sphere case [115,116,118,145–149]. We give a
general formula for STr(XiXi)m, in general irreducible, representations of SO(2k+1). This
formula is motivated by some considerations surrounding D-brane charges and the ADHM
construction, which were discussed in more detail in the previous chapter. This allows us a
partial discussion of finite N effects for higher fuzzy spheres. We are able to calculate the
physical radius following the argument of section 5.2; however, in general one needs other
symmetrised traces involving elements of the Lie algebra SO(2k + 1).

The symmetrised trace prescription, which we study in detail in this paper, is known to
correctly match open string calculations up to the first two orders in an α′ expansion, but
the correct answer deviates from the (α′)3 term onwards [150–153]. It is possible however
that for certain special symmetric background configurations, it may give the correct physics
to all orders. The D-brane charge computation discussed in the last chapter can perhaps
be viewed as a possible indication in this direction. In any case, it is important to study the
corrections coming from this prescription to all orders, in order to be able to systematically
modify it, if that becomes necessary when the correct non-Abelian D-brane action is known.
Conversely the physics of collapsing D-branes can be used to constrain the form of the non-
Abelian Dirac-Born-Infeld action.

5.2 Lorentz invariance and the physical radius

We will study the collapse of a cluster of N D0-branes in the shape of a fuzzy S2k, in
a flat background. This configuration is known to have a large-N dual description in
terms of spherical D(2k) branes with N units of flux. The microscopic D0 description
can be obtained from the non-Abelian action for a number of coincident branes, proposed
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in [109,141]

S0 = − 1
gs`s

∫
dt STr

√
−det(M) , (5.1)

where

M =

(
−1 λ∂tΦj

−λ∂tΦi Qij

)
. (5.2)

Here a, b are world-volume indices, the Φ’s are world-volume scalars, λ = 2π`2s and

Qij = δij + iλ[Φi,Φj ] . (5.3)

We will consider the time dependent ansatz

Φi = R̂(t)Xi , (5.4)

The Xi are matrices obeying some algebra. The part of the action that depends purely on
the time derivatives and survives when R̂ = 0 is

SD0 =
∫
dtSTr

√
1− λ2(∂tΦi)2 =

∫
dtSTr

√
1− λ2(∂tR̂)2XiXi . (5.5)

For the fuzzy S2, the Xi = αi, for i = 1, 2, 3, are generators of the irreducible spin n/2
matrix representation of su(2), with matrices of size N = n+ 1. In this case the algebra is

[αi, αj ] = 2iεijkαk (5.6)

and following [140], the action for N D0-branes can be reduced to

S0 = − 1
gs`s

∫
dt STr

√
1 + 4λ2R̂4αiαi

√
1− λ2(∂tR̂)2αiαi . (5.7)

If we define the physical radius using

R2
phys = λ2 lim

m→∞
STr(ΦiΦi)m+1

STr(ΦiΦi)m
= λ2R̂2 lim

m→∞
STr(αiαi)m+1

STr(αiαi)m
, (5.8)

we will find that the Lagrangian will be convergent for speeds between 0 and 1. The radius
of convergence will be exactly one - this follows by applying the ratio test to the series
expansion of

STr

√
1− λ2 ˙̂

R2αiαi , (5.9)

where a dot indicates differentiation with respect to time. This leads to

R2
phys = λ2R̂2n2 . (5.10)
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Using explicit formulae for the symmetrised traces we will also see that, with this definition
of the physical radius, the formulae for the Lagrangian and energy will have a first singularity
at Ṙphys = 1. In the large n limit, the definition of physical radius in (5.10) agrees with [109],
where Rphys is defined by R2

phys = 1
N TrΦiΦi. Note that this definition of the physical

radius will also be valid for the higher dimensional fuzzy spheres, and more generally in any
matrix construction, where the terms in the non-Abelian DBI action depending purely on

the velocity, are of the form
√

1− λ2XiXi(∂tR̂)2.

In what follows, the sums we get in expanding the square root are conveniently written
in terms of r, s, defined by r4 = 4λ2R̂4 and s2 = λ2 ˙̂

R2. It is also useful to define

L2 =
λn

2
,

r̂2 =
R2

phys

L2
= r2n,

ŝ2 = s2n2 . (5.11)

The r̂ and ŝ variables approach the variables called r, s in the large n discussion of [140].
Note, using (5.10), that

Ṙ2
phys = s2n2 = ŝ2 (5.12)

5.3 The fuzzy S2 at finite n

For the fuzzy S2, the relevant algebra is that of su(2), equation (5.6) above. We also have
the Casimir

c = αiαi = (N2 − 1) ,

where the last expression gives the value of the Casimir in the N -dimensional representation
where N = n+ 1, and n is related to the spin J by n = 2J .

We present here the result of the full evaluation of the symmetrised trace for odd n

C(m,n) ≡ 1
n+ 1

STr(αiαi)m =
2(2m+ 1)
n+ 1

(n+1)/2∑

i=1

(2i− 1)m , (5.13)

whilst for even n

C(m,n) ≡ 1
n+ 1

STr(αiαi)m =
2(2m+ 1)
n+ 1

n/2∑

i=1

(2i)m . (5.14)

For m = 0 the second expression doesn’t have a correct analytic continuation and we will
impose the value STr(αiαi)0 = 1. The expression for C(m, 1) was proved in [140]. A
proof of (5.14) for n = 2 is given in Appendix C. The general formulae given above are
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conjectured on the basis of various examples, together with arguments related to D-brane
charges. These were given in the last chapter. There is also a generalisation to the case of
higher dimensional fuzzy spheres, described in section 5.6.

We will now use the results (5.13), (5.14), to obtain the symmetrised trace corrected
energy for a configuration of N time dependent D0-branes blown up to a fuzzy S2. The
reduced action (5.7) can be expanded to give

L = −STr
√

1 + 4λ2R̂4αiαi

√
1− λ2 ˙̂

R2αiαi

= −STr
√

1 + r4αiαi

√
1− s2αiαi (5.15)

= −STr
∞∑

m=0

∞∑

l=0

s2mr4l(αiαi)m+l

(
1/2
m

)(
1/2
l

)
(−1)m . (5.16)

The expression for the energy then follows directly -

E = −STr
∞∑

m=0

∞∑

l=0

s2mr4l(2m− 1)(αiαi)m+l

(
1/2
m

)(
1/2
l

)
(−1)m, (5.17)

and after applying the symmetrised trace results given above we get the finite-n corrected
energy for any finite-dimensional irreducible representation of spin-n

2 for the fuzzy S2.

For n = 1, 2 one finds

1
2
En=1(r, s) =

1 + 2r4 − r4s2√
1 + r4(1− s2)3/2

, (5.18)

1
3
En=2(r, s) =

2
3

(1 + 8r4 − 16r4s2)√
1 + 4r4(1− 4s2)3/2

+
1
3
. (5.19)

We note that both of these expressions provide equations of motion which are solvable by
solutions of the form r̂ = t.

For the case of general n, it can be checked that the energy can be written

En(r, s) =

n+1
2∑

l=1

2− 2(2l − 1)2r4((2l − 1)2s2 − 2)√
1 + (2l − 1)2r4(1− (2l − 1)2s2)3/2

, (5.20)

for n-odd, while for n even

En(r, s) = 1 +

n
2∑

l=1

2− 2(2l)2r4((2l)2s2 − 2)√
1 + (2l)2r4(1− (2l)2s2)3/2

. (5.21)
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Equivalently, the closed form expression for the Lagrangian for n-odd is

Ln(r, s) = −2

n+1
2∑

l=1

1− 2(2l − 1)2s2 + (2l − 1)2r4(2− 3(2l − 1)2s2)√
1 + (2l − 1)2r4

√
1− (2l − 1)2s2

, (5.22)

whilst for n-even

Ln(r, s) = −1− 2

n
2∑

l=1

1− 2(2l)2s2 + (2l)2r4(2− 3(2l)2s2)√
1 + (2l)2r4

√
1− (2l)2s2

. (5.23)

It is clear from these expressions that the equations of motion in the higher spin case will
also admit the r̂ = t solution. Note that, after performing the rescaling to physical variables
(5.11) and (5.12), these energy functions and Lagrangians have no singularity for fixed r,
in the region 0 ≤ Ṙphys ≤ 1. As s increases from 0 the first singularity is at s = 1

n , which
corresponds to ŝ = Ṙphys = 1. In this sense they are consistent with a fixed speed of
light. However, they do not involve, for fixed r, the form

√
dt2 − dr2 and hence do not have

an so(1, 1) symmetry. It will be interesting to see if there are generalisations of so(1, 1),
possibly involving non-linear transformations of dt, dr, which can be viewed as symmetries.

5.3.1 The D1 ⊥ D3 intersection at finite-n

The static D1 ⊥ D3 system consists of a set of N D-strings ending on an orthogonal
D3 [104]. Far away from the intersection, the valid description is in terms of the non-abelian
D1-brane worldvolume action, describing a funnel of increasing fuzzy-S2 cross-section. The
abelian D3 worldvolume picture is valid close to the intersection, describing a BPS magnetic
monopole with its Higgs field interpreted as an infinite spike transverse to the brane. In
the large-N limit the two descriptions overlap significantly.

The relationship between the microscopic descriptions of the time dependent D0−D2
system and the static D1 ⊥ D3 intersection was established in [154]. In that paper, the
large-n behaviour of both systems was described by a genus one Riemann surface, which is a
fixed orbit in complexified phase space. This was done by considering the conserved energy
and pressure and complexifying the variables r and ∂r = s respectively. Conservation of
the energy-momentum tensor then yielded elliptic curves in r, s, involving a fixed parameter
r0, which corresponded to the initial radius of the configuration. The actions for the two
systems were related by a Wick rotation.

We can apply the symmetrised trace formula to also get exact results for the corrected
pressure of the fuzzy-S2 funnel configuration at finite-n. For our system we simply display
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the general result and the first two explicit cases

P = STr
∞∑

m=0

∞∑

l=0

s2mr4l(2m− 1)(αiαi)m+l

(
1/2
m

)(
1/2
l

)
(5.24)

1
2
Pn=1(r, s) = − 1 + 2r4 + r4s2√

1 + r4(1 + s2)3/2
(5.25)

1
3
Pn=2(r, s) = −2

3
(1 + 8r4 + 16r4s2)√
1 + 4r4(1 + 4s2)3/2

− 1
3
. (5.26)

Note that the above formulae are related to the energies in (5.18) and (3.7) by a Wick
rotation s → is. Similar results to those for the time dependent case hold for the exact
expression of the pressure for the general spin-n

2 representation. Note again that these
expressions will provide equations of motion which are solved by solutions of the form
r̂ = 1/σ, where σ is the spatial D1 worldvolume coordinate. An easy way to see this is to
substitute s2 = r4 in (5.25), (5.26), to find that the pressures becomes independent of r and
s. Since the higher spin results for the pressure are sums of the n = 1 or n = 2 cases, the
argument extends.

5.3.2 Finite N dynamics as a quotient of free multi-particle dynamics

Using the formulae above, we can see that the fuzzy S2 energy for general n is determined
by the energy at n = 1. In the odd n case

C(m,n) =
2

n+ 1
C(m, 1)

n+1
2∑

i3=1

(2i3 − 1)2m =
2

n+ 1
(2m+ 1)

n+1
2∑

i3=1

(2i3 − 1)2m .

Using this form for C(m,n) in the derivation of the energy, we get

En(r, s) =

n+1
2∑

i3=1

En=1

(
r
√

(2i3 − 1) , s(2i3 − 1)
)
. (5.27)

Similarly, in the even n case, we find

En(r, s) =

n
2∑

i3=1

En=2(r
√
i3 , s(i3)) . (5.28)

It is also possible to write C(m, 2) in terms of C(m, 1) as (for m 6= 0)

C(m, 2) =
22m+1

3
C(m, 1) =

22m+1

3
(2m+ 1) . (5.29)
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Thus we can write En(r, s), for even n, in terms of the basic En=1(r, s) as

En(r, s) = 1 +

n
2∑

i3=1

En=1(r
√

(2i3) , s(2i3)) . (5.30)

These expressions for the energy of spin n/2 can be viewed as giving the energy in terms
of a quotient of a multi-particle system, where the individual particles are associated with
the spin half system. For example, the energy function for (n+ 1)/2 free particles with
dispersion relation determined by En=1 is

∑
i En=1(ri, si). By constraining the particles by

ri = r
√

2i+ 1, si = s(2i+ 1) we recover precisely (5.27).

We can now use this result to resolve a question raised by [140] on the exotic bounces
seen in the Lagrangians obtained by keeping a finite number of terms in the 1/n expansion.
With the first 1/n correction kept, the bounce appeared for a class of paths involving high
velocities with γ = 1√

1−ŝ2
∼ c1/4, near the limit of validity of the 1/n expansion. The

bounce disappeared when two orders in the expansion were kept. It was clear that whether
the bounces actually happened or not could only be determined by finite n calculations.
These exotic bounces would be apparent in constant energy contour plots for r, s as a zero
in the first derivative ∂r/∂s. In terms of the energies, this translates into the presence of a
zero of ∂E/∂s for constant r. It is easy to show from the explicit forms of the energies that
these quantities are strictly positive for n = 1 and n = 2. Since the energy for every n can
be written in terms of these, we conclude that there are no bounces for any finite n. This
resolves the question raised in [140] about the fate at finite n of these bounces.

We note that the large-n limit of the formula for the energy provides us with a con-
sistency check. In the large n-limit the sums above become integrals. For the odd-n case
(even-n can be treated in a similar fashion), define x = 2i3−1

n ∼ 2i3
n . Then the sum in (5.27)

goes over to the integral

n

2

∫ 1

0
dx

2− 2x2n2r4(x2n2s2 − 2)√
1 + x2n2r4(1− x2s2)3/2

=
n
√

1 + r4n2

√
1− s2n2

. (5.31)

By switching to the r̂, ŝ parameters the energy can be written as n
√

1+r̂4√
1−ŝ2

. This matches
exactly the large n limit used in [140].

5.4 Physical properties of the finite N solutions

5.4.1 Special limits where finite n and large n formulae agree

In the above we compared the finite n formula with the large n limit. Here we consider
the comparison between the fixed n formula and the large n one in some other limits. On
physical grounds we expect some agreement. The D0 − D2 system at large r̂ and small
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velocity ŝ is expected to be correctly described by the D2 equations. These coincide with
the large n limit of the D0. In the D1 ⊥ D3 system, the large r̂ limit with large imaginary
ŝ is also described by the D3.

Such an argument should extend to the finite-n case. In [154], these systems were simply
described by a genus one Riemann surface. However, in this case the energy functions are
more complicated and the resulting Riemann surfaces are of higher genus. We still expect
the region of the finite n curve, with large r and small, real s, to agree with the same limit
of the large n curve. We also expect the region of large r and large imaginary s to agree
with large n.

For concreteness consider odd n. Indeed for large r, small s, (5.20) gives

n+1
2∑

l=1

4(2l − 1)r2 ∼ n2r2 = nr̂2 (5.32)

This agrees with the result obtained from the D2-brane Lagrangian [140] using (5.11) and
(5.12). In this limit, both the genus one curve and the high genus finite n curves degenerate
to a pair of points. Now consider the energy functions in the limit of large r̂ and large
imaginary ŝ. This is the right regime for comparison with the D1 ⊥ D3 system since this
is described, at large n and in the region of large r̂, by r̂ ∼ 1

σ . This means that r̂ is large at
small σ, where dr̂

dσ → iŝ is large. Using the Wick rotation s→ is (which takes us from the
time-dependent system to the space-dependent system)

E → P ∼ nr2

s
= n

r̂2

ŝ
, (5.33)

which agrees with the same limit of the large n curve. In this limit, both the large n genus
one curve and the finite n curves of large genus degenerate to a genus zero curve.

The agreement in (5.32) between the D0 and D2 pictures is a stringy phenomenon. It
follows from the fact that there is really one system, a bound state of D0 and D2 branes. A
boundary conformal field theory would have boundary conditions that encode the presence
of both the D0 and D2. In the large N limit, the equations of motion coming from the D0-
effective action agree with the D2-effective action description at all Rphys. This is because
at large N it is possible to specify a DBI-scaling where the regime of validity of both the
D0 and D2 effective actions extends for all Rphys. This follows because the DBI scaling has
`s → 0 [155]. Indeed it is easy to see that the effective open string metric discussed in [155]

has the property that `2sG
−1 =

`2sR2
phys

R4
phys+L4 goes to zero when N →∞ with L = `s

√
πN,Rphys

fixed. This factor `2sG
−1 controls higher derivative corrections for the open string degrees

of freedom. At finite N , we can keep `2sG
−1 small, either when Rphys ¿ L or Rphys À L.

Therefore, there are two regimes where the stringy description reduces to an effective field
theory, where higher derivatives can be neglected. The agreement holds for specified regions
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of Rphys as well as Ṙphys, because the requirement `2sG
−1 ¿ 1 is not the only condition

needed to ensure that higher derivatives can be neglected. We also require that the proper
acceleration is small. At large Rphys, the magnetic flux density is small (as well as the higher
derivatives being small) and theD2-brane without non-commutativity is a good description.
This is why the finite N equations derived from the D0-brane effective field theory agree
with the Abelian D2-picture. For small Rphys, small Ṙphys, we can also neglect higher
derivatives. This is the region where the D0-Yang-Mills description is valid, or equivalently
a strongly non-commutative D2-picture.

5.4.2 Finite N effects

We will consider the time of collapse as a function of n using the definition of the physical
radius given in section (2). In order to facilitate comparison with the large n system, we
will be using r̂, ŝ variables. To begin with, consider the dimensionless acceleration, which
can be expressed as

−ŝ∂ŝE|r̂
∂r̂E|ŝ , (5.34)

with γ = 1/
√

(1− ŝ2). As the sphere starts collapsing from r̂ = r̂0 down to r̂ = 0, the
speed changes from ŝ = 0 to a value less than ŝ = 1. It is easy to see that the acceleration
does not change sign in this region. Using the basic energy Ê = E/N from (5.18), we can
write

∂Ên=1(r̂, ŝ)
∂ŝ

= ŝ
(3(1 + r̂4) + r̂4(1− ŝ2))√

(1 + r̂4)(1− ŝ2)
5
2

,

∂Ên=1(r̂, ŝ)
∂r̂

=
2r̂3

(1 + r̂4)
3
2 (1− ŝ2)

3
2

(
(1 + r̂4) + (1− ŝ2)(2 + r̂4)

)
. (5.35)

Neither of the partial derivatives change sign in the range ŝ = 0 to 1. Hence the speed ŝ

increases monotonically. The same result is true for n > 1, since the energy functions for
all these cases can be written as a sum of the energies at n = 1.

In the n = 1 case , r̂ = r, ŝ = s. For fixed r0 the speed at r = 0 is given by

(1− s2|n=1) =
(1 + r40)

1
3

(1 + 2r40)
2
3

. (5.36)

Comparing this with the large n formula

(1− s2|n=∞) = (1 + r40)
−1, (5.37)
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it is easy to see that (
(1− s2)|n=∞
(1− s2)|n=1

)3

=
(1 + 2r40)

2

(1 + r40)4
< 1, (5.38)

which establishes that the speed at r = 0 is larger for n = ∞.

We can strengthen this result to show that the speed of collapse at all r < r0 is smaller
for n = 1 than at n = ∞. For any r < r0 we evaluate this energy function with the
speed of collapse evaluated at s2 = r4

0−r4

r4
0+1

, which is the speed at the same r in the large n

problem. Let us define F (r, r0) = Ên=1

(
r, s =

√
r4
0−r4

r4
0+1

)
. We compare this with Ên=1(r, s)

for s appropriate for the n = 1 problem, which is just 1+2r4
0√

1+r4
0

≡ G(r0) by conservation

of energy. We now use the fact, established above, that ∂Ên=1
∂s is positive for any real r.

This means that we can show s|n=1 <

√
r4
0−r4

r4
0+1

by showing that F (r, r0) > G(r0). A short

calculation gives

F (r, r0)−G(r0) =
r40√

1 + r40(1 + r4)
(r40 − r4). (5.39)

It is clear that we have the desired inequality, showing that, at each r, the speed s in the
n = 1 problem is smaller than the speed in the n = ∞ system. Hence the time of collapse
is larger at n = 1. In the n = 2 case, we find that an exactly equivalent treatment proves
again that the collapse is slower than at large n. However, this trend is not a general feature
for all n. In the leading large-N limit, the time of collapse is given by the formula

T

L
=

∫
dr

√
1 + r40√
r40 − r4

=
K( 1√

2
)

√
2

√
R4 + L4

R
(5.40)

For fixed `s, L decreases with decreasing N and as a result T decreases. When we include
the first 1/N correction the time of collapse is [140]

T

L
=

∫
dr

[ √
1 + r40√
r40 − r4

+
r80

6N2(1 + r40)3/2
√
r40 − r4

− r40(1 + 3(1 + r40))
6N2(1 + r4)

√
1 + r40

√
r40 − r4

]
.

(5.41)
By performing numerical integration of the above for several values of the parameter r0 and
some large but finite values of N , we see that the time of collapse is smaller for the 1/N
corrected case. This means that, in the region of large N the time of collapse decreases as N
decreases, with both the leading large N formula and the 1/N correction being consistent
with this trend. However, as we saw above the time of collapse at n = 1 and n = 2 are
larger than at n = ∞. This means that there are one or more turning points in the time of
collapse as a function of n.

The deceleration effect that arises in the comparison of n = 1 and n = 2 with large n
may have applications in cosmology. Deceleration mechanisms coming from DBI actions
have been studied in the context of bulk causality in AdS/CFT [156, 157] and applied in

136



CHAPTER 5. FINITE N EFFECTS ON THE COLLAPSE OF FUZZY SPHERES

the problem of satisfying slow roll conditions in stringy inflation [158]. Here we see that the
finite n effects result in a further deceleration in the region of small n.

We turn to the proper acceleration which is important in checking the validity of our
action. Since the DBI action is valid when higher derivatives are small, it is natural to
demand that the proper acceleration, should be small (see for example [156]). The condition
is γ3`s∂

2
tRphys ¿ 1. In terms of the dimensionless variables it is γ3(∂2

τ r̂) ¿
√
N . If we

want a trajectory with initial radius r̂0 such that the proper acceleration always remains
less than one through the collapse, then there is an upper bound on r̂0 (see for example
section 8 of [140]). The corresponding upper bound on the physical radius goes to infinity
as N → ∞, since Rphys ∼ r̂

√
λN . For small r̂0 we are in the matrix theory limit and the

effective action is valid. For large r̂0 and r̂-large, the acceleration is under control, α ∼ 1/r̂
and the velocity will be close to zero. Interestingly, there will also be a class of trajectories
parametrised by large r̂0, which admit relativistic motion. Consider for example the n = 1
case (where r̂ = r, ŝ = s). The proper acceleration can be written as

α = − 2r3

1 + r4
−3 + 2s2 + r4(s2 − 2)√
1− s2(r4(s2 − 4)− 3)

. (5.42)

For s ∼ 1 and small r, this becomes

α ' − 2r3

3
√

1− s2
(5.43)

and
√

1− s2 can be found from the energy at the same limits, in which (5.18) becomes

√
1− s2 ' 1

(2r20)1/3
. (5.44)

Therefore, we can identify a region where the proper acceleration is small by restricting it
to be of order 1/r0 for example

α ' 2r3

3
(2r20)

1/3 ∼ 1
r0
. (5.45)

This means that in regions where r ∼ r
−5/9
0 , we will have a relativistic limit described by

the DBI, where stringy corrections can be neglected. This result also holds in the large-N
limit. It will be interesting to develop a perturbative approximation which systematically
includes stringy effects away from this region.

Another quantity of interest is the effective mass squared E2 − p2 , where p = ∂L/∂s
is the radial conjugate momentum. It becomes negative for sufficiently large velocities.
This includes the above regime of relativistic speeds and small radii. It is straightforward
to see that if our collapsing configuration is considered as a source for spacetime gravity,
this implies a violation of the dominant energy condition. In the context of the BFSS
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matrix model, it has been shown that for an action containing a background spacetime
GIJ = ηIJ + hIJ , in the linearised approximation, linear couplings in the fluctuation h0I

correspond to momentum in the XI direction [159]. The same argument can be developed
here for the non-Abelian DBI. We couple a small fluctuation h0r, which in classical geometry
we can write as h0i = h0rxi for the unit sphere. We replace xi by αi/n. The action for
D0-branes [109,141] is generalised from (5.1) by replacing Ṙ in λ∂tΦi = λ( ˙̂

R)αi = Ṙ
nαi with

(Ṙ+h0r). It is then clear that the variation with respect to Ṙ, which gives p, is the same as
the variation with respect to h0r, which gives T 0r. Hence, the dominant energy condition
will be violated, since E < |p| is equivalent to T 00 < T 0r. The violation of this condition
by stringy D-brane matter can have profound consequences. For a discussion of possible
consequences in cosmology see [160]. In this context, it is noteworthy that the violation can
occur near a region of zero radius, which could be relevant to a near-big-bang region in a
braneworld scenario.

5.4.3 Distance to blow-up in D1 ⊥ D3

Comparisons between the finite and large N results can be made in the spatial case using
the conserved pressure. The arguments are similar to what we used for the time of collapse
using the energy functions. Consider the case n = 1, and let P̂ = P/N . First calculate the
derivative of the pressure -

∂P̂

∂s
=

s(4r4 + r4s2 + 3)√
1 + r4(1− s2)5/2

. (5.46)

This is clearly always positive. Now evaluate

P̂

(
r, s =

√
r4 − r40√
1 + r40

)
= −(1 + r40)

1/2

1 + r4
(1 + r40 + r4). (5.47)

This should be compared with P̂ (r, s), evaluated for the value of s which solves the n = 1
equation of motion, which by conservation of pressure is − (1+2r4

0)√
1+r4

0

. Take the difference to

find

P̂

(
r, s =

√
r4 − r40√
1 + r40

)
+

(1 + 2r40)√
1 + r40

=
r40(r

4 − r40)√
1 + r40(1 + r4)

. (5.48)

Thus at fixed r0 and r, P̂n=1, when evaluated for the value of s which solves the large
n problem, is larger than when it is evaluated for the value of s which solves the n = ∞
problem. Since P̂ increases monotonically with s for fixed r, this shows that for fixed r0,
and any r, s is always larger in the large N problem. Since Σ =

∫
dr/s, this means the

distance to blow-up is smaller for n = ∞. Hence for fixed r0, the distance to blow-up is
larger at n = 1.
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5.5 Towards a generalisation to higher even-dimensional fuzzy-spheres

For generalisations to higher dimensional brane systems, and to higher dimensional fuzzy
spheres [115,118,147,148], it is of interest to derive an extension of the expressions for the
symmetrised traces given above. In the general case, we define N(k, n) to be the dimension
of the irreducible representation of SO(2k+1) with highest weight state (n

2 ,
n
2 , . . . ,

n
2 ) which

contains k entries. We then take C(m, k, n) to be the action of the symmetrised trace on
m pairs of matrices Xi, where i = 1, . . . , 2k + 1

C(m, k, n) =
1

N(k, n)
STr

(
XiXi)m. (5.49)

Finding an expression for C(m, k, n) is non-trivial. Investigations based upon intuition from
the ADHM construction lead us to conjecture that for n odd

C(m, k, n) =
2k

∏k
i1=1(2m− 1 + 2i1)

(k − 1)!
∏2k−1

i2=1 (n+ i2)

n+1
2∑

i3=1

[ k−1∏

i4=1

((n
2

+i4
)2
−

(
i3−1

2

)2)
(2i3−1)2m

]
, (5.50)

while for n even1

C(m, k, n) =
2k

∏k
i1=1(2m− 1 + 2i1)

(k − 1)!
∏2k−1

i2=1 (n+ i2)

n
2∑

i3=1

[ k−1∏

i4=1

((n
2

+ i4

)2
− i23

)
(2i3)2m

]
. (5.51)

We gave arguments leading to the expressions above in the previous chapter.

For higher even spheres there will be extra complications at finite-n. Consider the case
of the fuzzy S4 for concreteness. The evaluation of the higher dimensional determinant in
the corresponding non-Abelian brane action will give expressions with higher products of
∂tΦi and Φij ≡ [Φi,Φj ]

S = −T0

∫
dt STr

{
1 + λ2(∂tΦi)2 + 2λ2ΦijΦji + 2λ4(ΦijΦji)2 − 4λ4ΦijΦjkΦklΦli +

+ 2λ4(∂tΦi)2ΦjkΦkj − 4λ4∂tΦiΦijΦjk∂tΦk +
λ6

4
(εijklm∂tΦiΦjkΦlm)2

}1/2

. (5.52)

The ansätz for the transverse scalars will still be

Φi = R̂(t)Xi ,

where now i = 1, . . . , 5 and the Xi’s are given by the action of SO(5) gamma matrices
on the totally symmetric n-fold tensor product of the basic spinor. After expanding the
square root, the symmetrisation procedure should take place over all the Xi’s and [Xi, Xj ]’s.

1For m = 0 the value STr(XiXi)
0 = 1 is once again imposed.
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However, the commutators of commutators [[X,X], [X,X]] will give a nontrivial contribu-
tion, as opposed to what happens in the large-n limit where they are sub-leading and are
taken to be zero. Therefore, in order to uncover the full answer for the finite-n fuzzy
S4 it is not enough to just know the result of STr(XiXi)m - we need to know the full
STr ((X X)m1([X,X][X,X]))m2 with all possible contractions among the above. It would
be clearly interesting to have the full answer for the fuzzy S4. A similar story will apply
for the higher even-dimensional fuzzy spheres.

Note, however, that for R̂ = 0 in (5.52) all the commutator terms Φij will vanish, since
they scale like R̂2. This reduces the symmetrisation procedure to the one involving XiXi

and yields only one sum for the energy. The same will hold for any even-dimensional S2k,
resulting in the following general expression

En,k(0, s) = −STr
∞∑

m=0

(−1)ms2m(2m− 1)(XiXi)m

(
1/2
m

)

= −N(k, n)
∞∑

m=0

(−1)ms2m(2m− 1)C(m, k, n)
(

1/2
m

)
. (5.53)

Using (5.50), notice that in the odd n case

C(m, k, n) =
2k−1∏

i2=1

(1 + i2)
(n+ i2)

C(m, k, 1)

n+1
2∑

i3

fodd(i3, k, n)
fodd(1, k, 1)

(2i3 − 1)2m . (5.54)

The factor fodd is

fodd(i3, k, n) =
k−1∏

i4=1

((n
2

+ i4

)2
−

(
i3 − 1

2

)2)
. (5.55)

Inserting this form for C(m, k, n) in terms of C(m, k, 1) we see that

En,k(0, s) = N(n, k)
2k−1∏

i2=1

(1 + i2)
(n+ i2)

n+1
2∑

i3=1

fodd(i3, k, n)
fodd(1, k, 1)

Ên=1,k(0, s(2i3 − 1)) (5.56)

Similarly we derive, in the even n case, that

En,k(0, s) = N(n, k)
2k−1∏

i2=1

(2 + i2)
(n+ i2)

n
2∑

i3=1

feven(i3, k, n)
feven(1, k, 2)

Ên=2,k(0, s(i3)) (5.57)

where

feven(i3, k, n) =
k−1∏

i4=1

((n
2

+ i4

)2
− i23

)
(5.58)

and Ê is the energy density, i.e. the energy divided a factor of N(n, k).
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It is also possible to write C(m, k, 2) in terms of C(m, k, 1)

C(m, k, 2) = 22mC(m, k, 1)
k−1∏

i4=1

i4(i4 + 2)
i4(i4 + 1)

2k−1∏

i2=1

(i2 + 1)
(i2 + 2)

= 22mC(m, k, 1)
feven(1, k, 2)
fodd(1, k, 1)

2k−1∏

i2=1

(i2 + 1)
(i2 + 2)

, (5.59)

which is valid for all values of m 6= 0.

It turns out to be possible to give explicit forms for the energy for the n = 1 and
n = 2 case. Since the definition of the physical radius in section 2 is also valid for higher
dimensional fuzzy spheres, we can express the results in terms of the rescaled variables r̂
and ŝ

Ên=1,k(0, ŝ) =
1

(1− ŝ2)
2k+1

2

Ên=2,k(0, ŝ) =
1

(1− ŝ2)
2k+1

2

(k + 1)
(2k + 1)

. (5.60)

When plugged into (5.56), (5.57) the above results provide a closed form for the energy at
r̂ = 0, for any n and any k. A complete study of the time dependent dynamics requires
the evaluation of the energy functions for all r̂, but the relative simplicity of (5.60) suggests
that the computation of the required additional symmetrised traces might reveal a tractable
extension.

5.6 Summary and Outlook

In this chapter we have given a detailed study of the finite N effects for the time dependent
D0 −D2 fuzzy sphere system and the related D1 ⊥ D3 funnel. This involved calculating
symmetrised traces of SO(3) generators. The formulae have a surprising simplicity.

The energy function E(r, s) in the large N limit looks like a relativistic particle with
position dependent mass. This relativistic nature is modified at finite N . Nevertheless our
results are consistent with a fixed relativistic upper speed limit. This is guaranteed by an
appropriate definition of the physical radius which relies on the properties of symmetrised
traces of large numbers of generators. We showed that the exotic bounces found in the
large N expansion in [140] do not occur. It was previously clear that these exotic bounces
happened near the regime where the 1/N expansion was breaking down. The presence or
absence of these could only be settled by a finite N treatment, which we have provided in
this chapter. We also compared the time of collapse of the finite N system with that of the
large N system and found a finite N deceleration effect for the first small values of N . The
modified E(r, s) relation allows us to define an effective squared mass which depends on
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both r, s. For certain regions in (r, s) space, it can be negative. When the D0−D2 system
is viewed as a source for gravity, a negative sign of this effective mass squared indicates that
the brane acts as a gravitational source which violates the dominant energy condition.

We have extended some of our discussion to the case of higher even fuzzy spheres with
SO(2k + 1) symmetry. The results for symmetrised traces that we obtain can be used in a
proposed calculation of charges in the D1 ⊥ D(2k + 1) system. They also provide further
illustrations of how the correct definition of physical radius using symmetrised traces of
large powers of Lie algebra generators gives consistency with a constant speed of light. A
more complete discussion of the finite N effects for the higher fuzzy spheres could start from
these results. Generalisations of the finite N considerations to fuzzy spheres in more general
backgrounds [161] will be interesting to consider, with a view to possible applications in
cosmology.
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APPENDIX A

INTEGRAL IDENTITIES

In this appendix we summarise the tensor bubble, tensor triangle and tensor box integrals
used in chapter 2.

A.1 Scalar box, triangle and bubble integrals

The scalar n-point integral functions in D = 4 + 2m− 2ε dimensions are defined as

ID
n ≡ ID

n [1] = i(−1)n+1(4π)D/2

∫
dDL

(2π)D

1
L2(L− p1)2 · · · (L−

∑n−1
i=1 pi)2

(A.1)

=
i(−1)n+1

π2+m−ε

∫
d4+2ml d−2εµ

(l2 − µ2)((l − p1)2 − µ2) · · · ((l −∑n−1
i=1 pi)2 − µ2)

The higher dimensional integral functions are related to 4− 2ε dimensional integrals with
a factor µ2m inserted in the integrand. For m = 1, 2 one finds

In[µ2] ≡ Jn = (−ε)I6−2ε
n (A.2)

In[µ4] ≡ Kn = (−ε)(1− ε)I8−2ε
n (A.3)

In chapter 2 we encounter bubble functions with m = 0, 1, triangles with one massive
external line and m = 0, 1, and boxes with four massless external lines and m = 0, 1, 2:

I2(P 2) =
rΓ

ε(1− 2ε)
(−P 2)−ε , I6−2ε

2 (P 2) = − rΓ
2ε(1− 2ε)(3− 2ε)

(−P 2)1−ε ,

I3(P 2) =
rΓ
ε2

(−P 2)−1−ε , I6−2ε
3 (P 2) =

rΓ
2ε(1− ε)(1− 2ε)

(−P 2)−ε ,

I4 = −rΓ
st

{
− 1
ε2

[
(−s)−ε + (−t)−ε

]
+

1
2

log2
(s
t

)
+
π2

2

}
+O(ε) ,

(−ε)I6−2ε
4 = 0 +O(ε) , (−ε)(1− ε)I8−2ε

4 = −1
6

+O(ε) . (A.4)

Note that the expressions for the bubbles and triangles are valid to all orders in ε, whereas
for the box functions we have only kept the leading terms which contribute up to O(ε0) in
the amplitudes.
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A.2 Scalar Integral Identities

The following identities between integral functions which appear in appendix A of [59] are
used in chapter 2. They are useful for comparison with the known answer and identifying
quadratic divergences.

J4 = − st

4u
I4 − s

2u
I3(s)− t

2u
I3(t)− 1

2
I6−2ε
4 (A.5)

J3(s) =
1
2
I2(s)− I6−2ε

3 (s) (A.6)

J2(s) =
s

4
I2(s)− 3

2
I6−2ε
2 (s) (A.7)

These three identities for J4,J3 and J2 are derived from the following general identity relating
6− 2ε dimensional integrals to 4− 2ε dimensional integrals for n point kinematics:

I6−2ε
n =

1
(n− 5 + 2ε)c0

[
2In −

n∑

i=1

ciI
(i)
n−1

]
(A.8)

where the integral Ii
n−1 is obtained from the integral In by removing the propagator between

leg i− 1 (mod n) and i. The ci are defined by

ci = −2
n∑

j=1

(pij)−1 , c0 =
n∑

i=1

ci (A.9)

The matrix pij is defined by

pii = 0 and pij = pji = ki + ki+1 + · · ·+ kj−1 for i < j (A.10)

These ci are easily found for small n. For example consider the case of four-point massless
box kinematics

p2 =




0 0 s 0
0 0 0 t

s 0 0 0
0 t 0 0




,
(
p2

)−1 =




0 0 1
s 0

0 0 0 1
t

1
s 0 0 0
0 1

t 0 0




thus in this case the ci are given by

c1 = c3 = −2
s

, I
(1)
3 = I

(3)
3 = I3(t)

c2 = c4 = −2
t

, I
(2)
3 = I

(4)
3 = I3(s)
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and c0 = 4u
st . So finally the identity for J4 is

J4 = (−ε)I6−2ε
4

= −1
2
(−1 + 2ε)I6−2ε

4 − 1
2
I6−2ε
4

= − 1
2c0

(
2I4 − c1I

(1)
3 − c2I

(2)
3 − c3I

(3)
3

)
− 1

2
I6−2ε
4

= − st

4u
I4 − s

2u
I3(s)− t

2u
I3(t)− 1

2
I6−2ε
4

which is the identity (A.5) for J4. The identities for J3 and J2 are similar

A.3 PV reduction

In this section we present the result of the Passarino Veltman (PV) reduction for various
tensor integrals which are relevant for the triple cut calculations of the −−++ and −+−+
amplitudes in chapter 2.

Figure A.1: Kinematics of the bubble and triangle integral functions studied in this Appendix.

For the linear and two-tensor bubbles we have (see Figure 10a):

I2
[
Lµ

3

]
= −1

2
I2(p2 + p3)µ (A.11)

I2
[
Lµ

3L
ν
3

]
= −1

2
I6−2ε
2 δµν

[4−2ε] +
(

1
4
I2 +

1
2t
I6−2ε
2

)
(p2 + p3)µ(p2 + p3)ν (A.12)
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For the linear, two- and three-tensor triangles (see Figure 10b):

I3
[
Lµ

3

]
= −1

t
I2p

µ
2 +

(
− I3 +

1
t
I2

)
pµ
3 (A.13)

I3
[
Lµ

3L
ν
3

]
=

1
2t
I2p

µ
2p

ν
2 +

(
1
t
I6−2ε
3 +

1
2t
I2

)(
pµ
2p

ν
3 + pν

2p
µ
3

)

+
(
− 3

2t
I2 + I3

)
pµ
3p

ν
3 −

1
2
I6−2ε
3 δµν

[4−2ε] (A.14)

I3
[
Lµ

3L
ν
3L

ρ
3

]
= −

(
1
4t
I2 +

1
2t2

I6−2ε
2

)(
pµ
2p

ν
2p

ρ
2

)

−
(

1
4t
I2 +

3
2t2

I6−2ε
2

)(
pµ
2p

ν
2p

ρ
3 + pµ

2p
ν
3p

ρ
2 + pµ

3p
ν
2p

ρ
2

)

+
(
− 1

4t
I2 +

3
2t2

I6−2ε
2 − 2

t
I6−2ε
3

)(
pµ
2p

ν
3p

ρ
3 + pµ

3p
ν
3p

ρ
2 + pµ

3p
ν
2p

ρ
3

)

+
(

7
4t
I2 +

1
2t2

I6−2ε
2 − I3

)(
pµ
3p

ν
3p

ρ
3

)
+

1
2t
I6−2ε
2

(
δµνpρ

2 + δµρpν
2 + δρνpµ

2

)

+
(
− 1

2t
I6−2ε
2 +

1
2
I6−2ε
3

)(
δµνpρ

3 + δµρpν
3 + δρνpµ

3

)
(A.15)

Finally, for the linear box:

I4
[
Lµ

3

]
=

(
t

2u
I4 − 1

u

(
I3(t)− I3(s)

))
pµ
1 −

1
2
I4p

µ
2

+
(
t− u

2u
I4 − 1

u

(
I3(t)− I3(s)

))
pµ
3 (A.16)

where, as usual, s := (p1 + p2)2, t := (p2 + p3)2, u := (p1 + p3)2.

Note that the above expressions are presented in terms of scalar n-point integral func-
tions IDn in various dimensions D, specifically in terms of In, I6−2ε

n and I8−2ε
n in 4−2ε, 6−2ε

and 8− 2ε dimensions, respectively. The expressions are valid to all orders in ε, if In, I6−2ε
n

and I8−2ε
n are evaluated to all orders. In deriving these formulae it is important to remem-

ber that massless bubbles vanish in dimensional regularisation (see page 36 of [14]). This
is interpreted as the cancelling of a UV and an IR divergence. The PV reductions above
have been performed in a fashion that naturally leads to coefficients without explicit ε de-
pendence. See [96]. We now illustrate this procedure by considering the explicit reduction
of the tensor bubble integral

I2
[
Lµ

3L
ν
3

]
= B1δ

µν
[4−2ε] +B2

(
p2 + p3

)µ(
p2 + p3

)ν (A.17)
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To obtain B1 and B2, the conventional reduction procedure would be to trace over the
indices δµν

[4−2ε] and contract with
(
p2 +p3

)µ(
p2 +p3

)ν to obtain the following two equations:

(4− 2ε)B1 + tB2 = 0 , (B1 + tB2) =
1
4
I2 (A.18)

Solving these two equations gives

B1 = − 1
4t

1
3− 2ε

I2 , B2 =
1
2

2− ε

3− 2ε
I2 (A.19)

which contain explicit ε dependence. However it is simple to avoid this ε dependence by
using a modified procedure which involves the use of a 6− 2ε dimensional bubble. Instead
of first contracting with δµν

[4−2ε] we contract with δαβ
[−2ε]. Recall the following formulae

δ
[−2ε]
αβ lαlβ = −µ2 and δ

[−2ε]
αβ δαβ

[−2ε] = −2ε (A.20)

So contracting with δαβ
[−2ε] gives

B1 =
1
2ε
I2[µ2] = −1

2
I6−2ε
2 (A.21)

To determine B2 we again use (B1 + tB2) = 1
4I2 to give

B2 =
1
4
I2 +

1
2t
I6−2ε
2 (A.22)

See Appendix I of [96] for more details on this particular variant of PV reductions.
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GRAVITY AMPLITUDE CHECKS

B.1 The VegasShift[n] Mathematica command

The following Mathematica code can be used to compare amplitudes numerically. There
are two different commands evalshift[X] which puts random numbers into the shifted
amplitude and evalnormal[X] which puts random numbers into the unshifted amplitude.
evalshift[X] in conjunction with the standard Mathematica command Apart[X] can be
used to check the residues of a shifted amplitude one by one.

VegasShift[nn_] := (

rand := Random[Integer, {-100, 100}]/100;

angle[ii1_,ii2_]:=la[ii1][[1]] la[ii2][[2]]-la[ii1][[2]] la[ii2][[1]];

square[ii1_,ii2_]:=lat[ii1][[1]] lat[ii2][[2]]-lat[ii1][[2]] lat[ii2][[1]];

Do[(la[ii] = {rand, rand};

lat[ii] = {rand, rand}), {ii, 1, nn - 2}];

P = Sum[Transpose[{la[ii]}].{lat[ii]}, {ii, 1, nn - 2}];

la[nn - 1] = {1, 0};

lat[nn - 1] = -P[[1]];

la[nn] = {0, 1};

lat[nn] = -P[[2]];

Sum[Transpose[{la[ii]}].{lat[ii]}, {ii, 1, nn}];

lat[1] = lat[1] - z lat[2];

la[2] = la[2] + z la[1];

replist = {};

Do[ replist = Union[replist, {ang[xx1, yy1] -> angle[xx1, yy1],

sqr[xx1, yy1] -> square[xx1, yy1]}], {xx1, 1, nn}, {yy1, 1, nn}];

evalshift[expression_] := expression /. replist;

evalnormal[expression_] := expression /. replist /. z -> 0;)
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B.2 Other shifts of the −+ + + + gravity amplitude

B.2.1 The |4], |5〉 shifts

In this section we consider M (1)
5 (1−, 2+, 3+, 4+, 5+) with the following shifts which have

both nonstandard factorisations and presumably also have a boundary term.

λ4 → λ4

λ̃4 → λ̃4 − zλ̃5

λ5 → λ5 + zλ4

λ̃5 → λ̃5 (B.1)

We will calculate as many terms as we can.

Figure B.1: The diagram associated with 〈15̂〉 = 0, with shifts on |4], |5〉.

The diagram in Figure B.1 gives:

i

(4π)2
1

180
〈12〉2〈13〉2[23]4[15]

〈23〉2〈24〉2〈45〉2〈34〉2〈15〉
(〈12〉2〈34〉2 − 〈12〉〈34〉〈13〉〈24〉+ 〈13〉2〈24〉2) (B.2)

Figure B.2: The diagram associated with [14̂] = 0, with shifts on |4], |5〉.

The diagram in Figure B.2 gives:

i

(4π)2
3

180
〈14〉[45]6

〈23〉2[14][15]4
(
[23]2[15]2 + [23][12][35][15] + [12]2[35]2

)
(B.3)
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Figure B.3: The standard factorisation diagram associated with 〈25̂〉 = 0, with shifts on
|4], |5〉.

The diagram in Figure B.3 gives:

i

(4π)2
1

180
〈12〉2〈13〉2〈14〉2[13]4[25]
〈23〉2〈24〉4〈34〉2〈25〉〈45〉2

(〈13〉2〈24〉2 + 〈12〉〈24〉〈43〉〈13〉+ 〈34〉2〈12〉2) (B.4)

Figure B.4: The nonstandard factorisation diagram associated with 〈25̂〉 = 0, with shifts on
|4], |5〉.

The diagram in Figure B.4 is a non standard factorisation. The double pole term
associated with this diagram is

i

(4π)2
1

180
〈12〉7〈45〉2[25]4[13]

〈13〉〈14〉〈34〉〈23〉〈25〉2〈24〉4 (B.5)

Just as in the |1], |2〉 shifts the ‘single pole under this double pole’ term is mysterious. The
other two diagrams corresponding to 〈35̂〉 = 0 can be obtained from the results to Figure
B.3 and Figure B.4 by swapping 2 and 3.

It is perhaps interesting to note that if we take some of the above terms in the |4], |5〉
shifts, and apply the |1], |2〉 shifts to the answers, and use partial fractions to extract the
pole from the term, then there is agreement with the recursive diagrams in section 3.4. Thus
the recursion relation is self consistent. For example, if you apply the |1], |2〉 shifts to (B.3)
and extract the 1/[1̂, 4] pole then this agrees with (3.52) after the legs 4 and 5 have been
swapped. The results (B.4) and (B.5) can similarly be checked against (3.55) and (3.58)
respectively.
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B.2.2 The |2], |1〉 shifts

In this section we again consider M (1)
5 (1−, 2+, 3+, 4+, 5+), but with the following shifts

which have no nonstandard factorisations, but do presumably have a boundary term:

λ1 → λ1 + zλ2

λ̃1 → λ̃1

λ2 → λ2

λ̃2 → λ̃2 − zλ̃1 (B.6)

As there are no nonstandard factorisations we can calculate all the diagrams.

Figure B.5: The diagram associated with 〈1̂5〉 = 0 with shifts on |2], |1〉.

The diagram in Figure B.5 gives

i

(4π)2
1

180
〈12〉6〈35〉2〈45〉2[34]4[15]
〈25〉8〈23〉2〈34〉2〈24〉2〈15〉

(〈34〉2〈25〉2 − 〈34〉〈24〉〈35〉〈25〉+ 〈24〉2〈35〉2) (B.7)

The other diagrams that occur with these shifts correspond to poles located at 〈1̂4〉 = 0
and 〈1̂3〉 = 0 and can be obtained from Figure B.5 by swapping legs.

As there are no nonstandard factorisations in these shifts there is a possibility that
the shifts on |2], |1〉 could be used as the primary shift in an attempt to avoid non stan-
dard factorisations along the lines of section 3.6, however we have been unable to find an
accompanying auxiliary shift that satisfies (3.82).

151



APPENDIX C

STR CALCULATIONS USING THE HIGHEST

WEIGHT METHOD

Results on finite n symmetrised traces can be obtained by generalising the highest weight
method of [140]. For the SO(3) representations used in fuzzy 2-spheres we have

1
2
STrJ=1/2(αiαi)m = (2m+ 1) (C.1)

where the 1/2 comes from dividing with the dimension of the spin-1/2 representation. A
similar factor will appear in all of the results below. The above result was derived in [140].
For the spin one case, we will obtain

1
3
STrJ=1(αiαi)m =

22m+1(2m+ 1)
3

(C.2)

These results can be generalised to representations of SO(2l + 1) relevant for higher fuzzy
spheres. The construction of higher dimensional fuzzy spheres uses irreducible representa-
tions of highest weight (n

2 , · · · , n
2 ), as we have noted. For the minimal representation with

n = 1 we have
1

Dn=1
STrn=1(XiXi) =

(2l + 2m− 1)!!
(2m− 1)!!(2l − 1)!!

(C.3)

Notice the interesting symmetry under the exchange of l and m. For the next-to-minimal
irreducible representation with n = 2 we obtain:

1
Dn=2

STrn=2(XiXi) = 22m(l + 1)
(2l + 2m− 1)!!

(2m− 1)!!(2l + 1)!!
(C.4)

This is a generalisation of the spin 1 case to higher orthogonal groups. It agrees with the
formulae in the chord diagram section of chapter 4, with l→ k.
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C.1 Review of spin half for SO(3)

We will begin by recalling some facts about the derivation of the n = 1 case in [140]. The
commutation relations can be expressed in terms of α3, α±

α± =
1√
2
(α1 ± iα2),

[α3, α±] = 2α±,

[α+, α−] = 2α3,

c = α+α− + α−α+ + α2
3 (C.5)

With these normalisations, the eigenvalues of α3 in the spin half representation are ±1 and
α+α− is 1 on the highest weight state.

It is useful to define a quantity C̃(p, q) which depends on two natural numbers p, q and
counts the number of ways of separating p identical objects into q parts

C̃(p, q) =
(p+ q − 1)!
p!(q − 1)!

(C.6)

We begin by a review of the spin half case, establishing a counting which will be used again
in more complicated cases below. This relies on a sum

2k
2n−2k∑

î2k

· · ·
î3∑

î2=0

î2∑

î1=0

(−1)î1+î2+···̂i2k = 2k n!
(n− k)!k!

Recall that this sum was obtained by evaluating a sequence of generators of SO(3) consisting
of k pairs α−α+ and with powers of α3 between these pairs -

α
2J2k+1

3 α+α
2Jk
3 α− · · ·α−αJ3

3 α+α
J2
3 α−α

J1
3 (C.7)

We can move the powers of α3 to the left to get factors (α3 − 2)J2+J4+···J2k . Moving the α3

with powers J1, J3.. gives αJ1+J3+···
3 . The k powers of α−α+ gives 2k. The above sum can

be rewritten

2k
2m−2k∑

J2k+1=0

· · ·
2m−2k−J3+..J2k+1∑

J2=0

2m−2k−J2...J2k+1∑

J1=0

(−1)J2+J4···J2k = 2k n!
(n− k)!k!

(C.8)

This includes a sum over Je = J2 + J4 + . . . + J2k. The summand does not depend on
the individual J2, J4, . . . only on the sum Je which ranges from 0 to 2m − 2k. The sum
over J2, J4, . . . is the combinatoric factor, introduced above, which is the number of ways of
splitting Je identical objects into k parts, i.e. C̃(Je, k). The remaining 2m−2k−Je powers
of α3 are distributed in k + 1 slots in C̃(2m − 2k − Je, k + 1) ways. Hence the sum (C.8)
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can be written more simply as

2k
2m−2k∑

Je=0

(−1)JeC̃(Je, k)C̃(2m− 2k − Je, k + 1) = 2k m!
(m− k)!k!

(C.9)

Then there is a sum over k from 0 to m, with weight

C(k,m) =
2kk!(2m− 2k)!m!

(m− k)!(2m)!
(C.10)

which gives the final result 2m + 1 [140]. Similar sums arise in the proofs below. In some
cases, closed formulae for the sums are obtained experimentally.

C.2 Derivation of symmetrised trace for minimal SO(2l+1) representation

The Casimir of interest here is

XµXµ = X2
2l+1 +

l∑

i=1

(
X

(i)
− X

(i)
+ +X

(i)
+ X

(i)
−

)
(C.11)

The patterns are similar to those above, with α3 replaced by X2l+1, and noting that here
there are l “colours” of α± which are X(l)

± . All the states in the fundamental spinor are
obtained by acting on a vacuum which is annihilated by l species of fermions. Generally we
might expect patterns

. . . Xi1
2l+1X

(j1)
− Xi2

2l+1X
(j2)
+ . . . (C.12)

In evaluating these, we can commute all the X2l+1 to the left. This results in shifts which
do not depend on the value of j. It is easy to see that whenever X(1)

+ is followed by X(1)
+

we get zero because of the fermionic construction of the gamma matrices. X(1)
+ cannot also

be followed by X(2)
+ because X(1)

+ X
(2)
+ +X

(2)
+ X

(1)
+ = 0. So the pairs have to take the form

X
(j)
− X

(j)
+ for fixed j. The sum we have to evaluate is

m∑

k=0

2m−2k∑

Je=0

(−1)JeC̃(Je, k)C̃(2m− 2k − Je, k)C̃(k, l)2kC(k,m)

=
m∑

k=0

(
m

k

)
2kC(k,m)C̃(k, l) (C.13)

=
(2l + 2m− 1)!!

(2m− 1)!!(2l − 1)!!
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The factors C̃(Je, k) and C̃(2m− 2k − Je, k) have the same origin as in the spin half case.
The factor (C.10) is now generalised to an l-colour version

C(k1, k2...kl;m) = 2k (2m− 2k)!
(2m)!

m!
(m− k)!

k1!k2!...kl! (C.14)

This has to be summed over k1, .., kl. For fixed k = k1 + · · ·+ kl we have

∑

k1..kl

C(k1..kl,m)
k!

k1!..kl!
=

∑

k1..kl

C(k,m) = C(k,m)C̃(k, l) (C.15)

The combinatoric factor k!
k1!..kl!

in the second line above comes from the different ways of
distributing the k1..kl pairs of (−+) operators in the k positions along the line of operators.
The subsequent sum amounts to calculating the number of ways of separating k objects
into l parts which is given by C̃(k, l). The C(k,m) is familiar from (C.10). This sum can
be done for various values of k,m and gives agreement with (C.3).

C.3 Derivation of spin one symmetrised trace for SO(3)

For the spin one case more patterns will arise. After an α− acts on the highest weight, we
get a state with α3 = 0 so that we have, for any positive r

αr
3α−|J = 1, α3 = 2 >= 0 , ∀ r > 0 (C.16)

Hence any α− can be followed immediately by α+. These neutral pairs of (α+α−) can be
separated by powers of α3. Alternatively an α− can be followed immediately by α−. The
effect of α2− is to change the highest weight state to a lowest weight state. In describing
the patterns we have written the “vacuum changing operator” on the second line, with the
first line containing only neutral pairs separated by α3’s. Let there be J1 neutral pairs in
this first line and L1 powers of α3 distributed between them. After the change of vacuum,
we can have a sequence of (α−α+) separated by powers of α3. Let there be a total of J2

neutral pairs and L2 α3’s in the second line. At the beginning of the third line we have
another vacuum changing operator α2

+ which takes us back to the highest weight state. In
the third line, we have J3 neutral pairs and L3 powers of α3. The equation below describes
a general pattern with p pairs of vacuum changing operators. The total number of neutral
pairs is 2p+ J where J = J1 + J2 + · · ·+ J2p+1. The general pattern of operators acting on
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the vacuum is

# (α+α−) # (α+α−) # · · ·# (α+α−) # |J = 1, α3 = 2 >

# (α−α+) # (α−α+) # · · ·# (α−α+) #α2
−

# (α+α−) # (α+α−) # · · ·# (α+α−) # α2
+

...

# (α−α+) # (α−α+) # · · · # (α−α+) #α2
−

# (α+α−) # (α+α−) # · · ·# (α+α−)# α2
+ , (C.17)

where in the above the first line of operators acts on the state |J = 1, α3 = 2 > first,
then the second line acts, and so on. The symbols # represent powers of α3. We define
Je = J2 + J4 + · · ·J2p which is the total number of (−+) pairs on the even lines above.
There is a combinatoric factor C̃(Je, p) for distributing Je among the p entries, and a similar
C̃(J − Je, p + 1) for the odd lines. The Le = L2 + L4 + · · · + L2p copies of α3 can sit in
(J2 + 1) + (J4 + 1) + · · · + (J2p + 1) positions which gives a factor of C̃(Le, Je + p). The
L1+L3+ · · ·+L2p+1 can sit in (J1+1)+(J3+1)+ · · ·+(J2p+1+1) = J−Je+p+1 positions,
giving a factor C̃(2m− 2J − 4p−Le, J − Je + p+ 1). There is finally a factor C(2p+ J,m)
defined in (C.10) which arises from the number of different ways the permutations of 2m
indices can be specialised to yield a fixed pattern of α+, α−, α3

[m/2]∑

p=0

m−2p∑

J=0

J∑

Je=0

2m−4p−2J∑

Le=0

C̃(Je, p) C̃(J − Je, p+ 1) (−1)Le C̃(Le, Je + p)×

C̃(2m− 2J − 4p− Le, J − Je + p+ 1)×
22m−2J−4p Q(1, 1)J−Je Q(2, 1)Je Q(2, 2)p C(2p+ J,m)

By doing the sums (using Maple for example) for various values of m we find 22m+1(2m+1)
3 .

The factors Q(i, j), denoted in [140] by N(i, j), arise from evaluating the α−, α+ on the
highest weight.

C.4 Derivation of next-to-minimal representation for SO(2l + 1)

The n = 2, general l patterns are again similar to the n = 2, l = 1 case except that the
α−, α+ are replaced by coloured objects of l colours, i.e. the X(j)

± . We also have the simple
replacement of α3 by X2l+1.

We define linear combinations of the gamma matrices which are simply related to a set of
l fermionic oscillators: Γ(i)

+ = 1√
2
(Γ2i−1 + iΓ2i) =

√
2a†i and Γ(i)

− = 1√
2
(Γ2i−1− iΓ2i) =

√
2ai.
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As usual Xi are expressed as operators acting on an n-fold tensor product, and

X
(i)
± =

∑
r

ρr(Γ
(i)
± ) . (C.18)

Some useful facts are

Xr
2l+1X+|0 > = 0, Xr

2l+1X
2
+|0 > = (−2)rX2

+|0 >,
Xr

2l+1X−X+|0 > = X−X+X
r
2l+1|0 > = (2)rX−X+|0 >,

X−X+X
r
2l+1X

2
+|0 > = 0, Y+X

2
+ +X2

+Y+|0 > = 0,

X+Y+X+|0 > = 0, X−Y+X+|0 > = 0,

X+X−X2
+|0 > = Q(2, 1)X2

+|0 >, X+X−X+Y+|0 > = Q(2, 1)X+Y+|0 >,
X2
−X

2
+|0 > = Q(2, 2)|0 >, Y−X−X+Y+|0 > = Q(2, 2)|0 >

It is significant that the same Q(2, 1), Q(2, 2) factors appear in the different places in the
above equation. In the above X+ stands for any of the l X(i)

+ ’s. Any equation containing
X± and Y± stands for any pair X(i)

± and X(j)
± for i, j distinct integers from 1 to l.

The general pattern is similar to (C.17) with the only difference that the (α−α+) on the
first line is replaced by any one (X(i)

− X
(i)
+ ) for i = 1, . . . , l. The positive vacuum changing

operators can be (X(i)
+ X

(j)
+ ), where i, j can be identical or different. For every such choice the

allowed neutral pairs following them are X(j)
+ X

(i)
− and the dual vacuum changing operator

is (X(j)
− X

(i)
− ).

The summation we have to do is:

[m/2]∑

p=0

m−2p∑

J=0

2m−4p−2J∑

Le=0

J∑

Je=0

(
C(2p+ J,m)C̃(2p+ J, l)C̃(Je, p) C̃(J − Je, p+ 1)×

(−1)Le C̃(Le, Je + p)C̃(2m− 2J − 4p− Le, J − Je + p+ 1)×

22m−2J−4p Q(1, 1)J−Je Q(2, 1)Je Q(2, 2)p

)

The Q-factors can be easily evaluated on the highest weight and then inserted into the
above

Q(1, 1) = 4 , Q(2, 1) = 4 Q(2, 2) = 16 . (C.19)

By computing this for several values of m, l, we obtain (C.4). Note that both the l = 1 and
the general l case will yield the correct value for m = 0, which is 1.
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