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The morphological tests o f  the Gaussianity o f  CMB maps are briefly described. The quadratic 
model being often referred to as physically motivated type of nonGaussianity has a simple 
morphology analytically described in terms of the Gaussian Minkowski functionals. The mor­
phology of the QMASK map having a FWHM angular resolution of 0.68° is consistent with 
the hypothesis of Gaussianity. 

1 Introduction 

The issue of Gaussianity of CMB maps plays a crucial role in testing assumptions about the 
early Universe. The simplest inflation models strongly favor Gaussianity of the primordial 
inhomogeneities (however, D.T /T can be nonGaussian 7), whereas other scenarios assuming 
cosmic strings or topological defects predict non-Gaussian perturbations. Gaussianity is also a 
key underlying assumption of all experimental power spectrum analyses to date, entering into the 
computation of error bars 1•18, and therefore needs to be observationally tested. Another reason 
for studying Gaussianity of CMB maps is that it may reveal otherwise undetected foreground 
contamination and/ or possible spurious effects. It needless to say that the models of the structure 
formation critically depend on the assumptions about the type of the initial fluctuations. 

We discuss here a set of morphological statistics sensitive to the nonGaussian patterns. One 
of the advantages of the morphological studies consists in a natural and easy separation of the 
information contained in the probability density function (hereafter pdf) which is the .simplest 
statistic sensitive to nonGaussianity. Another useful property of morphological statistics is its 
intrinsic spatial localization which is very useful for understanding the nature of the non Gaussian 
signal 4• Finally, computing the morphological statistic is numerically efficient (ex N pix In N pix) 
17 which is very important for the analysis of large maps like MAP and PLANK. 



2 Morphology of a Map 

From a mathematical point of view every field F(x, y) can be fully described with the help 
of a sufficiently large set of contour lines F ( x, y) = F; . An example is the set of contours of 
the temperature contrast !J..T /T in CMB maps. For a given set of contours the set of values 
labeling the contours determines all one point statistics (skewness, kurtosis, or the pdf itself) . 
The information stored in the patterns made by the contour lines can be conveniently called 
morphological which includes both the geometry and topology of the field. 

A true Gaussian map must have both the Gaussian morphology and Gaussian pdf. However, 
an arbitrary set of contour lines can be labeled to give exactly the Gaussian pdf but preserving 
the original morphology. Similarly the true Gaussian field can be relabeled to result in an 
arbitrary pdf but preserving the Gaussian morphology. I.f the relabeling is made by a monotonic 
transformation v = G(u) (where u and v are respectively the initial and final fields, and the 
function G is monotonic) then the resulting map v(x, y) has exactly the same morphology as 
the initial map u(x, y) .  

Many nonGaussian fields are derived from one or more Gaussian fields. One example is  the 
so called quadratic model (see e.g. 7•8•19) and another a x� field with n degrees of freedom. We 
shall discuss the quadratic model in more detail in Sec. 4. 

3 Measuring the Morphology of a Map 

Morphology of two-dimensional random fields can be conveniently described in terms of geomet­
ric and topological properties of the regions bounded by the contours of constant level. There 
is a particularly useful set of quantities called Minkowski functionals which have very simple 
geometric and topological interpretations. For each isolated region bounded by a contour there 
are only three scalar Minkowski functionals: the area within the boundary, a;, its perimeter 
or the contour length, c;, and the Euler characteristic or genus, g; = 1 - nh; where nh; is the 
number of holes in the region. 

Minkowski functionals are additive quantities and make perfect sense for a separate region as 
well as for an arbitrary set of regions. They can be easily calculated for any set of regions if they 
are known for each region. In particular, the global Minkowski functionals, i. e. the total area, 
A, contour length, C and genus, G of the excursion set: A = I;; a; , C = I:; c; , G = I;; g; 
are often used 6,10,11,12,11,20,21 . 

The total area of the excursion set, A as a function of the level is obviously the cumulative 
probability function (CPF) of the field: A(u) = P(u) = f.':° p(u')du'. The Euler characteristic 
or genus have been used in cosmology for a number of years 2•3•5 . 

The first time the set of global Minkowski functionals was introduced into cosmology with 
the reference to their significance in differential and integral geometry by Mecke, Buchert and 
Wagner 9•  In particular, they emphasized a powerful theorem by Hadweiger stating that under 
rather broad restrictions the set of scalar, vectorial and tensorial Minkowski functionals provides 
a complete description of the morphology. In addition, the Minkowski functionals of the largest 
(by area) region (Ap, Gp, and Gp) give accurate description of the percolation phase transition24. 
At percolation the regions merge into one region that spans throughout the whole space of the 
field. Percolation phase transition is sensitive to some types on non-Gaussianity 13•15•16 • 

4 Quadratic Model 

Consider e.g. the quadratic model 

v = u + a(u2 - 1 ) (1) 
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Figure 1: a) The critical amplitude O<c of the quadratic model as a function of the size of the map. Bel­
low the line a = ac the quadratic model has the Gaussian morphology and is fully described by the pdf. 
b) Minkowski functionals as functions of the fraction of the area in the excursion set, A =  AEs/Am, where AEs 
and Am = AEs( -oo) is the area of the excursion set and that of the whole map, respectively. The left hand side 
column from top to bottom: the level in us, contour length C and genus G of the excursion set. The right hand 
side column from top to bottom: the fraction area Ap, contour length Gp, and Gp of the largest (i.e. percolating) 
cluster. The contour length is given in mesh units. The genus is "number of regions" - ''number of holes" . The 
solid lines show the parameters of the QMASK map, heavy dashed lines show the median Gaussian values, thin 

dashed lines show 68% and 95% ranges. 

where u is a Gaussian field with < u >= 0, < u2 >= 1 and a is a constant. Parameter a is 
related to the /NL parameter 7 as a =  U'flL!NL while .PL = UiflL u and ll.T/T = -VU'flL/3. It is 
often referred to as one of the physically motivated types of nonGaussianity 8•7•11•19• Being for­
mally nonmonotonic transformation of a Gaussian field the quadratic model effectively becomes 
monotonic if the amplitude a is small enough for a given size of the map. The critical value of 
the amplitude can be found from the following equation 14 

Npix � � �c exp ( 
8
�� ) . (2) 

Fig. la shows the critical amplitude ac for the COBE, MAP and PLANK experiments. The 
morphology in the quadratic model remains exactly Gaussian if a � ac and the existing non­
Gaussianity is fully described by the pdf. The one-point statistics (skewness, and higher mo­
ments) can detect the amplitude two orders of magnitude smaller than the critical value on a Npix = 10242 grid14• At a such amplitude the quadratic model has perfectly Gaussian morphol­
ogy. At a > ac the morphology is not Gaussian anymore but remains fairly simple and can be 
analytically described in terms of the Minkowski functionals of the parent Gaussian field 14• 

5 QMASK 

The QMASK map, described in 22 (and references therein) , combines all the information from 
the QMAP and Saskatoon experiments into a single map at 30-40 GHz covering about 648 
square degrees around the North Celestial Pole. The map consists of sky temperatures in 
6495 sky pixels, conveniently grouped into a 6495-dimensional vector x, with a FWHM angular 
resolution of 0.68° . All the complications of the map making and deconvolution process are 
encoded in the corresponding 6495 x 6495 noise covariance matrix. 

Along with the QMASK map we analyze a thousand reference maps with the same sky 
coverage, noise properties and power spectrum as the QMASK map. 



Fig. lb shows that the morphology of the QMASK map is compatible with the assumption 
of Gaussianity. A simple quantitative estimates confirm this observation 17. 

6 Summary 

The properties of the Minkowski functionals such as a sensitivity to nonGaussian morphology, 
local character, and computational efficiency make them useful statistical tools complimentary 
to the n-point functions for testing the Gaussianity of CME maps. 

As many argued the quadratic model is physically motivated at the inflationary stage 7•11 •19 . 
The morphology of this model can be analytically described in terms of the Minkowski func­
tionals of the Gaussian field for an arbitrary amplitude a 14 • For a finite size map there is a 
critical amplitude ac (eq. 2) separating the case of the exactly Gaussian morphology (o: < ac ) 
from nonGaussian morphology. 

The morphological tests has been applied to the QMASK map combining all the information 
from the QMAP and Saskatoon experiments into a single map at 30-40 GHz. It consists of sky 
temperatures in 6495 sky pixels and has a FWHM angular resolution of 0.68°. The morphology 
of the map is consistent with the hypothesis of Gaussianity of the initial fluctuations 17 . 
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