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Abstract

First a short introduction to principles and some recent developments in string theory
is given.

In a second part the effective action for five- as well as four-dimensional heterotic
M-theory in the presence of five-branes is systematically derived from Hořava-Witten
theory coupled to N separate M5-brane world-volume theories. The five-dimensional
theory is obtained by compactification on a Calabi-Yau three-fold, where we allow
for an arbitrary number of Kähler and complex structure moduli. This leads to a
five-dimensional N = 1 gauged supergravity theory on the orbifold S1/Z2, coupled
to four-dimensional N = 1 theories residing on the two orbifold fixed planes and
N additional three-branes. We analyze some properties of this action, including the
quaternionic structure of the hypermultiplet sector and its relation to the gauged
isometry. Further, the multi-domain-wall vacuum solution is given, and the associated
four-dimensional effective theory is derived. In particular the Kähler potential and
the gauge kinetic functions are determined along with the explicit relations between
four-dimensional superfields and five-dimensional component fields.

Next, a truncated form of the previously obtained four-dimensional action and its
relation to the five-dimensional domain-wall vacuum state are used to study cosmo-
logical rolling-radii solutions. The four-dimensional action is reduced to the minimal
geometrically necessary field content including gravity, the dilaton and the T-modulus.
To this action we find a one-parameter family of time-dependent solutions and relate
them to their approximate five-dimensional counterparts. These are new, generally
non-separating solutions corresponding to an evolving pair of domain walls. The five-
dimensional solutions are computed to leading non-trivial order in the strong coupling
expansion parameter which describes loop corrections to the four-dimensional theory.
These loop corrections depend on certain field excitations in the fifth dimension and
thus generally vary with time. We point out that the two previously discovered exact
five-dimensional separable solutions are precisely the special cases for which the loop
corrections are time-independent. At the end, changes induced by the presence of a
five-brane are discussed.

In the last part, we study flop-transitions for pure M-theory on Calabi-Yau three-
folds, in particular their influence on cosmology in the context of the effective five-
dimensional N = 1 supergravity theory. This is a further application of the five-
dimensional action obtained earlier, but in the context of pure M-theory without five-
branes, and extended to include certain two-brane states. In particular, the two-brane
states that correspond to an additional hypermultiplet which becomes massless at the
flop-transition is included in the effective action. We find the potential for this hyper-
multiplet which has quadratic and quartic terms and depends on the Kähler moduli.



By constructing explicit cosmological solutions, it is shown that a flop-transition can
dynamically happen, as long as the hypermultiplet is set to zero. Taking into account
excitations of the hypermultiplet we find that the transition is generally not com-
pleted, that is, the system gets stabilized close to the transition region. Regions of
the Kähler moduli space close to flop-transitions can therefore be viewed as dynami-
cally preferred. The generalization of the scenario to heterotic M-theory is discussed.

Keywords:
Heterotic M-theory, M-branes, Flop-transition, Cosmology
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Zusammenfassung

Der erste Teil gibt eine kurze Einführung in die Prinzipien und neueren Entwicklungen
der String Theorie.

Im zweiten Teil leiten wir systematisch die fünf- und vierdimensionalen Wirkun-
gen der heterotischen M-theorie unter Einbeziehung von Fünfbranen her. Zuerst wird
die Theorie von Hořava und Witten an N einzelne Fünfbranen gekoppelt und auf ei-
ne dreidimensionale Calabi-Yau Mannigfaltigkeit kompaktifiziert, wobei beliebig viele
Moduli der Kähler Klasse und der komplexen Struktur zugelassen werden. Das führt
zu einer fünfdimensionalen geeichtenN = 1 Supergravitation auf dem Orbifold S1/Z2,
gekoppelt an vierdimensionale N = 1 supersymmetrische Theorien auf N Dreibranen
sowie den zwei Grenzflächen, welche an den Orbifoldfixpunkten fixiert sind. Einige
Eigenschaften dieser Wirkung werden betrachtet, insbesondere die quaternionische
Struktur des von den Hypermultipletskalaren parametrisierten Moduliraums und die
Eichung einer Isometrie dieses Raumes. Danach wird eine BPS-Vakuumlösung beste-
hend aus parallelen Branen konstruiert und die zugehörige vierdimensionale effektive
Wirkung hergeleitet. Dazu werden das Kählerpotential aller skalaren Modulifelder
sowie die kinetischen Funktionen für die Eichfelder explizit angegeben. Ausserdem
werden die vierdimensionalen Superfelder durch die zugehöhrigen fünfdimensionalen
Komponentenfelder ausgedrückt.

Im nächsten Teil wird die vierdimensionale Wirkung der vorangegangenen Arbeit
in einer vereinfachten Form angewandt, wobei nur die geometrisch notwendigen Fel-
der betrachtet werden, und das sind die Metrik, das Dilaton und der T-modulus. Eine
einparametrige Schar von vierdimensionalen zeitabhängigen Lösungen wird gefunden
und in den fünfdimensionalen Zusammenhang gestellt. Die entsprechenden approxi-
mativen fünfdimensionalen Lösungen sind eine Entwicklung zu linearer Ordnung im
Kopplungsparameter ε, welcher Loopkorrekturen zur vierdimensionalen Theorie an-
gibt. Diese Korrekturen sind durch Anregungen gewisser Felder in der fünften Di-
mension gegeben und können somit zeitabhängig sein. Es zeigt sich, dass gerade
jene zwei Lösungen mit zeitunabhängigen Loopkorrekturen den bekannten exakten
fünfdimensionalen separierbaren Lösungen entsprechen. Am Ende wird noch dissku-
tiert was sich durch Einbeziehung einer beweglichen Fünfbrane ändert.

Im letzten Teil werden Flopübergänge in der M-theory auf dreidimensionalen
Calabi-Yau Mannigfaltigkeiten studiert, inspesondere deren Einfluss auf kosmologi-
sche Modelle der fünfdimensionalen N = 1 Supergravitation. Das ist eine weitere
Anwendung der Wirkung aus dem zweiten Teil dieser Arbeit, nun jedoch im etwas
einfacheren Fall der puren M-theorie ohne Grenzflächen oder Fünfbranen, dafür unter
Berücksichtigung spezieller Membranenzustände. Insbesondere wird die Wirkung für



jene Membranenzustände hergeleitet, welche einem zusätzlichen Hypermultiplet ent-
sprechen, das beim Flopübergang masselos wird. Das Hypermultiplet hat ein Potential
mit quadratischen und kubischen Termen, welche von den Kählermoduli abhängen.
Die Konstruktion expliziter zeitabhängiger Lösungen zeigt, dass eine Flopübergang
dynamisch realisiert werden kann solange das zusätzliche Hypermultiplet nicht mit
einbezogen wird. Anregungen dieses Hypermultiplets ändern die Situation und im
allgemeinen findet der Flopübergang nicht mehr vollständig statt, statt dessen wird
das System in der Übergangsregion stabilisiert. Somit können solche Regionen um
Flopübergange im Kähler Moduliraum als dynamisch bevorzugt betrachtet werden.
Die Verallgemeinerung dieses Szenarios auf heterotische M-theorie wird kurz dissku-
tiert.

Schlagwörter:
Heterotische M-theorie, M-branen, Flopübergang, Kosmologie
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besondere die Einstellung von André Lukas, dass was gehen muss auch gehen wird,
war mir sehr hilfreich und wirkte anspornend.

Weiterer Dank geht an alle netten Mitarbeiter und Kollegen für das angenehme Ar-
beitsklima am Institut. Dazu hat Dr. Oleg Andreev zusammen mit seiner Espresso
Maschine einen herzlichen Beitrag erbracht.

An meine Tin geht besonderer Dank für Ihre aufbauende Fröhlichkeit sowie für Ge-
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Chapter 1

Introduction

1.1 The necessity of string theory

Even after the turn of the millennium theoretical physics is still challenged by the two
great physical revolutions of the past century, these are the theory of general relativity
(GR) and quantum mechanics. The latter has found its most successful manifestation
in the quantum field theoretical formulation of the standard model (SM) of particle
physics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], which with astonishing accuracy explains
almost all empirical data mainly obtained from particle scattering experiments and
decay processes. The SM seems to provide the most accurate description of nature
in the microscopic1 realm down to length scales of ∼ 10−16cm, or equivalently, up
about to the so called electroweak energy scale of ΛW ∼ 200GeV. On the other hand
GR [14, 15, 16, 17, 18] provides the yet unsurpassed theory to describe astrophysical
and cosmological phenomena up to length scales of the current Hubble horizon of
∼ 1025m. Moreover, its characteristic features like the 1/r2-behavior of the attrac-
tive gravitational force and the equality of inertial mass and gravitational mass as a
consequence of the equivalence principle, have been tested down to length scales of
∼ 1mm [19]. In spite of the impressive success of both theories they do not provide a
coherent physical picture, in fact both theories do not incorporate the essential fea-
tures of the respective other one, and there is no doubt that both theories need to be
extended. It is generally believed that both theories are very good low energy effec-
tive approximations to some yet unknown all encompassing theory, for which string
theory provides a possible candidate.

To go beyond the SM and GR has proven especially difficult due to the rare data
these theories cannot explain which leaves us with hardly any experimental hints as
how to proceed. Especially observing signatures of the quantum nature of space-time

1One should keep in mind though that QM has reared its funny face also in macroscopic phe-
nomena like for example in superconductivity.
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1.1. THE NECESSITY OF STRING THEORY 3

seems out of reach because such effects are not expected to become relevant before the
enormous Planck scale of MP ∼ 1019GeV. Only recently some experimental ideas and
hints hopefully involving quantum features of space-time have been addressed, includ-
ing macroscopic quantum objects [20], high energy cosmic rays [21, 22], elementary
particle excitations in gravitational fields [23,24], the possibility of temporal variation
of coupling constants [25] and the non-vanishing of the cosmological constant [26,27].
Apart from the last, such issues can at the moment at best give qualitative results
like for example providing evidence for the existence of a fundamental length scale
and eventual Lorentz violation at corresponding energy scales. Thus the guiding prin-
ciples that should lead to a unification of the two standard theories are their open
questions, aesthetical considerations, mathematical consistency as well as the tight
constraints the success of the existing theories puts on any such attempt. The several
different approaches taken toward a unified theory of quantum gravity, none of them
truly satisfactory yet, are reviewed for example in [28,29,30,31].

Already before the quantization of gravity even seems to become necessary, the
high degree of arbitrariness of the SM calls for an explanation. The most prominent
ideas to extend the SM of particle physics are grand unification, supersymmetry and
Kaluza-Klein theories [32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. In grand unified theories
(GUT) the standard model gauge group SU(3)c ⊗ SU(2)L ⊗ U(1)Y is embedded in a
bigger, simple gauge group GGUT that admits complex representations, such as SU(5),
SO(10) or E6. Above the grand unification scale, roughly estimated to be ΛGUT ∼
1016GeV, there remains only one gauge coupling. Additional gauge bosons become
relevant that mediate new forces between those formerly different SM multiplets that
now sit in the same representation of GGUT and as such become indistinguishable
above ΛGUT . In general the new interactions violate baryon and lepton number and
the proton would no longer be stable but have a lifetime of roughly τp ∼ Λ4

GUT/m
5
p,

with mp the mass of the proton, and this already experimentally excludes the simplest
SU(5) model. Other model dependent predictions are the weak mixing angle and
sometimes certain mass relations between leptons and quarks. At energies below ΛGUT

the SM gauge group is regained after spontaneous symmetry breaking by means of a
generalized Higgs mechanism. Though the idea of grand unification seems appealing,
it cannot be the end of the story, first it comes with new additional problems in
the Higgs sector (problem of doublet-triplet splitting), and moreover it is also not
completely consistent with the well known particle spectrum of the SM.

The extrapolation of the running of the gauge couplings in the SM does not show
exact unification at some higher scale ΛGUT as needed. One would also expect that as a
low energy effective theory the SM should be independent of an upper cut-off scale like
ΛGUT at energies much below ΛGUT , which is not the case due to the hierarchy problem.
It states that the SM Higgs mass mh gets radiative corrections δmh ∼ ΛGUT >>
mh ∼ ΛW which would render the weak scale unstable and thus the SM strongly
dependent one some higher energy scale. As a last point, it seems very improbable
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that there is a plethora of particles of different masses up to ΛW , but there should
then be a big desert up to ΛGUT in which no new physics appears. All these three
problems can be solved by the extension of the SM to the (minimal) supersymmetric
standard model ((M)SSM), which is nicely reviewed in [42]. To every SM particle a
superpartner sparticle of equal mass but opposite spin statistics is associated, and in
a supersymmetric world the hierarchy problem would vanish due to the cancellation
between contributions to loop diagrams of fermionic and bosonic degrees of freedom
of superpartners. But since the world obviously is not supersymmetric, this symmetry
must be (spontaneously) broken, which leads to a mass split between superpartners
of the order of the supersymmetry breaking scale ΛSUSY . Choosing this scale of order
of the weak scale ΛSUSY ∼ ΛW ∼ 200GeV would render the sparticles just heavy
enough to be not yet detectable at todays accelerators. Moreover, the hierarchy
problem would vanish since the radiative corrections to the Higgs mass would also be
of order of the weak scale from contributions below ΛSUSY and only logarithmic in a
cut-off of the theory above ΛSUSY , which could be as high as the Planck scale MP .
At the same time the additional light particles above ΛSUSY influence the running
of the gauge couplings exactly such that grand unification at ΛGUT is possible. This
all sounds nice but it actually involves an enormous amount of arbitrariness because
with the enlarged Higgs sector and a supersymmetry breaking mechanism the SSM
has around 100 free2 parameters, i.e. the problem we set out to ameliorate in the
SM has become a fivefold worse. The problem of (super)symmetry breaking can be
considered far from being solved in high energy particle physics.

An idea to approach the origin of gauge symmetries in the SM is provided by
Kaluza-Klein theories [43,44,45,46]. In these theories space-time has more than four
dimensions, and for the extra dimensions not to be observable, they are assumed to be
curled up in tiny compact internal spaces of length scales that cannot be resolved with
currently reachable energies. From the Kaluza-Klein perspective a four-dimensional
theory is only a low energy effective theory not taking into account the gravitational
backreaction of any dynamics onto the extra internal dimensions. For an internal
space with an isometry group GISO the lower dimensional effective theory will have a
gauge symmetry group G ⊂ GISO, even if the higher dimensional theory incorporated
gravity only. Thus gauge fields have gravitational origin and the gauge symmetries
are remnants of the coordinate invariance of general relativity. Moreover, the gauge
coupling depends on the size of the internal space and as such is a geometrical quantity
that is apt to become dynamical at high enough energies. There is also a possible
explanation to the quantization of mass if all mass is reinterpreted as momentum
in internal directions, which is necessarily quantized due to the compactness of the

2By ”free” we mean ”chosen to fit experimental data”, or in the case of grand unification ”chosen
in order to theoretically conform with an appealing idea”. The whole situation is even more intricate
because the ∼21 free parameters of the SM actually must have very special values to allow for life,
the universe and everything!
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internal space. This is problematic though because such masses are expected to be
of the order of the compactification scale which we previously assumed to be too
high to be observable, which is inconsistent with the masses observed. Staying with
the given assumption, only the zero momentum modes appearing as massless states
are effectively relevant and again a different mechanism for the generation of masses
would have to be incorporated. There are various other problems with Kaluza-Klein
theories:

• As higher dimensional gravitational theories they are not perturbatively renor-
malizable and thus do not provide a viable quantum theory.

• There is no dynamical compactification mechanism known that would pick out
a special internal space, and thus gauge group and coupling are still arbitrary.

• The size of the internal space need not be stable and thus the coupling ”con-
stants” could vary in space-time.

• It has never been possible to exactly extract the SM coupled to gravity by
the Kaluza-Klein mechanism, because it cannot generate chiral fermions from a
non-chiral theory [47].

So another old and nice idea seems to have failed. There remains one intriguing
fact though, a compact internal manifold that can have an isometry group that is big
enough to incorporate the SM gauge group needs to be at least seven-dimensional [48].
Together with the four dimensions from external space-time, this leads to eleven
dimensions, exactly the highest dimensionality which allows the construction of a
consistent supergravity theory [49].

The upshot of the previous paragraphs is that there are very good concepts to go
beyond the SM, but all of them bring along lots of problems, most of which are related
to the problem of symmetry breaking, which is already the most unsatisfactory part in
the conventional SM in form of the Higgs mechanism. Moreover, on the one hand all
these ideas can consistently be implemented into the SM, but on the other hand this
also reflects the fact that there is no hard experimental evidence nor phenomenological
need for any of them yet.

All three ideas, grand unification, supersymmetry and Kaluza-Klein compactifi-
cation reappear in the context of string theory. Unfortunately most of the problems
associated with these concepts also remain in string theory, though even they are
”unified” in the sense that they can all be traced back to one single problem, namely
the problem of background dependence, as should become clearer along the way. Still,
string theory must be taken seriously because so far it provides the only viable per-
turbative description of quantum gravity, but no longer in the framework of quantum
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field theory (QFT). At the level of perturbation theory in QFT, the appearing diver-
gencies are related to the absence of a cut-off at short distances due to the point-like
nature of the interactions, which in turn is related to the validity of the cherished
principle of Lorentz invariance to arbitrarily high energies. This problem itself can
be cured in renormalizable theories where the divergencies do not become worse at
every order of perturbation theory such that they can be ’absorbed’ into parameters.
This means that such a parameter (e.g. the gauge coupling constant) is fixed to an
empirical value at a certain energy and the only thing that matters thereafter when
including higher loop corrections is the rate of change of the normalized coupling,
described by the so called β-function. Since the coupling constant of gravity, i.e. the
Newton constant GN = M−2

P , has dimension of length squared, the true dimensionless
expansion parameter of perturbative gravity must be E/MP , where E is the charac-
teristic energy of the process considered. This shows two unfortunate features, first
gravitational interactions become only relevant at enormous energies E →MP where
perturbation theory breaks down, and second the ratio of an n to a zero graviton
exchange amplitude is on dimensional grounds of the order

1

M2n
P

(∫
dE1E1 . . .

∫
dEn−1En−1

)
,

which in the limit Ei →∞ diverges the more rapidly the larger n. In position space
this limit corresponds to a diagram where all 2n graviton vertices coincide, which is
only possible if there is no minimal length scale. Since the divergencies become worse
at every order, we would need new renormalizable parameters at every order which is
simply neither practicable nor sensible. This is the problem of non-renormalizability of
gravity, which in string theory gets solved by the introduction of a powerful symmetry
associated to an infinite tower of states as well as a minimal length scale, even without
the loss of Lorentz invariance.

String theory starts by replacing point-like particles by one dimensional strings
which already implies that string theory cannot be a QFT. But the string length is
usually supposed to be close to the Planck length lS ' LP = M−1

P ' 10−33cm, and
at lower energies the strings look again point-like where QFT yields a low energy
effective description of string theory. The extended nature of a string becomes only
relevant at the string scale, and it smears out the location of interaction which helps to
avoid ultraviolet divergences. The different particle species are interpreted as different
vibrational modes of the strings and luckily enough, after quantizing these modes in a
Minkowski background space-time, there is also a massless mode which exactly has the
properties of a spin-2 graviton with low energy dynamics given by general relativity.
So string theory provides the only known perturbatively consistent quantum theory
of general relativity. There are actually five different consistent string theories known,
and these relativistic quantum theories of strings are highly constrained. It turns out
that they are only consistent with



1.1. THE NECESSITY OF STRING THEORY 7

• a ten dimensional space-time,

• a supersymmetric spectrum of excitations,

• all background fields satisfying classical equations of motion, which to lowest
order in the expansion parameter α′ = l2S correspond to the Einstein, Yang-
Mills/Maxwell and Klein-Gordon equations,

• possible non-Abelian gauge groups to be SO(32) or E8 × E8.

So for reasons of consistency of string theory we see that supersymmetry, the Kaluza-
Klein idea, grand unification as well as conventional QFT come back into play!

As explained in more detail later, the five string theories are not really independent
but only different special limits (vacua) of an eleven-dimensional theory dubbed M-
theory. These limits are related by so called dualities. Unfortunately, all that is really
known of this M-theory is its low energy effective action, namely eleven-dimensional
supergravity. As nice as this unifying picture might be, it also raises the question
which vacua of M-theory nature has chosen to sit in, if any at all. It is the choice of a
background space-time on which to perform the Kaluza-Klein compactification that
determines all the features of four-dimensional physics, and there seem to be nearly
infinitely many possibilities and so far the SM could not be completely reconstructed
in this way, almost though. The main necessary ingredients like chiral fermions, fam-
ily structure, grand unified gauge groups and Yukawa interactions can be obtained.
In short, the high degree of uniqueness in ten or eleven dimensions is completely
spoiled when trying to go to lower dimensions. And even if a good vacuum could
be found, there would still lack a dynamical mechanism behind this special choice.
The true problem behind these difficulties is the present perturbative formulation of
string theory that is not defined in a background independent way. It considers only
strings in a given constrained background and yields a consistent quantum theory of
the fluctuations around this background. The background fields in turn correspond
to coherent states of string fluctuations in Minkowski space-time. It is the given back-
ground that fixes the causal structure. Moreover, only because there is a consistent
quantum theory, it generally is not easily solvable and the spectrum around a given
background need not even contain a graviton anymore, and to close the circle, one
could again use coherent states of these new fields as background fields in which to
quantize a string and then in principle go on like this forever - not very practicable.
A solution to this problem is not in sight yet, though one possible attempt is string
field theory.

In spite of these serious deep problems in M/string theory, it is still interesting to
see what can be accomplished by building models derived from the more fundamental
M/string theory. Especially such low energy effective models that are possibly valid
up to the string scale are of particular interest in early universe cosmology.
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1.2 Short introduction to string theory

In this section a brief and sketchy introduction into string theory will be given. The
standard references for this subject are ref. [50, 51, 52, 53, 54], nice introductions are
also given in ref. [55, 56, 57, 58], and on a non-technical level ref. [59, 60, 61, 62, 63, 64,
65,66,67,68,69] make good reading.

Strings as one-dimensional objects trace out two-dimensional world-sheets Σ when
moving through a target space-time M , such that the Feynman ’wiring’ diagrams get
replaced by ’plumbing circuits’ as depicted in fig. 1.1. All different Feynman graphs at
a given order are replaced by one single string graph of the same order. The string is

+ + +  ...

Σ

Figure 1.1: Several Feynman diagrams get replaced by one string graph.

described by its embedding into target space, i.e. by the maps XI(σ0, σ1) : Σ −→M ,
whereXI , I = 0, . . . , D−1, and σα, α = 0, 1, are the coordinates of the D-dimensional
target space M and the two-dimensional world-sheet Σ, respectively. In general Σ can
be an oriented or an unoriented surface and also have boundaries besides those from
the external legs. The latter is the case for open strings. For simplicity we consider
only closed oriented strings embedded in Minkowski space-time, more specifically,
we concentrate on the bosonic string. In analogy to the point particle, the classical
Nambu-Goto string action is given by the area of the worldsheet Σ and as such has
a direct geometrical interpretation. This latter action is equivalent to the following
simpler Polyakov action given by

S =
1

4πα′

∫
Σ

d2σ
√
hhαβ∂αX

I∂βX
JηIJ , (1.1)

where α′ is the Regge slope with associated string scalems = α′−1/2, and T ≡ (2πα′)−1

is the string tension giving the energy per length. Further, h = |dethαβ| is the
determinant of an auxiliary metric hαβ on Σ that can be eliminated by its algebraic
equation of motion to regain the Nambu-Goto action, and ηIJ is the flat metric of the
Minkowski background space-time. The action (1.1) is a two-dimensional field theory
action of a linear sigma model for the D fields XI living on Σ. Moreover the Polyakov
action shows the following three symmetries: (i) invariance under diffeomorphisms of
the world-sheet, (ii) Poincaré invariance in D dimensions and (iii) invariance under
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Weyl transformations where hαβ → eΛ(σ)hαβ, such that the action (1.1) defines a
conformal two-dimensional field theory. Upon quantization of this field theory these
symmetries must be preserved in order to avoid violation of unitarity, and it is the
generically anomalous Weyl symmetry which imposes strong constraints on the theory,
it fixes the number of space-time dimensions in which the string action can consistently
be quantized. Heuristically speaking, this is because the space-time dimensionality
determines the number of degrees of freedom of a string, which in turn affects its
symmetry properties.

The quantum string theory is obtained by first quantization, that is the coordi-
nates XI are promoted to operators in space-time. In terms of the two-dimensional
conformal field theory this corresponds to second quantization and the fields XI are
considered as quantum fields on Σ. For quantization there are several methods, these
are light cone, old covariant and BRST quantization which differ in the way the
symmetry constraints are taken care of. Without going into further details of the
quantization process only results are stated here. The independent degrees of free-
dom are the vibrational excitations of the string transverse to the world-sheet which
yield the spectrum of the quantum theory. The spectrum obtained from quantiza-
tion of the action (1.1) does not contain any space-time fermions but it contains a
tachyon, that is a state of negative mass, so we do not get a viable theory. These
problems can be fixed by the introduction of fermionic degrees of freedom, and in
the so called Ramond-Neveu-Schwarz approach this is done by an extension of the
action (1.1) with supersymmetry on the world-sheet Σ. The conformal symmetry of
(1.1) gets enhanced to a superconformal symmetry and its preservation under quan-
tization constrains the space-time dimension of the background Minkowski space to
be fixed to D=10. Due to the fermionic degrees of freedom the resulting spectrum
can strictly speaking no longer be interpreted as vibrational modes of the string in
space-time. Moreover, to get rid of the tachyons the spectrum has to be truncated
by the so called GSO projection3. The surviving spectrum consists of a finite set of
massless states together with an infinite tower of massive states. These states are
labelled by quantum numbers of the ten-dimensional Lorentz group and thus can be
interpreted as space-time ’particles’ with the corresponding fields. The massive states
have masses quantized in units of ms = α′−1/2 and are usually assumed to be of
the order of the Planck mass and thus much too heavy to be of any importance in
most situations, but their importance lies in the fact that they are all needed for the
quantum theory to be unitary and perturbatively consistent, (i.e. they are necessary
for the conformal symmetry to hold quantum mechanically). In the decoupling limit
α′ → 0, only the massless states survive and this is also called the point particle limit,

3The GSO (Gliozzi-Scherk-Olive) projection actually is necessary for the modular invariance of
the one-loop vacuum amplitude and it also corresponds to the inclusion of all spin structures of Σ
in the corresponding path-integral



1.2. SHORT INTRODUCTION TO STRING THEORY 10

moreover from the action (1.1) it can be seen that α′ corresponds to the expansion
parameter of the two-dimensional quantum field theory on Σ. Therefore, working at
tree-level on Σ does not mean that we work at tree-level in space-time, as should
become clear next when we consider string interactions and the associated n-point
amplitudes (correlation functions).

The interaction of strings is described by world-sheets of different topologies con-
necting incoming to outgoing string configurations. As shown up to second order
for two incoming and two outgoing strings in fig. 1.2, the inclusion of all possible
topologies connecting a given configuration of external states is analogous to the loop
expansion in field theory (and actually reduces to the latter in the limit α′ → 0).
The coupling is completely encoded in the topology of the world-sheet interpolating

+ + + . .  .  

V1V1V V3V3V

V4V4VV2V2V

V1V1V V3V3V

V4V4VV2V2V

V1V1VV3V3V

V4V4V V2V2V

Figure 1.2: Loop expansion of four point amplitude.

between external states, and unlike for point particles there is no longer a choice of
coupling constant possible that can depend on the particle species meeting at an inter-
action vertex. There is only one single coupling constant λ that can be assigned to the
three string interaction from which all other interactions can be constructed. More-
over, such world-sheets connecting strings are smooth manifolds without distinguished
interaction points in space-time, and this leads to the fact that string interactions are
less singular than those of point particles. Correctly, the asymptotic in- and out-going
states should be represented as semi-infinite cylinders that are conformally equivalent
to punctures in the interpolating world-sheets. Such a puncture can be replaced by
the insertion of a so called vertex operator Vi(σi), that is a marginal local operator of
the two-dimensional world-sheet field theory. The physical states |i > of the field the-
ory are in one-to-one correspondence with the vertex operators Vi(σi) which describe
the creation or annihilation of the corresponding asymptotic state at the position σi
on the world-sheet. After this replacement, we are left (in the case of closed oriented
strings) with compact closed Riemann surfaces Σg that are characterized by their
genus4 g which in turn determines the order of perturbation theory. The n-point
amplitude with n external states at order g has n− χ interaction vertices, such that

4The genus g counts the number of holes in a Riemann surface, so for example g = 0 for the
sphere and g = 1 for the torus, also see appendix D for more on Riemann surfaces.
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the associated coupling constant is given by λn−χ where χ = 2 − 2g is the Euler
number of Σg. Now the great feature of string theory is that scattering amplitudes
of strings in ten-dimensional space-time can be calculated by correlation functions of
vertex operators in the two-dimensional superconformal field theory. Schematically
an n-point scattering amplitude including closed strings only looks like

A(1, . . . , n) =
∑
g

λn−χ〈V1 · · ·Vn〉g (1.2)

=
∑
g

λn−χ
∫
DX DhDψ
vol(gauge)

e−S[X,h,ψ]

n∏
i=1

∫
Σg

d2σi
√
h(σi)Vi(σi)

where the sum over g corresponds to the loop expansion in terms of the sum over
all topologically different Riemann surfaces Σg with each contribution weighted with
the coupling λn−χ. The vertex operators Vi(σi), i = 1, . . . , n are those of the external
states and ψ collectively denotes all fermions. The path integral has to be divided
by the volume of the world-sheet gauge group in order not to count gauge equivalent
configurations separately.

The Polyakov string action (1.1) can be extended to include fermionic degrees
of freedom in several ways, moreover one can allow for open and closed strings with
oriented or unoriented world-sheets Σ, and furthermore there can be different possibil-
ities to perform the GSO projection. But it turns out that in a Minkowski background
there are only five different consistent quantum string theories possible. Demanding
the path integral (1.2), or its open string version, to be well defined yields the follow-
ing constraints. For closed strings there first is the necessity of modular invariance
of the one-loop partition function. This means that the amplitude (1.2) without any
external states and without the sum over g but with Σ1 the torus must be invariant
under large conformal transformations, which are reparametrizations of the torus not
continuously connected to the unity, or heuristically they correspond to cutting the
torus along a non-contractible loop and regluing it after a twist. This symmetry lies
at the heart of the soft UV-behavior of closed string theory because it constrains the
integration area of the path integral in such a way that it acts like a high energy cut-
off. The second constraint comes from possible non-Abelian gauge fields in the string
spectrum and the requirement that there are no quantum anomalies in the associated
gauge symmetries. For open strings the latter requirement turns out to be equivalent
to the requirement of tadpole cancellation [70]. To lowest order in the closed string
sector there are neither tadpoles nor a cosmological constant due to the invariance
under global conformal transformations. Another non-trivial observation is that in the
case of closed strings both stated requirements are enough for the complete amplitude
(1.2) to be well defined.

The five different string theories that fulfill all consistency requirements are listed
in table 1.1 where the name, massless bosonic spectrum, amount of supersymmetry,
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gauge group and types of strings are collected. As can be seen, all theories contain a

name IIA IIB I SO(32) E8 × E8

heterotic heterotic
string-type oriented oriented non-oriented oriented oriented

closed closed open, closed closed closed
SUSY N = 2 N = 2 N = 1 N = 1 N = 1

non-chiral chiral chiral chiral chiral
gauge group U(1) none SO(32) SO(32) E8 × E8

massless gIJ , BIJ , gIJ , BIJ , gIJ , gIJ , BIJ , gIJ , BIJ ,
bosonic φ, φ, φ, φ, φ,
spectrum AI , AIJK A, AIJ , AIJ , A

a
I AaI AaI

AIJKL

Table 1.1: Five different string theories in ten dimensions.

graviton gIJ and a scalar dilaton φ in their massless spectrum, furthermore all theories
except type I start from closed oriented strings only and have an antisymmetric two-
form tensor field BIJ called Neveu-Schwarz (NS) B-field in their spectrum. These
fields make up the universal NS-sector and they are characterized by the fact that
these fields couple directly to the closed strings, that is closed strings are charged with
respect to the NS-fields. Besides the universal sector each theory individually contains
other massless bosonic fields that can consist of non-Abelian gauge fields AaI , a =
1, . . . ,dimG and/or antisymmetric p-form fields AI1...Ip called Ramond-Ramond (RR)
p-forms. The strings are not charged with respect to the RR p-forms and thus do
not directly couple to them, but in string theory there actually are additional objects
called Dp-branes with this property. Dp-branes are solitons of string theory that
extend in p spatial dimensions and thus have a (p+1)-dimensional world-volume [71,
72, 73, 74, 75, 76]. In appendix B as well as the next chapter there will be more
said about the M-theory equivalents of Dp-branes, i.e. M-branes. (After all, the
classical treatment of M-branes, certain aspects of their inclusion in (heterotic) M-
theory and some cosmological consequences are the main topics of this thesis.) Besides
the bosonic field content there are also fermions in the massless spectrum which
turns out to be supersymmetric in space-time such that the massless spectra fit into
multiplets of ten-dimensional supergravities.

So far only strings in a flat ten-dimensional Minkowski background have been con-
sidered, but using the massless string spectra given in table 1.1, one can also consider
strings in curved backgrounds with non-trivial field configurations. For simplicity we
will only look at the basics of closed strings in non-trivial backgrounds of fields in the
universal NS-sector to which closed strings couple directly. In such backgrounds the
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bosonic part of the Polyakov action (1.1) generalizes to

S = Sg + SB + Sφ (1.3)

with

Sg =
1

4πα′

∫
Σ

d2σ
√
hhαβ∂αX

I∂βX
J gIJ(X) , (1.4)

SB =
1

4πα′

∫
Σ

d2σ
√
h εαβ∂αX

I∂βX
J BIJ(X) , (1.5)

Sφ =
1

4π

∫
Σ

d2σ
√
hR(h)φ(X) , (1.6)

where R(h) is the scalar curvature of Σ and εαβ is the antisymmetric world-sheet
tensor density. This coupling structure is dictated by requiring the symmetries of the
simpler action (1.1) to still hold in (1.3). Of course this action would again have to
be extended by fermionic terms.

Let us now turn to the question what kind of background configurations yield
a consistent quantum theory. The action (1.3) has the form of a non-linear sigma
model, and the functions gIJ(X), BIJ(X), φ(X) can be considered as coupling ’con-
stants’ between the fields XI in the two-dimensional field theory. Weyl invariance
(scale invariance) of this field theory does not allow running couplings, therefore the
corresponding β-functions must vanish and the equations βgIJ = βBIJ = βφ = 0 turn
out to be equations of motion for the background fields. In the two-dimensional field
theory these β-functions have loop expansions and can be calculated perturbatively
order by order in α′. To first order in α′, and for simplicity in a background where
BIJ = const. and φ = const., they read βgIJ = α′R + O(α′ 2), βBIJ = O(α′ 2) and
βφ ∼ (D − 10) + O(α′ 2). Note that Sφ is of higher order in α′ and βφ = 0 fixes the
space-time dimensionality already at zeroth order. At first order the Einstein equa-
tions are reproduced and for general backgrounds the NS-field and the dilaton would
also get equations of motion and provide sources of energy-momentum. At this order
in α′ all equations are of second order in space-time derivatives. Higher derivatives are
negligible in this so called regime of low energy effective theory only if

√
α′R−1

c � 1,
where Rc is the characteristic curvature radius of the target space-time, see fig 1.3.
The important point is that only solutions to these equations of motion provide a
suitable background configuration for the action (1.3) to define a consistent quantum
theory, which does not mean that we necessarily know how to solve it and find the
explicit string spectrum in such a background. Besides this problem, the space of
background solutions is highly degenerate which is the vacuum degeneracy problem in
string theory. This is characteristic for supersymmetric theories and certain degen-
eracies are expected to be lifted once supersymmetry is broken. On the other hand,
without supersymmetry we loose control of quantum corrections and thus might run
into problems of stability of the whole setup considered.
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Rc

ls

Figure 1.3: In the limit Rc � ls =
√
α′ a background with curvature radius Rc looks

flat on scales of order O(ls).

Above we have found the equations of motion of the fields of the universal sec-
tor only, but there is an alternative way to derive these equations for all massless
space-time fields. Using the supersymmetric extension of action (1.3), their n-point
functions can be calculated which, to order α′, have to be reproduced by scattering
amplitudes calculated from the respective effective field actions. The effective actions
found in this way are the ten-dimensional supergravities, these are the type I for the
heterotic and the type I string and type IIA/B for the corresponding string theories.
So the known ten-dimensional supergravities are the low energy approximations to
the corresponding string theories.

Next consider using a constant dilaton background φ = 〈φ〉 in (1.6) which yields
Sφ = 〈φ〉χ with χ = 2 − 2g the Euler number of the Riemann surface Σg. Together
with (1.2) this determines the physical string coupling as λphys = λe〈φ〉 where an
arbitrary constant shift in the dilaton can be used to set λ = α′ 2 such that λphys =
α′ 2gs with the dimensionless string coupling ’constant’ defined by gs = e〈φ〉 [56]. This
shows that there is indeed only one single fundamental dimensionful parameter in
string theory that can be taken to be α′ or λphys, both being related as just shown.
Since gs is the dimensionless closed string coupling constant, string loop corrections5

to the effective equations of motion can only be neglected if e〈φ〉 is small enough,
which had to be tacitly assumed in the foregoing discussion. Unfortunately it is not
yet known what dynamically determines the expectation value 〈φ〉, this is part of the
major problem of vacuum degeneracy in string theory.

As a last remark, we mention that a closer inspection of (1.3) in the amplitude (1.2)
reveals that it has the same effect as inserting the exponentiated (integrated) vertex
operators of the background fields into the expectation values taken with respect to
the flat background. These exponentiated vertex operators create coherent states that
correspond to classical background field configurations. For example a curved space-
time background in string theory is thus described by a coherent state of gravitons
in Minkowski space. In spite of the fact that we only have a background dependent

5Not to be confused with the α′-corrections.
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formulation of string theory, this hints at some sort of background independence,
namely different space-times correspond to different states in one theory, though these
states can only be formulated in a Minkowski background.

To summarize, one of the main reasons why string theory has attracted so much
attention is that it so far provides the only known perturbatively consistent theory of
quantum gravity that reduces to Einstein gravity in a well defined low energy limit,
and furthermore it shows a high degree of uniqueness.

1.3 Compactifications and effective actions

As mentioned in the foregoing section, the equations of motion of the massless fields
in the string spectrum can be obtained from classical field actions. Such effective
actions are a very convenient way of describing massless string states in terms of
classical field theory. Since these actions are obtained in an expansion in α′, their
validity is limited to energy scales below the string scale, but because the latter is
assumed to be very high (as high as the Planck scale) the ’low energy’ effective theories
are extremely useful for applications in particle as well as gravitational physics based
on string theory. It must simply be remembered that the validity of effective field
theory is limited to background configurations for which the characteristic curvature
radius satisfies Rc �

√
α′ (see fig 1.3), that is, the background space-time must not

be strongly curved and thus, by the Einstein equations, fields cannot behave too
violently. Throughout the rest of the thesis we will exclusively work on the level of
low energy effective actions.

The existence of a critical dimension D=10 in string theory is in contrast to the
observed dimensionality of space-time d=4, and it is therefore necessary to hide the
extra six dimensions. Theories in backgrounds with D<10 can be constructed either
by specifying an appropriate conformal field theory on the world-sheet, or more easily
by a geometrical Kaluza-Klein compactification. Here we consider the latter option
only, and since such a compactification will explicitly be performed in this thesis, it is
only briefly discussed here. In general, one starts by using as a background manifold
MD = M4 ×Mint, where, by Poincaré invariance of the vacuum, M4 must be four-
dimensional Minkowski space and Mint is an internal space, which is not arbitrary
[77]. Along goes a corresponding split of the associated metric and the rest of the
spectrum such that all equations of motion are satisfied6. Besides this restriction, the
internal manifold must be small enough to have escaped its detection at present-day
accelerators, moreover it must be Ricci-flat for reasons of modular invariance of (1.3).
To define a sensible string theory and regarding the phenomenological importance of

6Due to the Pauli principle fermion fields are always set to zero. Strictly speaking there is no
such thing as a classical fermion field.
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supersymmetry as well as demanding a chiral theory in four dimensions restricts the
possibilities for the external theory to minimal N = 1 supergravity. In the simplest
cases [78] these constraints together with the desire to get non-Abelian gauge fields
in the lower dimensional theory, restricts us to Calabi-Yau (CY) compactifications
of type I or the heterotic string theories7, where Mint must be a Calabi-Yau three-
fold [77], this is a complex Kähler manifold of SU(3) holonomy and of three complex
dimensions [80,81,82,83]. Besides this restriction onMint stemming from the gravitino
supersymmetry variation, there are further restrictions on the internal gauge fields
coming from the gaugino variation.

Whereas string theories are almost unique in the critical dimension, this desirable
feature is lost after compactification, which is due to the vacuum degeneracy of string
theory. Still, in view of the lower dimensional effective action we are interested in the
massless fluctuation spectrum around a given background, and the exact spectrum
depends on the choice of Mint. Now we have to distinguish between internal and ex-
ternal modes. The external modes are simply the purely external components of the
higher-dimensional fields generally depending on the external coordinates only. The
internal massless modes are defined by flat directions in the space of background so-
lutions, that is they parametrize the space of deformations of the internal background
configuration that leave it a solution to the background field equations of motion.
Differently speaking, the background solution actually corresponds to a parametrized
family of solutions, and these parameters (integration constants) are then promoted
to four-dimensional space-time fields called moduli fields. Deformations of purely
internal field components lead to scalar fields and mixed components can lead to vec-
tor and tensor fields in four dimensions. Purely internal deformations of the metric
are usually called geometrical moduli. For CY-compactifications the variation of the
Kähler class as well as the complex structure lead to corresponding moduli, which
turn out to be determined by the homology of Mint. Massless modes of other bosonic
fields usually arise as zero-modes of the internal Laplace operator and thus are deter-
mined by the harmonic forms on Mint, that is again by the homology of Mint. Similar
considerations also work out for fermions, but usually only the bosonic part has to be
considered explicitly and the fermions are then given by supersymmetry.

Explicitly inserting the moduli fields into the solution and then integrating the ten-
dimensional action over the internal space Mint yields the four-dimensional low-energy
effective (moduli space) action. This action describes the dynamics of adiabatic mo-
tion through the moduli space of Mint, that is the gravitational backreaction of the
complete four-dimensional dynamics on the internal geometry of Mint is neglected.
This can consistently be done as long as the compactification scale is high enough,
which is usually assumed to be of order of the Planck scale. This also justifies ne-

7In view of the dualities discussed in the next section other compactifications are also interesting.
For type I strings the intersecting brane-worlds [79] provide very interesting models.
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glecting an infinite tower of massive Kaluza-Klein excitations (non-zero modes of the
internal Laplacian) since their masses are of order of the compactification scale as
well.

The main point here is that a consistent truncation of a ten-dimensional string the-
ory to lower dimensions puts constraints on the possible compactification backgrounds,
though they are by no means restrictive enough to uniquely fix such a vacuum. The
lower dimensional theory depends highly on the choice made and it describes the
physics of the massless perturbative excitations around the chosen background.

1.4 Dualities and M-theory

As discussed in the previous section, there are many ways in reducing the five ten-
dimensional string theories to lower dimensions, and there is no satisfactory expla-
nation yet how nature could have taken any particular choice to yield the observed
world. The only requirement is that the backgrounds must fulfill the field equations
of motion, but this treats all possible solutions with different internal spaces and
associated spectrum mathematically on equal footing. This allows to think of all
possible backgrounds to a given string theory as one huge moduli space which in-
cludes the background geometry as well as expectation values of the various fields in
the spectrum. In one area of this moduli space the Calabi-Yau compactifications of
the last section are located, and continuously deforming the background by changing
the values of the moduli allows to move around in this moduli space. This could
for example correspond to changing the volume or the Kähler class of the Calabi-Yau
manifold. From classical geometry one would expect two topologically distinct Calabi-
Yau spaces not to be continuously deformable into each other, and there would be
many disconnected components of the complete moduli space. But it actually turns
out that there are certain topology changing processes for which the associated low
energy physics behaves completely smooth [84, 85, 86, 87]. Heuristically speaking, a
classically singular geometry does not need to look singular when probed with an
extended object like a string. At such transition points in moduli space additional
massless states appear in the low energy space-time spectrum. An explicit example
of a topological change and the influence of such extra states is treated in chapter 4
in a cosmological context. The upshot of this paragraph is that it might be true that
in this sense the whole moduli space to one string theory is connected.

There is another manifestation of stringy geometry, namely the duality of pertur-
batively distinct string theories [54,55,85,88,89,90,91,92]. One distinguishes pertur-
bative from non-perturbative dualities. The former can already be seen at weak string
coupling and do not involve the dilaton. The prime example is T-duality that relates
different torodial compactifications, most prominently, the type IIA theory on a circle
of radius R is equivalent to type IIB on a circle of radius α′/R. Another important
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manifestation of the phenomenon that different theories on different backgrounds can
lead to the same physics is given by mirror symmetry [93]. On the other hand, the
non-perturbative dualities identify regions of moduli space which do not simultane-
ously yield weakly coupled theories. Then the strong coupling limit of one theory is
equivalent to another weakly coupled theory, and such theories are called S-dual. The
non-perturbative dualities cannot yet be proven rigorously but non-trivial checks can
be performed by the identification of quantities that, due to supersymmetry, do not
receive quantum corrections that would become non-negligible at strong coupling. In
particular this is true for the spectrum of solitonic BPS-states [94] (Dp-branes) which
become light at strong coupling and then can be identified with the elementary string
excitations of the S-dual theory and vice versa. This shows that the string degrees
of freedom should not be considered in any way as more fundamental than those of
Dp-branes. There is convincing evidence that the type I and heterotic SO(32) theories
are S-dual and that the type IIB theory is S-dual to itself.

Now it seems reasonable that all perturbatively distinct string theories are inter-
related by an intriguing web of dualities. The missing link is provided by the strong
coupling limits of the type IIA and the heterotic E8 × E8 theories. On the level of
effective actions, the IIA supergravity can be obtained from eleven-dimensional super-
gravity compactified on a circle. Moreover, in IIA theory a bound state of D0-branes
has a mass ∼ n/g, where n ∈ Z and g the coupling constant, and this corresponds
exactly to a Kaluza-Klein mass spectrum from a circular compactification. This is
interpreted as the fact that the strong coupling limit of type IIA string theory is an
eleven-dimensional theory, elusively named M-theory, which has the corresponding su-
pergravity as its low energy effective action. Due to its dimensionality, M-theory can
no longer be a theory of strings. The fundamental object in M-theory is a membrane,
which compactified on a circle gives the type IIA string, as illustrated to the left in
fig. 1.4. Similarly, the heterotic E8 × E8 string can be obtained from wrapping the

Figure 1.4: Strings from a membrane by compactification.

membrane on an interval, as illustrated to the right in fig. 1.4. The effective action
of the strong coupling limit of the heterotic E8 × E8 string theory is then given by
eleven-dimensional supergravity on an interval, or equivalently on the orbifold S1/Z2.
Furthermore, for reasons of anomaly cancellation, on each of the two ten-dimensional
fixed planes at the end of the interval an N = 1 super Yang-Mills theory with gauge
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Figure 1.5: Moduli space of M-theory.

group E8 has to be introduced [95, 96, 97, 98, 99, 100, 101, 102]. This construction is
called Hořava-Witten theory or heterotic M-theory, and a special kind of compactifi-
cation thereof including M5-branes will be one of the major topics of this thesis, see
chapter 2.

The upshot of this section is that the moduli spaces of the perturbatively different
string theories seem actually to be part of one enormous moduli space to a single
underlying theory, named M-theory. The formerly distinct string theories on a specific
background then correspond to local ’coordinate patches’ on a single moduli space,
and they are perturbative descriptions of M-theory around different points in moduli
space. This is similar to the description of a topologically non-trivial manifold which
cannot be covered by one global set of coordinates. Furthermore, there is no longer an
absolute notion of strong or weak coupling nor of solitonic or elementary objects, these
all depend on the description used. The huge moduli space of M-theory is illustrated
in fig. 1.5.

1.5 Topics and organization of the thesis

If string/M-theory provides the correct fundamental theory of nature, then branes
are most likely to play an important part in possible applications, like for example
in early universe cosmology. In order to study branes and their classical dynamics it
is necessary to have an appropriate low energy effective action at hand. Of course
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such an action strongly depends on the background and the branes considered, and
it must consistently couple world-volume fields to bulk fields. A phenomenologically
interesting background is provided by the strong coupling limit of the heterotic E8×E8

string theory. As already noted, on the level of effective actions this limit is called
Hořava-Witten theory or more generally heterotic M-theory, and it has been identified
as eleven-dimensional supergravity8 theory compactified on an orbifold S1/Z2 with a
set of E8 gauge fields at each ten-dimensional orbifold fixed plane [95, 96]. Eleven-
dimensional supergravity has two brane solutions, these are the fundamental electric
M2-brane (membrane) and the magnetic M5-brane [103], which are interpreted as the
basic ’matter particles’ of M-theory.

The main topic of this thesis is the derivation of the effective actions of Calabi-
Yau compactifications of (heterotic) M-theory including special brane configurations.
Certain time dependent solutions thereof are also considered. All chapters are self-
contained and can thus be read independently. Relations between the chapters are
indicated whenever useful. Let us next give the plan of the rest of this thesis.

In chapter 2 we derive the N = 1 supersymmetric five- as well as four-dimensional
effective supergravity actions of Calabi-Yau compactifications of heterotic M-theory
including N separate M5-branes wrapping holomorphic two-cycles within the internal
Calabi-Yau manifold. The whole chapter is structured as follows.

After a short introduction in the first section, in the second section the consistent
coupling of M5-branes to pure eleven-dimensional M-theory is reviewed along the
lines of the nice works of refs. [104, 105]. In the subsequent section this work is
extended to heterotic M-theory and the obtained action (2.39) is the first non-trivial
new result. It turns out that all relative factors of the different terms in this action
are uniquely fixed to values which cannot be obtained from a simple rescaling of fields
used in ref. [105]. Next, in section 2.4, we consider an eleven-dimensional (warped)
background solution to the given action [106,107,108,109], consisting of a space-time
M = M4×S1/Z2×X with parallel M5-branes spanning four-dimensional Minkowski
space M4, wrapping holomorphic two-cycles within the internal Calabi-Yau space X
and positioned along the orbifold S1/Z2. For the first time it is shown that this
well known vacuum is a solution to the complete action explicitly including the M5-
brane world-volume theories. Then we include the moduli, where the whole homology
sectors H1,1(X) and H2,1(X) of the Calabi-Yau space X are taken into account.
Moreover, the moduli from the M5-brane world-volume theories as well as gauge
matter from the boundary theories are included. In section 2.5 the corresponding
gauged N = 1 supersymmetric five-dimensional moduli space supergravity action
(2.103) is given. From this five-dimensional viewpoint the M5-branes appear as three-
branes. The new results here come from the explicit inclusion of the complex structure

8In the following we do not make a difference between M-theory and eleven-dimensional super-
gravity.
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moduli and the world-volume moduli fields into this heterotic M-theory background.
Furthermore, following refs. [110, 108], the quaternionic structure of the complete
hypermultiplet sector including the complex structure moduli is demonstrated, and
it is shown to be in accord with the gauging (of the shift symmetry of the axion) in
the universal hypermultiplet and the associated potential. A new dual formulation of
the five-dimensional action with electrical coupling of the three-branes concludes this
section. Section 2.6 treats the five-dimensional BPS multi-domain wall solution to
action (2.103), and it is a generalization of the solution given in refs. [108,109,111] to
include the three-branes in addition to an arbitrary number of Kähler moduli. Based
on this solution, the four-dimensional N = 1 supergravity theory is given in section
2.7, first in component form and then in the corresponding superfield formulation
that generalize previous works [112, 113, 109]. The correct parametrization of all
superfields in terms of component fields, together with the gauge kinetic functions
written in terms of superfields, are the new result of this section.

Some of the results of this chapter have been published in ref. [114], where only
a single M5-brane was included in the universal background (h1,1 = 1), and neither
gauge matter nor the complex structure moduli have been taken into account.

In chapter 3 we consider time-dependent solutions to the simplest form of the
four-dimensional action (2.135) derived in the previous chapter. That means we
consider ’cosmological’9 solutions of four-dimensional gravity coupled to two scalar
fields, geometrically corresponding to the Calabi-Yau volume modulus and the orbifold
radius modulus. The influence of the inclusion of a single M5-brane, as was analyzed
in [115], is briefly reviewed. This chapter has the following structure.

After an introduction, the second section briefly reviews the correspondence be-
tween five- and four-dimensional heterotic M-theory in the simple setting considered.
The relation of the considered four-dimensional heterotic M-theory action to the usual
starting point of pre-Big-Bang cosmology [116, 117, 118, 119] is also given. In section
3.3 a one-parameter family of new time-dependent solutions is found and, by using
the correspondence between the four- and the corresponding five-dimensional theory,
these solutions are ’lifted up’ to approximate five-dimensional solutions. In the follow-
ing section 3.4 the role of the fifth (orbifold) dimension is elucidated and its relation
to the strong coupling parameter is given. In the last section the results [115] of the
generalized treatment that also includes a single M5-brane are stated.

Apart from the last section, this chapter closely follows ref. [120].

In chapter 4 we consider a compactification of pure M-theory including an M2-
brane wrapping a holomorphic two-cycle within the internal Calabi-Yau space. The
effective action of the associated particle states is derived and for an explicit example

9With cosmological solutions we mean time–dependent solutions of Friedmann-Robertson-Walker
type.
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their influence on the dynamics of a flop transitions is numerically studied. The plan
of this chapter is as follows.

An introduction is given in section 4.1. In the subsequent section we first set the
stage by quickly reviewing the general structure of eleven- and five-dimensional N = 1
supergravity and their relation by Calabi-Yau compactifications of M-theory. Using
the rigid structure of five-dimensional gauged N = 1 supergravity, we then derive the
effective action for the hypermultiplet states associated to the M2-brane wrapping
a holomorphic two-cycle within the Calabi-Yau manifold. The mass of these states
is proportional to the volume of the two-cycle wrapped, and hence these ’transition
states’ become massless when such a cycle has shrunk to vanishing volume, that is
at a so called flop transition. By means of an approximate analytical solution, the
temporal dynamics of such a flop transition without the inclusion of the transition
states is studied in section 4.3. In section 4.4 the influence of the transition states
on the dynamics of the flop transition is numerically studied for an explicit example.
Conclusions are made in section 4.5.

The new results of this chapter consist of the effective action for the transition
states, the analytical solution of section 4.3 and the numerical results of section 4.4.
The complete chapter corresponds to ref. [121].

There are four appendices, the first appendix collects conventions and the notation
used in this thesis. In appendix B an introduction to the classical treatment of brane
currents is given. Appendix C collects some useful relations from special Kähler
geometry, and appendix D reviews a few facts about Riemann surfaces.



Chapter 2

M5-branes in heterotic
brane-worlds

2.1 Introduction

Many interesting five-dimensional brane-world models can be constructed by the re-
duction of Hořava-Witten theory [95, 96, 106] on Calabi-Yau threefolds. As was ex-
plicitly shown in refs. [108,111,107,122], this leads to gauged five-dimensional N = 1
supergravity on the orbifold S1/Z2 coupled to N = 1 gauge and gauge matter multi-
plets located on the two four-dimensional orbifold fixed planes. As has already been
realized in [106], M5-branes transverse to the orbifold direction, wrapping holomorphic
two-cycles within the Calabi-Yau space and stretching across the four uncompactified
dimensions, can consistently be incorporated into this picture. The explicit form of
the corresponding eleven-dimensional vacuum solution was first given in ref. [109].
Moreover it was shown in refs. [123, 124, 125, 126, 127, 128, 129, 130, 131, 132] that the
inclusion of M5-branes helps to realize phenomenologically interesting particle spectra
on the orbifold planes by appropriate compactifications, and thus five-dimensional het-
erotic M-theory with branes in the bulk provides a phenomenologically viable starting
point for further applications [133,134,135].

Recently such generalized brane-world models including extra branes have at-
tracted some attention [136, 137, 138, 139, 140, 141, 142], especially in the context of
cosmology. The purpose of this work is to present a systematic derivation of the five-
dimensional effective action of such models in order to provide a firm basis for further
investigations [143,115,144,145,146,147,148].

23
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2.2 M5-branes coupled to M-theory

In this section we want to derive the action that consistently couples an M5-brane to
eleven-dimensional supergravity. In order to do so, we proceed along the lines of the
nice work by Bandos, Berkovits and Sorokin [105] (for recent refinements see [149]).
The purpose of this section is twofold. First we want to review the formalism of Pasti,
Sorokin and Tonin (PST) which allows a consistent inclusion of (self-)dual fields in so
called duality symmetric actions from which the duality constraints follow as equations
of motion and need not be imposed by hand. This is needed to formulate a covariant
action for the M5-brane world-volume theory, but also to learn how to consistently
couple this world-volume action to the background supergravity action. And the
second reason is that, in the next section, we want to extend the work of ref. [105] to
HW-theory, and this involves the PST-symmetries presented in this section.

This section is structured as follows, first we review the duality symmetric for-
mulation of eleven-dimensional supergravity as well as the covariant action of the
M5-brane [104] independently. Before these two actions get coupled, we examine
their behavior under rescalings of the fields. Then we couple the actions with the
most general relative factors that are allowed by such rescalings and determine a
relation between these factors imposed by the PST-symmetries.

2.2.1 Duality symmetric action for D=11 supergravity

The supergravity action

The bosonic part of the action of the standard formulation of eleven dimensional
supergravity [49] is given by

SCJS = SR + SG

= − 1

2κ2
11

∫
M11

{
d11x
√
−g
(

1

2
R +

1

4!
(G(4))2

)
+

2

3
C(3) ∧G(4) ∧G(4)

}
= − 1

2κ2
11

∫
M11

{
d11x
√
−g1

2
R−G(4) ∧ ∗G(4) +

2

3
C(3) ∧G(4) ∧G(4)

}
= SR −

1

2κ2
11

{
−〈G(4), G(4)〉 − 2

3
〈C(3), ∗(G(4) ∧G(4))〉

}
(2.1)

where the scalar product as defined in (A.6) has been introduced, the field strength for
the three-form gauge potential is G(4) = dC(3), and κ11 denotes the eleven-dimensional
Newton constant.

This action does not contain the six-form potential C(6), and it can also not simply
be added as a dynamical field because it does not provide independent degrees of
freedom, since its field strength is the Hodge dual of the three-form field strength
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G(4). Moreover, due to the Chern-Simons term, there is no dual formulation purely in
terms of C(6) instead of C(3) possible. This makes it impossible to minimally couple the
M5-brane, which is electrically charged under the six-form potential, simply by adding
a minimal coupling term like ∼ T5

∫
M6
C(6) (where T5 is the brane-tension and M6 is

the M5-brane world-volume) to the supergravity action. Thus it is either necessary
to explicitly include the six-form C(6) as a dynamical field in the supergravity action,
or one must seek a way to magnetically couple the M5-brane to the three-form C(3).
A further complication arises since the M5-brane actually is a dyonic object, thus the
presence of M5-branes must lead to source contributions in the equation of motion as
well as the Bianchi identity of C(3) or C(6).

In the following we present the bosonic1 part of the duality symmetric formualtion
of D=11 supergravity [105] which contains the three-form C(3) as well as the six-
form C(6) as dynamical fields. Their equations of motion following from the duality
symmetric formulation turn out to be gauge equivalent to the duality constraint

G(7) = ∗G(4), (2.2)

and on-shell, their Bianchi indentities will take the place of the usual equation of
motion and Bianchi identity of C(3) which otherwise would follow from the standard
formulation (2.1).

To correctly introduce the six-form C(6) and its relation to the dual field strength
G(7), the equation of motion of the three-form C(3) following from action (2.1) must
be taken into account because it must become the Bianchi identity of the dual field.
It is given by

d ∗G(4) = G(4) ∧G(4), (2.3)

and thus the dual field must be defined by

G(7) = dC(6) + C(3) ∧G(4), (2.4)

such that indeed
dG(7) = G(4) ∧G(4). (2.5)

The explicit appearance of the three-form in the field strength G(7) as in (2.4) is the
reason why C(3) can never be completely eliminated from the action (2.1) and be
replaced by the six-form C(6) alone. And it is this topological obstruction that makes
simple minimal coupling of the M5-brane impossible.

Next it is useful to define “generalized field strengths” by

F (4) ≡ G(4) + ∗G(7), F (7) ≡ G(7) − ∗G(4)

1It is not at all trivial that a at the same time supersymmetric and duality symmetric formulation
is possible at all, but actually it is, and for the original work including fermions in a supersymmetric
way see [105].
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which satisfy the duality relations

∗F (4) = −F (7), ∗F (7) = F (4). (2.6)

Note that these generalized fields vanish exactly when the duality relation (2.2) is
satisfied. It is also necessary to introduce an auxiliary scalar field a and an associated
unit, spacelike2 vector v given by

v ≡ da√
(∂a)2

⇒ v2 = 1.

It is necessary to introduce such a field to be able to write the duality symmetric
action in a manifestly covariant form and to enhance its symmetries in such a way,
that these extra symmetries will reduce the number of on-shell degrees of freedom
exactly to the actual physical value, namely the duality relation (2.2) must be true
and thus C(3) and C(6) are not independent. Moreover, the field a turns out to be
purely auxiliary and thus has no dynamical degrees of freedom of its own. These
symmetries will explicitly be considered shortly.

Now it is possible to construct actions including both gauge fields G(4) and G(7)

in a manifestly duality symmetric way, which have equations of motion from which
the duality relation (2.2) follows. Furthermore (2.5) is the Bianchi identity for G(7),
from which on-shell exactly (2.3) follows.

Three equivalent formulations of such a duality symmetric supergravity action in
eleven dimensions are given by [105]

SIG =
−1

2κ2
11

[
〈iv ∗G(7), ivF (4)〉 − 〈iv ∗G(4), ivF (7)〉+ 1

3
〈G(7), ∗G(4)〉

]
(2.7)

SIIG =
−1

4κ2
11

[
− 〈G(4), G(4)〉+ 〈ivF (4), ivF (4)〉 − 〈G(7), G(7)〉 (2.8)

+ 〈ivF (7), ivF (7)〉+ 2

3
〈G(7), ∗G(4)〉

]
SIIIG =

−1

2κ2
11

[
− 〈G(4), G(4)〉+ 〈ivF (4), ivF (4)〉 − 2

3
〈C(3), ∗(G(4) ∧G(4))〉

]
(2.9)

where the interior product (A.14) has been introduced. These three actions can be
obtained from each other by reshuffling terms, discarding total derivatives and using
the identity (A.17) and

G(7) ∧G(4) = C(3) ∧G(4) ∧G(4) + d(C(6) ∧G(4)) . (2.10)

2One could as well take a timelike unit vector, but this would change certain signs in the following
treatment.
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Equivalence of these actions means that they all yield the same equations of motion.
The first two actions explicitly show the duality symmetric treatment of the three-
and six-form, whereas the third formulation is closest to the standard formulation
(2.1).

Symmetries and equations of motion

To explicitly see all the symmetries of the actions (2.7-2.9) and to derive the equations
of motion for the gauge fields C(3), C(6) and the scalar field a, it is most convenient to
calculate the general variation of such an action with respect to these fields. In order
to do so, the variations of the corresponding field strengths are needed, and they are
given by

δG(4) = dδC(3), (2.11)

δG(7) = dδC(6) + δC(3) ∧G(4) + C(3) ∧ dδC(3)

= dδC(6) + d(δC(3) ∧ C(3)) + 2δC(3) ∧G(4), (2.12)

δv =
−1√
(∂a)2

∗ [v ∧ iv ∗ d(δa)].

The general variation of the action then is

κ2
11δSG =

∫
M11

{
δG(7) ∧ (v ∧ ivF (4))− δG(4) ∧ (v ∧ ivF (7))

− d(δa)√
(∂a)2

∧ (v ∧ ivF (7) ∧ ivF (4))

}
(2.13)

= −
∫
M11

{(
δC(6) + δC(3) ∧ C(3) − δa√

(∂a)2
ivF (7)

)
∧ d(v ∧ ivF (4))

+
(
δC(3) − δa√

(∂a)2
ivF (4)

)
(2.14)

∧
(
d(v ∧ ivF (7))− 2G(4) ∧ v ∧ ivF (4)

)}
.

To get from the first to the second line, eqs. (2.11, 2.12) must be used, followed by a
partial integration and noting that

v ∧ d
[ ivαp√

(∂a)2

]
= − 1√

(∂a)2
d(v ∧ ivαp)

where αp stands for any p-form.
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From this general variation δSG several bosonic local symmetries can be de-
duced [105].
• First, the action is invariant under the general gauge transformations

δ0C
(3) = dΛ(2),

δ0C
(6) = dΛ(5) + δ0C

(3) ∧ C(3), (2.15)

which leave the field strengths invariant. Here Λ(p)(x) for p=2,5 are arbitrary p-forms
as usual.
• Second, due to the fact that da ∧ v ∼ v ∧ v = 0, it is also invariant under transfor-
mations where the variations of the field strengths are of the form δG(i) = da∧ . . . for
i=4,7. This is the PST1-symmetry that will allow to fix the equations of motion to
the desired duality condition (2.2). For the potentials corresponding transformations
are given by

δ1C
(3) = da ∧ φ(2) ⇒ δ1G

(4) = −da ∧ dφ(2), (2.16)

δ1C
(6) = da ∧ φ(5) − δ1C(3) ∧ C(3) ⇒ δ1G

(7) = −da ∧ [dφ(5) − 2φ(2) ∧G(4)].

Here φ(p)(x) for p=2,5 are arbitrary p-forms too. The second term in δ1C
(6) could be

absorbed in the first term by taking φ̃(5) ≡ φ(5) − φ(2) ∧ C(3). But note that as soon
as δ1C

(3) 6= 0 there is also δ1G
(7) 6= 0, and this induced variation of the dual field by

the variation of the three-form cannot be completely absorbed in a variation of the
six-form, because the last term in (2.12) is not a total derivative.
• Third, there is the PST2-symmetry that allows to set the field a to any desired
value and thus shows that a truly is an auxiliary field. It is given by

δ2C
(3) =

ϕ√
(∂a)2

ivF (4),

δ2C
(6) =

ϕ√
(∂a)2

ivF (7) − δ2C(3) ∧ C(3), (2.17)

δ2a = ϕ,

with ϕ(x) an arbitrary scalar field.
Of course also the equations of motion can be read off from (2.14) and they are

C(6) : d(v ∧ ivF (4)) = 0 (2.18)

C(3) : C(3) ∧ d(v ∧ ivF (4)) + d(v ∧ ivF (7))− 2G(4) ∧ v ∧ ivF (4) = 0
(2.18)
=⇒ d[v ∧ ivF (7) − 2C(3) ∧ v ∧ ivF (4)] = 0 (2.19)

Due to the duality (2.6) between the “generalized field strengths” this set of equations
is already solved if only one of the equations is fulfilled. Explicitly, the equation
d(v ∧ ivF (4)) = 0 has the most general solution

v ∧ ivF (4) = da ∧ dΦ(2), (2.20)
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with an arbitrary two-form Φ(2). But this solution turns out to be pure gauge. By
using the PST1-symmetry (2.16) to fix the gauge of G(4) by choosing δ1C

(3) = −da∧
Φ(2), we obtain

δ1(v ∧ ivF (4)) = v ∧ iv(δ1G(4) + ∗δ1G(7))

= v ∧ iv(da ∧ dΦ(2)) + v ∧ iv ∗ (−2 da ∧ Φ(2) ∧G(4))

= da ∧ dΦ(2)

where eqs. (A.14-A.17) were used. Thus eq. (2.20) is gauge equivalent to

v ∧ ivF (4) = 0 ,

which implies F (4) = 0, and this vanishing of the generalized field strength in turn
implies the desired duality relation ∗G(4) = G(7). Thus we explicitly see how the
equation of motion is equivalent to the duality condition. If the duality G(7) = ∗G(4)

holds, then it follows from eq.(2.6) that F (7) = −∗F (4) = 0, and thus both equations of
motion (2.18,2.19) are solved. Moreover, and importantly, the solution is independent
of a, showing that a really is an auxiliary field without any dynamical degrees of
freedom as it is encoded in the PST2-symmetry (2.17).

This completes the treatment of the duality symmetric formulation of pure D=11
supergravity. Before we turn to the coupling of this action to M5-branes, the covariant
action for the M5-brane itself is reviewed.

2.2.2 Covariant action for the M5-brane

The M5-brane action

The bosonic part of the covariant action for the M5-brane without its coupling to the
eleven-dimensional supergravity background is given by [104]

S5 = −T5

∫
M6

d6σ

[√
−det

(
γmn + iH̃∗

mn

)
+

√
−γ
4

H̃∗mnH̃mn

]
, (2.21)

where M6 is the world-volume of the M5-brane. We use indices I, J, . . . = 0, . . . , 9, 11
for eleven-dimensional space-time with coordinates xI and indices m,n, . . . = 0, . . . , 5
for the six-dimensional five-brane world-volume with coordinates σm. Then the vari-
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ous quantities appearing in this action are defined by

H = dB ←→ Hlmn = 3∂[lBmn]

(∗H)lmn =
1

3!
εlmnpqrH

pqr

vl =
∂la√
(∂a)2

⇒ v2 = 1

H̃ = ivH ←→ H̃mn = vlHlmn

H̃∗ = iv(∗H) ←→ H̃∗
mn = vl(∗H)lmn

γ = det(γmn), γmn = ∂mX
I∂nX

JgIJ

with B(σ) a two-form gauge potential with selfdual field strength H = ∗H, a(σ) an
auxiliary PST-scalar and γmn(σ) the pullback of the background space-time metric
gIJ(x) onto the M5-brane world-volume M6. The two-form B corresponds to the
Goldstone tensor modes (or gauge zero-modes) [150,151] of the M5-brane solution of
D=11 supergravity [103], and boundaries of M2-branes ending on the M5-brane cou-
ple to it [152], see fig. 2.1. The other world-volume fields are given by the embedding
coordinates XI(σ) of the M5-brane into target space and correspond to Goldstone
scalar modes (or scalar zero-modes) from the broken transversal translational invari-
ance of the M5-brane solution. The XI are hidden in γmn through the pullback.
Together these fields give 3+5=8 bosonic physical degrees of freedom. These bosonic
modes have supersymmetric partners, which are the fermionic Goldstone modes from
the eight broken supersymmetries of the M5-brane solution. Thus the world-volume
fields constitute a N = 1 supersymmetric theory on the M5-brane. For the inclusion
of fermions see [153,154].

The relative factors between the two terms in (2.21) allow the linearization in H̃∗

of the term of Dirac-Born-Infeld type to yield the linearized action

S5lin = −T5

∫
M6

d6σ
√
−γ
[
1− 1

4
H̃∗mn

(
H̃∗
mn − H̃mn

)]
(2.22)

= −T5

[
Vol(M6) +

1

2
〈iv(∗H), iv(∗H −H)〉

]
= −T5

[
Vol(M6) +

1

4

(
〈H,H〉+ 〈ivH, ivH〉

) ]
with the definition of a “generalized field strength” by H ≡ ∗H−H. In the lineariza-
tion the expansion

det(1 + A) ' 1− 1

2
trA2 = 1 +

1

2
AmnA

mn

for any two-form A has been used, and to derive the last equality in (2.22) relation
(A.17) is needed.
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For simplicity, we from now on use only the linearized action (2.22), though all
conclusions of this section would in an accordingly modified form3 also be true in the
more general non-linear case.

Symmetries and equations of motion

To see the symmetries and to obtain the equations of motion it is again convenient to
derive the general variation of the action with respect to arbitrary variations of the
fields B and a. Using the variation of the unit vector v and the field H̃, which are
given by

δv =
1√

(∂a)2
∗ [v ∧ iv ∗ d(δa)], (2.23)

δH̃ = iδvH + ivdδB = ∗(δv ∧ ∗H) + ivdδB, (2.24)

the general variation yields

1

T5

δS5lin =

∫
M6

(
δB +

δa√
(∂a)2

ivH
)
∧ d(v ∧ ivH). (2.25)

Now the world-volume versions of the PST1- and PST2-symmetries and a gauge
symmetry can be spotted. Up to a total derivative the action (2.22) is invariant
under the variations [104]

δB = dΛ(1) + da ∧ φ(1) − ϕ√
(∂a)2

ivH (2.26)

δa = ϕ

where Λ(1)(σ), φ(1)(σ) are arbitrary one-forms and ϕ(σ) is an arbitrary scalar function.
Note that all these symmetries are independent of the relative factor between the
volume term an the rest in the action (2.22), which of course reflects the possibility
of rescaling the field B independently of the metric.

The equation of motion can be read off to be

d(v ∧ ivH) = 0, (2.27)

with the general solution v ∧ ivH = da ∧ dφ(1). But this is pure gauge and can be
gauged away using the PST1-symmetry (2.26). Choosing δB = da ∧ φ(1) and noting
that δ(v ∧ ivH) = −δH = da∧ dφ(1), it follows that in this chosen gauge v ∧ ivH = 0.
Due to the antiselfduality of H this is only true for H = 0, which implies exactly the
desired selfduality condition ∗H = H.

3Some of the formulas of course change to a non-linear form. Basically this only changes the
“generalized field strength”, which in the non-linear case would be given by ivH = 2√

−γ
δLDBI

δH̃∗
mn

−

ivH, LDBI ≡
√
−det(γmn + iH̃∗

mn), which reduces exactly to ivH = iv(∗H −H) in the linear case.
For explicit calculations in the non-linear case see for example [155].
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Coupling to D=11 supergravity background fields

When the M5-brane is coupled to the eleven-dimensional supergravity background
fields the world-volume field H gets modified [152] as

H −→ H = dB − Ĉ(3), (2.28)

with Ĉ(3) the pullback of the three-form potential C(3) of D=11 supergravity. This
is a gauge invariant combination if for the gauge transformation δ0C

(3) = dΛ(2) the
B-field transforms like δ0B = Λ̂(2), such that indeed δ0H = 0. This modification
changes the Bianchi identity of B to dH = −dĈ(3) and means that there is an electric
current present on the world-volume, which can be interpreted as coming from the
induced electric field of M2-branes. The situation is illustrated in fig 2.1.

M2M2

M5

a

b

c

Figure 2.1: M2-brane ending on M5-brane as electric source currents for the fields (a)
C(3), (b) B and (c) C(6).

Then as usual there is the minimal coupling term of the form

Smc = −T5

∫
M6

−1

2
Ĉ(6), (2.29)

with the six-form indirectly given by (2.4). As we have seen, eq. (2.4) is the necessary
definition of C(6) such that the Bianchi identity of G(7) is equal to the equation of
motion for G(4), as in (2.5). For G(7) to be gauge invariant, C(6) must transform as
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δ0C
(6) = dΛ(5)−Λ(2)∧G(4). Because this variation is not a total derivative the minimal

coupling term (2.29) is not gauge invariant under this variation, thus this cannot be
all to couple the M5-brane action to the supergravity background. Furthermore, the
PST-symmetries (2.26) would also be broken. To see this, consider the PST1-variation
δB = da ∧ φ(1) from which follows that δH̃∗ = 0, δH̃ = −da ∧ dφ(1), and thus the
variation of the action (2.22), in terms of the modified field strength (2.28), turns out
to be

δS5lin = T5
1

2
〈iv(∗H), ivδH〉

= T5
1

2
〈H, ∗δH〉

= T5
1

2

∫
M6

(dB − Ĉ(3)) ∧ δH

= −T5
1

2

∫
M6

[
Ĉ(3) ∧ δH + (total derivative)

]
.

The term which is not a total derivative must be cancelled and this can be achieved
by adding a Wess-Zumino term

SWZ = −T5

∫
M6

1

2
dB ∧ Ĉ(3). (2.30)

Because Ĉ(3)∧ Ĉ(3) = 0 it does not matter wether dB or H is written in the WZ-term.
With the given factor in front of the minimal coupling term (2.29), the WZ-term also
cancels the ordinary gauge variation of this term. Furthermore it turns out that the
PST2-symmetry holds as well, thus all symmetries are restored by the introduction
of this WZ-term.

The complete M5-brane action coupled to the D=11 supergravity backgound fields
is then given by [104]

SM5 = −T5

∫
M6

{
d6σ
√
−γ +

1

2

[
iv(∗H) ∧ ∗ivH +H ∧ Ĉ(3) − Ĉ(6)

]}
. (2.31)

Fair enough, the general variation of this action with respect to B and a is exactly as
in (2.25) but in terms of the modified field strength (2.28), and thus all the symmetries
on the world-volume are preserved by the coupling to the supergravity background
fields. Summarized, all symmetries of (2.31) are determined by the variations

δB = dΛ(1) + da ∧ φ(1) − ϕ√
(∂a)2

ivH + Λ̂(2)

δa = ϕ

δC(3) = dΛ(2) (2.32)

δC(6) = dΛ(5) − Λ(2) ∧ G(4).
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Note on rescalings

Before one of the supergravity actions (2.7-2.9) is coupled to the M5-brane action
(2.31), a short comment on different scale conventions is in order. In the action (2.31)
for the M5-brane all fields can be rescaled, but it must be noted that not all terms
necessarily scale equally because SWZ and Smc are independent of the metric. Any
rescaling of the auxiliary scalar a does not affect the action since it contains only the
unit vector v.

There are basically two different kinds of rescalings, those that change the action
(2.31) only by an overall factor (q1) and those that imply a new relative factor (q2)
between the volume term and the rest. If we require that the forms of (2.4) and
(2.28) should not be altered by any factors between different contributions, then we
can write such a rescaling of the fields like

H →
√

2q1q2H ⇒ B →
√

2q1q2B, C
(3) →

√
2q1q2 C

(3), C(6) → 2q1q2 C
(6)

gIJ → q
1/3
1 gIJ ⇒ v → q

1/6
1 v ⇒ H̃(∗)

mn → q
1/3
1

√
q2 H̃

(∗)
mn,

from which the rescaled action follows to be

SM5 = −q1 T5

∫
M6

{
d6σ
√
−γ + q2

[
iv(∗H) ∧ ∗ivH +H ∧ Ĉ(3) − Ĉ(6)

]}
. (2.33)

So only for the special value q2 = 1/2 the M5-brane action (2.31) rescales simply by
an overall factor like SM5 → q1SM5. For any rescaling the factor q1 simply rescales
the brane tension like T5 → q1 T5, thus q1 can always be absorbed in the tension. The
exact value for T5 for a given convention in the bulk must be taken from some other
source anyway, in our case from ref. [98]. But there remains an ambiguity when we
want to combine the supergravity action and the M5-brane action. Since different
supergravity conventions are related by arbitrary q1, q2 it seems far from clear why
exactly the form (2.31) of the M5-brane action, which keeps its form only for the
special choice q2 = 1/2, should be added to some supergravity convention that we
just have decided on out of the blue. Thus in the following we will combine the M5-
brane action (2.33) with general q2 and correct T5 with the D=11 supergravity action.
Then, for all symmetries of bulk and brane to still hold in the coupled action, it will
turn out that q2 is uniquely related to the coupling strength of the brane current to
the field strength in the bulk. Since this coupling strenght is fixed in HW-theory, the
factor q2 will also get fixed.

2.2.3 Combined D=11 supergravity and M5-brane actions

Duality symmetric action coupled to M5-brane

In the duality symmetric formulations (2.7-2.9) of D=11 supergravity the six-form
potential C(6) has been introduced as a dynamical field, thus it is now possible to
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combine the M5-brane action with the supergravity action. But this combination
should not alter the duality constraints on the fields and thus it still must produce
the duality relations through equations of motion. This is only possible if all the
symmetries (2.15,2.16,2.17,2.32) of bulk and brane action are preserved.

The Bianchi identities of the supergravity fields must give the gauge field equations
with M5-brane source. Thus the fields get redefined by adding Dirac brane currents
(see appendix B) like

G̃(4) ≡ G(4) + q0 Θ(M6) (2.34)

G̃(7) ≡ G(7) − q0 H ∧Θ(M6),

and on-shell (G̃(7) = ∗G̃(4)) this leads to the desired gauge field equations with sources

dG̃(4) = q0 δ(M6) (2.35)

d ∗ G̃(4) = G(4) ∧ G̃(4) + q0 H ∧ δ(M6).

The factor q0 is the coupling strength of the magnetic brane current to the electric
field strength which will be related to the factor q2.

Replacing the redefined fields (2.34) in the action SIG or SIIG everywhere except
in the Chern-Simons term finally allows consistent coupling of the M5-brane to the
supergravity action. Using S̃IG for concreteness the complete action is given by

S = SR + S̃IG + SM5 + Sc (2.36)

=
−1

2κ2
11

[ ∫
M11

d11x
√
−g1

2
R + 〈iv ∗ G̃(7), ivF̃ (4)〉

−〈iv ∗ G̃(4), ivF̃ (7)〉+ 1

3
〈G(7), ∗G(4)〉

]
−T5

∫
M6

[
d6σ
√
−γ + q2

(
iv(∗H) ∧ ∗ivH +H ∧ Ĉ(3) − Ĉ(6)

)]
+T5 q2

∫
M11

H ∧ G̃(4) ∧Θ(M6)

with the following important relation for the factors

q0 = −2κ2
11 T5 q2. (2.37)

Only when the last term Sc in (2.36) is added and relation (2.37) is satisfied, does
the whole action have all desired symmetries. Due to relation (2.37) the factor q2 will
get fixed once T5 and q0 are fixed, which will be the case in HW-theory as shown in
the next section. Also due to this relation the action (2.36) shows mysteriously nice
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cancellations between different contributions and the total variation is

δS =
−1

κ2
11

∫
M11

{(
δC(6) + δC(3) ∧ C(3) − q0 δB ∧Θ(M6)−

δa√
(∂a)2

ivF̃ (7)
)

∧d(v ∧ ivF̃ (4)) +
(
δC(3) − δa√

(∂a)2
ivF̃ (4)

)
∧
[
d(v ∧ ivF̃ (7))

−v ∧ ivF̃ (4) ∧ (2G(4) + q0 Θ(M6)) + q0 v ∧ ivH ∧ δ(M6)
]

+q0
(
δB +

δa√
(∂a)2

ivH
)
∧
[
d(v ∧ ivH)− v ∧ ivF̃ (4)

]
∧ δ(M6)

}
.

The symmetries of the action (2.36) can easily be derived from this variation. But for
these symmetries to be possible at all, the world-volume auxiliary field a had to be
identified with the auxiliary scalar field in the formulation of the duality symmetric
D=11 supergravity. This fact and the just mentioned marvelous cancellations show
that there is some intriguing relationship between bulk and brane. Explicitly, the
symmetries are given by the ordinary gauge symmetries

δgaugeB = dΛ(1) + Λ̂(2)

δgaugeC
(3) = dΛ(2)

δgaugeC
(6) = dΛ(5) + dΛ(2) ∧ C(3)

and the PST-symmetries

δPSTB = da ∧ φ(1) − ϕ√
(∂a)2

ivH

δPSTC
(3) = da ∧ φ(2) +

ϕ√
(∂a)2

ivF̃ (4)

δPSTC
(6) = da ∧ φ(5) +

ϕ√
(∂a)2

ivF̃ (7) − δPSTC(3) ∧ C(3) + q0 δB ∧Θ(M6)

δPSTa = ϕ.

These gauge and PST-symmetries are parametrized by the p-forms Λ(1), Λ(2), Λ(5),
then φ(1), φ(2), φ(5) and ϕ respectively.

Standard action coupled to M5-brane

It would also be nice to have a formulation of the coupled system where the D=11
supergravity part shows up in its traditional form (2.1) without C(6). This can be
achieved by noting that after the replacement of the redefined field strengths (2.34)
in the duality symmetric actions SI,II,IIIG (everywhere except in the CS-term), the



2.3. M5-BRANES COUPLED TO HOŘAVA-WITTEN THEORY 37

actions S̃I,IIG are no longer equivalent to S̃IIIG . It turns out that this difference is
exactly what is needed to couple brane and bulk without the explicit inclusion of
C(6). Coupling of the M5-brane to S̃IIIG that leads to the correct equations of motion
can be achieved by adding a Dirac term SDirac instead of a minimal coupling term
Smc. Moreover, the term (ivF̃ (4))2 can be gauge fixed to zero by the PST1-symmetry
and we are left with the following action [105]

S11/M5 = S̃CJS + SDirac + SM5|C(6)=0

=
−1

2κ2
11

∫
M11

{
d11x
√
−g1

2
R− G̃(4) ∧ ∗G̃(4) +

2

3
C(3) ∧G(4) ∧G(4)

}
+T5 q2

∫
M11

C(3) ∧G(4) ∧Θ(M6) (2.38)

−T5

∫
M6

{
d6σ
√
−γ + q2

[
iv(∗H) ∧ ∗ivH +H ∧ Ĉ(3)

]}
,

which shows non-minimal coupling of the M5-brane to the standard formulation (2.1)
of D=11 supergravity. The total variation with respect to C(3), B and a becomes

δS11/M5 =
1

κ2
11

∫
M11

{
δC(3) ∧

[
d ∗ G̃(4) −G(4) ∧ G̃(4) − q0H ∧ δ(M6)

−q0 v ∧ ivH
]
+ q0

(
δB +

δa√
(∂a)2

ivH
)
∧ d(v ∧ ivH) ∧ δ(M6)

}
,

where again relation (2.37) must be true. After the usual gauge fixing of the equation
of motion of the B-field, such thatH = 0, the C(3)-equation of motion exactly becomes
the second equation of (2.35), thus what is a Bianchi identity in the duality symmetric
formulation (2.36) is now an equation of motion. And the Bianchi identity here is
the first equation in (2.35). As required this action (2.38) thus produces the same
dynamics as the duality symmetric formulation (2.36), but without the inclusion of
the six-form C(6).

It is this last action (2.38) that will be extended to Hořava-Witten theory in the
next section.

2.3 M5-branes coupled to Hořava-Witten theory

In this section we finally want to give the standard formulation of Hořava-Witten
theory coupled to M5-branes, which is obtained by a generalization of action (2.38)
including N separate M5-branes. Furthermore we will see how the factor q2 gets
fixed. That is, it turns out that all relative factors between different terms of the
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action which couples M5-branes to HW-theory are uniquely determined. This is due
to the fact that in HW-theory the coupling between the Yang-Mills theories living
on the orbifold fixed planes and the supergravity in the bulk is uniquely determined
by considerations of anomaly cancellation. Moreover, the relative strength of the
coupling of the M5-brane currents and Yang-Mills currents to the supergravity three-
form is also uniquely fixed. Together with the necessary PST-symmetries of the action
and the given value for the brane tension this determines all relative factors uniquely.
Remarkably, only these unique factors are consistent with the five-brane background
solution in eleven dimensions as well as five- and four-dimensional supersymmetry
after compactification. Moreover, because away from the orbifold planes HW-theory
should locally be indistinguishable from pure supergravity, we expect that in the action
that couples pure supergravity to M5-Branes all relative factors must also have the
same unique values. Notably though, these factors cannot be obtained by a simple
rescaling of the action given in [105], because there the coupling of the M5-brane
currents to the bulk three-form seems to have the wrong factor for the conventions
chosen in the bulk.

2.3.1 The eleven-dimensional action

In order to obtain eleven-dimensional HW-theory coupled to M5-branes, the action
(2.38) must be considered on a background space-time M = M10×S1/Z2, where M10

is ten-dimensional Minkowski space, and S1/Z2 is an orbifold as depicted in fig. 2.2.
The bosonic part of the action then reads 4

S = − 1

2κ2

∫
M

{
d11x
√
−g

(
1

2
R +

1

4!
GIJKLG

IJKL

)
+

2

3
C ∧ G ∧ G

}
− 1

4λ2

2∑
j=1

∫
Mj

10

d10x
√
−g10

{
trF 2

j −
1

2
trR2

}
(2.39)

−1

2
T5

N∑
ı̂=1

∫
M ı̂

6∪M̃ ı̂
6

{
d6σı̂
√
−γı̂
[
1

+vı̂ l(∗Hı̂)
lmn(∗Hı̂ −Hı̂)mnpv

p
ı̂

]
+ 2 dBı̂ ∧ Ĉı̂

}
+T5

N∑
ı̂=1

∫
M

C ∧ dC ∧
[
Θ(M ı̂

6) + Θ(M̃ ı̂
6)
]
.

As mentioned, the structure of eleven-dimensional space-time is M = M10 × S1/Z2,
where M10 is ten-dimensional space-time and we work in the upstairs picture, that is

4For the bulk fields we adopt the normalization of ref. [105]. The normalization chosen by Hořava
and Witten [96] is obtained by the rescaling gHW = 2−2/9g, CHW = 21/6

6 C and GHW = 21/6G.
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the orbifold is taken as a circle and the Z2 symmetry is imposed on the fields. As usual,

πρ0

Figure 2.2: Orbifold S1/Z2 obtained from a circle S1 by identifying two opposite sides,
with fixed points at 0 and πρ.

we define the orbifold coordinate y = x11 to be in the range y ∈ [−πρ, πρ] and let the
Z2 orbifold symmetry act as y −→ −y. This leads to the two fixed ten-dimensional
hyperplanes M1

10 and M2
10 located at y = y1 = 0 and y = y2 = πρ, respectively.

Further, we have N five-branes with world-volumes M ı̂
6, ı̂ = 1, . . . , N plus their Z2

mirrors with world-volumes M̃ ı̂
6 which originate from M ı̂

6 by applying the orbifold
map y −→ −y. The latter mirror five-branes are required by consistency in order to
keep the theory Z2 symmetric in the upstairs picture. Physically a five-brane and its
mirror correspond to a single brane. Further, to avoid the appearance of additional
states [156], we demand that the five-branes world-volumes do not intersect either of
the two orbifold fixed planes nor each other. Also due to the upstairs picture, the
whole action had to be rescaled by a factor 1/2 with respect to (2.38), and we defined
the eleven-dimensional Newton constant like κ2 = 2κ2

11 [96, 98]. We still use indices
I, J,K, . . . = 0, . . . , 9, 11 for eleven-dimensional space-time with coordinates xI and
indices m,n, p, . . . = 0, . . . , 5 for the six-dimensional five-brane world-volumes with
coordinates σmı̂ .

Let us next discuss the various sectors of the given action. As usual, the bulk fields
consist of the fields in the gravity multiplet of eleven-dimensional supergravity, that
is the Z2–even5 eleven-dimensional metric gIJ , the Z2–odd three-index antisymmetric
tensor field CIJK and the gravitino ΨI , subject to the usual Z2 truncation [96]. The
standard relation G = dC between the three-form potential C and its field strength G
is modified due to the presence of source terms as will be explicitly presented shortly.
Anomaly cancellation requires the two orbifold fixed planes Mk

10 to each carry a ten-
dimensional N = 1 E8 gauge multiplet [96], that is an E8 gauge field Ak with field
strength Fk and gauginos χk, where k = 1, 2. The Yang-Mills coupling λ is fixed in

5We call a tensor field Z2–even if its components orthogonal to the orbifold are even, otherwise
we call it Z2–odd.
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terms of the eleven-dimensional Newton constant κ by [96,98]

λ2 = 4π(4πκ2)
2
3 . (2.40)

For an illustration of the Hořava-Witten setup without M5-branes see fig. 2.3.

orbifold

mirror

plane

orbifold mirror

map y -> -y

E E

M
10
1

M10
2

88

−πρ πρ0

Figure 2.3: The HW-setup consisting of the Minkowski planes M i
10, i = 1, 2 sitting at

the orbifold fixed points y = 0 and y=πρ and carring E8 gauge fields.

The five-brane world-volume fields consist of the embedding coordinates XI
ı̂ =

XI
ı̂ (σ

m
ı̂ ) together with the fermions θı̂ and the two-index antisymmetric tensor field

Bı̂ mn. The five-brane part of the above action is written in the form due to Pasti,
Sorokin and Tonin (PST) [104] as was thoroughly reviewed in the previous section. It
requires the introduction of an auxiliary scalar field aı̂ and an associated unit vector
field vı̂ m defined by

vı̂ m =
∂maı̂√

γnpı̂ ∂naı̂∂paı̂
. (2.41)

The presence of this field enhances the symmetries of the action such that aı̂ is truly
auxiliary and that fixing one of the symmetries turns the equation of motion for Bı̂

into the self-duality condition ∗Hı̂ = Hı̂. For simplicity, we have chosen to present a
linearized form of the PST action as is appropriate for our subsequent discussion. As
usual, the metric γı̂ mn is the pull-back

γı̂ mn = ∂mX
I
ı̂ ∂nX

J
ı̂ gIJ (2.42)
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of the space-time metric gIJ onto the five-brane world-volume M ı̂
6. Further, the field

strength Hı̂ of Bı̂ is defined by

Hı̂ = dBı̂ − Ĉı̂ (2.43)

where Ĉı̂ denotes the pull-back of the bulk field C, that is,

Ĉı̂ mnp = ∂mX
I
ı̂ ∂nX

J
ı̂ ∂pX

K
ı̂ CIJK . (2.44)

The five-brane tension T5 can be expressed in terms of the 11-dimensional Newton
constant as

T5 =
( π

2κ4

) 1
3
. (2.45)

Having introduced all fields we should now specify the source terms in the definition
of the bulk antisymmetric tensor field strength. To this end, we introduce

G = dC − ωYM − ωM5 , (2.46)

G = dC − ωYM . (2.47)

The field strength G is defined as in pure HW theory without five-branes, that is, it
only contains the “Yang-Mills” sources ωYM which originate from the orbifold fixed
planes and are given by 6

ωYM = 2k
[
ω(0) ∧ δ(y) + ω(N+1) ∧ δ(y − πρ)

]
(2.48)

with the “Chern-Simons” forms ω(0) and ω(N+1) satisfying

J (0) ≡ dω(0) =
1

16π2

[
trF1 ∧ F1 −

1

2
trR ∧R

]
y=y0

, (2.49)

J (N+1) ≡ dω(N+1) =
1

16π2

[
trF2 ∧ F2 −

1

2
trR ∧R

]
y=πρ

.

The field strength G, on the other hand, contains both orbifold and five-brane sources
where the latter are defined by

ωM5 = k
N∑
ı̂=1

[
Θ(M ı̂

6) + Θ(M̃ ı̂
6)
]
. (2.50)

Here Θ(M ı̂
6) is the θ–function associated with the five-brane world-volume M ı̂

6. In
analogy with the ordinary one-dimensional θ–function it satisfies the relation

dΘ(M ı̂
6) = δ(M ı̂

6) , (2.51)

6By δ(y) we denote a δ–function one-form defined by δ̂(y)dy, where δ̂(y) is the ordinary δ–function.
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where δ(M ı̂
6) is the δ–function supported on M ı̂

6 (Analogous expression hold for M̃ ı̂
6.).

For later calculations it will be useful to explicitly express these functions in terms of
the embedding coordinates XI

ı̂ by writing

Θ(M ı̂
6) =

1

4!7!
√
−g

dxI1 ∧ . . . ∧ dxI4εI1...I11 × (2.52)∫
M ı̂

7

dXI5
ı̂ ∧ . . . ∧ dX

I11
ı̂ δ̂11(x−Xı̂(σı̂)) ,

δ(M ı̂
6) =

−1

5!6!
√
−g

dxI1 ∧ . . . ∧ dxI5εI1...I11 ×∫
M ı̂

6=∂M ı̂
7

dXI6
ı̂ ∧ . . . ∧ dX

I11
ı̂ δ̂11(x−Xı̂(σı̂)) .

We see that the definition of Θ(M ı̂
6) and, hence, our action (2.39) involves a seven-

manifoldM ı̂
7 which is bounded by the five-brane world-volumeM ı̂

6, that is, ∂M ı̂
7 = M ı̂

6.
This seven-manifold is the analogue of a Dirac-string for a monopole in Maxwell theory
and is also referred to as Dirac-brane [149,157]. For a summary on brane currents and
Dirac-branes see appendix B. There may be a problem in that the action depends on
the particular choice of the Dirac-brane. A prescription to resolve this ambiguity has
been proposed in ref. [152]. Since our subsequent considerations do not depend on
how precisely the Dirac-brane is defined, we will not consider this point in any further
detail. The constant k in the above definitions for the field strengths is again fixed in
terms of the eleven-dimensional Newton constant and is given by

k =
(π

2

) 1
3
κ2/3 = κ2T5 = 8π2 κ2/λ2 . (2.53)

From the definition (4.3) we can now write the Bianchi identity

dG = −2k

[
J (0) ∧ δ(y) + J (N+1) ∧ δ(y − πρ) +

1

2

N∑
ı̂=1

(
δ(M ı̂

6) + δ(M̃ ı̂
6)
)]

, (2.54)

for G which will be important later on. The relative factor 1/2 between the orbifold
and five-brane sources accounts for the fact that a five-brane and its mirror really rep-
resent the same physical object and should, therefore, not be counted independently.
Having the magnetic coupling strength of the five-branes as used in (2.54), this finally
fixes the factor q2, since by comparison with (2.35) and using relation (2.37) we find

q0 = −2k = −2κ2T5 = −4κ2
11T5 = −2q2κ

2
11T5 ⇒ q2 = 2 ,

as has already been used in action (2.39). Because in the bulk away from the bound-
aries, HW-theory should look the same as pure eleven-dimensional supergravity, we
infer that the same factor q2 = 2 must be used in the actions (2.36,2.38).
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2.3.2 Symmetries

Let us discuss the symmetries of the action (2.39) some of which will become relevant
later on.

In the following we would like to check the BPS property of certain solutions,
hence we will need the (bosonic part) of the supersymmetry transformations which
we explicitly present for completeness. For the gravitino ΨI , the E8 gauginos χk on
the two orbifold fixed planes and the five-brane world-volume fermions θı̂ they are,
respectively, given by

δΨI = DIη +
1

3!

[
1

4!
ΓIJ1J2J3J4 −

2

3!
gIJ1ΓJ2J3J4

]
GJ1J2J3J4η (2.55)

δχk = −1

4
ΓĪJ̄FkĪJ̄η (2.56)

δθı̂ = ηı̂ + Pı̂+κı̂ (2.57)

where the projection operators Pı̂± satisfying Pı̂+ + Pı̂− = 1 are defined by

Pı̂± =
1

2

(
1± εm1...m6∂m1X

I1
ı̂ . . . ∂m6X

I6
ı̂ ΓI1...I6

)
, (2.58)

and ηı̂ is the pullback of η to M ı̂
6. For simplicity, we have stated these projection

operators for the later relevant case Hı̂ = 0. The general expressions can be found in
ref. [154]. In the above equations the spinor η parametrizes supersymmetry transfor-
mations. Each five-brane world-volume theory is also invariant under an additional
fermionic symmetry, namely local κ–symmetry. It is parametrized by the spinor κı̂
and appears via the second term in eq. (2.57). Further, DI is the covariant deriva-
tive and ΓI1...Ip denotes the antisymmetrized products of p gamma-matrices ΓI which
satisfy the usual Clifford algebra {ΓI ,ΓJ} = 2gIJ .

Besides supersymmetry the action is also, up to total derivatives, invariant under
the following gauge variations

δC = dΛ(2), δBı̂ = dΛ
(1)
ı̂ + Λ̂

(2)
ı̂ , (2.59)

where Λ
(1)
ı̂ are arbitrary one-forms. The two-form Λ(2) has to be Z2–odd in order to

ensure that the Z2 properties of C are preserved under the above transformation.
There are two more symmetries on the world-volumes of the M5-branes, namely

the “PST-symmetries” given by

δBı̂ mn = (daı̂ ∧ φ(1)
ı̂ )mn −

ϕı̂√
(∂aı̂)2

vlı̂(∗Hı̂ −Hı̂)lmn, δaı̂ = ϕı̂ (2.60)

where φ
(1)
ı̂ and ϕı̂ are an arbitrary one-form and a scalar, respectively. As previously

mentioned, these symmetries ensure that the self-duality of Hı̂ follows from the equa-
tions of motion and that aı̂ is an auxiliary field, as was discussed in great detail in
the last section.
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2.4 Calabi-Yau background in eleven dimensions

2.4.1 The background solution

Background solutions of heterotic M-theory based on Calabi-Yau three-folds which
respect four-dimensional Poincaré invariance and N = 1 supersymmetry were first
presented in ref. [106]. This paper also demonstrated how to include five-branes in
those backgrounds while preserving the four-dimensional symmetries. The explicit
form of these solutions was subsequently given in ref. [109]. All these result were
based on the original action derived by Hořava and Witten [96] which does not ex-
plicitly include any five-brane world-volume theories. The effect of five-branes on the
supergravity background was incorporated by modifying the Bianchi-identity of G to
include the five-brane sources as in eq. (2.54). The main purpose of this section is to
prove that the solutions obtained in this way can indeed be extended to solutions of
the full action (2.39) which does include the five-brane world-volume theories. Prac-
tically, this amounts to showing that these solutions correctly match the five-brane
source terms in the Einstein equations and that the five-brane world-volume equations
of motion are satisfied.

Let us review the solution explicitly given in ref. [109]. Following refs. [106, 109,
158], the solutions are constructed as an expansion in powers of κ2/3. For considera-
tions on all order solutions see ref. [142]. As can be seen from the action (2.39) and the
Bianchi identity (2.54), at lowest order the five-branes and the orbifold fixed planes
do neither contribute to the Einstein field equations nor to the equations of motion
for the three-form gauge field C. It follows that to zeroth-order the equations of mo-
tion in the bulk and on the world-volumes can be solved independently. We consider
the space-time structure M = S1/Z2 ×X ×M4, where X is a Calabi-Yau three-fold
and M4 four-dimensional Minkowski space. Coordinates in M4 are labelled by indices
µ, ν, ρ, . . . = 0, . . . , 3. The lowest order Ricci-flat metric on the Calabi-Yau space is
denoted by ΩAB with six-dimensional indices A,B,C, . . . = 4, . . . , 9. The associated
Kähler-form ω is defined by ωab̄ = iΩab̄ where a, b, c, . . . and ā, b̄, c̄, . . . are holomorphic
and anti-holomorphic indices on the Calabi-Yau space, respectively. The four-form
field strength G vanishes at lowest order. This configuration constitutes a solution to
the Killing spinor equation δΨI = 0 and the Bianchi identity since the source terms in
eq. (2.54) are proportional to κ2/3 and, hence, do not contribute at lowest order. At
the next order, however, these source terms have to be taken into account and, as a
consequence, the field strength G becomes non-vanishing. This induces corrections to
the metric which can be computed requiring that N = 1 supersymmetry is preserved
and, hence, that the gravitino variation (2.55) vanishes. The size of these corrections
is measured by the strong-coupling expansion parameter εS defined by

εS ≡ π
( κ

4π

)2/3 2πρ

v2/3
=

πρ

v2/3
T5κ

2 =
πρ

v2/3
k (2.61)
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Figure 2.4: N parallel M-branes placed across the orbifold at positions zı̂ = Yı̂/πρ
between the boundaries at z0 = 0 and zN+1 = 1.

where

v =

∫
X

√
Ω (2.62)

is the Calabi-Yau volume to lowest order, which we later also use to set the units of
six-dimensional volume.

We should now specify the full solutions (to order εS) and we start with the gauge
fields on the orbifold planes. In general, we have non-trivial holomorphic vector bun-
dles on the Calabi-Yau space. These bundles correspond to gauge field backgrounds
Āk, k = 1, 2 in the Calabi-Yau directions which preserve supersymmetry and are,
hence, constrained by a vanishing gaugino variation (2.56). This implies that their
associated field strengths F̄k are (1, 1) forms on the Calabi-Yau space. Then, the
orbifold sources J (0), J (N+1) in the Bianchi-identity are (2, 2) forms given by

J (0) ≡ dω(0) =
1

16π2

[
tr F̄1 ∧ F̄1 −

1

2
trR(Ω) ∧R(Ω)

]
y=0

, (2.63)

J (N+1) ≡ dω(N+1) =
1

16π2

[
tr F̄2 ∧ F̄2 −

1

2
trR(Ω) ∧R(Ω)

]
y=πρ

,

where R(Ω) is the Calabi-Yau curvature tensor associated with the metric Ω.
Next, we should consider the five-brane world-volume fields. Guided by the struc-

ture of our action (2.39), we focus on N distinct five-branes (and their Z2 mirrors)
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which are taken to be static and parallel to the orbifold fixed planes, as illustrated in
fig. 2.4. Furthermore, two spatial dimensions of the world-volumes M ı̂

6 wrap around
holomorphic two-cycles C ı̂2 of the internal Calabi-Yau space X and the remaining four
dimensions stretch across the external Minkowski space-time M4. Accordingly, we
split the five-brane coordinates σmı̂ into external and internal coordinates, that is,
σmı̂ = (σµı̂ , σ

s
ı̂ ) where µ, ν, ρ, . . . = 0, . . . , 3 and s, t, . . . = 4, 5. Further, we define holo-

morphic and anti-holomorphic coordinates σı̂ = σ4
ı̂ + iσ5

ı̂ and σ̄ı̂ = σ4
ı̂ − iσ5

ı̂ . With
these definitions, the five-brane embedding is specified by

Xµ
ı̂ = σµı̂ , Xa

ı̂ = Xa
ı̂ (σı̂) , X11

ı̂ = ±Yı̂ , (2.64)

where the position of the ı̂-th five-brane along the orbifold Yı̂ ∈ [0, πρ] is a constant,
Xa
ı̂ (σı̂) parametrizes the holomorphic curve C ı̂2, the index ı̂ = 1, . . . , N enumerates the

five-branes and the two signs in the last equation account for the five-brane M ı̂
6 and its

mirror M̃ ı̂
6. The world-volume two-forms Bı̂ are taken to vanish in the background. It

can be explicitly shown [109] that this configuration preserves supersymmetry on the
five-branes by choosing κı̂ = −ηı̂ in the variation (2.57) and verifying that Pı̂−ηı̂ = 0.
The five-brane sources in the Bianchi identity then take the specific form

JM5 ≡ dωM5 = k
N∑
ı̂=1

J ı̂ ∧ [δ(y − Yı̂) + δ(y + Yı̂)] , (2.65)

J ı̂ = δ(C ı̂2) =
1

2 · 4!
√

Ω
dxA1 ∧ . . . ∧ dxA4εA1...A4BC ×

1

v

∫
C ı̂
2

dXB
ı̂ ∧ dXC

ı̂ δ̂
6(x−Xı̂(σı̂)) .

The embedding (2.64) implies that J ı̂ are (2, 2) forms on the Calabi-Yau space as
well [159]. Note that different M5-branes can wrap different holomorphic two-cycles
C ı̂2 ∈ H1,1(X), ı̂ = 1, . . . , N .

We have explicitly presented all source terms in the Bianchi identity (2.54), which
now can be written as

dG = −2k

[
J (0)∧δ(y)+J (N+1)∧δ(y−πρ)+1

2

N∑
ı̂=1

J ı̂∧(δ(y − Yı̂) + δ(y + Yı̂))

]
. (2.66)

In addition to this Bianchi identity the three-form gauge field C must also satisfy its
equation of motion, which, for vanishing world-volume tensor fields H(i) = 0 and with
the requirement Gµνσρ = 0 from Poincaré invariance in Minkowsi space, simplifies to

d ∗G = 0. (2.67)

As shown in refs. [109,158] this set of differential equations (2.66,2.67) can be solved in
terms of a two-form B. Moreover, also the metric deformations needed to satisfy the
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Einstein equations at linear order in εS will be given in terms of this same two-form
B, as quickly reviewed next.

First, define the Hodge dual of the four-form field strength in terms of a six-form
like −dB(6) = ∗G, such that eq. (2.67) is identically solved. Using harmonic gauge
where d ∗ B(6) = 0 and ∆ = d†d + dd† together with eq. (A.13), allows to write the
Bianchi identity (2.54) as the Poisson equation ∆B(6) = ∗dG = . . .. Because the cur-
rents in eq. (2.66) are non-trivial (2, 2) forms, i.e. J ı̂ ∈ H2,2(X), ı̂ = 0, . . . , N +1, the
only non-vanishing components of B(6) are B(6)µ1...µ4ab̄ = εµ1...µ4Bab̄, which defines the
two-form B. This reduces the eleven-dimensional Poisson equation to the equivalent
of (2.66), explicitly

(∆X + ∂2
11)B = −2k ∗X

[
J (0)δ̂(y) + J (N+1)δ̂(y − πρ) (2.68)

+
1

2

N∑
ı̂=1

J ı̂
(
δ̂(y − Yı̂) + δ̂(y + Yı̂)

)]
,

where ∆X denotes the Laplacian and ∗X the Hodge star operator restricted to the
Calabi-Yau manifold X. Because we are only interested in zero modes we now can
expand the two-form B in terms of harmonic (1, 1)-forms on X. To this end introduce
the set of harmonic (1, 1)−forms {ωk, k = 1, . . . , h1,1} forming a basis of H1,1(X) and
the moduli space metric defined by

Gjk =
1

v

∫
X

ωj ∧ (∗Xωk) , (2.69)

with inverse Gjk which are used to raise and lower h1,1−type indices, like e.g. ωj =
Gjkωk. Note that whereas {ωk} are independent of the Calabi-Yau metric, this is
no longer true for {ωk} because of the dependence of Gjk on the Calabi-Yau metric
through ∗X in eq. (2.69). To keep control of the metric dependencies of the various
quantities is important when including all Calabi-Yau moduli as is done in section
2.4.2. Now we expand the two-form B like

B =
h1,1∑
k=1

bk ω
k . (2.70)

Similarly we expand the given currents in terms of harmonic forms like

∗XJ ı̂ =
1

v2/3

h1,1∑
k=1

β ı̂kω
k , ı̂ = 0, . . . , N + 1, (2.71)
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and following from eq. (2.69) the dimensionless charges must be defined by

β ı̂k =
1

v1/3

∫
X

ωk ∧ J ı̂ , k = 1, . . . , h1,1. (2.72)

Note that these charges are independent of the Calabi-Yau metric such that the
complete metric dependence of the currents as in the l.h.s of eq. (2.71) is absorbed
in the harmonic forms ωk in the r.h.s.. Furthermore, these charges are topological
invariants. For the orbifold sources (2.63) they give the instanton numbers of the
Calabi-Yau three-fold, that is the second Chern numbers of the gauge bundle and the
first Pontrjagin number of the tangent bundle [80, 81]. For the M5-brane sources the
charges are given by the intersection numbers of the ı̂-th brane on the two-cycle C ı̂2
with the four-cycle Ck4 Poincaré dual to the two form ωk. Inserting the expansions
eqs. (2.70) and (2.71) into the Poisson equation (2.69) and using (2.61) yields

∂2
11bk = −2

εS
πρ

[
β

(0)
k δ̂(y) + β

(N+1)
k δ̂(y − πρ) +

1

2

N∑
ı̂=1

β ı̂k

(
δ̂(y − Yı̂) + δ̂(y + Yı̂)

)]

which has the solution [158,109]

bk(y) = −

[
̂∑
ı̂=0

αı̂k(|y| − Yı̂) + c̃

]
, αk =

εS
πρ
βk (2.73)

for k = 1, . . . , h1,1 in the interval

Y̂ ≤ |y| ≤ Y̂+1 , (2.74)

where Y0 = 0, YN+1 = πρ are the locations of the orbifold fixed planes, Yı̂, ı̂ = 1, . . . , N
are the five-brane positions along the orbifold interval, and c̃ is an integration constant.
For consistency the charges must satisfy the condition

N+1∑
ı̂=0

αı̂k = 0 , ∀k = 1, . . . , h1,1 , (2.75)

which by eq. (2.72) corresponds to the cohomology condition on the currents, which
reads [

N+1∑
ı̂=0

J ı̂

]
= 0

as an element of H2,2(X), and by eq. (2.66) this ensures that dG is exact as trivially
required. Physically speaking this means that there can be no overall charge in a
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compact space, because there is nowhere for the flux to go. Finally the solution for
the four-form field strength in terms of B then is

GABCD =
1

2
εABCDEF∂11BEF =

h1,1∑
k=1

∂11bk (∗Xωk)ABCD

which by eq. (2.73) then explicitly reads

G = −ε(y)
h1,1∑
k=1

(
̂∑
ı̂=0

αı̂k

)
(∗Xωk) , for Y̂ ≤ |y| ≤ Y̂+1 , (2.76)

where ε(y) = sign(y), such that G is Z2-odd as required.
Having now given the explicit solution for the equation of motion and Bianchi

identity of the three-form potential, we still need the solution for the metric that
solves the Einstein equations (to order εS). The metric solution turns out to be given
by

ds2 = (1− b)ηµνdxµdxν + (ΩAB + hAB)dxAdxB + (1 + 2b)dy2 (2.77)

where

b =
1

3
ωABBAB (2.78)

hab̄ = 2i (Bab̄ − ωab̄b) (2.79)

with ωAB the lowest order Kähler form with ωab̄ = iΩab̄. We would now like to demon-
strate that by this configuration the five-brane sources in the Einstein equation are
properly matched and the five-brane world-volume equations of motion are satisfied.
To verify the former we should consider the singular terms in the Einstein tensor
which turn out to be

(Gµν)singular = −3

2
∂2
yb ηµν (2.80)

=
1

2
ωAB

N∑
ı̂=1

[
h1,1∑
k=1

αı̂kω
k
AB

](
δ̂(y − Yı̂) + δ̂(y + Yı̂)

)
ηµν ,

(Gab̄)singular = i∂2
yBab̄ (2.81)

= −i
N∑
ı̂=1

[
h1,1∑
k=1

αı̂kω
k
ab̄

](
δ̂(y − Yı̂) + δ̂(y + Yı̂)

)
.

These terms have to be compared with the five-brane stress energy tensor which for
vanishing Hı̂ is in general given by

T5ı̂ IJ = T5κ
2 1√
−g

∫
M ı̂

6∪M̃ ı̂
6

d6σı̂δ̂
11(x−Xı̂(σı̂))

√
−γı̂γmnı̂ ∂mXı̂ I∂nXı̂ J .
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Evaluating this expression for the embedding (2.64) and using the expansion (2.71)
on the currents (2.65) as well as the relation (2.61), leads to

T5ı̂ µν =
1

2
ηµν

(
δ̂(y − Yı̂) + δ̂(y + Yı̂)

)
ωAB

h1,1∑
k=1

αı̂kω
k
AB , (2.82)

T5ı̂ ab̄ = −i
(
δ̂(y − Yı̂) + δ̂(y + Yı̂)

) h1,1∑
k=1

αı̂kω
k
ab̄

with the other components vanishing. Thus each five-brane contribution exactly
matches the appropriate delta-function terms in eqs. (2.80, 2.81). We have there-
fore verified that the five-brane sources in the Einstein equation are properly matched
by the solutions. The matching of the boundary sources has been shown in ref. [158].

The only relevant equation of motion on the five-brane world-volumes is the one
for the embedding coordinates XI

ı̂ . For the case of vanishing Bı̂ it reads

2XI
ı̂ + ΓIJKγ

mn
ı̂ ∂mX

J
ı̂ ∂nX

K
ı̂ +

2

6!
εm1...m6∂m1X

I1
ı̂ . . . ∂m6X

I6
ı̂ (∗G)I I1...I6 = 0 .

The µ and A components of this equation turn out to be trivially satisfied for our
solution and it remains to check the eleven component. Using the expressions

Γ11
µν =

1

2
∂ybηµν , Γ11

ab̄ = −1

2
i∂yhab̄

for the connection along with the embedding (2.64) and the background (2.76) for G
this can be done.

In summary, we have, therefore, explicitly verified that the above background
configurations are indeed solutions of the action (2.39).

2.4.2 Inclusion of moduli

In view of the reduction to five dimensions to be carried out in section 2.5, we will now
identify the (bosonic) moduli fields of the above background solutions. We include
the complete (1, 1)− as well as (2, 1)−(co)homology sectors of the Calabi-Yau moduli
space. The indices α, β, γ = 0, . . . , 3, 11 are used to label five-dimensional coordinates.

Geometric moduli from bulk metric

In this subsection we will consider the moduli which arise from the bulk metric. These
are the metric deformations in the form of the Kähler and complex structure moduli.

Let us first consider the metric which can be written as

ds2
11 = V −2/3gαβdx

αdxβ + gABdx
AdxB , (2.83)
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where the Calabi-Yau volume modulus V , the five-dimensional metric gαβ and the six-
dimensional metric gAB on the Calabi-Yau space are functions of the five-dimensional
coordinates xα. The factor V −2/3 in the metric is chosen such as to obtain an action
in the Einstein frame after reduction. As explained in ref. [108], we have absorbed
the metric corrections of eq. (2.79) into the Kähler moduli of the metric gAB. This
can only be done because the deformed internal metric of (2.77) turns out to still be
a Calabi-Yau metric.

First consider the Kähler moduli and recall that they correspond to the hermitean
deformations of the Calabi-Yau metric. The Kähler form associated to the metric gAB
is defined by ωab̄ = igab̄, which can be expanded in terms of the harmonic (1, 1)-forms
{ωk, k = 1, . . . , h1,1} as

ωAB = akωk AB , (2.84)

where the coefficients ak = ak(xα) then are the (1, 1)−moduli of the Calabi-Yau space.
These real Calabi-Yau moduli label the Kähler class. The dimensionless Calabi-Yau
volume modulus V (xα) depends on these moduli like

V =
1

v

∫
X

√
g6 d

6x =
1

6
dijka

iajak , (2.85)

where dijk are the Calabi-Yau intersection numbers defined by

dijk =
1

v

∫
X

ωi ∧ ωj ∧ ωk , i, j, k = 1, . . . , h1,1 .

Here and in the following the parameter v sets the units of six dimensional volume
and so has dimension length6, thus, for example, the true Calabi-Yau volume now
is vV . We might as well take v to be the lowest order Calabi-Yau volume (2.62) for
consistency with the notation of the previous section. Because we want the volume
breathing mode V and the remaining (1, 1)-moduli to be independent, we redefine the
shape moduli to7

bk =
1

V 1/3
ak , (2.86)

such that the volume modulus is scaled out. Then the moduli {bk, k = 1, . . . , h1,1}
represent only h1,1 − 1 independent scalar degrees of freedom because eq. (2.85) be-
comes the constraint

dijkb
ibjbk = 6 . (2.87)

Now it is convenient to introduce a metric Gjk(b) on the the Kähler moduli space
such that Gjk(b)b

jbk does not scale with V , and this can be achieved by defining

Gjk(b) =
1

vV 1/3

∫
X

ωj ∧ (∗Xωk) =
1

2vV 1/3

∫
X

d6x
√
g6 ωj ABω

AB
k (2.88)

7Though we use the same notation, these shape moduli should not be confused with the coefficients
in eq. (2.73).
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with the inverse Gjk(b). This is a Kähler metric with Kähler potential K(b) defined
by

K(b) ≡ −ln
(
dijkb

ibjbk
)

such that

Gjk(b) =
∂2

∂bj ∂bk
K(b) .

It is this metric which in the following will be used to raise and lower the h1,1-
type indices. Since Gjk(b) does not scale with V this implies that neither ωk nor
ωk = Gkj(b)ωj scale with V , though ωk depend on the moduli bk simply because the
metric does. The scaling behavior of the various quantities is important to correctly
include V as a modulus in the solution of the previous section. Note that this moduli
metric differs from the one defined in eq. (2.69), since, besides the factor 1/V , the
Hodge star operator depends on the deformed metric gAB which is not the same as
the metric ΩAB at lowest order. A more detailed account of Calabi-Yau geometry can
be found in [160] or in the appendix of ref. [108], where it is shown that the following
useful identity G(b)lmb

lbm = 3 holds.

Next we consider the complex structure moduli of the Calabi-Yau manifold and
since they paramatrize H2,1(X) we first introduce a basis {Πp, p = 1, . . . , h2,1} of
harmonic (2, 1)−forms. Then the metric deformations associated to the complex
structure deformations can be defined by [160,161]

δgab = z̄p̄ b̄p̄ ab , δgāb̄ = zp bp āb̄ , (2.89)

where the bp āb̄ are given by

bp āb̄ =
−i
‖Ω‖2

Ω̄ cd
ā Πp cdb̄ , (2.90)

and Ωabc is the covariantly constant, harmonic (3, 0)−form on the Calabi-Yau space
X with ‖Ω‖2 = 1/3!ΩabcΩ̄

abc constant on X. As is well known, the variations (2.89)
can be made to vanish by a non-holomorphic coordinate transformation which would
render the metric hermitean again. Actually this is exactly the hermitean metric
chosen in eq. (2.83) which must be used to raise and lower Calabi-Yau indices. But
the space-time derivatives of the variations (2.89) cannot be made to vanish8 and
thus must be taken care of explicitly in the reduction of the scalar curvature and the
supersymmetry transformations. Now since the metric scales like gab̄ ∼ V −1/3 and
Ωabc ∼ 1 we find that ‖Ω‖2 ∼ V −1 and so we use the following scale convention

‖Ω‖2 ≡ V −1.

8This is analogous to the Christoffel symbols which vanish in a local inertial frame, which does
not mean that the curvature vanishes.
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This implies that by eq. (2.90) the deformations (2.89) depend also on the volume
modulus, which then must be taken care of when taking derivatives. On the complex
structure moduli space a metric can be defined by

Kpq̄(z) ≡ −
∫

Πp ∧ Π̄q̄∫
Ω ∧ Ω̄

=
−1

vV ‖Ω‖2

∫
Πp ∧ ∗Π̄q̄ =

1

vV

∫
√
g6id

6z bp āb̄b̄
āb̄
q̄

which is Kähler and can be obtained from the following Kähler potential

K(z) ≡ −ln

(
i

v

∫
X

Ω ∧ Ω̄

)
(2.91)

such that

Kpq̄ =
∂2

∂zp∂z̄q̄
K(z).

Zero-modes from bulk tensor field

Let us next turn to the bulk antisymmetric tensor field C. The massless Kaluza-Klein
modes of the three-form arise from different suitable cohomology sectors of the Calabi-
Yau space which are H1,1(X) as well as H3,0(X), H2,1(X) and their complex conju-
gates. It turns out to be more convenient not to discuss all three sectors independently
but to instead consider H1,1 and H3. Because it is the choice of a specific complex
structure that determines the Hodge decomposition H3 = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3,
it is more natural and common to discuss the entire H3-sector at once. In order to do
so let the three-cycles (AP , BQ), P,Q = 0, . . . , h2,1 be a canonical homology basis of
H3(X) and the three-forms (αP , β

Q) the dual cohomology basis of H3(X), normalized
such that ∫

X

αQ ∧ βP =

∫
AP

αQ = δPQ ,

∫
X

αP ∧ αQ = 0 ,∫
X

βP ∧ αQ =

∫
BQ

βP = −δPQ ,
∫
X

βP ∧ βQ = 0 .

These relations are invariant under symplectic transformations of the basis three-
cycles and this is the geometrical source of the symplectic structure of the manifold
parametrized by the hypermultiplet scalars in five-dimensional N = 1 supergrav-
ity [160, 162]. Now the three-form potential and its field strength can be expanded
like9

C = C +Ak ∧ ωk + (ξQ αQ − ξ̃Q βQ) , (2.92)

G = G+ Fk ∧ ωk + (XQ ∧ αQ − X̃Q ∧ βQ) ,

9The minus sign in the following expansion is pure convention and we use it only for sake of
obvious symplectic notation.
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and as the low-energy fields we then get, in five dimensions, a three form Cαβγ with
field strength Gαβγδ, h

1,1 vector fields Akα, k = 1, . . . , h1,1 with field strengths ∂[αAkβ] =

Fkαβ, and 2(h2,1 + 1) real scalar fields ξQ, ξ̃Q with field strengths ∂αξ
Q = XQ

α , ∂αξ̃Q =

X̃Qα where Q = 1 . . . h2,1 + 1. In component form these fields are defined by

Cαβγ Gαβγδ = 4∂[αCβγδ]
Cαab̄ = Akα ωk ab̄ Gαβab̄ = Fkαβ ωk ab̄
CABC = ξQ αQABC − ξ̃Q βQABC GαABC = XQ αQABC − X̃Q βQABC .

In order to understand the multiplet structure of the five-dimensional supergrav-
ity obtained in the following, we now want to briefly state how the fields (ξQ, ξ̃Q)
are related to modes associated to the H3,0(X) and H2,1(X) sectors. An alternate
expansion of the three-form potential in terms of bases of H3,0 and H2,1 reads

C|H3 = ξ Ω + ξ̄ Ω̄ + ηp Πp + η̄q̄ Π̄q̄ , (2.93)

where a bar denotes complex conjugation. It is the fields (ξ, ηp) that will turn out
to be scalar components of the conventionally identified hypermultiplets, which are
the universal hypermultiplet from the H3,0-sector and the additional hypermultiplets
from the H2,1-sector, respectively. The relation between the fields (ξ, ηp) and (ξP , ξ̃Q)
is given by (

ξP

ξ̃Q

)
=

(
ZP fPp
GQ hpQ

)(
ξ
ηp

)
+ c.c. ,

where the periods (ZP ,GQ) and (fPp , hpQ) are defined in (C.4) and (C.11). Since
these periods depend on the external coordinates this relation would be different for
the expansion coefficients of the field strength G with respect to the two different
bases. This is also the reason why it is much more convenient to work with (2.92)
than with (2.93), where in the latter case the basis forms depend on the external
coordinates through their dependence on the complex structure moduli.

Moduli from boundary gauge fields

Since it has been shown in refs. [123,124,125,126,127,128,129,130,131,132] that a phe-
nomenologically interesting particle spectrum on the orbifold planes can be obtained
by appropriate compactifications, we are also interested in the general structure of the
moduli from the boundary theories. On both boundaries, over the Calabi-Yau space,
we have internal stable holomorphic gauge bundles VRIi

in the representations RIi
of

the internal gauge groups Ii, i = 1, 2. The external low energy gauge groups Hi are
given by the commutants of the internal groups Ii within E8. We are interested in
the massless modes arising in the decompositions 248E8 =

∑
(RIi

, RHi
) of the adjoint

of E8 under Ii × Hi. The number of such modes in a representation RHi
, i.e. the
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number of families, is given by the dimension of H1(X,VRIi
), that is by the number

of independent harmonic, antiholomorphic one-forms with values in VRIi
. Consider

for example the phenomenologically interesting case where on the first boundary we
take I1 = SU(4) with H1 = SO(10) such that [163]

248 = (15,1) + (1,45) + (6,10) + (4,16) + (4̄, 1̄6) ,

then there are the 45 for the external gauge field, the 16 and 1̄6 for the gauge matter
families and anti-families, and the 10 for the Higgs field, respectively. The case of
standard embedding where one internal bundle is taken to be the spin connection
I1 = SU(3) such that H1 = E6 and H1(X,Λ1) = H1,1(X) has been given in [108].

So in general we denote the external parts of the gauge fields by A1µ, A2µ with field
strengths F1µν , F2µν , which then are gauge fields of vector multiplets of the N = 1
supersymmetric theories on the now four-dimensional orbifold fixed planes M1

4 , M
2
4 .

In general there are also chiral multiplets. To treat this gauge matter we need to
introduce bases

{uxL = uxL ā(RIi
) dzā |L = 1, . . . , dim(H1(X,VRIi

)) , x = 1, . . . , dim(RIi
)}

for the cohomology groups H1(X,VRIi
). In analogy to (2.88) there is also a metric

defined by

G
(m)
LM(RIi

) =
1

vV 2/3

∫
X

u x
L ∧ ∗ ūMx , (2.94)

where the complex conjugate of the basis one-forms is denoted with lower gauge
index. This metric generally depends on the Kähler moduli as well as on the complex
structure moduli, whereas the basis one-forms do not depend on the Kähler moduli.
Using this fact one can derive the following useful relation

uxLāūM bx = −iΓkLMωk āb, ΓkLM = Gkl(b)
∂

∂bl
G

(m)
LM , (2.95)

that is used in the derivation of the Bianchi identities in five dimensions. We also
need the Yukawa couplings which are given by

λLMN =
1

‖Ω‖2

∫
X

Ω ∧ uxL(R1Ii
) ∧ uyM(R2Ii

) ∧ uzN(R3Ii
) f (123)

xyz (2.96)

where f
(123)
xyz is completely symmetric and projects onto a possible singlet in the repre-

sentation R1Ii
× R2Ii

× R3Ii
. Next we need the generators of (RIi

, RHi
) and denote

and normalize them as follows

{Txp = Txp(RIi
) | p = 1, . . . , dim(RHi

)} , (2.97)

tr T̄ xp(RIi
)Tyq(RIi

) = δxyδ
p
q ,
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such that x, p are the gauge indices of the groups Ii,Hi in the representation RIi
, RHi

,
respectively. These generators satisfy the commutation relation

[Txp(R1Ii
), Tyq(R2Ii

)] = f (123)
xyz gpqrT̄

zr(R3Ii
)

which together with eq. (2.97) gives the relation

tr
(
[Txp(R1Ii

), Tyq(R2Ii
)]Tzr(R3Ii

)
)

= f (123)
xyz gpqr.

Finally we can write the massless modes of the gauge potential like

Ai ā =
√

2λ2/v
∑
RIi

uxL ā(RIi
)Tpx(RIi

)CLp(RIi
) ,

and its field strength defined by FĪJ̄ = ∂ĪAJ̄ − ∂J̄AĪ +
√
v/2λ2[AĪ , AJ̄ ] has the com-

ponents

Fi µā =
√

2λ2/v
∑
RIi

uxL ā Txp (DµC
Lp) ,

Fi āb̄ =
√

2λ2/v
∑
RIi

uxL āu
y

M b̄
[Txp, Tyq]C

LpCMq ,

Fi ab̄ =
√

2λ2/v
∑
RIi

ūLaxu
y

M b̄
[T̄ xp, Tyq] C̄

L
p C

Mq ,

where CLp(RIi
) correspond to the scalar gauge matter fields in four dimensions trans-

forming in the representation RHi
of the gauge group Hi.

Moduli from five-brane world-volume fields

Next we discuss the zero modes on the five-brane world-volumes. The five-branes are
allowed to fluctuate in five external dimensions, while internally they can move within
the Calabi-Yau space. This leads to the following set of embedding coordinates

Xµ
ı̂ = Xµ

ı̂ (σνı̂ ) , X11
ı̂ = Yı̂(σ

ν
ı̂ ) , Xa

ı̂ = Xa
ı̂ (σı̂,Mı̂)

where Mı̂ is a set of moduli which parametrizes the moduli space of holomorphic
curves with a given homology class [C ı̂2] for the Calabi-Yau space under considera-
tion [126,127,128]. In our low-energy effective action, we will not explicitly take these
moduli into account and thus the internal embedding coordinates Xa

ı̂ will not show
up as moduli fields in the five-dimensional theory. The three-brane surface in five-
dimensional space specified by the above embedding coordinates Xα

ı̂ is denoted by
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M5ı̂
4 , ı̂ = 1, . . . , N . Using the above embedding and the bulk metric (2.83), we find

the following non-vanishing components of the induced world-volume metrics

γı̂ µν = ∂µX
α
ı̂ ∂νX

β
ı̂ gαβ ,

γı̂ st = ∂sX
A
ı̂ ∂tX

B
ı̂ gAB = (−2i)ak∂σX

a
ı̂ ∂σ̄X

b̄
ı̂ ωk ab̄ δst .

There are also a number of moduli arising from the world-volume two-form Bı̂

which can be determined from the cohomology of the two-cycle C ı̂2. First we introduce
a basis of two-cycles {Wk

2 } of the second homology group H2(X) dual to the basis
{ωk} of H2(X) in the sense that

1

v1/3

∫
X

ωk ∧ δ(Wj
2) =

1

v1/3

∫
Wj

2

ω̂k = δjk ,

where a hat denotes a pullback, in this case onto the appropriate basis two-cycle
Wj

2 . The complex curves C ı̂2 can then be decomposed with respect to this basis like
C ı̂2 = β ı̂kWk

2 , where the coefficients β ı̂k are defined in (2.72). For arbitrary coefficients
not every linear combination of the basis cycles {Wk

2 } would be in the homology
class of a holomorphic curve, i.e. it need not be an effective curve. Generally the
holomorphic cycles sit in a cone in H1,1(X) whereof the Riemann surfaces, i.e. the
simply connected holomorphic curves, are again a subclass, and it is such Riemann
surfaces on which our five-branes are wrapped. The simple connectedness of the cycles
C ı̂2 also implies h2(C ı̂2) = 1, thus there exists one independent basis two-form on each
such cycle which can be written as an arbitrary linear combination10

ω ı̂ ≡
h1,1∑
k=1

nkı̂ ω̂
ı̂
k , (2.98)

where ω̂ ı̂k denote the pullbacks of the basis (1,1)-forms onto the cycles C ı̂2. One conve-

nient choice of coefficients as taken in [164] is nkı̂ = β ı̂k/(
∑h1,1

l=1 β
ı̂2
l ), yielding unit volume

of the associated cycle. Another natural choice though would be [113] nkı̂ = ak such
that ω ı̂ in (2.98) is the pullback of the Calabi-Yau Kähler form onto the cycle C ı̂2. For
generality, we simply use the coefficients nkı̂ , k = 1, . . . , h1,1 in the following. Because
h2(C ı̂2) = 1 all harmonic two-forms on C ı̂2 must be proportional to the basis two-form
ω ı̂, and for the pullbacks of the basis (1,1)-forms ω ı̂k we find

ω̂ ı̂k =
β ı̂k

(nlı̂β
ı̂
l )
ω ı̂

10Here and in the following no summation over the index ı̂ is implied if not explicitly stated with
a sum sign

∑
ı̂.
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which will be used later. Next we also introduce a basis {λı̂ U} of H1(C ı̂2) where
U, V,W, . . . = 1, . . . , 2gı̂ and gı̂ is the genus of C ı̂2. As the low-energy fields on the three-
brane M5ı̂

4 we then find the two-form Bı̂ µν with field strength Hı̂ µνρ, 2gı̂ Abelian 11

vector fields DU
ı̂ µ with field strengths EU

ı̂ µν and one independent scalar sı̂ which shows
up in the field strength jı̂ µ. These fields are defined by

Bı̂ µν Hı̂ µνρ = (dB − Ĉ)ı̂ µνρ
Bı̂ µs = DU

ı̂ µ λı̂ U s Hı̂ µνs = EU
ı̂ µν λı̂ U s = (dDU

ı̂ )µν λı̂ U s

Bı̂ st = sı̂ ω
ı̂
st Hı̂ µst = jı̂ µ ω

ı̂
st =

β ı̂
k

nl
ı̂β

ı̂
l
(d(nkı̂ sı̂)− Âkı̂ )µ ω ı̂st ,

where as usual ı̂ = 1, . . . , N enumerates the five-branes. Due to the self-duality
condition ∗Hı̂ = Hı̂ these four-dimensional fields are not all independent though. In
order to work out the relations between them we split the 2gı̂ vector fields into two
sets, that is, we write (EU

ı̂ ) = (Eu
ı̂ , Ẽı̂ u) where u, v, w, . . . = 1, . . . , gı̂. Then, we find

that the self-duality condition reduces to

Hı̂ =
(nkı̂ β

ı̂
k)

V (β ı̂lb
l)
∗ jlı̂ (2.99)

Ẽı̂ v = [Im(Π)]̂ı vw ∗ Ew
ı̂ + [Re(Π)]ı̂ vwE

w
ı̂ (2.100)

where the star is the four-dimensional Hodge-star operator and Πı̂ vw is the period
matrix of the complex curve C ı̂2. To define this matrix we denote by (aı̂ w, bı̂ w) a
standard basis of H1(C ı̂2) consisting of α and β cycles and introduce a set of one-forms
(αı̂ w) satisfying

∫
aı̂ u

αı̂ w = δuw. Then the period matrix for the ı̂-th two-cycle C ı̂2 is
given by

Πı̂ uw ≡
∫
bı̂ u

αı̂ w.

For the case of a torus, g = 1, the period matrix is simply a complex number which
can be identified with the complex structure τ of the torus. Shortly, we will use the
relations (2.99) and (2.100) to eliminate half of the vector fields as well as Bı̂ µν in
favour of sı̂ from our low-energy effective action to arrive at a description in terms of
independent fields. A more detailed account of the geometry of Riemann surfaces can
be found in appendix D.

The remaining bosonic world-volume fields we should consider are the auxiliary
scalar fields aı̂. If we want the normal vectors vı̂ to be globally well defined, we cannot
allow them to point into the internal directions of the two-cycles only. This is because
generally there need not exist a nowhere vanishing vector field on a Riemann surface,
as the simple example of a sphere S2 already demonstrates. Hence, we will take aı̂

11This can be enhanced to non-abelian symmetries if five-branes are “stacked”, as discussed in
ref. [109]. We do not attempt to incorporate this effect explicitly.
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to be independent of the internal coordinates and require them to be functions of
the external coordinates only, that is, aı̂ = aı̂(σ

µ
ı̂ ). It turns out that these fields will

drop out of the five-dimensional effective action after eliminating half of the degrees
of freedom 12, using eqs. (2.99) and (2.100).

The non-zero mode

The last ingredient we need to discuss is the non-zero mode (2.76). It consists of
the purely internal part of the four-form gauge field strength, but since we now allow
the five-branes to fluctuate it must be slightly generalized. Moreover, we have to
be careful to correctly include the Calabi-Yau volume modulus. To this end we first
define the function

αk(x
α) =

[
α

(0)
k θ(y) + α

(N+1)
k θ(y − πρ) +

N∑
ı̂=1

αı̂k

(
Θ(M5ı̂

4 ) + Θ(M̃5ı̂
4 )
)]

(2.101)

where dΘ(M5ı̂
4 ) = δ(M5ı̂

4 ) and the θ– and δ–function are defined in analogy with
eqs. (2.53). Then from the identity δlk = GkmG

ml = 1
vV 1/3

∫
X
ωk ∧ ∗Xωl we see that

in the combination 1
V 1/3G

kl(b) ∗X ωk all moduli dependencies cancel when the Hodge
star ∗X is defined with respect to the deformed CY-metric gAB. This allows to write
the non-zero mode like

G = − 1

V 1/3

h1,1∑
k=1

αk(x
α)(∗Xωk) , (2.102)

which then is moduli independent as required by the Bianchi identity (2.54), which is
independent of the metric. Note that for the static brane configuration (2.64) which
implies Θ(M5ı̂

4 ) = θ(y − Yı̂) and Θ(M̃5ı̂
4 ) = θ(y + Yı̂), together with V = 1 and

gAB → ΩAB, the above expression reduces to the background configuration (2.76) as
it should. For this case the function αk = αk(y), for a fixed value of k and with two
bulk M-branes, is illustrated in fig 2.5.

2.5 The five-dimensional theory

Based on the above background solutions, we would now like to derive the five-
dimensional effective action and discuss its properties.

12We would like to thank Dmitri Sorokin for a helpful discussion on this point.
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Figure 2.5: Function αk(y) for charges α
(0)
k = 2, α

(1)
k = 1, α

(2)
k = −4 and α

(4)
k = 1.

2.5.1 The action

Let us first explain how the previously identified moduli fields fit into supermultiplets.
In the bulk, we have13 D = 5, N = 1 supergravity with a gravity multiplet, which,
besides the graviton and the gravitino, consists of a vector field, the gravi-photon.
So there remain h1,1 − 1 vectors of which each one must be in a vector multiplet.
From the case h1,1 = 1 [107, 114] we know that there is the universal hypermultiplet
with bosonic content (V, σ, ξ, ξ̄), where σ is the dual of the three-form Cαβγ, thus the
remaining scalars bk must be part of the vector multiplets, remembering that by the
constraint (2.87) the shape moduli bi only represent h1,1−1 scalar degrees of freedom.
To better understand this structure consider the following alternative description, also
illustrated in fig 2.6 [111]. The moduli ak parametrize a h1,1-dimensional Kähler man-
ifold MK and the relation (2.85), or equivalently (2.87), defines the hypermanifolds
MV ⊂ MK of constant volume V . Such a (h1,1 − 1)-dimensional hypersurface can
be parametrized by h1,1− 1 independent real scalar fields φx, x = 1, . . . , h1,1− 1 with
bk = bk(φx), and now a tangent space to MK can naturally be split into vectors
tangent and one vector perpendicular to MV , the former belong to the vector mul-
tiplet and are given by Ax = (∂φxbk)Ak, and the latter is the gravi-photon given by
A = bkAk. Thus the content of the h1,1 − 1 vector multiplets is (φx,Axα, λx j), where
λx j are the fermions. The complete gravity multiplet then is (gαβ,Aα,Ψj

α) with Ψj
α

the gravitino. From the remaining fields of the (2, 1)−sector we get an additional
h2,1 hypermultiplets with bosonic content (zp, ηp) with complex scalars zp, ηp. As
will be shown shortly, the hypermultiplet scalars qu = (V, σ, zp, ξQ, ξ̃Q) parametrize
a symplectic, quaternionic manifold MH , also see [110] and the appendix C. The
fermions of the complete hypermultiplet sector we call ζa i. All the five-dimensional
fermions are described by symplectic Majorana spinors carrying SU(2) R-symmetry
indices j = 1, 2. We note that, from their eleven-dimensional origin, the metric, V , zp

13In four-dimensional counting we have N = 2 supersymmetry in five-dimensions which corre-
sponds to eight supercharges.
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A

A
x

M
V

φxMK

Figure 2.6: Hypermanifold MV ⊂ MK with tangent space split into graviphoton A
and vector-multiplet gauge fields Ax.

and φx are Z2–even fields, while Cαβγ, Axα, Aα, ξQ and x̃Q are Z2–odd. To summarize
we have found the following supergravity multiplets of bulk fields

gravity multiplet: (gαβ,Aα,Ψj
α)

universal hypermultiplet: (V, σ, ξ, ζ)

h2,1 hypermultiplets: (zp, ηp, ζp)

h1,1 − 1 vector multiplets: (φx,Axα, λx j).

On the four-dimensional fixed planes M j
4 , where j = 1, 2, we have N = 1 gauge

multiplets, that is gauge fields Ajα with field strengths Fjαβ = (dAj)αβ and the cor-
responding gauginos. In addition there are gauge matter fields in N = 1 chiral
multiplets with scalar components CJp transforming in RHi

, together with the corre-
sponding fermions.

On the three-brane world-volume M5ı̂
4 , the embedding coordinates Xα

ı̂ give rise
to a single physical degree of freedom Yı̂ = X11

ı̂ , as can be seen from the static
gauge choice. This field is part of the N = 1 chiral multiplet with bosonic content
(Yı̂, sı̂). We denote the corresponding fermions by θjı̂ . In addition, we have N = 1
gauge multiplets containing Abelian gauge fields Du

ı̂α with field strenghts Eu
ı̂ αβ, where

u, v, w, . . . = 1, . . . , gı̂ and gı̂ is the genus of the curve C ı̂2 wrapped by the ı̂-th five-
brane. In general, there will be additional chiral multiplets parametrizing the moduli
space of the five-brane curves C ı̂2 but they will not be explicitly taken into account
here.

The reduction to five dimensions is not completely straightforward, particularly
when dealing with the Chern-Simons and Dirac-term in the eleven-dimensional action.
We have, therefore, performed the reduction on the level of the equations of motion.
This gives rise to the following effective five-dimensional (moduli space) action

S5 = Sgrav + Shyper + Sbound + Smatter +
N∑
ı̂=1

S ı̂3−brane (2.103)
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where the bulk and boundary parts read

Sgrav = − 1

2κ2
5

∫
M5

{
d5x
√
−g
(

1

2
R +

1

4
Gkl(b)∂αb

k∂αbl +
1

2
Gkl(b)FkαβF l αβ

)
+

2

3
dklmAk ∧ F l ∧ Fm

}
(2.104)

Shyper = − 1

2κ2
5

∫
M5

{
d5x
√
−g
(

1

4
V −2∂αV ∂

αV +
1

4
K(z)pq̄ ∂αz

p∂αz̄q̄

− V −1(∂αξ̃P − M̄PQ(z)∂αξ
Q)([ImM(z)]−1)PR(∂αξ̃R −MRS(z)∂

αξS)

+
1

4!
V 2GαβγδG

αβγδ + V −2Gkl(b)αkαl

)
+ 2G ∧

[
(ξPdξ̃P − ξ̃PdξP )− 2αkAk

]}
(2.105)

Sbound = − 1

2κ2
5

{
2

∫
M1

4

d4x
√
−g4 V

−1bkα
(0)
k (2.106)

+ 2

∫
M2

4

d4x
√
−g4 V

−1bkα
(N+1)
k

}
Smatter = − 1

16παGUT

2∑
j=1

∫
Mj

4

d4x
√
−g4 V tr(FjµνF

µν
j ) (2.107)

+
2∑
j=1

∫
Mj

4

d4x
√
−g4

∑
RIj

G
(m)
LM(RIj

)DµC
Lp(RIj

)DµC̄M
p (RIj

)

and the three-brane actions are

S ı̂3−brane = − 1

2κ2
5

{∫
M5ı̂

4 ∪M̃5ı̂
4

[
d4σı̂
√
−γı̂
(
V −1αı̂kb

k + 2
(nkı̂ α

ı̂
k)

2

V (αı̂lb
l)
jı̂µj

µ
ı̂ (2.108)

+ [Im(Π)]̂ıuwE
u
ı̂µνE

wµν
ı̂

)
− 4Ĉı̂ ∧ αı̂kd(nksı̂)− 2[Re(Π)]̂ıuwE

u
ı̂ ∧ Ew

ı̂

]}
.

The five-dimensional Newton constant κ5, and the gauge coupling constant αGUT are
given by

κ2
5 =

κ2

v
, αGUT =

λ2

4πv
.

In this action all topological terms are written in differential form whereas all other
contributions are given in component form. The matrix MPQ = MPQ(z) is defined in
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eq.(C.13) in appendix C. The hat denotes the pull-back of a bulk antisymmetric tensor
field to the three-brane world-volume. The induced metric γı̂ µν on the three-brane
world-volume is, as usual, defined by

γı̂ µν = ∂µX
α
ı̂ ∂νX

β
ı̂ gαβ .

The matrix Π specifying the gauge-kinetic function on the three-branes is the period
matrix defined in eq. (2.4.2). We recall that the step-function αk in the above ac-
tion has been defined in eq. (2.101) and that the charges αı̂k satisfy the cohomology
conditions

N+1∑
ı̂=0

αı̂k = 0 ∀ k = 1, . . . , h1,1 .

The fields originating from the three-form in eleven dimensions must still satisfy
nontrivial Bianchi identities. The reduction of eq. (2.54) yields

(dG)5µνσρ = −4κ2
5

(
J (1)
µνσρ δ(y) + J (2)

µνσρ δ(y − πρ)
)
,

(dFk)5µν = −4κ2
5

(
J (1)k
µν δ(y) + J (2)k

µν δ(y − πρ)
)
,

(dX PGP − dX̃QZQ)5µ = −4κ2
5

(
J (1)
µ δ(y) + J (2)

µ δ(y − πρ)
)
,

with the various currents given by

J (i)
µνσρ =

1

16παGUT

(tr(Fi ∧ Fi))µνσρ ,

J (i)k
µν = −i

∑
RIi

ΓkLM(DµC
LpDνC̄

M
p −DµC̄

M
q DνC

Lq) ,

J (i)
µ =

e−K(z)

2V

∑
RIi

λLMNgpqrC
LpCMqDµC

Nr.

Unlike its eleven-dimensional counterpart (2.54), this Bianchi has only contributions
from the orbifold planes since, in five dimensions, the bulk three-brane delta function
is a one-form and thus cannot provide a magnetic source to the given fields. Remember
that the gauge matter fields CLp and the quantities ΓkLM , λLMN , gpqr, as defined in
section (2.4.2), explicitly depend on the representation RIi

, i = 1, 2 of the internal
holomorphic gauge bundles VRIi

on the orbifold fixed boundaries. Finally, only terms
at most quadratic in space-time derivatives are included in the above action and
Bianchi identities.

By construction, the action (2.103) must represent the bosonic part of a five-
dimensional N = 1 supergravity theory on the orbifold S1/Z2 coupled to two four-
dimensional N = 1 theories on the orbifold fixed planes and N additional N = 1
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supersymmetric three-branes. Also let us note that for h2,1 = 0 and once the three-
branes are taken away this action reduces, up to rescalings14, exactly to the action
of ref. [108], as it should. Next we want to discuss a few particular properties of the
above action.

2.5.2 N = 1 supersymmetric structure

Following the discussions in refs. [110, 107, 108] we will now demonstrate the quater-
nionic structure of the manifold MH parametrized by the hypermultiplets scalars
qu as required by five-dimensional N = 1 supergravity [165]. Furthermore, we find
that the gauged isometry and its relation to the potential term as found in [108]
are not affected by the inclusion of the complete hypermultiplet sector, that is for
h2,1 > 0. The general structure of five-dimensional N = 1 supergravity can be found
in refs. [108,165].

Let us start by dualizing the three-form Cαβγ to a scalar σ, and in the bulk we
have

G =
1

V 2
∗ [dσ − (ξ̃QdξQ − ξQdξ̃Q) + 2αk(y)Ak]. (2.109)

Using this, the kinetic terms in Shyper can be written in terms of the scalar fields
qu = (V, σ, zp, ξQ, ξ̃Q) like

huvDαq
uDαqv (2.110)

where the covariant derivative is generally defined by Dαq
u = ∂αq

u + gkul Alα. Here in
our case the Killing vector is gkσl = 2αl(y) such that only σ is charged and thus we
have

Dασ = ∂ασ + 2αlAlα. (2.111)

The metric huv is given by

huvdq
u ⊗ dqv =

1

8
K(z)pq̄dz

p ⊗ dz̄q̄ +
1

8V 2
dV ⊗ dV

+
1

8V 2
[dσ − (ξ̃Qdξ

Q − ξQdξ̃Q)]⊗2 (2.112)

− 1

2V
(ImM)−1PQ(dξ̃P −MPRdξ

R)⊗ (dξ̃Q − M̄QRdξ
R),

where dqu are one-forms onMH and the matrix M is again the one defined in (C.13).
The symplectic structure ofMH refers to the fact that its holonomy group is Sp (2)×
Sp (2(h2,1 + 1)), and if this is indeed the case it must be possible to write the above
metric (2.112) like

huv = V ia
u V

jb
v εijΩab

14The rescalings are C ′ = 1
621/6C, G′ = 21/6G, ξ′ = 21/6ξ, A′ = 21/6A, V ′ = 2−2/3V and

g′5αβ = 2−2/3g5αβ where the prime denotes the fields as in ref. [107].
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where V ia
u are vielbeins, εij is the antisymmetric symbol with ε12 = 1, and Ωab is the

2(h2,1+1)×2(h2,1+1) blockdiagonal matrix with blocks −εij. Therefore, the flat space
metric onMH is εijΩab where i, j = 1, 2 are Sp(2) = SU(2) and a, b = 1, . . . , 2(h2,1+1)
are Sp(2(h2,1 + 1)) indices. Define the vielbeins by

V ia = V ia
u dq

u =
1√
2

(
u v̄ ea Ēa

v −ū Ea −ēa
)Xa

(2.113)

with one-forms defined by

ea =
1

2
√

2
eapdz

p , eapēq̄ a = Kpq̄(z),

Ea =
1

2
√
V
e−K/2P a

Q(ImG)−1QR(dξ̃R −MRSdξ
S) , KPQ = P a

P P̄Qa

u =
1√
V
eK/2ZP (dξ̃P −MPQdξ

Q)

v =
1

2
√

2V
(dV + i[dσ + (ξQdξ̃Q − ξ̃QdξQ)])

where K is the Kähler potential (2.91) with associated metric Kpq̄ and ZP is defined in
eq.(C.4) such that ∂pZQP a

Q = eap in accordance with eq.(C.12). Moreover, as defined
in the appendix C, G(Z) is the holomorphic prepotential and GPQ = ∂P∂QG. Then
by using relation (C.22) it can be shown that

huvdq
u ⊗ dqv = V ia ⊗ V jbεijΩab = u⊗ ū+ v ⊗ v̄ + ea ⊗ ēa + Ea ⊗ Ēa

is indeed exactly given by (2.112).
In order to next demonstrate the quaternionic structure ofMH and the consistency

of the gauging (2.111) with N = 1 supersymmetry, we need the SU(2) connection ωij
from which we then can get the triplet of Kähler formsKi

j = Kx(τx)
i
j = (Kuv)

i
jdq

u∧dqv
by using −K = dω + ω ∧ ω. The Kähler forms then must satisfy the quaternionic
algebra

(iKx)(iKy) = −δxy + εxyz(iKz). (2.114)

The SU(2) connection turns out to be given by [110]

ωij =

(
1
2
(v − v̄) + 1

2
w −u

ū −1
2
(v − v̄)− 1

2
w

)i
j

with the one-form w defined by

w = eK(Z̄P (ImG)PQdZQ −ZP (ImG)PQdZ̄Q). (2.115)
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Then for the Kähler forms we find

Kj
i =

(
1
2
(u ∧ u− v ∧ v̄ + ea ∧ ēa − Ea ∧ Ēa)

v ∧ ū+ Ea ∧ ēa
u ∧ v̄ + ea ∧ Ēa

−1
2
(u ∧ u− v ∧ v̄ + ea ∧ ēa − Ea ∧ Ēa)

)i
j

.

which indeed satisfies (2.114). Having the Kähler forms we can finally obtain the
prepotentials Pl from the relation

kul Kuv = ∂vPl + [ωv,Pl],

that relates the Killing vectors to the prepotentials such as to respect the quaternionic
structure. We find that the prepotentials are given by

gP ik j =

(
i αk

4V
0

0 −i αk

4V

)i
j

.

These prepotentials we now use to find the potential term of Shyper that must be
present for the gauging (2.111) to be consistent with N = 1 supersymmetry, and it
is correctly given by

g2V = −4g2Gkl(b)trPkPl + 4g2bkbltrPkPl +
1

2
g2blbkhuvk

u
kk

v
l

=
1

2
V −2Gkl(b)αkαl. (2.116)

So by supersymmetry this potential term is induced by the gauging of the shift sym-
metry σ → σ + const. of the dilatonic axion. This symmetry is actually an isometry
of MH that is gauged with the vector field αkAk as the corresponding gauge boson.
Unlike in the case without five-branes, the gauge charges change across the bulk as
anticipated in ref. [109]. From the definition of αk, eq. (2.101), these charges are

proportional to α
(0)
k between the first fixed plane and the first three-brane and pro-

portional to α
(0)
k +α

(1)
k between the first three-brane and the second three brane etc.,

see fig 2.5. Note that, similarly to the gauge charge, the potential (2.116) jumps across
the three-branes. Further, it is worth pointing out that, while all tension terms in the
action (2.103) are proportional to V −1αı̂kb

k, where ı̂ = 0, . . . , N + 1, the terms on the
fixed planes contain an additional factor of two relative to the three-brane term. This
factor reflects the nature of the “boundary branes” as being located on Z2 orbifold
fixed planes.

To summarize, we now have shown that the hypermultiplet sector as obtained by
direct compactification of Hořava-Witten theory on a Calabi-Yau three-fold nicely fits
into five-dimensional N = 1 gauged supergravity as required.
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2.5.3 Symmetries

Let us start with the supersymmetry transformations of the fermions. Their bosonic
part can be obtained either by a reduction from eleven dimensions or, most easily, by
using the general supersymmetry transformations of five-dimensional gauged N = 1
supergravity as can be found in [108,165]. The result is

δψiα = Dαε
i − i

12

(
γα

βγ − 4δβαγ
γ
)
bkFkβγεi +

1

6
iγαV

−1blαl(y)(τ3)
i
jε
j

δζa = −iγα∂αquV ja
u εj + 2bkαk(y)V

ja
σ εj (2.117)

δλx i = −1

4
bxk
[(
iγα∂αb

k + γαβFkαβ
)
εi + 2iV −1αk(y)(τ3)

i
jε
j
]

where γα are the five-dimensional gamma matrices, τ3 is a Pauli matrix, bxk = ∂φxbk
is the projection onto the φx−subspace and the vielbeins V ia

u are given in (2.113).
The variation of the three-brane world-volume spinors θi (assuming the world-volume
fields s and Du vanish) can be obtained by reducing the variation (2.57) which results
in

δθiı̂ = εiı̂ + (pı̂+)ijκ
j
ı̂ (2.118)

where the projection operators pı̂± are now given by

pı̂± =
1

2

(
1± i

4!
εµ1...µ4∂m1X

α1
ı̂ . . . ∂m4X

α4
ı̂ γα1...α4τ3

)
.

Up to total derivatives the action (2.103) is also invariant under the following
gauge variations

δC = dλ(2), δAk = dλk (0), δ(nksı̂) = λ̂
k(0)
ı̂ , δξ = const., δEu

ı̂ = dλ
(1)u
ı̂

with λ(p) being p-form gauge parameters and λk (0), λ(2) being Z2–odd. To check
this result one must note that the variation of the gauge term ∼ 4G ∧ αk(x)Ak
and the brane terms ∼ 4αı̂kĈı̂ ∧ d(nkı̂ s) cancel each other after partial integration of
the former. The above gauge variations of course also follow from the reduction of
the gauge symmetries (2.59) in eleven dimensions. Note, however, that there are no
remnants of the PST-symmetries (2.60) in our action. This is not surprising since these
symmetries have been implicitly gauge-fixed when the self-duality relations (2.99) and
(2.100) were used to eliminate half of the degrees of freedom on the three-brane.

2.5.4 The dual form of the action

In our five-dimensional action S5, eq. (2.103), the three-branes are coupled to the
gauge charges αı̂k, defined by eqs. (2.72) and (2.73), through the step-functions αk
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defined by eq. (2.101). We can promote the functions αk to zero-form field strengths
which, as follows from eq. (2.101), satisfy the Bianchi identity

dαk = 2α
(0)
k δ(M1

4 ) + 2α
(N+1)
k δ(M2

4 ) +
N∑
ı̂=1

αı̂k

[
δ(M5ı̂

4 ) + δ(M̃5ı̂
4 )
]
. (2.119)

In particular this means that the three-branes couple magnetically to these zero-forms
αk, because the brane sources appear in the Bianchi identity and not in the equation
of motion. In analogy with massive IIA supergravity [166], there should now be a dual
formulation of the action S5 where the αk are replaced by four-forms Nk with five-
form field strengths Mk = dNk to which the three-branes couple electrically. If a dual
version of eleven-dimensional supergravity involving only a six-form field existed, we
could have derived this dual five-dimensional action directly from eleven dimensions.
As explained in section 2.2, such a dual version of eleven-dimensional supergravity
is not available and, hence, the reduction necessarily leads to the five-dimensional
action S5 written in terms of αk. However, there is no obstruction to performing the
dualization in five dimensions. This can be done by adding to the action S5 (with the
αk interpreted as a zero-form field strengths) the terms

Sα =
1

2κ2
5

{∫
M5

Nk∧dαk−2α
(0)
k

∫
M1

4

N̂k
(0)−2α

(N+1)
k

∫
M2

4

N̂k
(N+1)−

N∑
ı̂=1

αı̂k

∫
M5ı̂

4 ∪M̃5ı̂
4

N̂k
ı̂

}

where N̂k
ı̂ is the pullback of Nk onto the ı̂-th three-brane. The term Sα is chosen

exactly such that the equation of motion for Nk yields the Bianchi identity (2.119)
for αk, by virtue of which the additional term Sα vanishes again, that is on-shell
we have added zero. As it should, this leads us back to the original action S5 with
αk being defined by eq. (2.101). On the other hand, the equation of motion for αk
computed from the action S5 + Sα is given by

αk = Gklαl = +
1

2
V 2 ∗ (4G ∧ Ak −Mk) . (2.120)

Using this relation to replace αk in favour of Mk, we arrive at the dual version of our
five-dimensional brane-world action (2.103). It is given by

S5,dual = Sgrav,d + Shyper,d + Sbound,d +
N∑
ı̂=1

S ı̂3−brane,d (2.121)
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where

Sgrav,d = Sgrav

Shyper,d = − 1

2κ2
5

∫
M5

{
d5x
√
−g
(

1

4
V −2∂αV ∂

αV +
1

4!
V 2GαβγδG

αβγδ

− V −1(∂αξ̃P − M̄PQ(z)∂αξ
Q)([ImM(z)]−1)PR(∂αξ̃R −MRS(z)∂

αξS)

+
1

4
K(z)pq̄ ∂αz

p∂αz̄q̄ +
1

4 · 5!
V 2Gkl(b)M

k
α1...α5

M l α1...α5

)
+ 2G ∧

(
(ξPdξ̃P − ξ̃PdξP ) + V 2Gkl(b)Ak ∧ ∗(M l − 2G ∧ Al)

)}
Sbound,d = Sbound −

1

2κ2
5

{
2α

(0)
k

∫
M1

4

N̂k + 2α
(N+1)
k

∫
M2

4

N̂k

}
S ı̂3−brane,d = S ı̂3−brane −

1

2κ2
5

αı̂k

∫
M ı̂

4∪M̃ ı̂
4

N̂k
ı̂

with Sgrav, Sbound and S ı̂3−brane as in eqs. (2.104), (2.107) and (2.108). In this dual form
of the action the electric coupling of the boundaries as well as of the bulk three-branes
to the electric potential Nk can explicitly be seen. The coupling strengths now are
given by the gauge charges αı̂k, which thus can be interpreted as electric charges with
respect to the potential Nk. As expected there is also a kinetic term for the electric
field strength as well as an interaction term.

2.6 The vacuum solution

In this section, we will give the BPS multi-domain-wall solution of the five-dimensional
theory defined by the action (2.103). For the case without additional bulk three-
branes and including only the universal hypermultiplet, the supersymmetric domain-
wall solution of five-dimensional heterotic M-theory has been found in ref. [107], which
then was extended to include the whole (1, 1)-sector in ref. [108]. We now wish to
verify that these results can be extended to include the effect of the bulk three-branes
and thereby providing a solution of our action (2.103). For the universal case where
h1,1 = 1 this has already been explicitly done in ref. [114].

This solution is needed in section 2.7 where we will explicitly determine the bosonic
part of the effective N = 1 four-dimensional theory associated to the general, lin-
earized multi-domain-wall background vacuum solution.
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2.6.1 The supersymmetric multi-domain-wall vacuum state

To simplify the subsequent treatement let us note that the action (2.103) can con-
sistently be truncated to have only the five-dimensional metric gαβ, the (1,1)-moduli
V, bk and the three-brane embedding coordinates Xα

ı̂ as its field content. The corre-
sponding action is then given by

S5 = − 1

2κ2
5

{∫
M5

d5x
√
−g
(

1

2
R +

1

4
V −2∂αV ∂

αV +
1

4
Gkl(b)∂αb

k∂αbl

+V −2Gkl(b)αkαl + λ(K − 6)

)
+2α

(0)
k

∫
M1

4

d4x
√
−g4 V

−1bk + 2α
(N+1)
k

∫
M2

4

d4x
√
−g4 V

−1bk

+
N∑
ı̂=1

αı̂k

∫
M5ı̂

4 ∪M̃5ı̂
4

d4σı̂
√
γı̂ V

−1bk

}
,

where a Lagrange multiplier term has been added to ensure the constraint (2.87). We
start with the following Ansatz for the metric, the volume modulus and the shape
moduli

ds2
5 = a2(y)ηµνdx

µdxν + b2(y)dy2

V = V (y) (2.122)

bk = bk(y) k = 1 . . . h1,1

with all other bulk fields vanishing. In addition we need to specify the Ansatz for the
world-volume fields of the three-branes. We choose a configuration of static three-
branes that are parallel to each other as well as to the orbifold fixed planes, as illus-
trated in fig. 2.4. The ansatz is then given by

Xµ
ı̂ = σµı̂ , Yı̂ = const,

with all other world-volume gauge fields vanishing. The gauge fields on the boundaries
are turned off as well.

This Ansatz leads to a set of equations of motion which are still difficult to solve.
Following ref. [108] we can give an implicit solution in terms of certain functions
fk = fk(y). It turns out that if these functions satisfy the following relations

dklmf
lfm = hk, k, l,m = 1, . . . , h1,1 (2.123)

with the function hk(y) given by

hk(y) = −4c

̂∑
ı̂=0

αı̂k (|y| − Yı̂) + ck (2.124)
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in the interval
Y̂ ≤ |y| ≤ Y̂+1, ̂ = 0, . . . , N ,

then the solution can be written as

V = (
1

6
dklmf

kf lfm)2 (2.125)

a = c̃ V 1/6

b = c V 2/3

bk = V −1/6fk ,

where c, c̃ and ck are arbitrary integration constants. One can check that the new
features arising from the presence of the N three-branes are properly taken into ac-
count. Specifically, the world-volume equations of motion for all N three-branes are
independently satisfied and the N three-brane sources in the Einstein equations are
properly matched. This implicit solution thus represents a N-domain-wall. This can
be explicitly seen from the functions hk(y) which are harmonic up to the various
three-brane and orbifold plane positions and continuous, such that they satisfy

∂2
yhk = −8c

[
α

(0)
k δ(y) + α(N+1)δ(y − πρ) +

1

2

N∑
ı̂=1

αı̂k (δ(y − Yı̂) + δ(y + Yı̂))

]
.

The δ–functions indicate the positions of the various orbifold planes and three-branes
at y = 0, πρ, Yı̂,−Yı̂.

This solution is also a BPS state of the theory since it preserves four of the eight
supersymmetries. For the bulk fermions this can be verified by using eqs. (2.117)
which for the above Ansatz (2.122), together with εi = εi(y), are equivalent to

a′

a
γ11ε

i +
1

3

b

V
(bkαk) (τ3)

i
jε
j = 0

ε′i +
1

6

b

V
(bkαk)γ11(τ3)

i
jε
j = 0

V ′

V
γ11ε

i + 2
b

V
(bkαk)(τ3)

i
jε
j = 0

b′kγ11ε
i + 2

b

V

[
αk −

1

3
bk(b

lαl)

]
(τ3)

i
jε
j = 0 .

These equations are solved by the above solution (2.123)-(2.125) for the Killing spinor
given by

εi =
√
aεi0 , γ11ε

i
0 = (τ3)

i
jε
j
0 ,

where εi0 is a constant spinor and the underlined index of the gamma matrix is a tan-
gent space index. Using the spinor κiı̂ = −εi also solves the supersymmetry variation
in eq. (2.118) for the three-brane world-volume fermions.
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To summarize, we now have a general BPS vacuum solution given implicitly in
terms of the functions fk which need to satisfy eqs. (2.123) and (2.124). It is these
equations that now need to be solved to get an explicit solution on which a further
reduction to four dimensions can be performed. In the next subsection such a solution
to linear order in the charges αı̂k is found, which in the following section will be used
to derive the four-dimensional N = 1 effective supergravity theory associated to it.

2.6.2 The linearized solution

A look at the action (2.103) shows that the existence of the domain-walls, i.e the
orbifold planes and the three-branes, is an effect which appears at first order in the
charges αı̂k. Thus it seems natural to look for a solution linear in these charges.
Note though, that the general implicit solution (2.123)-(2.125) is of higher order, and
thus one could in principle also try to find explicit solutions including higher order
terms, but their actual meaning is not quite clear since in a strict sense the five-
dimensional effective action (2.103) is already only valid to linear order in the charges
αı̂k. Nevertheless, it would be interesting to include higher order terms and investigate
their influence on four-dimensional physics.

Before we embark on solving eq. (2.123), for later convenience let us first change
to normalized orbifold coordinates defined by

z =
y

πρ
, zı̂ =

Yı̂
πρ

, ı̂ = 0, . . . , N + 1

and also shift the integration constants ck in the definition (2.124) of hk(z = y/πρ)
like

hk(z) = −4c h̂k(z) + ck , for |z| ∈ [z̂, z̂+1] (2.126)

h̂k(z) = πρ

(
̂∑
ı̂=0

αı̂k(|z| − zı̂)−
1

2

N+1∑
ı̂=0

αı̂k(z
2
ı̂ − 2zı̂)

)
(2.127)

where the shift, i.e the second term in the last line, has been chosen such that

〈hk − ck〉11 =
1

2

∫ 1

−1

dz(hk(z)− ck) = 0 . (2.128)

This choice will simplify and clarify the further reduction to four dimensions consid-
erably, as it did not happen in ref. [137].

Now in order to solve equation (2.123) to first non-trivial order we use the Ansatz

fk(z) = Ak(z) +Bk , (2.129)
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with the function Ak(z) given by

Ak(z) =

̂∑
ı̂=0

Akı̂ (|z| − zı̂)−
1

2

N+1∑
ı̂=0

Akı̂
(
z2
ı̂ − 2zı̂

)
, for |z| ∈ [z̂, z̂+1] ,

where Akı̂ and Bk are constants to be determined. Inserting this Ansatz in eqs. (2.123),
(2.126) and (2.127) defines these constants in terms of the charges and the integration
constants like

ci = dijkB
jBk , −2cπρ αı̂i = dijkA

j
ı̂B

k . (2.130)

Now it is more natural to change to a different set of integration constants that
will become geometrically easily identifiable low energy fields in the four-dimensional
effective theory. Instead of c, ck, c̃ we change to the constants V0, R0 and bk0 which are
defined such that for vanishing charges αı̂k → 0 they emerge from the five-dimensional
fields like

V → V0, a→ R
−1/2
0 , b→ R0, bk → bk0. (2.131)

Using the Ansatz (2.129) and the relations (2.130) in the solution (2.125), the relations
between the two sets of integration constants can easily be found. Defining B =
1
6
dijkB

iBjBk they are given by

B2 = V0 , Bi = V
1/6
0 bi0 , c̃ = V

−1/6
0 R

−1/2
0 , c =

R0

V
2/3
0

, ck = 2V
1/3
0 b0k . (2.132)

These relations together with the fact that 2bi = dijkb
jbk allow us to explicitly solve

the second equation in (2.130) for the constants Akı̂ and thus to obtain fk(z), that is

Akı̂ = 2
R0

V
5/6
0

πρ

[
αı̂ k − 1

2
bk0(α

ı̂
lb
l
0)

]
(2.133)

⇒ fk(z) = V
1/6
0 bk0 + 2

R0

V
5/6
0

[
hı̂,k(z)− 1

2
bk0
(
bl0h

ı̂
l(z)
)]

.

So finally we are in the position to give the explicit solution by inserting eqs. (2.132)
and (2.133) into the implicit solution (2.125) and expand to first order in the charges.
In the interval z̂ ≤ |z| ≤ z̂+1 the solution then explicitly reads

V (z) = V0

[
1− 2

R0

V0

bk0 h
̂
k(z)

]
a(z) = R

−1/2
0

[
1− R0

3V0

bk0 h
̂
k(z)

]
b(z) = R0

[
1− 4R0

3V0

bk0 h
̂
k(z)

]
bk(z) = bk0 + 2

R0

V0

[
h̂ ,k(z)− 1

3
bk0
(
bl0h

̂
l(z)
)]

,
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where the function h̂k(z) is defined in (2.127). The first thing to note is that this
solution actually is an expansion to linear order in the strong coupling expansion
parameter

ε = εS
R0

V0

.

Furthermore, these solution show the desired behavior (2.131) for vanishing charges.
Finally, from eq. (2.128) it follows that

〈V 〉11 = V0 , 〈a〉11 = R
−1/2
0 , 〈b〉11 = R0 , 〈bk〉11 = bk0 ,

which means that the orbifold averages of the above ε-corrections to the solution
vanish. In the following section these averaged quantities will be identified with the
four-dimensional metric moduli fields, thus in turns out that the bulk fields do not
get any corrections to linear order in ε from the warping of the fifth dimension.

2.7 The four-dimensional effective theory

The above multi-domain-wall vacuum state is associated to an N = 1 effective four-
dimensional theory describing fluctuations around this state. We would now like to
compute some aspects of this four-dimensional theory.

2.7.1 The action in component form

The bosonic moduli fields in four dimensions from the bulk can only arise from five-
dimensional fields that are even across the orbifold because for odd fields no constant
ansatz can be made as is necessary for a consistent truncation. So the moduli fields
from the bulk are the four-dimensional metric gµν , the Calabi-Yau volume V0, the
orbifold size R0, the axion χ = A5, the complex structure moduli zp and the two-form
Bµν = C11µν . The latter can, in four dimensions, be dualized to a scalar σ, and by
the usual procedure we find

dB = −V −2
0

[
2

N∑
ı̂=1

q ı̂kzı̂ ∗ d(nkı̂ s) +
1

2
∗ dσ

]
. (2.134)

The zı̂-dependent terms stem from the WZ-contributions in the brane actions, and
thus are not present in the treatement without five-branes [108]. From the three-brane
world-volumes, we have the N scalars zı̂ = zı̂(x

µ) ∈ [0, 1] specifying the position of
the three branes and the axions νı̂ = sı̂/πρ together with the

∑N
ı̂=0 gı̂ Abelian gauge

fields Du
ı̂ with field strengths Eu

ı̂ , where u, v, w, . . . = 1, . . . , gı̂. Recall that gı̂ is the
genus of the curve C ı̂2 within the Calabi-Yau space which is wrapped by the five-brane
M ı̂

6. From the boundary fields we get the two gauge fields Ak with field strengths Fk,
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where k = 1, 2, that fall into N = 1 gauge vector multiplets. Moreover there are the
chiral gauge matter multiplets with the scalar fields CIp.

A straightforward but tedious reduction of the action (2.103) leads to

S4 = S4, gravity + S4, scalar + S4, gauge + S4,matter (2.135)

where the gravity and scalar parts read

S4, gravity =
−1

2κ2
P

∫
M4

d4x
√
−g 1

2
R

S4, scalar =
−1

2κ2
P

∫
M4

d4x
√
−g

{
3

4

(∂R0)
2

R2
0

+
1

4

(∂V0)
2

V 2
0

+
1

4

(∂σ)2

V 2
0

+
1

4
Gkl ∂µb

k
0 ∂

µbl0

+
1

4
Kpq̄∂αzp∂αz̄q̄ +Gkl

∂µχ
k ∂µχl

R2
0

+
1

2

N∑
ı̂=1

q ı̂kb
k
0

R0

V0

(∂zı̂)
2

+2
N∑
ı̂=1

q ı̂k
V 2

0

zı̂ ∂µ(n
k
ı̂ νı̂)∂

µσ + 4
N∑

ı̂,̂=1

q ı̂kq
̂
l

V 2
0

zı̂z̂ ∂µ(n
k
ı̂ νı̂)∂

µ(nl̂ν̂)

+2
N∑
ı̂=1

q ı̂kq
ı̂
l

(q ı̂mb
m
0 )V0R0

(
∂µ(n

k
ı̂ νı̂)∂

µ(nlı̂νı̂) + χkχl(∂zı̂)
2

−2χk∂µ(n
l
ı̂νı̂)∂

µzı̂

)]}

and the Lagrangians for the gauge fields from boundaries or branes together with the
chiral matter are given by

S4, gauge =
−1

4g2
GUT

∫
M4

d4x
√
−g

{(
V0 +R0b

k
0

N+1∑
ı̂=0

q ı̂k(z
2
ı̂ − 2zı̂)

)
trF1µνF

µν
1

+

(
V0 +R0b

k
0

N+1∑
ı̂=0

q ı̂kz
2
ı̂

)
trF2µνF

µν
2

}

−
∫
M4

d4x
√
−g

{
N∑
ı̂=1

1

4g2
ı̂

(
[Im(Π)]̂ıuwE

u
ı̂µνE

wµν
ı̂

−1

2
εµνρσı̂ [Re(Π)]ı̂uvE

u
ı̂µνE

v
ı̂ρσ

)}
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S4,matter = −
∑
RI1

∫
M4

d4x
√
−g 1

R0

{
G

(m)
LM

+
R0

V0

[
1

3
G

(m)
LMb

k
0 −

∂

∂bl0
G

(m)
LM(Glk(b0)−

1

3
bl0b

k
0)

] N∑
ı̂=0

q ı̂k(1− zı̂)2

}
×
(
DµC

Lp(RI1)D
µC̄M

p (RI1)
)

−
∑
RI2

∫
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d4x
√
−g 1

R0

{
G

(m)
LM

+
R0

V0

[
1

3
G

(m)
LMb

k
0 −

∂

∂bl0
G

(m)
LM(Glk(b0)−

1

3
bl0b

k
0)

]N+1∑
ı̂=0

q ı̂kz
2
ı̂

}
×
(
DµC

Lp(RI2)D
µC̄M

p (RI2)
)

with

κ2
P =

κ2
5

2πρ
, q ı̂k = πραı̂k

4g2
GUT = 16παGUT , 4g2

ı̂ =
2κ2

5

αı̂kn
k
ı̂

.

As shown next, this lengthy component action can indeed be brought into the nice
form of four-dimensional N = 1 supergravity.

2.7.2 Superfield formulation

A four-dimensional N = 1 supergravity action with chiral superfields Φi is completely
specified by three functions of the superfields. These functions are the holomorphic
superpotential W (Φ), the holomorphic gauge kinetic function (matrix) f(Φ) and the
Kähler potential K(Φ, Φ̄). The Kähler potential and the gauge kinetic functions
determine the kinetic terms of the scalar and the gauge fields, respectively. From the
superpotential the scalar potential follows.

The scalar fields in the action S4 fit into chiral multiplets, first there are the
complex scalars from the complex structure moduli zp and the chiral gauge matter
CI , both directly corresponding to the bosonic part of the expansion of the associated
superfields. The other real scalars have to be paired into components of superfields.
These superfields are the dilaton S, the T i-moduli and the orbifold position moduli
Zı̂ of the five-branes. The bosonic parts of their expansions in terms of component
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fields is given by

S = V0 +R0

N∑
ı̂=1

(q ı̂kb
k
0)z

2
ı̂ + i(σ + 2

N∑
ı̂=1

q ı̂kχ
kz2
ı̂ )=V + iσ +

N∑
ı̂=1

z2
ı̂ q
ı̂
kT

k

T k = R0b
k
0 + 2iχk (2.136)

Zı̂ = q ı̂kb
k
0 R0zı̂ + 2iq ı̂k(−nkı̂ ν + χkzı̂) =zı̂q

ı̂
kT

k − 2i q ı̂kn
k
ı̂ ν .

The Kähler potential leading to the action S4,scalar is given by

κ2
P Kscalar = KD(S, T k, Zı̂) +KT (T k) +K(z) (2.137)

where

KD = −ln

[
S + S̄ −

N∑
ı̂=1

(Zı̂ + Z̄ı̂)
2

q ı̂k(T
k + T̄ k)

]
, (2.138)

KT = −ln

[
1

48
dklm(T k + T̄ k)(T l + T̄ l)(Tm + T̄m)

]
,

K(z) = −ln

[
2i(G − Ḡ)− i(zp − z̄p)

(
∂G
∂zp

+
∂Ḡ
∂z̄p

)]
.

The Kählerpotential KD is a generalization of the result found in ref. [112, 114], to
include several five-branes and an arbitrary number of Kähler moduli. KT and K(z)
are unchanged to previous results [110, 108], and we note that K has already been
defined in (2.91).

Let us next turn to the fields from the boundary theories. The action S4,matter can
be obtained from the following Kähler potential

Kmatter = eKT /3

2∑
i=1

∑
RIi

(
G

(m)
LM + Γ̃kLMS ik

)
CLpC̄M

p

Γ̃kLM =
2

S + S̄

(
1

6
G

(m)
LM(T k + T̄ k)− 2ΓkLM +

1

6
Γl LM(T l + T̄ l)(T k + T̄ k)

)
S1
k =

N∑
ı̂=0

q ı̂k

(
1− Zı̂ + Z̄ı̂

q ı̂l(T
l + T̄ l)

)2

S2
k =

N+1∑
ı̂=0

q ı̂k

(
Zı̂ + Z̄ı̂

q ı̂l(T
l + T̄ l)

)2

This corrects the superfield formulation of previous results [135]. The matter metric

G
(m)
LM was defined in eq. (2.94) and ΓkLM in eq. (2.95). There we also defined the
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Yukawa couplings in eq. (2.96), and they are used in the superpotential that is given
by the usual expression [51]

W = gGUTλLMNf
(123)
pqr CLpCMqCNr .

Turning next to the gauge fields we must give the gauge kinetic functions. The
gauge kinetic functions for the gauge fields A1 and A2 from the orbifold fixed planes
turn out to be

f1 = S − qN+1
k T k − 2

N∑
ı̂=1

Z ı̂ (2.139)

f2 = S + qN+1
k T k ,

such that their real parts in component form are

Ref1 = V0 +R0b
k
0

N∑
ı̂=0

q ı̂k(1− zı̂)2 (2.140)

Ref2 = V0 +R0b
k
0

N+1∑
ı̂=1

q ı̂kz
2
ı̂ , (2.141)

which by some trivial reshuffling of terms and eq. (2.75) are equivalent to what can
be read off from the gauge terms in the action S4,gauge. These component forms are
in agreement with the results found in [109], and the new result is again the correct
form of the gauge kinetic functions completely in terms of the superfields, as given
in eq. (2.139). We note that the threshold terms proportional to T and Z arise as a
direct consequence of the domain-wall structure. In fact, the correction is entirely due
to the non-trivial orbifold dependence of the dilaton in eq. (2.122). As a consequence,
no such threshold correction arises for the three-brane gauge fields, since their kinetic
term in eq. (2.108) does not depend on the dilaton. After an appropriate rescaling
of the fields Du

ı̂ their gauge-kinetic function is simply proportional to the period
matrix (2.4.2) of the holomorphic curve C ı̂2, that is

fı̂ uv = iΠı̂ uv .

We note that the component form (2.136) of the superfields allows a direct in-
terpretation of this Kähler potential and the resulting moduli field dynamics in five-
dimensional terms. From the non-trivial structure of the domain-wall, it is possible to
compute loop-corrections of order ε to the kinetic terms of the moduli. However, we
did not succeed in finding the complex structure and the associated corrected Kähler
potential when those corrections were included. It is conceivable that this computa-
tion is beyond the range of validity of the five-dimensional theory. This is supported
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by the observation that the Z–dependent part in the above Kähler potential (2.138)
is already suppressed by ε ∼ R/V relative to the S–dependent part. This suggests
that corrections are already of order ε2 and, therefore, beyond the linear level up to
which the five-dimensional theory can generally be trusted.

2.8 Conclusions

To summarize and conclude we can say that we have explicitly found the four- as
well as five-dimensional effective N = 1 supergravity actions of heterotic M-theory
explicitly including M5-brane world-volume theories. Especially the four-dimensional
chiral superfields are given in terms of their component fields which have a direct
five-dimensional origin. In four dimensions the fields from the higher dimensional
bulk theory do not get corrections to linear order in the strong coupling expansion
parameter ε from the non-trivial warped structure of the multi-domain-wall back-
ground. On the other hand, due to this warping of the fifth dimension, the chiral
matter and boundary gauge field Lagrangians get corrections, which directly depend
on the five-brane positions and thus on the associated modulus. The corresponding
Kähler potential and gauge kinetic functions are given in terms of the superfields.



Chapter 3

Cosmology of heterotic M-theory
in four and five dimensions

3.1 Introduction and conclusion

Among the simplest cosmological solutions of string theory are the so called rolling
radii solutions [167]. They are characterized by a kinetic–energy driven evolution
of the universe. These fundamental solutions of string cosmology provide superin-
flating cosmological backgrounds as well as expanding backgrounds of Friedmann–
Robertson–Walker type [118,168].

In this chapter, we will analyze and discuss rolling radii solutions from the per-
spective of the string theory/M–theory relation. In particular, we will discuss how a
superinflating phase in string cosmology is embedded into a M–theory context. This
will be done within the framework of the four–dimensional N = 1 effective action
of the E8 × E8 heterotic string theory and the underlying five–dimensional effec-
tive action of heterotic M–theory [107, 108, 122], as were obtained in the last chapter
from eleven–dimensional Hořava–Witten theory [95,96] by reduction on a Calabi–Yau
three–fold with non–vanishing G–flux. Though here, we will work with the simplest
cosmologically reasonable truncations of actions (2.103) and (2.135), i.e. we do not
take additional M5-branes in the bulk into account and consistently restrict the field
content to the metric, the volume modulus and the orbifold radius. In this context,
we will analyze rolling radii solutions and the role the fifth dimension plays in the
cosmological evolution they describe. In particular, we will present a new class of
non–separating five–dimensional solutions.

Cosmological rolling radii solutions of M–theory related to branes have first been
obtained in refs. [169, 170, 171, 172, 173]. The first cosmological solutions of five–
dimensional heterotic M–theory have been found in ref. [174, 175]. These latter so-
lutions are generalized rolling radii solutions with an inhomogeneous fifth dimension.

80
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Subsequently, further examples of cosmological solutions to five–dimensional heterotic
M–theory have been presented [176, 177, 178, 179, 180]. One purpose of this treate-
ment is to clarify the role of the solutions given in ref. [175] in the present context.
Potential–driven inflation and its relation to five–dimensional heterotic M–theory has
been first analyzed in ref. [181, 182, 183] . The presentation here is somewhat com-
plementary to this work in that it addresses similar questions, however for the case
of kinetic–energy driven inflation. There is also considerable activity, see for ex-
ample [184, 185, 186, 187], exploring other cosmological aspects of five–dimensional
brane–world theories. M–theory rolling radii cosmology based on vacua with a large
number of supersymmetries has been investigated in ref. [188]. In the present chap-
ter, we consider a related situation but focus on vacua with the “phenomenological”
value of N = 1 supersymmetry in four dimensions. While this situation is of course
physically favorable, we have much less control over quantum effects than in the cases
analyzed in ref. [188]. Here, we focus on the effect of string loop corrections in four
dimensions while we work at lowest order in α′. Also, we will not attempt to include
non–perturbative effects.

Let us outline this chapter and summarize its main results. To set the stage,
we first briefly review the most important points on the relation between the four–
and five–dimensional effective actions of heterotic M–theory, as was presented in the
last chapter for much more general settings. In particular, we show how the relevant
four–dimensional fields, that is, the four–dimensional metric g4, the dilaton SR and
the T–modulus TR arise as moduli of the five–dimensional three–brane vacuum solu-
tion. We also review the correspondence between excitations of the bulk fields in the
fifth dimension and string loop corrections to the four–dimensional effective action.
Correspondingly, the strong coupling expansion parameter ε ∼ TR/SR can be inter-
preted as measuring the strength of those bulk excitations as well as the size of the
loop corrections. Then, we start with the standard class of four–dimensional rolling
radii solutions where we allow the scale factor of the three–dimensional universe, the
dilaton and the T–modulus to vary in time. Discarding trivial integration constants,
those solutions form a one–parameter set. We then show, using the correspondence
between the four– and five–dimensional effective theories, how this complete set can
be “lifted up” to approximate solutions of the five–dimensional effective action. Due
to the potentials present in the five–dimensional theory, these solutions depend on
the fifth coordinate as well as on time and are generically non–separating. They con-
stitute new, non–trivial solution of the five–dimensional effective action of heterotic
M–theory that generalize the familiar four–dimensional rolling radii solutions. More
specifically, they correspond to a pair of domain wall three–branes with rolling radii.
In addition to the overall scaling that is familiar from four–dimensional rolling radii
solutions, there is another non–trivial feature of those solutions not visible from a
four–dimensional viewpoint. The size of the domain wall bulk excitations (and hence
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the parameter ε) is generically varying in time. It is this time variation of the in-
ternal domain wall structure that makes the solutions non–separating and, hence,
non–trivial.

We can classify the solutions according to the time–behavior of ε. It turns out
that there are exactly two solutions (out of the one–parameter set) for which ε =
const. In those two cases, one can find exact separable solutions which are precisely
the ones that have been given in ref. [175]. For all other cases, ε varies in time and the
corresponding exact solution must be non–separating. As a result, the separable solu-
tions are exactly the ones for which loop corrections (or equivalently five–dimensional
bulk excitations) are independent of time and are, hence, under control at all stages
of the evolution. The remaining solutions with non–constant ε split into two (one–
parameter) subsets, one with increasing ε and the other with decreasing ε in the
negative–time branch. Particularly, the former case of increasing ε is interesting. In
this case, an effectively four–dimensional solution is subject to increasing loop correc-
tions that can be described by bulk excitations in the five–dimensional theory. When
ε is of order one, the approximate five–dimensional solution is no longer valid and
the subsequent evolution is described by a more complicated non–separating back-
ground. In particular, then, the time evolution and the dependence of the fields on
the additional dimension are entangled in a complicated way. An interesting ques-
tion is whether this might help to avoid the curvature singularity at the end of the
negative–time branch. Unfortunately, no exact analytic solution is known to us in
this non–separating case. However, we present an argument, based on the evolution
equations for the induced fields on the boundaries, that a branch change does not
occur, even at large values of ε.

3.2 Heterotic M-theory in four and five dimensions

A popular starting point for string cosmology is the (lowest order) four–dimensional
effective action [118]

S4 = − 1

16πGN

∫
M4

√
−g4e

−φ4

[
1

2
R4 −

1

2
∂µφ4∂

µφ4 +
3

4
∂µβ4∂

µβ4

]
(3.1)

written in the string frame. This action can be viewed as a universal effective action
for N = 1 compactifications (on Calabi–Yau three–folds) of weakly coupled E8 × E8

heterotic string theory. In fact, the field content has been truncated to the fields
essential for a discussion of string cosmology, that is, gravity and the two universal
moduli φ4 and β4. In terms of the dilaton S and the conventional T–modulus T , we
can express those fields as

SR = eφ4 , TR = eβ4 . (3.2)
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Here SR and TR denote the real parts of the bosonic component in the respective
N = 1 superfields.

Given the origin of the above action, it should be possible to relate it to the strong
coupling limit of the E8 × E8 string theory [95, 96] in its effective formulation via
five–dimensional heterotic M–theory [107,108]. Let us, therefore, discuss the simplest
version of this five–dimensional theory briefly. For more details see the previous
chapter and ref. [107,108,181].

This theory is obtained from its eleven–dimensional counterpart by a reduction
on a Calabi–Yau three–fold with a non–vanishing G–flux. Then the five–dimensional
space–time has the structureM5 = S1/Z2×M4 whereM4 is a smooth 3+1 dimensional
space–time. We will use coordinates xα with indices α, β, γ, · · · = 0, 1, 2, 3, 5 for the
full five–dimensional space–time and coordinates xµ with µ, ν, ρ, · · · = 0, 1, 2, 3 for M4.
Furthermore, the S1 coordinate y ≡ x5 is restricted to the range y ∈ [−πρ, πρ] where
ρ is the radius of the orbicircle. In these coordinates, the action of the Z2 symmetry
on S1 is defined as y → −y. This leads to two four–dimensional fixed planes M1

4 and
M2

4 at y = 0 and y = πρ, respectively. The theory on this space–time constitutes a
five–dimensional N = 1 gauged supergravity theory in the bulk coupled to two four–
dimensional N = 1 theories on M1

4 and M2
4 . A simple version [181] of this theory is

given by

S5 = − 1

2κ2
5

{∫
M5

√
−g
[
1

2
R +

1

4
∂αφ∂

αφ+
1

3
α2
be
−2φ

]
+

∫
M1

4

√
−g
(
2αbe

−φ)+

∫
M2

4

√
−g
(
−2αbe

−φ)} . (3.3)

This action corresponds to a truncated version of action (2.103) in the universal case
(h1,1 = 1, h2,1 = 0) without additional M5-branes. In the same spirit as for the
four–dimensional action (3.1) above, we have confined ourselves to the field content
that is essential for our cosmological discussion. Note that the two boundary actions
have opposite signs due to the condition (2.75) for the charge αb. The field φ is the
five–dimensional dilaton. Its geometrical interpretation is to measure the size of the
internal Calabi–Yau and V = eφ. The above action constitutes an explicit realization
of a five–dimensional brane–world in the context of M–theory, as was first realized in
ref. [107].

How precisely are the effective actions (3.1) and (3.3) related? In this given setting
this has first been worked out in ref. [107, 108]. As noted, it corresponds to a simpli-
fication of the case treated in the last chapter, thus we would like to briefly review
the simplified form of those results that will become important in the following. First
note that for αb 6= 0, the action (3.3) does not admit flat five–dimensional space–time
as a solution. Instead, its “vacuum” is a pair of domain walls or three–branes specified
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by the solution [107]

ds2
5 = a2

0Hdx
µdxνηµν + b20H

4dy2 , eφ = b0H
3 (3.4)

with harmonic function H = H(y) given by

H = c0 −
2

3
εSh(y) , h(y) =

|y|
πρ
− 1

2
, (3.5)

where εS = πραb and a0, b0 and c0 are arbitrary constants1. This solution preserves
3 + 1–dimensional Poincaré invariance and represents a BPS solution of the five–
dimensional supergravity theory described by action (3.3). Hence, a reduction of the
five–dimensional theory on this three–brane solution to four dimensions leads to a
generally covariant N = 1 supersymmetric theory. This theory is, of course, the
four–dimensional effective action of the E8×E8 string whose universal part has been
given in eq. (3.1) above, which thus corresponds to the appropriate truncation of
action (2.135), written in the string frame. This four–dimensional theory provides an
effective description for the moduli of the domain wall solution. To make this explicit,
define constants β4 and φ4 by

b0 = e3β4−2φ4 , c0 = eφ4−β4 (3.6)

as well as a four–dimensional metric g4µν by

g4µν = a2
0e

2φ4ηµν . (3.7)

Note that we can perform a general linear transformation on the coordinates xµ in the
solution (3.4). This converts ηµν and, hence, g4µν into an arbitrary four–dimensional
metric. It follows that, in accord with section 2.6.2, to leading order in εS the solution
takes the form

ds2
5 =

(
1− 2

3
εh

)
e−β4−φ4dxµdxνg4µν +

(
1− 8

3
εh

)
e2β4dy2 , (3.8)

φ = φ4 − 2εh

where
ε = εSe

β4−φ4 . (3.9)

and h = h(y) is as defined above. The metric g4µν can be interpreted as the four–
dimensional string–frame metric. The moduli φ4 and β4 measure the internal Calabi–
Yau volume V0 = eφ4 and the orbifold size R0 = eβ4 , both averaged over the orbifold

1A suitable matching of these integrations constants shows that this solution is given as a special
case of the solution given in section 2.6.2.



3.2. HETEROTIC M-THEORY IN FOUR AND FIVE DIMENSIONS85

coordinate 2. The metric and these moduli can now be promoted to four–dimensional
fields depending on xµ. As discussed in the last chapter and ref. [107, 108], the low–
energy dynamics of these fields can be obtained by reducing the five–dimensional
action (3.3) using the ansatz (3.9). The resulting dynamics is precisely described by
action (3.1). Note that this action depends on all three moduli a0, b0 and c0 of the
exact three–brane solution. Modulus a0 is related to the scale factor in the four–
dimensional metric g4µν , and using (3.2) and (3.6) we see that b0 and c0 enter the
effective four–dimensional action through

SR = b0c
3
0 = V0 , TR = b0c

2
0 = R0 , (3.10)

which is indeed a special case of (2.136). This establishes a direct relationship be-
tween five–dimensional solutions based on the three–brane (3.9) and solutions of the
four–dimensional effective action (3.1) for the moduli. Hence, via eq. (3.9), any cosmo-
logical solution of the four–dimensional theory immediately implies an (approximate)
cosmological solution in five–dimensions, and vice versa.

As is apparent from the four–dimensional action (3.1), we are working to lowest
order in α′. Correspondingly, we have neglected higher derivative terms in the five–
dimensional action (3.3) as well. For example, to lowest order we expect R2 and R4

terms in the bulk originating from the R4 term in M–theory [189] as well as R2 terms
on the boundary [158]. Although it would be interesting to include those corrections,
particularly from a five–dimensional viewpoint, we will focus on situations where
higher–derivative corrections are still small.

There is another requirement for the four–dimensional effective description to be
valid. We have used a linearized approximation in

ε = ε0e
β4−φ4 ∼ R0

V0

∼ TR
SR

(3.11)

and, hence, ε should be smaller than one for the action (3.1) to be sensible. What is the
meaning of this last condition? Eq. (3.11) leads us to three different interpretations of
the so–called strong coupling expansion parameter ε. First, ε measures the excitation
of bulk gravity in the domain wall solution (3.4) due to the bulk and boundary poten-
tials in the five–dimensional action. That is, ε measures the variation of the metric
(and the dilaton) as one moves across the orbifold. Second, it measures the (averaged)
relative size R0/V0 of the orbifold and the internal Calabi–Yau space. And third, it
measures the relative size of string–loop corrections to the four–dimensional effective
action which is indeed proportional to TR/SR. The relation between loop corrections
and bulk gravity is not accidental. One can verify that the one loop corrections to the
four–dimensional effective action are in fact generated by the non–trivial structure

2Note in this context that the function h(y) in eq. (3.5) has been defined so that its orbifold
average vanishes.
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of the domain wall solution [108]. Hence, the linear approximation in ε implies that
we are considering a four–dimensional one–loop effective action or, equivalently, five–
dimensional bulk excitations that are well approximated by linearized gravity. In the
following, we will use the term “bulk excitations” to mean this non–trivial orbifold
dependence induced by the potentials in the five–dimensional theory and related to
loop corrections. Note that, due to the R2 corrections on the boundaries mentioned
above, higher–derivative corrections will also induce a non–trivial orbifold depen-
dence whenever those corrections become relevant. It would be interesting to include
those higher derivative terms, specifically the boundary R2 terms, in the analysis.
A related four–dimensional analysis with R2 terms has been performed in ref. [190].
Higher curvature terms in five dimensions have been considered in ref. [191], however
the boundary R2 terms were not included in the analysis here. As stated above, here
we confine ourselves to the lowest order in α′.

Does the five–dimensional action (3.3) and, correspondingly, its exact domain–wall
solution (3.4) encode higher loop–effects as well? Certainly it contains information
beyond the one–loop level, since the bulk potential in eq. (3.3) which is uniquely fixed
by five–dimensional supersymmetry is of the order α2

b ∼ ε2. However, higher–order
corrections to the five–dimensional action cannot be excluded. Therefore, while one
expects higher loop corrections to be described by bulk gravity effects and an action
of the type above, there most probably are modifications of the concrete form (3.3)
at higher order.

3.3 Cosmological solutions

Based on the above correspondence between the four– and five–dimensional theories
we would now like to discuss the simplest type of cosmological solutions, namely
rolling radii solutions. These solutions are characterized by an evolution of the uni-
verse driven by kinetic energy and they provide superinflating as well as subluminally
expanding cosmological string backgrounds [118]. First, we would like to review those
solutions in the four–dimensional context. Then we present new five–dimensional solu-
tions that constitute the generalization of rolling radii solutions to heterotic M–theory.
Furthermore, we discuss their relation to the known four–dimensional solutions.

Let us first recall the conventional picture that arises in four dimensions. We
choose a four–dimensional metric of Friedmann–Robertson–Walker type with flat spa-
tial sections and scale factor α4 = α4(t4), that is,

ds2
4 = g4µνdx

µdxν = −dt24 + e2α4dx2 . (3.12)

Accordingly, the other two fields are taken to be functions of time only, that is,
β4 = β4(t4) and φ4 = φ4(t4). Then the general solution of the four–dimensional
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action (3.1) is of the form

α4 = p4α ln |t4|+ ᾱ4 , β4 = p4β ln |t4|+ β̄4 , φ4 = p4φ ln |t4|+ φ̄4 , (3.13)

where ᾱ4, φ̄4 and β̄4 are arbitrary integration constants. The expansion powers p4 ≡
(p4α, p4β, p4φ) are subject to the two constraints

3p4α − p4φ = 1 , 9p2
4β + 4p4φ + 2p2

4φ = 4 . (3.14)

Apart from trivial integration constants such as ᾱ4, β̄4 and φ̄4, we therefore have a
one–parameter family of solutions specified by the solutions to eq. (3.14). Generically,
the scale factor of the universe as well as both moduli fields evolve in time. As usual,
for each set of allowed expansion coefficients, we have a solution in the negative–
time branch, that is, for t4 < 0 and a solution in the positive–time branch, that is
for t4 > 0. As stands, the former evolves into a future curvature singularity while
the latter arises from a past curvature singularity. Frequently, for the discussion of
superinflating cosmology, specific solutions are chosen from the set specified by (3.14).
These specific solutions are characterized by a constant T–modulus and, hence, by
the expansion coefficients

p
(T )
4 =

(
± 1√

3
, 0,±

√
3− 1

)
. (3.15)

As discussed in the previous section, the quantity ε, defined in eq. (3.11), is of partic-
ular importance in our context as it measures the size of the four–dimensional loop
corrections as well as the five–dimensional gravitational bulk excitations. Going back
to the general class of solutions, we have from eq. (3.11) and (3.13) that

ε ∼ |t4|p4β−p4φ . (3.16)

Generally, therefore, ε will be time–dependent. However, we can ask if there are
special solutions in the above set for which p4β = p4φ and, hence, ε is constant. Such
solutions indeed exist and are characterized by the expansion powers

p
(ε)
4 =

(
3

11

(
1± 4

3
√

3

)
,

2

11

(
−1± 2

√
3
)
,

2

11

(
−1± 2

√
3
))

. (3.17)

While, in the following, we will work with the general set of solutions, we will comment
on these special cases where appropriate. After this review of the four–dimensional
solutions, let us now move on to the five–dimensional case.

Our goal is to specify the five–dimensional origin of the above rolling radii solu-
tions. That is, we would like to find the solutions of the five–dimensional theory (3.3)
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that, in the small–momentum limit, reduce to the four–dimensional rolling radii so-
lutions. From the action (3.3), it is clear that those solutions, in addition to time,
must depend on the orbifold coordinate y, as long as the constant αb is non–zero.
In fact, while models with αb = 0 exist [192], generically αb is non–vanishing. As
a consequence, exact cosmological solutions of the action (3.3) are not easy to find.
The first example has been given in ref. [175] using separation of variables and we
will come back to this example later on. Some generalizations, also based on separa-
tion of variables, including those with curved three–dimensional spatial section have
been presented subsequently in ref. [176]. Exact, non–separating solutions have been
found for a related action set up to describe the somewhat different physical situation
of potential–driven inflation within M–theory [181]. However, exact non–separating
solutions for the action (3.3) are hard to find and not a single example is known to
us. We will, therefore, content ourselves with giving approximate non–separable so-
lutions. Such solutions can be obtained by “lifting up” the four–dimensional rolling
radii solutions to five dimensions using the correspondence (3.9) between the four–
and five–dimensional theories. Concretely, by inserting (3.12) and (3.13) into eq. (3.9),
we obtain as the approximate solution of the five–dimensional action (3.3)

ds2
5 = (1− 2εh/3)

(
−dt25 + e2α5dx2

)
+ (1− 8εh/3)e2β5dy2 , (3.18)

eφ = eφ5(1− 2εh)

where we have introduced the five–dimensional “comoving” time t5 by

dt25 = e−β5−φ5dt24 . (3.19)

The five–dimensional scale factors α5, β5 and φ5 show a power–law behavior

α5 = p5α ln |t5|+ ᾱ5 , β5 = p5β ln |t5|+ β̄5 , φ5 = p5φ ln |t5|+ φ̄5 , (3.20)

similar to the one in four dimensions. The expansion coefficients p5 = (p5α, p5β, p5φ)
are subject to the constraints

3p5α + p5β = 1 , 8p2
5β − 4p5β + 3p2

5φ = 4 (3.21)

and can be obtained from their four–dimensional counterparts using the relations

p5α =
2p4α − p4β − p4φ

2− p4β − p4φ

p5β =
2p4β

2− p4β − p4φ

(3.22)

p5φ =
2p4φ

2− p4β − p4φ

.
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We recall that the function h = h(y) is defined by

h(y) =
|y|
πρ
− 1

2
. (3.23)

The all–important strong coupling expansion parameter ε, defined in eq. (3.11), is
expressed in terms of five–dimensional quantities as

ε = ε0e
β5−φ5 ∼ |t5|p5β−p5φ . (3.24)

We have now found new approximate solutions of the five–dimensional theory that, via
the relations (3.22) between the expansion coefficients, are in one–to–one correspon-
dence with the four–dimensional rolling radii solutions given in (3.12), (3.13). Hence,
as is the case for their four–dimensional counterparts, these five–dimensional solutions
constitute a one–parameter set specified by the solutions to the constraints (3.21).
While the lifting procedure from four dimensions makes it rather easy to obtain those
solutions, they are quite non–trivial from a five–dimensional viewpoint. In particular,
they are generically non–separating, that is, the time– and orbifold–dependence do not
generically factorize. This can, for example, be seen from the function e2α5(1−2εh/3)
that multiplies the three–dimensional spatial part of the metric (3.19). Here, the
time–dependence resides in α5 and ε while the orbifold–dependence is encoded in h.
Hence, as long as ε does depend on time (which it generically does), the variables do
not separate. From the discussion of the previous section, the approximation that led
us to those solutions is valid as long as higher–derivative terms are negligible and,
hence, the momenta α̇5, β̇5 and φ̇5 have to be sufficiently small. Furthermore, the
expansion parameter ε has to be less than one. The above solutions are direct gen-
eralizations of the rolling radii solutions to five dimensions. Apart from α5, β5 and
φ5 that describe the overall scaling of the domain–wall configuration, there is also a
less trivial dependence on time through the expansion parameter ε. This dependence
implies that the size of transverse gravity excitations (the linear slope in y) varies
with time as well.

Can the above approximate five–dimensional solutions be promoted to exact so-
lutions of the action (3.3)? The simplest approach to finding such exact solutions is
clearly separation of variables. In fact, in ref. [175] it was shown that the only separa-
ble solutions (assuming a flat three–dimensional spatial universe) for the action (3.3)
are precisely of the form

ds2
5 =

(
1− 2

3
εh

)(
−dt25 + e2α5dx2

)
+

(
1− 2

3
εh

)4

e2β5dy2 , (3.25)

eφ =

(
1− 2

3
εh

)3

eφ5
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where the scale factors α5, β5 and φ5 evolve according to the general power law (3.20).
However, for the above to be an exact solution the particular values

p
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11
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√
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2

11
(1± 2

√
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)
. (3.26)

for the expansion coefficients must be chosen. These particular coefficients satisfy
the constraints (3.21). Therefore, upon linearizing the exact solutions (3.26) in ε, we
recover particular cases of our approximate solution (3.19). This implies that, from
our one–parameter set of approximate solutions, exactly two can be promoted to exact
separating solutions while all other exact solutions have to be non–separating. There is
another way to characterize the two separating solutions. It can be verified, using the
map (3.22) and (3.17), (3.26), that the separating solutions correspond to those four–
dimensional solutions with constant strong–coupling expansion parameter. This can
also be directly seen in five dimension using eq. (3.24) and the fact that p5β = p5φ for
the coefficients (3.26). Hence, we have found that the exact separable solutions to our
five–dimensional action are precisely those for which the strong–coupling expansion
parameter is constant in time, that is

ε = const . (3.27)

Recalling the interpretation of ε from the previous section, those exact separable
solutions can, therefore, be characterized as precisely the ones for which the ratio of
Calabi–Yau and orbifold volumes is constant. Equivalently, they are precisely the
ones for which string loop corrections or excitations of bulk gravity are constant in
time. If, on the other hand, these quantities vary in time, the corresponding exact
solution is non–separable. For this case, no exact explicit solution has been found yet
and it may well be that this can only be achieved using numerical methods.

3.4 Role of the fifth dimension

We would now like to discuss the results obtained so far, particularly in view of a
kinetic–energy driven phase of inflation and the role of the fifth dimension in such a
context.

A solution of the usual problems of standard cosmology requires the scale factor
a = eα of the three–dimensional space to accelerate for some period in the early
universe. Such a superluminal evolution is realized precisely if [118]

sign(ä) = sign(ȧ) . (3.28)

where the dot denotes the derivative with respect to comoving time. The condi-
tion (3.28) is frame–independent, as it should be. In particular, it can be used either
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in the four–dimensional string frame or the five–dimensional Einstein frame. Conse-
quently, in writing a we have omitted the subscripts specifying the frame. In general,
one expects inflating (ȧ > 0) as well as deflating (ȧ < 0) solutions of eq. (3.28), both
of which are suited to solve the problems of standard cosmology [118]. In fact, the sign
of ȧ, and hence the notion of expansion and contraction, is not frame–independent. If
eq. (3.28) is not satisfied the evolution is decelerated or subluminal. As before there
are two cases, namely decelerated expansion (ȧ > 0) and decelerated contraction
(ȧ < 0).

For the solutions given in the previous section, it is easy to verify that the con-
dition (3.28) is satisfied as long as one chooses the time to be negative. In other
words, the complete one–parameter set of solutions leads to accelerated evolution in
the negative–time branch. In the positive time branch, on the other hand, the condi-
tion (3.28) is never satisfied. The evolution is, therefore, always decelerated. Let us
assume in the following discussion that t4 < 0. A convenient way to represent the set
of solutions is to plot their expansion powers. This has been done in fig. 3.1 using the
coefficients p4φ and p4β for the dilaton and the T–modulus in the four–dimensional
string frame, subject to the second condition in (3.14). Let us now discuss the time
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Figure 3.1: The allowed expansion coefficients p4β, p4φ w.r.t. the four–dimensional
string frame for the rolling radii solutions. The solid dots correspond to the separable
solutions, the circles to the solutions with constant T–modulus. The map is induced
by the presence of a five–brane.
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evolution for the solutions represented in fig. 3.1 in the negative–time branch. We
start at t4 → −∞, assuming an effective four–dimensional description at this time.
All solutions will, of course, eventually develop large higher–derivative (α′) corrections
as t4 → 0. For example, the product of the “momenta” α̇4, β̇4 and φ̇4 times the orb-
ifold size is proportional to |t4|p4β−1. This increases as t4 → 0 since |p4β| < 1 always.
The precise time when the lowest order α′ approximation is invalidated depends, of
course, on initial conditions.

In section 2 we have discussed another sense in which the fifth dimension may
become relevant. Namely, the parameter ε and, hence, the excitation of fields in
the fifth dimension may become large. At the same time, this implies large loop
corrections. As we have seen, ε ∼ |t4|p4β−p4φ and, therefore, its qualitative behavior
depends on the sign of p4β − p4φ. Consequently, unlike the higher–derivative (α′)
corrections discussed above, ε does not always increase in time. Instead, we should
distinguish the three cases (for the negative–time branch)

• p4β − p4φ > 0 : Then ε decreases in time, indicating decreasing bulk excita-
tions/loop corrections. The Calabi–Yau space expands faster than the orbifold.
Solutions with this property are represented by the dashed line in fig. 3.1.

• p4β−p4φ = 0 : Then ε = const, corresponding to constant bulk excitations/loop
corrections. The Calabi–Yau space expands at the same rate as the orbifold. As
discussed this case corresponds precisely to the two exact separable solutions
that can be found. These solutions are indicated by the dots in fig. 3.1.

• p4β − p4φ < 0 : Then ε increases in time indicating increasing bulk excita-
tions/loop corrections. The orbifold expands faster than the Calabi–Yau space.
The corresponding solutions are represented by the solid line in fig. 3.1.

We see that bulk excitations in the fifth dimension are irrelevant in the first two
cases, even as we approach the singularity at t4 → 0. Of course, the system will
still run into a large curvature regime close to the singularity. We note that the
“standard” solution with a constant T–modulus and inflation in the D = 4 string
frame corresponds to the left circle in fig. 3.1. Hence, this solution falls into this
category. The right circle, on the other hand, corresponds to a deflating solution in
the D = 4 string frame and it falls into the third category.

In general, in this third case, bulk excitations become relevant close to the singu-
larity. Whether that happens before or after the systems enters the large curvature
regime depends on initial condition. Let us assume that we first enter a large ε regime
while higher derivative corrections are still small. Then, while ε grows, our approx-
imate five–dimensional solution (3.19) quickly becomes invalid. We know that the
exact solutions that govern the further evolution have to be non–separating. Con-
sequently, the time evolution and the excitation of bulk modes will be entangled in
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a complicated way. As we have discussed, we expect this to be described by a five–
dimensional action of the type (3.3) possibly with additional higher order corrections.
It would, therefore, be interesting to study exact non–separating cosmological solu-
tions of the action (3.3) in the region of large ε. Unfortunately, analytic expressions
for those solutions are not available and numerical methods might be required.

However, we may try to extract some information about the behavior at large ε by
looking at the four–dimensional metrics that, for a given five–dimensional cosmological
solution, are induced on the two boundaries. For example, it would be of interest to
know whether or not a solution which is accelerated for small ε can, when ε is large,
smoothly become decelerated. The answer, unfortunately, is negative, as we now
demonstrate. Following ref. [181], let us write a five–dimensional solution in the
general form

ds2
5 = −e2νdt25 + e2αdx2 + e2βdy2 , (3.29)

were ν, α and β are functions of t5 and y. Furthermore, we take the dilaton φ to be
a function of t5 and y. The equations of motion for such an ansatz, following from
the action (3.3), have been presented in ref. [181]. Particularly useful for the present
purpose is the 55 component of the Einstein equation which reads explicitly

3e−2ν(α̈− ν̇α̇2)− 3e−2β(α′
2
+ ν ′α′) = −1

4
e−2νφ̇2 − 1

4
e−2βφ′

2
+

1

6
α2
be
−2φ . (3.30)

Here the dot (prime) denotes the derivative with respect to t5 (y). Furthermore,
working in the boundary picture, the functions in the above ansatz have to satisfy
the following conditions [181]

eφ−βν ′ |y=yi
= eφ−βα′ |y=yi

=
1

3
αb , eφ−βν ′ |y=yi

= 2αb , (3.31)

at the first (second) boundary at y1 = 0 (y2 = πρ). These conditions arise as a
consequence of the Z2 orbifolding and the boundary potentials in the five–dimensional
action (3.3). Restricting eq. (3.30) to either one of the boundaries, and using the
conditions (3.31), it can be shown that

α̈i − ν̇iα̇i + 2α̇2
i = − 1

12
φ̇2
i . (3.32)

Here the subscript i denotes the value of the respective field at the boundary i, that is,
for example αi(t5) = α(t5, yi). We note that the various potential terms occurring in
the Einstein equation and the boundary conditions (3.31) cancel in this relation. As a
consequence, we have no unusual, linear relationship between the Hubble parameter
and the boundary stress energy in eq. (3.31). The possibility of such unconventional
relations has been first observed in ref. [181]. As a check, we can now verify that
the relation (3.32) is satisfied by our approximate five–dimensional solutions. Putting
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eq. (3.19) in the form (3.29) and restricting to the boundaries, we can read off the
following expressions

αi = p5α ln |t5| ∓
1

12
ε , φi = p5φ ln |t5| ∓

1

2
ε , νi = ∓ 1

12
ε (3.33)

where the upper (lower) sign refers to the boundary i = 1 (i = 2). Here the expansion
coefficient p5α, p5β and p5φ satisfy the relations (3.21). Inserting these expressions and
using (3.21), we can indeed verify that eq. (3.32) is satisfied to linear order in ε, as it
should be. We can now go further and use the relations (3.32) to deduce properties
of the solutions at arbitrary ε. In doing so we have to be careful, of course, since
presumably not every set of fields (αi, νi, φi) satisfying (3.32) can be extended to a
full five–dimensional solution. However, conversely, every five–dimensional solution
gives rise to induced fields on the boundaries that do satisfy eq. (3.32). It is this latter
connection that we are going to use. We introduce the boundary Hubble parameters
Hi = α̇i and choose the five–dimensional time coordinate t5 such that it becomes
comoving time upon restriction to the boundaries. This implies νi = 0 and, hence,
eq. (3.32) can be written in the form

Ḣi = −
(

2H2
i +

1

12
φ̇i

2
)
. (3.34)

We conclude that Ḣi is always negative. Furthermore, the criterion (3.28) for acceler-
ated evolution can be brought into the form sign(Ḣi+H

2
i ) = sign(Hi). From eq. (3.34)

we conclude that Ḣi+H2
i < 0, always. Therefore, the evolution is accelerated exactly

if Hi < 0. In this case, the boundaries deflate. On the other hand, for expanding
boundaries, Hi > 0, the evolution must be decelerated. Hence, a five–dimensional
solution which changes from acceleration to deceleration implies a transition from
Hi < 0 to Hi > 0 for the boundary Hubble rates. This, however, cannot happen in
a continuous manner since Ḣi < 0. We conclude that a transition from acceleration
to deceleration does not take place, even for large values of ε. We note, however,
that the physically less interesting transition from deceleration to acceleration is not
excluded from the above argument. In conclusion, we have shown that the solutions
of our five–dimensional theory do not evolve from acceleration to deceleration. This
results holds for arbitrarily large ε corrections but only to lowest order in α′. It is
quite conceivable that the inclusion of higher order α′ corrections can change this
situation similarly to what happens in four dimensions [190, 193]. Some of those α′

correction arise on the boundaries of the five–dimensional theory and, hence, lead to
further bulk inhomogeneities. It would be interesting to generalize the present work
by including those corrections.
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3.5 Inclusion of five-branes

Cosmological scenarios with moving branes have recently received some attention [137,
138]. In the framework of heterotic M-theory the actions (2.103) and (2.135) provide
the correct starting point to analyze such scenarios in five and in four dimensions,
respectively. Four-dimensional solutions with moving branes have been obtained in
ref. [115] and they provide generalizations to the solutions found in this chapter so
far. Therefore, and to illustrated the utility of action (2.135), we next briefly state
some results of ref. [115].

As can be seen from action (2.135), the generalization of action (3.1) to include a
single brane, written in the Einstein frame, is given by

S =
−1

2κ2
5

∫
d4x
√
−g
[
1

2
R +

1

3
∂µφ4∂

µφ4 +
3

4
∂µβ4∂

µβ4 +
q5
2
eβ−φ∂µz∂

µz

]
, (3.35)

where z is the modulus of the brane position along the orbifold. From this action
an important implication can already be seen, due to the structure of the kinetic
term for z, the fields φ and β cannot stay exactly constant once the five-brane moves.
Since the dynamics of all three fields is linked, the evolution of z cannot be studied
independently (as done in [137]). This situation is not changed by the presence of a
non-perturbative potential.

Using the same ansatz as in section 3.3 together with z = z(t4) yields the following
solutions in the Einstein frame [115]

α4 =
1

3
ln

∣∣∣∣t4T
∣∣∣∣+ α0

β4 = p4β,i ln

∣∣∣∣t4T
∣∣∣∣+ (p4β,f − p4β,i) ln

(∣∣∣∣t4T
∣∣∣∣δ + 1

)−1/δ

+ β0

φ4 = p4φ,i ln

∣∣∣∣t4T
∣∣∣∣+ (p4φ,f − p4φ,i) ln

(∣∣∣∣t4T
∣∣∣∣δ + 1

)−1/δ

+ φ0

z = d

(
1 +

∣∣∣∣Tt4
∣∣∣∣−δ
)−1

+ z0

where d, α0, β0, z0 and T are arbitrary integration constants. The parameter δ is
defined by δ = p4β,i−p4φ,i, and it distinguishes the solutions with δ > 0 in the negative-
time branch (t4 < 0) from those with d < 0 in the positive-time branch (t4 > 0).
Furthermore, the expansion powers are subject to the constraint 3p2

4β,n + p2
4φ,n = 4

3

with n = i, f , and together with p4α = 1/3, these constraints exactly correspond to
(3.14) but written with respect to the Einstein frame. From this we can see that
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asymptotically (t4 → −∞, t4 → 0, t4 → +∞) the given solutions exactly show the
freely rolling radii behavior found in section 3.3, therefore the five-brane does not
move asymptotically. The brane starts moving at times |t4| ∼ |T | and interpolates
between the early and late time asymptotic behavior characterized by the expansion
coefficients p4β,i, π4φ,i and p4β,f , π4φ,f , respectively. Therefore the presence of a five-
brane leads to a transition between two different rolling radii solutions, as indicated
with the map arrows in fig. 3.1. This map is actually given by [115]

p4β,f =
1

2
(p4β,i + p4φ,i), p4φ,f =

3

2
p4β,i −

1

2
p4φ,i,

which has the two solid dots in fig. 3.1, representing the separable solutions, as fixed
points. Furthermore, the distinction between the solutions in the negative (δ > 0)
and the positive (δ < 0) time branch implies that not all rolling radii solutions provide
possible initial or final configurations. In the negative time branch, only the solid part
of the ellipse is available as the early time behavior, whereas only the dashed part
provides possible late time configurations. For the positive time branch it is exactly
the other way round, such that the possible late time behavior of the negative time
branch corresponds to the available initial configurations of the positive time branch.

Another interesting observation is that the strong coupling expansion parameter ε
always grows asymptotically, which, as shown in section 3.4, need not be true for the
pure rolling radii solutions. Since the effective action (3.35) is only valid when loop
corrections and higher derivative terms are sufficiently small, this limits the validity
of the asymptotical solutions. Another situation that goes beyond the validity of the
given action is the collision of the five-brane with one of the boundaries, and this
would lead to an instanton transition. If this happens or not depends on the initial
conditions.

To summarize, we have seen that the presence of a five-brane changes the evo-
lution of the system considerably. It generates a transition between asymptotical
rolling radii solutions, but since the system also always evolves towards strong cou-
pling asymptotically where the validity of the effective action (3.35) breaks down, the
asymptotic behavior might not be trusted. Brane-collisions can happen but cannot
consistently be described in the given framework.



Chapter 4

Flop transition in M-theory
cosmology

4.1 Introduction

Space-like curvature singularities arising in cosmological solutions to low-energy string
effective actions and their potential resolution constitute a challenging problem in
string and M-theory. On the other hand, the string resolution of certain time-like
singularities, such as those arising from collapsed cycles in the internal manifold, is,
at least in principle, understood. In the course of a string/M-theory phase transition,
triggered by cosmological evolution of moduli fields, these singularities may, in fact,
arise at a particular instance in time. For example, a flop-transition [194, 84, 85] cor-
responds to a collapsing two-cycle in the internal Calabi-Yau space while a conifold
transition [195, 196, 85] corresponds to a collapsing three-cycle. Clearly, such transi-
tions are of interest for string and M-theory early universe cosmology. For example,
one would like to know whether the topological transition can actually be realized
dynamically, that is, whether the topology of the internal manifold could have indeed
changed during the cosmological evolution. Further, one would like to understand, in
this cosmological context, the role of the states which become light at the transition
and how precisely the transition effects the evolution of the fields.

In this work, we will be answering these questions for the mildest form of topol-
ogy change, namely the flop. A related discussion, but in the context of black-hole
solutions, has been carried out in ref. [86, 197]. We will be working in the context
of M-theory on Calabi-Yau three-folds leading to an effective description in terms
of five-dimensional N = 1 supergravity theories [198]– [165]. Flop-transitions arise
from collapsing two-cycles within the Calabi-Yau manifold and are, therefore, con-
trolled by the Kähler moduli which, together with U(1) gauge fields, are contained in
five-dimensional vector multiplets. Membranes wrapping Calabi-Yau two-cycles lead
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to hypermultiplet states in five dimensions with a mass proportional to the volume
of the cycle. When the cycle collapses at the transition the hypermultiplet becomes
massless and can no longer be ignored in the effective theory. In our analysis, we
will include these hypermultiplet states explicitly into the five-dimensional effective
action. In the following, we will also refer to these states as ”transition states”. In the
case of M-theory on Calabi-Yau three-folds, there are no non-geometrical phases [84],
that is, transitions are sharp. This implies that, going through the transition by first
collapsing the cycle and then blowing it up in a topologically different way, leads to
a another, topologically distinct Calabi-Yau space. While the Hodge numbers of the
original and the “flopped” Calabi-Yau space are the same other topological quantities,
such as the intersection numbers, change across the transition.

In terms of the five-dimensional effective supergravity theory, the transition can be
described in a non-singular way once the additional hypermultiplet is included. For
example, the jump in the intersection numbers which appear in the five-dimensional
Chern-Simons term is accounted for by loop-corrections involving the hypermulti-
plet states [84] while the Kähler moduli space metric is continuous across the transi-
tion [86]. It turns out that the additional hypermultiplet is charged with respect to
a particular linear combination of the vector multiplet gauge fields. Supersymmetry
then implies the existence of a potential which depends on the transition states and
the vector multiplet scalars. It is this potential which will play an important role
in our cosmological analysis. Practically, we will, therefore, study time-evolution in
Kähler moduli space close to the flop region including the effect of the transition
states and their potential.

The plan of the following chapters is as follows. In the next section, we will review
N = 1 supergravity in eleven and five dimensions and the five-dimensional effective
action for M-theory on Calabi-Yau three-folds. With this machinery at hand, we then
go on to derive the effective five-dimensional action of the transition states. Section
4.3 analyzes the cosmology of the five-dimensional theory for arbitrary Calabi-Yau
spaces, first with vanishing and then with non-vanishing transition states. In section
4.4, we focus on a specific example of two Calabi-Yau spaces related by a flop and
study the cosmological evolution numerically. We conclude in section 4.5.

4.2 The five-dimensional action of M-theory

To set the notation, we will first review N = 1 supergravity in eleven and five di-
mensions and the structure of the five-dimensional effective action for M-theory on
Calabi-Yau three-folds. Subsequently, we will show how to couple to this action the
hypermultiplet which contains the transition states. The five-dimensional effective
action including this hypermultiplet will be the basis for the subsequent cosmological
analysis.
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4.2.1 Supergravity in eleven and five dimensions

The bosonic part of eleven-dimensional supergravity is given by [49]

S11 =
−1

2κ2

∫
M11

{
d11x
√
−g
(1
2
R +

1

4!
GIJKLG

IJKL
)

+
2

3
C ∧G ∧G

}
, (4.1)

where G = dC is the field strength of the three-form potential C and κ is the 11-
dimensional Newton constant, as usual. Indices I, J,K, · · · = 0, . . . , 10 label the 11-
dimensional coordinates xI . Later, we will also need the bosonic part of the membrane
action [199,200]

SM3 = −T2

∫
M3

{
d3σ
√
−γ + 2Ĉ

}
(4.2)

which couples to C. The membrane world-volume is parametrized by coordinates
σn, where n,m, p, · · · = 0, 1, 2, and its embedding into 11-dimensional space-time is
specified by XI = XI(σ). The pull-backs γnm and Ĉ of the space-time metric and
the three-form are defined by

γnm = ∂nX
I∂mX

JgIJ ,

Ĉnmp = ∂nX
I∂mX

J∂pX
KCIJK ,

as usual. In terms of the 11-dimensional Newton constant, the membrane tension T2

is given by

T2 =

(
8π

κ2

) 1
3

.

Let us now move on to five-dimensionalN = 1 supergravity focusing on the aspects
relevant to this work. For a more complete account we refer to the literature [198]–
[165].

We denote five-dimensional space-time indices by α, β, γ, · · · = 0, 1, 2, 3, 4. In
addition to the supergravity multiplet, consisting of the vielbein, an Abelian vector
field and the gravitini, there are two types of matter multiplets, namely vector- and
hyper-multiplets. In general, one can have any number, nV, of vector multiplets each
containing a real scalar field and an Abelian vector field plus fermionic partners and
any number, nH, of hypermultiplets each containing four real scalars plus fermions. It
is useful to treat the Abelian gauge fields in the vector multiplets and the supergravity
multiplet on the same footing and collectively denote them by Aiα where i, j, k, · · · =
0, . . . , nV. The real scalars contained in the vector multiplets are described by nV + 1
fields bi. These define a manifold of very special geometry [201] with metric

Gij = −∂i∂j lnK , (4.3)
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which is given in terms of the degree three homogeneous polynomial

K = dijkb
ibjbk . (4.4)

Here dijk are constant coefficients. The bi are subject to the constraint

K = 6 (4.5)

which reduces the number of independent fields to nV, as required.
Further, we denote by Qu, where u, v, w, · · · = 1, . . . , 4nH, the hypermultiplet

scalars. They parametrize a quaternionic manifold, that is, a manifold with holonomy
SU(2)× Sp(2nH). The metric on this manifold, huv, is hermitian with respect to the
three complex structures

Ju
v = Jau

vτa (4.6)

satisfying the quaternionic algebra

Ja v
u J b w

v = −δabδ wu + εabcJ c w
u , (4.7)

where a, b, c, · · · = 1, 2, 3. Here τa are the hermitian Pauli matrices so that the complex
structures fill out the adjoint of SU(2). The associated triplet of Kähler forms is given
by

Kuv = Ju
whwv .

We also need to introduce the SU(2) part ωu = ωauτa of the spin connection.
Let us assume that the metric huv admits nV +1 Killing vectors kui . These Killing

vectors should respect the quaternionic structure which means they originate from
prepotentials Pi = Pai τa via the relation

kui Kuv = ∂vPi + [ωv,Pi] . (4.8)

With these conventions the bosonic part of the supergravity and vector multiplet
action reads

SV =
−1

2κ2
5

∫
M5

{
d5x
√
−g
(

1

2
R +

1

4
Gkl∂αb

k∂αbl +
1

2
GklF

k
αβF

l αβ

)
+

2

3
dklmA

k ∧ F l ∧ Fm

}
, (4.9)

where κ5 is the five-dimensional Newton constant. The bosonic part of the hypermul-
tiplet action takes the form

SH = − 1

2κ2
5

∫
M5

d5x
√
−g {huvDαQ

uDαQv + V } , (4.10)
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with the potential V given by

V =
1

2
g2

[
4(Gij − bibj)tr(PiPj) +

1

2
bibjhuvk

u
i k

v
j

]
. (4.11)

The trace in this expression is performed over the Pauli matrices. The covariant
derivative Dα includes the gauging of the hypermultiplets with respect to the vector
fields Ai and is defined by

DαQ
u = ∂αQ

u + g Aikui , (4.12)

where g is the gauge coupling. Note that the appearance and the structure of the
potential (4.11) is directly linked to this gauging of the hypermultiplets.

4.2.2 M-theory on Calabi-Yau three-folds

Let us now briefly review the reduction [202] of the action (4.1) for 11-dimensional
supergravity on a Calabi-Yau three-fold X with Hodge numbers h1,1 and h2,1. This
leads to a five-dimensional N = 1 supergravity theory of the type described in the
previous subsection with nV = h1,1−1 vector multiplets, nH = h2,1+1 hypermultiplets.
In pure M-theory there is no gauging of the hypermultiplets, which is in contrast to
the case of heterotic M-theory as treated in chapter 2.

We now need to specify the geometrical origin of some of these five-dimensional
fields. The 11-dimensional metric on the direct product space M11 = M5 ×X can be
written as

ds2
11 = V−2/3gαβdx

αdxβ + gABdx
AdxB ,

where A,B,C, · · · = 5, . . . , 10 label the coordinates on the Calabi-Yau space, gAB is
the Ricci-flat metric on X and gαβ is the five-dimensional metric. The Calabi-Yau
volume modulus V is defined by

V =
1

v

∫
X

d6x
√
g6 ,

where v is an arbitrary six-dimensional reference volume. We note that the five-
dimensional Newton constant κ5 is related to its 11-dimensional counterpart κ by

κ2
5 =

κ2

v
.

The Kähler form ωAB of X can be expanded as

ωAB = aiωiAB (4.13)



4.2. THE FIVE-DIMENSIONAL ACTION OF M-THEORY 102

into a basis {ωiAB} of (1, 1) forms. We take this basis of (1, 1) forms to be dual to an
(effective) basis {W i} of the second homology, that is,

v−1/3

∫
Wi

ωj = δij .

The h1,1 expansion coefficients ai are the Kähler moduli of the Calabi-Yau space. As
stands, they are, of course, not independent from the volume modulus V . However,
we can define volume-independent moduli bi by

bi = V−1/3ai .

These constitute nV = h1,1 − 1 independent fields as they can be shown to satisfy
the constraint (4.5). They should be interpreted as the scalar fields in the vector
multiplets. The coefficients dijk which appear in eq. (4.4) should then be identified as
the intersection numbers of the Calabi-Yau space.

The three-form C can be expanded as

C = C̄ + Ai ∧ ωi + ξ ∧ Ω + ξ̄ ∧ Ω̄ , (4.14)

where Ω is the holomorphic (3, 0) form on X. The h1,1 five-dimensional vector fields
Aiα account for the gauge fields in the vector multiplets and in the gravity multiplet.
The five-dimensional three-form C̄ can be dualized to a scalar and forms, together
with the complex scalar ξ and the volume modulus V , the universal hypermultiplet.
There are h2,1 additional hypermultiplets which originate from the complex structure
moduli and the (2, 1) part of C which we have omitted in eq. (4.14). These standard
hypermultiplets will not be of particular importance, in the following.

Let us now review some relevant features of M-theory flop transitions following
refs. [84, 86]. A flop constitutes a transition from the Calabi-Yau space X to a topo-
logically different space X̃ due to a complex curve C in X shrinking to zero size and
subsequently being blown up in a topologically distinct way. Concretely, let us expand
the class W of the curve C in our homology basis as

W = βiW i

with constant coefficients βi. The volume of C can then be written as

Vol(C) =

∫
C
ω = (vV)1/3b

where we have introduced the particular linear combination

b = βib
i (4.15)
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of vector multiplet moduli. Within the moduli space of X we have bi > 0, for all i,
as well as b > 0 and the limit b→ 0 corresponds to approaching the flop. Continuing
further to negative values of b leads into the moduli space of the birationally equivalent
Calabi-Yau space X̃. This new Calabi-Yau space X̃ has the same Hodge numbers
and, hence, the same five-dimensional low-energy spectrum as the original space X.
However, the intersection numbers have changed across the transition [84]. More
specifically, setting (βi) = (1, 0, . . . , 0) for simplicity the new intersection numbers
d̃ijk (expressed in terms of the field basis bi) are given by

d̃111 = d111 −
1

6
(4.16)

with all other components unchanged. Sometimes a new basis of fields b̃i, defined by

b̃1 = −b1 , b̃i = bi − b1 , (4.17)

for all i 6= 1, is introduced [86] to cover the moduli space of X̃. These new fields
have the advantage of being positive throughout the moduli space of X̃ which is not
the case for the original fields bi. For our applications we will find it usually more
practical to use a single set of fields to cover the moduli spaces for both X and X̃.

How does the five-dimensional effective theory change across the transition? In-
spection of the action (4.9), (4.10) without gauging and potential shows that only the
vector multiplet part (4.9) is affected through the change (4.16) in the intersection
numbers. From eq. (4.3), the metric Gij takes the specific form

Gij = −dijkbk +
1

4
dikldjmnb

kblbmbn ,

where we have used that K = 6. This form shows that, despite the jump (4.16) in the
intersection number the metric remains continuous across the flop since d111 is always
multiplied by b1 which vanishes at the transition. We remark that the associated
connection

Γkij =
1

2
Gkl∂Gij

∂bl
(4.18)

which appears in the five-dimensional equations of motion contains a term propor-
tional to dijk (without additional fields bi) and, hence, jumps across the flop. Given
the continuity of the metric Gij the only discontinuous term in the action is the Chern-
Simons term in eq. (4.9) which is proportional to the intersection numbers. It has
been shown [84], that its jump can be accounted for by loop corrections which involve
the transition states. Let us now discuss these additional states in more detail.

4.2.3 The transition states

The five-dimensions particles which become massless at the flop originate from a
membrane which wraps the collapsing complex curve C with homology class W , as
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and state becoming massless

Figure 4.1: Membrane wrapping a collapsing cycle.

illustrated in fig 4.1. We can find the world-line action for these transition states
by starting with the membrane action (4.2). Introducing a complex world-volume
coordinate σ = σ1 + iσ2 and world-time τ = σ0 we consider an embedding of the
membrane into 11-dimensional space of the form

Xα = Xα(τ) , XA = XA(σ) , XĀ = XĀ(σ̄) ,

where here A and Ā are holomorphic and anti-holomorphic indices on the Calabi-
Yau space, respectively, and XA = XA(σ) parametrizes the complex curve C. The
reduction of the membrane action on this curve leads to the following world-line action

Sp = −(v1/3T2)

∫
R

{
dt (βib

i)
√
−∂τXα∂τXβgαβ + 2 βiÂ

i

}
. (4.19)

This particle has four transverse (scalar) degrees of freedom and must, hence, form
a hypermultiplet in five dimensions. We denote the scalars in this hypermultiplet by
qu, where u, v, w, · · · = 1, 2, 3, 4. It is charged with respect to the particular linear
combination

A ≡ βiA
i , (4.20)

of vector fields with associated gauge coupling

g = 2 v1/3T2 = 2

(
8π

κ2
5

)1/3

, (4.21)

as can be seen from the last term in (4.19). From the first term in the world-line
action we can read off the mass which is given by

m =
1

2
gb = T2V−1/3Vol(C) . (4.22)
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What does this information tell us about the five-dimensional effective action of these
transition states? Clearly, these states being hypermultiplets, their effective action
must be of the general form (4.10). We assume that the associated hypermultiplet
moduli space metric is flat, so that

huv = δuv . (4.23)

As we will see shortly, this assumption is consistent with the above properties of
the transition states and the constraints enforced by five-dimensional supergravity.
To work this out explicitly, let us first recall the quaternionic structure on the four-
dimensional flat moduli space. Introducing the t’Hooft η-symbols [203]

ηabc = η̄abc = εabc ,

ηab0 = η̄a0b = δab ,

which satisfy the properties

[ηi, η̄j] = 0 , (4.24)

(ηi)T = (ηi)−1 , (η̄i)T = (η̄i)−1 ,

the triplet of complex structures can be written as

Ja v
u ≡ −η̄auwδwv ,

which satisfy the quaternionic algebra (4.7), as required. The associated triplet of
Kähler forms is given by

Kauv = −η̄auv. (4.25)

We know that the transition states are charged under the particular combination of
gauge fields (4.20). Hence the vectors kui must be proportional to βi and, at the same
time, be Killing vectors on flat four-dimensional space. We know that this gauging
must lead to a potential of the form (4.11). As qu → 0 this potential must vanish so
that the moduli bi indeed parametrize flat directions in this limit. This implies that
the Killing vectors kui should not correspond to translations but rather to rotations
and, hence, be of the form

kui = βit
u
vq
v , (4.26)

where t is an arbitrary anti-symmetric matrix. In addition, these Killing vectors must
originate from a prepotential, that is, they must satisfy eq. (4.8). This is the case
precisely if [t, η̄a] = 0 for a = 1, 2, 3, or, equivalently, if the matrix t is of the form

tuv = naη
a
uv , (4.27)
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where na are real coefficients. This matrix represents the generator of SO(2) in
the representation 2 ⊕ 2. We require the standard normalisation tr(t2) = −4 or,
equivalently, nan

a = 1. The associated prepotential then reads

Pai =
1

2
βiq

v(η̄avw nbη
bw

u)q
u + ξai , (4.28)

where ξai are arbitrary integration constant. They represent the generalisation of
Fayet-Illiopoulos terms to five-dimensional N = 1 supergravity. As they lead to
terms in the potential which do not vanish for vanishing qu we will set them to zero
in the following.

Inserting (4.23), (4.26), (4.27) and (4.28) into the general hypermultiplet ac-
tion (4.10) we obtain

Sq = − 1

2κ2
5

∫
M5

d5x
√
−g {Dαq

uDαqu + V )} , (4.29)

with the potential

V =
1

4
g2
[
b2quq

u + 4(Gklβkβl − b2)(ququ)2
]

(4.30)

and the covariant derivative

Dαq
u = ∂αq

u + gAtuvqv . (4.31)

Consequently, the hypermultiplet current jα which couples to the gauge field Aα is
given by

jα = gqutuv∂αq
v . (4.32)

We recall that b = βib
i, defined in eq. (4.15), is proportional to the volume of the

collapsing cycle and the generator t has been given in eq. (4.27). So far, we have
only used that the transition states are charged under the gauge field A. Clearly, the
gauge coupling g which appears in the covariant derivative (4.31) has to be identified
with the value (4.21) obtained from the reduction of the membrane action. Then,
the above hypermultiplet action (4.29) is completely fixed. From the first term in
the potential (4.30) we can now read off the mass of the hypermultiplet which is
given by gb/2. This value indeed coincides with the one obtained from the membrane
reduction, eq. (4.22), as it should for consistency.

In addition, we have found a potential term quartic in the transition states which
was not anticipated from the membrane reduction but was imposed on us by five-
dimensional supergravity. This quartic term plays an important role in lifting “un-
wanted” flat directions. While the potential should be flat for vanishing transition
states, qu = 0, and arbitrary bi, a flat direction along the flop at b = 0 and arbitrary
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qu would be a surprise 1. Fortunately, this potential flat direction is lifted by the
second term in eq. (4.30).

4.3 Cosmology

4.3.1 Cosmological ansatz and equations of motion

Let us briefly summarize the discussion so far. We have seen that M-theory on a
Calabi-Yau three-fold X with Hodge numbers h1,1 and h2,1 is effectively described
by the five-dimensional supergravity action (4.9), (4.10) with nV = h1,1 − 1 vector
multiplets and nH = h2,1 + 1 hypermultiplets and no gauging. When a flop-transition
to a topologically distinct Calabi-Yau space X̃ occurs the Hodge numbers and hence
the number of massless particles remains the same while the structure of the five-
dimensional action changes in accordance with the change (4.16) in the intersection
numbers. In addition, at and near the flop-transition region another light hypermul-
tiplet appears whose action (4.29) has to be added to the previous one for an accurate
description across the transition. It is important not to confuse these transition hyper-
multiplet states which arises at the flop with the standard hypermultiplets associated
with the complex structure moduli space of the Calabi-Yau space.

Which parts of this five-dimensional effective action are we actually interested in
for our cosmological applications? Since we would like to study flop-transitions which
arise by moving in the Calabi-Yau Kähler moduli space we should certainly consider
the associated moduli fields, that is the vector multiplet scalars bi. Clearly, we should
also keep the transition states qu which become light at the flop. However, these states
are charged and generically source the vector fields. Hence, it seems we have to allow
for non-trivial vector field backgrounds for consistency. Fortunately, we can avoid
such a considerable complication by setting all scalars qu equal to each other, that
is, q ≡ 2qu for all u = 1, 2, 3, 4 and a single scalar q. This configuration is consistent
with the qu equations of motion, as can be seen from (4.30), and leads to a vanishing
current (4.32). Consequently, the vector fields can be consistently set to zero in this
case. The standard hypermultiplets, in fact, completely decouple from the other fields
and are, hence, not essential for our purpose. From these standard hypermultiplet
scalars we will only keep the dilaton V = eφ since it represents the overall volume of
the internal Calabi-Yau space and is, therefore, of particular physical relevance.

In summary, the spectrum of our five-dimensional effective action can be con-
sistently truncated to the five-dimensional metric, the h1,1 − 1 Kähler moduli space

1Such a flat direction with non-vanishing transition states would correspond to a Higgs branch
where the gauge symmetry corresponding to the vector field A is broken. The resulting change in
the number of light vector multiplets would be inconsistent with the fact that Hodge numbers are
unchanged across the flop.
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scalars bi, the universal transition scalar q and the dilaton φ. From eq. (4.9) and
eq. (4.29), the accordingly truncated effective action then reads

S5 = − 1

2κ2
5

∫
M5

d5x
√
−g
{

1

2
R +

1

4
∂αφ∂

αφ+
1

4
Gkl∂αb

k∂αbl + λ(K − 6)

+∂αq∂
αq + V

}
, (4.33)

V =
1

4
g2
[
(βlb

l)2q2 + (Gklβkβl − (βlb
l)2)q4

]
. (4.34)

A Lagrange multiplier term has been added to enforce the constraint K = 6, eq. (4.5),
on the moduli bi. The value of the gauge coupling g has been given in eq. (4.21). We
also recall that the “Kähler potential” K and the metric Gij have been defined in
eq. (4.4) and eq. (2.46), respectively.

We are now ready to consider the cosmological evolution of our system. We focus
on backgrounds depending on time τ only and a metric with a three-dimensional
maximally symmetric subspace which we take to be flat, for simplicity. Accordingly,
we consider the following Ansatz

ds2 = −e2ν(τ)dτ 2 + e2α(τ)dx2 + e2β(τ)dy2

φ = φ(τ)

bi = bi(τ)

q = q(τ) ,

where x = (x1, x2, x3) and y = x4. Note that α and β are the scale factors of the
three-dimensional universe and the additional spatial dimension, respectively. For
later convenience, we have also included a lapse function ν. The equations of motion
for this Ansatz, derived from the action (4.33), are given by

• Einstein equations:

3(α̇2 + α̇β̇) = +1
4

(
φ̇2 +Gij ḃ

iḃj + 4q̇2
)

+ e2ν V

3(α̈− ν̇α̇+ 2α̇2) = −1
4

(
φ̇2 +Gij ḃ

iḃj + 4q̇2
)

+ e2ν V (4.35)

2α̈+ β̈ + 3α̇2 + β̇2 + 2α̇β̇ − 2ν̇α̇− ν̇β̇ = −1
4

(
φ̇2 +Gij ḃ

iḃj + 4q̇2
)

+ e2ν V
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• Field equations of motion:

φ̈+ (3α̇+ β̇ − ν̇)φ̇ = 0 (4.36)

b̈k + (3α̇+ β̇ − ν̇)ḃk + Γkij ḃ
iḃj + 2e2ν

(
Gkj ∂V

∂bj
− 2

3
biV
)

= 0 (4.37)

q̈ + (3α̇+ β̇ − ν̇)q̇ + 1
2
e2ν ∂V

∂q
= 0

K = 6 .

In these equations, we have already used the result λ = −V/9 for the Lagrange
multiplier λ which follows by contracting the bi equations of motion 2 with bi = Gijb

j.
The connection Γkij associated to the moduli space metric Gij has been defined in
eq. (4.18).

The above action and evolution equations have been written for a definite topology
of the internal space with intersection numbers dijk. When an evolution leads to a
flop transition, the Kähler potential K, the metric Gij and the connection Γkij have
to be changed ”by hand”in accordance with the change (4.16) in the intersection
numbers to obtain the equations of motion for the new topology. As discussed earlier,
this implies continuity of K and the metric while the connection jumps across the
transition. We also note that, from eq. (4.34), the potential V is continuous while its
derivatives with respect to bi contain the connection and, hence, jump. From these
properties and the equations of motion we conclude that all fields and their first time
derivatives and, hence, the stress energy for all fields is continuous across the flop.

4.3.2 An approximate solution for vanishing transition states

It is clear from the eqs. (4.35) and (4.37) that the transition state q can be set to
zero consistently and we will now analyse the cosmological evolution in this case.
From the structure of the equations of motion, the configuration q = 0 seems rather
non-generic and having a non-vanishing, perhaps small initial value for q appears to
be more plausible. We will study this generic case further below. However, setting
q = 0 corresponds to the conventional picture of a flop transition as being induced by
slow free rolling in moduli space. It is, therefore, useful to consider this case in some
detail, if only as a point of reference.

Setting the transition state q and, hence, the potential V , to zero simplifies the
equations of motion considerably. Another simplification arises if we choose the gauge
ν = 3α + β for the lapse function. In this gauge, we will denote time by τ in the
following. The second term in the bi equations vanishes for this choice and multiplying

2Some relations for very special geometry which are useful in this context have been collected in
ref. [108].
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the remainder by ḃi we find by integration that

k ≡ Gij
∂bi

∂τ

∂bj

∂τ
= const. .

Hence, the kinetic energy k of the Kähler moduli is constant on hyper-surfaces of
constant time τ . Note that this is no longer true for proper cosmological time related
to τ by dt2 = e6α+2βdτ 2. It is straightforward to integrate the Einstein equations (4.35)
and the φ equation of motion for time τ . The result can be easily rewritten in terms
of proper time t where it takes the form

α = pα ln |t| , β = pβ ln |t| , φ = pφ ln |t| . (4.38)

Here, we have dropped trivial additive integration constants for all three fields and
the origin of time, for simplicity. The expansion powers pα, pβ and pφ must satisfy
the constraints

3pα + pβ = 1 , (4.39)

p2
α + pαpβ =

1

12

(
p2
φ + k

)
, (4.40)

and the relation between proper time t and τ is simply

τ = ln |t| .

We still need to find the explicit form of bi for a complete solution. To do this, we
have to solve the following system of equations

b̈i + Γijkḃ
j ḃk = 0 (4.41)

dijkb
ibjbk = 6 (4.42)

Gij ḃ
iḃj = k . (4.43)

Here the dot denotes the derivative with respect to τ . Hence, in this time coordinate,
the fields bi move along geodesics in moduli space subject to the constraint (4.42)
from special geometry and the kinetic energy constraint (4.43). Unfortunately, the
equation (4.41) is hard to solve in general due to the second non-linear term. However,
for a sufficiently small time interval and slow motion this term can be neglected. In
other words, the geodesics are well approximated by straight lines

bi = ci + piτ +O(τ 2) (4.44)

in moduli space, where ci and pi are constants, as long as

|τ | �

∣∣∣∣∣ 2pi

Γijk(c)p
ipj

∣∣∣∣∣ . (4.45)
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This approximation also implies that we neglect the kinetic energy of the fields bi

compared to the other fields, that is, from eq. (4.43), we consider a solution with
k ' 0. Accordingly, this value for k has to be inserted into the relation (4.40). Within
our approximation, the special geometry constraint (4.42) turns into two conditions,
namely

dijkc
icjck = 6 , dijkc

icjpk = 0 . (4.46)

These algebraic equations can be easily solved for given intersection numbers. This
completes our approximate solution.

Let us now apply this result to a flop transition. We assume, for simplicity,
that the flop occurs in the b1 direction and at b1 = 0. By setting c1 = 0 in our
solution (4.44) we can, in fact, arrange the flop to take place at time τ = 0. Now we
consider two solutions of the above type with intersection numbers dijk and d̃ijk. We
recall that d111 is the only intersection number which changes (as given in eq. (4.16))
across the transition. Since we have set c1 = 0 this particular intersection number
drops out of the constraints (4.46) which need to be satisfied for a valid solution. We
are, therefore, free to choose the same constants ci, pi, solving the constraints (4.44),
on both sides of the flop. This leads to two solutions, for either topology, which
can be continuously matched together at the flop transition for τ = 0. Further,
our approximation is valid for a certain period of time before and after the flop
as quantified by the condition (4.45). The scale factors α and β and the dilaton
φ are unaffected by the transition in that they evolve according to (4.38) with the
same expansion powers pα, pβ and pφ on both sides of the transition. These results
suggest that the system indeed evolves through the transition into the moduli space
of the topologically distinct Calabi-Yau space and, hence, that the topology change
is dynamically realized. This picture will be confirmed by our numerical integration
further below.

4.3.3 Evolution for non-vanishing transition states

If the transition states no longer vanish, that is q 6= 0, the potential becomes opera-
tive and the conclusions of the previous subsection do not apply any more. Clearly,
we should not expect to find analytic solutions in this case any more. However,
some qualitative features of the evolution can be inferred from the structure of the
potential (4.34).

Let us consider small values of the transition state such that the potential (4.34)
is dominated by the first term. It is then approximately given by V ∼ b2q2. Note,
that this potential, for fixed non-zero q has a minimum at b = 0, that is, precisely
at the flop point. From this observation and the general shape of the potential it is
intuitively clear that a generic evolution will lead to oscillations around b = 0 and
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will finally settle down to this point. In other words, there is a clear preference for
the system to settle down at the transition point rather than complete the transition.

The complete potential (4.34) must still have a minimum at small b for fixed non-
zero q at least as long as q is sufficiently small. This suggests that the above argument
generalizes to this case and this will indeed be confirmed by our numerical integration.
In conclusion, this suggest that the system behaves quite differently if we allow non-
zero values of the transition states. Previously, for vanishing transition states, we
have found that the topology does change dynamically. If q 6= 0, on the other hand,
the potential becomes important and favours the region in moduli space close to the
flop transition. In this case, the system tends to settle down in the transition region
so that the topology change is not completed.

4.4 An explicit model

In this section, we would like to substantiate our previous claims by numerically
studying the cosmological evolution of our system. To do this we need to consider
a particular example, that is, a particular pair of Calabi-Yau manifolds related by a
flop transition which provides us with a concrete set of intersection numbers. We will
use the Calabi-Yau spaces described in refs. [204, 205, 206] and applied to black hole
physics in refs. [86, 197].

Concretely, we consider two elliptically fibred Calabi-Yau spaces X and X̃, both
with a Hirzebruch F1 base space and with h1,1 = 3. These spaces share a boundary
of the Kähler moduli space which corresponds to a flop transition. Following ref. [86],
both moduli spaces can be covered by a single set of coordinates (W,U, T ) with the
flop transition along W = U . The Kähler moduli space of X corresponds to the
coordinate range

U > W > 0 , T >
3

2
U , (4.47)

and the associated Kähler potential is given by

K =
9

4
U3 + 3T 2U −W 3 . (4.48)

We can use the constraint K = 6 to solve for T in terms of the other two moduli
resulting in

T =
1

6

(
−27U3 − 12W 3 − 72

U

)1/2

.

The fields bi which we have previously used are related to (W,U, T ) by

b1 = U −W , b2 = W , b3 = T − 3

2
U .
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This definition implies, from eq. (4.47), that the fields bi are indeed positive through-
out the moduli space of X. The flop transition is approached as b1 → 0. Hence, the
coefficients (βi) which enter the potential (4.34) are given by (β1, β2, β3) = (1, 0, 0).

For the second Calabi-Yau space X̃ the moduli are in the range

W > U > 0, T > W +
1

2
U , (4.49)

and the Kähler potential is given by

K̃ =
5

4
U3 + 3U2W − 3UW 2 + 3T 2U . (4.50)

Solving K̃ = 6 for T , as before, leads to

T̃ =
1

6

(
−15U3 + 36U2W − 36UW 2 − 72

U

)1/2

.

From eq. (4.17), fields b̃i which are positive in the moduli space of X̃ can be defined
by

b̃1 = −b1 = W − U , b̃2 = b2 − b1 = 2W − U , b̃3 = b3 − b1 = T − 5

2
U +W .

Note, that the two moduli spaces (4.47) and (4.49) indeed have a common boundary
at b1 = U−W = 0 which is where the flop transition occurs. Also, using the basis bi as
defined above, it is easy to see that the Kähler potentials (4.48) and (4.50) are related
by the shift (4.16) in the intersection numbers, as is required for a flop transition.

We will now study the above example using W and U or, equivalently, b1 and b2

as the independent variables. It is useful to plot the potential (4.34) as a function
of these variables for a fixed value of q. This has been done in fig. 4.2 for a value of
q = 1/3. Obviously, this potential has a minimum in both directions which happens
to be at

U = W =

(
3

10

)1/3

(4.51)

independent of the value of q. The associated potential value at the minimum (in
units where g = 1) is

Vmin =
3002/3

16
q4 . (4.52)

From our previous general argument, we did anticipate a minimum in the direction
b1 = U − W . However, a minimum for both fields, located precisely at the flop
and, hence, at field values (4.51) independent of q, comes as a surprise. We do not
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Figure 4.2: Potential V in terms of W,U and along the flop transition line at W=U,
both for fixed q=1/3.

know whether this is a general feature of the potential (4.34) near flop transitions or
particular to this example. Incidentally, we note that, having fixed all moduli bi, the
shape of the potential (4.52) in the remaining q-direction is well-suited for inflation.
Unfortunately, to be in the slow-roll regime we need that q � 1 which, in turn,
implies that V � 1 in units of the fundamental Planck scale. Such potential values
clearly go beyond the region of validity of our five-dimensional effective action and it
is, therefore, difficult to conclude anything definite about this tantalizing possibility.
In any case, we will restrict field values such that V does not become too large in the
following.

Before studying the flop-transition numerically, let us briefly discuss the other
boundaries of the moduli space as described by the conditions (4.47) and (4.49) in
relation to the potential. We note that the potential steeply increases towards the
boundary directions W → 0, W →∞ and U → 0. Hence, as long as the potential is
operative (that is, q is non-zero) it prevents evolution towards these boundaries. The
same is true for the boundary prescribed by U3 → (W 3 + 6)/9 as long as one stays
in the X part of the moduli space, b1 = U −W > 0, and W is sufficiently small. The
potential barrier rapidly vanishes in this direction for increasing W in the X̃ part of
the moduli space. In our numerical evolution, we will simply avoid this direction of
moduli space by choosing suitable initial conditions.

We have numerically integrated the system of equations (4.35), (4.37) for the
above example, that is for the Kähler potentials (4.48) and (4.50). Here, we present
the results for three characteristic sets of initial conditions which lead to an evolution
towards the flop transition region. The precise initial values of all fields are specified
in table 4.1. Fig. 4.3 and fig. 4.4 show the corresponding evolution of the fields as
a function of proper time t. The first set of initial conditions in table 4.1 leads to
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U U̇ W Ẇ q q̇ φ φ̇ α α̇ β

1st 4/5 -1/5 1/8 1/9 0 0 1/2 -1/10 3/10 1/2 1/10
2nd 1/2 -1/5 1/5 1/10 1/5 1/8 2/3 1/10 1/3 2/5 1/10
3rd 4/5 -1/3 1/2 1/10 3/4 1/9 2/3 1/5 3/10 1/3 1/10

Table 4.1: Table of initial conditions in order of increasing initial value of q = q(0).

a vanishing transitions state, that is, we have chosen q(0) = 0 and q̇(0) = 0. This
is precisely the case we have discussed in subsection (4.3.2). The resulting evolution
is shown fig. 4.3. It can be seen that the system, starting off in the moduli space
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Figure 4.3: Evolution of the fields W(t), U(t) and α(t), β(t), φ(t), respectively, for
vanishing transition states and for the first set of initial conditions given in table 4.1.

of X at b1 > 0, evolves towards the flop transition b1 = U − W → 0 and then
moves on to negative values of b1, corresponding to the moduli space of X̃. Hence,
the topological transition is indeed dynamically realized as suggested by the previous
analytic solution. The picture changes considerably once we allow for a non-vanishing
transition state. The second set of initial conditions in table 4.1 corresponds to small,
non-vanishing values of q(0) and q̇(0). Again, the system starts out in the X moduli
space and evolves towards the flop. The associated plots in the first row of fig. 4.4
show that after a few large initial oscillations around b1 = 0 the system stabilizes
at b1 = U −W ' 0 and, hence, at the flop transition. A similar behaviour can be
observed for larger initial values q(0), as in the third set in table 4.1 with associated
plots in the second row of fig. 4.4.
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Figure 4.4: Evolution of the fields W(t), U(t), q(t) and α(t), β(t), φ(t), respectively,
for the second and third set of initial conditions given in table 4.1.

4.5 Conclusions

We have shown in this work that the dynamics of M-theory flop transitions strongly
depends on whether or not the transition states which become light at the flop are
taken into account. If these modes are exactly set to zero the moduli space evolution
proceeds freely and the topology change can indeed be dynamically realized, that is,
the system moves between two topologically different Calabi-Yau spaces related by
a flop for appropriate but generic initial conditions. For non-vanishing values of the
transition modes, however, a potential becomes operative which generically stabilizes
moduli fields at the flop. Hence, the system does not really evolve into the moduli
space of the flopped Calabi-Yau manifold and the transition remains incomplete. One
may argue that this latter case is likely since non-vanishing values of the transition
states represent a more generic set of field configurations in the early universe. If
this is indeed the case, the region in moduli space close to a flop is preferred by the
dynamics of the system.
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It is likely that our results can be transferred to heterotic M-theory which provides
a more realistic setting for low-energy physics from M-theory. To do this, we have to
compactify the fifth dimension on a line interval and couple the five-dimensional N =
1 bulk supergravity used in this chapter to N = 1 theories on the two boundaries [107,
108]. The vacuum state of this theory is a static BPS domain wall which corresponds
to a certain path in the Calabi-Yau Kähler moduli space as one moves between the
boundaries. Using this property of the vacuum state, one can, in fact, construct static
vacua of heterotic M-theory with an inherent flop transition [207], that is, vacua with
the flop occurring at a particular point in the interval. Assuming the results of this
work indeed transfer to heterotic M-theory, it is these inherently flopped vacua which
would be preferred by the dynamical evolution of the system.
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Appendix A

Conventions

In this appendix the notation and conventions are summarized. This includes in-
dices as well as the conventions used for the Levi-Civita tensor, p-forms, Hodge-star
operator, scalar product, exterior derivative and interior product. The mostly plus
metric (−,+,+, . . .+) which has negative signature is used, and here n denotes the
dimensionality of space-time. In the definitions below the general indices li,mi, ni . . .
are used, which can stand for any of the real space-time indices of the following list.
• indices:
I, J,K . . . = 0, . . . 9, 11 : 11-dim. space-time M
Ī, J̄, K̄ . . . = 0, . . . 9 : 10-dim space-time M10 perpendicular to

orbifold S1/Z2

A,B,C . . . = 4, . . . 9 : real indices on 6-dim. Calabi-Yau
manifold X

a, ā, b, b̄ . . . : (anti-)holomorphic indices on X
α, β, γ . . . = 0, . . . 3, 11 : 5-dim. space-time M5

µ, ν, ρ . . . = 0, . . . 3 : 4-dim. space-time M4 and M5-brane world-
volume parallel to M4 in static gauge

l,m, n . . . = 0, . . . 5 : 6-dim. M5-brane world-volume M6

s, t = 4, 5 : 2-dim. M5-brane world-volume M6 on
two-cycle C2 within X

σ, σ̄ : (anti-)holomorphic M6 on C2

i, j = 1, 2 : No. of boundary M i
10 or SU(2) indices

ı̂, ̂ = 0, . . . N + 1 : No. of Five-brane
L,M, . . . = 1, . . . : No. of basis one-forms of H1(X,VRIi

)

x, y, z = 1, . . . dim(RIi
) : gauge indices of RIi

p, q, . . . = 1, . . . dim(RHi
) : gauge indices of RHi

p, p̄, q, q̄ . . . = 1, . . . h2,1 : No. of complex structure moduli
k, l, . . . = 1, . . . h1,1 : No. of Kähler moduli
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• Levi-Civita tensor:
By ε̂m1...mn we denote the pure number antisymmetric symbol, and the associated
Levi-Civita tensor is defined by

εm1...mn ≡ sgn(g)
√
|g|ε̂m1...mn ⇒ εm1...mn =

1√
|g|
ε̂m1...mn (A.1)

εm1..mpn1..nn−pε
m1..mpl1..ln−p = sgn(g)p!(n− p)!δ[l1

n1
. . . δln−p]

nn−p
(A.2)

• p-forms:

αp ≡
1

p!
αp n1...npdx

n1 ∧ . . . ∧ dxnp (A.3)

•Hodge-star operator:

(∗αp)l1...ln−p ≡
1

p!
εl1...ln−pm1...mpαp

m1...mp (A.4)

∗ ∗ αp = sgn(g)(−1)p(n−p)αp (A.5)

•scalar product:

〈αp, βp〉 ≡
∫
αp ∧ ∗β̄p (A.6)

= sgn(g)(−1)p(n−p)
∫
dnx
√
|g| 1
p!
αp l1...lp β̄

l1...lp
p (A.7)

•exterior derivative:

dαp ≡
1

p!
∂mαp l1...lpdx

m ∧ dxl1 ∧ . . . ∧ dxlp (A.8)

d(αp ∧ βq) = dαp ∧ βq + (−1)pαp ∧ dβq (A.9)

(A.10)

∫
M

dαp ∧ βq = (αp ∧ βq)|∂M + (−1)p+1

∫
M

αp ∧ dβq (A.11)

〈dαp−1, βp〉 = 〈αp−1, d
†βp〉 (A.12)

d† = sgn(g)(−1)np+n+1 ∗ d∗ (A.13)

•interior product:

ivαp ≡
1

(p− 1)!
vmαpml1...lp−1dx

l1 ∧ . . . ∧ dxlp−1 (A.14)

ivαp = sgn(g)(−1)np+1 ∗ (v ∧ ∗αp) (A.15)

〈ivαp, βp−1〉 = (−1)n+1〈αp, v ∧ βp−1〉 (A.16)

〈ivαp, ivβp〉 = (−1)n+1v2〈αp, βp〉 − sgn(g)〈iv ∗ αp, iv ∗ βp〉 (A.17)



Appendix B

Branes, currents and Dirac branes

This appendix summarizes some general background material needed to understand
classical brane currents [157,208,209,210,211] and their coupling to fields. The concept
of a Dirac brane is introduced to couple a magnetic brane to an electric field. Moreover
a geometrical interpretation of the Dirac quantization condition is given. Nothing
will be said on the quantum mechanical description of D-branes and their world-
volume gauge fields by means of open string theory. For reviews on D-branes see
[71,72,73,74,75,76].

When a p-brane, electrically charged under a (p + 1)-form potential A, moves
through d-dimensional space-time Md (d ≥ p+1), it sweeps out a (p+1)-dimensional
world-volume Wp+1 and thereby produces an electric (d−p−1)-current Je which acts
as a source for the field strength F = dA like

d ∗ F = Je. (B.1)

This equation reflects nothing more than a generalized form of Maxwells inhomogen-
uous equation for general (p+ 1)-form potentials. It directly follows from the action1

SA = Skin + Smc =

∫
Md

{
1

2
F ∧ ∗F + (−1)p+1A ∧ Je

}
(B.2)

after variation with respect to A. The second term is called minimal coupling term.
If the p-brane world-volume is parametrized by the coordinates {σm, m = 0 . . . p} and
embedded into space-time by the maps

Xµ : Wp+1 −→Md, µ = 0 . . . d− 1,

σm 7−→ Xµ(σm), m = 0 . . . p,

1The annoying factors of (-1) appearing in the following are such as to be consistent with the
conventions given in appendix A.
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then the minimal coupling term, explicitly showing the natural coupling of a (p+ 1)-
form to a (p+ 1)-dimensional surface, is more conventionally written like

Smc = Tp

∫
Wp+1

Â

= Tp

∫
Wp+1

1

(p+ 1)!
Âm1...mp+1 dσ

m1 ∧ . . . ∧ dσmp+1 (B.3)

= Tp

∫
Wp+1

Aµ1...µp+1

(p+ 1)!
∂m1X

µ1 . . . ∂mp+1X
µp+1 dσm1 ∧ . . . ∧ dσmp+1 ,

such that the pullback Â of the (p+1)-form A from space-time Md onto the world-
volume Wp+1 is given by

Âm1...mp+1 = Aµ1...µp+1 ∂m1X
µ1 . . . ∂mp+1X

µp+1 .

The factor Tp is the brane tension and is a mass density 2. In order to relate the
coupling term in (B.2) to (B.3), the integral over the world-volume in (B.3) has to be
extended to the whole space-time with the help of a generalized δ−function defined
exactly such that 3 ∫

Wp+1

Â ≡
∫
Md

δ(Wp+1) ∧ A. (B.4)

It obviously follows now that the electric current must be given by

Je = (−1)d−p−1 Tp δ(Wp+1), (B.5)

such that generalized δ-functions and currents can be identified. An explicit form of
such a δ−function (distribution) is given by

δ(Wp+1)µ1...µd−p−1
=

sgn(g)

(p+ 1)!
√
|g|

εµ1...µd−p−1ν1...νp+1 (B.6)

×
∫
Wp+1

dXν1 ∧ . . . ∧ dXνp+1δ(d)(x−X(σ)) ,

where ε... is the Levi-Civita tensor (A.1) and δ(d)(x − X) is the normal δ−function
in d−dimensions. Using this explicit form and the fact that dXν1 ∧ . . . ∧ dXνp+1 =
∂m1X

ν1 . . . ∂mp+1X
νp+1 dσm1 ∧ . . . ∧ dσmp+1 allows to check the consistency of eq.(B.3)

with eq.(B.4).

2Strictly speaking Tp should be a charge density, but for BPS-states charge and mass can be
identified.

3Note that for d and p even, there arises an ambiguity because the potential as well as the
δ−function are odd forms so their order in (B.4) matters; we simply choose the convention where
the δ−function stands to the left of the (p + 1)-form, consistent with appendix (D).
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An important implication of this identification of currents and δ-functions is that
generally currents are distributions and so their properties are only defined in a distri-
butional sense. For example from eq.(B.1) need not directly follow the conservation
of current dJe = 0, though in the case of smooth forms this would immediately follow
by d2 = 0. As shown next, this difference manifests itself clearly in the consistency of
gauge invariance of the action (B.2) and conservation of current.

Up to now it was not specified if the world-volume Wp+1 was open or closed, that
is, if Wp+1 has a boundary or not. But consider a gauge transformation δA = dΛ,
then, using Stokes theorem, the variation of the minimal coupling term (B.3) is

δSmc = Tp

∫
Wp+1

dΛ̂ = Tp

∫
∂Wp+1

Λ̂

which generally vanishes only if ∂Wp+1 = 0, i.e. Wp+1 must be closed. So action
(B.2) is only gauge invariant for closed world-volumes Wp+1. This of course must
be consistent with eqs. (B.4, B.5) which implies the conservation of current in the
distributional sense like

δSmc =

∫
Md

dΛ ∧ Je = (−1)p+1

∫
Md

Λ ∧ dJe = 0 ⇐⇒ dJe = 0

and thus
dJe = 0 ⇐⇒ d δ(Wp+1) = 0 ⇐⇒ ∂Wp+1 = 0.

So it turns out that the current associated to a closed surface is also closed, at least
in the distributional sense. But on the other hand the current of a open brane need
not be conserved, though the equation of motion eq. (B.1) is still true, but again only
in a distributional sense.

If the world-volume Wp+1 is open, the action (B.2) must be modified to be gauge
invariant, and in order to electrically couple the current of an open p-brane in a gauge
invariant way, a compensating boundary term and an associated boundary p-form field
B must be introduced. The minimal coupling term then becomes

Smc = Tp

∫
Wp+1

Â− dB̂ = Tp

∫
Wp+1

Â− Tp
∫
∂Wp+1

B̂ ,

and the boundary field must transform like δB = Λ under a gauge transformation such
that the combination Â − dB̂ is gauge invariant. This modification does not change
the equation of motion (B.1) for A and it also does not lead to the conservation of the
electric current alone. Now the boundary term looks exactly like a minimal coupling
term, but here of the p−form potential B to the world-volume of the boundary ∂Wp+1,
which is trivially closed (∂2Wp+1 = 0). In general the potential B need not be defined
on the whole space-time Md but might only corresponds to a world-volume field of
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another q-brane (q ≥ p) on which the p-brane can end. Thus from the q-brane
perspective there exist closed (p − 1)-branes confined to the q−brane world-volume,
charged with respect to the field B, which from a space-time perspective correspond
to the boundaries of p-branes ending on the q-brane. This geometrical picture makes
the non-conversation of the electrical current reasonable because the electric charge
can flow from the p-brane onto the q-brane on which it ends. In case that this q-brane
is a magnetic brane it actually becomes a dyonic object by this inflow of electric
charge from electric objects ending on it. This is for example the case for membranes
ending on M5-branes in M-theory, as illustrated in fig 2.1.

There is another important observation to be made here. For open world-volumes
consistency of the definition (B.4) of the δ-function with Stokes law implies∫

Wp+1

dΛ̂ =

∫
∂Wp+1

Λ̂ =

∫
Mp

δ(∂Wp+1) ∧ Λ

=

∫
Md

δ(Wp+1) ∧ dΛ =

∫
Md

(−1)d−pdδ(Wp+1) ∧ Λ

=⇒ δ(∂Wp+1) = (−1)d−pdδ(Wp+1)

such that a δ-function for the open surface Wp+1 can be viewed as the Θ-function for
its boundary ∂Wp+1, i.e.

Θ(∂Wp+1) ≡ (−1)d−pδ(Wp+1) =⇒ dΘ(∂Wp+1) = δ(∂Wp+1). (B.7)

This shows that to every boundary there exists a generalized Θ−function and thus
the current associated to a boundary is exact and therefore trivially closed. Due to
eq. (B.7) an explicit form of such a Θ−function is given in analogy to eq. (B.6). On
topologically trivial spaces such distributions are globally well defined, but care has
to be taken on compact spaces that allow cycles, i.e. non-trivially closed surfaces that
are not boundaries of any other surfaces. Also note that the Θ-function to a given
boundary ∂Wp+1 is not unique, it is only defined up to an exact piece. Geometrically
this is shown in figure B.1 and means that two surfaces with the same boundary differ
at most by a boundary, because let W̃p+1 and Wp+1 be different surfaces sharing the
same boundary ∂Wp+1 = ∂W̃p+1, then there exists an interpolating surface Ip+2 such
that ∂Ip+2 = W̃p+1−Wp+1. Now associate the exact current dΘ(∂Ip+2) = δ(∂Ip+2) to
this boundary and find the following correspondence between surfaces and currents

W̃p+1 = Wp+1 + ∂Ip+2
∂2=0
=⇒ ∂W̃p+1 = ∂Wp+1

⇐⇒ (B.8)

Θ(W̃p+1) = Θ(Wp+1) + δ(∂Ip+2)
d2=0
=⇒ dΘ(W̃p+1) = dΘ(Wp+1) = δ(∂Wp+1).

So a trivially closed current and the associated Θ−function have a nice geometrical
interpretation as a trivially closed world-volume that is the boundary of another open
world-volume, which is not unique though.
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Figure B.1: Geometry of current ∂Wp+1 and associated Θ-functions Wp+1 and W̃p+1.

Up to now Wp+1 was considered as the physical world-volume of an actual p-brane
and ∂Wp+1 as its boundary, but of course one could as well consider Wp ≡ ∂Wp+1 as
the world-volume of a trivially closed (p−1)-brane, then Wp+1 is not physical and can
be interpreted as a Dirac brane attached to the (p− 1)-brane, in analogy to a Dirac
string attached to a magnetic monopole in Maxwell theory. This analogy reaches
further and Dirac branes are actually needed to couple magnetic branes to electric
fields as follows.

To every electric p−brane there exists a dual q-brane with q = d− p− 4, magneti-
cally charged with respect to the (p+1)-form A. The problem now arises because the
magnetic q-brane with world-volume Wq+1 produces a magnetic (d− q − 1 = p+ 3)-
current Jm which couples to the electric field by a non-trivial Bianchi identity like

dF = Jm = (−1)d−q−1 Tq δ(Wq+1)

which is in direct contradiction with dF = d2A = 0 to be true everywhere, thus the
field strength cannot everywhere be derived from a globally well defined potential
only, i.e. F 6= dA globally on Md. Thus a redefined field strength is introduced by
adding a Dirac brane current like

F ≡ dA+ (−1)d−q−1 Tq Θ(Wq+1) (B.9)
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such that the Bianchi identity is given by

dF = (−1)d−q−1 Tq dΘ(Wq+1) = (−1)d−q−1 Tq δ(Wq+1) = Jm, (B.10)

as required. At the classical level only the field strength (B.9) must be independent
of the choice of the Dirac brane, thus under such a change as in eq.(B.8) the potential
must also transform. Then the field strength F is invariant under a transformation
given by

Θ(Wq+1) −→ Θ(Wq+1) + δ(∂Iq+3) (B.11)

A −→ A− (−1)d−q−1Tq Θ(∂Iq+3) + dΛ,

where a normal gauge transformation has been included. This is the classical state-
ment of Dirac brane independence, but on a quantum mechanical level the condition
of the non observability of a Dirac brane leads to Dirac quantization conditions for the
brane tensions that can be derived in the given formulation. Consider the situation
illustrated in fig. B.2 where an electrical p-brane probes the field of a dual magnetic
q−brane by moving through the field of the latter along a closed world-volume Ep+1

not intersecting the Dirac brane. Then the integration of the potential A over Ep+1

E

I

W

W

p+1

q+2

q+2

q+3

Wq+1

Figure B.2: Electric p-brane probing the field of its dual magnetic q−brane.

can be considered as a higher dimensional analogue of a Wilson loop, or equivalently
as the phase picked up by the p−brane “wavefunction” after the motion along Ep+1.
For the position of the Dirac brane to be unobservable this phase can at most change
by an integral multiple of 2π under a change of Dirac brane, which implies the Dirac
quantization condition. Formally the condition reads

exp
(
− i Tp

∫
Ep+1

A
) !

= exp
(
− i Tp

∫
Ep+1

A− (−1)d−q−1TqΘ(∂Iq+3)
)
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which, by eqs. (B.4,B.7), is exactly true if

Tp Tq

∫
Md

δ(Ep+1) ∧ δ(Iq+3) = 2π k, k ∈ Z. (B.12)

This last integral gives the intersection number of the two surfaces Ep+1 and Iq+3

and is thus an integer [211], possibly equal to one, and therefore we find the Dirac
quantization condition

Tp Tq = 2π n, n ∈ Z .

Note that by a deformation of the world-volume Ep+1 by a closed surface Dp+1, the
integral (B.12) can always be made well defined, as illustrated in fig. B.3. This
allows for a nice interpretation of normal gauge transformations dΛp = δ(Dp+1), as
the inclusion of a trivially closed (p+1)-dimensional Dirac-brane Dp+1 somewhere in
space-time, which does not affect the field strength in any way.

gauge

transformation

ill-defined

intersection
well-defined

intersection
E

I

p+1

q+3

E + Dp+1      

Iq+3

Dp+1

p+1

Figure B.3: Getting a well-defined intersection point by a gauge transformation.

Generally the need to introduce Dirac branes can be understood quite easily,
because formally a magnetic monopole is treated as one pole of a dipole with the
other pole sitting at infinity, both poles being connected by the Dirac brane. This
construction assures that the magnetic field lines close, since the magnetic flux emitted
from the monopole to infinity flows back along the Dirac brane. Moving the second
pole around at infinity should certainly not affect the field of the monopole, and this
corresponds to the requirement of Dirac brane independence.

At first sight it looks as if this whole coupling procedure is only applicable to
magnetic q−branes with trivially closed world-volumes, i.e. Wq+1 = ∂Wq+2, because
only for such world-volumes globally well defined Θ−functions exist, but eqs. (B.9,
B.10) need not be globally defined, but must only be true on local coordinate patches,
where in overlapping regions the Θ-functions and the potentials must be related by a
transformation (B.11).
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As a last remark, this way of coupling electric and magnetic branes is very asym-
metric since the two corresponding currents are treated in quite a different way. For
a different, duality symmetric way which treats magnetic and electric branes on equal
footings see [212, 210], but this alternative way still depends on the introduction of
Dirac branes though.

To summarize and generalize, to every p-chain Wp =
∑n

i=1 aiN
i
p, ai ∈ K of p-

dimensional submanifolds N i
p of a d-dimensional embedding space Md, a (d − p)-

current δ(Wp) can be associated, that is, a linear functional on the space Λ(p)(Md) of
smooth p-forms on Md, like

δ : Wp 7−→ δ(Wp) : Λ(p)(Md) −→ C

Ap 7−→
∫
Md

δ(Wp) ∧ Ap =
n∑
i=1

ai

∫
N i

p

Âp.

Thus currents are generalized distributions, or loosly speaking sums of forms whose
coefficients are distributions. Moreover, the current corresponding to a closed or exact
p-chain is in the sense of distributions itself closed or exact, respectively. Restricting
this correspondence to cycles on compact spaces we have the Poincaré duality, which
maps the homology class of a p-cycle to the cohomology class of (d − p)-form, thus
the notion of currents associated to chains can be viewed as an extension of Poincaré
duality [157,211].



Appendix C

Special Kähler geometry

In this appendix we briefly summarize the general structure of a special Kähler mani-
fold. Here all the necessary relations of special geometry which we needed in the main
text are given.

As is well knownN = 1 supersymmetry requires the moduli space parametrized by
the scalar component fields of the vector- and hyper-multiplets to be a product space
M = MV ×MH with no couplings between the two types of fields. In the context
of Calabi-Yau compactifications the spaceMV is a Kähler manifold parametrized by
the Kähler moduli (φx, x = 1, . . . , h1,1) associated to the deformations of the Kähler
class defined by the H1,1 sector of the Calabi-Yau manifold. In the heterotic case the
space MH is a 4(h2,1 + 1) = 4nH-dimensional quaternionic manifold that factorizes
like MH = M3,0 × M2,1, where the factors arise from the H3,0 and H2,1 sectors,
respectively. The H3,0 sector gives rise to the complex scalar ξ that pairs with the
dilaton (volume modulus V ) and the space-time axion σ to the scalar components
of the universal hypermultiplet and they parametrize M3,0 = SU(1, 1)/U(1). The
manifoldM2,1 is parametrized by the complex scalars zp and ηp, p = 1, . . . , h2,1 arising
from the complex structure deformations of the metric and the three-form potential,

respectively. For ηp = 0 this manifold reduces to a submanifold like MH
ηp=0−→ MSK

to a special Kähler manifoldMSK parametrized by the complex structure moduli zp

only. It is this special Kähler geometry we are interested in. It turns out to be more
convenient to treat the whole H3 = H3,0⊕H2,1⊕H1,2⊕H0,3 sector at once and then
let the different sectors emerge through the choice of a complex structure specified by
the zp.

Let us first introduce a canonical homology basis of H3 consisting of three-cycles
(AP , BQ), P,Q = 0, . . . , h2,1 together with the dual cohomology basis of H3 given by

143



144

the three-forms (αP , β
Q), normalized such that∫

X

αQ ∧ βP =

∫
AP

αQ = δPQ ,

∫
X

αP ∧ αQ = 0 , (C.1)∫
X

βP ∧ αQ =

∫
BQ

βP = −δPQ ,
∫
X

βP ∧ βQ = 0 . (C.2)

These relations are invariant under symplectic transformations [160] like (~α, ~β) →
T (~α, ~β) with T ∈ Sp(2b2,1 + 2; Z), which is the reason for the symplectic structure of
the manifoldMH . Now we can expand the holomorphic (3,0)-form Ω with respect to
the basis (αP , β

Q) in a symplectically invariant way like

Ω = ZQαQ − GQβQ , (C.3)

with the periods (ZQ,GQ) defined by

ZQ =

∫
X

Ω ∧ βQ =

∫
AQ

Ω , GP =

∫
X

Ω ∧ αP =

∫
BP

Ω . (C.4)

It is known that the complex structure of the Calabi-Yau space is entirely deter-
mined by the ZQ, and turning the argument around, the choice of complex structure
determines Ω = Ω(Z) and thus also GQ = GQ(Z). It is a non-trivial result [160]
that the periods GQ actually derive from a holomorphic prepotential G = G(Z) like
GQ = ∂

∂ZQG. Then from the first relation in (C.4) it follows that Ω(λZ) = λΩ(Z)
and thus GQ(λZ) = λGQ(Z), G(λZ) = λ2G(Z) under a rescaling Z → λZ. For the
prepotential this yields the important relations

G =
1

2
GQZQ, GQ = GQRZR , (C.5)

where GQR = ∂Q∂RG. Moreover the scaling behavior just given shows that the periods
ZQ are projective coordinates that can be related to the affine special coordinates for
example by zp = Zp/Z0 wherever Z0 6= 0.

Now the Kähler potential can be defined by

K(Z) = −ln

(
i

∫
X

Ω ∧ Ω̄

)
= −ln

(
GQZ̄Q − ḠQZQ

)
= −ln

(
2i ImGPQZ̄PZQ

)
,

which demonstrates its invariance under symplectic transformations, that cannot so
easily be seen in terms of special coordinates where it is given by

K(z) = −ln

[
2i(G − Ḡ)− i(zp − z̄p)

(
∂G
∂zp

+
∂Ḡ
∂z̄p

)]
. (C.6)
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This shows that the Kähler potential is completely determined by a holomorphic
prepotential G and the coordinates zp or ZP respectively, and it can be shown that
such Kähler potentials satisfy the ”special geometry”constraint [213]

Rpq̄rs̄ = Kpq̄Krs̄ +Kps̄Krq̄ − e2KCprtC̄q̄s̄ūKtū , (C.7)

where

Kpq̄(z) =
∂

∂zp
∂

∂z̄q̄
K(z) , Cpqr =

∂

∂zp
∂

∂zq
∂

∂zr
G(z) , (C.8)

and Rpq̄rs̄ is the curvature. That is why one is talking of a special Kähler manifold in
this case.

Let us next consider the H2,1 sector as a part of H3. To do this we need a result
of Kodaira that states [160]

∂pΩ = −∂pK(z) + Πp , (C.9)

with {Πp} a basis of H2,1. Using this together with (C.3) and the explicit form of the
Kähler potential we can expand the basis forms Πp with respect to the basis (αP , β

Q)
like

Πp = f Q
p αQ − hpQβQ , (C.10)

with the periods (f Q
p , hpQ) given by

f Q
p = ∂pZQ + ∂pK(z)ZQ = ∂pZP f̃QP , f̃QP = δQP + ∂PKZQ , (C.11)

hpQ = ∂pGQ + ∂pK(z)GQ = GQRfRp ,

where by using ZP∂PK = −1 it can easily be shown that f̃Qp is a projector. The
Kähler metric can now also be written like

Kpq̄ = fPp KPQf̄
Q
q̄ = −ieK(hpP f̄

P
q̄ − fPp h̄q̄ P ) = −

∫
X

Πp ∧ Π̄q̄∫
X

Ω ∧ Ω̄
. (C.12)

Next we introduce a matrix M defined by [162]

MPQ = ḠPQ + TPQ , TPQ = 2i
ImGPRZR ImGQSZS

ZRImGRSZS
, (C.13)

and this matrix has the properties

GP = MPQZQ, hpP = M̄PQf
Q
p , ImMPQZP Z̄Q = −1

2
e−K, (C.14)

or equivalently

TPQZQ = 2i ImGPQZQ, T̄PQf
Q
p = 0, ImTPQZP Z̄Q = −e−K. (C.15)
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This matrix M shows up in the kinetic terms of the hypermultiplet scalars in N = 1
supergravity1. This is due to the following relations [214]∫

X

αP ∧ ∗βQ = −ReMPR (ImM)−1RQ , (C.16)∫
X

αP ∧ ∗αQ = −
[
ImMPQ + ReMPR(ImM)−1RSReMSQ

]
, (C.17)∫

X

βP ∧ ∗βQ = −(ImM)−1PQ , (C.18)

which are needed in the process of compactification. The inverse of ImM is explicitly
given by

(ImM)−1PQ = −(ImG)−1PQ − 2eK
[
ZP Z̄Q + Z̄PZQ

]
. (C.19)

Other useful relations are [162]

UPQ = fPp Kpq̄f̄
Q
q̄ = −1

2
e−K(ImM)−1PQ − Z̄PZQ. (C.20)

Using the second relation in (C.15) we see that

UPQMQR = UPQḠQR, GPQUQR = M̄PQU
QR . (C.21)

The last relation we give is useful in the demonstration of the symplectic quater-
nionic structure of the hyper-multiplet sector as done in section (2.5.2), and it is

(ImM)−1PQ = −1

2
e−K

[
ImG−1PRKRSImG−1SQ

]
− 2 eKZP Z̄Q. (C.22)

1In the case of suitable compactifications of Type II theories it is also related to kinetic and
topological terms F 2 and FF̃ of vector fields [214], though not in the considered heterotic case.



Appendix D

Riemann surfaces

This appendix is intended to give a very short review of some basic facts on the
structure of the holonomy of a Riemann surface, which are needed to understand the
origin and structure of the worldvolume gauge fields on the three-brane arising as zero
modes from the M5-brane worldvolume theory wrapped on such a Riemann surface.
We closely follow the treatment in [215], to which we refer for proofs and details.

A Riemann surface is a connected, complex analytic manifold M of one complex
(two real) dimension(s). Thus there is a set of charts {Uα, zα}α∈I consisting of an
open cover {Uα}α∈I of M such that M =

⋃
α∈I Uα, and coordinate functions zα :

Uα → C which are homeomorphisms onto open sets of the complex plane, such that
the transition functions tαβ = zα ◦ zβ : zβ(Uα ∩ Uβ) → zα(Uα ∩ Uβ) are holomorphic
for Uα ∩ Uβ 6= ∅.

To each Riemann surface of genus g a 4g−sided polygon can be associated, which
can be represented by its symbol Πg

u=1 bu au b
−1
u a−1

u . As shown in figure D.1, each side
of the polygon corresponds to a cycle (homology class) of the Riemann surface, and
by glueing pairs of sides au, a

−1
u and bu, b

−1
u respectively, one can obtain the surface

from the polygon. Because there are 2g independent cycles au, bu for i = 1 . . . g on a
compact Riemann surface M of genus g, the homology group H1(M) of cycles is 2g
dimensional.

With every simple (not self-intersecting) closed curve c on M a real, closed one-
form current δ(c) can be associated such that1

〈α, ∗δ(c)〉 = −
∫
M

α ∧ δ(c) =

∫
c

α (D.1)

for any closed one-form α and where the scalar product and Hodge star are as defined
in appendix A. Because every cycle c on M , that is, every closed curve that itself is

1The last integral is the integration along the curve c of the pullback of α to this curve, for which
we do not introduce extra notation here.
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a1
a2

b2b1

a1

b1
b1

a2

b2

a2

b2

a1
-1

-1

-1

-1

Figure D.1: Riemann surface of genus 2 with cycles au, bu as a standard basis of first
homology group H1(M).

not a boundary, is a finite sum of simple cycles, there exists such an associated real
current δ(c) with the above property. For two given cycles c1 and c2 on the Riemann
surface M this allows to define the intersection number by

c1 · c2 =

∫
M

δ(c1) ∧ δ(c2) = 〈δ(c1),− ∗ δ(c2)〉, ∈ Z. (D.2)

The intersection properties of the standard basis {a1, b1, . . . , ag, bg} are

au · bv = δuv, au · av = 0 = bu · bv. (D.3)

Relabeling the cycles by putting all a−cycles in front of the b−cycles like

hU = aU , U = 1 . . . g, hU = bU−g, U = g + 1 . . . 2g, (D.4)

leads to a basis {h1 . . . h2g} of H1(M) with the intersection matrix given by

hU · hU = JUV , J =

[
0 1g
−1g 0

]
, (D.5)

where 1g is the g×g identity matrix. Such a basis with intersection matrix J is called
canonical homology basis. To a given canonical homology basis define the currents

λU = δ(hU+g) = δ(bU), U = 1 . . . g,

λU = −δ(hU−g) = −δ(aU−g), U = g + 1 . . . 2g,

then it follows from Eqs.(D.1-D.5) that∫
hU

λV = δUV , (D.6)
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moreover note that −〈λU , ∗λV 〉 = JUV . The set {λ1 . . . λ2g} is the unique real, dual
basis of the cohomology group H1(M), that is, the 2g−dimensional vector space of
harmonic one-forms on M , with the property (D.6). This allows to uniquely expand
every harmonic one-form like λ =

∑2g
U=1 pUλU with periods pU =

∫
hU
λ. Because the

Hodge star operator preserves the space of real harmonic forms, the Hodge duals of
the basis one-forms can then be expanded in terms of the basis itself like

∗λU = T V
U λV , (D.7)

or in different words, the Hodge star operator is represented by a 2g × 2g matrix T
in the space of harmonic one-forms. It turns out that the matrix Γ = T(JT ) is given
by

ΓUV = TUW (JT )WV = 〈λU , λV 〉 (D.8)

and it is symmetric and positive definite. Writing the matrix T in block form like

T =

[
Λ1 Λ2

Λ3 Λ4

]
, (D.9)

the symmetry and positive definiteness of Γ imply

Λ4 = −ΛT
1 , Λ2 = ΛT

2 , Λ3 = ΛT
3 , Λ2 > 0, Λ3 < 0, (D.10)

and so Λ2 and Λ3 are invertible, moreover from T2 = −12g (⇔ ∗2 = −1) follows

Λ2
1 + Λ2Λ3 + 1g = 0, Λ1Λ2 = Λ2(Λ

T
1 ), Λ3Λ1 = (ΛT

1 )Λ3. (D.11)

So far only real-valued forms have been considered, but on a complex surface we of
course can introduce (anti-) holomorphic forms. A one-form ω is called holomorphic
when locally w = df with f a holomorphic function, and this is true if and only if
ω = β + i ∗ β for some harmonic one-form β. Thus introduce holomorphic one-forms
by

ωU = λU + i ∗ λU , U = 1 . . . 2g, (D.12)

then the space of complex harmonic one-forms decomposes as

H1(M) = H(1,0)(M)⊕H(0,1)(M) (D.13)

where the set {ω1 . . . ωg} ({ω̄1 . . . ω̄g}) is a basis of the vector space of holomorphic
(antiholomorphic) one-forms H(1,0)(M) (H(0,1)(M)), which thus is g−dimensional.
To summarize, on a compact Riemann surfaceM of genus g the vector spaceH(1,0)(M)
of holomorphic one-forms has dimension g, and {ω1 . . . ωg} forms a basis thereof.
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The following matrix

1

2
〈ωU , ωV 〉 = 〈λU , λV 〉 − i〈λU , ∗λV 〉 = (Γ + iJ)UV

= 〈λU , ωV 〉 =

{
−i
∫
bV
ωU , V = 1 . . . g

+i
∫
aV−g

ωU , V = g + 1 . . . 2g

can be interpreted as the period matrix of the holomorphic forms {ωU , U = 1 . . . 2g}
with respect to the standard cycles {au, bu, u = 1 . . . g} as seen in the second line,
moreover the first line allows to directly relate this period matrix to the matrix T
through Eq. (D.8). By a clever change of basis we can now engineer a g × g block of
this period matrix to any desired form, especially consider the following basis

αu = (−i Λ−1
3 ) v

u ωv+g, (D.14)

then {αu, u = 1 . . . g} is the unique basis of the space of holomorphic one-forms
H(1,0)(M) with the property ∫

au

αv = δuv, (D.15)

and moreover the period matrix defined by

Πuv ≡
∫
bu

αv (D.16)

is given by
Π = (−Λ3)

−1 ΛT
1 + i (−Λ3)

−1, (D.17)

showing that by Eq. (D.10) it is symmetric and has positive definite imaginary part.
To summarize, we now have explicitly constructed a basis of holomorphic one-

forms {αu, u = 1 . . . g} of H(1,0)(M) associated to the standard basis of cycles
{au, bu, u = 1 . . . g} of the first homology group H1(M) satisfying the standard
normalization (D.15). Moreover Eqs. (D.9, D.17) gives the relation between the
period matrix Π and the matrix representation T of the Hodge star operator.
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