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Summary 

The first part of this thesis applies the Rieffel induction procedure, recently advocated by Landsman 

for the quantization of systems with constraints, to certain linear quantum field theories. After a 

preparatory chapter in which Rieffel induction is used to implement constraints on the Heisenberg 

algebra [qµ, P1.1] = -i9µ1.1, Landsman's proposal is applied to free quantum electrodynamics (QED). 

Starting from the Fock representation of the unconstrained field algebra, a new representation of the 

field algebra on the Rieffel-induced Hilbert space Hphys is constructed, which carries a trivial action 

of the gauge group. This leads to a new type of gauge fixing, lying conceptually between the Coulomb 

gauge and' the Gupta-Bleuler gauges. The characteristic features of this formulation of free QED arc 

presented in detail (Hamiltonian, propagator, n-point correlation functions, (semi)-positivity of the 

metric, implementation of the Poincarc group, action of gauge transformations, etc.). Also, some 

steps are undertaken to apply the method to functional representations and for a 3-dimensional vector 

potential with Ao = 0. 

Subsequently, the Rieffel induction procedure is applied to a simple model showing spontaneous 

symmetry breaking, viz. the Sti.ickelberg-Kibble model. Here, a physical state space Hphys is 

constructed which carries a massive representation of the Poincare group. Its longitudinal one-particle 

component arises from a particular Bogoliubov-transformation of the five (unphysical) degrees of 

freedom one has started with. 

The second, smaller part of this thesis contains two more chapters on spontaneous symmetry breaking. 

In the first one, formal properties of the effective potential of a scalar field theory are investigated. 

One finds that the effective potential is exactly one-fold differentiable at the value of the vacuum 

expectation value, and this turns out to be crucial for the validity of the perturbative loop expansion. 

In a second chapter, the algebraic characterization of the vacuum expectation value of a scalar field as 

an element in the center of the weak closure of certain representations of the field algebra is used in 

an attempt to simplify a particular type of gauge-invariant interaction terms. 
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Adler, dulde mein kreisen 
Neben der sonne und dir. 
Ist deine beute auch mir? 
Traue mir, niemals entreiBen 
Andere unser revier.[3) 
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CHAPTER I: 

INTRODUCTION 

Two strategies offer themselves for imposing constraints on a quantum field theory (QFT). Either one 

starts from quantizing a classical system with constraints imposed, or the unconstrained quantized 

theory is taken as starting point. The first part of this Introduction provides a brief survey of di llcrent 

methods for dealing with constraints in QFTs according to either of these strategies. some problems 

arising in QFTs showing spontaneous symmetry breaking (SSB). In the case of scalar QFTs without 

gauge fields, we focus on the effective potential, which monitors spontaneous symmetry breakdown. 

In the case of gauge QFTs, we draw attention to the fact that SSB is a gauge-dependent concept. 

While most technical prerequisites are developed in the subsequent chapters, this Introduction aims 

at relating these chapters to each other and to the literature. 

1. Theories of Constraints 

We give a brief outline of Dime's treatment of constraints, following [ 4] and [ 5]. After recalling the 

Gupta-Bleuler indefinite metric method, and its relation to Dime's treatment, we discuss two more 

recent proposals for imposing constraints: the T-procedure, advocated by Grund ling and Hurst [ 6, 7, 8 J, 
which takes the quantized theory as starting point, and the Rieffel induction procedure proposed 

by Landsman [9]. Both proposals arc formulated in an operator-algebraic setting which, bcsiJes 

conceptual clarity, offers the advantage of avoiding certain representation-dependent difficulties (e.g. 

the spectral problem in Dime's theory of constraints, mentioned below). Throughout our work, this 

may be regarded as the main motivation for adopting an algebraic approach whenever applicable. 

Dirac's treatment of constraints 

Historically, the first treatment of constraints in quantum theories has been proposed hy Dirac [ 1 OJ. 
It starts from a classical theory formulated on TQ, the tangent space of a mamfold CJ, on which the 
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I: Introduction 

dynamics is specified by a Lagrangian l( q, rj ), with ( q, q) E TQ, and the corresponding equations of 

motion 

8L .. d(8L) fJL. f( ') 
aq_'fNJ <Jj = dt aqi - aq_ifJqJ qj =: i q, q · (1.1.1) 

These equations have a solution only if the vector f;( q, q) lies in the range of W;j = a(J~~<l1 • Generally, 

W may be singular, in which case det ~V = 0 and solutions exist only for (q, (j) E (TQ)(t) c TQ, 

a certain submanifold of TQ. Changing by Legendre transformation, p; = :H&(:.·•i), to the cotangent 

manifold T*Q, a set of s primary constraints 

q/(q.p) = 0. (q,p) E T*Q, (1.l.2) 

specifies (T*Q)(l) C T*Q, the image of the Legendre transform. These primary constraints ensure 

that on (T*Q )(! l, at least the initial value problem is well-defined. Furthermore, to ensure that the 

constraints are consistent with the dynamics and with each other, one requires that the Poisson brackets 

of r/>s with the Hamiltonian and with themselves have to be constraints. In general, this is not the 

case and the obtained Poisson brackets are used as secondary constraints for a further reduction of 

the phase space. Finally, iteration shows either that the theory is inconsistent or it leads to a set of 

constraints which are consistent with the dynamics and with each other. Then, the resulting final 

constraint manifold C is a submanifold of (T*Q)( 1l. 

Dirac classified constraints by a compatibility requirement: a constraint is called a first class constraint 

if its Poisson bracket with arbitrary constraints is a constraint. Otherwise, it is called a second class 

constraint. 

First class constraints r/>a ( q, p) generate transformations within C for which C decays into equivalence 

classes under 'gauge transformations', 

(1.1.3) 

According to Dime's ideas, second class constraints can be eliminated explicitly. Dirac dealt with 

them by replacing Poisson brackets { ... } with Dirac brackets { ... } D 1 which have the same algebraic 

properties as Poisson brackets but satisfy 

{f, \s}D = 0, (1.1.4) 

where {xs} denotes the set of all second class constraints and f is an arbitrary constraint. The 

essential point is that one may go to a new set of canonical variables (Qi, Pi), i = 1, ... , N so that the 

1 For a definition and discussion of Dirac brackets, cf. (5, 10). 

2 



1.1. Theories of Constraints 

S different second class constraints are functions of the i = N - 5' + 1, .. ., N components only. Then, 

the dynamics can be discussed on the 2( N - 8)-dimensional manifold on which one is lert with first 

class constraints only. Since second class constraints are not the subject of what follows, we refer to 

the literature for a deeper discussion, cf. [5, 10]. 

For quantizing classical systems, Dirac postulated his correspondence principle between Poisson 

brackets and commutators, {f, g} ---+ ;~Jf, g], associating with each function f ( q, p) over phase space 

an operator f given in a representation on some Hilbert space H. The proposal is then to impose the 

quantized first class constraints as supplementary conditions on I 'ljJ) E 7-l, 

thereby singling out a subspace 1-lphys C 1-l. 

Remarks: 

( 1.1.5) 

• If~" ( q, p) were a second class constraint, condition (1.1.5) would be inconsistent. E.g., <D 1 = q, 

c/> 2 = p, <71 U') = PI 41
) = 0 but [q, P]l 1/1

) = ihl 41
) ::/= 0. This problem is circumvented by 

introducing Dirac brackets. 

• If 0 does not lie in the point spectrum of ~o: ( q, p), then there are no normalizable vectors I 1;') E 1-l 

for which (1.1.5) holds. E.g., consider free QED with the gauge transformation A; ---+ A; + \7 ;g, 

generated by q'>(;r) = \l;E;(:r). From Maxwell's equations, we obtain the Gauss law o(.r) = 0 

whereas the commutation relations [A;, q>( y)] = i 1i \7 y,i b( x - y) forbid us to interpret d> = 0 as an 

operator equation. One may try to adopt Dime's treatment, taking</> as supplementary condition 

in the sense of (1.1.5), but there is still the difficulty that rb has a purely continuous spectrum 

[ 11, 12].2 

The Gupta-Bleuler method 

One way to circumvent the problem of finding normalizable vectors satisfying condition (1.1.5) is 

to introduce an indefinite metric ry in 7-l, such that 1(1/J I ry I 'tP)I < oo. The Gupta-Bleuler method 

[13, 14], starts from this idea and gives a procedure of how to regain a physical interpretation in such 

an indefinite metric formalism: 

2 In fact, in the finite dimensional case. according to v, Neumann's uniqueness theorem. the Wey! form ot" :1;, <ii has 
essentially only one irreducible representation and in this representation, the operators have a purely continuous spectrum, 
Le., there is no I !/•) with ( 1p, ~') < •Xi, satisfying ( l.1.5). As pointed out by Narnhofer and Thirring, this problem reminds 
one of the improper eigenfunctions of the position operator J:, which are something like 6-functions but not normalizable. 

J 2 6 = oo, [12). 

3 



I: Introduction 

Given a Hilbert space H with positive definite scalar product(.,.), the physical expectation values 

are computed in terms of an indefinite sesquilinear form(.,.)= (., ry.) with metric operator 17. This 

product is positive semidefinite on a proper and maximal subspace H' C H. The physical Hilbert 

space Hphys is then defined as the quotient 

Hphys = H' /H", (1.1.6) 

where H" contains all elements of H' with vanishing (., . )-norm. 

The non-physical aspect of an indefinite metric in the Gupta-Bleuler formalism has hcen found 

repellent by many physicists. But there is a no-go-theorem of Strocchi [ 15, 16] saying that only a 

vector potential Aµ which is both non-covariant and non-local can satisfy Maxwell's equations as 

operator equations on a Hilbert space. The latter indeed happens in Coulomb gauge QED. In the light 

of Strocchi's theorem, the indefinite metric formalism appears to be if not the unique then at least a 

very economical way of obtaining a local and covariant formulation of gauge theories. Also, with the 

advent of the Faddeev-Popov path integral method for gauge fixing [ 17], the Gupta-Bleuler method 

has turned out to be very suitable for perturbative calculations, while on the other hand, a rigorous 

mathematical frame has been given to it (in the sense of a modified Wightman field theory) hy the 

work of Strocchi and Wightman for the ahelian case of free QED, cf. [ 18]. 

The T-procedure 

Strocchi 's theorem indicates that one cannot get rid of an indefinite metric formalism without paying a 

certain prize. The T-procedure, advocated by Grundling and Hurst (6, 7, 8], and going hack to earlier 

proposals by Carey, Gaffney and Hurst [19, 20, 21, 22], does not use an indefinite metric formalism. 

Let us look for the mathematical features of this approach. 

The T-procedure which we review only for first class constraints, starts from the quantized theory 

without recourse to a classical formulation. The theory is assumed to be given in the framework of 

algebraic quantum theory, first advocated by Segal and later effectively used in local quantum field 

theory by Haag and KastlerY As starting point, Grund ling and Hurst use an unconstrained C"' -Held 

3 Though we do not aim at reviewing this approach to QFT, the following should be mentioned: the fundamental 
mathematical object of a Haag-Kastler quantum field theory is a map 0 -+A( 0), mapping each bounded open region(') 
in Minkowski space into a c• -algebra A( 0). Isotony of this net of algebras [01 c 0 2 implies A( Oi) CA( 0 2 )I allows 
one to define the c• -algebra of quasilocal observables A as inductive limit, A := UoA( 0). A satisfies what is known 
as Haag-Kastler axioms, a set of physical requirements: isotony, Einstein causality, transformation properties under the 
Poincare group, etc., cf. [ 16, 23]. States are defined as normalized positive linear functionals on A. 
According to the philosophy of algebraic QFT, the field algebra should be constructed from the algebra of observables 
by investigating the superselection structure of the theory. This program, first advocated by Borchers and by Doplicher, 
Haag and Roberts, has been completed for special cases. The T-procedure (as well as the Rieffel induction procedure 
discussed below) deviate from a Haag-Kastler setting in so far, that A is taken to be the field algebra and not the algebra 
of observables. 

4 



1.1. Theories of Constraints 

algebra, a set U of n unitary operators Ui ( ,\) generated by first class constraints and the set or Dirac 

states 

So = { w E SA I w ( U; (A)) = l; i = l,. ... n} , (1.1.7) 

where SA denotes the set of all states of the field algebra A. Then, the constraint-free algebra of 

physical observables R is given by 

R = C/'D, (1. l.8) 

where, (cf. the footnote for a more precise definition), C denotes the subset of elements in A, 

commuting with the constraints and 'D denotes a two-sided ideal in A built from the constraints. 1 This 

structure will be discussed further in the following chapters on the Heisenberg CCR algebra and free 

QED. Here, we mention only what is known about the physical states on A and R: 

1. Sv is not empty iff 1 ~ :F(L ).s 

2. There exists a one-to-one correspondence between the set of Dirac states Sv( C) and the set of all 

states on R, S ( R). This one-to-one correspondence exists between the subsets of all pure Dirac 

states s~ and all pure states on R, SP(R), too. 

3. At least for the important case of a CCR algebra with hermitian supplementary conditions (1.1.5) 

and corresponding unitaries UL"" (A) : = ei,\~0 , ,\ E IR, no Dirac state w E Sn is regular [ 11 J. 

One may look for alternatives to the T-procedure on pragmatic or conceptual grounds. We mention 

the following two points: 

• The input data do not arise from a classical theory via a quantization prescription. Where docs 

the set of unitaries come from? From an algebraic point of view, this information should be 

encoded in the underlying c· -algebraic net, obviating the need for specification as input data. 

• For CCR-algebras, the ONS-representation of 7r w( A) on Hw, corresponding to Dirac states""" is 

non-regular on non-physical quantities. This implies, e.g. for free QED, that the vector potential 

4 To be more precise: 
F(L) := C*(U-1), 

'D := [AF(L)] n [F(L)A], 

c :={A EA I [A,H] E 'D;H E 'D}. 

Here, (X] denotes the linear space for an arbitrary set X CA, closed in the C*-norm and C*(X) is the c·-algebra 
generated by X. Furthermore, Grundling and Hurst have shown that 'D is an ideal of C as is required for making sense of 
(1.1.8). cf. (6]. 

5 Grundling and Hurst have shown that this condition is equivalent to having only first class constraints in the theory, 
cf. [6J. 
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/: Introduction 

does not exist as an operator on 'Hw· This will certainly complicate perturbativc calculations in 

this setting [12]. 

Rieffel induction procedure 

In contrast to the T-procedure, the Rieffcl induction procedure does make contact with an underlying 

classical theory. The starting point of this method, recently proposed by Landsman [9], is the 

observation that the phase space of many constrained classical systems can be written as a Marsdcn­

Weinstein quotient [24), combined with the proposal that a Rieffel induction procedure provides 

the appropriate quantum analogue for this classical reduction procedure. Here, we specify the two 

most important ingredients of Landsman's proposal, the Marsden-Weinstein reduction and the Ricffcl 

induction procedure: 

1. Marsden-Weinstein reduction procedure: the starting point is a classical theory, given by a 

symplcctic space ( M, B) on which a Lie group G (the gauge group) is acting. Provided certain 

technical assumptions are satisfied, one can define a so-called moment map J : Af ---+ g* by Jx ( rn) = 

(J(rn ), X), where g* is the topological dual of the Lie algebra g of G. Then, the Marsden-Weinstein 

reduced space J\!!0 is defined by the Marsden-Weinstein quotient 

(1.1.9) 

This space is equipped with a reduced symplectic form iJ. Since Marsden-Weinstein reduction is not 

employed actively in our later work, we restrict ourselves here to a footnote r; briefly illustrating the 

notions involved for the example of classical electrodynamics. 

2. Rieffel induction procedure: this originates from the idea to find a quantum analogue of the 

Marsden-Weinstein procedure. Schematically, given a quantization prescription q,, which relates the 

symplectic space (J'vl, B) to some field algebra A (e.g., the Wey! CCR algebra over M), G to some 

algebra B generated by G (namely the group algebra when G is finite dimensional) and (i\1°, IJ) to 

some (a priori unknown) algebra of observables 

(M, B); G A;B 
Marsden-Weinstein Reduction l l Rieffel Induction (1.1.10) 

( i\l[O' B) 

6 E.g., for classical electrodynamics, choose the space of solutions of the wave equation M = 
{A 1, IDAµ= 0: A1, E L 2(R3

) (~! C 4 }, with symplectic form B(A, C) = lrn f ( 2 .,,d1
3

3~Po A1,(p)C.1
1
(p) =: lu1(A. C)M 

and G = {g ES'( R4
) I Dg = 0: dg E M }. G acts on Mas a gauge group via Aµ __, A1, + Dµfl· The moment map may 

be computed a<; 19 (A) = lm(dg, A)M and 1- 1 (0) = {A 1, EM I 81,Aµ = O}. Now, the quotient 1- 1(0)/G removes the 
gauge degeneracy of the symplectic form fJ with respect to the action of G on 1- t (0), i.e., loosely speaking, M 0 contains 
the gauge-independent part ot M, cf. [ l j. 

6 



1.1. Theories of Constraints 

the question is: which method replaces the Marsden-Weinstein procedure on the quantum side of this 

scheme such that the diagram is commutative? 

Landsman's proposal starts from a c· -field algebra A, quantizing the unconstrained system, an algebra 

of constraints B and a subspace L C 'Hof a Hilbert space 'Hon which the algebra of weak observables 

A = B' n A (B' being the commutant of B) and the constraint algebra B are acting from the left and 

from the right, respectively. The aim of the Rieffel induction procedure is to obtain a representation 

7rx(A) on a Hilbert space }{X by induction from a representation 7r x(B) on a Hilbert space 'H\ .7 Then, 

Jrx(A) can be identified with the representation-independent observable algebra A,,,,8 • The essential 

tool of the Rieffel induction procedure is the rigging map(.,.) 6 , defined on L x Land taking values 

inB, 

(.,.)B: L x L---+ B, (l.l.11) 

L C 'H not necessarily dense. By definition, this rigging map satisfies the following conditions for all 

4,, <p E L: 

It is possible to construct 7fx only in case that 7f x is L-positive, i.e., for all 1/J E L, 7r :A (4·. 1/1) r;) ~ 0 as 

an operator on 'Hx· Then, one forms the tensor product space L 0 'Hx, endowed with a bilinear form 

(.,. )o, 

(1.1.12) 

where(.,.)\ is the inner product in 'H\. }{\ is the completion of the quotient of/,.· 'H\ by the 

subspace 'HN C L 'H, of vectors with vanishing ( ... )0 -norm, 

(l.1.13) 

7To phyicists, induction methods are known from Wigner's classification of all irreducible unitary representations of 
the Poincare group P, cf. [25, 26]. More generally, the method of induced representations for groups allows to construct 
via a general induction procedure a representation of the complete group, once a representation of a subgroup is given. 
Similar induction methods have been developed for group algebras and (which is relevant for our work) to ('*-algebras 
by Rieffel, cf. [27). Landsman's proposal specifies the input data in such a way that Rieffel 's method for the construction 
of representations of c· -algebras applies. 

7 



I: Introduction 

where (. )- denotes the completion of the pre-Hilbert space. For all 'l/J®v E 1-{\, the action of A E A 

is given by 7r\(A)1j;c~v = (7r(A)1J,Kw. 

The difficult part in applying this scheme is to specify a rigging map (1.1.11). To indicate the ideas 

employed, we give the following 

Example: 

Take B = C'*( G), the C* -group algebra of a locally compact group G. Then, one may try to define a 

rigging map (1.1.11) 8 on L x L as a function on G given by 

(1.1.19) 

8 To see that (1.1.19) defines a rigging map, one has to check the five properties given below (1.1.11): In the case of a 
convolution algebra C'c( G) of functions on a locally compact group G, one finds 

1. (>.lf;,pcp)H(x) = Xp(U(x)<p, If•). 

2. Using f* ( x) = f ( r 1) for the uni modular group G, we find 

(If·. 'Y) ~; ( .r) = (f i" ( ;r ),o. v· )* = (If" (I ( x - 1 )cp) = ( U ( J.:) i!·, ;p) 

= ( ;p, 11') B ( J:). (1.1.14) 

3. Using the multiplication of elements in a convolution algebra, A* B(x) := J dµ(y)A(xy- 1 ) EJ(y), we obtain 

(1/;,cpB)H(x) := (1/1,7f'(B)cp)H(x) = J dp(g)(7/i,7r(g- 1)B(g)cp)H(x) 

= J dµ.(g)(7r(x)11'(g- 1 )<p, lf;)B(g) = J dµ(g)(if;,<p)H(xg- 1)B(g) 

= ((l/;,<p)H * B)(x). 

4. 11'(A) E 11'(A) C 11'(B)' and hence, 11'(A) C 11'( G)'. This allows us to write 

(ill/>, cp) H(.r) = ( U (i: )<p, Alf•) = (A* U(x )<p, 1f1) = ( U( x )A* <p. l/•) 

= (v. A*,,,.,~)B(.r). 

5. For all states of a ONS-triplet ( 71'"'., n"-" Hw ), we may write in the case of a compact group G: 

(1.1.15) 

(l.l.16) 

w((Alf;,Aif;)H)=( f dµ(g)(Al/',A1J;)H(g)1f'w(g)nw,nwhtw = f d1t(g)(1f'(g)Alf>,A1J>)?1(iTw(g)n".~l •. )H~ la la 
= 1 d µ ( g) ( ( 11' 0 11' w )( g) ( A 0 1 ) if; 0 nw , (A (S'.d ) if; 0 nw ) }{ 0 H w :::; 11 A 11

2 
w ( ( 7/•. 1,h) B ) ( 1. L1 7) 

a 

where we have used in the last line that fc; dp(g )( 11'@7rw )(g) is a projection operator which is positive and commutes 
with all A EA, 

(1.1.18) 

For a non-compact, locally compact group G, this argument has to be modified, cf. [9], Prop. 3. 
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1.1. Theories of Constrnints 

where U is a continuous unitary representation of G on 'H, .r E G.9 Provided certain technical 

assumptions hold, 10 (1.1.19) satisfies all conditions for a rigging map specified above, if the actions 

of A and U commute. If we induce from the trivial representation 'H,_ = <C, we may write on the 

dense subspace L C 'H 

(1.1.20) 

Finally, let us compare Landsman's proposal with the T-procedurc and the Gupta-Bleulcr method: 

• (., . ) 0 is positive semidefinite on the complete 'unphysical' space L 'H\ (in contrast to the 

Gupta-Bleuler method), though the construction of ({X is close in spirit to the Gupta-Blculer 

quotient 'H' /'H". 

• In contrast to the T-procedure, the Rieffel induction procedure makes contact with an underlying 

classical theory. 

The first part of this thesis (Chapters II - IV) consists in an application of Landsman's proposal to free 

OED. 

9 For a unimodular group G, for which the rightand left Haar measuredµ are equal, consider the completion of the vector 
space Cc( G) of continuous functions f : G __,. C with compact support, equipped with a *-operation (f )* ( .r) = f ( ;r:- 1 ) 

(implied by the unimodularity) and with one of the following two multiplications: 

1. (untwisted) (f * g)(x) = fc dµ(y)f(xy- 1 )g(y) 

2. (twisted) (f *c g )(x) = fc dµ(y)f(J:y- 1 )g(y)c(xy- 1
, y), where c : G x G - U( 1) is a 2-cocyclc. 

Vector spaces with this structure define C ··-algebras. They are called 'twisted (or untwisted) c· -group algebra<>· and arc 
denoted c· ( G, c), (or C* ( (r')) respective! y. 
These group algebras can be endowed either with a Euclidean topology where the Haar measure dJ: is the Lebesgue 
measure d"J:, or with the discrete topology where the Haar measure dft(x) is the Dirac measure, i.e., every point has 
measure 1, all sets are open and all functions continuous. 
E.g., the Wey! CCR-algebra over G = IW. 2n turns our to be isomorphic to the twisted group algebra with discrete topology 
and 2-cocycle c( ( x1, x2), (Y1, y2)) = exp [ ~ ( x 1 Y2 - x2y1 )), cf. [28]. In the present example. G is endowed with the 
continuous topology. Only then one finds that (1.1.19) takes values in B. 

10 0ne has to find a dense subspace L C 1-l, such that L is invariant under the right action of B, defined by rr- ( f) = 
fc dµ(x)f(x)U(x- 1

) and (LL20) is finite. If Lis not left invariant by the action of B, one may still change the scheme 
such that (1.1.20) is defined (cf. the following chapters on free QED). 
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I: Introduction 

2. Spontaneous Symmetry Breaking 

In practice, an order parameter is used to determine whether a symmetry group G of a field algebra A 

is either unitarily implemented or spontaneously broken in a realization of A on a Hilbert space 'H. 11 

In scalar QFTs without gauge fields, the vacuum expectation value of a certain scalar field is a suitable 

order parameter, which allows one to decide this question. Its value can be determined by the minimum 

of the effective potential of the theory. Here, our discussion focuses entirely on the formal properties 

of this effective potential. 

In gauge QFTs, however, already the selection of a suitable order parameter is a highly non-trivial 

task. As we shall discuss, even the characterization of the Higgs-mechanism via SSB turns out to be 

gauge-dependent. 

SSB for scalar theories 

In scalar QFTs, the absolute minimum of the effective potential gives the value of the vacuum 

expectation value of the scalar field, which is a good order parameter. Hence, the effective potential, 

originated in the early sixties in proofs of Goldstone's theorem [30, 31 ), has played a crucial r61c 

in the discussion of spontaneous symmetry breaking and mechanisms of phase transitions, once a 

tractable perturbative evaluation was established with the loop expansion [32, 33, 34 ]. More recently, 

the effective potential has been used widely in phenomenological applications, e.g. for the discussion 

of phase transitions in the early universe. Without reviewing this very active field of research, we 

mention that there, a non-convex form of the effective potential is frequently assumed to have an 

energy-density interpretation. Faced by such heuristic applications, the following questions arise: 

• It is obvious that the loop expansion of the effective potential is not asymptotic to its non­

perturbative form [35, 36, 37]: for a non-convex classical potential, the loop expansion leads to 

11 Let us recast this point in an algebraic language: we say that a group G is a global symmetry group of the field algebra 
A if there exists a group of automorphisms { rr 9 } gEG on A satisfying a 9 , a 9,( A) = o 9 u12 (.•1) for all .<J 1 , y~ E (,'. , I E A. 
commuting with space-time translations rt1·. An automorphism o 9 of A is said to be unitarily implemented on a Hilbert 
space H. if'H carries a representation 7r(A) of A and there exists a unitary operator U(g) on 'H for all g E G, such that 
7r(n[A]) = U(g)7r(A)u- 1 (g) for all A EA, !I E G. and lI(gi)U(g2) = U(g1g2 ) for all g1, .<12 E (;, A symmetry <Y 9 or 
A is said to be spontaneously broken in a representation 7r of A, if it is not unitarily implemented in the corresponding 
Hilbert space 1{ (29). 
Now, choose a translationally invariant (vacuum) state n E 1{ and assume that we have (n, 7r(A)n) i- (n. 7r(rt 9 (:1))S2) 
for some element A E A, g E G. There are two possibilities: either n 9 is spontaneously broken in 7r, or there exists a 
unitary operator U(g) but U(g)n = n 9 i- n. In the latter case, n 9 is a translationally invariant (vacuum) state. since 
n 9 commutes with °'x· We say that the vacuum is degenerate, which implies that the representation 7r on 1{ is reducihle. 
Consequently, in the irreducible representations of A on Hilbert spaces 'H9 obtained by ONS construction from one of the 
degenerate vacua Q9 , a 9 will be spontaneous! y broken. In this sense, the vacuum expectation value ( n. 7r( A - et." ( ;\) )S2) 
is an order parameter and (D, 11(A - a 9 (A))D) ::/= 0 indicates spontaneous symmetry breaking. 
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1.2. Spontaneous Symmetry Breaking 

a non-convex expression for the effective potential, despite a formal convexity argument f 38]. 

Hence, we ask: in how far does one obtain non-perturbative physical information about the 

effective potential from the perturbative loop expansion? 

• Given that the exact form of the effective potential is convex [37, 39], in which sense has 

either the non-convex expression for the effective potential or the convex one an energy density 

interpretation? 

• How far is it possible to justify the heuristic interpretation of the perturbatively calculated effective 

potential despite the failure of the loop expansion? And are there other perturbativc methods 

which lead to a convex expression? 

Chapter VI is concerned with these questions. To be as precise as possible, we restrict our arguments 

to P( </> )2-theories whenever necessary. For this class of scalar field theories, we can use a plethora 

of important results which have been established within the program of constructive field theory. 

However, it should become clear that our arguments can be expected to hold true in a much more 

general setting. 

SSB for gauge theories 

The aim of this last introductory section is to draw attention to some problems arising in the charac­

terization of the Higgs mechanism, thereby motivating the calculations reported in Chapter VII. 

In the conventional formulation of continuum gauge field theories with Faddeev-Popov gauge fixing, 

a non-zero vacuum expectation value is assumed [ 40]. E.g., this assumption is considered to he neces­

sary for the appearance of massive vector bosons in the electroweak theory. However, as pointed out 

by Wightman (41], the following apparently inconsistent results and assumptions exist in literature: 

• In lattice versions of gauge theories which are believed to show spontaneous symmetry breaking, 

the vacuum expectation value of the scalar field is generically zero [42 J. This is nothing but 

a simple consequence of the manifest gauge invariance of the measure in the usual lattice 

formulation without Faddeev-Popov gauge fixing. 

• In lattice gauge theories with Faddeev-Popov gauge fixing, it has been shown that the gauge­

invariant two-point function of the scalar field decays exponentially in the radiation gauge [ 431 

and in all Gupta-Bleuler gauges [ 44]. This result holds formally in the continuum limit and shows 

that there is no SSB in these gauges [ 43, 44, 45, 46 ]. 

11 



I: Introduction 

• In lattice gauge theories with Faddeev-Popov gauge fixing of the Landau type, the gauge-invariant 

two point function of the scalar field approaches a non-zero value in the large distance limit and 

one does obtain a non-zero vacuum expectation value [ 44, 45]. 

These results show that SSB is a gauge-dependent concept, not indicative for the Higgs mechanism 

in general [47].1 2 

As shall be explained at the end of Chapter III, our application of the Rieffel induction procedure 

to free OED leads to a new gauge, the 'Landsman gauge', which is a particular cross-breed of the 

Coulomb and Gupta-Bleuler gauges. In the light of the results reviewed in this subsection, it is clearly 

of interest to exploit the features of the Landsman gauge for QFTs showing SSB. This is done in 

Chapter V, where we apply the Rieffel induction procedure to the Stiickelberg-Kibblc model. 

Our main motivation for the approach in Chapter VII has been the idea that a gauge-independent 

algebraic characterization of the vacuum expectation value should help to clarify the situation described 

by Wightman. Though we have not been able to contribute much to the problems mentioned by 

Wightman, we report here on our first step, which consisted in emphasizing that the vacuum expectation 

value of a scalar field has an interpretation as a central element in the weak closure of a certain class 

of representations of the field algebra. Motivated by Haag's treatment of the BCS-model (which we 

briefly review) [ 48], we finally try to exploit this algebraic characterization of the vacuum expectation 

value in a formal analysis of a particular type of interaction terms. 

12 It should be clear that this observation provides excellent motivation for studying methods unrelated to the Faddccv­
Popov path integral formulation of QFT, which implement constraints (and gauge-fixing conditions) in QFTs showing 
SSB. Indeed, this has been the starting point of our work on the Rieffel induction procedure described in Chapters 11- V. 
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CHAPTER II: 

CONSTRAINTS IN THE HEISENBERG ALGEBRA 

As a preparation, in this chapter we apply the Rieffel induction procedure to the Heisenberg algebra 

of canonical Commutation relations (CCR) of four degrees of freedom, 

(2.1) 

g µv = ( 1, -1, -1, -1). Therefore, in the first section we specify the necessary input data, cf. ( 1.1.10), 

namely an algebra of observables and an algebra of constraints, as well as representations of these 

algebras. 

The Heisenberg algebra defines a toy model, 1 mimicking free QED by taking the electromagnetic 

vector potential A1, to be frozen at the value A1, = A1,(i1 ), where p denotes a fixed momentum four 

vector. Most of the results obtained will survive our discussion of free QED in Chapter III with minor 

changes, thereby simplifying our presentation considerably. 

1. Wey I algebra formulation of the model and its representations 

Here, we consider the CCR-algebra 6( C 4 • B) over the vector space C 4 with symplectic form 13( ., . ), 

defined by the Wey I form of the canonica I commutation relations 

W(f)IV(f') = ~V(f + f')e[-tBUJ'll, (2.1.1) 

B(f, f') = 2Im(J, f')M, (2.1.2) 

for all f, f' E C 4 , where Im(., . ) M denotes the imaginary part of 

(I' }'/) ·- ,. /W-f'! 
• ' 1\11 • - • µg . v· (2.1.3) 

1This investigation has been motivated by the paper of Carey, Gaffney and Hurst [19] who analyze (2.1) by methods 
different from ours. 
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II: Constraints in the Heisenberg Algebra 

To see how (2.1) and (2.1.1) are connected, one may formal I y write W ( c, d) = exp [ -i ( c1Lp1' + d1, r/' ) ] 

for f = c +id, which allows one to 'derive' (2.1.1) from (2.1) with the help of the Baker-Campbell­

Hausdorff formula. Yet, this connection remains formal since 6(C 4
, B) is a C*-algebra, given 

independently of any representation while the generators qµ, p,_, exist in regular representations of 

6(C 4
, B) only, [ 49]. 

The algebras of weak observables and constraints 

Here, we specify subalgebras of 6(JR8
, B) by their transformation properties under the group E'('2). 

Then, we briefly motivate this choice. 

We start.from the Wey! algebra 6(K, B) over a linear space K with symplectic form B. Asymplectic 

transformation of K is defined by a linear operator Z on K, which leaves B invariant, B ( ... ) = 

B(Z., Z.). Z defines an automorphism a of 6(K, B) by 

o:(vV(f)) := W(Zf). (2.1.4) 

In our concrete case, we interpret the f = c +id as elements ( c1 , c2 , c3, c4 , di, d2 , d:i. d 4 ) in K = IR8 

and we specify a representation Z of R('2) on JR8 by the generators: 

F _ ( E'1 :,I) fc'2 = ( [_<,; 2 E?,2 ) AI:i = ( 
:\/':1 A~'•i) jl - 0 0 

(! 
0 -1 

t) u 
0 0 

n W' - (~I 
l 0 

n E'1 = 0 0 
E'2 = 0 -1 0 () 

0 0 0 
j ·~ -

0 0 1 . 0 

0 0 1 0 0 0 () 

The automorphisms a(e,11 h) of 6(JR8,B) are then defined by specifying Z, Z(0,;r 1 ,:r2) = 
exp [OM':i + .r 1E' 1 + :r2E'2] in (2.1.4). For later use, we present this operator, using the short­

hand a= (I - cos{}): 

( 

cos() 

r - sin() 
Z(O,x1,.r2) = 'E..L,. e £L 

8 sm - 8 a 
'E..lsinB - ££.a e e 

sin 0 
cosO 

7J-a + 7- sine 
7J-a + 7- sine 

_'EJ.. sin 0 - 'E:l...a e e 
_:!:i. sin()+ 'E..l.a e e 

l - .!...(x2 + x2 )a e2 1 2 
l ( 2 2) - e2 X1 + X2 a 

To make contact with a simpler expression for Z, given by Weinberg [50], we use the substitution 

T1 . X2 {)) f 1 = - Slll () - -(1 - cos e e 
/ -- ;r I I 1 
«J,-~'\L 

0 
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2.1. Weyl algebra formulation of the model and its representations 

which leads to2 

( 

cosO sin{}-l1 cos{}-l2 sin0 l1 cos0+l2 sin0) 
- sin 0 cos 0 l1 sin() - l2 cos 0 -{1 sin()+ lz cos() 

Li l2 J-i(l~+li) t(l?+ti) ' 
- 1 z2 2) 1 ( 12 12 !1 l2 2( l + 12 l + 2 1 + 2) 

Following Carey, Gaffney and Hurst f 19], we are led to subspaces N, T, S of lR.8 , the first two of 

which allow for the construction of E(:2)-invariant subalgebras of .6.(JR.8 , B), 

N = {f E lR.8 I I= (u1.a2,a,a,b1,b2,b,b)}. 

T= {f E lR.8 If= (0,0,a.a,O,O,b,b)}, 

8= {f E lR.8 If= (a1,a2,0,0,b1,b2,0,0)}. (2.1.6) 

We mention the following properties of these subspaces and their corresponding Wey! algebras: 

• T and N are invariant under £(2), whereas N = S' EB T. S' is not invariant under the action of 

£(2), i.e., the action of £(2) on N is reducible but indecomposable. 

• Hence, .6.(T, B) and .6.(N, B) are invariant under the action of £(2), but .6.(S'. B) is not. Yet, 

.6.(S, B) is isomorphic to the quotient .6.(T, B)/ .6.(N, B) with the obvious equivalence relation 

understood, r 19]. 

We have specified £(2)-invariant subalgebras of .6.(C4, B) to obtain a setup, closely related to the 

Weyl algebra of the vector potential of free QED. In fact, we shall already encounter the main 

features of our later application of the Rieffcl induction procedure to free QED in the simpler setting 

of the Heisenberg Weyl algebra. Especially, the role of the stability group E(2) of the massless 

representations of the Poincare group can be studied already in this toy model. 

Representations of the Wey I algebra and their equivalence 

As a second preparatory step, we introduce two representations of .6.(C4, B), the Schrodinger rep­

resentation on L'2 (JR.4 , d4 :r) and the Fock representation on a symmetrized Fock space over the one-

2From our substitution, it is obvious that Z(O,x 1 ,x2) = Z(-O,-x 1 ,-x2)- 1, whereas Z(0,/ 1 ,12) -f. 
Z(-O,-l1,-l2)- 1 • 
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II: Constraints in the Heisenberg Algebra 

particle Hilbert space C 1
• Then we introduce the Bargmann transform which defines a unitary map 

intertwining both representations. Let us start by specifying these representations: 

1. Schrodinger representation 7rs on H = L2(R4, d4 x), endowed with the scalar product 

(2.1.7) 

for all I/', cp E L 2 (R'', d4 :r ). The representation 7rs(l:.(R8
, B)) on I}(R4

, d4 :r) is defined by 

(2.1.8) 

2. Fermi representation 7rp on H = S'C 4 := EB~0H(n); 1-((n) = C{1/:Ys .. .C:)~C(n)' where 

denotes the symmetrized tensor product. We define the representation 7rp on the dense subspace 

E C SC 4 which is the span of the total subset of exponential vectors [ 51] 

N 

E = {,L ,\ic=· I >.i EC\ {O}, zi E C 4
; N <co}; 

i=I 

l 1 - ;j_·, .. ::: J3!" 
-- Jr - -

with scalar product 

where (g, f)E = gvDv1Jw The representation is defined by 

7r F( W (f) )e.r = e -:/ (f,f)£+(x,f)E e(x-j)' 

where/ = (~lo). This definition can be extended to all of H. 

Remarks: 

(2.1.9) 

(2.1.10) 

(2.1.11) 

(2.1.12) 

• The heuristic idea behind the Fermi representation is the so-called 'Fermi trick' to interchange the 

role of the 0-components of the annihilation and creation operators (thereby replacing -g1w by 

the Euclidean metric Oµv, obtaining a positive definite inner product and a Fock representation). 

In the present case, this is done formally by specifying a1,, a: via (remark the minus signs): 

1 (' '*) qo : = /2 ao + a0 

1 (' '*) O; := -= a;+ a .. ··· v2 · · " (2.1.13) 
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2.1. Wey I algebra formulation of the model and its representations 

These definitions for q,,, p1, satisfy (2.1) if 

(2.1.14) 

The action of these operators on then-particle Hilbert spaces H_(n) is given hy (symmctrization 

is understood) 

(2.1.15) 

""n' (2.1.16) 

(2.1.17) 

(2.1.18) 

Introducing (2.1.13) into the formal expression W ( c, cl) = e[-i(c,,pµ+d,,q'' ll we obtain (2.1.12) hy 

acting with 

(2.1.19) 

on exponential vectors, i.e., the heuristic Fermi trick leads to the Fermi representation. 

• The Schrodinger representation and the Fermi representation are unitarily equivalent. To see this, 

we introduce the Bargmann transform B with kernel B( z, x ), which defines a unitary map[ 52 J 

from L2(JR4, d4 :r) into the space of entire analytic functions :Fin L2 (C 4 , tJ- L,, zµzµ]d' 1::) 

B: I}(JE.4, d4 x) ____, :F := {F' IF entire on C; llFll~, = j I F(z) j
2
e[-L,, 21

'::
1
'
1d'1:: < '.X)}. 

(Bf)(z) := ~ j f(:r)e[Lµ(:i·,,zµ-tx~-~z~)]d4 .r = j B(z,x)J(.c)d1 :r. (2.1.20) 

The inverse of fJ is given by 

Using for :F the orthonormal basis { ea(z) = *rz(\' I 0: E la}' one can introduce the unitary map 

R, 

R: :F ____, S<C.4, 

(2.1.21) 
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II: Constraints in the Heisenberg Algebra 

Here, n denotes a multiindex, I"= {o I a= (a1,a2,a3,a4) E N4
}, o! = 01!a2!o:i!o:4!, {cJ}~ 

are the standard basis vectors in C 4, cj'1 is the a i-times symmetric tensor product of t .i and 

Zi E C. Especially, it follows for the Fock vacuum 1/1vCr) = ~() ~
1 

L,, r1.J that (!J If·)(:) = I, 

R( f3'1/ 1,,) = e0 and 

(2.1.22) 

2. Rieffel Induction for the Schrodinger representation on H = L 2 (JE.4, d4.c) 

As mentioned in the Introduction, one has to specify three inputs to carry out the Rieffel induction 

procedure: the right B-module 3 L which carries a left representation of A and a right representation 

of B, the Hilbert space H, which carries the representation of B one induces from and the rigging 

map (., . ) 6 : L x L _, B. Here, we specify these inputs for the Schrodinger representation of the 

Heisenberg CCR algebra where the calculation is particularly short and simple. 

Imposing the constraints 

We choose the following input data: 

1. as constraint algebra: B = C*(JE.2
), the group algebra over JE. 2 

'.::::'. T with continuous Euclidean 

topology. T is now regarded as additive group and will be understood as a gauge group. 

2. as field algebra of weak observables: A = 6( N, B) C 6(C 4
. B) 

A is contained in the commutant of the abelian algebra C*(T) = 6(T. B) which lies in the 

center of A.4 

3. Hilbert space 1ix with scalar product (.,. )x, used to induce from: 1ix = C, carrying the trivial 

representation?rx ofB; 1rx(j) = frd 2xf(x) for f E B. Wewrite?rx(j) = }(O), where' denotes 

the Fourier transform. Later on, we shall consider Fourier transformations J (:tab) at arbitrary 

points ;Yab := (0, 0, a, a, 0, 0, b, b) ET. 

4. Hilbert space 1-{ with scalar product(.,.): 1-{ = L2(JE.'1, d4 ;r.), carrying two representations: 

3 A right B-modulc L is a complex vector space L carrying a linear anti-representation (a 'right representation') rr 11 of 
B, i.e., rru(A!J) = rru( B)rrR(A). 

4 In what follows, we shall assume A = 6( N, B) = 6(T. B)'. This has been claimed as a theorem by Grundling and 
Hurst (7) but according to private communication with Grundling, the proof contains a gap. We will assume this theorem 
to be true nevertheless. If the gap turns out to be irrepairable. our approach still carries through with the weak observable 
algebra defined as 6( N, B), since in any case 6( N, B) <;;;; 6(T, B)' is sufficient to perform Rieffel induction. 
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2.2. Rictf el Induction for the Schrodinger representation on 'H = /} ( IR:1• c/'1 .r) 

(a) the left representation of A, defined hy the Schrodinger representation (2.1.8), restricted to 

A. 

(h) the right representation of B, defined by 11-(f) = fTd2 :i:.f(.c)U(;c). Here, C(.r) := 

r.s( vV ( :c)) defines a continuous unitary representation, since r.5 is a regular representation 

and hence strongly continuous.5 

5. rigging map on L x L, where Lis taken to be Cc(IR4
): for all Xab E T, we specify 6 

(2.2.l) 

With the above input, we obtain the following 

Result: The 'physical' representation 71\ is L-positive, r.x ( ( 1/1
, 4•) H) 2". 0. The corre­

sponding Hilbert space 1{X is isomorphic to L2 (IR2
, d2 x) and carries a unitary implementation 

of the group of automorphisms 0:(0,1 1 hl· 

Calculation: To establish L-positivity of 11 x, note that 

and hence 

For the construction of 'HX, we calculate(., .)0 on L ® <C = L (this allows us to drop t'. w E <C in 

(1.l.12)). 

(2.2.2) 

Now, we consider the mapping 

V. 1· I 2 ( ITD ,l l'' ) I 2 ( ITD 2 12 ) : _. C .) jJ.'\,. • c .c ----; . , jJ.'\,. , ( :r , 

lf;(x1,.r2,.r:i,;r,i)----; (V1h)(:r1,.r:2) = j dai/J(.r1,;rz,a,a), (2.2.3) 

·~Here. we use the one-to-one correspondence between the non-degenerate representations 71"- of the group algebra 
C* (T) and the continuous unitary representations U of the group T [28]. 

6 That this expression satisfies the conditions for a rigging map (1.1.11), follows from our remark in the footnote to 
(1.1.19). 
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II: Constraints in the Heisenberg Algebra 

which satisfies 

(2.2.4) 

From (2.2.2) we find that the null space }{N of (., . )0 is }{N = ker V. Furthermore, V quotients to a 

unitary mapping V 

(2.2.5) 

Finally, let us look for a unitary representation ux of £(2) on J{X = L2 (IR2
, d2 :c ), which implements 

the automorphism O(e,11 hl on}-{\ via 

for J E N. In the present case, there naturally exists already a unitary representation l 'Hof E(2) on 

}-{ = L2(R1
, d4 x ), defined by 

(2.2.6) 

for all 1/' E L2 (IR.4, d4 ;r). UH is unitary on L 2(R1, d4 ;r ), since ( r.p, 1/1) = ( UHr.pJ'H 1/1) due to the E( 2)­

invariance of the measure d4 .t. UH(0,1 1.12 ) implements the automorphism o:(e,t 1 .ti) on L2(IR'1.d4.r). 

This allows us to obtain a representation{!\ of E(2) on}-{\ as a quotient of UH by using the map\/: 

To see that ux is well-defined, one checks that UH}{N C }{N, by calculating in (2.2.3) that 

( V UH~.>)( :r 1 , :r2 ) = J da·i/;(y1 , y2 , a, a), where y 1 = x 1 cos()+ x 2 sin 0, Yz = -x1 sin f) + ;t2 co~ 0. 

One sees that ux is unitary since it follows from (2.2.2) that (if;, r.p )o = ( [/X'lf;, [TXr.p )o. 

Remarks: 

• From the representation theory of E(2), we know that the generators f,'' 1 and E'2 of the abelian 

subgroup of E(2) have to be represented by zero in all irreducible finite dimensional unitary 

representation. Hence, [!\ is a non-trivial representation for the generator M':i of E(2) only, cf. 

(2.2.7). 

• The'vacuum'stateonH= L 4 (R1,d4:c) is 

··'· ( 1· ·c ·r· x ) -
1 

e[2
1 I>~l '1-·v • 1,.,z,.·.1, 4 - - , (2.2.8) 

7r 

which is not invariant under the action of UH. But (V1/1v)(:c 1,:c2) = 1/•o(:r1J2) E }-{\ = 

L'2(11l>2 /2. ·) 
lfu , ( .I. ' 

(2.2.9) 
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2.3. Ricffel Induction for the Fermi Representation on 'H = S<C 4 

defines an E(2)-invariant cyclic7 vacuum state. 

Comparison with the literature 

Finally, let us make contact with the work of Carey, Gaffney and Hurst [19], by considering the most 

general form 

(2.2.l 0) 

of an irreducible representation to be induced from. This leads to 

(2) 2 J J •{1« • l 1 2 7T\ ((1p, 1/1) 13 ) = (27r) d:r1d.r2 I daf-Y-1p(:ri,:c2, 2(a -6), 2(a + ~2))1 2 0. (2.2.11) 

Again, we c;n construct '}-{X, going through the discussion given above with the mapping V( 2), 

2) J i~1a 1 1 ( V ( 7,b) ( x 1 , x 2 ) = da e - 2 7,b ( x i , x 2, 2 (a - 6), 2 (a + 6 ) ) , (2.2.12) 

where v< 2l1J> E L2 (I~.2, d2 x). Here, we remark that in their method to impose the constraint algebra B 

of this model on a physical state space, Carey, Gaffney and Hurst obtain the closely related expression 

1 J . 1 1 ~ 
g(x1,X2,>11,>-2)= fi du.f(;r1,x2,2(u-,\2),2(u+>-2))t 2 (2.2.13) 

in a very different way: they arc looking for a direct integral decomposition of H = L2(l~'1 , d 1.r), 

(2.2.14) 

in which all the elements of 7Ts(6.(N, B)) are in diagonal form. This decomposition is obtained by 

specifying the subspaces of Hon which the central elements 7rs(6.(T, B)) = Z[Ir8 (6.(N, !3))]8 are 

represented by a c-number 

(2.2.15) 

The improper restriction TI.\'i ·\'2 ( 6.( N, 13)) of 7rs( 6.( N, B)) to a single improper subspace H.\' 1 v 2 is 

irreducible and, more importantly, it is a representation of the E(2)-invariant factor algebra for Hoo. 

The problem with this approach is that the vectors 

(2.2.16) 

which have been specified by the restriction I1,v 1 ,v2 , do not lie in H. This problem is circumvented in 

the Rieffel induction procedure by constructing the physical state space 1-{,X = L2 (IR.2
• <l2:r) in which 

v< 2L1j. lives. 

7 A state u• E H is called cyclic if the action of the algebra on 1/1 spans a dense subspace of'H. 
8 Z[7r(A)] denotes the center of 7r(A), i.e., the set of all elements Z E 7r(A) for which [Z. 1\] = 0 for all. l E 7r(A). 

21 



II: Constraints in the Heisenberg Algebra 

3. Rieffel Induction for the Fermi Representation on 'H = Sc '1 

As a second illustration, Ricffcl induction is applied again to the Heisenberg CCR algebra, changing 

the input data of our previous discussion only by replacing 'H = L2 (~4, d4 :r) with 'H = SC'1• Now, 

the calculations are more involved and the main difficulties of our subsequent analysis of the Fock 

particle representation of free QED are encountered. 

Calculation of (., . )0 and analysis 

In close analogy to (2.2.2), we calculate(., .)0 for the elementary vectors ex, eY EE in (2.1.9). Using 

U(J:ab) :=;= r.F( vV[(a + ib)(O, 0, L l )]), and L = E, defined in (2.1.9), we ohtain 

(c", eY)o = r cfadh({'(.r,,1;)c·r. C
11

) 
}T 

= j T dadbc-(a 2 +b2 )-xo(a-ib)+x3(a+ib)+)1o(a+ib)-y3 (a-ib)+J·o!7o+,·, fi, 

_ e[-xox3-I/0Y3 +(x1 Y1 +.i:2v2)] - ) 

where the usual summation convention over the index i = 1, 2, 3 is understood. 

Before analyzing this expression, we introduce the dense subspace D C 'H: 

(2.3.1) 

Definition of D: D is defined as the set of finite linear combinations of symmetric 

n-particle states J'.(llQ 5 ;r( 2)()8 ... ) 5 .t(n) with arbitrary finite number of particles n. 

Remarks: 

• For our calculation, we shall use the fact that symmetric n-particle state in D arc obtained hy 

differentiation of elementary exponential vectors 

X (l)15.,., x(2)r,• <.:o· .,.(n) - _1 _ _!}__ _!}__eC~:::r;x<iJ]I 
<Ys v:Ys .. ·'c.Js«· - r-T d · ·· d =o· v n! r1 1'n r, 

(2.3.2) 

• So far, we have specified (., . )0 as a positive semi-definite9 quadratic form on 'H with domain 

EU D. 10 One may ask whether (.,. )0 can be extended to H. This is not the case since it has been 

shown hy Landsman [ 1 ], that (.,. )0 is not even closable as a quadratic form with domain E U D 

and hence it can certainly not be extended to H. 

9That (., . )o is positive semidefinite will be shown in the argument following (2.3.15). 
10 With EuV, we do not denote the set theoretic union but the set of all vectors in H which are finite linear combinations 

of vectors in E and v, e.g., e1°' + x2\Z!s x3 E EU v. 
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2.3. Ricffel Induction for the Fermi Representation on H = 8C'1 

• 'Dis not invariant under the action of any dense subalgebra of 6(JR.8 , B), 1fp(6(JR.8 , B))'D <t D, 

whereas E is invariant under the action of the dense subalgebra of 6(JR.8, B ), containing all finite 

linear combinations of Wey! elements. Nevertheless, we are particularly interested in performing 

the Rieffel induction procedure on L = D, since this will lead us from (2.3.2) to the 'physical' 

n-particle states. To know under the action of which algebra 'D is left invariant, we observe 

that 'Dis obtained by the action of the generators of TIF(6(M, B)) on D (these generators arc 

essentially the annihilation and creation operators). The set of all finite sums of polynomials 

of these generators defines an unbounded operator algebra under whose action D is stable by 

construction. 

For a detailed· analysis of (.,. )o on 'D, we introduce the following 

Combinatorial Notation: 

•In = {1,2, ... ,n} index set with subsets In; 2q 

In= fn;2q U f n,q· 

{l,2, ... ,2q}, In,q {2q + 1, ... , n}, i.e. 

• P(h ), the set of permutations of h 

• Ptn.'I' the set of different partitions of I,, into index sets pq(Jn;2q) = 1~~2 q and pq( ln,,1) = 1;::;, = 

{ ti4 
... • , t;~·:._ 29 } of 2q and ( n - '2q) elements, respectively. Consequently, P' l~\1 .q1 is the set of 

different partitions of 1~~29 into index sets p' qi ( /~~29 ; 29,) and p' qi ( /~~29 , 9 1) of '2q' and ( n - '2q - 2q') 

elements, respectively. 

• S~q = { s~}, the set of all sets of non-ordered pairs s~ of p9 (In;29 ), 

,p_{( 7 -q)l.--1 .. q.c.!/ . (.f ) 'l_j_. q_;_ -q _/.. -q ·_;_. ·1_;_ ''} 
8q- m.;,Tn; /.- , .. .,q,m;,llli Epq n;2q ,1n;-r-mj-r-m·i1-r-rn.i1,l-r-J,I -r-J 

With this notation, the positive semi-definite product ( ., . )0 on elementary vectors in Dreads: 

(x~(l)®s ... (;;)s ;T (n), Y(I)@s ... 01sY(m) )o 

l d d d d [-· c(i)r x(J)_s y--{i)s y,-(J)+r ;.(•J, "-'y J)+r x(')s --{y J)JI ----==-- ---- --e 1
<•Q ) 3 IQ ) 3 I J ')•l I 2 )•2 

Vn!m! dr1 ... drn ds1 ... dsm r;=s;=U' 

1 L L ( L IT(-l)q(xbm?)x~m?) + xbm?)x;m{J)) 
Rmf q q1=0 P1 P 1 

1 sPqESqP i=l ' n,qt 11n,q 

x ( ,f:, ,. g (-1)'' ( 11l'";' 1Yi ,,;'I + 11b'"11 Yi m1J)) 
sq 1 ESq 1 

(2.3.3) 
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II: Constraints in the Heisenberg Algebra 

Example: 

To illustrate this awkward looking formula, we mention as an example: 

(2.3.4) 

Remark: 

The next step is to determine the null vectors of D with respect to (., . )0 and to construct the physical 

state space h' by quotienting. Since we know from the work of Carey, Gaffney and Hurst that the 

observable algebra of the model is isomorphic to L\(S, B), we expect to find in H_x the 'transversal' 

components x 1 , x 2 of the single particle state :r E H_(ll, only. 11 From (2.3.1), however, this is not 

obvious, since (., . )0 involves the components x 3 and x 0 , too. That these components finally end up 

in the null space hN, can be established via (2.3.3) by the following 

Result: Arbitrary n-particle states :r(ll08 ... 0 8 x(n) E D can be written in the form 

,,(!},.·, ,,, ,.(n) _ ?-1 + \ n + .
1
-:; 

«· ·.,:,s ... \~Js·"' - 'T Ax~i ,, (2.3.5) 

where i!T E D denotes a linear combination of vectors with purely transversal components, 

n is the vacuum, >-:c is a constant generally depending on the vector :i~(llc;) 8 ... '.}~:z·(n) E D 

and ii E hJV. 

Example: 

Let us illustrate the above result by deriving the decomposition (2.3.5) of a 2-particlc state .ri 1 l >s·r( 2
). 

For this, we calculate the (.,. )0 -product 0Lr(ll1;~'.)3 x( 2 l -Ax 1 with arbitrary rn-particlc states. According 

to (2.3.3), 

(x (l),-:;l X(2)_ , n yi (1) 1,7' :.· ... , .1,,(m))· 
"'--'s Ax .ll., \..'Ys···v.)sd U 

_ -1 ( .(1) ,(2) .· (2) ,(l))(n . (t) 9 , (m)) _ \ (n . (1) , 1, .. (m)) 
- /2:io 13 +.ro .13 H,y \:9s .. ·®sY O AxH,y \:Ys ... ,,VJs.lf O 

11 
For one(-p::t,icle sta(t~: !the projection onto the transversal component(s i: 

1
g,iven b(y ~e)operator PT, 

X'> X? X? 0 
PT x = Pr . " = - =: xr. Furthermore, we define x .L : = P .L -. = 

X3 0 X3 X;J 

xo) \ 0 ) \ xo) \ a:o 
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2.3. Rieffel Induction for the Fermi Representation on H = SC 4 

( 

q
1 

I I I I ) _(m; )_(ri1:1 ) ,-(1Ti7 )_(mi ) 
X L il(Yo /h +Yo Y3 ) 82,m-2q', 

,,,;Es,,: i=l 
q q 

(2.3.6) 

for rn even and zero otherwise, where P2 denotes the permutation group of two elements and q' = S- -1. 

Here, choosing 

' - (x(l),0 x(2) ") - -1 (x(1)xJ2) + x(2)x(1)) 
Ax - 'Us 'H 0 - J2 0 3 0 3 ' (2.3.7) 

all the longitudinal x-components disappear from the(., .)0 -product and we find that 

x( 1)0)sx( 2 ) = Prx( 1 ) Prx( 2
) + >-xD + n, 

ii E HN. This means, that in the sense of (2.3.5), x(ll@8 .T( 2 ) can be decomposed into a purely 

transversal part, a multiple of the vacuum vector D and a vector in the null space. 

Calculation: 

Now we derive (2.3.5) for the general case. We denote a symmetrized n-particle state built up of one 

particle states x(il, i E I*, arbitrary index set with w elements, by xO®s· .. ®sx(w)lr.· This allows us to 

simplify (2.3.3) by writing 

( () re (2q)I ") ._ l ( '"'"' ITq ( l)q( (m{) (m{) , (m;) (m:1))) . 
• 1: ®s···®sx Pq(hq)' H 0 .- lr0:\i ~ - Xo X3 +.Co X;3 • 

y(2q)! s~ES~i=l 

( /} 'De I' (2q')I ,_ 1 ( '"'"' nq' q' ,--(m;
1
)_(rri/l _(rri:1)_(11i;

1
)). 

H,,lj vYs···\YsY p1(/21))0.- /M ~ (-1) (Yo Y3 +Yu .I/:\ ) • 
q q (2q')! p'E_,p'i=l 

sq' '-· q' 

Now, it is clear that 

!J(m))u = L L 
'/,q'=ll P1n,q•P'1m,q' 

(2q)!(2q')!(n - 2q)!(m - 2q')! 

n!m! 

tV\' (2q)I ") (" 'OM (,_""!\ (2q')I ) 
···'<Ys•C (I )' H O H, Y os .. •VYsY 1 (I ) 0 pq 2q ' p q1 2q 1 

(p, 0,y\ r:"!\ n , (n-2q)J Or:"!\ K>. . (m-2q')J ) 
X yX .Us···'UsI-YX (I )' Y '<Ys···'UsY 1 (I ) 0 Pq n,q P q' rn.q' 

X Dn-2q,m-2q 1 • (2.3.8) 

( n () 1,-~ n n (n-2q) . Or:· n , (ml) 
ryX \t.Js···Os ry X , Y '-h···' ,,,y O 

(2q')!(rn - 2q')! . (),,, ,,, (2q') 
----1---(D, Y '<)s··· 1 '.!sY 1111 

1
(/. ,))o 

n1.. q 24 
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II: Constraints in the Heisenberg Algebra 

(;r(I)0s ... ()sX(n>, Y(l) 0s···0sY(m))o = L L (2q)!(n - 2q)! ,or" ·:: .('2q)I 
---

1
--(.T ,y8 ••• \:-'1s.l- (l ),O)o n. Pq 2q 

q=OPrn,q 

( n (),91 ,<,:?) p.,, (n-2q) ON\ N\ (m)) 
X ryX \:Ys··-'<>s 7 .r , Y '<Ys···'<YsY O· (2.3.10) 

(2.3.5) is now a consequence of the fact, that the vector 

- _ ,(!),VI ~ , (n) _ ~ ~ \ p., .Ore/\ r;:>, p ,(n-2q) I 
rl,\ - x '<Ys··-'Os·'C L L /\pq(ln,q) yX v:'Ys···'<Ys yx pq(l11,q) (2.3.11) 

q=OP 1,,,q 

becomes a null vector for the choices 

(2.3.12) 

Remarks: 

• S~ contains (~~)! different sets of numbered pairs, i.e., (~~)! ~ different sets of not ordered pairs. 
, (mq) (mq) (rhq) (m'1) , • • •• nf=l (:ro I X3 • + :ro I :r:i ' ) IS an expression With 2q terms, each term contammg as many 

xo's as .T/s, i.e., (:rO ... ::•; 5 1·( 2q)I (l- )' D)0 contains (2;)' different terms. Since all indices arc 
Pq 2q q, 

symmetrized, we may equally well use the symmetrization ('2~)! LP(h,J of one term. Putting all 

these factors together, we obtain the better looking expression 

( 
,()(;: -~-~ ,('2q)I n) - (-l)q L (p(l)) ,(p(2q)} 

x. ,Js···V>s·r (I )' H o - {fMi Xo .... l3 ' 
Pq 2q I (2 ) I q. (j · P(I2q) 

where the sum is over all permutations p E P(J2q)· 

• It follows from the form of (2.3.11) that 

(2.3.13) 

• All elements of the null space HN n Dare linear combinations of vectors of the form ·17.\, as can 

be seen from their construction. 

Conventions: 

• In what follows, we denote by [x] E H' the equivalence class of ail vectors x + i?'. E H, ·ii E HN. 
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2.3. Rieff cl Induction for the Fermi Representation on 'H = S<C '1 

• All Hilbert spaces of the same dimension are isomorphic, but they are not necessarily isomorphic 

as carriers of representations. Saying that 'H\ can be 'naturally identified' with S<C 2
, we mean 

that the pertinent representations of the observable algebra and of E(2) on these spaces arc 

unitarily equivalent. 

Now, we are in a position to discuss the physical Hilbert space 'HX, which carries a constraint-free 

representation of the algebra A= 6(N, B). 

Result: The induced 'physical' Hilbert space 'HX can be naturally identified with SC 2 • 

The ( ... )0 -inner product, used for the construction of 'HX, is positive semi-definite. 

Calculation: 

On E, we define the map V : E _, SC 2 by linear extension of 

(2.3.14) 

To see that this linear extension is well-defined (since the basis of exponential vectors { 1-·r} is over­

complete, the existence of a linear extension is not guaranteed), we consider the map \~· : D _, SC ·2 , 

defined by ( cf. (2.3 .11)) 

(2.3.15) 

and extended to D by linearity. The essential point is now that i1 can be extended to E and coincides 

on E with V. This can be seen by using (2.3.13) and 

,,{1} ,{n} _ ~ n! ,,{1},"°' . {I} {l+l} ,y ·' ,,Jn} 
X ®s .. ·®sx - ~/I( _/)IX l. \:Ys .. ·®sX l. ®sXT v.Ys ... @sJ r , 

I . n . 

where :r = :cl. + :i:y. One obtains 

V( x) = ( J: n) ,[x·r] e e , ~ i oc 

(2.3.16) 

27 



II: Constraints in the Heisenberg Algebra 

Here, the indices { i} should not be mistaken for labels of different vectors .r( 1 l, .cUl. They count the 

multiplicity of one and the same vector x in the tensor products. 

It follows from our calculation that V can be extended to EU D. With the expression 

following from (2.3.3) and with the map (2.3.14), we obtain 

(2.3.17) 

for all X, V E E U D. From this we conclude that (.,. )0 is positive semi-definite on E U D. 

Furthermore, the (.,. )0 -null space 7-(v is 'HN = ker V. This implies that 1> quotients to a unitary 

mapping~, which can be extended to the completion of (DU E)/HN, 

Result: The 'generating' functional wX(J) := (7rF(vV(J))D,n)0 satisfies w'-(Prf) = 

wX(j) for f EN. 

Furthermore, (7rp(W(J))n, H)0 =(H,1TF(W(- f))H) 0 if and only if f E N. 

Calculation: 

Using (2.1.12), we may calculate 

(2.3.18) 

where/= (-xo). For g = 0, .f E N, we obtain from (2.3.18) the 'generating' functional 

(2.3.19) 

and hence wX(f) = wX(Pr f). Furthermore, it follows from (2.3.18) that (7rF{lV(f))S2. H)0 = 

(H, 7rF( vV( - f) )H)0efoh-fof3. 

Remarks: 

• For a discussion of the reason why (., . )0 does not preserve the ad joint, we refer the reader to our 

chapter on QED. There it is argued that the preservation of the ad joint for all f E N is sufficient 

at least for some practical purposes. 
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2.3. Rieffel Induction for the Fermi Representation on H = SC '1 

• For [OJ= 1>(n) and for all f EN, we have 

(2.3.20) 

i.e., ..,.,.x determines 1-(X by the ONS-construction (53). 

• From (2.3.19) it is clear that""''\. is invariant under all Lorentz transformations and hence under 

the subgroup E(2) of the Lorentz group. This means that there exists a unitary representation 

ux of E(2), implementing the automorphism O'.(e,11 .12)(W(f)) = W(Z(O, l1 , l2)f) on Hx. fl' is 

defined by 

(2.3.21) 

To obtain an explicit expression for [!\, defined in (2.3.21), on elements in V, our strategy is as 

follows: We show that in the decomposition of vectors (2.3.22), the prefactors of the form (2.3.12) are 

not affected by f ~ Z( 0, l1 , l2 )f. This allows us to show that (2.3.21) is given explicitly on n-particle 

states by the action on one-particle states, ux[Pr f] = [PrZ(O, l1, l2 )f] = [e-iBM~ Prfl. Therefore, 

we establish the following 

Result: For J(i) E N, all n-particle states 

d d ~ (i) d ... -l · 7rp(W(- ~ r;f ))D.lr;=O 
r1 (.] n i 

(2.3.22) 

can be written in terms of the 'transversal' components Pr f(il only, with prefactors which 

do not change under the substitution f ~ Z(O, l1 , l2 )f, cf. (2.3.29). 

Example: 

To illustrate this result, we give two simple examples: 

id l~ 7rF(W(- L rJ(i)))D.I,.,=() = /2/(llci.J(2) - ~(u(ll, f(2))E + (/(2). f(l))r:)n 
l.T1C72 i ~ 

= /2Prj{ 1l@sPr/(2l - ~((f(ll,f(2 l)E + (f(2l,f( 1l)E)n, 

(2.3.23) 
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II: Constraints in the Heisenberg Algebra 

where we have used (2.3.7). Using (cf. (2.1.12)) ./~ = - f 0 , ./\ = /:i and fo = h since I E :V, we 

obtain 

d
r: dd Irp( W( - L rif(i) ))nl,.,=0 = -+ ((Pr f(ll, Pr f( 2l)E + ( Prf(2). Pr f l) )E) n +ii 
7 l r2 i ~ 

+-/2Pr j(ll®sPr j(2l, (2.3.24) 

which is an expression in purely 'transversal' components. 

Calculation: 

We investigate then-particle states obtained by differentiation 

/( ') )' r-o'°' '°' f-tn-29) I X n - ~q · 'fYs .. ·YYs (I )' 
• Pq n,q 

Using 

and (2.3.11), this allows us to write 

d d '\" ' (i) --l ... -
1 

rrp(vV(- L.,rif ))nl,.=o -
C Ti G Tn i ' 

(2.3.25) 

(2.3.26) 

"' "' V(') ')'(· ') » ')'( /:o. ·. . /:(2ql)I n) I) 1~0.. . I) 1:(,,-2,,-2,t'il L., L., ~CJ · n - ~q - ~(j · . .~is ... '.'.Js. J' i(!Pq )' H O r. '·".:Js .... :,s T. ,i i(I'''',) 
I q n q q' I f/ 11 •. f 

q'=O P' Pq I •• 
1,,,q.q 

(2.3.27) 

In a first step, we consider those terms in the last equation, which contain no factor ( Pr/(m;'l. Frf( 11•;'J )E; 

and for which n = 2q + 2q'. Using 
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2.3. Rieffel Induction for the Fermi Representation on 1-{ = SC 4 

we find for these terms 

= L,)-l)qa( q)(}(l)c)s···C'.)sf!"l, 0Jn)o. (2.3.28) 
q=O 

Let us consider this expression for fixed q. Then, a(q) may be determined by a simple combinatorial 

argument: the number of elements in P1n,q is (n- 2~;!( 2 q)! and there are (~~)! different sets of ordered 

pairs, i.e., (~~)!~different sets of not ordered pairs in sr Now, a( q) is given by counting the numbers 

of sums on the RHS and LHS of the equation given above: 

n! (2q)! l (n - 2q)! 1 n! 1 
(n - 2q)!(2q)! 2q q! 2n-q (I - q)! = a(q)2n I!. 

Hence, a( q) is given as a binomial coefficient 

a(q)= 2· '..1:.1 --(?:_:t)· 
q!(I - q)! 

This implies that Lq a( q )( -1 )q = 0 and hence, then = 2q + 2q' contribution vanishes. 

The above argument can be taken over to all other terms with a non-zero number of non-transversal 

components. The point is to keep fixed the subset of indices of transversal factors. 12 

We conclude that only terms with purely transversal components remain and hence 

d d ""' (i) 

d
---:- ... -

1 
iTp(vV(-L.,rif ))nlr,=o 

11 CT'n i 

xj(n - 2q)!Pr/O .. , p 1~(n-2q) I + 7 
·· .\.·j, T (I ) n. . Pq ,.,q (2.3.29) 

Remark: 

• Putting (2.3.21) and (2.3.29) together, we obtain the explicit form of ux on n-particle states in 

1-(X, 

12 E.g. Consider all terms in (2.3.27) with n = 2q + 2q' and one factor r-2! (Pr J(k)' PrJ(I) )E - ~( Prf(I)' PTf!k) lE). 
Writing this factor fork, l fixed in front of the sums of (2.3.27), we restrict the sums over the possible permutations and 
partitions to the subset of ( n - 2) indices from which k and l are excluded. The remaining expression has the form of 
(2.3.28) (formulated for the smaller set of (n - :J.) indices) and the argument given above implies that this contribution 
vanishes. 
Similarly, all terms in (2.3.27) with an arbitrary fixed number of factors [-:,1 (Pr t< k ', Pr P 1>) E - ~(Pr Ju', PT P"' ')e) 
and an arbitrary fixed ( 11 - 2q - 2q' )-partidc state can be treated by restricting the above argument to the remaining set 
of indices. 
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II: Constraints in the Heisenberg Algebra 

• If :r E T, then 7rp(TV(x))F = F + i'i for all F E DUE, n E 'HJV. From this it follows that 

7r>.:(6(N, B)) can be identified with 6(X/T, B) which we call the algebra of observables, 1°3 

being the non-degenerate symplectic form obtained from B by quotienting [ 1 ]. 

4. T-procedure for the Mini Model 

To make the connection between the Rieffel induction procedure and the T-procedurc more explicit, 

we sketch in this section how the observable algebra is obtained in the T-procedure. To apply the 

T-procedure to the Heisenberg CCR algebra with A = 6( .V, B) and the set of unitary constraints 

U = {U;(A)}, Ui(J\) = W(J\vi), v; ET basis vectors, we start by specifying the C*-algebras F( L), 

D and C: 

F(L) = C*(U - 1 ), (2.4.1) 

is the C* -algebra generated by ( U; ( ,\) - 1 ) , and 

D = [AF(L)] n [F(L)A] = [AF(L)], (2.4.2) 

since A commutes with F( L ). The 'weak commutant' C of Dreads 

C = D',,. = { :\ E A I [A, H] E D; H E D} = A, (2.4.3) 

since [A1 , A2 Li c;(U;(A) - 1 )] = [A1, A2] L; c;(U;(J\) - 1) ED for all A1, A2 EA, c; EC. From 

this, we obtain (cf. (1.1.8)) the algebra of observables 

'R = A/[AC"'(U - 1 )]. (2.4.4) 

The essential point is now that due to a general theorem of Grund ling (cf. [8], Thm. 5.2), this algebra 

is isomorphic to 6( N /T. B), where 13 denotes the non-degenerate symplectic form obtained from B 

by quotienting. Hence, 

R '.::= 6(N/T, B) '.::= 6(5', B), (2.4.5) 

i.e., R is an E(2)-invariant quotient algebra, isomorphic to 6(5', B). 
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CHAPTER III: 

CONSTRAINTS IN FREE QED 

In this chapter, the Rieffel induction procedure is applied to the free electromagnetic field, given by 

the canonical commutation relations of the vector potential 

(3. l) 

where D denotes the commutator function satisfying OD = 0, with initial conditions D(x. 0) = 0, 

z1
1 D( x, t) I t=o = -6( .c). In close analogy to our discussion of the Heisenberg CCR-algebra, we start 

again by specifying the Wey! algebra and subalgebras of (3.1) and some of its representations. Then 

we construct the Rieffel induced Hilbert space which carries a representation of the observable algebra 

and we discuss its properties. As already in the last chapter, the choice of our starting point has been 

motivated by the paper of Carey, Gaffney and Hurst [19). 

1. Weyl algebra formulation and its representations 

In what follows, we consider the Wey I algebra ,6, ( Af, B) over the vector space M = U (l~:i) C 4 

with symplectic form B(., .), defined by the Wey! form of the canonical commutation relations 

W(<f;>)W(<f;>') = W(<,b + <,b')e-~B(<P.<P'l (3.1.1) 

B( <,b,<P') = 2Im( <f;>, <,b')M (3.1.2) 

for all</>, q/ E J\1, where 

Remarks: 

• Let us comment on the connection between (3.1.1) and (3.1 ). Smearing the vector potential with 

test functions in Schwartz space I E S(R4
) '~:) R4

, A(f) = f d4 xA1,(1: )jt1(x ), (3.1) reads 

[A(f), A(g)] = U7(f,g), 
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III: Constraints in free OED 

o-(f,g) = - j d4 xd4 yD(:r - y)fµ(x)gµ(y). 

This allows us to introduce the operators U(f) = e[iA(f)] which (according to the Baker-Campbcll­

Haussdorff formula, eAeB = eA+Bd[A.B] for [A, [A, BJ] = [B, [A. BJ] = 0) satisfy the Wcyl 

form of the CCR 

U(f)U(g) = U(f + g)e[-}-a(f,glJ. 

To obtain a one-to-one correspondence between Wey! operators and test functions, one uses the 

map f ~ dJ, <P1-1 = D * fw Let us define the space Mo of real solutions of the wave equation 

061' = 0, 

(3.1.3) 

Then the operators W(</>) = U(J), </> E ivf0 satisfy (3.1.1) with symplectic form B induced by rr 

(cf. (3.1.2)): 1 

(3.1.4) 

• The Wey I algebra is defined hy specifying M and B. B is given a hove. /\If is taken to be the 

completion of 1W0 in the Fermi inner product2 

(</>, </>') F = j ( 2:;3~ko [</>;(k)</>';(k) + </>o(k)</>'0 (k)]. 

Here, (</>, d>') F defines an L 2 -norm II d> II~ = (</>, </>) F and l'Vfo is dense in L2(JEY) C 1
• Hence, 

we obtain as completion of M0 , cf. [54] 

(3. l.5) 

• In what follows, it is useful to introduce formal annihilation and creation operators a,,, a;, for the 

free electromagnetic field by 

3k 
A ( ) J d [ -ik:r (k) ikx *(k)JI h µ :r = (27r)32ko e aµ + e aµ ko=k' and ence 

1 In what follows, the symbol <P is used for three differe.nt but closely related mathematical objects: 1. the functions 
<P E M, satisfying D</JI' = O; 2. the Cauchy data { </Jµ (x), </Jµ (x)} of the equation of motion for fixed time t; and 3. the 
Fourier transform 

ef/'(x, /) = _1_3 J ~3k[<P''(k)e-ikx + </J''(k)eikx]. 
(2rr) 2ko 

2 B is the imaginary part of (., .) f"' as may be seen from ( </!, <i/) F = B( <jJ, J <f/) + i 13( </;, <//). Here, the operator ./ is 
defined as jq> 1,(k) = -(icp0 (k). -l<Pj(k)). J~ = -1. 
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3.1. Wey/ algebrn formulation and its representations 

/3k 
iA(f) = j (

2
;)32ko [aµ(k)<i\,(k) - a;Jk)q)µ(k)] = a1-,(<f/') - aµ(</>1 1 r, (3.1.6) 

where </Yµ(k) = D(k)fµ(A~) = -it(k0 )8(k2 )fµ(k). Here, (3.1) leads to 

(3.1.7) 

Notation: 
. - d3 k 

In what follows, we use dk = (211v 2k
0 

• 

Subalgebras of 6(M, B) 

The algebraic automorphisms a A.a implementing Poincare transformations on 6( l\!l, B) arc induced 

by the symplectic transformations /A.u on Ai, 

with (3.1.8) 

Here, we introduce the subspaces N and T of M which are invariant under /A,n: 

N ={</>µEM I kµ<Pµ(k) = O} ={<I>µ E lvl I aµ<Pµ(x) = O}, 

T= {<Pµ EM I <Pµ(k) = ikµg(k)} = {<Pµ E lvl I </Yµ(x) = aµg(x),Dg(x) = O}. (3.1.9) 

The corresponding subalgebras are denoted by 6( N, B) and 6( T, B), respectively. Furthermore, we 

introduce the subspace S C M, 

S = {<P1-i EM I <Po(k) = 0 = //q)i(k)} = {<Pµ E 1'v1I<Po(;r)=0 = Yiq)i(.r)} 

with corresponding subalgebra 6(S, JJ). 

Remarks: 

• Here, N = S EB T, N and Tare left invariant by ~f/\,a while Sis not. Correspondingly, 6(N. B) 

and 6(T, B) are invariant under the action of P, whereas 6(5', B) is not invariant under o/\,(I· 

• Carey, Gaffney and Hurst [ 19] whose discussion we follow by singling out subalgebras of 

6(M, B), point out that 6(5', B) is isomorphic to the Poincare-invariant 'algebra of physical 

photons', 6.(N, IJ) / 6('1', 1J ), though 1t is not isomorphic to it as carrier of the action of P. 
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III: Constraints in free OED 

Some Representations of 6(Ivl, B) 

As a final preparatory step, we introduce the representations of 6( Af, B) on the symmetric (Fermi) 

Fock space H = S( L2(JR3
) C 1 

), and a functional representation which may be regarded as the 

analogue of the Schrodinger representation in our discussion of the Heisenberg CCR algebra. We 

specify: 

1. The Fermi representation ilp is given on H = S(L2 (IR.3 ) ® C 4
), the symmetric Fock space 

over the one-particle Hilbert space L2 (IR.3 ) ® C 4
• We define ilp on the dense subspace E C 

S( L2 (JR.3) ® C 4 
), which is the span of the total subset of exponential vectors 

with scalar product 

N 

E = {LA;eiJ·<;i I A; E C,~,(i) E H,N < oo}; 
i=l 

c'1' = l ' . l ' 
·11•1fl-·1i• . . MT,. 

v3: 

(elf', e<P) = e(1/J,'P)E, 

(~J, lp )E = j ( 2:~3~ko 1/Jµ(k)o''"ip11 (k). 

The representation is defined by3 

ilp(W(<,b))e~' = e --/(<t>,<P)E+(1/J,J,)Ee(1/J--cb), 

where d>,, = (-:0
). The definition (3.1.14) extends to all of H. 

2. A representation TIL of 6(Af, B) on L2 (Lj_(IR.3 )®ra.IR4, p) defined by 

(3. l.10) 

(3.1.11) 

(3.1.12) 

(3.1.13) 

(3.1.14) 

where <,bµ(k) = <j>~1 l(k) + i<,t>),2l(k), and the scalar product is given by p(A) = [dAJ<--(..1 .. ·ll, 

( 1/1, y )pp = J [dAje--(A,A).l/J(A)lp(A) 

3 To see that this defines a representation. we check that 

where 
Im((;fai0 , Zi'o)E + (</>i, cp;)E] = Im((cp, </>) p] = B(cp, </>). 
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3.2. Rieffel induction on 'H = S( L2 (R1
) .: (C'1) 

for all i/', c.p E L2 (L2 (!~.3) 0 lR4
, /l) [55]. We mention this functional representation for the sake 

of completeness only. A calculation of a Rieffel-induced inner product (., . )o in a functional 

representation will be given for OED in the temporal gauge, discussed in the next chapter. For 

the specification of subspaces L c J}(L2(JR3
) 0 lR4,µ), on which Rieffel induction can he 

performed, we refer to the definition of (4.4.1). 

Remark: 

In close analogy to our discussion of the Heisenberg CCR algebra, we comment on the connection 

between the Fermi trick and the Fermi representation ITF. The idea is to start from canonical 

commutatio~ relations for the annihilation and creation operators a,,, a:. 

[a(f), ci"(g)] = (g, f)E, (3.1.15) 

a(f) = a,Jr) = j (') d~:~,z.. [ho(k)lo(k) + ai(k)li(k)]. 
~7r ~ ·O 

which allow for a representation of (3.1. 7) on 'H as 

(3.1.16) 

The action of ITF( 6( NI, B)) on 'H = S( L2 (JR3) C 1
) is now given by ITF( W( qiµ)) and the following 

action of the annihilation and creation operators on the n-particle Hilbert space (symmetrization is 

understood): 

Especially, this leads to 

and hence to (3.1.14). Again, we remark that whereas vV( </>)exists independently of the representation 

chosen, the vector potential Aµ and its creation and annihilation operators exist only as operators on 

those Hilbert spaces which (like the Fack space 'H) carry a regular representation of 6( i\l. 13). 

2. Rieffel induction on H = S(L2 (JR3) () c 4
) 

We are now in a position to specify the input data from which we want to carry out the Ricffel 

induction procedure for free OED on 'H = S(L2(JR3 ) ® C 4
). Firstly, we present the mathematical 
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III: Constraints in free OED 

setup, secondly we comment on a mathematical difficulty concerning the definition of our path integral. 

Then we calculate and analyse the inner product (., . )0 , obtaining results similar to those obtained for 

the Heisenberg CCR-algebra. 

Imposing the constraints 

Though our choice of algebras and representations for free OED parallels our discussion of the 

Heisenberg algebra, there is one additional problem: the gauge group G = T (regarded as additive 

group) is not locally compact and hence it is unclear whether one can make sense of the integration 

(1.1.20). For the same reason, the group algebra C*(T) is not defined.4 On the other hand, our 

discussion of the Heisenberg algebra has shown that what is needed is neither C*(T) nor the rigging 

map, but a continuous representation of the gauge group T and a well-defined inner product ( ... )o. 

These observations lead us to a slight modification of the Rieffel induction procedure [ 1 ], reflected by 

the following input data:5 

1. as constraint algebra: we do not define a constraint algebra (as mentioned above, we can not rely 

on the existence of B = C* ( T), which would be a tentative choice). All we need is a continuous 

representation of the gauge group Ton the Hilbert space H. 

2. as field algebra of weak observables: A = 6( N, B) which is the commutant in 6( :\!. l3) of 

6( l'vl, B) = C*(Td), the group algebra over T with discrete topology. 

3. as Hilbert space Hx with scalar product ( ., . )x, used to induce from: Hx = C, carrying the trivial 

representation 7r x of T. 

4. as Hilbert space H with scalar product ( ... ): H = S( L2 (JR3
) @C 4 

), carrying two representations: 

(a) the left representation of A, defined by the Fermi Fock representation !IF. 

4 Recently, Grundling has defined a group algebra for groups which are obtained as topological inductive limits of 
locally compact subgroups,cf. [56]. We have not tried to exploit this work for our purposes. 

5 From the definition of the rigging map, (.,. )0 inherits the properties 

(IV, llt)o 2: 0, 

(Allt, <f?)o =(IV, A*<f?)o, 

(Aw,Allt)o::; II A 11
2(\ll, llt)o, (3.2.1) 

for all Ill, <f? E L, A E A. These conditions may be required independently of a rigging (which needs not to exist). They 
are sufficient for obtaining an 'induced' representation 7TX(A) on 1f.X, cf. [1]. Though, strictly speaking, we give up 
Rieffel induction by starting our discussion rigorously with the specification of the semidirect inner product satisfying 
(3.2.l), our point is that R1effel induction provides a systematic mechamsm leading to (3.2. l ). 
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3.2. Rieffel induction on 1-(. = S( U(Rl) : C 4 ) 

(b) the right representation of T, defined by U(aµg) 

8µg ET. 

Ilp(W(aµg)) which is continuous, 

5. For the specification of (., . )0 , we consider the 'rigging map' on E x E: for all D1,g E T, this 

map is specified by 

(3.2.2) 

By a slight abuse of notation,( ... )13 will be called 'rigging map', though it does not take values 

in a C* -algebra. 

Calculation and analysis of (., . )o 

We start with an expression for the rigging map: 

Result: On elementary vectors elf', e<P, the rigging map reads6 

Calculation: 

For </>µ(k) = iPg(k) E T, we write~µ = ( -J;0 ) (ikog) 
</>; - ·ikig ' 

Using the action of 11 r( vV ( </>)) on c'1', we obtain (3.2.3). 

Remark: 

(3.2.3) 

In analogy to (2.3.1), we would like to calculate ( ., . )0 for the elementary vectors e'", e'P E E, starting 

from 

(3.2.4) 

where ['D</>] denotes a (path integral) measure over the group T. In contrast to (2.3.1) however, T is 

not locally compact. The following result specifies in which sense (3.2.4) is well-defined. 

6 Here g1, g2 denote the real and imaginary components of g(k) = g1 (k) + ig(k) and (f, g) = J di'.f(k)_q(k). 

Furthermore, we use the formal expression (ko4'o, !f) for the scalar product (k0 ~·0 , g) := J dk7f•o(k)kog(k). 
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III: Constraints in free OED 

Result: (Landsman,[l]) 

Consider an isotonic family { T,,},, of 11-dimensional Hilbert subspaces T;, c Tn+i c T, 

such that T is the algebraic inductive limit of this family. Then 

. J, dng . (w,<l>)o = hm ~(U(oµg)W,<l>) 
n--;cx) Tn 7r 2 

exists for all W, <l> E E. On elementary vectors, 

(eii', e<P)o = e(1/w)E J, dµ(g)e-i[(ko.Po,9)+(k;,P;,g)+(9,ko<P0 )+(g,k;\P,)], 
T 

where fL is a promeasure.7 

Argumentation: (Landsman,[l]) 

(3.2.5) 

(3.2.6) 

To obtain (3.2.5) for all elements of E, it is sufficient to establish (3.2.5) for elementary vectors, since 

the result holds automatically for finite linear combinations of elementary vectors. 

The essential point is that the functions k:o4'o, k:il/Ji, k0 q50 , k;q5;, occuring in (3.2.6), span a flnitc­

dimensional Hilbert space K. Hence, 

J (g) = e-i[(ko !/lo ,.<l)+(k;1)), ,g)+(9,koi00 )+(g,k,i0, )] 

is a tame function (cf. footnote for definitions) and this implies that the right hand side of 

can be explicitly evaluated, cf. [ 57]. Since P,, __, l weakly by construction of the family {7~,},,, one 

sees that the limit (3.2.5) exists. 

Notation: 

In the subsequent discussion, we use the following projection operators on L 2 (R3
) C 4

: 

} ( k;kj ) (Pc1t')"(k) = 0, k'fi 1/'j(k) , 

( P01/')1,(k) = ('t/'o(k), 0, 0, 0), 

(Pl. 1/· )"(k) = ( (Pi+ Po)l/) )1,(k). (3.2.7) 

7The 1~. are regarded as real Hilbert spaces. Given 1. projectors P,, : T -+ Tn with P;Pi == P; for i :::; j 
and T,. C T a finite-dimensional (Hilbert) space of T, and 2. arbitrary Borel sets A E Tn with measures 1111 (A) = 
JA ~e-<kgg,,gi)-(k59»9». Then the promeasure µis defined on cylinder sets by µ(P,~ 1 (A)) == 11,,(A). Since the 

11" "T 

covariance ofµ is the unit operator (which is not nuclear), it cannot be extended to a Borel measure on T. Yet, 'tame' 
functions, satisfying f (x) == f,.(P,.x ), Un a Borei function on Tn C T) can be integrated with respect to 11, d. [57]. 
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3.2. Rieffel induction on 'H = S ( L 2 ( IR:i) , ; <C '1 
) 

Result: On elementary vectors in E, we obtain 

Calculation: 

Carrying our the Gaussian integrals in 

h. ['Dg(k) ]( 7r F( vV ( </>µ(k)) )e IP, e<P) 

=; fr ['Dgi (k) ]['Dg
2 

( k)] e-(kJg1 ,91 )-(kJg2,g2) e-i[(ko..Po ,:g)+(k;,P; ,g)+(g,ko<;?0 )+(g,k;<P; )]e(,P,.p) s, ( 3.2. 9) 

we obtain 

(e't',e<P)o = efdkF(k), 

F(k) = [- k0 !/Jo(k1;::i1h(k) _ kocp0 (k1:icp;(k)] + [1f!i(k)(O;j _ k~~j )Cf'.;(k)]. (3.2.lO) 
0 0 0 

With the help of ~1f!i(k) = k1,(PL1/;)µ(k); k01/>o = kµ(P01j!)µ(k), this takes the form of (3.2.8). 
0 

Remark: 

(3.2.8) may be analysed by exploiting the close relation with (2.3.1). Identifying :r0 with /.:1,( /~11, • )i,, 

x3 with kµ(PL1f! )µ, (a:: 1 , x 2 , 0, 0) with ( PrV' )µ and yµ with the corresponding expressions for y 1,, the 

combinatorial machinery developed in our discussion of the Heisenberg CCR-algebra can be taken 

over without alterations. Again, we are interested in the structure of n-particle states which we shall 

obtain in our calculations as derivatives of elementary exponential vectors, 

0 /,(l) (2) ,/.(n) ·- _1_.i:_ _!!:.._ I::r;,p(i)I 
'!-' 0s1f! 0s .. ·®s4-' .- CT d ... d e r;=O' 

vn! r1 rn 

We start with the 

Definition of 'D: 'D is the set of finite linear combinations of n-particle states 

1f!(I )<g;s 1f!(2 ) 0 s .. · ®s 'lj;( n), ~,(i) E L 2 ( JR3 ) <C 4 • 

The(., .)0 -product on 'Dreads (cf. the previous chapter) 

q 

X ( 2': IT j df(i)(k~i) Po4'~m7l(k(i)))(k~i) PL1f!~mil(k(i))) 
s~ES~ i=l 
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III: Constraints in free QED 

+( k1i) Po1/';,11i;i ( k(i)) )( J.·i,i) Pi 1t>1m?l ( k(i)))) 

q' I I 

x ( L IT j dk(i)(k1i) Po°Cp;,m; l(k(i)))(k1i) Pi~m{ l(k(i))) 
sP;EsP; i=l 
q q 

I I 

+(k1i) Po°Cp~m{ l(k(i)))(k;,i) Pi"Cp~m{ \k(i)))) 

(3.2.11) 

Remark: 

In analogy to the case of the Heisenberg algebra, V is not left invariant by the action of 6.(M. B), 

nF( 6.( M, B) )V </- V, but remains stable under the action of the unbounded operator algebra gener­

ated by the creation and annihilation operators. 

We start our analysis of V by deriving the decomposition properties of vectors into transverse com­

ponents. 

Result: Arbitrary n-particle states 4)(!)0 8 ... 0 8 1/;(n) E V can be decomposed into trans­

verse components up to a vector 11 in the null space, HN, 

(3.2.12) 

,\ - (2q)!(n-2q)!(1.o 01.(2q)I n) 
Pq{/n,q) - I 1p @s .. ·®s'// p (I )' O· n. q n,q 

(3.2.13) 

Calculation: 

The calculation follows step by step the derivation of (2.3.5) via (2.3.11) and (2.3.12). Especially, we 

may write again 

(~1 () 15:>s···®slf.'('2q)I (f, l,D)o = (-l)q '\""" (Pov')(p(l)l ... (PLV')(p('2rill, 
p,, 2q I ~ L.., q.y (2q ): P(/2q) 

where each term contains as many ( P01/1 ) 's as ( Pc1/1) 's. The counterpart of (2.3.13) now reads 

(3.2.14) 

Result: (.,. )0 is positive semi-definite. The induced 'physical' Hilbert space H_x can be 

identified naturally with the symmetric Fack space S(L2 (~3) 0 <C 2 
). 
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3.2. Rieffel induction on H = S(L 2 (R:3
) C 4

) 

Calculation: 

The argument for the positivity of (., . )0 parallels the one in our discussion of the Heisenberg algebra. 

We define a map \I : E -+ S(L2(R) C 2
) by the analogue of (2.3.14) and a corresponding map 

\l: D-+ S(L2(R) C 2
) by 

(' ( ··i·' (l) (,.)' i l..j "-' s ... 

Again, V can be extended to EU 'D and we finally obtain that ( V W, V <I>) = ( W, <I> )0 which implies that 
A A 

(.,. ) 0 is positive semi-definite on EU 'D and that the null space HN is HN = ker V. Consequently, V 

quotients to a mapping V which can be extended to the completion of ( E U D) /HN, 

Remark: 

All infinite-dimensional Hilbert spaces of the same cardinality are isomorphic, but they arc not 

isomorphic as carriers of representations of algebras 6(1\!J, B), 6(N, B), etc. or of the Poincar6 

group P. In this sense, the quotient (E U 'D) /HN specifies a particular Hilbert space, carrying a 

unitary representation of P as we shall see in what follows. 

Firstly, however, we turn to results about the subspace N C J\!J and the subalgebra 6 ( N, 13). For 

the representation of the Weyl algebra 6( N, B) with 1/J(i) E N, satisfying kµ1/•1il(k), we obtain (cf. 

(2.3.29)) the 

Result: For 1£,(i) E N, satisfying k1'1£>1il(k) = 0, 

d 
... ld 7rF(\iV(- L1'i1/'(i)))Dlr,=O 

l rn i 

= L L ( L IT ( ~l r[(Prif_,(m;)(k(il), PT1P(mrJ(k(i)))E 
q=O P111 .q s~ES~ i=I 

+( Prl/'(1n?J(k(i) ), PT1/•(m;J(k(il)E)]) 

V( ') )IP, !() P, J(n-2q)j ~ 
X n - ~q · T1fJ @s .. ·®s Ti+' pq(In,q) + n, (3.2.15) 

Calculation: 

The calculation step by step follows the derivation of (2.3.29). The point is that the exponential 

factor c -;
1 
(!/J,i/l) in ITp( \;\!( -1/1 ))D = c -;

1 
(i/·,•t·lcJ· cancels the longitudinal components stemming from 

the derivatives of c't', if• = Li r;1J.i(i). 
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III: Constraints in free OED 

Result: The 'generating' functional 

takes the form 

(3.2.16) 

Especially, it is Poincare invariant on all elements</> E N. 

In the remainder of this section, we discuss in three subsections the transformation properties of 'H,\ 

under Poincare transformations, gauge transformations and regular states, and, finally, the Hamiltonian 

and its spectrum. 

Poincare transformations on 6.(N, B) 

Leaving 6.(N, B) invariant, the Poincare group Pacts as an automorphism group on 6.(JV. B), cf. 

(3.1.8). On the other hand, we have, in anology with (2.3.20) 

for [DJ = V(D) and for all</> E N, i.e., wx determines 'H,X by the GNS-construction. The Lorentz 

invariance of wx on the 'algebra of weak observables' 6.(N, B) implies the 

Result: 'H,X carries a canonical unitary representation ux of P. {f\ coincides with the 

massless photon representation. 

Calculation: 

For all elements r.F(W(\1> 11
)) E r.r(6(N, B)), kµ</>µ = 0, the generating functional of the induced 

representation is Poincare invariant. Especially, we have a Poincare-invariant vacuum [DJ E 'H,\, and 

there exists a canonical unitary representation ux of P on 'H,X, defined by 

(3.2.17) 

7/J E N which implements the automorphism (3.1.8) of 6.(N, B). 

Since the irreducible unitary representations of the Poincare group are classified completely hy the 

eigenvalue of Pi,Pµ and the action of the little group [25, 26], we can identify { f\ with the massless 

photon representation in the following way: calculating the Hamiltonian in (3.2.21), we sec that the 

spectrum of the Hamiltonian has no mass gap and hence P1' Pµ = 0 on one-particle states. The action 

of the corresponding iittle group E(2J on H\ 1s then given m complete analogy with (2.3.29). 
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3.2. Rieffel induction on H = S( l.-2(JI~.:3) c·1
) 

We can obtain [JX explicitly by combining (3.2.17) and (2.3.29). For the one-particle state, this leads 

to 

where 1/1 E N. From inspection of (2.3.29), we see that this expression can easily be extended to 

arbitrary n-particle states.8 

Gauge transformations and regularity of states 

In the T-procedure of Grund ling and Hurst [6] as well as in the work of Narnhofer and Thirring [ 12], 

one starts with gauge-invariant 'Dirac' states wo over the unconstrained field algebra, for which 

wo(W(a1,g)) = l for all 

As a consequence, one finds that such states must be non-regular, cf. [11 ]. 

In contrast to the T-procedure, the Rieffel induction procedure starts with a representation of the 

unconstrained field algebra on the Fock space H, i.e., the states considered are regular and the vector 

potentials Aµ exist as operator-valued distributions, Ilp(W(D * !)) = eiAU), f E S(JR4
) Ilt1• For 

f 1i = Oµg, we know from (3.2.4) that 

(3.2.18) 

which according to the above is equivalent to the gauge condition 

(3.2.19) 

for all \fJ. <I> E E, and, by extension, for all elements in VU E. On the other hand, we have for all 

WE VUE, 

(3.2.20) 

ii E 'HN, which is as good as having Dirac states. Hence, while ( · W, W) are not gauge invariant but 

regular, the physically relevant states ( · W, '11) 0 are gauge-invariant but defined on 6( N, B) only.9 We 

summarize this discussion by the following 

8 Here, N /T is isomorphic to S, but only N /T carries a representation of P. Hence, S( Pr( L2 (IB: 4 ) c:; '.C 4 )) cannot be 
identified naturally with 1-f.X. 

'iHere, the essential point is that for a state w with w( A) = ( 71'p(A)lfJ, lfJ) 0 , we require positivity,w( A* A) ~ 0, which 
is guaranteed if(., .)o preserves the adjoint, (rr,.,(A*)rrF(A)\li, '1i) 0 = (11'F(A)lf!, 71'p(A)lfl)o. As we shall sec in what 
follows, the latter only holds on 6( N, B). 
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III: Constraints in free QED 

Result: The vectors \V E 'D U E define regular gauge-invariant states ( · W. \{I )0 on 

6(N, B). Yet, no vector W is gauge-invariant. Gauge transformations map vectors \{I into 

themselves, plus a vector in the null space, cf. (3.2.20). 

Remark: 

The Dirac states investigated by Grundling and Hurst are regular on the subalgebra 6(N, B). In this 

sense, Rieffel induction provides a construction of a particular class of Dirac states. 

The Hamiltonian on ITF(6(N, B)) 

We establish a Gupta-Bleuler type expression for the Hamiltonian. 

Result: On the Hilbert space 'H, which carries the Fack representation of II F( 6( ,V. l3) ), 

the time evolution T 1 is implemented by the Hamiltonian 

(3.2.21) 

On the quotient space '}i\, the corresponding Hamiltonian satisfies the positive spectrum 

condition. 

Calculation: 

The time evolution on 6(AI, B) is given by the automorphism group T1, 

T1(vV(q)µ)) = W(ei1VlJc/>µ), 

( D <b) µ = ( - 6 </Jo, - 64>1, - 6 4>2, - 6 cj>3). 

The Hamiltonian HF is a representation-dependent operator, defined up to a constant (since rlp is 

irreducible) by 

Comparing with the explicit form of the representation 

we obtain (3.2.21), where we have used eiaa•ae[z•a-za•Je-iaa•a = ele-'"z•n-e'"zn•J. Hr has positive 

eigenvalues for transversal states. From (3.2.14), we know that arbitrary n-particle states decompose 

into tensor products of purely transversal components up to vectors in the null space, and hence 

(3.2.22) 

for all \{I = it,(l>@s···®sz/J(nl. This shows that the positive semi-definiteness of(., .)0 implies that the 

Hamiltonian in the induced representation on 'JiX has positive spectrum. 
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3.3. The propagator for free OED on S(L2(IR.3) <C 4
) 

3. The propagator for free QED on S(L2(R3)@ c 4
) 

In this section, we undertake the first step in testing the suitability of the Rieffel induction procedure 

for perturbation theory: we calculate the Feynman propagator. 

Definition: The Feynman propagator Dp(x, y) on S(L2(R3
) 0 C 4

) is the sum of two 

amplitudes 

where 79 ( x0 ) = 1 for x 0 ~ 0 and 0 otherwise. 

Remark: 

ITF is a regular representation of 6.(N, B). Hence, the generator iAµ(fµ) obtained as the derivative 

of I1p(W(,\</>µ)) at,\ = 0 exists as an operator on 1i and Aµ(f)D = iJµ(k), </>µ E L 2 (R:3) <C 4 • 

Hence, Aµ ( x) makes sense as an operator-valued distribution. 

In (3.2.11), we are given the(., .)0 -product for objects like (Aµ(f)D, ;L,(J')D)0 = (</>, <//)0 • To 

calculate (3.3.1 ), we are interested in the formal action of Aµ ( x) on n. Therefore, we choose 

formally the 'test function' f!:(z) = eµ5( 4l(z - x), <Plx(k) = -ieikxc(ko)5(k2 )?, so that A,(;r)D = 

Aµ(f :5µ 11 )D =if dk( -ieikx5µ 11 )a:n. Taking this as a starting point, we obtain the following 

Result: The Feynman propagator DF(x, y)µv is of Coulomb-gauge type. 

Calculation: 

(Aµ(y )D, A-v(x )D)oB(xo - Yo) 

= J (2:;3~ko (2:;3~klo ( -ieik'y5µµ 1 )( -ieikx5111v )B( Xo - Yo)( aµi(k)*D, av1(k1)*D)o. (3.3.2) 

Using (3.2.11), we may write 

- ( )3 k' ;:(3) ·k- k/)"· ("·· - kikj) "· - 211' 2 ou ( u,µ u,1 l{2 u1v· (3.3.3) 

Here, the 0-components do not contribute and with J; = </>i, we obtain 
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III: Constraints in free QED 

D( ) - ·j d3k [-ik(x-y)B(· ) ik(x-y)B( )]' (' A'.;k~.i) .. F x, y µ,v - -i ( )3 e Xo - Yo + e Yo - Xo Vi11 Uij - k2 DJv 
27r 2ko 

J d4 k e-ik(x-y) ( kikj) 
= (27r )4 k2 + iE {Jiµ, {Jij - k2 fijv, 

which is a Coulomb-gauge type propagator. 

Remarks: 

• For a time-like unit vector T/µ, = (1, 0, 0, 0) and kµ, = J-(k~)11µ , 
(k11) -k2 

(3.3.4) 

This is the form of the Feynman propagator DF in the radiation gauge, cf. [58). In the traditional 

setting, T/µ, is time-like in the frame in which canonical quantization has been carried out, and 

the vectors Tfµ,, kµ, together with the two polarization vectors form an orthonormal basis. The 

manifest Lorentz covariance of general S-matrix elements is then eventually established by 

current conservation. In the present setting, we start from the Poincare-invariant functional w \ 

at the very beginning. A Lorentz frame is singled out by the definition of ( 'i/J, c.p) E. 

• The Feynman propagator D F is defined as the probability amplitude for the creation of a photon 

at space-time point x and its reabsorption into the vacuum at y and at a later time Yo > ;r0 • (., . )o 

is antilinear in the second component and hence we write the created states in the first component 

and the annihilated states in the second component. 

A major difference with respect to the usual setting in perturbation theory is that the (., . )0-product 

does not preserve the adjoint. 

Result: (., .)0 on1) preserves the adjoint for test functions in N only. In general, 

Calculation: 

For arbitrary test functions, one finds 

(3.3.5) 

where <t>i(k) = -ic(k0 )8(k2)gµ,(k) and 

T( dJB. dJf) = ~( <f>B. dJfh + ~( dJf. dJB)i;; + ilm( dJB. d/)M 
\'''I :l'' ,. /-"-' :l'' , ;-- ,, c> ;"" 
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3.4. n-point-functionsfor free QED on S(L2 (JR3
) <C 4

) 

_ 9 1 j -(kµ,<P!(k)k"<f>{(k) _ . kil<f>!(k)k0 P0 </Jf(k)) 
- ( <P , Pr</> )E + elk k2 2ilm[ k2 ] . (3.3.6) 

0 0 

On the other hand, one obtains 

These expressions coincide for </>9 , <jJf E N, only. 

4. a-point-functions for free QED on S(L2 (JR3
) ® c 4

) 

I1p(W(<f>!i)) is not unitary with respect to(., .)0 on L, as may be seen from 

( I1p (W(</>il))ITF(W(<p))fl, I1p(W(7j>))fl)o 

= e-[(<;?,,P)E-(1,<P)E]e-[(,fai,,P)E-(r~,J·)E] ( l1p( w ( <p) )n, l1p( w ( </>µ,) )ITF( w ( 1/J) )n )o. (3.4.1) 

Here, we investigate how this non-unitarity manifests itself in the expressions of then-point functions. 

Result: Factorization properties for n-point functions in free OED are derived. Wick's 

theorem is found to have 'unusual' consequences since the ( ., . )o vacuum expectation values 

of normal ordered products do not vanish in general. 

Calculation: 

We start from the expression 

(it A( ?t,(nl) ... A( v,(l))n = dd ... __£ ITF( eiA(L, r;,p(i)))ei I:l>m Im(1/1(IJ,,p(m))Mr1rmn1,. -o 
r 1 d111 ·-

= __£ ... __£( e-t(I;; r;1//iJ,I;; r;.jJC•l)E 

dr1 dr n 

x ei I:t>m Im(,P(ll,"'(m))MTfTm e- Li r;J/i)) I 
r;=O' (3.4.2) 

where, with a slight abuse of notation, we write Vi = </>9 • Using the general formula for ( cif', e'P )0 , this 

leads to 

(-i)n (0, A( 7j>(n)) ... A( 7j>(1l)f1)o 

__:!:__ __:!:__( P - t(I;, r,1/,(1) ,I;; r;.jJ(i)) E 

dr1 · .. drn ' -
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III: Constraints in free OED 

(3.4.3) 

More generally, one may consider 2n-point functions of the form 

n 

=(-1r-m L ITTn,m(7f'.>(md,1p(m;)), (3.4.4) 
sES(n) i=l 

whereTn,m(7f'.>(m.J,,!f;(mi)) = T('!f;(m,),7f}(rn;))forrn;,mi > morm;,m; < mandTn,m(lf•(m;),~.-(rri,)) = 

(7f'.>(m,), Pr7f'.>(m;))E otherwise. 

Remarks: 

• The reason for this unusual factorization property may be seen in the vacuum expectation 

value (rt, .. r2)0 , used in the calculation. While Wick's theorem still holds in our setting, the 

vacuum expectation value of normal ordered products is not necessarily zero any more, e.g., 

(rt, a*a*rl)0 =f. 0. This causes the deviation from conventional results. 

• For 7f)(i) E N, the situation is much better since Tn,m(7f'.>(m;),7f)(in;)) = (4,(md, PriJ .. ('n,))E<; for 

arbitrary mi, mi. Hence we obtain on this restricted test function space the typical factorization 

property of n-point functions in a non-interacting theory: 

n 

= L I1(A(7f'.>(m;))f2, A(1p(mi))rl)o. (3.4.5) 
sE.'.>("J i=l 
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Consequently, the structure of time-ordered n-point functions, valid for smearing with test func­

tions in N only, reads 

n 

(0, T A(x( 2nl) ... ACr(ll)D)o = L rr(n, T A(x(m,))A(x(rn;))D)o 
sES(n) i=l 

n 

=(it L ITDF(x(m;),x(rri,J), (3.4.6) 
sES(n) i=l 

where T denotes the time-ordering operator. 

Consequences for perturbation theory 

In this subsection, we make a short remark on the difficulties encountered in setting up a perturbation 

theory with the Rieffel induction procedure. To be concrete, let us consider scalar OED, given by the 

lagrangian 

(3.4.7) 

This theory of a radiation field A1, interacting with a complex scalar field <h is invariant under the 

gauge transformations 

(3.4.8) 

Perturbation theory aims at calculating the time-ordered vacuum expectation values 

by a perturbative expansion of 

(0 IT 4>IN(:r1 ) ... <PLvCr2n)AIN(:IJ1 ) ... AJN(Yp)e-i J d4x'H,ndAjN(x),</i1N(xl.<t>},y(i•)Jn) 

(DI Tt-i.fd1J:H., .. [Aj'N(x),</>1N(x),</>iN(x)Jn) 

where Hint denotes the interaction hamiltonian. 

Here, the free IN-fields AjN, <PIN and <P}N satisfy canonical commutation relations and we may 

specify the corresponding Wey! algebra Ascalar· In practice, the calculation of G(x 1, ••• , yp) amounts 

to a perturbative expansion around e = 0. This implies that in the perturbative setting, Rieffel induction 

uses a gauge group, defined by the transformations A1,(x)--+ A1,(:c) + d1,>.(;r), (/>(.r)--+ q>(.r), and 
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III: Constraints in free OED 

obtained from (3.4.8) for c = 0. 

From this, it is clear that the Rieffcl induction procedure reduces essentially to the one carried out for 

free OED. Especially, one will encounter to zeroth order in e the same unusual factorization properties 

of n-point functions as for free OED. 

Let us now think in terms of Feynman diagrams. 

For the external lines of the Feynman diagrams of this theory, we may argue that smearing with test 

functions 1/,(il E N is sufficient to calculate physical amplitudes. The point is that the vector potential 

used in the calculation of scattering amplitudes reads 

:lk ( J d I' (k)[ -ikx (k) ikx * (k)J Ap) .r) = (27r)32ko E(,\) e aµ + e a11 • (3.4.9) 

where E(,\)(k) denotes a polarization operator satisfying kµt('..\)(k) = 0 and>. labels the two transversal 

components corresponding to physical photons. Clearly, every smearing of a polynomial in A(,\)( .r) 

with arbitrary test functions in L2(R3
) amounts to a smearing of a polynomial in Aµ(:r) with elements 

f such that their convolutions D * f lie in N. For internal lines, however, we do not have a physical 

reason why our results should be stable under smearing with a subclass of test-functions only. 

These simple considerations should make it clear, that compared with conventional approaches, 

imposing constraints via a Ricffel induction procedure will make a perturbative treatment more 

complicated. Hence, we have not tried to develop such a perturbation theory. 

Remark: 

In general, after having imposed constraints on the Wey! algebra of free OED, one still has the 

freedom of performing gauge transformations [21 ]. Here however, the Rieffel induction procedure 

employed has led to a gauge fixing, as may be seen from the Coulomb-type expression obtained for 

the propagator (3.3.1). This gauge-fixing does not coincide with any of the other gauges known for 

free OED [18]: it is a gauge leading to a Coulomb-type propagator, a Gupta-Bleuler type Hamiltonian 

and an 'unusual' factorization property of n-point functions. In what follows, we shall call this gauge 

the Landsman gauge. 
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CHAPTER IV: 

RIEFFEL INDUCTION FOR FREE QED ON 
S(L2(~3) ® CC3) 

In applications in which a fixed Lorentz frame is singled out, e.g. thermal field theory, one often takes 

as starting point a three-dimensional, real-valued vector potential A = ( A 1 , A2 , A3 ) with canonical 

equal time commutation relations 

(4.1) 

Here, E1 denotes the electric field, the conjugate momentum of the vector potential A1. In this chapter, 

the Rieffel induction procedure is carried out for the Wey! algebra corresponding to these canonical 

commutation relations. We briefly comment on Rieffel induction for functional representations and 

on an application to thermal field theory. 

1. Weyl algebra and representations 

In close analogy to the Wey! algebra formulation of (3.1), we consider the Wey! algebra 6e1( Me1, B,,1) 

of equal time commutation relations with J\!let = L2(JR.3) ® C 3 , 

Bet(f,g) = 2Im(f,gh, ( 4.1.1) 

J rl3k 
(f.gh = (2r.)3f;(k)b;j?JJ(k). ( 4.1.2) 

For all f, g E L2 (IR.3) UC 3 , the Wey! relations read 

W(f)vV(g) = e-iim(gJhvV(f + g), ( 4.1.3) 

Remarks: 

• The connection between ( 4.1) and ( 4.1.3) can be seen from the formal expression 

( 4.1.4) 
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IV: Rieffel induction for free QED on S(L2 (JE. 3 ) 0 <C 3
) 

where f = J(Il + if(2) E Mei, J?) E Li(JE.3 ), the set of real-valued test functions and 

A(J(ll) = j (i3xAk(x)f~ 1 )(x), 

R(f(z)) = j (t3xE1(x)J}2l(x). 

• Again, it is useful to specify annihilation and creation operators ak, aj, for the free electromagnetic 

field, 

( J d
3
k [ (k) ikx (k)* ikx] Ak x) = (27r)3 ak e + ak e- , 

E ( ) . J d3
k k [ (k) ikx (k)* -ikx] 

k x = i ( 27r )3 o -ak e + ak e . ( 4.1.5) 

Using J(il(k) = J (!3xcikxf(il(x) with f(il(k)* = f(il(-k), we obtain 

·iA(f1 l) + iE(f(2l) = j (~:~:i i[adk)(f~ 1 l(k)* -1}~2l(k)*) + ak(k)*(fl1l(k) + if~2 l(k))] 
= ia(F) + ia(F)* = a(-iF) + a(iF)*, (4.1.6) 

[a(F), a( G)*] = ( G, F)J. ( 4.1.7) 

Constraints 

To select a gauge group, we consider the Maxwell equations for A0 = 0, 

( 4.1.8) 

These equations determine the wave equation for the transverse components of A and the Gauss law 

constraint 

\J;E; = 0. ( 4.1.9) 

This motivates the choice of NI~' C Met as a gauge group, 

(4.1.10) 
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4.1. Weyl algebra and representations 

Remark: 

• 6e1( M{i, Bet) generates gauge transformations consistent with the classical ones A; __, A;+ V;g, 

( 4.1.11) 

• The corresponding algebra of weak observables A = 6et(lVlet, Bet) n ( 6e1( M[i, Bet))' is A = 
6e1(M;y, Bet), 

~1w { f' 1·(t) ·1(2) ~'1 I ;) f(t) O} il et = . k = k + 1 k E ivJ et Uk k = · ( 4.1.12) 

Representations of 6et (NI!;, Bet) 

We specify two representations of 6e1 (Met, Bet): 

1. The Fermi Fack representation Ih of 6e1(Me1, Bet) on S(L2 (JR3
) 0 <C 3

) is given on a dense 

subspace L3 C S(L2 (JR3)@ <C 3
) which is the span of the total subset of exponential vectors 

N 

L3 = {L ,\c~·(•) I A; E re 4,(i) E 7-l, N < 00}; 
i=l 

_l_ ·1/1 (•'!'< .,j, .Xj -
1
-'1/) M /1 1/'.J ~1 • 12! :/y '·L J3T u f D··· (4.1.13) 

with scalar product 

(4.1.14) 

The representation is defined by 

( 4.1.15) 

and can be extended to all of 7-l. 

2. A functional representation Ilu of the algebra of canonical equal time commutation relations 

6e1(lVfe1, Betl on L2 (L~(R3 ) Rl, p), defined by 

(I1u(W(<f> 1 + i<f>z))i/')(A) = c -;'(4>1.4>2)R+i(A,<h)R1/i(A _ <f>i), (4.1.16) 

( 4.1.17) 

( 4.1.18) 

Here </>;(k) = </>i(-k) which implies (</> 1 ,</>2 )n = (</> 2 ,</>1 )n and \JJ(A) E C2 (/,~(lR: 1 ) '· 

R 1
, ft),where Ai(k) = A;(-k) E U(Li(11{3)@ iH:.3 , p). 
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IV· Rieffel induction for free OED on S(L2 (11~.3) <C :3) 

Remarks: 

• (4.1.15) is related to the annihilation and creation operators on S'(L2 (IR3
) 0 <C 3

) via 

(4.1.19) 

where the action of ak, a'k reads (symmetrization is understood): 

,/, . 
lf .. n, 

liln = yn-+Tp l/-•1 ... C·) 1t'n· (4.1.20) 

• In t~e section on functional representations, we consider a non-dense subspace 

(4.1.21) 

as well as the close! y related set of exponentiated functions ( 4.4.1 ). Remark that (\II. A) R f. 
(A, W)R, since 'I/Ji takes values in <C 3

. 

2. Rieffel induction on 1-{ = S(L2(IR3)@ c 3) 

Again, we start by specifying input data which result from a slight modification of the Rieffel induction 

procedure (cf. our discussion in the last chapter): 

1. constraint algebra: We do not define a constraint algebra (again, we can not rely on the existence 

of B = C*(M'f't), since iVJ'f't is not locally compact). It is sufficient to have a continuous 

representation of the gauge group MI; on the Hilbert space H. 

2. field algebra of weak observables: A= l:::.etUV!elf, Bet) 

3. Hilbert space Hx with scalar product (.,. )x_, used to induce from: Hx = <C, carrying the trivial 

representation 7r x of Aij1'. 

4. Hilbert space H with scalar product(.,.): H = S(L2 (!R3)@<C 3
), carrying two representations: 

(a) the left representation of A, defined by the Fermi Fock representation Ib. 

(b) the right representation of MI;, defined by U("Vg) = Ih(W("Vg)). 
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4.2. Rieffel induction on H = S( !}(~?) «::>~) 

We introduce the following 

Notation: 

Calculation of (., . )o 

On the one-particle space L2(IR3
) <C>3

), polarization operators Pr, PL are defined as follows: 

Result: On elementary vectors in L3 , we obtain 

Calculation: 

The(., .)a-product reads 

= r [Vg l (J d3 1·[-; l g(:r)(-6)g(x)+ig(x)('V; if'; (x)+ 'VI<;?, (:r) )] e( •/',<P)J 

J1\1T 
d 

(4.2.2) 

(4.2.3) 

(4.2.4) 

Here, the integration over lvl[i can be defined in the sense of (3.2.5) as the limit of integrations over 

a family of finite dimensional locally compact spaces which eventually exhaust Al};. Substituting the 

Fourier transforms, 7/Ji( x) = J (~:~3 eikx?f'i(k), we obtain 

Remark: 

(4.2.3) allows for the same combinatorial treatment as (3.2.8) and (2.3.1). In what follows, indentify 

(cf. (2.3.1)) .ro with }iA.:i(Fc1i•)i(k), ;t: 3 with }iki(1r-;1.,1/J)i(-k), (.ci,x·2,0,0) with U\c), und Yi 
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IV: Ricffcl induction for free QED on S(l}(R:i) C :i) 

with the corresponding expressions for -.p;. Again, we start from n-particle states, obtained in our 

calculation as derivatives 

Definition of D: D denotes the set of finite linear combinations of n-particle states 

1j;(ll@s7/J(2)@s .. ·®s1/J(nJ, 4,(i) E L2(JR3) (("3. 

The(., .)a-product on Dreads: 

Remark: 

• In the derivation of ( 4.2.5), we have used that 

J dkCi) ~(ky) PL1/;;mri(k(i)))(ky) PL1/;t';)(-k(il)) 

+ J clk(iJ ~(A~.]i) l\·1pyn;)(k(i)))(ky) PL7/Jt?\-k(i))) 

= J dk:(i)(kp FL1/;Jm?J(k(i)))(k?) FL1/;t?J(-k(i))). 

(4.2.5) 

(4.2.6) 

In close analogy to our discussion of free OED on S(L2(R3
) 0 C 4

), we exploit (4.2.5). Without 

repeating the calculations, we give the following 

Results: 

• decomposition of n-particle states into transversal components: 

1/,(l)@s···®s·l/J(n) = L L Apq(ln,q)(Pyl/;())@s .. ·®s(Py1p(n-
2

q))Jpq(l,,,q) +ii, 
q=O P1n,•1 

\ _\ (2q)!(n-2q)!(,/,() .y /,(2q)J n) 
Apq(/11,q) - n.! 'f' 0s ... \l.<)s1// pq(ln,q)' H O· (4.2.7) 
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4.3. An application: thermal equilibrium states for free QED 

• induced physical Hilbert spacer{' = S'(L2(JR.3) ® <C 2
): 

This is obtained from the mapping V with ker Vas (.,.)a-null space 

(4.2.8) 

• gauge transformations: 

The gauge invariance of the (.,.)a-product can be checked immediately: 

(4.2.9) 

The kernel of xx on 1-{X is the abelian subalgebra 6.et(M'!;, Bet), since 

lh(W(.f))\fJ =\ff+ ii. 

• time evolution automorphism and Hamiltonian: 

this will be discussed in the following application of our formalism to the discussion of Planck's 

law by Hertle and Honegger. 

3. An application: thermal equilibrium states for free QED 

In a first part of this section, we sketch a derivation of Planck's law, given by Hertle and Honegger. 

This derivation has the drawback that the 'unphysical longitudinal photons are thermalized' and hence 

one has to heuristically adjust the expression for Planck's energy density by a factor~· The aim in the 

second part of this section is to show how Rieffel induction allows one to do the same calculation on 

the physical Hilbert space 1-{'-, where this difficulty does not occur. 

Planck's law: the result of Hertle and Honegger 

Hertle and Honegger start from the quasi-local Wey! algebra 6.e1(!Vle1i Bet)= UAW(L2(J\)), where 

L2( A) denotes the square-integrable complex-valued functions with support in the open subset J\ C IR:\ 

W(L2(A)) = 6.e1(L2 (A), Bed· The local time evolution is given by the automorphism group r/, 
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IV: Rieffel induction for free OED on S'(L2(!R 3
) 0 C 3

) 

for f; E L 2 
( i\) in the domain of the Laplacian with Dirichlet boundary conditions -61\. For an 

orthonormal base ( e~ )nEN E L2( i\) of eigenvectors of JI);_ with eigenvalues e;;, J[J;.c~ = t~c~, we 

have the energy operator 

•XJ 

dl'({ii:) = L t~a*(e~)a(e~) 
n=O 

and the local Gibbs equilibrium state for inverse temperature,8 > 0 on W(L2
(/\)) is defined by 

Tr( e-i3df(v'D,\) Ih( A)) 
WA(A) = Tr(e-Odr(v'DA)) 

In this setting, Hertle and Honegger have shown that for very general regions A, the local states 0.'A, 

extended to states on 6e1( i\!lei, Bet), converge in the weak* sense to a limiting Gibbs state w. To obtain 

wi\(A), they start from the generating functional WHH(W(J)) = e -:;
1 
U.Jh which implies1 ([49], Prop 

5.2.28) 

WJJH,J\(W(f)) = e -:;1(!,f)J-~tt1U,J), 

-iJVJJ;; 

ti\(J,g) = (!, 1 ~ e-i3v'ITAg)3. 

Especially, ti\(f,g) = wuu,A(a*(g)a(f)), and the expectation values WHH,A(df(u(yfl'J;;))) for some 

class of functions u, reads 

n=Oi=I 

X• 3 -i3/TJA 
Wf-IH,J\(df(u( ID;.)))= ~~(e~;,u( !D;) e . . ~t:~;h v LI J\ ~ ~ , . v L/j\ l - -/} A , 

n=Oi=I e 

(4.3.1) 

Remark: 

In their work, Hertle and Honegger have taken the Tr in WJ\ to be the trace on S'( L2 (1R3
) C 3

), thereby 

thermalizing the unphysical photons, too. This results in a factor 3 (instead of 2) in ( 4.3.1) and one is 

forced to adjust the result for the energy-density of the black body radiation by a factor &, stemming 

from the restriction to physical photons. Our formalism allows to replace this ad hoe procedure hy 

calculating the generating functional(;.,'\ of the representation on the physical Hilbert space 7-{\ given 

in ( 4.2.8). 

1 Hertle and Honegger start from the Wey! relations W(J)W(g) = e- !lm(J,g!W(J + g), cf. [59], whose symplcctic 
form differs by a factor 2 from (4.1.3). 
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4.3. An application: thermal equilibrium states for free OED 

Result: The generating functionalu...•\ for the representation of 6e1(tvl;;', B,t) reads 

wX(f) := (Ih(W(J))0,0)0 = e-}(f,Prfh (4.3.2) 

for all f E J\!le'f. 

Calculation: 

Using ( 4.2.3) and ( 4.1.15), we obtain 

= e-4-U.J)3(e-f, O)o 

= e-4-U.Jhe -t J <i:~3 Jrk,J;(k)k1f1(-k) 

(4.3.3) 

Now, considering the complex conjugate of fj(k) = J d3xe-ikx[/}1)(x) + iJj2l(x)], one finds that 

This implies that the last term in ( 4.3.3) vanishes for f E lvl,"j, which leads to ( 4.3.2). 

Consequences: 

Since D A is rotation invariant, we may specify an orthonormal base ( e~.JnEM E L2( A), i = I, 2. :~ of 

eigenvectors of~ with eigenvalues f:~, ~e~.i = e~e~.i• i\e~,i = D3ie~.i• Fre~,i = ( c51i +bzi)e~.i· 
( cf. ( 4.2.2) for the definition of these projection operators.) 

The generating (vacuum) functional obtained by Rieffel induction in the setting of Hertle and Honegger 

reads (for the rescaling of the exponent of ( 4.3.3) by a factor 2, cf. the foonote given above), 

Following the arguments of Hertle and Honegger with this generating functional as starting point, we 

are led to 

w\: (vV(j')) _ e -;; 1 (f.Prfh-tt;..(f,Prf) 
HH,/\ - , ' 

e-f3-J!JA ¥ 

tA(f, f) = (J, 
1 

_ e-f3-J!JAPr fh, 

for all f E M~. Hence, we obtain 

61 



IV: Rieffel induction for free QED on S(L2(JR 3
) ® C 3

) 

e-fJ~ 
= 2Tr( P/\u( j-6./\) ~PA), 

1 - e-{3 [::,A 

where the sum in the last equation receives no contribution from i = :3 in contrast to ( 4.3.1). The 

methods of Hertle and Honegger can be taken over without alterations to discuss the weak* convergence 

of wif H,/\ to a limiting Gibbs state. This leads to Planck's law with correct prefactor, 

- l 1= u(K)h'.
2 

l {ii; E(u) = -
2 

f3 dK = lim A w~H /\(dI'(u( Dfl.))), 
7r o e "' - l /\-+co a ' 

where u(K) = KX1(K), Is;;: [O, oo[ in the case of an expression for the energy density. 

4. Rieffel induction for functional representations 

Here, we would like to sketch what Rieffel Induction looks like with different input data. We start 

from the Hilbert space H = L2(L2 (JR3
) O IR.:3, ,u) which carries a functional left representation of A 

and a right representation of J\f[i. 

• · ' ' ( ) Lexp LeJ'P nggmg map . , . 8 on "' w , 

JV 

Lexp _ {~ 1. l!J(•) I ,r,(i) L \. tr .y } 
w - ~ ,,,e '±' E w, "'' E 1L.-, 1 < oo , ( 4.4.1) 

i=J 

defined by 

( 4.4.2) 

for all f; = i8ig E 1\f[i; W, T E L 2 
( L 2 (JR3

) JR3
, µ ), g E Li (lR3). With the rigging map defined on 

L':_:P ® L':_:P, we obtain the following 

Result: 

Calculation: 
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4.4. Rieffcl induction for functional representations 

= J VfT [Dg][D A]e-(A.A)li ( A(NiY'g+v)Jl 
j d 

= J ['Dg]et(NiV'g+i7)2 
MI, 

= j MT['Dg]e-t(V'g,V'g)e-tY(V';11\+V',i7;)et(,;,+v)2 
et 

which leads to ( 4.4.3). 

Remark: 

Longitudinal, real-valued components do not show up in the(., .)0 product as long as we restrict 

ourselves to 6ei (iVJ ;;- , Bet). This may be seen from the first line of the calculation given above, since 

~' ----+ 1/1 + i\l), can be absorbed by shifting g ____, g - ),, 

The one-particle space 

To specify the one-particle space, let us calculate (., .)0 on Lw, defined in (4.1.21). There, the 

(., . )a-product reads 

(w, 1)0 = J [Dg](CTu(Hl(irJ;g))W, Y)u 
MI, 

Remarks: 

= j [Dg][DA]c-(A,A)Rei(A.V'g)R\lf(A)Y(A) 
. M'!t 

(4.4.5) 

•The null space of Lw is 'HN n Lw = {w I 41 =PLv,1 E Lw}· Accordingly, one can specify a 

physical space by 'h,\ = L111 /'HN n L,,, ::::::: i 1rLw. This indicates that our choice of Lu has singled 

out (part of) the one-particle space. 

• In principle, there is no obstruction to complete the Rieffel induction procedure for functional 

representations. We haven't worked out further details. 
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CHAPTER V: 

SPONTANEOUS SYMMETRY BREAKING AND RI­

EFFEL INDUCTION 

In this chapter, we apply the Rieffel induction procedure to a linear QFT showing SSB, viz. the 

Stiickelberg-Kibble model. This model has often been used as testing ground for the investigation of 

the structures underlying the Higgs mechanism [ 47]. The motivation for what follows is two-fold. 

Firstly, one wants to extend the application of the Rieffel induction procedure to a theory with massive 

particles, thereby constructing the Rieffel-induced physical Hilbert space as a carrier space of the 

massive representations of the Poincare group. Secondly, however, we have seen that the Ricffel 

induction procedure on the Fermi-Fock Hilbert space leads to a new gauge, the Landsman gauge, 

which is a particular cross-breed of the Coulomb and Gupta-Bleuler gauges. A<; mentioned in the 

Introduction, the Higgs mechanism is characterized differently in different gauges and hence, it is 

clearly of interest to observe its features in the Landsman gauge. Especially, we find that in the 

Landsman gauge, the 'rearrangement of would-be Goldstone bosons' can be exhibited in great clarity. 

1. The Weyl algebra of the Stiickelberg-Kibble model 

The Stilckelberg-Kibble model is an abelian Higgs model with the modulus q of the scalar field 

<P(x) = q(x)e'P(x) frozen to unity: TJ(x) = l. It is given by the lagrangian 

£ = -~F:ivF'w - ~ (01,r.p + eA1,) (3µr.p + eA 1
') + g.f. (5.1.1) 

Remark: 

The equations of motion may be written as those of a free, massive, divergenccless vector field 

(5.1.2) 

where 

;'' = fY'r.p + ek1 
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V.· Spontnneous Symmetry Brenking nnd Rieffel Induction 

is a gauge-invariant observable of the theory. In this form, the theory is not suitable for Ricffel 

induction since we have got rid of the gauge group already, and this gauge group plays an essential 

role in the construction of the Ricffcl induced inner product. To carry out the Ricffcl induction 

procedure, we have to choose equations of motion for the gauge-dependent fields Aµ and'? which arc 

consistent with the dynamics given above but allow us to define field algebras with gauge-dependent 

elements. This amounts to a particular choice of the constraints. 

Equations of Motion and gauge transformations 

In what follows, we choose the 't Hooft constraint1 

!-) A'J Uµ = e<p. (5.1.4) 

With this constraint, we may start from the following equations of motion, consistent with (5.1.2): 

(5.1.5) 

These equations of motion are invariant under the gauge transformations 

'P ---> 'P - e>., (5.1.6) 

where >. has to satisfy 

(5.1. 7) 

Here, we define the Wey! algebras corresponding to the space of classical solutions !Vfsk of (5.1.5). 

We start from the canonical commutation relations of the fields Aµ and <p: 

[<p(x),<p(y)] = i6(x - y), 

[A1,(;r), Av(Y)] = -igµv6(x - y), 

where (D + e2 )6(x) = 0 with initial conditions 6(x, 0) = 0, i1t 6(x, t )lt=o = -8(:3l(x}. 

The Wey I algebra 6sk ( Nlski Bsk) is defined by2 

(5.1.8) 

(5.1.9) 

1 We call (5.1.4) the 't Hooft constraint since it resembles the gauge fixing condition used by t'Hooft in his proof or the 
renormalizability of gauge theories showing spontaneous symmetry breaking. 

2 Here, Msk is the completion of the space of Cauchy data of the real solutions of the wave equation, et. (3.1.3). 
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5.1. The Weyl algebra of the Stiickelberg-Kibblc model 

and the symplectic form 

(5.1.10) 

and the Wey! form of the canonical commutation relations reads 

(5.1.11) 

Remark: 

The formal connection between (5.1.8) and (5.1.11) may be seen by smearing the fields A 1,, 'P with 

test functions fµ, f in the corresponding Schwartz spaces, and considering the Wey I operators 

where </> 1, = !:::. * fµ, </> = !:::. *f. 

We are interested in Poincare-invariant subalgebras of .6.sk(Mski Bsk). The automorphisms Ctf\,a 

implementing P on .6.sk( !vlski Bsk) are induced by the symplectic transformations/ /\,a on Ai sk. 

with (J/\,a(</>µ,</>))(x) = (i\~<f>v,</>)(i\- 1 (.c - a))). 

(5.1.12) 

We introduce the following subspaces of Msk. invariant under //\,a: 

Nsk ={(</>µ,</>)I Oµ</>µ = e</>} C J\!fsk, 

T.sk = {(</>1,, <P) I </>1, = dµg, </> = -eg;g E L2 (IR3
); (o + e2

) g = O} C Aisk· (5.1.13) 

Representations of .6.sk(!vlsk, Bsk) 

We define a Fermi Fock representation TIF of .6.sk(Msk, Bsk) on a dense subset L of the Fock space 

(5.1.14) 

Here, L is defined by 

N 

L1 =(L>./;.;,•ij1/·}/l E I}(JR3
) C4 ;>.; E C,N < oo}, 

N 

L? = (~= >.,:e,µ(•> I ·~,(il E L2 (IR3); >.;EC, N < oo }. (5.1.15) 
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V: Spontaneous Symmetry Breaking and Rieffel Induction 

On elementary vectors in L, the scalar product reads 

and the action of Ilp is defined by (cf. (3.1.14) for definition of</>µ,) 

(5.1.16) 

Of course, these definitions can be extended to all of H. 

2. Rieffel induction for the Stiickelberg-Kibble model 

We start by specifying the following input data: 

1. as constraint algebra: again, we do not specify a constraint algebra, but a continuous right 

representation of the gauge group Tsk on H. 

2. as field algebra of weak observables: A= 6sk(Nsk, Bsk) 

3. as Hilbert space Hx with scalar product (.,. )x, used to induce from: Hx = C, carrying the trivial 

representation 7r x of Tsk· 

4. Hilbert space H with scalar product(.,.): H = S(L2(JR3
) C 4

) (:") S(L 2 (JR:3)), carrying two 

representations: 

(a) the left representation of A, defined by the Fermi Fock representation Ilp. 

(b) the right representation of Tsk, defined by U(t) = Ilp(W(t)) for all t E 1~k· 

5. as 'rigging map' on L x L: for all (8µ,g, -eg) E Tsk. the rigging map(., .) 6 on L L reads 

(5.2.1) 

Calculation of (., . )o 

In close analogy to the calculations in the previous chapter, we obtain the following 

Result: On elementary vectors in L,3 

.p '1/J J ikzl-[(k;'1/!;-ie'l/;)ko'1/!o+(k;x;+iex)koxol 
( e " 0 e , eX" 0 eX )0 = e ko 

J dk1/J; (s;1 -;t-)x-1 + ( Fo-•/J;+i ?a-'1/J) ;t-( Fo-x,+i ~x) 
xe . (5.2.2) 

".l ... .., ' 1~ 0 ,.) 

~ttere, tea= v K" + e-. 

68 



5.2. Rieffel induction for the StiJckclberg-Kibblc model 

Calculation: 

The Rieffel inner product reads 

(ev,'1• () e'1', e\1• C! <\)0 = J, [Dg](flp(vV(o,,g, -eg))e'Pµ c4', c\ 1• '..) t \ ), 
· T.k 

(5.2.3) 

where the integration over Tsk can be defined in the sense of (3.2.5). Carrying out the calculation of 

( e11'1• e1/J, eXµ 0 eX)0, we obtain (cf. the calculation of (3.2.8)) 

(e1/Jµ 0 e1/J, eXµ 0 eX)o 

= J [Dg]e -;1 (kµg,kµg)E e-i[(ko1/Jo,.<J)+(k,1f;, ,g)+(9,koxo)+(g,k;xi)]e -;
2 

(g,g)-e(1f;,g)+e(g,x) e(.P1 .. x 1.)E+( 1/1,\) 

= j [Dg Je-(k5g,g) e-ig1 [ko1/Jo+k;1f;; +ko x 0 +k, x;+iex-ie1f;] eig2[ko1/Jo-k;1f;;-kox0 +k;x;+iex+ie1f;] e( 1/•µ,\µ)E+(ii1.x) 

(5.2.4) 

Decomposing this expression with projection operators, 

( b;i - h~:~.i) = ( 8,1 - k~~.i) + e~:~~.i' 
we obtain (5.2.2), which completes our calculation. 

To extract information about then-particle states from (5.2.2), we introduce 

Definition of D: D is the set of finite linear cominations of n-particle states4 

1 d d L r 1/;(i) L r 1f;(J) I 
Jnf -d ... -d e , • µ 0 e J J ·-o' 

n l r r· r,-• 1 n 

We are particularly interested in the finite particle space D in which we expect to find besides the 

transverse also massive longitudinal components. For this analysis, we introduce the following 

Notation: 

• Given a (gauge-dependent) one-particle state '!/Jµ 0 n + n 0 '!/J, the Bogoliubov-transformed 

components 'lfJL, 1/;N are defined by: 

, ·(k) ·- 0kikj1/;j(k) .. 0ki1JJ(k) 
1/JL,1 .- COS k2 + Z Sill lkl , 

. kikj'l/Jj(k) . ki'l/J(k) 
1t'N.i(k) := - sill e k2 + ·1. cos e lkl , (5.2.5) 

4 Here, it is notationally simpler to specify n-particle states as n-th derivatives of elementary exponential vectors. than 
to write them out explicitly. A one-particle state reads lJ•1, O Q' + Q" 01/.', a two-particle state is 

~ ( w~1l0,ef1~2\)n'+1/·V)0,1/J<21 + w~2)0•1/Pl + n"0itP>0,1/J<2>), 

and explicit expressions forn > 2 are cumbersome. Here, as in what follows, we have denoted the vacuum by Q = ff':'.!n' 
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V: Spontaneous Symmetry Breaking and Rieffel Induction 

h e - e . e - !kl w ere cos - k-, sm - -k . ·o ·o 

• Furthermore, we specify the five-component vector 1/;!i) 

(5.2.6) 

and the projection operator Pp onto the 'physical' components 

(5.2.7) 

Also, for notational convenience, we set 

(1 ) ( l 1 d d """" .,.(iJ """" ,. v)1l 01. x x .. 1, n ·= -- -e~· ,.,.,,µ .9' e~) J I 
'f/* ... '+* . Jn! dr1 ... drn vY r;=o· (5.2.8) 

Our next step is to write (5.2.2) for finite particle states in 'D: 

( ,1,(l) '(n) ,(1) (m)) _ 1 """' """' 
'f/* x ... x 1/J.. '\* x ... x \* 0 - q-=r L., L., 

v n:m: q q'-o p P' ' - ln,q' lm,q 1 

q 1 
X ( L IT j dk(i) (i)I( A'.li) tf•im[) (k(i)) - ieef>;m;) (k(i)) )( kbi)1/Jbrn;) (k(i))) 

s;;Esf,i=I A'.o 

+ kb'.i' ( k,lil 4, )"'1\ klil I - in/,) '":'1 ( k1 'l l )( kb'l <t,b'"1\ kl 'l l l 

q' 

x( L IT j dk(il (~)2(k}ilxlm;J(k(il) + iexlm?l(k(il))(kbi)xbm;)(k(il)) 
p1 p' t=I k sq 1 ES,i' 0 

+-1-. (k(i)v(m?J(k(i)) + ie-\,(in;)(k(i)))(k(i)v(m?)(k(i)))b _ _ 1(- l )q+ci' k(i)2 t At .. · t 0 ·\O n 2q,rn 2q 

0 

( 

n-2q J p p
1 

1 Pq P
1

q
1 

) 

x L n dk(il Pr1/>;,1• q)(k(i))~J*· q ))(k(i)) + ·ijJr· )(k(i))xr(t, ))(k(i)) . (5.2.9) 
pEP(/Pq ) t=l 

1n,q1 

The decomposition properties of elements in 'D are now given in complete analogy to free QED, cf. 

(2.3.11) and (2.3.12): 

Result: Arbitraryn-particle states 4;i1l x ... x 1/Jin) E 'D can be decomposed into physical 

components PP'ljJ* up to a vector in the(., .)0 -null space: 

4;il) X ... X 1/Jin) = L L Apq(/n,q)(Pp7/1il)@s .. ·®s(Pp7/1in-Zq))lp,,(l .. q) + i'i, (5.2.10) 
q=O P1 11 ,4 

( 'J )'( - <Jc)' \ _ ~q · n ~ 1 · ( .. 1,(1) ·' (2q)I . . n) 
/\pn({,.n\ - ' 1 If,. X "' X </)* r> If \lH O• 

· • · · • · V n! '"'····" 1 

(5.2.11) 
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5.2. Rieffel induction for the Stiickelberg-Kibble model 

Calculation: 

The analysis of (5.2.9) parallels our analysis of (3.2.11). 

Now, we turn to the calculation of the generating functional. 

Result: The generating functional w\ is Poincare-invariant on 6sk ( Nsk, Bsk), 

Choosing a Lorentz frame, we may write 

Calculation: 

(ITF(vV(</>µ, </>))D, D)0 = e-~(</Jµ,</Jµ)Ee-~(<P,<Pl(e-<P-,, ® e-<P, D) 0 

_l("' ,. ) _l("' "') -f,(ko-:$0(-k;</J;+ie,P)) = e 2 .,,µ,.,,µ Ee 2 .,,,.,, e o 

I - . 
l(-" ,;, ) -1("' "') -kT(ko<Po(kµ<Pµ+ierl>)) = e2 "'l""'I' Me 2 .,,,.,, e o ' 

(5.2.12) 

(5.2.13) 

(5.2.14) 

which leads to (5.2.12) for ( </>µ, </>) E JV.5k· Now, (5.2.13) can be obtained by appropriate rearrangement 

of the five components in (5.2.12), using k0<f>0 = ki<f>i - ie</>, 

(5.2.15) 

from which one obtains (5.2.13). 

Result: The Hamiltonian corresponding to (5.1.5) satisfies the positive spectrum condi­

tion on 1-(X. 

Calculation: 

The time evolution on 6(M, B) is given by the automorphic group Ti, 

(5.2.16) 
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V: Spontaneous Symmetry Breaking and Rieffel Induction 

where (D</>)µ = (-6</>0 , -6</>1, -6</>2 , -6</>:1).
5 The Hamiltonian His a representation-dependent 

operator, implementing this time evolution in the representation IlF by 

Comparing this with the explicit form of the representation in terms of annihilation and creation 

operators a:, a!L for the electromagnetic field and h* > b for the Scalar field, we obtain 

(5.2.17) 

Now, it is easy to see that 

(w,Hw)o 2 o 

for all W E Hphys· The point is that arbitrary (normalized) components of the physical one-particle state 

space, ( b;i - k~~1 )1/-'i and ~'lPi cos e + i1/' sine pick up (the same) positive energy contributions. For 

multi-particle states, this holds true due to their decomposition into such components. The elements 

of H corresponding to a negative energy have ended up in the null space. Finally, we comment on 

the behaviour of elements in 1-fX under Poincare transformations. From the Lorentz-invariance of w \ 

(given in (5.2.12)) on the 'algebra of weak observables' 6( Nsk> Bsk), we obtain the following 

Result: 1-fX carries a canonical unitary representation U' of P. ux is a massive particle 

representation. 

Calculation: 

In complete analogy to our discussion of free QED, we conclude from the Poincare invariance of"'-'\ 

that there exists a Poincare invariant vacuum [f2] E 1-fX and a representation U'- of P on 1-fX, defined 

by (cf. (3.2.17)) 

(5.2.18) 

for all ( </>µ, </>)) E Nsk· 

Again, we may use the spectrum of the Hamiltonian, which shows a mass gap, to argue this time that 

we are dealing with a massive representation (m2 = e2
) of the Poincare group. More explicitly, we 

can see that the three components of the vector Pp'l/-'~i) transform as a massive one-particle state under 

the action of the little group S'0(3). Namely, Pr1J,11 transforms as transverse components do, whereas 

1/JL defined by (5.2.5), has obviously the transformation properties of a longitudinal component. 

~,t coaespomls to the equations of mocion (5.1.5). 
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CHAPTER VI: 

THE EFFECTIVE POTENTIAL 

This chapter contains a discussion of formal properties of the zero temperature effective potential 

V of a real scalar P(</>)d quantum field theory with Z2 -symmetry. Our main result is that in the 

spontaneously broken case the effective potential is only one-fold differentiable at points of pure 

quantum corrected ground states [2, 60]. It turns out to be this non-differentiability which justifies 

the approximation of the quantum corrected ground states as minima in a nai've loop expansion. 

Furthermore, we employ a thermodynamic language, based on the notion of Gibbs potentials, to give 

an argument for the energy density interpretation of V in its affine section. 

1. The effective potential in P( </> )2-theories 

In this section, we first! y list some results obtained for P( </> )z-theories. Then, we point out a difficulty 

in the definition of the effective potential, and its resolution. On the basis of these results, we obtain 

a statement about the differentiability of the effective potential. 

The model 

We consider the theory of one self-interacting Bose field in Euclidean space, described by the La­

grangian 

[, = ~ ((J\<h) 2 + Lm2 </>2 + P(</>), (6.1.1) 2 . 2 

where P( <P) is a polynomial in the field d> and m is the renormalized mass. The generating functional 

for the Euclidean Green's functions is given by 

Z[J] = J~rr;,J [d</>] 0 exp (~1 j
0

[£(</>(x))- J(x)</>(x)Jdx) 

= J~rr;, j exp ( - j [P ( </>(x )) - J(x )</>(x )Jdx) dµg, (6.1.2) 

where dµg is a Gaussian measure with a free covariance, converging to C = (-(J2 + m. 2 )- 1 in the 

mfinite volume 1Im1t. .J ( x )<!>(a:) is the usuai Schwinger source term, D <lenoies a fluik; space-time 

73 



VI: The effective potential 

volume, with which we approach finally the infinite-volume limit and Planck's constant is set to one 

in the second expression. 

The generating functional of connected Green's functions W[J] is given by 

vV[J] = In Z[J] 

and its Legendre transform is the effective action r[ <Pc] 

r[<Pc(:r)] = W[J] - j J(x)<Pc(x)dx; 

<Pc(x)= oJ~x)W[J]. 

Definition of the effective potential 

(6.1.3) 

(6.1.4) 

Usually, the effective potential V (<Pc) is defined by setting <Pc in the effective action to be a constant 

<Pc and dividing through the total space volume D: 

lim ~fo[<PcL•=,• =-V(Jc)· 
fl-+oo .l G IPC vc 

(6.1.5) 

A A 

It is however crucial to note that V is only well-defined for all field values <Pc if the functional derivative 

of vV[J] in (6.1.4) exists for all J. More importantly: we know nothing a priori about the existence of 

the limits in (6.1.2) and (6.1.5) and their dependence on boundary conditions. 

To obtain an effective potential which is always well-defined, let us start from the density of IV[.!] for 

constant source term 

w(J)= lim ~tn/ exp[-j [P(<Jy(x))-J<Jy(x)]cl:r]dµ~. 
l)__,co 1 l . n ll 

(6.1.6) 

In the case of P( <P )2-theories, this density can be shown to exist. It is strictly convex1 and the limit 

is independent of a large number of classical boundary conditions [61, 62]. Following Jona-Lasinio 

[ 63] and Slade [ 64 ], we define the effective potential as a Fenchel transform of w( J) 

For strictly convex w( J), this Fenchel transform is well-defined [65]. 

Remark: 

(6.1.7) 

1 We call a function f of a real variable J: strictly convex, if it is a convex function which has nowhere an affine section. 
In an atfine sect10n, f is given by a straight ltne. 
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6.1. The effective potential in P( d> h-thcories 

Recalling that the Legendre transformation of a function w( J) plots the intersection of the tangent 

of w with the w-axis against its slope (Figure 1), it is easy to see that for a differentiable w(J) both 

definitions of the effective potential are equivalent, 

whereas for non-differentiable w( J), only (6.1.7) is well-defined everywhere. 

w(Jl w(J) 

';'(Ji.,)-~Jof 
~~~.l--~--"-t--_,,:---~-----J 

Jo 

(6.1.8) 

Figure 1: Example of a strictly convex w(J) with non-differentiability at J = 0 and geometrical construction of the 
Legendre transformation. 

Non-differentiability of the effective potential 

In what follows, we consider (6.1.1) with an even polynomial P( </>( :r)) which allows for spontaneous 

symmetry breaking. Introducing left and right derivatives ~~ and ~~ respectively, we obtain from 

convexity 

(6.1.9) 

However, in the case of a scalar field theory with spontaneous symmetry breaking, the left and right 

derivatives of w( J) are nothing but the degenerate vacuum expectation values [ 61] 

d± 
dJw(O) = </>±· (6.LlO) 

Glimm, Jaffe and Spencer have shown that for <P~ quantum field theories, there exists a phase transition 

in the sense that <P± f:. 0 [ 66]. Hence, for J = 0, w( J) is not differentiable, whereas it is differentiable 

for all non-zero values of J. As can be seen from Figure 2, the effective potential, given by (6.1.7), 

therefore has a linear section between the two quantum corrected ground states <I>±, and is strictly 

convex elsewhere. This is sufficient to obtain the following 

Result: Let \/(Jc) = sup.1lJJc - w(J)] where ~~w(O) = <f>± and w(J) is strictly 

convex, differentiable for J '/:- 0 and non-differentiable for J = 0. Then 1/( <l>c) is exactly 

one-fold differentiable for <Pc= <P±· 
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VI: The effective potential 

Argument: 

To discuss the differentiability of V at </>+, it is sufficient to calculate its right derivatives. All left 

derivatives are zero, since for 1>- :::; ef>c :::; <P+, Vis affine (the affinity of V can easily be seen from the 

geometrical constuction, described in the text, cf. Figures 1 and 2) . Hence for Ei > 0 we consider the 

difference 

(6.1.11) 

where we have defined Ji by 

(6.1.12) 

and used a Taylor expansion for tu( Ji) 

2 d+w(O) 1 d+ w(O) 2 
w(Ji) = w(O) + dJ J; + 2 cfJ2 Ji + .... 

Due to the strict convexity of w( J ), the inverse of its second right derivative is strictly positive and 

we obtain from (6.1.11) 

d+V(</>+ + t) = (cf+ 2
w(O))-i O( 2 )· 

, dJ2 t + E , 
d<J>c 

d+
2

V(1>+ + f) _ (cf+ 2
w(O))-i O() 

~. - fj2 + E > 0 
d<P~ l 

(6.1.13) 

for small enough c. The same line of reasoning goes through ford>_. This completes our argument. 

Remark: 

We conclude that in the spontaneously broken case, the effective potential V is a convex function 

with a linear section between <P- and 1>+· It is infinitely often differentiable for ~c =f. </>± and exactly 

one-fold differentiable at <Pc = <P±. 

2. Perturbative evaluation of the effective potential 

In the first section, we have established the non-perturbative form of V. Now, we turn to the question, 

how far perturbative calculations allow us to approximate this form. After recalling the loop expansion 
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6.2. Perturbative evaluation of the effective potential 

\ 
't 
\ 

cj>, 

Figure 2: The effective potential V(Jc) (straight line) and V(Jc) (dotted line) as defined in the text. Remark that\/ is 
only defined for non-minimal values of V. 

of V, we point out that it is exactly the one-fold differentiability of V established in the last section, 

which allows us to determine <P+ and <P- as minima of V. We close with a short remark on the Wilson 

recursion formula which provides a different approximation scheme of V. 

The loop expansion 

The usual perturbative approach to the evaluation of the effective potential is the loop expansion 

[32, 33, 34]. Interpreting the effective action in (6.1.4) as a generating functional of the one-particle 

irreducible Green's functions, one makes different expansions of r[ <Pc] either in powers of <l>c or in 

powers of momentum 

f[</>c] = L ~ j dx1 ... dxnfn(x1, ... , Xn)<Pc(x1) ... </>c(Xn) 
n n. 

= j dx[-C'(</>c) + ~(D,\</>c) 2 Z(</>c) + ... ]. (6.2.1) 

Then one can easily see that the n-th derivative of -V is the sum of all lPI Feynman graphs with n 

vanishing external momenta 

(6.2.2) 

where rn denotes the Fourier transform of rn. The loop expansion is a tractable resummation of 

(6.2.2): first summing all lPI tree diagrams, then the diagrams with one loop, etc., one approximates 

-V. As can be seen from the generating functional Z[JJ in (6.1.2), each vertex in these diagrams 

yields a factor k while each propagator, being the inverse of the differential operator in the quadratic 

part of the Lagrangian, yields a factor h. Hence the loop expansion is formally an expansion in powers 

of h, 
00 

V( Jr. h )' =' )' Vn( JJhn 
' . ""'--' , 

(6.2.3) 
n=O 
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VI: The effective potential 

For Euclidean scalar P( </> )2 quantum field theories, Slade has shown [ 64] that the series {\1~n ( J,., h)} 

with 
m 

i~n(Jc:,li)' =' L Vn(Jc)Jin (6.2.4) 
n=O 

is asymptotic2 to V (Jc, Ii) in ( 6.1. 7) for all values of Jc, satisfying I Jc I ;:: </>+, 

Here, vn( Jc) denotes the negative sum of all renormalized lPI n-loop diagrams with lines correspond-
1 

ing to free covariance of mass ( P"( Jc)) 2
, and the formal dependence of Von Ii is denoted explicitly. 

For field 'values I Jc I< </>+, the series { Vm (Jc ,Ii)} is not asymptotic to V, cf. [ 64 J. This leads us 

to the question whether we do obtain any information about </>±. defined in (6.1.10), from the loop 

expansion. 

Information about 1>± from the loop expansion 

We define the maximum of all k local minima Jm,i of Vm, (i = 1, 2, ... , k): 

where 

dVm(im,i) = Q. 

d</>c 

(6.2.5) 

(6.2.6) 

Furthermore, we introduce the Taylor expansion of the first derivative of ~'~n around <p111 , 

(6.2.7) 

With this notation, we formulate the following 

Result: If the Taylor expansion (6.2.7) converges for I Jc - 1>+ I < I <Pm - <P+ I and 

d
2

V:~r··h) > Q for</>* > min( </>m, </>+),then 

lim </>m ,......, </>+. 
rn.-oo 

(6.2.8) 

2 We call a power series L~=oanzn asymptotic to a function f(z), f(z) "\""'N n .1. ~n.=0a 11 .z , l 
.. '. .. -N . . .. 
J1m,_o / .. I J(z) - 2._,~=oanz" I = 0 holds tor aJJ integer N. 
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6.2. Perturbative evaluation of the effective potential 

Argument: 

Since the Taylor expansion of dVmr;::·hl converges for I Jc - </>+ I :S I Jm - </>+ I, we can write 

(6.2.9) 

where the Taylor remainder term on the r.h.s. is taken for some </>*, satisfying I </>+ - <f>m I 2 

I </>+ - </>* I. Now, since the loop expansion is asymptotic at</>+, we write 

lim-1 I dV(</>.+Ji) _ dVm(~+,1i) I= O. 
n-->O nm d</Jc d<f>c 

(6.2.10) 

Substituting the Taylor expansion (6.2.9) into (6.2.10), we obtain 

(6.2.11) 

d2 v ( 1> ) _j_ Since do<t>~ • -r- 0, cf. (6.2.3), and since the second derivative of Vm is positive according to our 

assumption, we conclude from (6.2.10) that 

1 A 

lim r.m I </>+ - </>m I = 0. 
n, .... o a 

(6.2.12) 

Conclusion: 

• The nai've loop expansion contains all asymptotic information about the form of the effective 

potential: the loop expansion is asymptotic to V in its strictly convex regions and it approaches 

asymptotically the extremals of the affine section of V. 

Remarks: 

• A result analogous to (6.2.8) holds for the rn --? oo-limit of the minimum of all local minima of 

Vm, being asymptotic to <P-. We conclude that the largest (smallest) minima of the m-th order 

loop expansion are asymptotic to </>+ ( </>-) respectively. 

• The assumptions leading to the result (6.2.8) are well justified: the second derivative of V~ is 

asymptotic to a positive number at</>+, since it follows from (6.1.13) that 

1. d2 \l~n(</>+) (d+
2
w(O))-l O 

lffi A rv > • 
m-rx- d</>~ dJ2 

(6.2.13) 

This is a direct consequence of the non-differentiability of V. The assumption about the positivity 

of the second derivative of Vm is clearly consistent both with (6.2.13) and with the strict convexity 

of V outside its affine region. 
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VI: The effective potential 

The Wilson Recursion Formula 

We have seen that while the loop expansion of V leads to a non-convex expression, it approximates 

asymptotically <P±, thereby providing all necessary information for the determination of the correct 

convex form of V. In this subsection, for the sake of completeness, we draw attention to the Wilson 

recursion formula which provides an approximation scheme leading to a convex expression for V. 

The effective potential V( <Pc) is a function of the zero momentum mode <Pc of the field </J and may 

be obtained by integrating out the high momentum modes iteratively. According to arguments due to 

Wilson [67, 39], this amounts to fixing a momentum cut-off/\. and following the subsequent iteration 

scheme: 

We restrict our discussion to the following [ 68] 

Remarks: 

• This Wilson recursion fomula is closely related to the usual loop expansion. Indeed, if one 

expands the l-th iterated potential {11 ( y + <P) up to second order in y, ignoring higher order terms, 

one obtains an expression for U1+ 1 which does not depend on f. Then, the crude approximation 
d2 U1(<P) _ d2 Uoo(<P) 1 d t 
~ - d<P2 ea s o 

which is exactly the formula obtained by an one-loop calculation. 

• The iteration scheme (6.2.14) allows to calculate recursion formulae for the higher order deriva­

tives of U1( <P ). From the behaviour of these derivatives one can argue that in the l ----+ oo-limit, 

the potentials U1 ( <P) approach a convex expression, as expected from general arguments. 

• Numerical iterations of (6.2.14) indicate too that U1(<P) converges to a convex expression for 

l -t 00. 
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6.3. Energy-density interpretation of the effective potential 

3. Energy-density interpretation of the effective potential 

In this section, we present an argument to the effect that the convex form of the effective potential V 

has an energy density interpretation. Following heuristic arguments [31, 33, 34], one usually assumes 

that 

(6.3. l) 

where Hn is the Hamiltonian in the finite region3 n and Pc is a projection operator of unit trace, 

denoting the state for which 

(6.3.2) 

In the case of P(</>)2-theories, equation (6.3.1) has been obtained for values of <Pc which do not 

minimize V [69]. Here, we show that the energy density interpretation of V holds for its linear 

section, too. We start with the following assumption, underlying a theory of phase transitions: 1 

Assumption: There is a finite set ( Q1 , .. ., Q,,) of extensive quantities such that, if 

the corresponding densities ( cfi, ... , <in) of these quantities are constrained to take values, 

say ( q1, ..• , qn), then the entropy density functional s(p) is maximized by precisely one 

translationally invariant state p. 

Our argument is based on the following thermodynamic setting: 

We introduce the finite-volume Helmholtz free energy functional PP of an arbitrary state p 

with the entropy 

and the infinite-volume density 

.S'(p) = -kplnp, 

j~( ) 1· Fn(p) p = !Ill -11-· 
fl.-;oo H 

(6.3.3) 

(6.3.4) 

(6.3.5) 

In the zero temperature case, J is nothing but the energy density functional. The field</> in (6.3.3) is a 

linear functional of the state p 
A.( ) = 1· J nTr(p</>) 
'I' p !Ill n . 

fl._,oo ~ L 
(6.3.6) 

3 Here, (6.3.1) is time-independent and hence we may choose for neither a space or a space-time region. 
4 Sewell [70] states this assumption for extensive conserved quantities Q; in the case of a lattice system with a finite 

number of degrees of freedom per lattice site. In our case, the family of conserved quantities which commute with the 
Hamiltonian is not sufficient to specify the state of the system completely. Hence we choose a more general formulation. 
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VI: The effective potential 

We interpret <P as a density functional in the sense of the fundamental assumption and constrain it to 

take a value <Pc· For lattice systems with a finite number of degrees of freedom per lattice site [70J, 

this leads to the constrained Helmholtz free energy density 

(6.3.7) 

and the Gibbs potential 

g(J,T) = infp{f(p) - 1</>(p)}, (6.3.8) 

where the intensive variable J is the conjugate of </>. Following Sewell [70] we assume that the 

expressi<?ns for Jc( Jc, T) and g( J. T) hold for infinite continuous systems. 

Notation: We denote by {ji( J)} J an arbitrary one-parameter family of equilibrium states ji( J) which 

minimize }(p) - J </>(p ). Remark that Jc( Jc, T) is convex in Jc and g( J, T) is concave in J (70]. 

Result: AssumethatsupJ[g(J,T)) = g(O,T), I </>(ji(O)) IS I d+gd~,T) I, I </>(ji(.J)) I> 
I d+g}f·T) I for J-/= 0 and </>(ji(J)) continuous for J =/- 0. 

Then 

(6.3.9) 

c d+ g(O.T) < </>~ < r1- (/(0 T) d ~ · · · f ior · . · · an <I>~ mm1m1zes . dJ - c - dJ ' t. • c 

Argument: 

The variable T is omitted. 

1. It follows from the concavity of g(J) together with I d±JJ0l 121 Jc I, that I d±JY) I > I ~c I, 
~' ~ for all J =/- 0. The assumptions supJ[g( J)] = g(O) and dJ S </>c S JJ then ensure that 

the slope of g(J) is steeper than the slope of the straight line JJc for all J (cf. Figure 3). The 

supremum on the r.h.s. of (6.3.9) is hence obtained for J = 0. Denoting by {ji(J) }can arbitrary 

one-parameter family of states which minimize }(p) - J </>(p ), we write 

sup1 [.JJ>c + g(J)] = [JJ>c + infµ{/(p) - 1</>(p)}L=o 

= [JJc + f (p(J)) - J<j>(p(J))]J=O 

= infµ}(p) 

=f(ji(O)). 
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6.3. Energy-density interpretation of the effective potential 

g(J) 

~J 

g(J) 

Figure 3: Example of a concave Gibbs energy density g(J) with non-differentiability at J = 0. As is easily seen. the 

supremum of (~J + g(J)] (dotted line) is obtained for J = 0, if I ~ I 2: ~c· 

2. Since, <f>(p(J)) is continuous for J > 0, there is a one-parameter family {p+(l)L, such that 

<f>(P+(J)) is continuous for J;:::: 0. Denoting</>± = _d±.~~·1'), we conclude </>(,0+(0)) = 9+· 

Using i), we observe that the r.h.s. of (6.3.9) is constant for</>- :::; </>c :::; <I>+· This allows us to 

write 

}(p+(O)) = SUPJ[JJc + g(J)] 

= [J</>+ + f(p+(J)) - J<f>(P+(J))]J=o 

= infii+(J){/(p+(J)) I <l>(P+(J)) = </>+} 

=le(</>+). (6.3.11) 

3. The same argument as in 2. holds for negative J: there is a one-parameter family of states 

{1L(J)}J, such that <f>(p_(J)) is continuous for J:::; 0 and hence 

4. From 1., 2. and 3., we conclude that 

</>(,0-(0)) = </>-; 

/(p-(0)) =le(</>-). (6.3.12) 

(6.3.13) 

Since le attains its absolute minimum at</>+ and <f>_, it follows from its convexity that le has an 

affine section between <f>+ and <J>_. As seen in i), the r.h.s. of (6.3.9) is constant for</>- :::; </>c :::; 1>+· 

Hence 

(6.3.14) 
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Remarks: 

• The connection between thermodynamics and the field theoretic formulation of (6.1.1) is the 

following: for T = 0, it follows from the strict convexity of w(J) in (6.1.6) together with 

(6.1.10) that 

sup[-w(J)] = -w(O). (6.3.15) 
J 

w(J) can be written in terms of a finite volume partition function Z0 (J) [69] 

w(J) = lim wo(J) = lim ~In Zo~J~. 
0-+oo 0-+oo ~ i Zn 0 

(6.3.16) 

Hence w(J) is the (negative) expected energy density in the presence of an external field, i.e. the 

(negative) Gibbs potential. Since the vacuum expectation value of</> in presence of a positive 

external source J is greater than</>+ [66] and since -w( J) satisfies (6.1.9), the result given above 

applies. Hence the effective potential 

(6.3.17) 

has an energy density interpretation for all </>c which minimize V. 

• Our results can be embedded in a much wider context. Every non-differentiable Gibbs potential 

g( J) of the type considered will lead to a Fenchel transform fc for which analogs of our results 

exist. The non-differentiability off will then justify the assumption that every infinitely often 

differentiable function which is asymptotic to fc in its strictly convex regions, asymptotically 

approaches the extremals of the affine section of Jc with its minima. In particular, this is true for 

every polynomial ansatz for f~ in its strictly convex regions. This gives an interesting justification 

for the heuristic Landau-Ginzburg approach to phase transitions. 

More precisely, in heuristic applications, the non-convex expression obtained from the loop 

expansion is often interpreted as a free energy density. This may be understood as a Landau-type 

argument: choosing a polynomial ansatz (6.2.2) for V, one speaks of the 'roll-down of the vacuum 

expectation value' in a non-convex potential. Though it is difficult to give a mathematically 

precise meaning to this picture5
, the success of the Landau-Ginzburg ansatz in the description of 

phase transitions in solid state physics may illustrate the heuristic value of this approach. 

G In fact, our result contradicts one ot the mam features of this picture, the non-convexity. 
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Non-relativistic example of a non-differentiable energy density 

As an illustration of our remarks on the energy density of systems showing spontaneous symmetry 

breaking, we mention the non-relativistic spin-boson model, defined by the Hamiltonian 

F F 

H = U7t I+ l L Wna~an + 0"3 0 L An (an+ a~) (6.3.18) 
n==l n==l 

on the Hilbert space 1-l = C 2 S( L 2 ( N) ).fi Here, <71 and <73 denote Pauli matrices, and the coupling 

constants Wn and An are required to satisfy J\ := L:~==I ~~ < CXJ (which guarantees that H is hounded 

from below) and L:~==l I An 1
2 < oo [71, 72]. H may be thought to model the interaction of a 2-lcvcl 

molecule "Yith a radiation field, described by creation and annihilation operators a~, an for the discrete 

modes n = 1, ... , F, where F is eventually taken to infinity. t denotes the splitting between the two 

energy levels of the molecule. As in the case of (6.1.1), the model shows a 'chiral' Z 2-symmctry ./,7 

implemented by 

(6.3.19) 
n==l 

This model has been used to discuss the chirality of molecules [71 ]. The simplest method to get 

information about the energy density of this model is to make an ansatz for the eigenvectors of H in 

terms of product states 'If' = ( ~) @ </>, </> E S(L2 (N)), I 'I/; I = 1, 'I/; in the domain of H. Using a 

variational principle [71 ], one obtains the minimal energy states 

i. for I t I ::; 2A :8 

I ) 
f'}. 2 () 1±(-1)(1--·) () 

4A 2 I 

(6.3.20) 

2. for It 12: 2A: 

with corresponding energies 

1. for I c I :S 2A: E = ('l/J± IHI 'l/J±) = -(1 + 4~2)A; 
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VI: The effective potential 

2. for I E 12: 2J\: E = (4,i IHI 1: 1
) =-I EI· 

One easily obtains a suitable order parameter: 

2. for I E I 2: 2J\: m( = ( 1/J I 0'3 I l/J) = 0 

Remarks: 

• For I E I ::::; 2J\, the ground state is not an eigenvector of P, i.e., the symmetry i is broken. 

• Wri,ting E( 8) as a function of c5 = E - 2J\, one finds that E is exactly one-fold differentiable at 

the point of phase transition, E = 2J\. 

• For I f I ::::; 2J\, t, J\ fixed, the energy as a function of the order parameter is a constant in the 

interval m E [m(,-, rn(,+J, 

E(m) = (1 + 4~2 )J\, (6.3.21) 

since mixed states 'Pfa+ + ( 1 - / )'lf'-, / E [O, 1 J exist for arbitrary order parameter rn in the 

interval [ml,-• m,,+]. Hence, E has an affine section with endpoints corresponding to the pure 

states l/J+, 'lf•-.9 

• We do not have an expression for the lowest lying energy states 1/•* with m* > rn,,+, hut 

from the results given above it follows that E(ni) < E(m*) and that to some order in rn, a 

non-differentiability in E(m.) at m = m(,+ (or m,,-) has to be expected. 

We regard this model as a nice example for a non-differentiable energy density which indicates a 

non-trivial phase structure at zero temperature. To shorten our illustration, however, we have based 

our remarks on the results of Pfeiffer [71 ]. This remains unsatisfactory since product states are not 

the most general eigenstates of H. For a more satisfactory though technically much more involved 

treatment of (6.3.18), we refer to Spohn's work [73] where ground states have been constructed as 

zero-temperature limits of KMS-states. An energy density E( m) based on Spohn's result can he 

found in [72]. Our remarks apply in this case, too. 

9 These pure states lie in different superselection sectors if one regards all operators which act non-trivially on a finite 
number of modes of the photon field as local observables. I.e., chirality is a superselection rule of this model. In fact, this 
has been the main motivation for Pfeifer [71} to investigate this model. 
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CHAPTER VII: 

THE VACUUM EXPECTATION VALUE 

In the first part of this chapter, we show that the vacuum expectation value of a scalar field can be 

understood.as the expectation value of an element in the center of the weak closure of a class or 

representations of the field algebra. 1 The possibility of extending this argument to gauge field theories 

is discussed shortly. 

In the second part of this chapter, we try to exploit this algebraic information about the vacuum 

expectation value in an unconventional attempt of model building. Our discussion tries to parallel 

Haag's treatment of the Bardeen-Cooper-Schrieffer model [ 48] in the case of a gauge field theory. We 

caution the reader that this last part is speculative. 

1. The vacuum expectation value for scalar field theories 

In this section, we show that in a certain class of representations, the vacuum expectation value 

corresponds to an element of the center of the field algebra A. The methods we employ arc essentially 

algebraic. We start from the smeared Wightman fields <f>(f). We then imagine that a procedure exists2 

by which we can pass from the unbounded operators <f>(f) to bounded ones which for simplicity we 

denote by the same symbol. This step is necessary for in what follows we will use some mathematical 

techniques which are rigorously valid for bounded operators only. For all functions f with compact 

support in the space-time region 0, we consider the <t>(f) to be elements of a local algebra A( 0) and 

the algebra A is then defined as in the footnote above (1.1.7). 

Our result concerns the quantity 

J>(J) = lim 10
1

1

] d4xo:x(c/J(f)), 
0->co a 

(7.1.1) 

1 In what follows, we shall speak of the 'center of the field algebra' instead of 'the center of the weak closure of a class 
of representations of the field algebra', as long as no confusion can arise. 

2 For a discussion about the problems in passing from Wightman fields to Haag-Kastler nets of bounded operators, cf. 
r"'"' ., c.1 
["-.J, lV )· 
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VII: The Vacuum Expectation Value 

where ox denotes the space-time translation automorphism and IOI is the volume of the finite space­

time region 0. This object will be constructed from 

- 1 J 3 </>v(f) = V /l iox:( </>(f) ), (7.1.2) 

where o.r is the space translation automorphism and V is a finite space volume. To see that the integral 

(7.1.2) is well-defined, we mention that the operator norm II ox:( </>(f)) II is independent of i and that 

this norm is subadditive. Hence the integrand can be bounded from above and (7.1.2) is well-defined. 

We start with the following 

,Result:3 Assume the cluster decomposition property in its weakest form 

(7.1.3) 

where B1, B 2 are bounded local operators, localized in space-time regions 0 1, 0 2 , r denotes 

the spacelike distance between 0 1 and 0 2 , and D denotes the vacuum. 

Given an irreducible representation ('H, 7r) of A and a vacuum state D E 'H. 

1. J(f) = w - limv __.co ~v (f) exists.4 

2. </>(f) is a c-number. 

3. 

JU)= J(f). (7.1.4) 

Argument: 

The set 7r(A)D is dense in 'H. We choose arbitrary vectors 'I/JA = 7r(A)D, 'I/Ja = 7r(B)H, where A. 13 

E A are observables with bounded localization in space-time. Then we obtain 

- 1 J (1/;A, </>v'~)a) = V /i3:r(1/'A, 7r(ox:(</>(f)))7/Ja) 

= ~ j v d3x(D, 7r( A *)[7r( ox:(</>(!))), 7r( B)]D) 

+ ~ j v (l3x(n, 7r(A*)7r(B)7l"(ox(</>(f)))D). (7.1.5) 

3 Though we have no doubt that both this statement and our argument is known to a group of mathematical physicists. 
we present it in detail since we did not find it in the literature. 

4 Here, w - lim denotes the limit in the weak topology defined by the(.,.}- seminorrns. As long a'> it is not stated 
otherwise, all limits used in this chapter arc limits ;vith respect to the \veak topology. 

88 



7.1. The vacuum expectation value for scalar field theories 

Our aim is to give estimates for the two terms in (7.1.5). In the first term of (7.1.5), the commutator is 

only non-zero, if ax( <f>(f)) lies in the causal shadow of B .5 This is only the case for a finite volume 

V1 and hence we write 

(7.l.6) 

where c1 is a finite real constant. To reformulate the second term in (7.1.5), we use the cluster 

decomposition property (7.1.3) in the form: I (!1, ;rr(Ai);rr( ax(A2) )!1) -(!1, ;rr(At)O) (0, ;rr( lb )0) I 
< c2iW for Ai, A2 E A and c2 a finite constant. This allows us to write 

ft j v d3 x(O, ;rr(A *);rr(B);rr( ax( </>(!)) )!1) 

= f7 j vd3x(!1, ;rr(A*);rr(B)0)(!1, ;rr(ax(</>(!)))!1) + C2(V). (7.1.7) 

Here C2 (V) is a correction term which we may estimate using the cluster decomposition property and 

a set of increasing concentric spheres with radii R for the volumes V, 

(7.1.8) 

where c3 and c4 are finite constants. The first term comes from integrating in (7.1.7) over 

I ,f I < 1, the second term from I ,i; I > 1. Using the space translation invariance of the vacuum, 

& f vci3;r(!1, ;rr( ai:( <f>(f) ))0) = (!1, ;rr( <PU) )0), we obtain from (7.1.5)-(7.1.8) 

(7.1.9) 

Since the first term in (7.1.9) has no volume dependence, it follows that 

lim C1 (V) = 0 
V->oo 

lim C2(V) = 0, 
V->oo 

(7.1.10) 

for all t/JA,1/JB of a dense subset of H. Hence, J(J) exists as a weak limit of Jv(f) and d>(f) = 

(!1, 1>(/)!1) · I, i.e., ~(!) is a c-number in all irreducible representations. Also, from (7 .1.10) and the 

time translation invariance of the vacuum, it follows that 

(7.1.11) 

5 The t:ausa! shadow of an element B of the local field algebra A is the unification of the forward and backward cones 
of those points in space-time in which B is localized. 
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In irreducible representations (H. 7r ), </>(f) is a complex-valued constant. For a more 

general class of representations, it is an element in the center of the hicommutant of 7r(A) 

as can be seen from the following 

Result: Assume the cluster decomposition property in its weakest form (7.1.3). 

Given a direct integral representation6 (H, 7r) of A with a vacuum state n E H. 

1. J(f) exists as a weak limit. 

2. J(f) E Z( 7r(A)"), the center of the bicommutant of 7r(A).7 

Argument: 

For direct integral representations ( cf. (7.1.13)), the counterpart of (7.1.5) reads 

(1hA, Jv (f)'l/Ja) = j /\ dt-t(A) (!/i().), 7r,\ (A *)7r ,\ ( B)l/;().)) (iji( ,\),Jr.\ ( </>( f) )1./'().)) 

+ j/\dµ(>.)(1J,1(>.),1J;(A))(G\(V) + C2 (V)) (7.1.14) 

Using this expression, the argument following (7.1.9) goes through with obvious modifications. We 

obtain (1/>A, J(J)'l/Ja) = (1/>A, JU)1/.1a) and 

JU)= j /Lµ(>.)(1/J(A), 7r,,(</>(f))!/1(>.))h, (7.1.15) 

where h is the identity on the subspace 1-{,\. (7.1.15) lies in the commutant of all decomposable 

operators. Hence it lies in the center of the bicommutant of 7r(A) by the von Neumann hicommutant 

theorem [53]. 

6 We consider direct integral representations (1-l, 1T) of the algebra A with 

1-{ = J dµ(>..)1-l>., 
A 

1T= JJ\dµ(>.)?T>., (7.1.12) 

obtained from the cyclic translationally invariant state 

4> = J J\ dµ(>.)1j;(>.). 

Here, the integrals over A are direct integrals (i.e. generalizations of direct sums), A is a compact measure space with 
Borel measureµ, !ji( >.) is a vacuum vector of the irreducible space 1-l>. for 1T >.(A) and the scalar product on'}{ is defined as 

(7.1.13) 

7The bicommutant of 7r(A) is the set of all elements of 8(1-l) which commute with the commutant 7r(A)' of 7r(A). 
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Gauge-invariant order parameters 

In this section, we briefly discuss the question whether a similar algebraic characterization can he 

obtained for order parameters in a gauge field theory. The problem is that the vacuum expectation 

value JU) in (7.1.1) does not reveal the phase structure of the theory if </>(x) is coupled to a gauge 

field. In this case, JU) is gauge-dependent, and a different, gauge-invariant order parameter has to be 

used. In general, such order parameters are (volume averages over) non-local objects (e.g. two point 

functions [ 44, 45]), made gauge-invariant by gauge strings. 

Here, we draw attention to an order parameter introduced by Palma [74] in his analysis of a SU('2)­

Higgs mod,el on a 4-dimensional Euclidean lattice A. This order parameter may be written as the 

IAI _, oo (infinite volume) limit <P of a block spin variable 

<P(:r) = a4 L C(T,z)</>(z) C(x,z) = L p(w)U(w), (7.1.16) 
zEA w:z-+x 

where U ( w) is the parallel transporter (gauge string) along the path w from z to some arbitrarily chosen 

block center x and p(w) is a properly normalized weight for each path w. 

Our motivation for mentioning (7 .1.16) is two-fold: Firstly, Palma calculates <P perturbatively to O(g2
) 

in the gauge coupling [74]. This calculation shows that to arbitrary ordering, for each additional 

summation LzEA over lattice fields (defined on a single point of the lattice), there comes exactly 

one damping factor 1 ~ 1 • Assuming that this structure persists in the corresponding continuum QFT, 

arguments similar to those employed in the case of a scalar QFT may be applied to show that <P lies 

in the center of the field algebra. The second reason for mentioning the order parameter <f> is that in 

the analysis of non-local interaction terms given in the next section, certain objects involving gauge 

strings are found to lie in the center of the field algebra. Since that analysis docs not deal properly 

with certain technical difficulties, it is reassuring that similar mathematical features arise in other 

approaches too. 

2. Using central elements to simplify interaction terms 

In this section, we firstly recall Haag's discussion of the BCS-model [ 48]. This uses the fact that certain 

polynomials in the fields lie in the center of the field algebra in order to simplify a certain interaction 

term. Then, we try to parallel his approach for gauge field theories by choosing an unconventional 

interaction tcrn1 ~which at least formally allovvs a similar treatment. 
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Haag's discussion of the BCS-model 

Haag's investigation concerns the Hamiltonian8
[ 48] K = I<0 + K 1. This is the infinite volume limit 

of the Hamiltonians I<0 (V) and K 1(V), defined for finite volume V: 

I<o(V) = L j /l3:r1/·:(:r)[~p2 
- µ]1f'.1cv(x), 

cv=l,2 \ 2m 

' _ , /"' , • . f"' . , - . I I ,.,t . I 3, 3 I 3 _ 3 _I 1 ;· /\1(V)- V lj. 1
1 (.1)11 1

2 (.z. + "')v(z,z )1/;2(x + ... )1j'J1(x )d .rd .r d "'d .... (7.2.l) 

Here, iJ)c" ·ljJ~ 9 denote annihilation and creation operators for electron states with spin up ( o = I) or 

down (a= 2), satisfying time zero anticommutation relations, 

(7.2.2) 

p is the three-dimensional momentum operator in the presence of a magnetic field and the chemical 

potentialµ is a free parameter of the theory. The function v(z, z'), which characterizes the attractive 

interaction, is assumed to satisfy J I v( z, z') icl3 zc/3 z' < oo. The remark of Haag on which we focus 

in what follows is that 

6(z) = J0;;,, ~ j j v(z, z1)1/;2(x' + z')'i/;1(x')d3x'cl3z' (7.2.3) 

lies in the center of the field algebra and is a c-number in all irreducible representations. This allows 

us to simplify I<1(V) by working out the commutators of K1with1/;(J) and 1/;*(J): 

Jim [K1(V), 7/J1(Y)] = -j 6(z)1/;;(y + z)dz. 
V->co 

(7.2.4) 

Similarly, the commutators of J{ 1 with 412, 1/;; and 1/;7, are always linear in 1/1 or 1/1*. Hence, in all 

representations, J<..'1 can be replaced by the 'dynamically equivalent' expression 

(7.2.5) 

which leads to the same commutators with arbitrary fields and hence to the same time evolution. The 

Fourier transform of this expression reads 

(7.2.6) 

8 Here, we do not discuss the question whether this is a realistic model of superconductivity. Clearly, the interaction 
term (7.2.1) shows a global U(l) gauge invariance while the local gauge invariance is broken explicitly. We shall be 
interested in the mathematical properties of this model only. 

9The Fermi fields 

1/;(f) = j 4>(x)f(x)d3 x, 

smeared with square integrable test functions f, are bounded operators. Hence, in contrast to (7.1.1), no additional 
assumption is needed. 
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Remarks: 

• (7.2.1) is invariant under the global gauge transformations 

(7.2.7) 

But in all irreducible representations, this gauge automorphism is not implemented, as may be 

seen by taking in (7.2.6) 6(p), 6(p)* to be constants. The gauge symmetry is broken by the 

specification of an irreducible representation. 

• Despite the breaking of the global gauge symmetry, no Goldstone bosons arise. The reason is 

that for non-local interactions as (7.2.1), Goldstone's theorem does not apply [47]. 

Experimenting with non-local interaction terms 

In the last,sections, we have observed that 

1. vacuum expectation values correspond to elements in the center of the field algebra in scalar field 

theories as well as in gauge field theories. 

2. elements in the center of the field algebra can arise in a particular way of simplifying (non-local) 

globally gauge-invariant interaction terms. This may be symptomatic of spontaneous symmetry 

breaking. 

This has motivated us to seek locally gauge-invariant expressions which allow for a similar treatment. 

Here, we present an unconventional, locally gauge-invariant 'interaction term', built up from the fields 

of the Glashow-Salam-Weinberg (GSW) standard model. A formal application of Haag's analysis 

reveals spontaneous symmetry breaking and leads to a 'dynamically equivalent' interaction term which 

resembles the mass terms of the GSW-model. Because of the tentative character of these results, we 

hasten to remark that our discussion has serious deficiencies: 

1. the interaction term is non-local and will be difficult to reconcile with the locality requirements 

of a relativistic theory. Also, it is non-renormalizable. 

2. from the mathematical viewpoint, our calculation does not survive the smearing of the fields with 

test functions. 

3. the chosen interaction term has 110 obvious physical mctiv3tion. 
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Despite these obvious drawbacks, we consider our attempt interesting enough for a short presentation 

on the next few pages. 

We consider the interaction term Hr of a Hamiltonian H = H0 +Ji[, where If0 denotes the massless 

part of the Hamiltonian of the Glashow-Weinberg standard model, Ho = J d3 J''Hu, 

'LI l G" ,na11.v l /-' ptw -e . Dµ e - . D'' 
ILO = - _Tp.vu + - '1w + LZ/µ L L + CR1/11 . RCH 

4 4 

+q1,i11, Di,rJL + uRi/µD~un + dni111 D~dn. (7.2.8) 

We restrict ourselves to one lepton family only with up and down quarks u and d, electrons t and 

electron neutrinos v. The subscripts L and R denote the left- and right-handed parts. The left-handed 

doublets't'L = (~~),qL = (~~) transformunder5U(2)xU(l),whichisreftectedintheircovariant 

derivative DLµ = Oµ + igA~~O"a + ig'f Bw The Pauli matrices O"a generate 5'U(2) transformations, 

g and g' are the gauge couplings and Y is the hypercharge. The U(l)-field B11 corresponds to the 

field tensor F1w while the A~ correspond to the field tensors G~v· The covariant derivative for the 

right-handed singlets, transforming under U ( 1 ), is given by DRµ = 811 + ig' f 8 1,. For notational 

convencience, we introduce the gauge field combinations 

1 I y 
C = Aa -0'" + f!.___3 . 

fl 1'2 g 2 µ 
(7.2.9) 

Furthermore, we introduce the right-handed doublet Cn = ( ~~) which transforms under U( l) only, 

h f . b'l' ,/-. ( lhVR) d h . . . t e erm1on 1 mears 'f' = _ , an t e gauge-mvanant stnng 
CLCR 

I dz(s);' 
_ , [ig r Cµ(z(s))-d-

5
-ds] .... 

S(x,x+R)=<f>(x)Pe x,x+ii </>(x+R). (7.2.10) 

Here, R is a 3-dimensional vector, P denotes the path-ordering operator and the exponent is integrated 

along the straight line from x to a:+ El, excluding the endpoints. H1 is now given as the isotropic 

N _, co-limit 111 = limN-rxiH1( N) of the finite volume average over string fields S in N different 

directions ek, 

(7.2.11) 

Here, c is a coupling constant, the strings S are of a fixed finite length R and the unit vectors 

are parametrized by pairs of spherical coordinates ( ()k, 'Pk). The infinite volume limit of II r( N) plays 

no important role m what follows. 
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7.2. Using central elements to simplify interaction terms 

The analysis 

In this subsection, we want to show that a formal application of Haag's analysis leads to a 'dynamically 

equivalent' local Hamiltonian for (7.2.11). The analysis of the interaction term H1 is carried out in the 

temporal gauge, and we use the following equal time commutation and anticommutation relations: 

(7.2.12) 

where /o denotes a Dirac matrix, i, j = L, Rand all other anti-commutators between two Fermi-fields 

vanish and 

where g1,., = (1, -1, -1, -1 ). All other commutators with at least one gauge field vanish. We rely on 

the formal Taylor expansion of a path-ordered product in orders of g: 

(7.2.14) 

where the path I'x,x+R€, z(s) E fx,x+Re. has been parametrized bys E (0, 1). For simplicity, we 

discuss Hr with the additional constraint VR = 0, i.e. we consider strings with fermion bilinears 

<b = fieR (~). 
Our analysis proceeds by working out the commutators of H1 and then replacing H1 hy a Hamiltonian 

H/ which is dynamically equivalent in the sense that it leads to the same commutators. We start by 

investigating the commutator of H1(N) with an arbitrary fermion field eL(Y) say, defined at the point 

y E V, 

(7.2.15) 

Consider now an arbitrary field F(y'), defined at a pointy' E V, y' i- y. We obtain 

(7.2.16) 
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Figure 4; Depiction of the N strings contributing to the co~mutator [H1(N), eL(y)]. Only the k-th string denoted by a 
dashed line, contributes to the double commutator [[ H 1( N), Bv (y)], F(y')]. 

since the two points y, y' determine a direction in V and only strings passing through both points can 

contribute to the double commutator (7.2.16). Their contribution, however, is multiplied hy t and 

vanishes in the N ~ oo-limit. This implies that the double commutator behaves like a commutator 

of F(y') with /oeR(y). Hence, in all irreducible representations 

(7.2.17) 

where ce is a c-number. Similarly, we work out the commutators of H1(N) with er,(y), tR(Y) and 

eR(Y ). In the N ~ oo-limit, the same commutators can be obtained from 

(7.2.18) 

This calculation can be understood in a simple pictorial way ( cf. Figure 4 where we denote the sum 

of the strings Si ( x, x + Rek) +Sit ( x, :c + Rek) by a straight line between the points x and :c + Rek ). 

A similar analysis is possible for the commutators and double commutators of H 1( N) with the gauge 

fields. Details of this calculation are given in Appendix A Here, we mention just that a similar 

pictorial representation of the calculation exists (cf. Figure 5). One concludes that in all irreducible 

representations, the Hamiltonian 

(7.2.19) 

leads to identical commutators for all gauge fields in the isotropic N ~ oo-limit. Here, the en( R) are 

c-numbers corresponding to the elements of the center of the field algebra. Obviously, ll[c; and H/,e 

denote local interaction terms. 
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y· .,/'-
/ 

/ 
/ 

/ 
/ 

/ 

Str1n9 =ortrtbuthHJ 
to :;omr.iutator 

Figure 5: Some of the strings contributing to [H1(N), Bv]. Only strings on the dashed line contribute to 
[[H1(N), BvJ, F(y')]. 

Remark: 10 

• The interaction terms H~0 and H~,e may be seen to formally resemble to O(g4
) the mass terms 

of the GSW-standard model. Namely, as shown in Appendix B H/0 = limN-.cx:> H]c( N) can be 

written as 

H~c = - t (-1tlnc2n(R)
2 

S1r
2 j d3 y(O, 1) ( C£(y) + Ci(Y) + C~(y)) n ( ~) . (7.2.20) 

n=l n + 1 

A Lorentz-invariant formulation which reduces to (7.2.20) in the temporal gauge C0 (;r) = 0, can 

be obtained by substituting 

With this substitution, let us examine expression (7.2.20) to O(g4
). We s1art from 

Using (7.2.9), the integrand of this expression can be written in the following form: 

-g
2 

c2 (R) (0, l)C"(y )C"(y) ( ~) 

-g2c2(R)[A~(y)A 1 "(y) + A!(y)A2"(y) + A~(y)A31'(y) 

g' g'2 
--Y(A~(y)B1'(y) + B1,(y)A3"(y)) + -

2 
Y 2 B"(y)B1'(y)J. 

g g 

(7.2.21) 

(7.2.22) 

(7.2.23) 

10Tue tentative calculations presented in this subsection may lead to some speculation about a mechanism of mass 
generation without additional scalar fields. We restrict ourselves to the following remark: due to Gauss' law, operators 
creating charged fields cannot have local support. In fact, they are expected to have string-like structures or to be localized 
in spacelike cones [23]. In a heuristic sense, a string (7 .2.10), applied to the vacuum, creates a charged particle together 
with its antiparticle at spacelike separation R, both connected by a flux line. If one wants to stick to a formulation in terms 
of local fields but incorporate the intrinsic non-locality of Gaussian charges nonetheless, one may have the heuristic idea 
to make an energetically favourable field configuration out of string-like fields by adding (7.2.11) to the Hamiltonian Ho. 
Roughly speaking, this should imply that the local fermion and gauge boson fields evolve dynamically in a potential which 
glues them together. At an early stage of this work, the appearance of 'mass terms' in such a formal attempt has led us 
to speculations whether the Higgs field in the GSW-standard model may be seen as a purely technical tool, compensating 
tor the non-tocat1ty of the charges in this cheory and not being associated with a physic:il particle. 
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For Y = l, the hypercharge of the composite </;, this expression denotes nothing hut the gauge 

boson mass terms in the electroweak theory. Defining 

w+ = -
1-(A1 

- iA2
) µ v'2 µ µ 

Zµ = A;. cos Bw - Bµ sin Bw, 

I 

with the Weinberg angle Bw, tan Bw = ~' we obtain the physical fields with mass terms: 

M 2 - l67r2 z (R) 
W - -.5-g C2 

~1,2 - l67r2 (R) ( 2 ,2) 
ivJ z - -

5
-c2 9 + 9 2 M.1 = 0. (7.2.25) 

Similarly, (7.2.18) resembles a fermion mass term m; = 2ce. Here, the central elements cF, c2 ( R) 

formally play the role which in the GSW-standard model is played by the vacuum expectation 

value of the Higgs field. 

• If one wants to stretch the formal analogy, one may even obtain' quark mass terms' by introducing 

an interaction term (7.2.11) with bilinears </>' = ( ~~~=). 

Appendix A: Commutators and double commutators of H 1(N) with gauge fields 

We start with an investigation of the commutator [H1(N), Bv(Y)]. For notational convenience, we 

introduce H1Ud and Sf 11
l(:r, :r + RJ:k), defined by 

1 N 
JiJ(N) = -v I: H1(ek); 

j k=l 

Si(x, x + Rek) = LJigt Si(n)(x, x + Rek)· (7.2.26) 

In a first step, we compute [H1(V, e1 ), Bv(Y)] up to O(g2
) for a special spatial direction c1 = ( 1. 0. 0) 

say. Specifying e1 , we are able to simplify the directed path-ordered exponential: 

J J 
oo JR JR1 f Rn-1 rPxS(x,x +Rei)= d3 :r LCi9t dR 1 dR2... dR11 

n=O 0 0 O 

x q;(;r )C'i (a: + R1 ei)e1 ... C1 ( :r + R11 ei)e 1 <P( x + Rei) 

= j cPx f (igtS(nl(x,x +Rei), 
n=O 

(7.2.27) 

where the subscript ·i on SJ11
l has been omitted for notational convenience. Using(7.2.9) and the 

commutation relations (7.2.12), (7.2.13), this allows us to calculate 
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j d3 x (ig)[S(ll(x,x + Re1),Bv(Y)] 

R 'Y 
(ig) j d3xj dR1 ~9q;-2 (x)[B1(x, x + Rie1)e1, Bv(Y)]</>2(x +Rei) 

0 g ~ 

g j d3 xjR dR1 g' y· e1b1µb(.r 1 +Rei - y1)b(x2 - y 2)8(x3 
- y3 )q;-2(x)</>2(x + R<~i) 

0 g 2 

(7.2.29) 

(ig )2 J ,d3x[S(2
)( x, x +Rei), Bv(Y )] 

J J
R JR1 · 

= (ig)2 d3 x 
0 

dR1 
0 

dR2q;-2(x)[C1(x + R1e1)e1C1(x + R2e1)e1, Bv(Y)]</>2(x +Rei) 

= g2g'·i y eifR dR1jR
1 

dR2{q;-2(Y - Rze1)C1(y + (R1 - R2)ei)et</>2(Y + (R - Rz)ti) 
g 2 0 0 

+q;-2(Y - Rie1)C1(y + (R2 - Ri)e1)e1</>2(Y + (R- Ri)et)}. (7.2.30) 

The commutator [H1(N), Bv(Y )] is given to O(g2
) as the sum of the terms (7.2.28), (7.2.29), (7.2.30) 

and the contributions corresponding to the second term in (7.2.11), summed over the N different 

spatial directions ek. Similarly to (7.2.16), we obtain for y' # y 

lim [[H1(N), Bv(y)], F(y')] = 0. 
N-+oo 

(7.2.31) 

The reason is that the points y and y' specify one direction eyy' in space. Hence, the double commutator 

(7.2.31) has to vanish since it receives contributions from H1( eyy') only, but includes a damping factor 

fv· This holds true to all orders. Here, in all irreducible representations, [H1(N). llv(Y)] can be 

written for any order O(gn) as a function of fields at the pointy times a c-numbcr. Similar results can 

be obtained for the commutator of H t( N) with 1-l~(y ). We conclude that in the N --t oc-Iimit of all 

irreducible representations, the Hamiltonian 

(7.2.32) 

is dynamically equivalent to H1(N) with respect to the gauge fields. The cn(R) are c-numbers 

corresponding to elements of the center of the field algebra. 

Appendix B: The isotropic N --t oo-limit 

Here, we calculate the N --t oo-limit of H}c( N) where the countably many directions hare chosen so 
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VII: The vacuum Expectation Value 

of the unit vectors e~ in (7.2.32), we calculate H'IG by substituting in (7.2.32) the sum over the .Y 

directions by an integral over the 2-sphere: 

1 N fJrf2rr 
N L --7 27r sin BdBd<p. 

k=l 0 0 
(7.2.33) 

Parametrizing the unit vectors Ek by spherical coordinates, we obtain 

. ' 
G\(y)eA, --7 C(y), 

C(y) = C1(y)sinBsin<p + C2 (y)sinBcos<p + C3 (y)cosB, 

N
l £: [Ci(Y )e~f --7 frrf

2
rr Cn(y )27r sin BdBd<p, 

k=l 0 0 

(7.2.34) 

which we substitute in (7.2.32). Using the formulae 

f r fr (2m - 1)" 1f 
sin2mxdx~ = cos2mxdx = 

11 
•• -, 

o o (2rn).. 2 

" rr (2 )If 

f 2 . 2m+l f 2 2 +1 m .. sm :rcLr = cos m xdx = . , 
o o (2m + l )!! 

(7.2.35) 

a lengthy but straightforward calculation shows that 

2n •) · _ · 2 2k 2r . 2s . f 1f f 21f , (2n) I 
0 0 

C (y)~JrsmBdBd<p - (E.s) (2k)!(2r)!(2s)!87r C1 (y)C2 (y)C3 (y) x 

( 

8 (s) . 1 (2(k+r+l))!! )( r (') . 11(2(k+l')-l)!!) 
~ l (-l)(2(k+r+l)+l)!! ,f; l' (-l) (2(k+l'))!! ' 

(7.2.36) 

whereas the odd powersofC(y) vanish. Here, L:(k,r,s) goes over triples (k, r, s) such thatn = k+r+s. 

To simplify this expression, one proves by induction that 

r (r) 1(2(k + l) - 1)!! _ (2k -1)!! ( \1! 

~I (-l) (2(k+l))!! -(2(k+r))!!\2r-l 1 .. , 

~ (S) I (2(k + l))!! (2k)!! 
f:o l (-l) (2(k + l) + 1)!! = (2(k + s) + 1)!! 28 - l)!!. (7.2.37) 

Inserting (7.2.37), one obtains 

f 1l"J21l" A 81f2 ( ) n C2n(y)21rsinBdBd<p = C{(y) + Ci(Y) + Ci(y) . 
o o 2n + 1 

(7.2.38) 

Hence, the isotropic N ~ oo-limit H'IG of H[c( N) is (7.2.20). 
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