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Introduction

Pairing correlations play an important role in
describing the low-energy nuclear structure,
reaction cross-sections as well as fission and
fusion processes. Pairing energy term in the
mean-field models takes into account the ten-
dency of like nucleons to form pairs in analogy
with Cooper pairs in metallic superconduc-
tors [1]. The present approach aims towards
the modification of pairing energy term in the
liquid drop model (LDM) using semiclassical
level density in the Bardeen-Cooper-Schrieffer
(BCS) theory. In this work, the semiclassical
trace formula for axially symmetric harmonic
oscillator potential along with spin-orbit in-
teractions [2] is employed to study the effects
of pairing in prolate deformed nuclear systems
such as Te106, Te108, Te110.

Redefining the pairing en-
ergy term using BCS theory

The liquid drop model is the first ever nuclear
model, proposed by George Gamow, in which
the nucleus is treated as a charged drop of
liquid and hence the nucleus can be described
in terms of volume, surface tension, density
etc., modeled as the famous mass formula of
Bethe and von Weizsäcker:
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The last term, known as “pairing energy”,
takes care of the tendency of like nucleons to
pair up, thus resulting in an increased binding
energy of the system. The coefficients ai in
the LDM are given as [3], av=15.753 MeV,
as=17.804 MeV, ac=0.7103 MeV, aa=23.69
MeV and the pairing energy term is defined as:

δ(A)=

 33.6 A−3/4 for e-e nuclei
−33.6 A−3/4 for o-o nuclei

0 for e-o nuclei

The above term can be modified using BCS
equations [4] at zero temperature for protons
and neutrons:
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and the pairing correlation energy δP is de-
fined as the difference between the energies
with and without pairing effects, i.e. δPn,p =

|Ẽpair − Ẽ| where

Ẽpair(n, p) = 2
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Here, r, s = λ′n,p ∓ h̄ω0
0(n, p). λ′n,p and En,p

F
are the chemical potentials with and without
pairing. The quasiparticle energy is defined
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as, Eq = ((E−λ′n,p)2+∆2
n,p)1/2. ∆n,p are the

odd-even mass differences obtained from the
four-point formula and the spacing between
the oscillator levels is chosen as:
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The semiclassical expression of the average
level density for axially symmetric harmonic
oscillator potential with spin-orbit interac-
tions is given as [2]:
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where, a = h̄ω⊥
2h̄ωz, b = 2h̄ω⊥
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are defined in terms of the deformation pa-
rameter ε as:
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ω0(ε) is determined from the condition of in-
compressibility of nuclear matter and is given
as:

ω0(ε) = ω0
0

(
1 +

ε2

9

)
(5)

The Nilsson deformation parameter ε is de-
fined in terms of quadrupole deformation β2
as, ε ≈ 0.95β2.

Results and Discussions

Despite its simplicity, the liquid drop model
can describe the fission, fusion and α decay
potential barriers quite well. Moreover LDM
with little modifications can serve as a good
tool in the study of binding energies of new
nuclides (superheavy elements, drip line nu-
clei). These modifications can be in terms
of shell structures and pairing effects. The
present approach highlights the modification

Nucleus κp κn ∆p ∆n β2
(MeV) (MeV)

Te106 -0.065 -0.070 0.94 1.01 0.119
Te108 -0.065 -0.070 1.02 1.25 0.139
Te110 -0.065 -0.070 1.01 1.15 0.150

Table 1: Spin-orbit strength parameters κp,n,
pairing gaps ∆p,n and quadrupole deformation
β2 [5] used for our calculations.

of pairing correlations using semiclassical-BCS
theory. The differences in the evaluated and
the experimental binding energies may be re-
solved by considering shell effects. To the dis-

Nucleus δ(A) δP B(A,Z) BM (A,Z) BE(A,Z)
(MeV) (MeV) (MeV) (MeV) (MeV)

Te106 1.017 1.626 865.34 865.95 873.10
Te108 1.003 2.295 891.74 893.03 896.80
Te110 0.989 2.091 916.48 917.58 919.39

Table 2: Values of modified pairing energy
term, δP = δPp + δPn and the correspond-
ing modified BM (A,Z) in comparison to LDM
δ(A) and B(A,Z), the expt.value BE(A,Z) [6].

cerning reader who notes the smallness of the
difference between B(A,Z) and BM (A,Z), we
would like to emphasize that this small change
is towards the desirable correct value.
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