
Measurement of the tt̄bb̄ production
cross-section with 8 TeV ATLAS data

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

im Fach Physik

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät der

Humboldt Universität zu Berlin

von

MSc Spyridon Argyropoulos

Präsident der Humboldt-Universität zu Berlin

Prof. Dr. Jan-Hendrik Olbertz

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät

Prof. Dr. Elmar Kulke

Gutachter: 1. Prof. Dr. Klaus Mönig

Gutachter: 2. Prof. Dr. Thomas Lohse

Gutachter: 3. Prof. Dr. Christian Schwanenberger

Tag der mündlichen Prüfung: 15.12.2015





iii

Erklärung

Ich versichere, dass ich die vorliegende Dissertation selbständig und

nur unter Verwendung der in der Promotionsordnung angegebenen Hilfen

und Hilfsmittel angefertigt habe.

Genf, 25. August 2015

Spyridon Argyropoulos





Στη μνήμη του Πέτρου.

v





Abstract

This thesis presents the measurement of the tt̄bb̄ production cross-section, using a

dataset of 20.3 fb−1 of pp collisions collected with the ATLAS detector at
√

s = 8 TeV.

The measurement is based on a cut-and-count method, using a sample of events with

exactly four b-tagged jets, which is shown to have a high purity in signal events. The

measurement exploits the most precise jet energy scale and b-tagging calibrations

and is performed in a fiducial phase space that is designed to minimize the model

dependence of the measurement.

The fiducial cross-section is measured to be

σfid
tt̄bb̄

= 18.9± 3.5 (stat)+5.6
−5.5 (sys)± 0.6 (Lumi) fb (1)

or subtracting the contribution from tt̄H(bb̄) and tt̄Z(bb̄) final states,

σfid,QCD
tt̄bb̄

= 17.8± 3.5 (stat)+5.9
−5.7 (sys)± 0.6 (Lumi) fb. (2)

The result is compared with a multitude of theoretical predictions, including different

NLO calculations matched to a parton shower, which constitute the most precise

predictions available to date, as well as with a series of models that differ in the

description of the g → bb̄ splitting. It is shown that the most extreme g → bb̄ splitting

model overestimates the observed rate of tt̄bb̄ production and that the measurement

favors calculations performed with renormalization/factorization scales which are

softer than the scales usually employed in similar calculations.
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Zusammenfassung

Diese Dissertation beschreibt die Messung des Wirkungquerschnitts für die Produk-

tion von tt̄bb̄ in Protonkollisionen mit einer Schwerpunktsenergie von
√

s = 8 TeV. Der

verwendete Datensatz entspricht einer integrierten Luminosität von 20.3 fb−1. Der

Wirkungsquerschnitt wurde aus der Anzahl der Signalereignisse bestimmt, die durch

harte Schnitte insbesondere auf genau 4 identifizierten b-jets, selektiert wurden, was

zu einer hohen Reinheit des Signals führt. Bei der Messung wurden die präzisesten

Kalibrierungen von der Jet-Energieskala und der b-jet Effizienz benutzt. Die Mes-

sung wurde in einem Referenzphasenraum (fiducial phase-space) durchgeführt, der

daraufhin optimiert wurde, die Abhängigkeit von der Modellierung zu minimisieren.

Der gemessene Wirkungsquerschnitt beträgt

σfid
tt̄bb̄

= 18.9± 3.5 (stat)+5.6
−5.5 (sys)± 0.6 (Lumi) fb (3)

oder, nachdem der Beitrag von tt̄H(bb̄) und tt̄Z(bb̄) abgezogen wurde:

σfid,QCD
tt̄bb̄

= 17.8± 3.5 (stat)+5.9
−5.7 (sys)± 0.6 (Lumi) fb. (4)

Das Ergebnis wurde mit einer Vielzahl von theoretischen Vorhersagen verglichen,

einschließlich NLO-Berechnungen mit Partonschauern und einer Reihe von Mod-

ellen die sich in der Beschreibung der g → bb̄-Spaltung unterscheiden. Es wurde

gezeigt, dass das exstremste Model den Wirkungsquerschnitt überschätzt und dass

die Messung die Vorhersagen bevorzugt, die mit einer niedrigen Renormierungs- und

Faktorisierungsskala, berechnet wurden.
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Preface

With the highest center-of-mass energy ever achieved in a collider experiment, the

8 TeV run of the LHC has enabled the measurement of rare processes involving the

production of multiple heavy particles. Measurements of bottom quarks produced

in association with vector bosons have been performed by both ATLAS [1, 2] and

CMS [3, 4]. Being in tension with certain theoretical predictions, these measurements

have stirred the interest of the theoretical community, both in terms of refining the

higher-order QCD calculations for hadron collisions [5, 6], as well as understanding

subtle aspects such as double parton scattering [7].

Among the processes involving the production of many heavy particles, tt̄H holds

a prominent place. For a Higgs mass of 125 GeV, H → bb̄ is the dominant decay mode1

in the tt̄H channel, thereby rendering tt̄H(bb̄) very promising for the measurement of

both the top as well as the bottom Yukawa couplings. The tt̄bb̄ final state arises not

only in the Standard Model Higgs production in association with top quarks, but also

in the production of heavy charged Higgs bosons pp → tbH ± → tt̄bb̄ [8], as well as

in the production of supersymmetric particles [9].

In this context, pp → tt̄bb̄ plays an important role. With four particles in the final

state and two mass scales involved, tt̄bb̄ poses several challenges for the theoretical

predictions, which suffer from large uncertainties. Moreover, tt̄bb̄ constitutes the major

irreducible background for several flagship searches in the ATLAS physics program,

such as tt̄H(bb̄), as well as other searches for new physics. Finally, the tt̄bb̄ production

is sensitive to the modeling of the g → bb̄ rate in parton shower generators, which is

an important aspect of the modeling of processes with heavy quarks in the final state.

Since the g → bb̄ rate is rather poorly constrained from LEP and SLC data [10–14],

measuring the tt̄bb̄ production could potentially provide complementary information.

An experimental determination of the tt̄bb̄ production cross-section has therefore

become a necessity.

This thesis presents the first measurement of the absolute tt̄bb̄ production cross-

section with four resolved b-jets, using a dataset of 20.3 fb−1 collected with the ATLAS

detector at
√

s = 8 TeV. The measurement is based on a cut-and-count method,

exploiting the most precise jet energy scale and b-tagging calibrations and is performed

1In what follows we will adopt the shorthand notation X(ab) to denote the decay X → ab.
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in a fiducial phase space that is designed to minimize the model dependence of the

measurement.

An estimate for the QCD production of tt̄bb̄ is obtained by subtracting the contribu-

tions of the irreducible backgrounds from the tt̄H and tt̄Z processes, and the resulting

cross-section is compared with the latest available theoretical models. The measure-

ment features an uncertainty which is competitive with the most precise theoretical

predictions.

The measurement is found to disfavor the most extreme PYTHIA 8 model of

g → bb̄ splitting and reveals certain systematic trends among the theory predictions.

Most notably it is found that data favor calculations performed with renormaliza-

tion/factorization scales which are softer than the scales usually employed in similar

calculations.

The thesis is organized as follows. Part I contains an overview of the theoretical

underpinnings of tt̄bb̄ production in the Standard Model and the different aspects

involved in the simulation of tt̄bb̄ production in Monte-Carlo generators. Part II

describes the LHC accelerator system and the ATLAS detector, with a particular

emphasis on the detector performance aspects that affect the measurement. Finally,

Part III contains a detailed description of the measurement methodology, as well as an

interpretation of the result in terms of different theoretical models.
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Daß ihr hier sitzen könnt: so manche Schlacht

Wurd drum gewagt. Ihr mögt sie gern vergessen.

Nur wißt: hier haben andre schon gesessen

Die saßen über Menschen dann. Gebt acht!

Was immer ihr erforscht einst und erfindet

Euch wird nicht nützen, was ihr auch erkennt

So es euch nicht zu klugem Kampf verbindet

Und euch von allen Menschenfeinden trennt.

Vergeßt nicht: mancher euresgleichen stritt

Daß ihr hier sitzen könnt und nicht mehr sie.

Und nun vergrabt euch nicht und kämpfet mit

Und lernt das Lernen und verlernt es nie!
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Chapter 1

Theoretical preliminaries

1.1 The Standard Model

Our current understanding of High Energy Physics can be summarized in the theory

known as the Standard Model [15]. The Standard Model (SM) is a quantum field

theory, which describes collectively the electromagnetic, weak and strong interactions

between the fundamental constituents of matter, quarks and leptons.

The Standard Model is built upon the fundamental notion of symmetries. Global

symmetries, i.e. transformations of the fundamental fields which are independent of

the space-time coordinates, lead to conservation laws1 which can be tested experimen-

tally. While the space-time symmetries of the theory, such as space-time translations

and rotations, are easily perceptible by the human senses, the Standard Model also

possesses internal symmetries, whose effects manifest only at subatomic scales. These

internal symmetries act on the quantum numbers of the subatomic particles, such as

the charge, color, baryon number etc, and lead to the associated conservation laws that

can be observed in particle physics experiments.

Interactions between fields/particles are introduced in the theory by the so-called

gauging procedure, i.e. by demanding that global symmetries also hold locally, at every

space-time point. In the Standard Model the symmetry that is gauged corresponds to

the non-Abelian group SU(3)× SU(2)L ×U(1)Y, where the subscript L denotes that

the symmetry applies to left-handed fields only and Y ≡ 2(Q − T3) denotes the weak

1The fact that continuous global symmetries imply the existence of conservation laws is codified in
the celebrated Noether’s first theorem.
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2 Theoretical preliminaries

hypercharge2. The SU(3) group is related to transformations which change the quark

colors and is associated with the conservation of the color charge. The SU(2)L ×U(1)Y

group is related to transformations of the weak isospin and weak hypercharge of the

quarks and leptons and is associated with the conservation of the corresponding

quantities. The symmetries of the Standard Model and their implied conservation

laws are summarized in Table 1.1. Moreover, the Standard Model Lagrangian exhibits

a series of “accidental” global symmetries, such as the symmetries associated to the

conservation of the lepton and baryon number, which are not fundamental but arise

as a consequence of the renormalizable structure of the SM Lagrangian.

Symmetry Symmetry group Symmetry type Conserved quantities

Gauge SU(3)× SU(2)L ×U(1)Y Gauge (local)
Color charge, weak isospin

weak hypercharge

Poincaré R1,3 × SO(1, 3) Global
Energy, momentum

angular momentum

Table 1.1: Symmetries satisfied by the SM Lagrangian by construction. R1,3 denotes the group
of translations in 3 + 1 dimensions.

While the Lagrangian of the Standard Model is invariant under the full gauge

group SU(3)× SU(2)L ×U(1)Y, the physical spectrum of the theory does not display

traces of the SU(3) color symmetry, due to the phenomenon of confinement and the

SU(2)L ×U(1)Y is reduced to the subgroup U(1)Q, related to the conservation of the

electric charge. This phenomenon is known as spontaneous symmetry breaking and is

realized by the Higgs mechanism [16–20], as will be described later.

The last ingredient of the theory is its particle content. The gauge fields are related

to the generators of the gauge group and are thus determined by the gauge symmetries,

as will be described later in more detail. The fermion fields are introduced by hand

as multiplets that transform under different representations of the gauge group, as

shown in Table 1.2

2Here T3 denotes the projection of the weak isospin along the z-axis and Q denotes the electric charge.
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Particle Spin
Color Weak

T3
Electric

Representation
charge hypercharge charge

uL, cL, tL 1/2 1 1/3 1/2 2/3
(

3, 2, 1
3

)

dL, sL, bL 1/2 1 1/3 -1/2 -1/3
(

3, 2, 1
3

)

uR, cR, tR 1/2 1 4/3 0 2/3
(

3̄, 1, 4
3

)

dR, sR, bR 1/2 1 -2/3 0 -1/3
(
3̄, 1,− 2

3

)

e−L , µ−
L , τ−

L 1/2 0 -1 -1/2 -1 (1, 2,−1)

e−R , µ−
R , τ−

R 1/2 0 -2 0 -1 (1, 1,−2)

νe,L, νµ,L, ντ,L 1/2 0 -1 1/2 0 (1, 2,−1)

Table 1.2: The Standard Model particle content. T3 denotes the third component of the weak
isospin. The subscripts L, R denote the left and right chiralities respectively.

The electroweak sector and spontaneous symmetry breaking

Symmetry breaking in the form of phase transitions is well known in classical physics

and has been formalized by Landau [21, 22]. Considering for instance a ferromagnet,

we know that, above the Curie temperature, the net magnetization is zero, the spins are

randomly oriented and the system displays a symmetry under SO(3) transformations

(3-dimensional rotations). Below the Curie temperature, the system obtains a net

magnetization with the spins pointing along a certain direction and the symmetry

being reduced (“broken”) from SO(3) to SO(2) (rotations about the external field

direction). In this less symmetric phase, one needs additional degrees of freedom (the

net magnetization for the case of the ferromagnet) in order to describe the system.

These have been dubbed order parameters.

In an analogous way, Higgs, Brout, Englert, Guralnik, Hagen and Kibble proposed a

way to apply these principles to systems of quantum fields [16–20]. Glashow, Weinberg

and Salam then applied the idea of symmetry breaking into the description of the

electromagnetic and weak interactions as a unified gauge field theory.

More specifically, in the electroweak theory [23–25], one starts from a symmetric

phase which is invariant under the transformations of the gauge group SU(2)L ×U(1)Y.

This symmetry has 4 generators, which correspond to 4 massless vector bosons: the

W1, W2, W3 bosons of SU(2)L that transform under the (1,3,0) representation of the SM

gauge group and the B boson of U(1)Y that transforms under the (1,1,0) representation.

Linear combinations of the W and B bosons are identified with the physical W ± , Z0
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and γ bosons as follows

W ± ,µ =
1√
2
(W

µ
1 ± iW

µ
2 ), (1.1)

γµ = sin θWW
µ
3 + cos θW Bµ (1.2)

Z0,µ = cos θWW
µ
3 − sin θW Bµ, (1.3)

where θW is known as the Weinberg angle and µ represent the Lorentz indices.

Along with the electroweak gauge bosons, the electroweak theory predicts the

existence of a scalar field (dubbed the Higgs field), which plays the role of the order

parameter of the theory. Below a certain energy scale, the Higgs field acquires a non-

zero vacuum expectation value and the SU(2)L ×U(1)Y symmetry is broken down

to U(1)Q, which is the gauge symmetry of electromagnetism. The Higgs field is a

complex-valued field that transforms under the (1,2,1) representation of the SM gauge

group, having therefore 4 degrees of freedom. After spontaneous symmetry breaking,

3 of these degrees of freedom are absorbed by the massless bosons W ± and Z0 bosons

which consequently acquire a mass and the remaining degree of freedom constitutes

the Higgs boson, i.e. a massive scalar particle with zero electric charge.

The electroweak theory has been consolidated by the discovery of the neutral

current interactions and the W and Z bosons by the Gargamelle [26, 27], UA1 [28, 29]

and UA2 [30,31] experiments at CERN, while the Higgs boson was recently discovered

by the ATLAS and CMS experiments [32, 33].

The strong sector (QCD)

The development of Quantum Chromodynamics (QCD) as the gauge theory of strong

interactions began with the introduction of the quark model for the classification

of hadron resonances [34, 35]. The color charge was introduced as a new degree

of freedom in an attempt to solve the ∆++ puzzle, i.e. to allow for the existence

of resonances with antisymmetric wave-functions comprised of three quarks with

identical flavor and spin [36]. It was later realized by the seminal work of Gross,

Wilczek [37] and Politzer [38] that non-Abelian gauge theories are asymptotically free,

i.e. that the coupling between quarks and gluons vanishes in the limit of infinite energy,
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and could thus explain Bjorken scaling3 [39] which was observed by the SLAC-MIT

deep inelastic scattering experiments [40].

The measurement of the cross-section ratio σ(e−e+ → hadrons)/σ(e−e+ → µ−µ+)

at SLAC [41] provided evidence for the existence of three colors and the discovery of

3-jet events in e−e+ collisions by the TASSO experiment at DESY [42] established the

existence of gluons thus proving that the strong interactions could be described as a

gauge theory with a SU(3) symmetry group, where 3 corresponds to the number of

colors.

The QCD Lagrangian is comprised of two parts: the Yang-Mills part that describes

the gauge bosons (gluons) [43] and the Dirac part [44, 45] that describes the fermions

(quarks) which transform in a representation of the gauge group. One can schemati-

cally write4

L0
QCD = L0

YM + L0
Dirac = −1

4
Tr
[

F0
µνF0,µν

]
+ ∑

i

Ψ̄i (i/∂ − mi)Ψi. (1.4)

where F
0,µν
a = ∂µ Aν

a − ∂ν A
µ
a is the field strength and the indices a and i run over the

color charges and the quark flavors respectively. This Lagrangian describes freely

propagating gluons and quarks without interactions. Introducing a local infinitesimal

SU(3) transformation Ψ′
i = exp

(
igλα(x)[ta]

j
i

)
Ψj, where λa(x) are small parameters

and ta are the generators of the SU(3) group, we obtain

δΨi = Ψ′
i − Ψi = igλa(x)[ta]

j
iΨj

≡ igΛΨ. (1.5)

Then

∂µ(δΨ) = igΛ∂µΨ + ig(∂µΛ)Ψ, (1.6)

3Bjorken scaling refers to the property of the nucleon structure functions being independent of
the energy of the experiment or the four-momentum transfer and depending instead only on
a dimensionless variable. Since energy independence implies the independence of the spatial
resolution scale, Bjorken scaling suggested that nucleons were made of point-like constituents,
which were later identified with the quarks.

4Upon attempting to quantize the QCD Lagrangian, one has to add an additional gauge fixing term,
in order to eliminate unphysical degrees of freedom from the spectrum. This is not of crucial
importance for the following discussion and will not be treated here.
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with the second term spoiling the gauge invariance. In order to restore gauge invari-

ance, the ordinary derivative ∂µ has to be replaced by a new operator ∇µ, which has

to transform covariantly under the gauge transformation, i.e obey the same transfor-

mation as the field itself

δ∇µΨ ≡ igΛ∇µΨ. (1.7)

Defining ∇µ ≡ ∂µ − igAµ, where Aµ(x) is a vector field, we see that the property of

covariance (equation (1.7)) determines the transformation of the field Aµ(x):

δAa
µ = ∂µΛa + ig

[
Λ, Aµ

]

= ∂µΛa + gCa
bcΛc Ab

µ ≡ ∇µΛa. (1.8)

Therefore, demanding that the Lagrangian be invariant under local SU(3) transforma-

tions automatically introduces the gauge fields Aµ (gluons), which have to transform in

the adjoint representation5 of SU(3). Furthermore, from equation (1.8) we observe that

the requirement of gauge invariance completely determines the interaction between

quarks and gluons. The interacting QCD Lagrangian becomes

LQCD = −1
4

Tr
[
FµνFµν

]
+ ∑

i

Ψ̄i (i /∇− mi)Ψi, (1.9)

Fµν = ∇µ Aν −∇ν Aµ = ∂µ Aν − ∂ν Aµ − ig
[
Aµ, Aν

]
. (1.10)

The constant g which appears in equations (1.9) and (1.10) is the gauge coupling

parameter, which is related to the strong coupling constant by

αs ≡
g2

4π
. (1.11)

Intuitively, one can picture the gauging procedure described above by drawing an

analogy to general relativity. In order to compare vectors attached to different points

on a curved surface, one has to introduce the notion of parallel transport. The effects

of the parallel transport from point to point can then be described by the Christoffel

symbols (affine connection). Also parallel transport along a closed contour provides a

measure of the curvature of space-time and is described by the Riemann curvature

tensor. An analogous picture for QCD is illustrated in Figure 1.1. The QCD fields take

5The adjoint representation is defined by [ta]
c
b ≡ iCc

ab, where Cc
ab are the structure constants of the

gauge group.
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values on a base space, which is the 4-dimensional Minkowski space-time of special

relativity. At every space-time point there is a fiber, that is a copy of the gauge group

SU(3). When the SU(3) symmetry is gauged, the quark fields can transform with

different phases from point to point. Therefore, in order to compare quark fields at

different space-time points, one has to introduce a connection, namely the gluon fields,

that determines how the quark fields must be transported from one point to another.

In this sense, the analogues of the Christoffel symbols are given by the gluon fields

and the analogue of the curvature is given by the field strength Fµν.

Figure 1.1: QCD as a hairbrush (fiber bundle). The handle (base space) is identified with the
4-dimensional Minkowski space-time and the bristles (fibers) are identified with
the SU(3) group. The gauge fields (affine connection) determine how quark fields
are parallel-transported from point to point.

1.2 Matrix element calculations in perturbative QCD

The principal task of QCD calculations for collider experiments is to relate the incoming

state to the outgoing state. This is accomplished by the scattering matrix, which relates

asymptotic incoming Ψin(α) and outgoing states Ψout(β), described by the set of

quantum numbers α and β, through the relation

Sβα ≡ 〈Ψout(β)|Ψin(α)〉. (1.12)

In QCD, Ψin and Ψout would in principle correspond to incoming and outgoing quarks

and gluons, however complications arise due to the confining nature of the strong force.

This complication is overcome via the factorization theorem that will be discussed in
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Section 1.4. For the moment we can pretend that the fields appearing in equation (1.12)

are the fundamental degrees of freedom of the theory, i.e. quarks and gluons.

The S matrix comprises of a trivial part (no interaction) and a non-trivial part

Sβα = δβα + iTβα = δβα + (2π)4δ(4)

(

∑
i

pi − ∑
f

p f

)
iMβα. (1.13)

The invariant matrix element M represents the non-trivial part of the scattering matrix,

i.e. it encapsulates the dynamics of the interaction. The delta function in equation (1.13)

imposes the conservation of the incoming 4-momenta pi.

The matrix element can be calculated by perturbation theory using the QCD Feyn-

man rules, which are derived from the QCD Lagrangian [46]. Cross-sections can then

be calculated using the so-called Fermi’s golden rule [47, 48], which states that the

transition probabilities from one state to another are given by the amplitude of the

matrix element describing the transition, multiplied by the density of final states. More

specifically, for a process p1p2 → k1 . . . kn, the cross section is given by

dσ =
1
F
|M|2dΦn, (1.14)

where F is the incoming particle flux and dΦn is the n-particle final state phase space.

1.3 Running of the strong coupling constant

In quantum field theory the physical space is thought of as being permeated by

the fundamental fields (quark, gluon, photon, etc) and the vacuum is the state that

corresponds to the lowest possible energy. While the vacuum state does not contain

any real particles (particles satisfying the on-shell condition E2 = p2 +m2), fluctuations

in the energy of the fields can produce virtual particle-antiparticle pairs that annihilate

after a time that is bounded by the Heisenberg uncertainty principle. These virtual

particle pairs carry the quantum numbers of real particles, e.g. color, charge, therefore

acting as dipoles. As a consequence of the presence of these dipoles, the vacuum

acquires the properties of a polarizable material medium.

The so-called vacuum polarization processes, depicted in Figure 1.2, induces a

dependence of the strong coupling constant αs on the interaction energy. This
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Figure 1.2: Vacuum polarization processes that induce the running of the strong coupling
constant. Contributions arise due to fermion (left), gluon (middle) and ghost loops
(right).

dependence6 is governed by the QCD β function, which reads [49]

β (g(µ)) ≡ µ
dg(µ)

dµ
= −g

[
αs

4π
β1 +

( αs

4π

)2
β2 + . . .

]
≈ −g

αs

4π

(
11 −

2N f

3

)
, (1.15)

where βi are the i-loop contributions to the beta function, µ is an energy scale which

arises from the renormalization procedure, N f is the number of flavors and the last

approximation corresponds to retaining only the 1-loop contribution. Solving for αs

one obtains

αs(µ
2) =

αs(µ2
0)

1 + αs(µ2
0)

4π

(
11 − 2N f

3

)
ln µ2

µ2
0

. (1.16)

From equation (1.16) we can see that αs grows with decreasing energy. As shown

in Figure 1.3, αs is large for energies of the order of the proton mass. Therefore, at

energies close to the hadronization scale (∼ 1 GeV), perturbation theory, which is

based on treating αs as a small parameter, cannot be trusted.

1.4 The factorization theorem: PDFs and the DGLAP

equations

In the previous sections, the theory was set-up using quarks and gluons. Nevertheless,

only colorless hadrons are observed experimentally. Here we explain how we can use

the parton level calculations to extract results for hadron observables.

It was first proposed by Feynman [51], that lepton-hadron scattering in the limit of

large momentum transfer can be explained by the parton model, where the hadron is

6Ghost fields are fictitious fields that are introduced as one way to quantize a gauge invariant theory.
Ghost fields violate the spin-statistics relation and appear only as virtual particles in loops.
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QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  
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Figure 1.3: The QCD running coupling [50].

replaced by fundamental point-like constituents. These were later identified with the

QCD quarks and gluons. As it was further elaborated by Bjorken and Paschos [52], the

essential ingredient of the parton model is to consider a class of infinite momentum

frames, in which a parton i will carry a fraction 0 < xi < 1 of the hadron’s momentum.

Lepton-hadron scattering can then be described by an incoherent sum7 of all the

possible lepton-parton scatterings. This idea was reversed by Drell and Yan [53] in the

study of what is today known as the Drell-Yan process (i.e. lepton hadroproduction).

There, it was postulated that the hadronic cross section σ(H1H2 → µ+µ− + X) could

be obtained by convolving the cross-section for the hard-scattering subprocess σ̂(qq̄ →
µ+µ−) with the Parton Distribution Functions fi/H1

σH1H2 = ∑
i,j

∫
dx1dx2 fi/H1

(x1) f j/H2(x2)σ̂(ij → µ+µ−). (1.17)

The PDFs fi/H(x) express the probability of finding a parton i inside the hadron H,

carrying a momentum fraction x. The domain of validity of equation (1.17) is the

asymptotic scaling limit: s = Q2 → ∞, x fixed. Measurements at lower values of x

first made at SLAC [54] and later extended by several other experiments at CERN

(BCDMS, NMC), Fermilab (E665) and HERA (H1, ZEUS) observed that the cross-

sections in hadron scattering do not scale according to equation (1.17), but instead

7Incoherent sum is a sum which does not include interference terms.
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display a logarithmic dependence on the annihilation energy. The appearance of these

logarithms was attributed to the emission of gluons that were collinear to the incoming

beam and it was shown that such contributions could be factored into the the PDFs,

with equation (1.17) becoming

σH1H2 = ∑
i,j

∫
dx1dx2 fi/H1

(x1, µ2
F) f j/H2(x2, µ2

F)σ̂(ij → µ+µ−)

= fi/H1
⊗ f j/H2 ⊗ σ̂(ij → µ+µ−), (1.18)

where µF is an energy scale which characterizes the hard subprocess, known as the

factorization scale. Equation (1.18) is an example of theorems called factorization

theorems [55] which essentially express the fact that in certain kinematic regimes the

non-perturbative dynamics (encapsulated in fi/H1
, f j/H2) can be separated from the

perturbative dynamics (encapsulated in ˆsigma).

From equation (1.18), we can see that hadronic observables O will be given by

a convolution of the parton distribution functions with the parton-level observable

Ô, i.e. O = fi ⊗ f j ⊗ Ô. The fact that physical observables must be independent of

unphysical scale is expressed via the so-called renormalization group equation (RGE)

∂O(x, Q2)

∂µ2
F

= 0. (1.19)

In analogy with the beta function for the QCD running coupling, the RGE leads to

the evolution equations for the PDFs [49], which are known as the DGLAP equations

[56–59]

∂

∂ ln µ2
F


 fqi

(x, µF,2 )

fg(x, µ2
F)


 =

αs

2π ∑
j

∫ 1

x

dξ

ξ


 Pqiqj

(
x
ξ , αs(µ2

F)
)

Pqig

(
x
ξ , αs(µ2

F)
)

Pgqj

(
x
ξ , αs(µ2

F)
)

Pgg

(
x
ξ , αs(µ2

F)
)




×


 fqj

(x, µ2
F)

fg(x, µ2
F)


 . (1.20)

The DGLAP equations express the fact that a quark or gluon with momentum frac-

tion x can come from a quark or gluon with a larger momentum fraction x/ξ with a

probability proportional to αs · Pij. Here, Pij are the so-called splitting kernels, which

are calculable in perturbation theory, with the LO contributions shown in Figure 1.4.

Physically, this corresponds to the fact that as the momentum scale of the interaction
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is increased, the sea of quark-antiquark pairs and gluons that surround the original

parton are resolved. We note that although the DGLAP equations determine the evo-

lution of the PDFs with the energy transfer, the x-dependence can only be determined

by data.

Figure 1.4: LO contributions to the DGLAP splitting kernels.

1.5 Higher order QCD calculations

The matrix element in equation (1.14) has a perturbative expansion in αs. Going be-

yond the lowest order contributing to a given process corresponds to the emission or

emission and re-absorption of gluons, as shown in Figure 1.5. In the usual nomen-

clature, the tree-level contributions (containing no loops) are referred to as the Born

contributions. Real emission diagrams at NkLO correspond to the emission of k gluons,

while virtual diagrams correspond to the inclusion of k loops.

a b c

Figure 1.5: Example of Born (a), Real (b) and Virtual (c) Feynman diagrams.

One can symbolically write the parton-level cross-section at NLO accuracy as

σ̂NLO =
∫

n
dσ̂B +

∫

n+1
dσ̂R +

∫

n
dσ̂V , (1.21)
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with dσ̂B, dσ̂R, dσ̂V representing the LO (Born), real and virtual contributions respec-

tively and the integration subscripts representing the number of partons in the final

state. It is evident from Figure 1.5 that the virtual diagrams are physically indistin-

guishable from the Born ones and thus the corresponding contribution to the cross

section will be given by the interference of the two terms

dσ̂V = dΦn ∑ 2Re
(
MV

1 M∗
0

)
, (1.22)

where the sum runs over all possible 1-loop contributions and the subscripts 1 and

0 refer to the NLO and LO matrix elements respectively., while dΦn denotes the

n-particle final state phase-space. The corresponding contributions from the real

emissions read

dσ̂R = dΦn+1 ∑
∣∣∣MR

1

∣∣∣
2

. (1.23)

The NLO contributions involve three types of divergences: ultraviolet divergences

from the p → ∞ limit of the loop integrals in the virtual contributions8, infrared di-

vergences from the p → 0 limit of loop diagrams and the emission of soft gluons in

the real contributions and collinear divergences coming from real emission diagrams

which involve branchings between three massless partons. These divergences are

not physical but signal the breakdown of perturbation theory. It has been formally

established by the Bloch-Nordsieck and Kinoshita-Lee-Nauenberg theorems [60–62],

that sufficiently inclusive quantities are finite in the massless limit. Ultraviolet diver-

gences are regularized and absorbed in the running of the coupling constant. Infrared

divergences cancel exactly between the real, collinear and virtual contributions in the

final state9. Collinear singularities in the initial state do not cancel after summing

the different contributions and have thus to be absorbed in the PDFs by virtue of the

factorization theorem.

In order to deal with these divergences within perturbation theory, we need to

introduce non-physical scales (cf. equation (1.15), equation (1.20)). If one retains all

the orders of the perturbative expansion these scale dependencies cancel out, since

physical observables do not depend on non-physical scales. However, truncating the

perturbative expansion at a certain order introduces a dependence on these scales,

which becomes smaller as the accuracy of the matrix element calculation increases.

8Here p is a 4-momentum and the limit is to be understood component-wise.
9For technical details see e.g. [49].
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In order understand this statement, consider a dimensionless physical observable

O, which after renormalization acquires a dependence on Q2/µ2, where Q is a large

energy scale and αs(µ2) is the renormalized strong coupling constant. The perturbative

expansion of O reads

O
(

Q2

µ2 = 1, αs(Q
2)

)
= O1αs(Q

2) +O2α2
s (Q

2) + . . . . (1.24)

From (1.16) we have

αs(Q
2) = αs(µ

2)− b1 ln
Q2

µ2 α2
s (µ

2) + . . . , (1.25)

where b1 = 1
4π

(
11 − 2N f

3

)
. Thus (1.24) becomes

O
(

1, αs(Q
2)
)
= O1αs(µ

2) +

(
O2 −O1b1 ln

Q2

µ2

)
α2

s (µ
2) + . . . . (1.26)

We see thus that the LO expansion O
(
1, αs(Q2)

)
= O1αs(µ2) gives no information on

the absolute normalization, since αs(µ) can take any value by changing the value of µ.

Beginning at NLO, the µ dependence of ln Q2

µ2 starts to compensate the µ dependence

of αs and we can thus obtain information about the absolute normalization while

also reducing the scale dependence of O. Moreover, at NLO, new channels that are

inaccessible at LO can open up leading to non-trivial distributions for observables that

are trivial at LO.

1.6 The Parton Shower approach

Parton showers are an integral part of the simulation of a high energy particle collisions

and are based on the description of independent subsequent parton branchings that

occur as the partons’ energies evolve from the collision scale down to the hadronization

scale. Radioactive decay provides a familiar context for understanding the physics

of the parton showers. In radioactive decays, the probability for a decay to happen

at time t is proportional to the number of radioactive particles N, which obeys the
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differential equation

dN(t)

dt
= −Γ(t)N(t), (1.27)

with Γ known as the decay width (in particle physics) or the decay constant in nuclear

physics. The probability of having no decay in the time interval [t1, t2] is given by

Pno−decay(t1, t2) = exp
[
−
∫ t2

t1

dt Γ(t)

]
≡ ∆(t1, t2). (1.28)

The function ∆(t1, t2) is known as the Sudakov form factor. In a parton shower, one

encounters the same underlying process, with radioactive decays at times t being

replaced by gluon emissions at energy scales t. The emission probability in a parton

shower is proportional to the DGLAP splitting kernels, so extending equation (1.28) to

the case of the parton shower, we obtain [49]

Pno−emission(t1, t2) = exp

{
−∑

j

∫ t2

t1

dt

t

αs(t)

2π

∫
dzPij(z)

}
≡ ∆(t1, t2). (1.29)

This obeys the evolution equation

t
∂

∂t

(
f

∆

)
=

1
∆

∫
dz

z

αs

2π
P(z) f

(x

z
, t
)

, (1.30)

which is nothing other but the DGLAP equation (1.20) with the substitution f → f /∆.

Integrating (1.30) and expanding the solution we obtain

f (x, t) = ∆(t) f (x, t0) +
∫ t

t0

dt′

t′
∆(t)

∆(t′)

∫
dz

z

αs

2π
P̂(z) f

(x

z
, t′
)

= ∆(t) f (x, t0) +
∫ t

t0

dt′

t′
∆(t)

∆(t′)

∫
dz

z

αs

2π
P̂(z)

×
[

∆(t′) f
(x

z
, t0

)
+
∫ t′

t0

dt′′

t′′
∆(t′)
∆(t′′)

∫
dz

z

αs

2π
P̂(z) f

( x

zz′
, t′′
)]

+ . . . (1.31)

with the integrals giving rise to logarithmic terms ln t
t0

. Equation (1.31) is an exponen-

tial expansion containing an infinity of terms of order
(

αs
2π ln t

t0

)n
. The parton shower

corresponds therefore to an all-order calculation. We stress that the above equations

are strictly only valid in the limit of small-angle gluon emission. As a consequence,
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although the Sudakov region is correctly described by the parton shower, hard/wide-

angle emissions will not be correctly described and one would have to resort to an

exact matrix element calculation for those.

1.7 Matching and merging ME and PS calculations

From the previous discussion it should be clear that there are two different approaches

for the calculation of observables in hadron collisions: the matrix element approach

which relies on perturbative calculations performed at a given fixed order and the

parton shower approach which includes all-order contributions in the collinear limit.

The two approaches are complementary in the sense that in the soft/collinear region,

where the parton shower approach is valid, the matrix-element calculation breaks

down due to the appearance of large logarithms, while in the hard/wide-angle emis-

sion region, where the matrix-element calculation provides a good description, the

approximations involved in the parton shower approach become invalid.

Combining the ME with the PS calculations offers the advantages of both ap-

proaches, extending the validity of the perturbative calculations to the whole of the

phase space, as well as allowing to make the ME predictions exclusive and interface

them to hadronization generators. While combining LO matrix elements with parton

showers poses no difficulty, from NLO onwards, ambiguities start to arise due to the

multiple counting of certain configurations, as illustrated in Figure 1.6. For instance

a (N + 1)-jet event can be obtained both from a NLO correction to a N-jet event and

from extra emissions added by the parton shower to the N-jet event. The same prob-

lem arises also when attempting to merge LO+PS calculations of different final state

particle multiplicities.

Several schemes have been constructed that allow for the matching of NLO calcula-

tions with parton showers and for the merging of LO+PS calculations with different

final state particle multiplicities, avoiding the double counting problem, as explained

in the following.
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Figure 1.6: Schematic illustration of the double counting problem in the matching and merging
of ME and PS calculations. Figure (a) illustrates a LO Feynman diagram of a
pp → e+e− process. Figure (b) represents a possible configuration that may result
from propagating the event in Figure (a) through a parton shower algorithm.
Figure (c) represents a real emission (NLO) correction to the diagram in Figure (a)
and corresponds to the same configuration as the one obtained from the parton
shower (Figure b). Therefore naïvely matching NLO computations to parton
showers results in a double counting of configurations. Alternatively Figure (c)
can be thought of as the LO contribution to the pp → e+e−+1 jet process, therefore
merging LO+PS calculations with different final state particle multiplicities also
results in the double counting of certain configurations.

Merging LO+PS calculations with different final state particle multiplicities

There are three schemes for merging LO matrix-element calculations interfaced to

parton showers: CKKW [63], CKKW-L [64] and MLM [65]. The fundamental concept

of these merging schemes is the partitioning of the phase space into two regions

with the use of a transition scale yini defined by a given jet measure y. If ycut is the

resolution variable of a given jet algorithm, then for ycut > yini the observables are

taken from matrix elements modified by Sudakov form factors, while for ycut < yini

the observables are taken from the parton showers subjected to a veto procedure. In

more detail, the different merging schemes follow the same basic procedure

1. definition of a jet measure y and calculation of the cross sections for the processes

pp → X + n−jets with n = 0, 1, . . . , nmax. Typical examples include the jet radius

used in the Alpgen implementation of the MLM matching and the kT distance

used in CKKW matching.
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2. generation of hard partons with a probability proportional to the total cross

section and a kinematic configuration given by the matrix element

3. acceptance or rejection of the configuration with a probability that includes

Sudakov and running coupling effects

4. parton showering with a ‘veto’ that rejects events with extra jets

The differences between the merging schemes lie in

• the definition of the jet measure

• the way the acceptance/rejection of step (2) above is carried out

• the initial conditions for the parton shower algorithms and the application of the

‘veto’.

A comparative study of the aforementioned merging algorithms was performed in [66].

Matching NLO calculations with parton showers

There are two methods for matching NLO matrix elements with parton showers,

dubbed MC@NLO [67] and POWHEG [67, 68]. In both of these methods, the emission

with the highest pT is taken from the NLO matrix element (with the shower approxi-

mation subtracted) and the following emissions are taken from the parton shower and

are thus only reliable in the collinear limit.

An observable calculated with NLO+PS accuracy can be schematically written as

〈O〉NLOPS =
∫

dΦnB̄(Φn)

{
O(Φn)∆t0 +

∫
dΦrO(Φn, Φr)∆t

R(Φn, Φr)

B(Φn)

}

+
∫

dΦn+1O(Φn+1) [R(Φn+1)− Rs(Φn+1)] , (1.32)

with

B̄(Φn) = B(Φn) + V(Φn) +
∫

dΦr [R(Φn, Φr)− C(Φn, Φr)] ,

∆t = exp
[
−
∫

dΦ′
r
R(Φn, Φ′

r)

B(Φn)
θ(t′ − t)

]
. (1.33)

In the above equations, B, V, R are the Born, virtual and real emission matrix elements

multiplied by the PDFs, Rs is the the real emission contribution in the soft and collinear
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limit and Φn, Φr parametrize the phase space which has n final state particles in the

case of the Born and virtual contributions and n + 1 particles in the case of the real

emission contributions. The last term in (1.32) is the so-called matrix element correction,

which provides the hard, large-angle contribution to the hardest emission calculated

from the NLO matrix element.

Some comments are in order with respect to the specific implementation of the

NLOPS formalism in the POWHEG and MC@NLO approaches. The first term of

(1.32) B̄(Φn)dΦB is what is called a S event (for Standard MC evolution) and the last

term [R(Φn+1)− Rs(Φn+1)]dΦn+1 is called a H event (for Hard MC evolution). In

MC@NLO the difference R(Φn+1)− Rs(Φn+1) can become negative, thus leading to

the appearance of events with a negative weight. In POWHEG on the other hand,

one has a freedom to choose a parametrization Rs(Φn+1) = R(Φn+1)F(Φn+1) with

0 ≤ F(Φn+1) ≤ 1 and F(Φn+1) → 1 in the soft and collinear limit. Thus R(Φn+1)−
Rs(Φn+1) = R(Φn+1)[1 − F(Φn+1)] ≥ 0. Another difference with MC@NLO is that

the part within the curly braces in (1.32), which corresponds to the hardest emission,

is generated within POWHEG and is thus independent of the showering generator.

Finally, we note that although the two approaches are equivalent at NLO, differences

may arise at NNLO.

1.8 The Monte-Carlo method for event generation

Hadron collisions typically involve the production of multi-particle final states, there-

fore the computation of observables for hadron collider experiments involves multi-

dimensional integrations over the final-state phase space. These integrals are almost

always impossible to compute analytically and one has to resort to numerical methods.

One of the most popular methods is the Monte-Carlo technique. The Monte-Carlo

technique is based on the approximation of an integral as follows

I =
∫ x2

x1

f (x)dx = (x2 − x1) 〈 f (x)〉 ≈ (x2 − x1)
1
N

N

∑
i=1

f (xi). (1.34)
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The approximate equality becomes exact in the limit N → ∞. Using this approximation

for the cross-section one gets

σ =
∫ 1

0
dx

dσ

dx
≈ 1

N

N

∑
i=1

dσ

dx

∣∣∣∣
i

, (1.35)

where x is an arbitrary parametrization of the phase space chosen so that the bound-

aries lie at x = 0, 1. The differential cross section dσ
dx

∣∣∣
i

is called the weight of the event

parametrized by xi. After calculating the cross section for a process, one wants to go

one step further and simulate physical events as they occur in nature, i.e. generate a

set of 4-momenta distributed according to the dynamical laws governing the process

under study. This step is called event generation. In a mathematical language the event

generation amounts to choosing a value x ∈ [xmin, xmax] distributed according to f (x)

or equivalently to selecting uniformly (x, y) in xmin < x < xmax, 0 < y < f (x). In the

case where the primitive F of f is known, the problem can be solved analytically by

noting that

∫ x

xmin

f (x′)dx′ = R
∫ xmax

xmin

f (x′)dx′. (1.36)

Then

x = F−1 [F(xmin) + RAtot] , (1.37)

where Atot =
∫ xmax

xmin
f (x)dx. In most of the cases, F is unknown and the problem is

tackled using the hit-and-miss technique. The hit-and-miss algorithm proceeds as

follows

1. generate two random numbers R, R′ uniformly10 distributed in (0, 1)

2. calculate x = xmin + R(xmax − xmin) and y = R′ fmax

3. if y < f (x) accept the event (hit), else go to (1)

One can write

I =

∫ xmax
xmin

f (x)dx

fmax(xmax − xmin)
Ω =

Nhit

Ntry
Ω, (1.38)

10Many recent integration algorithms do not use uniform sampling.
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where Ω = fmax(xmax − xmin) and Nhit, Ntry is the number of hits and number of total

tries respectively. Then the integral of a function can be computed by

∫ xmax

xmin

f (x)dx = fmax(xmax − xmin)
Nhit

Ntry
. (1.39)

Thus the probability of a hit is proportional to f / fmax. Performing the hit-and-miss

technique on a sample of events generated with a uniform sampling over the phase

space (weighted events) gives a final sample of events which occur with the same proba-

bility as in nature (unweighted events). The probability for an event to be accepted by

the hit-and-miss technique is (dσ/dx)i

(dσ/dx)max
while the unweighting efficiency is given by

(dσ/dx)ave

(dσ/dx)max
.

This procedure has been automated by codes that are collectively called Monte-Carlo

generators. These are separated into two categories: cross-section integrators, which

calculate cross sections for specific processes, and event generators, which generate

weighted and unweighted events and can thus be used for simulating physical pro-

cesses, as described in the following section.

1.9 Structure of a simulated pp collision

The simulation of a pp collision in Monte-Carlo event generators is a multistep process,

as depicted in Figure 1.7. The simulation starts from the calculation of the matrix

element for the process of interest, referred to as the “hard scattering” (e.g. pp → tt̄),

based on the perturbative QFT machinery that was described in Section 1.211.

The incoming and outgoing partons involved in the hard scattering process are

produced with energies which are usually much higher than the hadronization scale

Qhad ≃ 1 GeV. After the simulation of the hard scattering process, the phase-space

from the scale of the hard scattering down to a cut-off scale Q0 ≃ Qhad is filled with

partons mostly from soft and collinear parton branchings, simulated by the initial and

final state parton shower algorithms, as discussed in Section 1.6.

An important aspect in the simulations of hadronic collisions is the description

of multiple parton interactions (MPI), i.e. the scattering of multiple pairs of partons

from the same pair of protons that take part in the hard scattering event. The necessity

11More efficient methods than the traditional Feynman diagram approach are being actively developed
[69] and used in event generators such as SHERPA [70] and ALPGEN [71].
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Figure 1.7: Typical structure of a hadron collision event with different steps in the event
generation chain. The big magenta circle represents the hard scattering. Initial and
final state parton showers are representaed with blue and red respectively. The light
green blobs correspond to the hadronization stage, where colorless combinations
of partons are formed and subsequent hadron decays are depicted in dark green.
The purple ellipse depicts additional MPIs and the teal blue blobs represent the
hadronization of the beam remnants. [72]

for the introduction of MPIs in event generators arises from the observation that the

parton-level cross-section for a 2 → 2 QCD scattering behaves like [73]

σhard(pT,min) ∝
1

p2
T,min

pT,min−→0−→ ∞, (1.40)

therefore σhard(pT,min) becomes bigger than the total inelastic pp cross-section σ
pp
inel at a

certain energy scale. The paradox is resolved by postulating that more than one 2 → 2

scatterings take place in the single event, with the average number given by

〈n〉(pT,min) =
σhard(pT,min)

σ
pp
inel

. (1.41)
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The existence of multiple parton scatterings was first established experimentally by

the AFS collaboration at CERN, which measured 4-jet events, in which the sum of the

pT of the jets would sum up to 0 for each of the two pairs of jets [74]. Additionally

the forward-backward correlations in the charged particle multiplicities observed by

the UA5 [75] and E735 [76] collaborations provided strong evidence for the existence

of MPI. The simulation of MPI has thus become an integral part of the modern event

generators. Different implementations exist, with the most widely used being the

one in PYTHIA and the one in HERWIG. The PYTHIA MPI model is based mostly on

perturbative 2 → 2 QCD scatterings, with the most recent implementation allowing

for a wider array of processes to be included in the MPI [77]. The partons from the

MPI are handled by the showering and hadronization machinery in the same way

as the partons from the hard scattering. The HERWIG MPI model12 is based on an

eikonal model, which assumes that at fixed impact parameter b, the different MPI are

independent, following a Poisson distribution with variance A(b)σa, where σa is the

parton-parton cross-section and A(b) is a function which describes the distribution

of partons in the impact-parameter space. Both the PYTHIA and HERWIG models are

thus based on a mixture of first-principle calculations and phenomenological models

which are tuned to data via a set of tunable parameters.

After the parton showers have evolved the partons from the hard scattering process

and the MPIs down to the cut-off scale, the strong coupling constant becomes so large

(cf. Figure 1.3) that perturbation theory is no longer valid and the subsequent step of

the confinement of the partons into colorless hadrons must be based on phenomeno-

logical models. The hadronization process is modeled in two distinct ways in the

general-purpose Monte-Carlo generators: the cluster model employed by HERWIG

and SHERPA and the string model used in PYTHIA. In the cluster model [79], the final

state quarks and anti-quarks13 are assigned to colorless combinations, called clusters.

The clusters are then decayed isotropically into two hadron final states. In the string

model [80] the force between qq̄ pairs is described by the dynamics of a massless

relativistic string. Quarks and antiquarks form the endpoints of a string, while gluons

are described as string kinks. In analogy with the electron-positron pair creation in

the presence of a strong electric field (Schwinger effect), the strong color force field

of the string allows for virtual quark-antiquark pairs to tunnel out of the vacuum,

breaking the string into segments, with the invariant mass of the string segments

corresponding to the masses of the known hadron spectrum. The cluster model uses

12In the older HERWIG versions, the modeling of MPI was provided via JIMMY [78].
13Any gluons remaining after the parton shower step are split into quark-anti-quark pairs.
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less free parameters than the string model, however it has problems in dealing with

the decays of heavy clusters and suppressing baryon and heavy hadron production.

The string model, on the other hand, offers a better description of the heavy particle

and baryon production, at the cost of the introduction of additional free parameters,

that have to be tuned to data.

General-purpose event generators such as the PYTHIA [81, 82] and HERWIG [83, 84]

families as well as SHERPA [72] simulate all of the aforementioned stages. Specialized

event generators, dedicated to the simulation of only a certain part of a pp collision,

are also used, particularly when a higher accuracy than the one provided by the

general-purpose generators is needed. Typically the matrix elements for the hard

subprocess are calculated with specialized generators with a higher accuracy than

what is achievable with the general-purpose generators and are the latter are used for

the simulation of the subsequent steps.

1.10 Jets and Jet Algorithms

The parton shower evolution induces sequential parton branchings which are forced

to self-collimate with the parent partons, as a consequence of color coherence. After

hadronization, this will produce a collimated bunch of hadrons, which is called a

jet. There are different ways in which one can define a jet, which are known as jet

algorithms. These have to obey to a minimal set of rules [85].

Jet algorithms can be classified into two broad categories: cone algorithms and

sequential recombination algorithms. Cone algorithms use conical structures to cluster

particles within a certain angular distance, so that the sum of the clustered particle

momenta coincides with the cone axis. Sequential recombination algorithms start

by identifying the closest particles according to some distance measure, recombine

them and iterate the procedure until a stopping criterion is reached. Here we will only

describe a certain class of sequential recombination algorithms that are used for the

studies reported here.

A very important property that a jet algorithm must satisfy is the Infrared and

Collinear (IRC) Safety, which states that the set of hard jets in an event should be

insensitive to a collinear splitting or a soft emission. As we have already seen, collinear

and soft gluons lead to divergences in perturbation theory, whose cancellation depends
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on the correct summation of the real and virtual contributions of the corresponding

process. The situation might change in the case of IRC unsafe algorithms as illustrated

in Figure 1.8: IRC unsafe algorithms can lead to different classes of events for real and

virtual contributions, thus spoiling the cancellation of their divergences. The use of

IRC safe algorithms also leads to a reduced sensitivity to hadronization effects. The

Figure 1.8: Illustration of IRC unsafety. The addition of a soft gluon changes the number of
hard jets, spoiling the cancellation between real and virtual contributions.

Cambridge/Aachen, kt and anti-kt algorithms are based on the generalized distance

measures [86]

dij = min
(

k
2p
ti , k

2p
tj

) ∆R2
ij

R2

diB = k
2p
ti

∆R2
ij = (yi − yj)

2 + (φi − φj)
2, (1.42)

where kti
, yi, φi are the transverse momentum, rapidity and azimuth of particle i, dij

and diB are the distances between the entities i and j and the distance between entity i

and the beam respectively. The parameter R, also known as the radius parameter of

the jet can be freely chosen and is usually taken to be in the range 0.4 . R & 1 [87].

The parameter p takes the values

p =





1 kt

0 Cambridge/Aachen

−1 anti-kt

(1.43)

The clustering algorithm starts by identifying the smallest of the distances dij, diB and

recombining i and j if dij is the smallest distance or defining i as a jet and removing it

from the list of entities if diB is the smallest distance. This procedure is iterated until

no entities are left. It is evident that soft and collinear emissions will be clustered right

at the beginning of the clustering procedure and thus the kt family of jet algorithms

is IRC safe. It has been shown [86] that the choice p = −1 favors clustering around
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hard particles, as opposed to the kt algorithm which favors soft-particle clusterings or

the Cambridge/Aachen algorithm which favors energy-independent clusterings. As a

result anti-kt gives circular hard jets (as opposed to irregularly shaped jets obtained

with kt and Cambridge/Aachen - cf. Figure 1.9) which is an appealing property for

experimental jet reconstruction.

Figure 1.9: Parton-level jets with soft “ghosts” reconstructed with different jet algorithms [86].

Jet algorithms play a fundamental role in facilitating comparisons between theoret-

ical calculations and experimental measurements. At LHC energies, the pp collisions

produce hundreds of final state hadrons, which leave electronic signals in the detectors.

Jet algorithms allow to cluster the electronic signals in the detectors and the final state

hadrons in Monte-Carlo simulations, thereby reducing the complexity of the final state

and enabling direct comparisons between experiment and theory.



Chapter 2

tt̄bb̄ production in the Standard Model

In the dilepton channel, the experimental signature for tt̄bb̄ consists of four b-jets, two

leptons and missing transverse energy:

pp → tt̄bb̄ → W+bW−b̄bb̄ → bb̄bb̄l+νl l
−ν̄l. (2.1)

From (2.1) we observe that tt̄bb̄ poses several challenges:

• tt̄bb̄ is a process of extreme complexity; the presence of 8 particles in the final

state implies the existence of many partonic channels (Figure 2.1), which renders

the calculation of the full process intractable for most Monte-Carlo generators.

Therefore, although the experimental measurement is sensitive to all of these

channels, as well as their interference, Monte-Carlo generators are usually only

able to compute the double resonant diagrams (diagrams that contain two top

quark propagators that can become resonant1) at O(α4
s ), whereby the top is

considered stable and interference effects are ignored.

• tt̄bb̄ is very sensitive to the scale choice; the lowest order contributions to the

cross-section are

σLO
tt̄bb̄

= O(α8−2k
s α2k), (2.2)

where α is the electroweak coupling constant and 2 ≤ k ≤ 4. Ignoring the

top decay, and considering only the pure QCD terms (i.e. taking k = 2 in

equation (2.2)), we can see that the LO contributions are proportional to α4
s . A

1A top quark propagator becomes resonant when the 4-momentum of the top quark tends to the top
quark mass, i.e. the top quark goes on-shell.

27
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change of the scale at which αs is calculated, yields according to equation (1.16):

σ
pure QCD,LO
tt̄bb̄

(αs(Q2))

σ
pure QCD,LO
tt̄bb̄

(αs(µ2))
=

[
αs(Q2)

αs(µ2)

]4

=


 1

1 + b1αs(µ2) ln Q2

µ2




4

. (2.3)

At higher orders, the scale-dependence of the cross-section is lessened, however

NLO calculations still exhibit a scale uncertainty of the order of 30% [88–90].

• tt̄bb̄ contains multiple scales, thus being prone to perturbative instabilities;

the final state contains two explicit scales, the top and the bottom quark masses,

with ΛQCD ≪ mb ≪ mtop. The presence of multiple scales introduces logarithms

ln Q2

m2
b

, which can spoil the convergence of the perturbative expansion [5].

Monte-Carlo generators employ different approximations and calculation schemes,

in order to overcome the above complications. This is discussed in the following

sections.

2.1 Calculation of tt̄bb̄ in Monte-Carlo generators

The state-of-the-art Monte-Carlo generators can handle processes containing up to 5-6

partons at LO, however at NLO, 4-parton final states are at the border of what can be

technically achieved. For the study of complicated processes, such as tt̄bb̄, one usually

makes several approximations that reduce the complexity of the calculation, although

at the cost of restricting the domain of validity of the results.

One approach is to calculate the matrix elements only for the pp → tt̄ process

and let the parton shower simulate the additional b-quarks. NLO precision in the

matrix element calculation is easily attainable with the current generators and spin

correlations in the top decays can also be added with approximate methods [91]. The

most important drawback of this approach is that the extra b-quark kinematics are

calculated correctly only in the soft/collinear limit. Since we expect the additional b-

quarks to be produced mostly in this region, this approach is well-motivated, however

better approximations exist.

An improvement with respect to the previous approach is to calculate the matrix

elements for the full pp → tt̄bb̄ process, matching the calculation to a parton shower.

LO matrix elements can easily be calculated with the current generators. Furthermore,
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Figure 2.1: Leading order diagrams for pp → bb̄bb̄W+W− in the Standard Model. The decays
of the W’s are not shown, however both W’s are implicitly assumed to decay
leptonically. The three columns show contributions to the cross-section at different
orders in the strong and electroweak coupling and the three rows display diagrams
with two, one or no top propagators which can become resonant. Only the double
resonant O(α4

s α4) contributions are usually generated by Monte-Carlo generators,
with the top and W decays performed by the parton shower.

different LO samples corresponding to tt̄ + N jets, with N ≤ 3 can be merged, increas-

ing the accuracy of the calculation. NLO matrix elements for pp → tt̄bb̄ have been

computed in [90,92, 93] and implementations matched to parton showers [94–96] have

become available in dedicated generators, such as POWHEL [94] or in automated ones

such as MADGRAPH5_AMC@NLO [97]. These offer the most accurate predictions for

the tt̄bb̄ process that is attainable with the current generators.

Even in the context of tt̄bb̄ matrix element calculations, there are several approx-

imations that are involved. The most common one is to assume that only the pure

QCD double resonant diagrams (see Figure 2.1) contribute to the cross-section and
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neglect the rest of the contributions and their interference. This approximation is used

in all of the Monte Carlo samples under consideration in this thesis.

The full calculation with 4 b-jets and the W decay products in the final state has

been performed in [98] for semi-leptonic top decays. This calculation includes all of

the contributions displayed in Figure 2.1 as well as their interference. The calculation

showed that the QCD production of tt̄bb̄ gives the dominant contribution to the full

process, with the mixed QCD/EW terms being half as large and the pure EW terms

being negligible. Moreover the interference between the different contribution leads

approximately to a 5% reduction of the cross-section. It has to be noted that while

these results were obtained for semi-leptonic top decays, it is expected that they hold

qualitatively for the di-lepton channel as well. Quantitative differences may arise

however, particularly for the non-resonant contributions.

Another approximation which is commonly used is to neglect the masses of the

b-quarks in the matrix element calculation and in the parton shower. The following

sections deal with this approximation and its effect on the predicted cross-section.

2.2 4 and 5-flavor calculations

Calculations involving bottom quarks are typically performed in two schemes, dif-

fering by the treatment of the bottom quark mass. The first scheme is referred to as

“massive” or 4-flavor scheme (4FS). In this scheme it is assumed that the bottom mass

is significantly bigger than the proton mass and therefore the bottom quark can only

appear in the final state. In that case the proton PDF consists only of 4 flavors (u, d, s, c)

with the bottom PDF set to zero. In this scheme, the b-quark enters neither in the

evolution of the PDFs nor in the evolution of the coupling constant.

The second scheme is referred to as the “massless” or 5-flavor scheme (5FS). In this

scheme, one assumes that mb = 0, an approximation which is valid in the case where

the bottom mass is significantly smaller than the other scales of the interaction. In

this case the proton PDFs contain 5 flavors (u, d, s, c, b) and the bottom parton density

enters both in the PDF evolution equations as well as in the evolution of the coupling

constant.

The above schemes are complementary, in the sense that they have advantages

and shortcomings depending on the observable under study. More specifically, in the
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5FS, the number of external legs and the number of the scales involved is reduced,

compared to the 4FS, as shown in Figure 2.2. This allows higher order calculations to be

performed more easily in the 5FS than in the 4FS. Additionally, in the 5FS, logarithms

of the type ln Q2

m2
b

are resummed by the evolution of the b-PDF, thereby leading to a

more accurate prediction of the overall interaction rate and an improved stability of

the calculation with respect to scale variations. The drawback of the 5FS is that it gives

a less precise description of the b-quark kinematics than the 4FS at any given order.

Consequently, while the 5FS is better suited for inclusive cross-section calculations, it

performs worse in the description of more exclusive final states, particularly when cuts

on b-jet kinematics are imposed. Moreover since the amplitude for g → bb̄ diverges

as pT(b) → 0 2 and as ∆R(bb̄) → 0, when the b-quarks are massless, the 5F scheme

cannot describe the phase space region where two b-quarks are merged in a single jet

or when the b-quarks become very soft.

The 4FS is more reliable in describing the b-quark kinematics, since it explicitly takes

into account the mass of the b-quark. It is therefore better suited for the description of

more exclusive final states, particularly when cuts on b-jets are involved. The g → bb̄

splittings in the initial state, are associated with the appearance of collinear logarithms

in the calculation, as can be seen in Figure 2.2: integrating over the b-quark propagator

we get

∫ tmax

tmin

dt

t − m2
b

= ln
tmax − m2

b

tmin − m2
b

= ln
Q2

m2
b

, (2.4)

where Q2 is a characteristic scale of the process [5]. Contrary to the 5FS, in the 4FS

these logarithms are not resummed, therefore the 4FS may underestimate the total

inclusive rate and typically displays a higher sensitivity to the scale choice than the

5FS.

In order to make manifest the differences in the two schemes, it is instructive to

consider the evolution of the b-PDF in the 5FS:

db5F(x, µ2)

d ln µ2 =
αs(µ2)

2π

∫ 1

x

dy

y

[
Pbg

(
x

y

)
g(y, µ2) + Pbb

(
x

y

)
b(y, µ2)

]
, (2.5)

2Here and in the following we define ∆R as the euclidean distance in the η − φ plane: ∆Rij ≡√
(ηi − ηj)2 + [min(|φ1 − φ2|, |2π − φ1 + φ2|)]2.
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Figure 2.2: Illustration of a 4FS calculation (left) and a 5FS calculation (right). The blobs
represent all possible diagram insertions. The 4FS calculation involves an additional
external leg, compared to the 5FS calculation. In addition, in the 4FS, the calculation
involves an integration over the b-quark propagator (shown in red), which is
proportional to (t − m2

b)
−1. Therefore while the 5FS calculation involves only the

scale Q2 of the interaction, the 4FS depends both on Q2 and on m2
b.

where Pbg,Pbb are the DGLAP splitting kernels that correspond to the processes shown

in Figure 2.3. In the approximation where mb = 0, the latter are given by [49]

Pbb =
4
3

1 + z2

1 − z
, Pbb =

5
2

[
z2 + (1 − z)2

]
. (2.6)

Introducing the Mellin transform of the b-PDF

Figure 2.3: Illustration of the two processes that contribute to the b-PDF evolution (equa-
tion (2.5)).

b̃(N, µ2) ≡
∫ 1

0
dz zN−1b(x, µ2), (2.7)
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and taking the flavor non-singlet combination bNS = b − b̄, in order to decouple the

gluon density, we have

db̃NS
5F

d ln µ2 =
αs(µ2)

2π

∫ 1

0
dx xN−1

∫ 1

x

dy

y
Pbb

(
x

y

)
bNS

5F (y, µ2)

=
αs(µ2)

2π

∫ 1

0
dx xN−1

∫ 1

0
dy
∫ 1

0
dz Pbb(z)b

NS
5FS(y, µ2)δ(x − zy)

=
αs(µ2)

2π
b̃NS

5F (N, µ2)γbb(N, µ2), (2.8)

where γbb is the Mellin transform of the Pbb splitting kernel, also known as “anomalous

dimension”. Making use of the 1-loop running coupling (equation (1.16))

αs(Q
2) =

1

b ln Q2

Λ2

=⇒ dαs

d ln µ2 = −bα2
s , (2.9)

equation (2.8) becomes

db̃NS
5F (N, µ2)

dαs(µ2)
= −γbb(N, µ2)

2πb

1
αs(µ2)

b̃NS
5F (N, µ2), (2.10)

with the solution

b̃NS
5F (N, µ2) = b̃NS

5F (N, µ2
0)

[
αs(µ2

0)

αs(µ2)

] γbb
2πb

= b̃NS
5F (N, µ2

0)exp

[
γbb

2πb
ln

αs(µ2
0)

αs(µ2)

]
. (2.11)

Substituting the 1-loop expression for the running coupling

αs(µ
2) =

αs(µ2
0)

1 + αs(µ2
0)b ln µ2

µ2
0

, (2.12)

into equation (2.11), we obtain

b̃NS
5F (N, µ2) = b̃NS

5F (N, µ2
0)exp

[
γbb

2πb

(
1 + αs(µ

2
0)b ln

µ2

µ2
0

)]

= b̃NS
5F (N, µ2

0)e
γbb
2πb

∞

∑
n=0

1
n!

( γbb

2πb

)n
[

αs(µ
2
0) ln

µ2

µ2
0

]n

. (2.13)

Equation (2.13) shows that the evolution of the b-PDF induces a resummation of the

terms αs(m2
b) ln Q2

m2
b

.
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In order to compare with the 4FS calculations, we note that in the 5FS the b-PDF

is generated at scales µ > mb by the evolution of the light quark and gluon densities,

which has a perturbative expansion in αs. As is pictorially represented in Figure 2.2,

the 4FS matrix elements can be obtained from the 5FS matrix elements, with the g → bb̄

splitting in the initial state being described by the Pbg splitting kernel, truncated at

LO. Doing so, we can derive an approximate expression for the b-PDF evolution [5]

b̃
approx.
4F (x, µ2) =

αs(µ2)

2π
γbg(N)g4F(N, µ2) ln

µ2

m2
b

, (2.14)

where we have added a subscript 4F, with a slight abuse of notation, in order to

indicate that equation (2.14) provides an equivalent description of 4FS calculations.

Comparing equation (2.14) with equation (2.13), we observe that while the 4FS

contains logarithmic terms of the kind ln Q2

m2
b

, the latter are not resummed, as in the

5FS.

The ratio b
approx.
4F /b5F, shown in Figure 2.4 provides an estimate of the difference

between the two schemes. It is observed that the difference becomes significant

Figure 2.4: Ratio b
approx.
4F /b5F of the b-PDF evaluated in the 4 and 5FS, using the MSTW2008

NLO PDF set [99] for different values of Bjorken-x. The discrepancy between the
two PDFs is significant only at large x. Figure taken from [5].

only in the region of large Bjorken-x, nonetheless it is precisely this region that is

probed by tt̄bb̄ production. The typical x values in tt̄bb̄ production can be estimated

by considering that the final state quarks are produced at threshold. Then using the
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expression ŝ = x1x2s and making the approximation x1 ≈ x2 ≈ x, we obtain

x ≈
√

ŝ

s
=

2mtop + 2mb√
s

≈ 0.05. (2.15)

Therefore, we expect that tt̄bb̄ production might be sensitive to the presence of large

logarithms from collinear gluon splittings.

Finally, we note that even though fixed order 5FS calculations have b-quarks in the

initial state, this is not the case for calculations which are matched to a parton shower.

There, the shower replaces the incoming b-quark with a g → bb̄ splitting, when the

scale approaches the b-mass during the backwards evolution, since b(x, µ2) = 0 for

µ < mb. As a result, both in 4FS and 5FS calculations matched to a parton shower,

b-quarks always appear in pairs in the final state3.

Figure 2.5: Illustration of the effect of the parton shower on a 5FS calculation. The parton
shower performs the backward evolution from the scale of the hard process, down
to the scale of the proton mass. When the evolution reaches a scale close to the
bottom mass, the incoming b-quark is replaced by a g → bb̄ splitting. The b̄ quark
produced in the splitting will mostly be collinear to the beam pipe and will therefore
not be detected.

2.3 Handling of g → bb̄ in the parton shower

The splitting of a gluon to a massless quark-antiquark pair is treated in parton showers

using the massless DGLAP kernels

dPg→qq =
dt

t

αs(t)

2π

1
2

[
z2 + (1 − z)2

]
dz. (2.16)

3CKM suppressed transitions involving b-quarks can obviously violate this rule, however the corre-
sponding diagrams are accompanied by a factor of |Vcb|2 ≈ 0.0017 or |Vub|2 ≈ 1.2 · 10−5 and are
therefore negligible.
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The same expression was used in older implementations of parton showers to also

generate gluon splittings to massive quarks. The kinematics of the massive QQ pair

were initially constructed assuming massless quarks and mass effects were introduced

by rescaling the 3-momenta of the quarks in the QQ rest frame according to the

equations

p′Q = (1 − kQ)pQ + kQ pQ

p′
Q
= (1 − kQ)pQ + kQ pQ, (2.17)

where the unprimed quantities indicate the massless 4-momenta and the primed ones

denote the 4-momenta after rescaling. The coefficients kQ, kQ are found by imposing

the on-shell conditions on equations (2.17). Moreover, to account for the fact that

the emission rate is damped for opening angles θ0 < mQ/E, shower emissions were

limited to the region θ > θ0.

Later implementations use more sophisticated approaches, based on matrix element

corrections (PYTHIA) [100] or generalizations of equation (2.16) for massive quarks

(HERWIG++, SHERPA) [101]. Here we will content ourselves with describing only the

recent modifications introduced into PYTHIA 8 for the description of g → QQ.

The simplest option available in PYTHIA 8, which corresponds to setting Time

Shower:weightGluonToQuark=1, is to use the massless splitting kernel in equation (2.16),

multiplied by a phase-space suppression factor that is equal to the Lorentz β factor of

the massive quark

βQ =
|pQ|
EQ

=

√√√√1 −
4m2

Q

m2
QQ

. (2.18)

An improvement over this approximation, which corresponds to the setting

TimeShower:weightGluonToQuark=2, is to retain the mass dependence in the splitting

kernel, i.e.

dP
wgtq2
g→QQ

=
dt

t

αs(t)

2π

βQ

2

[
z2 + (1 − z)2 + 8

m2
Q

m2
QQ

z(1 − z)

]
dz, (2.19)
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A further option, corresponding to TimeShower:weightGluonToQuark=3 is to use

dP
wgtq3
g→QQ

=
dt

t

αs(t)

2π
βQ

[
z2 + (1 − z)2 + 8

m2
Q

m2
QQ

z(1 − z)

] 1 +
m2

QQ

m2
dipole

1 −
m2

QQ

m2
dipole

dz. (2.20)

This gives a high branching probability even for large masses and is therefore consid-

ered as an upper bound for the g → QQ rate. Finally in order to reproduce the matrix

element behavior, where the branching probability is suppressed for high masses,

option TimeShower:weightGluonToQuark=4 can be used, which amounts to choosing

a splitting kernel4

dP
wgtq4
g→QQ

=
dt

t

αs(t)

2π
βQ

[
z2 + (1 − z)2 + 8

m2
Q

m2
QQ

z(1 − z)

](
1 +

m2
QQ

m2
dipole

)

×
(

1 −
m2

QQ

m2
dipole

)2

dz. (2.21)

In the equations above, the argument of αs is chosen by default to be the trans-

verse momentum of the radiating dipole. An alternative choice is given by using

the mass of the QQ system instead. This can be accomplished by multiplying the

splitting kernels above by a factor ln(p2
T/Λ2)/ ln(m2

QQ
/Λ2) and corresponds to set-

ting TimeShower:weightGluonToQuark=n+4, where 1 ≤ n ≤ 4, are the 4 options out-

lined above. For the last set of options a further modification is possible, by scaling

mQQ in the strong coupling by a factor 0.25 ≤ k ≤ 1, thereby allowing for an in-

creased g → bb̄ rate. This possibility is implemented in PYTHIA 8 via the setting

TimeShower:scaleGluonToQuark=k.

2.4 Production of tt̄bb̄ from double parton scattering

The QCD production of a tt̄bb̄ final state can result either from a single parton-parton

scattering or from two independent scatterings between partons coming from the

same proton (double parton scattering - DPS), as illustrated in Figure 2.6. While the

two cases are impossible to distinguish experimentally on an event-by-event basis and

in fact both contribute to the measurement, the case where tt̄bb̄ is produced from DPS

4This corresponds to the default model in PYTHIA version 8.205 [102] that is used in this thesis.
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should a priori be considered as background. However, we will prove below that this

case constitutes a negligible fraction of the total number of tt̄bb̄ events.

Figure 2.6: Illustration of the production of a tt̄bb̄ final state in a single (left) and in a double
parton scattering (right). The blobs indicate the incoming protons in a pp collision.

The naïve expectation for the probability to have a tt̄bb̄ event from a single scat-

tering P(tt̄bb̄) and the probability to have a tt̄ event from a hard interaction and a bb̄

event from an additional MPI P(tt̄ + bb̄) is as follows

P(tt̄bb̄) =
σtt̄bb̄

σnon−diffractive
(2.22)

P(tt̄ + bb̄) =
σtt̄σbb̄

σ2
non−diffractive

. (2.23)

Replacing the cross-sections with their LO estimates, obtained from PYTHIA 8 σtt̄bb̄ =

1.5 pb, σtt̄ = 150 pb, σbb̄ = 270 µb, σnon−diffractive = 50 mb, we get

P(tt̄ + bb̄)

P(tt̄bb̄)
= 0.52. (2.24)

This is a naïve estimate for inclusive tt̄ and bb̄ production which doesn’t take into

account the impact-parameter dependence of the MPI. Generally the second interaction

would produce very soft jets. Putting a cut on the pT of the outgoing particles in the

center-of-mass frame, p̂T, we obtain

P(tt̄ + bb̄)

P(tt̄bb̄)
= 0.05 , for p̂T > 10 GeV (2.25)

P(tt̄ + bb̄)

P(tt̄bb̄)
= 0.005 , for p̂T > 20 GeV. (2.26)
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From this we can safely conclude that in the phase-space probed by the measurement,

with p
jet
T ≥ 25 GeV, the amount of tt̄bb̄ events coming from two MPIs should be

negligible.





Part II

Experimental setup
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Chapter 3

The LHC accelerator complex

3.1 Characteristics of the LHC accelerator chain

The Large Hadron Collider [103] is a synchrotron accelerator designed to accelerate

protons up to a centre-of-mass energy of
√

s = 14 TeV and lead ions (Pb82+) up to a

center-of-mass energy of
√

sNN = 2.76 TeV per nucleon pair. It consists of two rings

of accelerating radio-frequency (RF) cavities, interleaved with bending and focusing

magnets, where the beams are stored. The rings intersect at four points, where the

LHC detectors are located. The LHC design parameters are presented in Table 3.1.

Parameter Value

Circumference 26.7 km

Proton Energy per Beam 7 TeV

Lorentz γ factor 7461

Particles per bunch 1.15 · 1011

Bunches per beam 2808

Peak Luminosity 1034 cm−1s−1

Field of main bends 8.33 T

Revolution frequency 11.245 kHz

Collision rate 40 MHz

Stored Energy per beam 362 MJ

Bunch crossing interval 25 ns

Table 3.1: LHC design characteristics
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The LHC is located underground at a depth ranging from 45 to 170 meters. After a

startup period with the LHC working at
√

s = 900 GeV, from the beginning of 2010 the

LHC has been operating at
√

s = 2.36 TeV,
√

s = 7 TeV and
√

s = 8 TeV. The gradual

increase of the collision energy was not only necessary to ensure a safe operation

of the superconducting magnets, but it was also useful for physics measurements,

particularly for measuring the energy dependence of the underlying event [104]

which is of crucial importance for tuning the MPI and ISR models in Monte-Carlo

generators [105].

After a shutdown of one and a half years for consolidation works in the supercon-

ducting magnets, the LHC is scheduled to restart in the middle of 2015 at
√

s = 13 TeV,

before ramping up to the design collision energy of 14 TeV. With a shorter training time

required for the magnets, this intermediate step in collision energy will be adopted in

order to expedite the delivery of collisions for physics research, thereby shortening the

way to the discovery of new physics.

The proton acceleration sequence proceeds as follows. Before entering the LHC,

the protons are grouped into bunches and accelerated to 450 GeV. This is achieved

by the accelerator complex that precedes the LHC as illustrated in Fig. 3.1. Protons

are extracted from Hydrogen gas, by applying an electric field. The protons are then

accelerated up to 50 MeV by LINAC2. The beam is then injected into the Proton

Booster reaching an energy of 1.4 GeV. In the next step the beam is transferred to the

Proton Synchrotron, where it is accelerated to 26 GeV and circulated with the same

frequency and bunch spacing as the LHC. The final step before entering the LHC

is the Super Proton Synchrotron, which accelerates the beams to 450 GeV. Once the

beams are inside the LHC accelerator, it takes approximately 20 minutes for them to be

accelerated to the peak energy. Several processes contribute to reducing the number

of protons in the beams, such as inelastic proton-proton collisions, inelastic collisions

between the protons in the beam and residual gas left in the beam pipe and Coulomb

scattering of protons in the same bunch. As a result the beam lifetime, i.e. the interval

after which the beam intensity reaches 1/e of its initial value is limited to around 15

hours. At the end of its lifetime, or earlier if there are operating errors, the beam is

dumped into a block of a 8-meter long cylinder of graphite.

The proton beams are not continuous but have a discrete structure, which is defined

primarily by the characteristics of the LHC accelerating cavities (RF cavities). The

RF system provides longitudinal focusing which constrains the longitudinal particle

motion to a confined region called the RF bucket. Since a particle must always be
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Figure 3.1: The CERN accelerator complex.

subjected to the same accelerating voltage at the same point, the RF frequency must be

an integer multiple of the revolution frequency

fRF = h · frev = h · βc

2πR
, (3.1)

where h is the so-called harmonic number, which is the number of RF buckets on

the accelerator ring. For the LHC, fRF = 400 MHz, which gives h = 35640. Taking

into consideration the requirements of the LHC experiments, the characteristics of

the accelerator complex and beam stability issues, it was decided that a minimum

distance of 10 buckets (25 ns) must be present between two proton bunches (RF buckets

filled with protons). This limits the maximum number of proton bunches to 3564.

Accounting for the finite rise time of the kicker magnets, which are used to inject or
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dump the beam, further reduces the number of bunches to a maximum of 2808, at

design luminosity.

Each bunch contains 1.15 · 1011 protons at the beginning of the fill and the distance

between two bunches under the Run I operating conditions was 15 m (or 50 ns),

corresponding to a total of 1404 bunches per beam. This distance will be halved in

Run 2, in order to attain the design instantaneous luminosity.

3.2 Luminosity

The instantaneous luminosity is one of the key accelerator characteristics, determining

the rate for the production of particles per unit of area L = Ṅinel/σinel, where Ṅinel

is the rate of inelastic collisions and σ is the inelastic pp cross-section. For a storage

ring operating at a revolution frequency fr and with Nb bunch pairs colliding per

revolution, the instantaneous luminosity can be expressed as

L =
〈µ〉 Nb fr

σinel
=

ǫ〈µ〉 Nb fr

ǫσinel
=

〈µ〉vis Nb fr

σvis
, (3.2)

where 〈µ〉 is the average number of inelastic pp collisions per bunch crossing, ǫ is the

efficiency for reconstructing an inelastic pp collision and 〈µ〉vis ≡ ǫ〈µ〉, σvis ≡ ǫσinel.

ATLAS measures the delivered luminosity by measuring 〈µ〉vis with a variety of

detectors employing different algorithms [106]. The inner detector contributes to the

luminosity measurement by the detection of primary vertices produced in inelastic

pp interactions. The Beam Condition Monitor (BCM) is comprised of four diamond

sensors arranged in a cross shape around the beam pipe at a distance of 184 cm from

the interaction point. With the vertical and horizontal pair of sensors read out sepa-

rately it provides two independent luminosity measurements. LUCID is a Cherenkov

light detector dedicated to the online luminosity monitoring. Its main purpose is to

detect inelastic pp scattering in the forward region, in order to measure the integrated

luminosity and provide online monitoring for the instantaneous luminosity and beam

conditions.

In order to use equation (3.2) for the determination of the instantaneous luminosity,

σvis must be determined for each detector that provides a measurement of 〈µ〉vis. This is

done primarily using beam separation scans, first proposed by van der Meer [107,108],
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whereby the instantaneous delivered luminosity is calculated from the measurable

beam parameters

LvdM =
Nb fr n1 n2

2πΣxΣy
(3.3)

where n1, n2 are the numbers of protons in beams 1 and 2, and Σx, Σy are the horizontal

and vertical beam profile widths. Equating the luminosity measured in a van der Meer

scan with equation (3.2) we obtain

σvis =
2πΣxΣy〈µ〉max

vis
n1n2

, (3.4)

where 〈µ〉max
vis is the number of inelastic pp interactions per bunch crossing observed

at the peak of the scan curve. The number of protons in the two beams are determined

by external measurements using current transformers. The precision of the luminosity

measurements calibrated using the beam separation scans is at the level of 3% [106].

Alternative methods for determining σvis also exist. The visible cross-section can

be estimated using Monte-Carlo generators by taking

σvis = ǫNDσND + ǫSDσSD + ǫDDσDD, (3.5)

where ND, SD and DD refer to the non-diffractive, single diffractive and double

diffractive processes and the ǫi to the different efficiencies for detecting the correspond-

ing processes in the detector used for the luminosity measurement. The associated

cross-sections suffer from quite large modeling uncertainties, which translate to an

uncertainty of the order of 20% on the extracted instantaneous luminosity [109]. The

ALFA detector [110] consists of scintillating fibers placed inside of Roman pots sit-

uated 237 m on either side of the ATLAS detector. ALFA will measure elastic pp

scattering at small angles (of the order of µrad) with the aim of determining. For

elastic scattering, the scattering angle θ is related to the four-momentum transfer t

by t = −2p2(1 − cos θ), which for small angles becomes t = −(pθ)2, where p is the

four-momentum of the protons. The luminosity can be determined by measuring the t

distribution and fitting the spectrum dN/dt.

The design luminosity of the LHC is 1034 cm−2s−1. The peak instantaneous lu-

minosity was 3.6 · 1033 cm−2s−1 in the 7 TeV run of 2011 and reached a maximum of

7.7 · 1033 cm−2s−1, around 25% below the design luminosity in the 2012 8 TeV run. The
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integrated luminosity that was delivered and recorded by ATLAS during the 2011 and

2012 operations is shown in Figure 3.2.

Month in Year
Jan Apr Jul

Oct Jan Apr Jul
Oct

-1
fb

T
o
ta

l 
In

te
g

ra
te

d
 L

u
m

in
o
s
it
y
 

0

5

10

15

20

25

30

ATLAS

Preliminary

 = 7 TeVs2011,  

 = 8 TeVs2012,  

LHC Delivered

ATLAS Recorded

Good for Physics

-1 fbDelivered: 5.46
-1 fbRecorded: 5.08

-1 fbPhysics: 4.57

-1 fbDelivered: 22.8
-1 fbRecorded: 21.3

-1 fbPhysics: 20.3

Figure 3.2: Integrated luminosity delivered to (green), recorded by ATLAS (yellow) and certi-
fied to be of good quality for physics analyses (blue).

The LHC is expected to reach its design luminosity in 2015 allowing to collect a total

integrated luminosity of around 75-100 fb−1 until the beginning of 2018, according

to present estimates. Future upgrades are scheduled in order to increase the design

luminosity to 2 · 1034 cm−2s−1 (Phase I upgrade in 2018) which would allow to collect

an integrated luminosity of up to 300 fb−1 until the third planned long shutdown in

2022. A future upgrade, named High-Luminosity LHC is being considered, with the

aim of increasing the peak luminosity to 5 · 1034 cm−2s−1 (Phase II upgrade around

2022) and allowing for the collection of a total integrated luminosity of around 3 ab−1.

3.3 Detectors installed on the LHC ring

There are in total seven experiments installed on the LHC ring:

• ATLAS - A Toroidal LHC ApparatuS [111]

• CMS - Compact Muon Solenoid [112]
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• ALICE - A Large Ion Collider Experiment [113]

• LHCb - Large Hadron Collider beauty [114]

• LHCf - Large Hadron Collider forward [115]

• TOTEM - TOTtal Elastic and diffractive cross-section Measurement [116]

• MoEDAL - Monopole and Exotics Detector At the LHC [117]

ATLAS and CMS are general-purpose detectors designed to detect a wide range

of signals in as wide a phase space as possible, with both experiments optimized

for the detection of the Higgs boson. More specifically both ATLAS and CMS were

designed to have very good electromagnetic calorimetry, optimized specifically for

the search of the H → γγ and H → ZZ∗ → 4ℓ signatures. Both detectors also feature

hadronic calorimeters which are big enough to contain very energetic jets that can

arise from the decay of heavy resonances, have a high resolution so as to measure the

jet energies with a high accuracy and a hermetic coverage, so that the missing energy

can be accurately inferred. Good tracking capabilities are also an important ingredient

in order to identify charged particles and measure their kinematics, as well as for the

identification of b-hadrons, which arise in many of the flagship analyses of the ATLAS

and CMS physics programs.

The ALICE experiment is designed to study the low-energy features of QCD,

particularly the formation of quark-gluon plasma (QGP). The ALICE detector uses data

from lead-lead and proton-lead collisions, which produce a vast amount of charged

particles. Charged particle identification is the key element that drove the design of

the ALICE detector. Different complementary techniques are used to measure the

charge particles’ momentum and charge, including ionization, time of flight, transition

radiation and Cherenkov radiation. High resolution electromagnetic calorimetry is

also necessary for the study of photons, which provide important information on the

thermal properties of QGP. A high resolution muon spectrometry is also necessary for

the detection and study of heavy quarkonium states, which constitute an important

probe of the formation of QGP.

LHCb is a dedicated heavy flavor physics experiment, designed to study new

physics in CP violation and rare decays of c and b-hadrons. Unlike ATLAS, CMS and

ALICE the LHCb detector is highly asymmetric, covering only the forward region
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within 1.8 ≤ |η| < 4.9.1 This design was chosen due to limitations in the cavern space,

taking advantage of the fact that bb̄ pairs are produced with a large boost in the forward

directions. High resolution tracking is a crucial component for the reconstruction of

the displaced b-decay vertices. Particle identification is essential in order to separate

the rare decays of interest from the background. In addition to the spectrometer

system, composed of the tracking and magnet systems, complementary information is

provided by two Ring Imaging Cherenkov detectors, the electromagnetic and hadronic

calorimeters and muon chambers, which are essential for the searches of rare b-hadron

decays to muons.

LHCf is a specialized detector located 140 m from Interaction Point 1, where

ATLAS is installed. It uses two zero-degree calorimeters to measure neutral hadrons

produced in the very forward region η > 8.4, with the aim of calibrating the hadronic

interaction models that are used in the study of very high energy cosmic rays as well

as elucidating the composition of cosmic ray showers, which cannot be determined by

present experiments.

TOTEM is another specialized detector, located around Interaction Point 5, where

the CMS detector is installed. It uses three types of detectors: roman pots equipped

with silicon microstrip sensors to detect protons scattered elastically at small angles

and gaseous ionization detectors (CSC and GEM) which are used to detect jets pro-

duced in the forward region 3.1 ≤ |η| ≤ 6.5 due to the diffractive dissociation of

protons. TOTEM aims at measuring the diffractive, elastic and total cross-sections

at the different center-of-mass energies provided by the LHC, thereby testing non-

perturbative models of soft QCD [118].

The MoEDAL experiment was designed to complement the searches of the ATLAS

and CMS experiments for highly ionizing particles, in particular magnetic monopoles.

The experiment consists of an array of passive track-etch detectors made of plastic, in-

stalled on the walls and ceiling of the VErtex LOcator detector of the LHCb experiment,

which are sensitive enough to detect even a single magnetic monopole traversing the

detector with masses up to several TeV and a magnetic charge of higher than 3 Dirac

magnetic charges.

1Here and in the following η is the pseudorapidity which is defined by η ≡ − ln
[
tan θ

2

]
, where θ is

the polar angle relative to the beam axis. The direction perpendicular to the beam pipe has η = 0,
while the direction parallel to the beam pipe has η → ±∞. Positive (negative) η defines the forward
(backward) direction.
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The ATLAS detector

ATLAS is a general purpose detector located at Interaction Point 1 on the LHC ring. It

has cylindrical symmetry and a coverage of almost 4π steradians in solid angle, which

is essential for reconstructing the energy flow in an event. The guiding principle in

the construction of the ATLAS experiment was the maximization of the discovery

potential of the searches for the Higgs boson and new physics. The major components

of the ATLAS detector are illustrated in Figure 4.1.

4.1 Inner detector

The ATLAS tracking system covers the central region of the detector which spans up to

|η| = 2.5. The inner detector (ID) is comprised of three sub-detectors, which surround

the beryllium beam-pipe: the pixel detector, the semi-conductor tracker (SCT) and

the transition radiation tracker (TRT). The sub-detectors are arranged in cylindrical

layers in the central region of the ID (barrel) and in disk structures perpendicular to

the beam pipe in the more forward regions (end-caps), as illustrated in Figure 4.2. The

ID provides tracking information and measures the charge of particles. It is immersed

into a 2T axial magnetic field provided by a superconducting solenoid.

The combined inner detector system can measure tracks efficiently down to pT =

500 MeV, reaching as low as pT = 100 MeV for minimum-bias measurements [119].

For the typical transverse momenta of the charged b-hadrons (pT = 5 GeV), the

transverse momentum resolution in the central region with |η| < 0.3 is around 75

MeV and the transverse impact parameter resolution is around 35 µm. Higher pT

tracks have a smaller curvature and therefore their momentum measurement is more
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4.1.1 Pixel detector

The pixel detector constitutes the innermost part of the ATLAS tracking system. It is

comprised of silicon sensors, that function as a solid-state ionization chamber. When a

charged particle traverses the silicon layer it ionizes the molecules, creating a number

of free electrons and holes, which is proportional to the energy loss of the incident

particle. An electric field is applied to the sensors, causing the electrons and holes

to drift towards the electrodes in opposite directions. The collected charges induce a

signal in the pixel electrodes, allowing to determine the position of the particle passing

through the detector.

The silicon sensors are arranged in three layers and are designed to provide the

highest granularity around the interaction point. The innermost layer is located at a

radius of 5 cm from the beam axis. A fourth pixel layer, called the insertable b-layer

(IBL), was installed in the ID during the Phase-0 upgrade, after the end of Run I. This

layer is located closer to the beam pipe, at a distance of 3.3 cm, and is expected to

increase the precision of the measurement of the tracks’ impact parameters. The pixel

layers are segmented in R − φ providing in total 80 million readout channels.

The pixel detector, has an intrinsic measurement accuracy of around 10 µm in

the transverse plane (R − φ) and 115 µm along the beam axis (z). This subdetector

contributes the most to the accuracy of the measurement of the locations of tracks and

displaced vertices, the quintessential ingredients of b-tagging.

4.1.2 SCT

The pixel detector is surrounded by the SCT. The SCT is composed of silicon mi-

crostrips arranged in four barrel layers and nine end-cap discs on each side. The SCT

modules consist of two single sided sensors glued back-to-back with a stereo angle

crossing of 40 mrad, thus providing two dimensional tracking information on each

layer. The SCT works in a similar way to the pixel detector, using the ionization of the

silicon molecules for particle detection. The SCT has 6.3 million readout channels. The

SCT detector contributes to the measurement of the momentum, impact parameter

and vertex position. The intrinsic measurement accuracy of the SCT is 17 µm in the

R − φ plane and 580 µm in the longitudinal plane.
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4.1.3 TRT

The TRT constitutes the outer part of the ID. It consists of layers of straw tube elements

interleaved with transition radiation material. The straws are parallel to the beam

axis in the barrel region and arranged radially in wheels in the end-cap regions. Each

straw is 4 mm in diameter, 144(37) cm long in the barrel (end-cap) region and filled

with a gas mixture of 70% Xe, 27% CO2 and 3% O2. Thin gold plated tungsten wires,

functioning as anodes, are located inside each straw. The inner part of the straws is

covered with conducting material, and works as a cathode. The voltage difference

between the anode and the cathode is a few kV. The space between the straws is

filled with a material with widely varying indices of refraction, which causes charged

particles to produce X-ray photons, known as transition radiation. The transition

radiation photons interact with the molecules in the gas, freeing electrons, which move

towards the anode, where the current is measured. The intensity (opening angle)

of the transition radiation is proportional (inversely proportional) to the Lorentz γ

factor of the incoming particle, therefore the radiation pattern can be used for particle

identification, providing a separation of electrons from hadrons.

The TRT also functions as a drift chamber. When a charged particle traverses the

straw tube, it ionizes the gas, producing electrons and positively charged ions which

drift towards the anode and cathode respectively. The track hits are then reconstructed

by measuring the time that it takes for the electrons to drift towards the anode. The

intrinsic resolution of the TRT is 130 µm, which is lower compared to the silicon

detectors. Nevertheless, the TRT contributes significantly to the determination of the

particles’ momentum due to the large number of expected hits per track.

4.2 Calorimeter system

The ATLAS calorimeter system comprises of a number of sampling detectors which

offer full azimuthal coverage and are cylindrically symmetric around the beam axis.

The calorimeter system consists of electromagnetic and hadronic calorimeters, which

cover the region up to |η| < 3.2 and a system of Forward Calorimeters (FCal) which

extend the η coverage to 3.1 < |η| < 4.9. The calorimeter system is displayed in

Figure 4.3
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Figure 4.3: The ATLAS calorimeter system [111].

4.2.1 Electromagnetic calorimeters

Electromagnetic calorimetry is provided by the Liquid Argon (LAr) Electromagnetic

Calorimeter (ECal) and the first module of the FCal. The ECal consists of two parts,

the barrel (EMB) which covers the central region up to |η| < 1.475 and two end-caps

(EMEC) which are divided into two coaxial wheels, the outer one covering the range

1.375 < |η| < 2.5 and the inner one covering the range 2.5 < |η| < 3.2.

The calorimeter features an accordion geometry, which provides a full azimuthal

coverage with no cracks. The ECal modules consist of interleaved layers of lead/stainless

steel plates, which act as the absorber and LAr, which acts as the active medium. The

modules are segmented into 3 sections in depth (with a depth of 4.3, 16 and 2 X0

respectively1) with a high granularity in the region |η| < 2.5 and two sections in depth

with a coarser granularity in the more forward region. The first layer has the highest

granularity and is used for separating single photons from π0 particles. The second

1The radiation length X0 is the distance at which an incident electron’s energy is reduced to E/e.
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layer takes up most of the ECal volume and is where the main energy deposition from

the electromagnetic cascades takes place. The third layer is used for the separation

of electromagnetic cascades from hadronic ones. In the region with |η| < 1.8 there

is a thin LAr layer, known as the presampler, which is used to correct for upstream

energy losses. The electromagnetic component of the FCal also uses LAr as the active

medium but copper was chosen as the absorbing medium, due to its higher resolution

and better heat removal capability. The layout of a barrel module of the ECal is shown

in Figure 4.4.
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Figure 4.4: Sketch of a barrel module of the EM calorimeter, showing the different layers with
their respective granularities in η and φ [111].

The principle of operation is based on the production of electromagnetic cascades

as a result of the interaction of highly energetic particles with the absorber medium.

The main processes at play are pair production (γ → e+e−) and Bremsstrahlung

(e± → e± γ). The electromagnetic cascade continues as long as the energy of the

radiated photons is higher than the threshold for e+e− production (Eγ > 1.022 MeV)

and the energy of the radiated electrons/positrons is higher than the critical energy, at

which the losses due to Bremsstrahlung become equal to the losses due to ionization.

The particles produced in the cascade ionize the LAr producing an electrical signal.
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The energy resolution σ of the calorimeter is parametrized as follows

σ

E
=

a

E
⊕ b√

E
⊕ c, (4.1)

where a, b and c are known as the noise, sampling and constant terms respectively. The

noise term is dominant at low energies and receives contributions from electronic noise

and pile-up. For sampling calorimeters it is inversely proportional to the sampling

fraction, i.e. the fraction of the incident particle’s energy deposited in the active

medium. The sampling term depends on the calorimeter characteristics, such as the

absorber and active material properties and the thickness of the sampling layers. The

constant term is dominant at high energies and depends on the calorimeter depth and

other characteristics of the calorimeter layout, such as non-uniformities, cracks and the

distribution of the dead material. Experimental measurements after noise subtraction

give b = 10%
√

GeV and c = 17%.

4.2.2 Hadronic calorimeters

The ATLAS Hadronic Calorimeter (HCal) system consists of the Tile calorimeter, which

covers the region with |η| < 1.7, the Hadronic End-cap Calorimeter (HEC) which

covers the region with 1.5 < |η| < 3.2 and the second and third layers of the FCal.

The Tile calorimeter uses steel as the absorber and scintillating tiles as the active

material and is segmented in depth in three layers. The tiles are connected to photo-

multipliers by wavelength shifting fibers. For the HEC, LAr was chosen as the active

medium for its robustness against high radiation fluxes which are expected in the

forward region, while copper plates serve as absorbers. The second and third layer of

the FCal, which are optimized for hadronic measurements, use LAr as active medium

and tungsten as absorber. With its high atomic number, tungsten features a high

nuclear interaction length which is necessary for containing the hadronic showers in

the limited volume that is available to the FCal modules.

The principle of operation is similar to the ECal. Incoming hadrons induce hadronic

cascades, which are composed of a hadronic component (consisting of hadrons and nu-

clear fragments) and an electromagnetic component (consisting of electromagnetically

decaying π0). Due to nuclear spallation and weak hadron decays, a fraction of the cas-

cade’s energy cannot be detected. As a result the calorimeter’s response to electrons is



58 The ATLAS detector

higher than its response to hadrons, a phenomenon known as non-compensation. The

electromagnetic fraction of the hadronic cascade is highly dependent on the incoming

particle’s energy ranging from around 30% for energies of around 10 GeV to 50% for

energies around 100 GeV.

The energy resolution of the hadronic calorimeter is parametrized by equation (4.1),

with b = 50%
√

GeV for the sampling term and c = 3% for the constant term.

4.3 Muon system

The muon spectrometer forms the outer part of the ATLAS detector. The spectrometer

subsystems are organized into three layers in the barrel region and three-wheels in the

end-cap region extending up to |η| < 2.7. The spectrometer components are:

• the Monitored Drift Tube (MDT) chambers, which provide a precision measure-

ment of the track coordinates and muon momenta. The MDT chambers are

located on all barrel layers and on the two outer wheels. The drift chambers

consist of aluminum tubes filled with a gas mixture of 93% Ar and 7% CO2. At

the center of the tubes lies a tungsten wire which functions as an anode. When a

muon passes through the MDT chambers it ionizes the gas inside the tubes and

causes the electrons to drift towards the anode wires. The drift time is used to

measure the distance of the particle to the wire, thus allowing to determine the

coordinates of the muon.

• the Cathode Strip Chambers (CSC), which are used for precise momentum mea-

surements in the forward region. The CSC are placed in the innermost end-cap

wheel and are designed to cope with the high particle rate in this region. The CSC

are multi-wire proportional chambers with anode wires oriented in the radial

direction and cathode strips segmented orthogonal to the wires. The chambers

are filled with a 80% Ar, 20% CO2 gas mixture. The volume of the gas is reduced

relative to the MDT, allowing to minimize the drift time. The CSC determine the

hit coordinates by interpolating the signals on adjacent strips.

• the Resistive plate chambers (RPC) are gaseous ionization detectors consisting

of two parallel electrode plates. The gas used is a mixture of 94.7% C2H2F4, 5%

Iso-C4H10, 0.3% SF6. The RPC provide a first-level muon trigger in the barrel

region and measure the muon coordinates on the bending plane.
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• the Thin Gap Chambers (TGC) are multi-wire proportional chambers providing

two functions in the end-cap muon spectrometer: triggering and determination

of the azimuthal coordinates of the muon tracks (the radial ones being provided

by the MDT).

The η coverage of the RPC and TGC (|η| < 2.4) determines the region available for

muon triggering. The muon spectrometer is immersed into a magnetic field generated

by three toroid magnets. In the central region an air-core barrel magnet produces a

0.5 T field and in the forward regions, a 1 T field is generated by two air-core end-cap

toroids.

4.4 Trigger system

Under the 2011 and 2012 operating conditions, the LHC was colliding proton bunches

every 50 ns, which correponds to a collision rate of 20 MHz. The maximum rate with

which data can be read out was limited however to 75 kHz. The Trigger/DAQ system

of the ATLAS detector must therefore achieve rejection factors of the order of 400,

while maintaining an excellent efficiency in recording rare processes.

The trigger consists of three levels of event selection: Level-1 (L1), Level-2 (L2) and

the Event Filter (EF). The L1 trigger uses low granularity input from all calorimeter

subsystems and the RPC and TGC sub-detectors of the muon system to search for

high-pT muons, electrons, photons, jets and hadronically decaying τ leptons. The L1

trigger reduces the accepted events rate to 75 kHz. The time taken from the bunch

crossing until the L1 trigger decision is made is required to be less than 2.5 µs. Trigger

information from the calorimeter and muon systems, consisting of multiplicities for

electrons, photons, τ-leptons, jets, and muons, and of flags indicating which thresholds

were passed for total and missing transverse energy, and for total jet transverse energy,

is sent to the Central Trigger Processor (CTP). There, different trigger conditions are

combined into trigger items and the CTP generates the L1 accept signal, which is

defined as the logical OR of all trigger items. The L1 accept signal is propagated to the

L2 trigger, along with an identifier of the bunch crossing of interest. The L1 trigger is

purely hardware based, implemented with custom-built electronics.

The L2 trigger operates on Regions-of-Interest (RoI), which are regions where the

L1 trigger has identified possible trigger objects. Using the ROI information, specific
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information on coordinates, energy, and type of signatures is read from the Read

Out System to perform the event selection. Since only a subset of the event data is

used by L2, the network bandwidth as well as the processing time of the L2 trigger

is considerably reduced. The accept rate is reduced by L2 to below 3.5 kHz with an

average processing time of 40 ms per event. The EF then further reduces the accept

rate to approximately 200 Hz with an average processing time of 4 s per event. The L2

trigger has access to the full detector granularity in the RoIs and the EF has access to

the complete event data with the full detector granularity. Both the L2 and EF triggers

are software based, using similar algorithms as the ones used in offline reconstruction,

running on commodity computer farms.

For the upcoming Run 2, the trigger system underwent several modifications to

cope with the higher expected instantaneous luminosity, which will lead to a doubling

of the collision rate. More specifically, the L1 accept rate has been increased from 75

to 100 kHz. Apart from improvements in the calorimeter and muon triggers, a new

topological trigger has been implemented, which offers the possibility of applying

more complex cuts, such as the angular separation or invariant mass of trigger objects

for the online selection of events. The CTP trigger items have been doubled, thus

allowing for an increased triggering flexibility.

The L2 and EF triggers have been merged into a single High Level Trigger (HLT)

capable of reaching an output rate of 500 Hz to 1 kHz. This merging eliminates the

need for accessing the event data twice (from L2 and HLT), which was necessary with

the Run 1 trigger architecture, while allowing for a higher flexibility in the order of

selections.

Moreover, a new electronics system named Fast TracKer (FTK) [120], providing a

fast track reconstruction for all events accepted by the L1 trigger will be commissioned

in 2015. FTK is expected to improve the trigger performance in many areas, for instance

extending the trigger sensitivity towards lower momentum b hadrons.



Chapter 5

Object reconstruction and detector

performance

In this chapter we describe the reconstruction and identification of the individual final

state objects that are used in the analysis.

5.1 Leptons

The lepton performance is quantified by the efficiency to reconstruct and identify

a lepton from a set of lepton candidates, the efficiency to reject objects that can be

mis-identified as electrons as well as the lepton energy scale and resolution.

Electrons

Electron reconstruction in the central detector region (|η |<2.47) is seeded from groups

of EM calorimeter cells (clusters) with an energy deposit ET > 2.5 GeV. The clusters

have a fixed size of 3× 5 in units of 0.025× 0.025 in (η, φ) space. The clusters are

matched to ID tracks with pT > 0.5 GeV, by extrapolating the track to the middle layer

of the calorimeter and calculating its distance from the cluster. A track is considered

to be matched to the cluster if it falls within |∆η| < 0.05 and |∆φ| < 0.1(0.05) from

the cluster barycenter. The looser requirement on |∆φ| is used in the direction of the

bending of the electron candidate’s track, in order to account for energy losses due

to Bremsstrahlung, while the tighter cut is used for the opposite direction. Tracks

matched to a cluster are refitted with a Gaussian Sum Filter algorithm [121], which

61
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allows to account for large Bremsstrahlung energy losses, thereby improving the

estimated track parameters particularly for low ET electrons. In the last stage of

electron reconstruction the clusters are enlarged to 3× 7 units in the barrel and 5× 5

units in the end-cap region of the calorimeter [122].

The reconstruction efficiency for electrons is defined as the ratio of the number of

electrons reconstructed as a cluster matched to a track passing the track quality criteria

to the number of clusters with or without a matching track. The electron reconstruction

efficiency has been measured using the tag-and-probe method1 with Z → e+e− events,

as described in [123]. The reconstruction efficiency shows a mild dependence on the

electron ET, with values ranging from 97% for ET = 15 GeV to 99% for ET & 50 GeV.

The reconstruction efficiency is almost independent of the pseudorapidity in the barrel

region and shows a mild dependence on η in the EMEC region.

A set of criteria is used to distinguish signal electrons from jets and electrons from

photon conversions2 that can fake electrons. The identification is based on the use of

a set of track-based and calorimeter-based variables which can distinguish between

electrons and photons and is performed either using independent cuts on the discrim-

inating variables (cut-based identification) or a single cut on the ratio of the signal

and background likelihood functions which take as input these discriminating vari-

ables (likelihood-based identification). The likelihood-based identification provides a

higher rejection of fake electrons for the same identification efficiency compared to

the cut-based approach. The cut-based identification was used in this thesis, since

the likelihood-based one had not been fully validated. Three identification levels are

defined, each with an increasing background rejection: Loose, Medium and Tight.

The Loose identification criteria use shower shape variables in the first and second

layers of the EM calorimetar and the fraction of the energy deposited in the hadronic

calorimeter, as well as information on the associated track quality and track-cluster

matching. The Medium identification criteria, use in addition to the Loose selection,

information from the third layer of the EM calorimeter, transverse impact parame-

ter and TRT signals. Moreover, a measured hit in the innermost layer of the pixel

1The tag-and-probe method is a data-driven technique which exploits well known resonance, such
as the Z boson, as a source for the production of electron-positron pairs. It selects events with a Z
candidate, using tight identification requirements on the “tag” electron and looser requirements on
the “probe” electron. The fraction of probe electrons which pass the selection under study gives an
estimate of the corresponding efficiency.

2Photon conversions are processes in which a photon splits into an e+e− pair when interacting with
the detector material.
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detector is required to discriminate against electrons from photon conversions. The

Tight identification criteria, use in addition to all variables included in the previous

identification levels, a selection on the ratio between the candidate’s cluster energy

and its track momentum, stricter requirements on the discriminating variables and

TRT information, and a veto on reconstructed photon conversion vertices associated

to the cluster. The electron identification criteria are shown in Table 5.1.

Type Description Loose Medium Tight

Hadronic Ratio of the ET in the first layer of the hadronic calorimeter to ET of the X X X

leakage EM cluster (for |η| < 0.8 and |η| > 1.37) or ratio of the ET in the hadronic
calorimeter to ET of the EM cluster (for |η| > 0.8 and |η| < 1.37)

Third layer of Ratio of the energy in the third layer to the total energy in the EM X X

EM calorimeter accordion calorimeter

Middle layer of Lateral shower width X X X

EM calorimeter Ratio of the energy in 3× 7 cells over the energy in 7× 7 cells centered X X X

at the electron cluster position

Strip layer of Shower width X X X

EM calorimeter Ratio of the energy difference between the largest and second largest X X X

energy deposits in the cluster over the sum of these energies

Track quality Number of hits in the B-layer (discriminates against photon conversions) X X

Number of hits in the pixel detector X X X

Number of total hits in the pixel and SCT detectors X X X

Transverse impact parameter X X

TRT Total number of hits in the TRT X X

Ratio of the number of high-threshold hits to the total number X X

of hits in the TRT

Track-cluster ∆η between the cluster position in the strip layer of the calorimeter X X X

matching and the extrapolated track
∆φ between the cluster position in the middle layer of the calorimeter X

and the extrapolated track
Ratio of the cluster energy to the track momentum X

Conversions Veto electron candidates matched to reconstructed photon conversions X

Table 5.1: Shower shape and track information used for the identification of central electrons.
The use of the variables for different identification levels in the cut-based approach
is shown. (adapted from [123])

The identification efficiency is defined as the ratio of the number of electrons

passing a certain identification selection to the total number of electron candidates

defined as clusters with a matching track. It is measured in data using Z → e+e−,

Z → e+e−γ and J/ψ → e+e− events with the tag-and-probe technique. The combined

reconstruction and identification efficiencies are shown in Figure 5.1.

The electron energy scale and resolution are measured by reconstructing the invari-

ant mass of the J/ψ and Z resonances in Z → e+e−γ and J/ψ → e+e− events. The

electron energy scale is known with 0.5-1% accuracy and the energy resolution is of
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Muons

Muons are reconstructed from tracks formed in either the Muon Spectrometer (MS)

alone, or combining information from the MS with the ID. Different identification

criteria define different muon “types”, which are are reconstructed with different

strategies, named “Chains” [125].

Further types of muons exist, such as standalone (SA) muons, segment-tagged (ST)

muons and Calorimeter-tagged (CaloTag) muons. SA muons are muons reconstructed

from a MS track. The muon has to traverse at least two layers of MS chambers to

provide a track measurement. SA muons are mainly used to extend the acceptance

to the range 2.5 < |η| < 2.7 which is not covered by the ID. ST muons are muons

reconstructed from an ID track, which once extrapolated to the MS, it is associated

with at least one local track segment in the MDT or CSC chambers. ST muons can be

used to increase the acceptance in cases in which the muon crossed only one layer of

MS chambers, either because of its low transverse momentum or because it falls in

regions with reduced MS acceptance. CaloTag muons are muons reconstructed from

an ID track which can be associated to an energy deposit in the calorimeter, which

is compatible with a minimum ionizing particle. In this thesis muons combined or

segment-tagged (CB+ST), reconstructed reconstructed with the Muid algorithm (Chain

2) [125] are used. The algorithm uses tracks that are reconstructed independently in

the ID and in the MS and performs a global refit, resulting in a combined track.

Similarly to the electron efficiency measurements, the muon efficiencies have

been measured in data using Z → µ+µ−, J/ψ → µ+µ− and Υ → µ+µ− samples,

as described in [125]. The reconstruction and identification efficiency for muons

reconstructed from a combination of inner detector and muon spectrometer tracks is

above 99% in the region 0.1 < |η| < 2.5, as shown in Figure 5.3. In the region |η| < 0.1,

the muon spectrometer is only partially equipped with muon chambers in order to

provide space for the ID and calorimeter services, thereby leading to an acceptance

and efficiency loss.

In the muon transverse momentum range of 6 < pT < 100 GeV, the muon momen-

tum scale is known with 0.04% precision in the barrel region, decreasing to 0.2% in the

region with |η| > 2.
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Figure 5.3: Reconstruction and identification efficiency for muons reconstructed with different
algorithms: combined (CB), combined or segment-tagged (CB+ST) and Calorimeter-
tagged (CaloTag). CaloTag muons are only shown in the region |η| < 0.1. The
efficiencies are measured in Z → µ+µ−, J/ψ → µ+µ− and Υ → µ+µ− events [125].

5.2 Jets

Jets are reconstructed from 3-dimensional clusters of adjacent calorimeter cells. These

“topological” clusters are seeded by calorimeter cells with a signal greater or equal to

4σ, where σ is the sum in quadrature of the standard deviations of the distributions

of electronic and estimated pile-up noise. The cluster is built by adding iteratively

the cells adjacent to the seed cells having a signal greater or equal to 2σ and a single

layer of cells adjacent to the latter [126]. Jets are then reconstructed by clustering the

topological clusters with a jet recombination algorithm.

The topological clusters are reconstructed at the so-called electromagnetic energy

scale (EM), which corresponds to the energy deposited by particles in an electro-

magnetic shower in the calorimeter. The EM scale is established by calibrating the

calorimeter electronic signals to the energies of electrons (for the EM calorimeters) or

muons (for the hadronic calorimeters) using monochromatic test beams. A multi-step

procedure is used to calibrate the jet energy scale (JES) as follows:

1. pile-up correction: due to the high number of protons in the LHC bunches, sev-

eral inelastic pp interactions can occur simultaneously, contributing signals that

are overlaid to the signals from the hard-scattering interaction in the calorimeter.

Additional signals due to interactions happening in the same bunch crossing
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as the hard-scattering interaction are known as in-time pile-up. In detectors

with a slow response, such as the LAr calorimeters, signals due to interactions

in preceding or subsequent bunch crossings can also interfere with the signals

from the hard-scattering interaction, an effect which is known as out-of-time

pile-up. Pile-up significantly affects the jet reconstruction by increasing the jet

multiplicity, modifying the jet kinematics and substructure as well as degrading

the jet energy resolution. The effects of pile-up on jets are mitigated by the jet-area

based subtraction method [127], which corrects the jet’s transverse momentum as

follows

pcorr
T,jet = pT,jet − ρ · Ajet − α(ηdet)(NPV − 1)− β(ηdet)〈µ〉, (5.1)

where ρ is the median pT density per unit area ρ ≡ median
jet

p
jet
T

Ajet
[128], A is the

catchment area of the jet [129], NPV is the number of primary vertices, 〈µ〉 is

the average number of inelastic pp collisions per bunch crossing, given by equa-

tion (3.2) and α, β are factors that parametrize a residual correction applied after

the jet-area based correction. We note that NPV is reconstructed using tracking

information and is thus only sensitive to in-time pile-up, while 〈µ〉 is calculated

from the average instantaneous luminosity and is thus sensitive to both in-time

and out-of-time pile-up. These factors depend on the pseudorapidity region in

the detector in which the jet is reconstructed. The effect of the jet-area based and

residual corrections on the jets’ pT is shown in Figure 5.4. The first two terms in

equation (5.1) are evaluated on an event-by-event basis, therefore this method can

account for event-to-event fluctuations in the amount of pile-up, thereby leading

to an improved jet energy resolution and suppression of pile-up jets. Furthermore

the first two terms, which are responsible for the bulk of the correction, do not

need any input from simulation, therefore the method offers a reduced sensitivity

to modeling.

2. Monte-Carlo based JES correction: after the pile-up subtraction, the recon-

structed jet’s energy is corrected to the energy of the simulated jet to which

it matches3. The JES correction consists in restoring the jet response REM ≡ E
jet
EM

E
jet
truth

to unity. The calibration procedure corrects for the calorimeter non-compensation,

3A reconstructed jet is considered to be matched to a simulated jet if their distance is ∆R < 0.3. Both
truth and reconstructed jets are considered to be isolated, i.e. have no jet with pT > 7 GeV within
∆R ≤ 2.5 · Rjet.
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energy losses in crack regions in the calorimeters and in inactive material and

energy losses due to the magnetic field in front of the calorimeter. The calibrated

jet energy is defined as

E
jet
EM+JES =

E
jet
EM

Fcalib(E
jet
EM, ηdet)

, (5.2)

where Fcalib is obtained from a fit to the average jet response in bins of E
jet
truth and

ηdet.

3. η-intercalibration: Due to the different calorimeter technology and the different

amounts of dead material in the different calorimeter regions, the jet response de-

pends on the pseudorapidity region in which the jet is reconstructed. Correction

factors derived from Monte-Carlo simulations are applied in order to make the jet

response uniform in η, a procedure known as η-intercalibration. The corrections

are validated in-situ using dijet events. A reference jet in the region |η| < 0.8 is

selected and the asymmetry between the reference jet’s pT and the second (probe)

jet’s pT is calculated by

A = 2
p

probe
T − pref

T

p
probe
T + pref

T

. (5.3)

Calibration factors are then defined for each η bin by

c =
2 − 〈A〉
2 + 〈A〉 . (5.4)

4. In-situ determination of JES: The jet response is measured in data using Z+jets,

γ+jets and multi-jet events by exploiting the fact that the transverse momenta of

the final state objects should sum up to 0. The ratio of the jet response in data to

the jet response in simulation is shown in Figure 5.5.

Other calibration schemes use additional cluster-by-cluster and/or jet-by-jet in-

formation to reduce some of the sources of fluctuations in the jet energy response,

thereby improving the jet energy resolution [130]. More precisely in the Local Cluster

Weighting (LCW) calibration, cluster shape variables are used to separate the topologi-

cal clusters into hadronic and electromagnetic ones. Correction factors are applied to

hadronic clusters in order to correct for non-compensation effects. Further corrections
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are applied to both type of clusters in order to correct for energy lost outside of the

cluster as well as in dead material. In the Global Calorimeter cell Weighting (GCW)

scheme, corrections are derived for each calorimeter cell within a jet, with the con-

straint that the jet energy resolution be minimized. Finally the Global Sequential (GS)

calibration scheme, starts from jets calibrated with the EM+JES scheme and corrects

for fluctuations in the jet particle content of the hadronic shower development, such

that the mean jet energy is left unchanged. The jet reconstruction and calibration

procedure is described in more detail in [130]. In this thesis only jets calibrated with

the LCW+JES procedure are used.

The jet performance is quantified by the precision of the determination of the jet

energy scale as well as the energy resolution. The JES is known with a precision of

better than 3% for jets with pT > 50 GeV, as shown in Figure 5.5, while the precision is

worse for jets with lower pT and jets in the forward region.

The jet energy resolution (JER) is measured in multi-jet events by probing the jet

imbalance on the transverse plane, as described in [131]. The JER is of the order of 10%

for jets with pT > 100 GeV, growing to 20% for jets with pT ≈ 30 GeV.

The jet-area based pile-up subtraction has been found to eliminate most of the jets

stemming from pile-up pp collisions. Pile-up jets that survive after the jet-area based

pile-up subtraction have pT < 50 GeV [127]. These remaining pile-up jets, can be

removed by placing a cut on the jet vertex fraction (JVF) variable, which is defined for

a given jet i with respect to a primary vertex j as

JVF(jeti, PVj) =
∑k pT(trackjeti

k , PVj)

∑n ∑l pT(trackjeti
l , PVn)

. (5.5)

Jets without any associated tracks (typically jets with |η| > 2.5 where tracking is not

available) are assigned a JVF value of -1. A cut on JVF(jet, PV0) > 0.5 is applied on

jets with pT < 50 GeV and |η| < 2.4 in order to suppress jets originating from pile-up

interactions4. As Figure 5.4 indicates, the combination of the jet-area based pile-up

subtraction with a cut on JVF eliminates pile-up jets for the pile-up conditions that

were experienced in the 2012 run.

4PV0 indicates the hard-scatter primary vertex which is defined as the primary vertex with the highest
∑track p2

T,track. We note that the specific values of the JVF cuts are analysis dependent [127].
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5.3 b-tagging

Several algorithms used to identify jets containing the fragmentation products of

b-quarks exist. These exploit the characteristic properties of b-hadron decays, such as

• the relatively long lifetime (cτ ≈ 0.5mm) which, for typical b-hadron energies

expected at the LHC, lead to long decay lengths ℓ = γβcτ = O(mm). These can

be reconstructed as displaced secondary vertices, which are used in secondary

vertex (SV) b-taggers [132],

• the displaced decays of b hadrons (a consequence of the b hadrons’ long lifetime),

which produce tracks with high impact parameters with respect to the primary

vertex. These are used as input to impact parameter (IP) b-taggers [133],

• the fact that b-hadrons will mostly decay to a charmed hadron, which will produce

another displaced vertex along the flight path of the b-hadron. The topology of

the b-hadron decay chain is exploited by the JetFitter algorithm [134].

These algorithms can be used independently to identify b-jets [135] but have also been

combined into a neural network, known as the MV1 tagger [136], which is used in this

analysis. A variant of this tagger, dubbed MV1c, trained for a higher rejection of c-jets

is also available.

The efficiency of the MV1 algorithm for correctly identifying b-jets or for mis-

identifying charm (c) or light flavor (LF) jets as b-jets, has been measured in samples

of tt̄ [137], D∗+ and dijet events [136] respectively. The corresponding efficiencies for

the operating point corresponding to an inclusive b-jet efficiency of 70% together with

the associated data-to-MC correction factors are shown in Figure 5.6. The correction

factors are consistent with unity across the entire pT and η range accessible to the

calibration methods and are measured with a relative precision of around 2% in the

range 60 ≤ pT < 140 GeV. The precision is worse however for low pT jets, rising to

3% for jets with 30 ≤ pT < 40 GeV and 6% for jets with 20 ≤ pT < 30 GeV, thereby

constituting a significant uncertainty source for the tt̄bb̄ cross-section measurement.
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Figure 5.4: Dependence of the jet pT on NPV (a) and 〈µ〉 as a function of the jet’s pseudorapidity
(b) and mean number of jets with pT > 20 GeV as a function of 〈µ〉 (c) [127]. It
can be seen that the jet-area based pile-up correction almost eliminates the jet’s
sensitivity to in-time pile-up (a), while the residual correction is necessary to correct
for the out-of-time pile-up effects (b). After cutting on the JVF variable, the mean
number of jets is shown to be independent of the average number of interactions
(c), thereby indicating the elimination of pile-up jets.
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Figure 5.6: Efficiency of the MV1 tagger to select b, c, and light jets, as a function of jet pT

(a) and η (b) and data-to-MC correction factors for the b-tagging efficiency as a
function of the jet pT (c) and η (d) [137].
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Chapter 6

The measurement strategy

The choice of the analysis techniques and the definition of the phase space in which the

tt̄bb̄ cross-section is measured are driven by the characteristics of the process as well

as the capabilities of the detector. More specifically, the experimental determination of

the tt̄bb̄ cross-section faces the following challenges:

• a low production cross-section, which implies low statistics and a high statistical

uncertainty

• backgrounds which are not easy to separate from the signal. More specifically,

the separation of the tt̄bb̄ signal from tt̄+charm and tt̄+LF jets, which are the

dominant background processes relies on the use of b-tagging. With the b-tagging

efficiency being inversely proportional to the c and LF-jet rejection, selecting

a sample with low contamination from background events implies a further

reduction in statistics

• both signal and dominant background processes are hard to model, with the

available models being only poorly constrained by existing data. A robust deter-

mination of the cross-section should therefore aim at minimizing the modeling

dependence.

It was found that increasing the purity of the signal region (or equivalently the

signal-to-background ratio) provided the most straightforward way to address the

aforementioned issues, without introducing further complications in the analysis. The

analysis was optimized by studying different b-tagging operating points, correspond-

ing to different efficiencies for identifying b-jets and rejecting c and LF jets and the

optimal point was chosen as a compromise between reducing the statistical uncertainty

and increasing the purity of the signal region. A low background contribution also
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implies that the result is less sensitive to the background uncertainties. A further

reduction of the background contributions was accomplished by performing the mea-

surement in the dilepton decay channel. In spite of having the lowest branching ratio,

the dilepton decay channel suffers from a lower background contamination, compared

to the all-hadronic and semi-leptonic channels and is free of contributions from W

decays into a cs pair, which have a high probability of being mis-tagged.

The analysis was based on a cutting and counting method, using rectangular cuts

on a set of discriminating variables, such as the b-tagging weight, the jet and lepton

kinematics etc, as will be described in more detail in Chapter 8. The cut-and-count

method using rectangular cuts is the simplest and most intuitive analysis technique

and is therefore well suited as the first approach to complicated measurements. While

it usually provides a lower signal-to-background separation power than its more

sophisticated counterparts it offers an increased robustness and is easier to interpret.

Finally, the measurement was performed in a region where the detector operates

with a high efficiency, excluding regions in which the detector has little or no sensitivity.

In order to compare the measurement with theoretical predictions, the measurement

was extrapolated (unfolded) to a reference phase-space. This “fiducial” phase space

was designed to be as close as possible to the region which is experimentally accessible,

in order to minimize the extrapolation from the measurable phase space and the

associated modeling dependence. More details on the definition of the fiducial phase

space are given in Chapter 8.

6.1 Extraction of the cross-section

The cross-section for the production of a tt̄bb̄ final state is given by

σfid
tt̄bb̄

=
Nsig

L · ǫfid
=

Ndata
4b − Nbg

L · ǫfid
, (6.1)

where Nsig denotes the number of signal tt̄bb̄ events, Ndata
4b denotes the number of

events measured in the signal region, Nbg the number of background events in the

signal region, ǫfid the fiducial efficiency, i.e. the ratio of detected tt̄bb̄ events to the total

number of produced tt̄bb̄ events and L the integrated luminosity of the data sample.
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The number of signal events Nsig contains all events that lie in the fiducial volume,

irrespective of their production mechanism. Processes like tt̄H(bb̄) and tt̄Z(bb̄) which

lead to the same final state as the QCD production of tt̄bb̄ are considered to be part of

the signal.

The background events Nbg in (6.1) can come from three sources. The first source

corresponds to tt̄ events produced in association with c or LF jets. These end up in

the signal region if two jets are mis-tagged. This background will be referred to as

N
mis−tagged
tt̄+jets .

The second background source comes from tt̄bb̄ events that lie outside of the

fiducial volume, but are reconstructed in the signal region due to detector effects.

Since these events contain tt̄bb̄ in the final state at parton level, their contribution to the

signal region must be scaled with the number of signal events. This background will

be referred to as “non-fiducial” and the associated number of events will be denoted

by Nnon−fiducial
tt̄bb̄

.

The final background source, denoted by N
non−tt̄+jets
bg , contains non-tt̄+jet events,

i.e. events without a tt̄ pair in the partonic final state, and includes contributions from

single top, Z+jet and di-boson events. The Venn diagram in Figure 6.1 represents

the classification of the events reconstructed in the signal region into signal and

background.

Reconstructed

Background Signal

Figure 6.1: Venn diagram showing the reconstructed and fiducial regions. The hashed region,
which corresponds to events reconstructed in the signal region but not satisfying
the fiducial phase space requirements, represents the total background, comprising
of non-fiducial tt̄bb̄ events, mis-tagged tt̄+jets events and non-tt̄+jet events.
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The fiducial efficiency, ǫfid, expresses the probability to reconstruct an event that

lies in the fiducial volume and is given by the product of the efficiencies for the

reconstruction and identification of all final-state objects, as described in Chapter 12.

Equation (6.1) can be rewritten to make manifest the different background contri-

butions, by noting that

Ndata
4b = Nsig + Nnon−fiducial

tt̄bb̄
+ N

mis−tagged
tt̄+jets + N

non−tt̄+jets
bg (6.2)

The partonic processes that give rise to mis-tagged tt̄+jets events and non-tt̄+jets

events are not the same as the ones that give rise to tt̄bb̄ events. As a result, N
mis−tagged
tt̄+jets

and N
non−tt̄+jets
bg are expected to be independent of the amount of signal events. Their

contribution to the signal region can therefore be estimated from simulation and

subtracted from the number of events in the signal region.

In order to take into account the fact that non-fiducial tt̄bb̄ events come from

the same underlying partonic process as the signal, Nnon−fiducial
tt̄bb̄

should be scaled

according to the number of signal events. To avoid relying on simulation for the

prediction of the absolute cross-section of the non-fiducial background, one can instead

make use of the weaker assumption that the simulation predicts correctly the fraction

of signal events in the ensemble of signal and non-fiducial events.

Equation (6.2) can be rearranged to express the total number of events (both signal

and non-fiducial) that are expected to be produced in a tt̄bb̄ process as

Nsig + Nnon−fiducial
tt̄bb̄

= Ndata
4b − N

mis−tagged
tt̄+jets − N

non−tt̄+jets
bg . (6.3)

In order to obtain the fiducial tt̄bb̄ cross-section, equation (6.3) should be scaled by the

fraction of tt̄bb̄ events which are expected to lie in the fiducial volume, which can be

estimated from simulation as

fsig =
Nsig

Nsig + Nnon−fiducial
tt̄bb̄

. (6.4)

The formula for the tt̄bb̄ fiducial cross-section becomes

σfid
tt̄bb̄

=

(
Ndata

4b − N
mis−tagged
tt̄+jets − N

non−tt̄+jets
bg

)
· fsig

L · ǫfid
. (6.5)
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It has to be noted that equation (6.5) makes use of only the fraction of fiducial to total

tt̄bb̄ events and there is no assumption involved on the total tt̄bb̄ cross-section.

6.2 The measurement ingredients

In order to calculate the fiducial tt̄bb̄ cross-section, we need to estimate the factors on

the right hand-side of equation (6.5). This is done as follows:

• L: corresponds to the integrated luminosity of the dataset that was used for this

analysis, as described in Chapter 7.

• Ndata
4b : is estimated by counting the number of events in data that fulfill the

selection requirements. Chapter 8 presents the selection requirements that define

the signal region and discusses the definition of the fiducial phase space. Potential

systematic effects that may arise due to the specificities of the tt̄bb̄ event topology

are discussed in Chapter 9.

• N
mis−tagged
tt̄+jets , N

non−tt̄+jets
bg , fsig: are obtained from simulation, as described in Chap-

ter 11.

• ǫfid: is obtained from simulation, as described in Chapter 12.

The uncertainties associated with the estimation of the aforementioned factors are

described in Chapter 13. The final result is shown in Chapter 14.





Chapter 7

Data and simulation samples

7.1 Dataset selection

The analysis was performed using the 2012 dataset of pp collisions corresponding

to
√

s = 8 TeV. Events were required to fulfill standard data quality requirements,

corresponding to data-taking periods with stable beam collisions during which all

detector subsystems were fully operational and no noise bursts or data integrity

errors were observed in the LAr calorimeter.1 The dataset that fulfills the data quality

requirements corresponds to an integrated luminosity of

L = 20.3± 0.6 fb−1. (7.1)

7.1.1 Triggers

Events were required to pass a single electron or single muon trigger chain. For

electrons the logical OR of two unprescaled single electron triggers was used: one

corresponding to a threshold of 24 GeV for the electron cluster ET (EF_e24vhi_medium1)

and the other corresponding to a threshold of 60 GeV (EF_e60_medium1).

For the low threshold trigger, an isolation requirement is applied, by requiring

the sum of the transverse momenta of the tracks2 that lie in a cone of radius R = 0.2

1This corresponds to the following “Good Run List”:
data12_8TeV.periodAllYear_DetStatus-v61-pro14-02_DQDefects-00-01-00_PHYS_StandardGRL_All_Good.xml

2The tracks that are used by the HLT have to satisfy the following criteria: pT > 1 GeV, |d0| < 1.5 mm,
|z0| < 1 mm, at least 1 hit in the first layer of the pixel detector, at least 9 silicon hits and no pixel
holes.
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around the electron-candidate track (excluding the electron track) to be less than 10%

of the trigger electron’s transverse energy. This isolation cut is applied in order to

reduce the high rate of electrons produced in hadron decays.

Since the isolation requirement which is applied on the primary trigger is absolute,

it becomes inefficient in the region ET & 60 GeV, since high-pT electrons have a higher

probability of producing Bremsstrahlung photons (which further split into e+e− pairs)

and therefore have a higher probability of failing the isolation cut. The logical OR with

a second trigger, which has a higher ET threshold and no isolation requirements, is

used in order to increase the trigger efficiency for high-ET electrons.

The triggered electron candidate is required to pass the “medium” electron identifi-

cation criteria, defined in Table 5.1. These use the same variables and cut values as the

ones employed by the offline electron identification.

For muons the OR of two unprescaled single muon triggers was used: one cor-

responding to a threshold of 24 GeV with isolation requirements (EF_mu24i_tight)

and the other corresponding to a threshold of 36 GeV with no isolation requirements

(EF_mu36_tight).

The muon isolation requirement at the trigger level is applied by requiring the sum

of the tracks3 in a cone of radius R = 0.2 around the muon candidate track (excluding

the muon track itself) to be less than 12% of the muon track’s pT. The isolation criterion

is applied using ID tracks.

The logical OR with the higher threshold trigger without an isolation cut is applied

in order to increase the efficiency for high pT muons. The trigger efficiencies for

electrons and muons are shown in Figure 7.1.

7.2 Simulated samples

Simulated event samples obtained with Monte Carlo event generators were used to

estimate the background contributions as well as to calculate the fiducial efficiency.

For the modeling of the signal process, several generators were used, having dif-

ferent perturbative accuracy and covering a range of choices for the parton shower,

hadronization, PDF and underlying event tune.

3The following cuts are applied on ID tracks: pT > 1 GeV, |zmuon
0 − ztrack

0 | < 6 mm
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Figure 7.1: Efficiency for the OR of the two single electron triggers used in the analysis as a
function of the electron ET (upper left plot). The efficiency for the OR of the two
single muon triggers used in the analysis is shown in the upper right and bottom
plots for the barrel and end-cap regions respectively [138, 139].

The nominal signal sample was produced with the POWHEG-BOX, version 1, revi-

sion 2129 [67, 68, 140] interfaced to Pythia 6.427 [81]. It offers NLO matrix elements

for the pp → tt̄ process [91]. The top decays are also simulated retaining approximate

spin correlations according to the method presented in [141] but neglecting radiative

corrections in the top decays. The calculation employs the 5 flavor scheme. Additional

b-quarks are modeled from the parton shower with LL precision. The CT10 PDF

set [142] was used for the calculation of the pp → tt̄ matrix elements, while the the

Perugia 2011C tune [143], which employs the CTEQ6L1 PDF set [144] was used for the
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parton shower. The renormalization and factorization scales were set equal to

µR = µF =
√

m2
top + p2

T,top, (7.2)

where pT,top is evaluated from the underlying Born configuration. Considering a LO

process pp → ij, the real NLO corrections correspond to parton branchings of the kind

i → i1i2, so that the process becomes pp → i1i2 j. For such an event the underlying

Born kinematics is defined by replacing the 4-momenta pi1 , pi2 by the 4-momentum

before the branching pi.

In the Powheg method, the real emission cross-section can be separated into two

contributions: R = Rs + R f , where Rs is singular at low pT and R f is finite. The

divergence of Rs at low pT is dampened by an all-order resummation of soft/collinear

logarithms encoded in the Sudakov form factor that the parton shower provides. The

splitting of the cross-section into a finite and a singular part is arbitrary, and can

be achieved using a function F(p2
T) of the transverse momentum of the radiation,

satisfying

0 ≤ F(p2
T) ≤ 1 , lim

p2
T→0

F(p2
T) = 1 (7.3)

and defining [68]

Rs = RF(p2
T), (7.4)

R f = R
[
1 − F(p2

T)
]

. (7.5)

A possible choice for F(p2
T) is given by [145]

Rs =
h2

damp

h2
damp + p2

T

R , R f =
p2

T

h2
damp + p2

T

R, (7.6)

where pT is the transverse momentum of the radiated parton (which for a tt̄ event is

equal to the pT of the tt̄ system). The parameter hdamp, dampens the resummation

effects in the region pT > hdamp. The nominal MC sample was generated using

hdamp = mtop, which has been shown to describe the multiplicity and transverse

momentum spectra of the jets produced in association with a tt̄ pair [146].

The aforementioned tt̄ sample was also interfaced to HERWIG 6.520 [83], in order to

probe the effect of modeling of the parton shower and hadronization on the measure-
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ment. An additional tt̄ sample was generated using the same settings as the nominal

sample but raising the hdamp parameter from hdamp = mtop to hdamp = ∞. This sample

was used for gauging the effect of the modeling of the pT spectrum of the tt̄ system on

the cross-section.

A sample offering a description of the pp → tt̄bb̄ process in terms of LO matrix

elements was also used. More specifically a pp → tt̄+ ≤ 3 partons sample was

was generated with MADGRAPH [147] interfaced to PYTHIA 6.427 using the Perugia

2011C tune. For this sample the CT10 PDF set was used in the calculation of the

matrix element. MADGRAPH uses a five-flavor scheme for the calculation of the

matrix element, although with massive b-quarks. This sample is expected to offer a

more accurate description of the kinematics of the additional b quarks in the high-pT,

non-collinear region compared to the POWHEG samples mentioned above.

The effect of the renormalization and factorization scale variation is studied using

the aforementioned MADGRAPH+PYTHIA sample. Since this sample is obtained by

merging samples with different final state parton multiplicities, the renormalization

and factorization scales follow from the MLM matching procedure, as implemented

in MADGRAPH [66]. More specifically the final state partons, after the shower, are

clustered into jets using the kT algorithm [148] with a radius parameter R = 1. The

clustering stops when a 2→ 2 process is reconstructed. The factorization scale is then

set equal to the kT scale of the last clustering and the renormalization scale is set to

µ = Q

√(
m2

i + p2
T,i

) (
m2

j + p2
T,j

)

= Q







(

∑
p∈i

pi

)2

+

(

∑
p∈i

px,i

)2

+

(

∑
p∈i

py,i

)2



×



(

∑
p∈j

pj

)2

+

(

∑
p∈j

px,j

)2

+

(

∑
p∈j

py,j

)2







1/2

, (7.7)

where i, j are the two clustered jets in the final state. The factor Q is varied by a factor

of two (Q = 2 in the Q2up sample and Q = 1/2 in the Q2down sample). The Perugia

2012 radHi(radLo) tune [143] was used for the Q2down(Q2up) sample in order to

harmonize the scales used in the calculation of the matrix elements with the scales

used in the parton shower and the simulation of the underlying event.



88 Data and simulation samples

Table 7.1 contains a list of the tt̄ samples used in this analysis. All of these samples

were normalized to the inclusive tt̄ cross-section calculated at NNLO+NNLL accuracy

[149].

The contribution from the tt̄ + W/Z+jets processes was simulated using MAD-

GRAPH with the CTEQ6L1 PDF set, interfaced to PYTHIA 6.426 using the AUET2B

tune.

The tt̄H process was simulated using NLO matrix elements for pp → tt̄H pro-

vided by the HELAC-ONELOOP package [150], interfaced to PYTHIA 8 [82] through

POWHEG-BOX [140], also known as the POWHEL approach [151]. The matrix element

calculation was performed using the CT10 PDF set and the parton shower used the

AU2CT10 tune.

The background from Z+jets events was simulated using LO matrix elements from

ALPGEN 2.14 with the CTEQ6L1 PDF set, interfaced to PYTHIA 6.426 and using the

Perugia 2011C tune. Samples of different parton multiplicities have been merged with

the MLM merging scheme [152], to provide samples of LO+PS accuracy with up to 5

partons (in addition to the Z boson) for the case of Z+LF (light flavor) samples and up

to 3 additional partons in the case of the Zcc̄ and Zbb̄ samples. The samples involving

the production of heavy flavor (HF) partons have been found to underestimate the HF

content in Z+jets events and a re-weighting procedure, described in Section 10.1 has

been devised to correct for it.

The background from di-boson processes was simulated using ALPGEN 2.14 with

the CTEQ6L1 PDF set, interfaced to HERWIG 6.520 using the AUET2CTEQ6L1 tune.

The single-top process in the Wt channel was simulated using POWHEG-BOX,

version 1, revision 2330, interfaced to PYTHIA 6.426 using the Perugia 2011C tune. The

CT10 PDF set was used for the matrix element calculation, while the CTEQ6L1 PDF

set was used in the parton shower. The interference with the tt̄ process that arises at

NLO was removed by the so-called diagram removal scheme [141]. Two additional Wt

samples were used to assess the modeling uncertainties. The first of those consisted

of the same POWHEG-BOX sample, this time obtained with the diagram subtraction

scheme. The second sample was generated with MC@NLO 4.06 [141, 153] with the

CT10 PDF set, interfaced to HERWIG 6.520 using the AUET2CT10 tune. In the s and

t-channels one can have only one lepton from the t → Wb decay, therefore in order for

such a process to be mis-identified as signal one jet must be mis-identified as a lepton

and an additional jet is needed to take the place of the mis-identified jet. Both the s
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and t-channel contributions are therefore negligible and are not considered further in

the analysis.

Table 7.2 contains a list of the non-tt̄ MC samples used in this analysis.

The samples that use HERWIG and PYTHIA for showering and hadronization

were interfaced to PHOTOS [154] for modeling of QED final-state radiation and

TAUOLA [155] for modeling the decays of τ leptons. The tt̄H sample was interfaced to

PHOTOS++ [156]. The samples which employ HERWIG for the simulation of parton

showers were interfaced to JIMMY for the simulation of multi-parton interactions [78].

All simulated samples are normalized to their respective theoretical cross-sections,

using the latest available theoretical estimates. All samples are generated using a top

mass of mt = 172.5 GeV. The Higgs mass for the tt̄H sample is set to mH = 125 GeV.

All the MC samples are simulated taking into account the pile-up conditions in

the 2012 data, including both the effects of in-time and out-of-time pile-up. Pile-

up is modeled by overlaying simulated hits from events with exactly one inelastic

(signal) collision per bunch crossing with hits from non-single diffractive (minimum-

bias) events that are produced with PYTHIA 8.160 using the A2M tune [157] and the

MSTW2008LO PDF [99]. The number of overlaid minimum-bias events is sampled

according to a Poisson distribution with a mean corresponding to the average number

of inelastic pp interactions, recorded in the 8 TeV run. The bunch-filling pattern

surrounding the signal interaction is used to modulate this number, so that only

filled bunch-crossings are simulated. The number of simulated bunch crossings is

different for each detector subsystem, taking into account their different sensitivities

to out-of-time pile-up.

The generated particles are propagated either through a full simulation of the AT-

LAS detector [158] using GEANT4 [159] or a fast detector simulation, with parametrized

calorimeter showers [160].

We note that in several of the samples listed above, in particular the ones employing

NLO matrix elements, different PDF sets are used in the calculation of the matrix

element and in the tune, the latter employing a LO PDF set. This is a priori inconsistent,

however for all relevant applications this usage offers several advantages without

leading to any significant complications. More precisely, the use of different PDF

sets in the matrix element calculation and in the tune allows to explore the impact of

several PDF sets on the matrix element calculation, eliminating the need for a complete
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retuning of the parton showers and MPI. Moreover, the bulk of the MPI and ISR

interactions involve low pT exchanges, which probe small x values of the PDFs. At

NLO and higher orders, the splitting functions obtain a dependence ln(1/x), which

diverges as x → 0 [161]. In order to avoid that the gluon PDF becomes too big in

the medium to high x region, where the PDFs are fitted to existing data, some PDF

groups allow that the gluon PDF becomes negative at low x. For this reason, the use

of LO PDFs are preferred over the use of NLO ones for tuning the MPI and (initial

state) parton showers. Therefore in calculations employing NLO matrix elements, it is

advisable to use two different PDF sets, a NLO one for the matrix element and a LO

one for the tune [162].
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Chapter 8

Event selection and definition of the

fiducial phase space

The measurement of the tt̄bb̄ final state involves the reconstruction and identification

of electrons, muons and jets, as well as the identification of b-jets. The following

sections describe the reconstruction and selection of the final state objects, as well

as the selection requirements imposed in order to isolate the signal events from the

ensemble of events selected by the single lepton trigger chain. This chapter also

describes the definition of the fiducial phase space, to which the measurement is

unfolded.

8.1 Object reconstruction and selection

The final state objects that are used in the measurement are reconstructed and selected

as follows.

Electrons: Electrons are required to have pT > 25 GeV and |η| <2.47, excluding

the transition region between the barrel and the end-cap (1.37 < |η| < 1.52). Only

electrons satisfying the tightest identification criteria are selected. The longitudinal

impact parameter of the electron track with respect to the primary vertex is required

to be less than 2 mm. The deposited energy in a cone of radius ∆R < 0.2 around the

electron (excluding the deposit from the electron itself) is required to be less than 6

GeV and the sum of the transverse momenta of tracks in a cone of radius ∆R < 0.3

around the electron track (excluding the electron track momentum) is required to

93
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be less than 6 GeV. These isolation requirements correspond to a 98% efficiency of

reconstructing and identifying true prompt electrons.

Muons: The combined muon candidate tracks are required to have pT > 25 GeV,

|η| < 2.5 and to pass tight identification criteria. Their longitudinal impact parameter

with respect to the primary vertex is required to be less than 2 mm. Muons are required

to be separated by ∆R > 0.4 from the nearest jet, and to satisfy the so-called mini-

isolation requirement Iℓ < 0.05, where Iℓ is the sum of pT of tracks1 in a cone of radius

10 GeV/pmuon
T around the muon, excluding the muon track, divided by the pT of the

muon.

Jets: Jets reconstructed with the anti-kT algorithm [86] with a radius parameter

of R = 0.4 are used. The jets’ transverse momenta are corrected using the jet-area

based method [127] in order to remove the contributions from pile-up interactions

and are calibrated with the LCW+JES scheme. Jets are required to have pT > 25

GeV and |η| < 2.5. To reduce the contribution from pile-up jets, jets with pT < 50

GeV are required to satisfy |JVF(jet, PV0)| > 0.5, where the JVF variable is defined in

equation (5.5). Jets within ∆R < 0.2 of a selected electron are not considered.

Electron-jet overlap removal: Since the jet clustering algorithms incorporate the

electromagnetic clusters in the clustering procedure, jets that are within ∆R < 0.2 of

a reconstructed electron are removed, in order to avoid counting the electron energy

deposits twice. If the nearest jet surviving the above cut is within ∆R < 0.4 of a

reconstructed electron, the electron is removed, in order to obtain an event sample in

which the electrons are cleanly separated from nearby jet activity.

b-tagging: Reconstructed jets are b-tagged using the MV1 algorithm [135, 167]

Jets are defined as being b-tagged if the MV1 weight is greater than 0.7892, which

corresponds to an inclusive efficiency of 70%. The b-tagging efficiency in simulation is

corrected with scale factors derived from measurements in dilepton tt̄ events using a

combinatorial likelihood approach [168].

1The tracks must have pT > 1 GeV, d0 < 10 mm, z0 sin θ < 10 mm and a total of at least 4 hits and 0
dead sensors in the SCT and pixel detectors.



Event selection and definition of the fiducial phase space 95

8.2 Event selection

Events that fired the single lepton trigger chain are required to have at least 1 primary

vertex with at least 5 associated reconstructed tracks. In order to suppress events

containing cosmic rays, events with two muons with a transverse impact parameter

with respect to the primary vertex d0 > 0.5 mm and separated in azimuth by ∆φ > 3.1

rad are vetoed.

Since two leptons of opposite charge are expected from the decays of the top and

antitop quarks, the events are required to have exactly two leptons of opposite charge

reconstructed with the offline algorithms, with at least one of them being within

∆R < 0.15 from the leptons that fired the corresponding triggers. Occasionally muons

may radiate photons which carry a substantial amount of the muon’s energy2. These

Bremsstrahlung photons can then split into an e+e− pair and leave a large amount

of energy deposit in the calorimeter, causing the muon to be reconstructed as both a

muon and an electron. In order to suppress this process, events containing an electron

and a muon separated by ∆θ < 0.005 and ∆φ < 0.005 are vetoed. Events in which the

pair of leptons had an invariant mass Mll < 15 GeV are vetoed. In order to suppress

the background from Z+jets events, in which the Z boson decays into two leptons,

events containing same flavor leptons (ee or µµ) are vetoed if |Mll − 91 GeV| < 10

GeV. In addition to the above cuts, simulated events had to fulfill the requirement that

the di-lepton pair do not come from hadron decays. This cut ensures that only leptons

from W decays are selected.

A “pre-selected” sample is defined as the set of events fulfilling the requirements

described above and containing at least two reconstructed b-jets. The pre-selected

sample is 95% pure in tt̄ events and is used as a control region for studying the

modeling of the tt̄ events. The signal region is defined as the subset of the “pre-

selected” sample which contains exactly four reconstructed b-jets.

Table 8.1 contains a summary of the event selection requirements.

2This effect is known as catastrophic Bremsstrahlung.
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Pre-selection

≥ 1 primary vertex with ≥ 5 associated tracks

exactly two oppositely charged leptons with pT > 25 GeV and |η| < 2.5

Mll > 15 GeV for all channels and |Mll − 91| > 10 GeV for ee, µµ channels

≥ 2 b-jets with pT > 25 GeV and |η| < 2.5

Signal region

pass pre-selection

exactly four b-jets

Table 8.1: Summary of requirements that define the “pre-selection” and the signal regions.
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8.3 Definition of the fiducial phase space

The fiducial phase space is designed to be as close as possible to the phase space of the

measurement, so as to minimize extrapolations in phase-space regions which are not

experimentally accessible and where, as a result, the validity of the simulation cannot

be verified.

Leptons and jets on truth level are defined using particles directly produced in pp

interactions with a lifetime greater than 30 ps or from subsequent decays of particles

with a shorter lifetime. This lifetime cut corresponds to a decay length of ℓ = 1 · βγ cm

in the detector rest frame. Since the first detector layer is only 5 cm away from

the interaction point, particles with a lifetime longer than 30 ps, produced even at

moderately high energies, have a significant probability of interacting with the detector

material before they decay and therefore are allowed to be decayed only by the detector

simulation package, which correctly accounts for the particles’ interactions with the

detector material.

To select the leptons from W-boson decays, all leptons (e, µ, νe, νµ, ντ) are required

to not be hadron decay products3. Electrons and muons are “dressed” by adding to

their four-momentum the four-momenta of photons within a cone of radius R = 0.1

around the original lepton’s direction. Photons which are produced by the interaction

of the primary particles from the hard scattering interaction with the detector material

are not used in the dressing procedure. The dressing procedure mimics the fact

that electrons clusters have a size of η × φ = 0.125× 0.125 in the barrel region and

η × φ = 0.125× 0.175 in the end-cap region, and therefore collinear photon radiation

cannot be resolved in the calorimeter for ∆R(e, γ) . 0.1. While for muons, the object

after the emission of photon radiation is what comes closest to what is reconstructed as

a muon track, the Bremsstrahlung effects for muons are expected to be much smaller

than for electrons4 therefore muons are dressed so that they are handled on equal

footing with electrons. The dressed leptons are required to be within |η| < 2.5 and

have pT > 25 GeV.

Jets are defined using the anti-kt algorithm with a radius parameter of R = 0.4.

Following what has been done for the jet calibration procedure, all particles are

3Leptons coming from W → τ → e/µ are also considered in the definition of the fiducial phase space.
4The ratio of the radiated powers behaves like Pe

Pµ
∝
(

γe
γµ

)4
∝
(

mµ

me

)4
∼ 109.
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considered for jet clustering, except for leptons produced from W-boson decays5.

Photons that are used to dress electrons and muons are also excluded from the jet

clustering. Jets are required to be within |η| < 2.5 and have pT > 20 GeV.

Truth level jets are identified as b-jets (c-jets) if a b (c and no b) hadron with pT > 5

GeV is ghost-matched to the jet. Ghost matching is a procedure to associate particles

to jets, based on the notion of the jet catchment area [129]. Isolated anti-kT jets are

circular and therefore a particle can be matched to a jet with a geometrical matching,

i.e. ∆R(particle, jet) < Rjet, where ∆R is the Euclidean distance in the η − φ plane.

The tt̄bb̄ cross-section peaks at ∆R(b, b̄) → 0 as explained in Chapter 9, therefore a

high number of close-by jets is expected in the signal region. Geometrical matching

does not provide a unique answer for cases with ∆R(jet1, jet2) < Rjet. Ghost matching

consists of scaling a particle’s 4-momentum by a small number (10−6), and including it

in the jet clustering, which is performed with an infrared and collinear safe algorithm

(such as anti-kT). The 4-momentum of the particle must be made small enough, so that

it does not alter the result of the jet clustering. Since the clustering procedure gives

a unique answer to which jet a particle is clustered, ghost matching provides more

reliable results than the geometric matching6 for non-isolated jets and is therefore

more suitable for final states with close-by jets like tt̄bb̄.

Reconstructing correctly the multiplicity of b hadrons clustered in a b-jet is crucial

for some of the truth-level studies presented in this note, in particular the study of the

b-tagging efficiency as a function of the multiplicity of clustered b-hadrons, presented

in Section 9.3. In order to avoid over-counting b/c hadrons that stem from the decay

of b/c excited states, only b/c hadrons that don’t decay further into b/c hadrons are

considered in the ghost matching. Moreover in order to correctly identify c-jets, b → c

transitions have to be excluded, therefore only c hadrons that don’t come from the

decay of b hadrons are considered for ghost matching.

The invariant mass of the two leptons in the fiducial phase space is required to

satisfy Mll > 15 GeV. In events with two electrons or two muons a cut on the di-

lepton invariant mass is applied |Mll − 90| GeV > 10 GeV, in order to suppress the

background from Drell-Yan events.

5This implies that neutrinos from hadron decays are included in jets.
6This refers in particular to cases where two jets are separated by ∆R < 0.4. In this case two cones

with radii R = 0.4 centered at the jet axes will overlap and the particles that lie in the overlapping
region would not be uniquely assignable to either of the two jets.
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Leptons and jets in events with min ∆R(lepton, jet) < 0.4 have a high probability

of being mis-identified in the detector. In data, leptons overlapping with jets are

handled by the overlap removal procedure that is described in Section 8.1. Performing

the same overlap removal for simulated events would be ill-defined, since it would

lead, among other, to a violation of four-momentum conservation. Therefore a veto

on events containing leptons with min ∆R(lepton, jet) < 0.4 is instead applied in the

definition of the fiducial phase space.

The fiducial phase space is defined by the presence of two leptons and exactly 4

b-jets, satisfying the criteria outlined above. Table 8.2 summarizes the requirements

used in the definition of the fiducial phase space. The above definitions follow closely

what was done in [146].

Fiducial phase space definition

exactly two oppositely charged leptons with pT > 25 GeV and |η| < 2.5

Mll > 15 GeV for all channels and |Mll − 91| > 10 GeV for ee, µµ channels

exactly four b-jets with pT > 20 GeV and |η| < 2.5

no jet-electron or jet-muon pair with ∆R < 0.4

Table 8.2: Summary of requirements used in the definition of the fiducial phase space.





Chapter 9

Studies of potential systematic effects

due to the tt̄bb̄ event topology

The presence of four b-jets in the tt̄bb̄ final state makes the identification of b-jets the

key element of this analysis. As can be seen from Figure 2.1, there are two production

mechanisms for b-quarks in the tt̄bb̄ final state: (i) QCD production via the splitting of

a gluon into a bb̄ pair and (ii) electroweak production, which proceeds predominantly

via the decay of a top quark t → Wb. The different production mechanisms affect both

the kinematics of the individual b-quarks and the event topology.

Moreover, with four b-jets in the final state, the cross-section measurement is very

sensitive to the knowledge of the b-tagging efficiency. For the dominant contributions

to the cross-section (see Figure 2.1) we can schematically write1

σtt̄bb̄ ∼ ǫ2
b,top b−jets · ǫ2

b,non−top b−jets, (9.1)

where the efficiency factors ǫb are taken from simulation and corrected with scale

factors derived from measurements in a sample of tt̄ events. Since this sample is

dominated by b-quarks from top decays, a mis-modeling of ǫb,top b−jets would be

corrected by the associated scale factors. However for ǫb,non−top b−jets, no dedicated

scale factors exist, therefore a potential mis-modeling of ǫb,non−top b−jets could affect

the measurement. Similar arguments hold for the difference in the b-tagging efficiency

between b-jets with one or more clustered b-hadrons, with tt̄ events being dominated

1It is known [169] that in tt̄ events, it is more likely than average to tag a second b if one b-jet has already
been tagged, i.e. the probability for tagging two b-jets is higher than ǫ2

b , due to both kinematic and
instrumental correlations.. The effect is small (<0.5% in inclusive tt̄ events) and is neglected here for
simplicity.
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by jets with one clustered b-hadron and tt̄bb̄ events typically containing both. In the

following sections we examine the dependence of ǫb on the b-jet production mechanism

and on the clustered b-hadron multiplicity in order to determine their effect on the

measurement.

9.1 Production of b quarks via top decay and via gluon

splitting

The two b-quark production mechanisms in tt̄bb̄ events (neglecting contributions from

electroweak production of bb̄ pairs which are negligible [98]) are depicted in Figure 9.1.

At leading order, when the tops are produced with no additional radiation, the top

Figure 9.1: The different b-quark production mechanisms in tt̄bb̄ events: decay of top quarks
(left) and gluon splitting to bb̄ pairs (right). The parentheses indicate the 4-momenta
of the partons and the blob represents all possible diagram insertions.

and anti-top are back-to-back in order to conserve 4-momentum. Therefore, we expect

that in inclusive tt̄ events, the b-quarks are mostly produced with large separations.

The situation is different for b-quarks produced by gluon splitting. Considering the

gluon propagator of the g → bb̄ amplitude in Figure 9.1, we obtain

1
k2

g
=

1
2m2

b + 2EbEb̄(1 − βbβb̄ cos θ)
, (9.2)

where β = E/p is the Lorentz β factor, θ is the opening angle of the outgoing particles

and we have used the fact that k = (p1 + p2). We observe that the g → bb̄ amplitude

is enhanced when the b-quarks are collinear, i.e. when θ → 0. We therefore expect that



Studies of potential systematic effects due to the tt̄bb̄ event topology 103

in tt̄bb̄ events, there will be a small separation between non-top b-quarks/jets and a

large separation between top b-quarks/jets. The small separation between non-top

b-quarks also implies that the fraction of non-top b-jets with more than one clustered

b-hadron will be higher than for the top-b-jets. The ∆R distribution between different

types of b-jets is shown in Figure 9.2.
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Figure 9.2: Minimum ∆R separation between two top b-jets (black), between a top and a non-
top b-jet (blue) and two non-top b-jets (red). The b-jets from the top decay tend to
be produced back-to-back, while non-top b-jets tend to be produced collinearly.
The (non-top)-(non-top) b-jet distribution displays a cut-off at values equal to the
radius parameter of the jet algorithm. The distribution is obtained from events in
the pre-selected sample using the Powheg+Pythia sample with hdamp = ∞ and is
normalized to unity. Other generators display qualitatively the same behavior.

The pT and η spectra of top and non-top b-jets are shown in Figure 9.3. We observe

that the non-top b-jets tend to be significantly softer than the top b-jets. The η spectrum

displays small differences, with the top b-jets being produced slightly more centrally

than the non-top b-jets. We thus conclude that the bulk of the signal will contain

non-top b-jets with a small separation populating the low pT region of the phase space.

9.2 Differences in b-tagging efficiency between top and

non-top b-jets

In order to study the dependence of ǫb on the production mechanism of b-jets, simu-

lated b-jets built from stable particles are divided in top b-jets and non-top b-jets. The
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Figure 9.3: pT (left) and η distribution of top and non-top b-jets at truth level. The non-top b-
jets are significantly softer than the top b-jets. The top b-jets are slightly more central
than non-top b-jets. The distribution is obtained from events in the pre-selected
sample using the Powheg+Pythia sample with hdamp = ∞ and is normalized to
unity. Other generators display qualitatively the same behavior.

first class consists of jets that contain among the clustered particles a b hadron and a

b quark that comes from the decay of a top quark (has a top quark in its ancestors)

and the second class consists of jets that contain a b hadron but no b quarks coming

from the top decays. Only the b hadrons which don’t decay further into b hadrons

are considered. Simulated jets reconstructed from calorimeter energy deposits, inherit

the type of the closest truth jet, within ∆R < 0.4. If more than one truth jets lie within

∆R < 0.4, the reconstructed jet is matched to the truth jet whose invariant mass is

closest to the reconstructed jet’s invariant mass. The b-tagging efficiency calculated as

ǫ
top/non−top
b =

number of top/non-top b-jets with MV1 > wcut

total number of top/non-top b-jets
, (9.3)

is then plotted for both classes of b-jets as a function of pT, η and jet isolation, as shown

in Figures 9.4-9.6. A dependence of ǫb on the production mechanism of b-jets should

show up as a difference between ǫ
top
b and ǫ

non−top
b in certain kinematic regions. No

significant differences are observed in the region pT < 50 GeV, where the bulk of the

signal lies (cf. Figure 9.4 and Figure 9.5). For jets with pT > 50 GeV, some differences

are observed, particularly in the regions with |η| > 1.2, where the b-tagging efficiency

depends strongly on η (Figure 9.6). Part of the difference in the b-tagging efficiency

between top and non-top b-jets is due to the different pT and η spectra of the top

and non-top b-jets. Since only 28% of the events measured in data have a 3rd b-jet

with pT > 50 GeV and only 25% of those have a 4th b-jet with pT > 50 GeV, the

remaining difference in the b-tagging efficiencies is not expected to affect significantly

the outcome of the measurement.
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We further observe that the b-tagging efficiency is significantly lower for soft jets

with a small ∆R separation (Figure 9.7).

9.3 Differences in b-tagging efficiency between b-jets

with one and more than one clustered b-hadron

Collinear g → bb̄ splittings can give rise to jets containing more than 1 b hadrons. The

presence of more than 1 b-hadrons in a jet is expected to increase the probability of a

jet being tagged by the b-tagging algorithm, since the jet will contain more tracks with

high impact parameters and more secondary vertices than a jet with a single b hadron.

The presence of b-jets with more than one b-hadron in the sample is in turn expected

to increase the overall b-tagging efficiency.

The b-tagging efficiency for jets with one and two b hadrons has been estimated

in simulated events using equation (9.3) and is shown in Figure 9.8. It is found that

the b-tagging efficiency is up to 13% higher for b-jets containing more than one b

hadron. The effect is highly dependent on the jet pT, η and isolation and in the

region that contains the bulk of the signal the differences are smaller. Moreover the

fraction of jets containing 2 b hadrons is found to be small. More specifically the

nominal simulation sample predicts that only 0.7% of top b-jets and 9.7% of non-top

b-jets contain 2 b hadrons in the “pre-selected sample”. The overall effect on the

b-tagging efficiency is therefore expected to be small. Predictions for the difference in

the b-tagging efficiencies are shown in Table 9.1.
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Figure 9.7: b-tagging efficiency ǫb as a function of the jet’s pT (a), pseudorapidity (b), and
isolation (c). The b-tagging efficiency is determined from events with Nb−jets ≥ 0.
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Figure 9.8: b-tagging efficiency for b-jets containing one b hadron (black) and two b hadrons
(red) as a function of the jet’s pT (a), pseudorapidity (b), and isolation (c). The plots
correspond to a sample with Nb−jets ≥ 0. The x-axes correspond to the kinematics
of the truth jets to which the reconstructed jets match.





Chapter 10

Modeling of the control regions

Since part of the input for the cross-section calculation, such as the fiducial efficiency

and the background estimates, is taken from simulation, the quality of the modeling

has to be assessed by comparing the simulation with data measured in control regions.

The principal control region used in this analysis is the pre-selection region, which

was defined in Table 8.1. As discussed earlier, the pre-selection region is mostly

comprised of inclusive tt̄ events, therefore constituting a natural starting point for the

study of tt̄bb̄ events. We note that discrepancies in the kinematic distributions of the

leptons and b-jets in the pre-selection region are bound to affect the determination of

the fiducial efficiency, thereby also affecting the estimation of the tt̄bb̄ cross-section. In

this section we present several distributions of the kinematics of the final-state objects,

as well as the event topology and discuss the quality of their modeling.

Two control regions enriched in Z+LF and Z+HF jets events were constructed to

examine the modeling of the Z+jets background processes, thereby constraining the

estimate for the Z+jets contribution in the signal region. Both regions were constructed

based on the selection criteria as in Table 8.1, but reversing the Z-mass veto, i.e.

retaining only the event in which the invariant mass of the lepton pair satisfies 81 ≤
Mll ≤ 101 GeV. The Z+LF jets region (ZLF) was constructed by requesting Nb−jets = 0

while the region enriched in Z+HF jets (ZHF) was defined by requesting Nb−jets ≥ 1.

These regions are orthogonal to themselves, as well as to the pre-selected region and

the signal region.

113
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10.1 Modeling of the Z+jets control region

The event yields for the ZLF and ZHF control regions are shown in Table 10.1. We

observe that both control regions are dominated by Z+jets events as expected, with

the Z+LF jets being dominant in the ZLF region and the Z+HF jets being dominant

in the ZHF region. While the agreement between data and simulation is within 1%

in the ZLF region, a discrepancy of 35% is observed in the ZHF region, suggesting

that the simulation underestimates the production of heavy flavor jets in the sample

enriched in Z bosons. This observation is in agreement with what has already been

observed in the measurements of Z production in association with heavy flavor jets [1]

and tt̄Z [170].

The cross-section of the Z+jets samples are corrected with scale factors obtained

by solving the following system of equations


 N

Z+LF jets
ZLF region N

Z+HFjets
ZLF region

N
Z+LF jets
ZHF region N

Z+HFjets
ZHF region




 SFLF

SFHF


 =


 Ndata

ZLF region − Nother
ZLF region

Ndata
ZHF region − Nother

ZHF region


 , (10.1)

which has the solution SFLF = 0.93 and SFLF = 1.63. After re-weighting the event

yields are in better agreement between data and simulation in both control regions, as

shown in Table 10.1.

The effect of the re-weighting is illustrated in Figure 10.1, which shows the invariant

mass of the lepton pair. The re-weighting factors only affect the normalization, without

affecting the shape of the distributions, therefore the effects observed in Figure 10.1

are similar for other event and object distributions.

10.2 Modeling of the pre-selection region

The event yields for the pre-selected sample, after the application of the data-to-MC

correction factors and the Z+jets re-weighting factors described in the previous section,

is given in Table 10.2. We observe that the eµ channel displays the best agreement

between data and simulation, while in the µµ and ee channels an excess of 2.9% and

9% respectively is observed in data. This can be attributed partly to the remaining

normalization discrepancy in the Z+jets estimate and partly to the omission of the
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Sample
Control region Control region

before reweighting after reweighting

ZLF ZHF ZLF ZHF

Data 439827 51486 439827 51486

Simulation 434932 38062 439955 51499

Z+ LF jets 378126 10401 351657 9673

Z+ HF jets 49990 22486 81483 36652

Other processes 6816 5175 6816 5175

Inclusive tt̄ 670 3943 670 3943

Dibosons 6084 1020 6084 1020

Single top 50 149 50 149

tt̄ + W/Z+jets 12 60 12 60

tt̄H 0 3 0 3

Table 10.1: Measured and expected number of events in the ZLF and ZHF control regions.
The last columns correspond to the yields obtained after re-weighting the Z+jets
samples as described in the text.

background from jets which are reconstructed as electrons. The overall discrepancy is

at the level of 3% and is covered by the systematic uncertainties.

Sample ee eµ µµ All channels

Data 4538 12127 6863 23528

Simulation 4165 11945 6668 22777

Inclusive tt̄ 3794 11624 6158 21576

Single top 96 266 149 511

Z+jets 256 7 333 596

tt̄ + W/Z+jets 12 34 18 63

tt̄H 4 11 6 21

Dibosons 3 3 4 10

Table 10.2: Data yields and MC predictions for the number of events in the “pre-selected”
sample. The numbers include the Z+jets re-weighting factors (Section 10.1) as well
as the data-to-MC correction factors.
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Figure 10.1: The di-lepton invariant mass spectrum for events that lie in the ZLF (top) and
ZHF (bottom) control regions, before re-weighting (left) and after re-weighting
(right). The distribution peaks at the value of the Z pole mass, indicating that the
sample is dominated by events in which a Z boson is produced. The simulation
underestimates the Z+HF fraction in the ZHF region, which is observed as a
deficit of events in the simulation (left). The reweighting procedure based on
equation (10.1) greatly improves the agreement between data and simulation
(right).

Figures 10.2-10.7 show event and object level distributions for the preselected tt̄

events.

The kinematics of the leptons and the leading jets is well described by the nominal

simulation sample as shown in Figures 10.3 and 10.4 respectively. This leads to a

good description of the inclusive jet multiplicity (Figure 10.2 a) up to relatively high

multiplicities. The b-jet multiplicity on the other hand doesn’t depend only on the

inclusive jet production rate but also on the rate of g → bb̄ splitting in the parton

shower. The nominal simulation sample and all samples that don’t contain matrix
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elements for the full tt̄bb̄ process tend to underestimate the high b-jet multiplicity

region (Figure 10.2 b). The MadGraph+Pythia sample which contains matrix elements

for tt̄bb̄, provides a better description of the high end b-jet multiplicity region (central

scale and Q2down samples), however at the expense of a worse modeling of the

inclusive jet multiplicities.

Distributions that characterize the event topology, such as the distance between the

lepton pair (Figure 10.2 e) or between the two closest jets in the event (Figure 10.3 e).

These distributions, are very sensitive to the modeling details, such as the spin correla-

tions between the top decay products, which significantly affect the distance between

the two leptons, and the implementation of the parton shower and hadronization

models, which can have a marked impact on the distance between the jets.

The b-tagging weights of the two highest pT b-jets is shown to be described by the

simulation within the systematic uncertainties (Figure 10.5 a, b). The b-tagging weights

of the 3rd and 4th highest pT jets are higher in data than in simulation (Figure 10.5 c,

d) but still at the limit of the systematic uncertainty. This discrepancy manifests itself

in a higher number of b-jets measured in data than predicted by simulation, as seen in

Figure 10.2 b.

Some disagreement is observed between data and simulation in the description of

the kinematics of the 3rd and 4th highest pT b-jets, as shown in Figure 10.7, however

the low statistics obscure any underlying systematic effects. Most strikingly, the

pseudorapidity distribution of the 4th highest pT b-jet seems to be asymmetric in data,

with an excess of events in the region η < 0. Out of a total of 39 events, 28 of them

are observed in the region with η < 0. The probability to have such a fluctuation,

assuming that the pseudorapidity distribution is symmetric is given by

P(k ≥ 28) =
39

∑
k=28

39!
k!(39 − k)!

0.5k0.539−k = 0.47%, (10.2)

corresponding to 2.6 σ. While this probability is small, the fact that no such effect

appears neither when a looser b-tagging operating point is chosen (which corresponds

to higher statistics) nor in the 3rd b-jet pT spectrum, suggests that the observed asym-

metry is due to a statistical fluctuation.
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10.3 Comparisons with different generators

In the previous section it was demonstrated that the nominal simulation sample, in

which the additional b-jets are described only by the parton shower, underestimates

the rate of production of events with ≥ 3 b-jets. It is instructive to see whether a

sample offering a matrix-element description of the additional b-jets (like MADGRAPH)

provides a better description of the additional b-jet multiplicity and pT spectra.

Figure 10.8 shows the measured and simulated jet multiplicity and pT spectra for

the 4 b-tagged jets for events in the pre-selected region. The measured distributions

are compared with the nominal sample as well as with the MADGRAPH+PYTHIA 6

sample with three different scale choices. It is observed that the nominal simulation

sample provides the best description of the two leading b-tagged jets and of the b-jet

multiplicity for events with 2 b-jets, which constitute the bulk of the phase space of

inclusive tt̄ events.

The MADGRAPH+PYTHIA 6 sample with the central scale underestimates the

inclusive tt̄ production rate, which shows up as an underestimation of events with

2 b-jets. The χ2 statistic, defined as χ2 ≡ ∑
Nbins
i

(Ei−Oi)
2

Ei
, where Ei, Oi are the expected

and observed number of events in bin i respectively is shown in Table 10.3 for the

nominal and MADGRAPH+PYTHIA 6 samples. The nominal sample is shown to

provide the best description of the rate of events with exactly 2 b-jets, however for the

more inclusive case with Nb−jets ≥ 2 the MADGRAPH+PYTHIA 6 samples (central scale

and Q2 down) are in better agreement with the data. In the region with additional

b-jets (Nb−jets ≥ 3), all MADGRAPH+PYTHIA 6 samples are in better agreement with

the data than the nominal sample, with the Q2 down sample being closest to the

observation.

While it is expected that in the MADGRAPH+PYTHIA 6 samples the additional

b-jets will be harder than in the nominal sample, thereby leading to a higher cross-

section, the low statistics do not allow to draw any definite conclusions concerning

the difference in the predicted cross-sections.
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Generator
χ2

2 b-jets ≥ 2 b-jets ≥ 3 b-jets

POWHEG+PYTHIA 6 7 41 35

MADGRAPH+PYTHIA 6 87 93 6

MADGRAPH+PYTHIA 6 (Q2 up) 304 319 15

MADGRAPH+PYTHIA 6 (Q2 down) 12 17 5

Table 10.3: χ2 statistic representing the agreement between data and simulation for events
with exactly 2, ≥ 2 and ≥ 3 b-jets.
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Figure 10.2: Event level distributions for the pre-selected events. Total jet multiplicity (a),
b-jet multiplicity (b), missing transverse energy (c), scalar sum of transverse
momenta of leptons and jets (d), jet isolation(e). The blue band corresponds to
the uncertainty due to detector effects and the yellow band indicates the total
systematic uncertainty obtained by adding in quadrature the uncertainty due
to detector effects and the modeling uncertainty. The statistical uncertainty of
the MC samples is added in quadrature to the total systematic uncertainty. The
inclusive tt̄ prediction was obtained from the nominal MC sample.



Modeling of the control regions 121
E

v
e
n
ts

210

310

410

Data
 inclusivett
Vtt

Single Top
Z+jets
Dibosons
Htt

 [GeV]
T

1st lepton p
0 50 100 150 200 250 300

D
a

ta
/M

C

0.5

1

1.5

(a)
E

v
e
n
ts

1

10

210

310

410 Data
 inclusivett
Vtt

Single Top
Z+jets
Dibosons
Htt

 [GeV]
T

2nd lepton p
0 50 100 150 200 250 300

D
a

ta
/M

C

0.5

1

1.5

(b)

E
v
e
n
ts

-110

1

10

210

310

410

510

610 Data
 inclusivett
Vtt

Single Top
Z+jets
Dibosons
Htt

η1st lepton 
-3 -2 -1 0 1 2 3

D
a

ta
/M

C

0.5

1

1.5

(c)

E
v
e
n
ts

-110

1

10

210

310

410

510

610 Data
 inclusivett
Vtt

Single Top
Z+jets
Dibosons
Htt

η2nd lepton 
-3 -2 -1 0 1 2 3

D
a

ta
/M

C

0.5

1

1.5

(d)

E
v
e
n
ts

-110

1

10

210

310

410

510

610 Data
 inclusivett
Vtt

Single Top
Z+jets
Dibosons
Htt

 R(lep1,lep2)∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

D
a

ta
/M

C

0.5

1

1.5

(e)

Figure 10.3: Kinematic distributions for leptons in the pre-selected events. Leading lepton
pT (a), Leading lepton η (b), subleading lepton pT (c) and η (d), ∆R separation
between leptons (e). The blue band corresponds to the uncertainty due to detector
effects and the yellow band indicates the total systematic uncertainty obtained
by adding in quadrature the uncertainty due to detector effects and the modeling
uncertainty. The statistical uncertainty of the MC samples is added in quadrature
to the total systematic uncertainty. The inclusive tt̄ prediction was obtained from
the nominal MC sample.
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Figure 10.4: Jet properties in the pre-selected events: leading jet pT (a), η (c) and b-tagging
weight (e), sub-leading jet pT (b), η (d). The blue band corresponds to the uncer-
tainty due to detector effects and the yellow band indicates the total systematic
uncertainty obtained by adding in quadrature the uncertainty due to detector
effects and the modeling uncertainty. The statistical uncertainty of the MC sam-
ples is added in quadrature to the total systematic uncertainty. The inclusive tt̄
prediction was obtained from the nominal MC sample.
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Figure 10.5: b-tagging weight of the first four highest pT jets (a-d) and of all jets in the event
(e). Only two bins are shown, corresponding to the regions in which the b-tagging
algorithm is calibrated from in-situ measurements. The bin with MV1>0.7892
corresponds to b-tagged jets. We observe that the two leading jets, which are
expected to correspond to the b-jets from the top decay are mostly b-tagged, while
the 3rd and 4th b-jets in the inclusive tt̄ sample are mostly LF jets. The blue
band corresponds to the uncertainty due to detector effects and the yellow band
indicates the total systematic uncertainty obtained by adding in quadrature the
uncertainty due to detector effects and the modeling uncertainty. The statistical
uncertainty of the MC samples is added in quadrature to the total systematic
uncertainty. The inclusive tt̄ prediction was obtained from the nominal MC
sample.
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Figure 10.6: Kinematic distributions for two leading b-jets in the combination of channels
using the pre-selected events. The blue band corresponds to the uncertainty due
to detector effects and the yellow band indicates the total systematic uncertainty
obtained by adding in quadrature the uncertainty due to detector effects and the
modeling uncertainty. The statistical uncertainty of the MC samples is added in
quadrature to the total systematic uncertainty. The inclusive tt̄ prediction was
obtained from the nominal MC sample.
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Figure 10.7: Kinematic distributions for the 3rd and 4th highest pT b-jets in the combination of
channels using the pre-selected events. The dominant contribution to these events
is expected to be coming from events with a tt̄bb̄ partonic final state. The blue
band corresponds to the uncertainty due to detector effects and the yellow band
indicates the total systematic uncertainty obtained by adding in quadrature the
uncertainty due to detector effects and the modeling uncertainty. The statistical
uncertainty of the MC samples is added in quadrature to the total systematic
uncertainty. The inclusive tt̄ prediction was obtained from the nominal MC
sample.
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Figure 10.8: Inclusive (a) and b-tagged (b) jet multiplicities and pT spectra of the 4 b-tagged
jets (c-f). The histograms correspond to the sum of signal and background events.



Chapter 11

Backgrounds

This section describes the estimation of the two classes of background processes that

contaminate the signal region:

• tt̄+jets processes, described in Section 11.1 and

• non-tt̄+jets processes, described in Section 11.2.

11.1 Backgrounds from tt̄+jets processes

Events from tt̄+jets processes constitute the dominant background for the tt̄bb̄ mea-

surement. For the fiducial cross-section measurement, all events which are recon-

structed in the signal region but don’t satisfy the fiducial phase space requirements

are considered to be background, as shown schematically in Figure 6.1.

The tt̄+jets background can further be split into two categories

1. processes which contain the tt̄bb̄ final state at parton level in the inclusive phase

space but don’t fulfill the fiducial phase space requirements (referred to as “non-

fiducial” background) and

2. processes which don’t contain tt̄bb̄ at parton level (referred to as “mis-tagged”

background).

An illustrative example of the two categories of tt̄+jets background is shown in

Figure 11.1.

127
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Figure 11.1: Example processes representing the mis-tagged (left) and non-fiducial background
(right). The mis-tagged background corresponds to processes that don’t contain
tt̄bb̄ in the partonic final state, while the non-fiducial background contains pro-
cesses that contain tt̄bb̄ in the final state at parton level, but do not satisfy the
fiducial phase space cuts. A red (blue) color denotes objects which fail (pass) the
fiducial phase space requirements.

The “mis-tagged” component is comprised of processes in which there are two or

fewer b-jets in the fiducial volume, and two or more mis-tagged c or LF jets. These

processes are denoted by tt̄cc̄, tt̄jj and tt̄cj according to the flavor of the jets that are

mis-tagged. Since these processes are different from tt̄bb̄ at parton level we consider

that their contribution to the signal region is independent of the number of observed

signal events. Therefore a constant estimate of the number of tt̄cc̄, tt̄jj and tt̄cj events

is obtained from simulation and subtracted from the number of events in the signal

region.

The “non-fiducial” component comprises of events that are expected to contain

tt̄bb̄ at parton level but lie outside of the fiducial phase-space. This category contains

different types of events

• events with unmatched jets: these are events which have 4 reconstructed b-jets

but one or more of the reconstructed b-jets cannot be matched to a b-jet in the fidu-

cial volume. This can happen when at truth level a jet falls below the pT threshold,

while being reconstructed above the threshold due to detector resolution effects.

This effect affects low pT jets close to the reconstruction threshold. Moreover a

single truth jet can occasionally be reconstructed as two jets due to fluctuations in
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the calorimeter (Figure 11.2). Lowering the jet pT threshold in the definition of

the fiducial phase space could mitigate these effects, as shown in Figure 11.2. This

however would come at the expense of higher modeling uncertainties, which

arise due to differences of the simulation models in the description of soft jets.

• events with an odd number of b-jets (tt̄bc, tt̄bj): given that the proton has zero

bottomness, processes with an odd number of b-quarks can only arise due to CKM

suppressed transitions, which are negligibly small. Events with an odd number

of b-jets can therefore only arise from processes containing an even number of

b-quarks, with two b-quarks merging into a single jet or one b-jet lying outside

of the fiducial phase-space. At the same time a c or LF jet must be mis-tagged

in order for the event to be reconstructed in the signal region. These events are

denoted by tt̄bc or tt̄bj).

• events that fail the lepton cuts: these are events with exactly four b-jets in the

fiducial volume which fail one of the lepton kinematic cuts.

The common characteristic of these processes is the fact that they are all expected to

arise from processes containing tt̄bb̄ at parton level, therefore their production rate

will be proportional to the tt̄bb̄ cross-section. For this reason, their contribution to the

signal region is scaled with the number of signal events, as indicated by equation (6.5).

Events from the tt̄H and tt̄Z processes that don’t satisfy the fiducial phase space

requirements are also classified according to the above criteria as mis-tagged or non-

fiducial background.

In order to identify the different “mis-tagged” and “non-fiducial” components, the

tt̄+jets background events are split into the following categories

• events that pass all the fiducial cuts except for the requirement Nfiducial
b−jets = 4 and

have

– Nfiducial
b−jets = 3 (Figure 11.3 a)

– Nfiducial
b−jets = 2 (Figure 11.3 b)

– Nfiducial
b−jets < 2 or Nfiducial

b−jets > 4 (Figure 11.3 c)

• events that fail the fiducial cuts and have

– Nfiducial
b−jets 6= 4 (Figure 11.3 d)
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Figure 11.2: Minimum ∆R distance between reconstructed b-jets that don’t match to any truth
jets and the closest truth jet (top left) or the closest reconstructed jet (top right)
for three different truth jet pT thresholds. As the truth jet pT is lowered, the
number of unmatched jets decreases. This suggests that unmatched jets are
mostly due to detector resolution effects. It is also observed that as the truth
jet pT threshold is lowered, unmatched b-jets are only observed in the region
geometrically overlapping (∆R ≤ 0.8) with both the closest reconstructed jet
(top right) and the closest truth jet (top left). In such cases only one of the two
reconstructed jets whose invariant mass is closest to the truth jet’s invariant mass
is considered to be matched. We observe that the sum of the energies of the two
reconstructed jets (the unmatched one and its closest neighbor) peaks around the
energy of the closest truth jet (bottom left), with a spread of around 20%, which is
the typical energy resolution for low pT jets (bottom right). This points to the fact
that the second effect giving rise to unmatched jets is the splitting of a truth jet
into two reconstructed jets in the calorimeter.

– Nfiducial
b−jets = 4 (Figure 11.3 e),

as displayed in Figure 11.3. The composition of the different background contributions

in terms of the underlying partonic process are shown in Table 11.1. Table 11.2 shows

the same contributions, normalized to the the total number of tt̄+jets background

events in the signal region. It is observed that the dominant background contributions

come from non-fiducial events. The dominant contribution from mis-tagged events
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Figure 11.3: Number of mis-tagged c (a) and LF-jets (b) in different background regions. The
plots are normalized to the total fraction of tt̄+ jets background events. The
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corresponds to the tt̄cc̄ process. The predictions vary significantly among the different

models.
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The estimates for the mis-tagged component of tt̄+jets processes and of the signal

fraction fsig defined in equation (6.4), are given in Table 11.3. An illustration of the mis-

Model N
mis−tagged
tt̄+jets fsig

Powheg+Pythia (hdamp = mtop) 2.61± 0.37 0.758± 0.056

Powheg+Pythia (hdamp = ∞) 4.04± 0.25 0.743± 0.026

Powheg+Herwig 3.18± 0.46 0.745± 0.053

MadGraph+Pythia 4.37± 0.84 0.723± 0.080

MadGraph+Pythia (Q2up) 5.06± 1.15 0.779± 0.112

MadGraph+Pythia (Q2down) 3.96± 0.67 0.693± 0.063

Table 11.3: Expected number of mis-tagged tt̄+jets events reconstructed in the signal region,
and fsig, the estimated fraction of tt̄bb̄ events which are in the fiducial region. The
uncertainties are due to the limited MC statistics.

tagged background and of the signal fraction is shown in Figure 11.4 and Figure 11.5

respectively.
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Figure 11.4: Expected number of mis-tagged tt̄+jets events in signal region estimated with
different models. The dashed line indicates the central value for the estimate of
mis-tagged events, which is taken to coïncide with the nominal MC prediction,
and the blue band corresponds to the modeling uncertainty. The prediction from
POWHEG+PYTHIA with hdamp = ∞ is shown for illustrative purposes only and is
not used in the calculation of the modeling uncertainty.
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Figure 11.5: Ratio of signal to signal and non-fiducial events in signal region estimated with
different models. The dashed line indicates the central value for the estimate of
mis-tagged events, which is taken to coïncide with the nominal MC prediction,
and the blue band corresponds to the modeling uncertainty. The prediction from
POWHEG+PYTHIA with hdamp = ∞ is shown for illustrative purposes only and is
not used in the calculation of the modeling uncertainty.

11.1.1 Validation of the background estimate

A method to validate the simulation of the backgrounds taken from Monte Carlo is to

perform the cross-section measurement in regions with larger or smaller background

contributions. This is done by replacing the Nb−jets = 4 requirement by Nb−jets = 3,

using the 80% operating point of the MV1c tagger, and then binning in the MV1c

weight of the fourth jet1. The results are shown in Figure 11.6. The contribution of

the non-tt̄+jets and of the mis-tagged tt̄+jets background varies from less than 1% to

slightly more than 50% of the data. If the cross-section for background processes were

mis-modeled, we would expect a trend to emerge in the measured signal cross-sections,

as the background contributions become more or less significant. Instead, the four

bins show good agreement, and no trend is observed. This gives confidence that the

simulation is correctly modeling the cross-sections for background processes.

1The MV1c efficiency has been calibrated using dilepton tt̄ events, using several bins of b-tagging
efficiency, what is technically referred to as “pseudo-continuous” calibration.
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Figure 11.6: In black, measured fiducial cross-section for tt̄bb̄, binned in different regions of the
fourth-highest MV1c weight. The leftmost bins correspond to a higher b-tagging
efficiency (looser MV1c cuts) and to a higher probability for mis-tagging c/LF jets.
Only statistical errors are shown. In red, the contribution of the fixed background
as a fraction of the data, where fixed background refers to mis-tagged and non-tt̄
events. No trend is observed moving from regions of lower to higher background
contribution.

11.2 Backgrounds from non-tt̄+jets processes

The signal region receives contributions from non-tt̄+jet processes, that are mis-

identified as signal. The backgrounds considered come from single top, Z+jet, and

di-boson processes, as well as from the reducible component of tt̄H(H → bb̄) and

tt̄Z(Z → bb̄). Their relative contribution to the total number of expected events is

estimated from simulation.

For the di-boson and Z+jets processes, no simulated events pass the full event

selection, due to the small statistics of the simulation samples. In order to derive an

estimate for their contribution to the signal region the following method is employed.

First the efficiency of the di-lepton invariant mass cut

ǫMℓℓ
=

Nevents after cut

Nevents before cut
(11.1)

is calculated in the “pre-selection” sample. Then the di-lepton invariant mass cut is

removed, in order to increase the statistics of the di-boson and Z+jets samples in the
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signal region. The final prediction is obtained by scaling the number of di-boson and

Z+jets events that end up in the signal region by ǫMℓℓ
.

Multi-jet and W+jets processes could also contribute to the signal region through

the mis-identification of jets as electrons. These processes would affect mostly the ee

final state, where the probability of having a jet faking an electron is twice as high as

in the eµ final state. The ee final state has the lowest contribution to the total cross-

section (due to the lowest product of branching ratio and reconstruction efficiency

among the di-lepton channels). These backgrounds have been studied and found to be

sub-dominant in the context of the inclusive tt̄ cross-section measurement [169]. The

requirement of a high b-jet multiplicity, is expected to further reduce this background,

therefore we consider it to be negligible.

The predictions for the non-tt̄+jets backgrounds are given in Table 11.4.

Source B/(S + B)

Z+jets 3.3%

Single top 1.7%

tt̄ + W/Z+jets 1.4%

tt̄H 1.0%

Di-boson 0.016%

Table 11.4: Ratio of background contributions to signal+background. The tt̄ + Z/W+jets and
tt̄H contributions correspond to their reducible components.
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Calculation of the fiducial efficiency

Given a set of signal events Nfid that lie in the fiducial volume, only a subset Nreco&fid <

Nfid of those can be reconstructed in the signal region, due to detector inefficiencies in

the reconstruction and identification of the final state objects. The relation between

Nfid and Nreco&fid is illustrated in Figure 6.1. The number of events reconstructed in

the signal region, starting from the set of signal events in the fiducial volume is given

by

Ñreco&fid = ǫfid · Nfid, (12.1)

where ǫfid is the fiducial efficiency and the tilde in Ñreco&fid indicates that when apply-

ing the selection requirements on the reconstructed objects, the events are weighted by

the appropriate data-to-MC scale factors. Solving for ǫfid and taking into account that

Ñreco&fid ⊂ Nfid we obtain

ǫfid =
Ñreco&fid

Nfid , (12.2)

δǫfid =

√
ǫfid(1 − ǫfid)

Nfid . (12.3)
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For the case where more than one process contributes to the signal (e.g. tt̄H(bb̄), tt̄Z(bb̄)),

the above equations become

ǫfid =
∑i

Ñreco&fid
i

N
gen
i

σi

∑i
Nfid

i

N
gen
i

σi

, (12.4)

δǫfid =

√

∑i

(
σi

N
gen
i

)2

ǫfid,i(1 − ǫfid,i)N
gen
i

∑i
Nfid

i

N
gen
i

σi

, (12.5)

where N
gen
i indicates the total number of generated events in sample i.

Predictions of various models for the fiducial efficiency are given inTable 12.1 and

shown in Figure 12.1. The most significant efficiency losses are due to the b-tagging

efficiency (we naïvely expect a 70% efficiency for identifying the two leading b-jets

and around 60% efficiency for identifying the two additional low-pT b-jets), the lepton

identification (around 70% efficiency for identifying two leptons) and due to the jet

reconstruction, which is affected by resolution effects and the JVF cut (around 85%

efficiency for reconstructing at least 4 jets).

Differences of up to 40% are observed between the different models and the nominal

prediction, which can be ascribed to differences in the predicted kinematics of the

final-state objects.

Model ǫfid [%]

Powheg+Pythia (hdamp = mtop) 6.34± 0.39

Powheg+Pythia (hdamp = ∞) 5.98± 0.17

Powheg+Herwig 6.61± 0.53

MadGraph+Pythia 7.05± 0.52

MadGraph+Pythia (Q2up) 8.50± 0.94

MadGraph+Pythia (Q2down) 5.77± 0.44

tt̄H(bb̄) 8.78± 0.24

tt̄Z(bb̄) 9.02± 0.50

Table 12.1: Estimates for the fiducial efficiency. The errors correspond to the uncertainty due
to the limited size of the simulation samples.
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Figure 12.1: Predictions for the fiducial efficiency derived with different models. The blue
band corresponds to the modeling uncertainty.
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Measurement uncertainties

The total uncertainty on the fiducial cross-section is given by

δσfid
tt̄bb̄

=
√

δσ2
stat + δσ2

sys + δσ2
lumi, (13.1)

where the three components refer to the statistical, systematic, and luminosity uncer-

tainties. The statistical uncertainty is taken from Poisson statistics considering only

the size of the data sample. The systematic uncertainties may be classified as com-

ing from detector performance, tt̄+ jets modeling and from the uncertainties on the

cross-sections of the non-tt̄+jets backgrounds. The evaluation of these uncertainties is

described in Sections 13.2, 13.3 and 13.4 respsctively. The uncertainty due to the limited

statistics of the simulated samples is accounted for in the systematic uncertainty. The

uncertainty on the luminosity measurement is considered separately from the other

systematic sources, as described in Section 13.1.

13.1 Uncertainties related to the luminosity

measurement

As can be seen from equation (6.5), the measured cross-section depends on the inte-

grated luminosity L. The integrated luminosity of the sample was measured to be

20.3 fb−1, with an uncertainty of ± 2.8%. The uncertainty is derived, following the

same methodology as that detailed in Ref. [171], from a preliminary calibration of the

luminosity scale derived from beam-separation scans performed in November 2012.
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In equation (6.5), the luminosity appears explicitly in the denominator, but it is also

implicit in N
mis−tagged
tt̄+jets and N

non−tt̄+jets
bg , which are scaled to the luminosity of the data

sample1. e.g.

N
mis−tagged
tt̄+jets → N

mis−tagged
tt̄+jets

L σtt̄

N
gen
tt̄

, (13.2)

where N
gen
tt̄

is the total number of generated events. The luminosity dependence of the

N
mis−tagged
tt̄+jets and N

non−tt̄+jets
bg terms is cancelled by the denominator and the uncertainty

of the cross-section due to the luminosity is given by

δσlumi =
Ndata · fsig

ǫfid ·L
· δL
L . (13.3)

13.2 Uncertainties related to the detector performance

As described in the previous chapter, the measurement is based on reconstructed

objects, specifically leptons and jets. The identification efficiencies, energy scales and

resolutions are derived in simulation and are corrected with scale factors to match the

data. The uncertainties on these corrections have to be propagated to the measurement.

For scale factors on efficiencies for triggering, reconstructing, or identifying physics

objects, the correction is applied by modifying the event weight. For energy scales and

resolutions, the correction is applied by smearing or re-scaling the objects’ energies.

The uncertainties on the data-to-MC correction factors are evaluated by considering

± 1σ variations around their central values. The variations of the different scale factors

are performed independently (one at a time) assuming that they are uncorrelated.

For each variation the cross-section is re-calculated according to equation (6.5).

This accounts for correlations that exist between the number of background events,

fsig and the fiducial efficiency.

The following sources are considered in the calculation of uncertainties:

Lepton-related uncertainties: The uncertainties considered are related to the elec-

1The scaling factor appearing in equation (13.2) is obtained by solving the equation L = CLMC =

C
Ngen
σMC

, where L,LMC are the integrated luminosities of the data and MC samples respectively, Ngen

is the number of generated events and σMC is the cross-section of the MC sample, incorporating any
potential higher-order correction factors and event generation efficiencies.
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tron and muon identification efficiencies, their energy scale as well as the resolution

of the measurement of the electron energy and muon momentum. The electron and

muon trigger efficiencies also form part of the lepton-related uncertainties.

Jet-related uncertainties: The uncertainties considered are related to the jet energy

scale and resolution. The uncertainties related to the JVF cut efficiency and to the

modeling of the pile-up subtraction are also included here.

b-tagging uncertainties: These include the uncertainties from the b-tagging efficiency

as well as the mis-tagging efficiency correction factors.

Table 13.1 contains a list of the uncertainties listed above relative to the tt̄bb̄ cross-

section. The dominant systematic uncertainty is due to the determination of the

b-tagging efficiency (+12.9
−11.9% on σtt̄bb̄). The jet energy scale is the second dominant

systematic but is significantly smaller than the b-tagging one, contributing with an un-

certainty of +5.5
−4.9%. The LF and c-jet mis-tagging uncertainties are significantly smaller

than the b-tagging uncertainties due to the small contribution of tt̄+charm and tt̄+LF

jets in the signal region. A complete breakdown of the systematic uncertainty sources

is given in Appendix B.

Source Uncertainty [% on σtt̄bb̄]

b-tagging +12.9
−11.9

Jet +5.5
−4.9

LF-jet mis-tagging ± 4.3

Electron 2.0

Muon 1.9

c-jet mis-tagging 1.7

Sum +15.0
−14.0

Table 13.1: Relative systematic uncertainties (in %) due to the variation of the data-to-MC
correction factors on the predicted cross-section. The individual uncertainty com-
ponents are given in Appendix B.
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13.3 Modeling uncertainties

Comparisons between simulation samples can probe different aspects of the event

modeling and can thus be used to assess the modeling uncertainties associated with

the measurement. Pairwise comparisons between the nominal model and alternative

models are designed to target one modeling component at a time, so as to minimize

correlations among the different modeling variations.

The following components are considered in the derivation of the modeling uncer-

tainty:

• Generator uncertainty: covers differences in the computation of the hard/non-

collinear part of the scattering process. It is estimated by comparing the MAD-

GRAPH samples which provide LO matrix elements for tt̄+ ≤ 3 jets to the

POWHEG+PYTHIA 6 sample with hdamp = ∞ which provides NLO matrix ele-

ments for inclusive tt̄ production, both of which being interfaced to the same

parton shower. The two samples differ by the perturbative accuracy at which the

matrix elements are computed and by the way the matrix elements are matched

to the parton shower. More specifically in the POWHEG case, the matching is done

with the Powheg method [67, 68], while in the MADGRAPH case the matching is

done with the MLM matching [152].

• Parton shower/hadronization uncertainty: covers the differences in the simu-

lation of the soft part of the scattering process, including soft/collinear gluon

emissions and g → qq̄ splittings that are generated by the showering genera-

tors, the difference in the description of multi-parton interactions and also the

difference in the modeling of the non-perturbative hadronization transition. It is

estimated by comparing the POWHEG inclusive tt̄ sample interfaced to PYTHIA 6

and to HERWIG. The two showers differ most notably by the choice of the shower

evolution variable (transverse momentum of the splitting for PYTHIA 6, splitting

angle for HERWIG), the handling of the low pT behavior of the 2→ 2 scatter-

ing for multi-parton interactions and by the description of hadronization. The

POWHEG+HERWIG sample is only available with the parameter hdamp set to infin-

ity. In order to isolate the effect of the parton shower, the uncertainty is derived

by comparing to the POWHEG+PYTHIA 6 sample with the same setting.

• Scale/ISR/FSR uncertainties: are expected to estimate the uncertainty due to

missing higher order terms in the perturbative expansion. They are estimated
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from the MADGRAPH+PYTHIA 6 sample by varying the renormalization and

factorization scales (equation (7.7)) by a factor of two. Since the underlying event

tune is consistently varied with the choice of scale (i.e. a tune with a higher

(lower) αs value is chosen for the lower (higher) scale choice), this uncertainty

also covers the uncertainty related to the production of QCD radiation in the

initial and final state.

• PDF uncertainty : covers the theoretical and experimental uncertainties related

to the PDF used in the matrix element calculation. It is estimated using the

MC@NLO inclusive tt̄ sample interfaced to HERWIG. The PDF uncertainty

is estimated using the cross-sections obtained with the CT10, MSTW2008NLO

and NNPDF error PDF sets. The CTEQ and MSTW collaborations use the Hes-

sian method for estimating the PDF uncertainties, whereby the Hessian matrix2

parametrizes the form of the goodness-of-fit quantity χ2
global around its global

minimum. The uncertainty on the cross-section for the MSTW2008NLO case is

given by

δσPDF =
1
2

√√√√
20

∑
i=1

[
σfid

tt̄bb̄
(PDF+

i )− σfid
tt̄bb̄

(PDF−
i )
]2

, (13.4)

while for CT10 an asymmetric error is used:

δσPDF =

√√√√
26

∑
i=1

{
max

[
σfid

tt̄bb̄
(PDF+

i )− σfid
tt̄bb̄

(PDF0), σfid
tt̄bb̄

(PDF−
i )− σfid

tt̄bb̄
(PDF0), 0

]}2

(13.5)

δσPDF =

√√√√
26

∑
i=1

{
max

[
σfid

tt̄bb̄
(PDF0)− σfid

tt̄bb̄
(PDF+

i ), σfid
tt̄bb̄

(PDF0)− σfid
tt̄bb̄

(PDF−
i ), 0

]}2
.

(13.6)

The CT10 uncertainties are reduced by a factor of 1.645 in order to convert the

90% CL uncertainties into 68% CL uncertainties. For NNPDF, the uncertainty is

2The Hessian matrix is defined by: Hij =
1
2

∂χ2
global

∂ai∂aj

∣∣∣∣
min

.
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taken as

δσPDF =

√√√√100

∑
i=1

σfid
tt̄bb̄

(PDFi)2

100
−
[

100

∑
i=1

σfid
tt̄bb̄

(PDFi)

100

]2

. (13.7)

The envelope of the resulting error bands gives the total PDF uncertainty, as seen

in Figure 13.1.

PDF Variation
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Figure 13.1: Cross-section obtained using different PDF sets with the MC@NLO inclusive
sample. The numbers have been scaled to match the nominal measurement. The
error bands are calculated as described in the text. The total uncertainty is taken
as half the distance from the top of the highest error band to the bottom of the
lowest.

The individual variations with respect to the nominal cross-section, with the ex-

ception of the scale uncertainty, are added in quadrature to obtain the total modeling

uncertainty

δσ
fid,modeling
tt̄bb̄

=

√

∑
var

∣∣∣σfid
tt̄bb̄,nominal

− σfid
tt̄bb̄,var

∣∣∣
2
. (13.8)
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For the scale uncertainty,

δσscale =
σfid

tt̄bb̄
(MG Q2down)− σfid

tt̄bb̄
(MG Q2up)

σfid
tt̄bb̄

(MG central)
(13.9)

is used and added in quadrature to the other modeling uncertainties. The result is

displayed graphically in Figure 13.2. Table 13.3 summarizes the effect of the modeling

uncertainties on the cross-section together with the rest of the uncertainty sources.

Powheg+Pythia - nominal
∞=damp

Powheg+Pythia h

Powheg+Herwig 

MadGraph+Pythia 

MadGraph+Pythia (Q2 up)

MadGraph+Pythia (Q2 down)

 [
fb

]
fi
d

b
btt

σ

10

15

20

25

30

Figure 13.2: Cross-sections obtained with different modeling assumptions as explained in
the text. The error bars correspond to the total uncertainty, consisting of the
statistical, systematic and luminosity uncertainty, which is derived separately for
each prediction. The blue band corresponds to the total modeling uncertainty,
obtained by adding in quadrature the variations of the individual modeling
components. The prediction from POWHEG+PYTHIA with hdamp = ∞ is shown
for illustrative purposes only and is not used in the calculation of the modeling
uncertainty.

We note that in equation (13.8), σfid
tt̄bb̄,var is calculated from equation (6.5) where

both the signal and background components are varied simultaneously according to

the modeling variation that is considered. In other words, the effect of the modeling

variations is considered to affect the signal and background in a correlated way. A

cross-check has been performed, where the effect of each modeling variation was

considered to affect the signal and background in an uncorrelated way. Assuming that
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the signal and background uncertainties are uncorrelated leads to a total modeling

uncertainty of 20.3% on σtt̄bb̄, to be compared with 23.8% obtained with the correlated

treatment. The reduction of the uncertainty is due to the fact that the modeling

variations tend to move the cross-section in the same direction and therefore adding

the uncertainties in quadrature (uncorrelated case) leads to a smaller total uncertainty

than adding them linearly (correlated case).

13.4 Uncertainties related to the cross-sections of the

simulated event samples

The uncertainties on the cross-section for simulated samples other than tt̄+ jets have

been taken from the latest available theoretical calculations, as indicated in Table 13.2.

The number for tt̄H includes the uncertainty on the branching ratio of H → bb̄.

For single top, the uncertainty is obtained by adding in quadrature the theoretical

uncertainty on the cross-section of the nominal sample, the difference between the

MC@NLO and Powheg samples obtained using the diagram removal scheme and

the difference between the Powheg samples obtained with the diagram subtraction

and diagram removal schemes. The latter gives the dominant contribution to the

uncertainty. Additionally, an uncertainty of 50% is assumed on the cross-section for

the tt̄cc̄ and tt̄cj processes. These are considered to be uncorrelated with the rest of the

modeling uncertainties.

For the signal processes tt̄H and tt̄Z, the cross-section uncertainties affect the

relative weight of these samples compared to the tt̄ sample (see equation (12.4)) in the

calculation of the fiducial efficiency and signal fraction fsig.
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Process Uncertainty [%] Uncertainty taken from

Single top 86 -

Di-boson 34 [66]

Z+jets 48 [66]

tt̄ + W/Z+jets 14 [166]

tt̄H +10
−13 [145]

tt̄cc̄ 50 -

tt̄cj 50 -

Table 13.2: Relative systematic uncertainties on the cross-section of the background samples.

Source Uncertainty [%]

Modeling uncertainty 23.8

Generator 16.9

Scale/ISR/FSR 14.2

Showering/hadronization 8.2

PDF 3.3

Data-to-MC correction factors +15.0
−14.0

tt̄cc̄, tt̄cj 1.9

Other cross-sections 1.6

MC statistics 9.6

Total systematic uncertainty +29.8
−29.3

Statistical uncertainty 18.4

Luminosity uncertainty 3.2

Total uncertainty +35.2
−34.7

Table 13.3: Relative uncertainties (in %) on the measured cross-section.
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Results

This chapter presents the calculation of the tt̄bb̄ production cross-section in data and

the comparison with different theoretical predictions.

14.1 The measured cross-section

The number of events in the signal region is given in Table 14.1. As was already

observed in Section 10.3, the nominal simulation sample underestimates the rate

of signal events. Table 14.2 contains the values of the parameters entering into the

cross-section calculation (equation (6.5)). The result for the measured cross-section is

σfid
tt̄bb̄

= 18.9± 3.5 (stat)+5.6
−5.5 (sys)± 0.6 (Lumi) fb. (14.1)

In order to facilitate comparisons with theoretical calculations, which usually only

contain the pure QCD production terms for tt̄bb̄, an alternative calculation was also

performed wherein the tt̄H(bb̄) and tt̄Z(bb̄) (both the reducible and irreducible final

states) were subtracted from the signal, based on predictions obtained from simulation.

In this case, the result is

σfid, QCD
tt̄bb̄

= 17.8± 3.5 (stat)+5.9
−5.7 (sys)± 0.6 (Lumi) fb. (14.2)
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Data 37

MC Expectation (S+B) 25.0 +7.1
−4.8

Total signal (MC) 16.0 +4.2
−2.9

tt̄bb̄ QCD signal 14.0 +4.0
−2.6

tt̄Z signal 0.56 +0.13
−0.13

tt̄H signal 1.47 +0.27
−0.29

Total Background (MC) 9.0 +3.6
−2.9

Non-fiducial (MC) 5.1 +3.3
−2.9

Mis-tagged (MC) 2.61 +1.49
−1.61

tt̄cc̄ QCD 1.44 +0.82
−0.65

tt̄cj QCD 0.67 +0.61
−0.67

tt̄jj QCD 0.30 +0.32
−0.30

tt̄ + W/Z 0.15 +0.14
−0.14

tt̄H 0.02 +0.03
−0.02

≥ 3 mis-tagged jets 0.04 +0.03
−0.03

Non tt̄+jets (MC) 1.25 +1.06
−0.94

Single top 0.42 +0.46
−0.42

Di-boson 0.004 +0.003
−0.003

Z+jets 0.82 +0.96
−0.82

Table 14.1: Measured number of events with exactly 4 reconstructed b-jets and estimates for
the signal and background events. The MC predictions for signal and non-fiducial
background are not used in the measurement but are shown for comparison.
Uncertainties on the MC predictions include all systematic and statistical sources.



Results 155

Ndata
4b 37

L 20.3± 0.6 fb−1

N
mis−tagged
tt̄+jets 2.6± 0.4 (stat) +1.4

−1.6 (sys)

N
non−tt̄+jets
bg 1.2± 0.9 (stat) +0.6

−0.6 (sys)

fsig 0.76± 0.06 (stat) +0.06
−0.06 (sys)

ǫfid(%) 6.6± 0.4 (stat) +1.6
−0.9 (sys)

Table 14.2: Values for each parameter entering into the cross-section calculation. Uncertainties
are separated into statistical and systematic effects.

14.2 Comparison with theory

The cross-section for the pure QCD production of tt̄bb̄ was compared to a series of

theoretical predictions.

The most precise theoretical predictions available to date consist of NLO calcu-

lations for pp → tt̄bb̄ interfaced to parton showers. These calculations are available

both through the MADGRAPH5_AMC@NLO [88] and the POWHEL framework [94].

Both calculations contain only the pure QCD terms
(
O(α5

s )
)
, neglecting the mixed

QCD-EW and the pure EW ones as well as their interference.

For the MADGRAPH5_AMC@NLO sample two different functional forms for the

renormalization and factorization scale were chosen, in order to probe the sensitivity

of the process to the choice of scale. The scales were defined by

µ2
BDDP = mtop

√
pT(b)pT(b̄) (14.3)

µHT/4 =
∑i∈ final state

√
m2

i + p2
T,i

4
. (14.4)

where µ2
BDDP was first proposed in [93]. A sample of 10 million inclusive tt̄bb̄ events

was generated using the CT10 4f PDF set and the Monash tune [172]. The parton level

sample was interfaced to PYTHIA 8.205 [102], which was used for handling the top

decays (retaining only the decays to final states with two leptons1), showering and

hadronization2. The sample was generated with very loose generation cuts on jets,

1The decays to all lepton flavors (e, µ, τ) were simulated.
2In the matching of AMC@NLO to PYTHIA 8 the counter-terms that correct for the double-

counting of the NLO emissions in the shower have been calculated assuming massless split-
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i.e. pT > 5 GeV and |η| < 4, where jets were defined by clustering partons with the

anti-kT algorithm with a radius parameter of R = 0.4.

For the POWHEL sample the renormalization and factorization scales were set to

µHT/4 =
∑i∈ underlying Born

√
m2

i + p2
T,i

4
, (14.5)

where in contrast to equation (14.4), the scale is evaluated using the underlying Born

configuration. The sample was generated3 with massless b-quarks and therefore

cuts on pT(b) > 2 GeV and mbb̄ > 2 GeV had to be applied in order to avoid the

divergences associated with gluon splittings into massless quarks.

The MADGRAPH5_AMC@NLO and POWHEL samples are thus expected to differ

with respect to the matrix element to parton shower matching scheme (MC@NLO

vs Powheg matching) and the choice of the active number of flavors in the calcu-

lation (4FS vs 5FS). Small differences are also expected to arise due to the slightly

different definition of the scales (using the underlying Born or the real kinematics)

and the value of the top quark mass (173.2 GeV in POWHEL vs 172.5 GeV in MAD-

GRAPH5_AMC@NLO). However these are expected to be smaller than the differences

from the matching scheme and the flavor number scheme.

The uncertainties associated to the aforementioned predictions are obtained by

simultaneously varying the renormalization and factorization scales by a factor of two,

using the re-weighting procedure4 described in [174].

A merged LO+PS prediction was obtained with the MADGRAPH+PYTHIA 6 sample,

described in Section 7.2, which was normalized to the NNLO+NNLL inclusive tt̄ cross-

section [149].

Finally, in order to better gauge how the different descriptions of the g → bb̄

splitting in the parton shower affect the tt̄bb̄ cross-section, a LO pp → tt̄ sample

was generated with PYTHIA 8.205, normalizing the inclusive cross-section to the

NNLO+NNLL result. The effect of the different modeling of g → bb̄ was assessed by

varying the wgtq and sgtq parameters, as explained in Section 2.3.

ting kernels for g → bb̄. Therefore in order to ensure that the ME/PS matching is valid, the
TimeShower:weightGluonToQuark parameter (wgtq) in PYTHIA 8 had to be set to 1, for the MAD-
GRAPH5_AMC@NLO samples. We also chose to set wgtq to 1 for the POWHEL sample, in order to
be able to compare the two calculations on a more equal footing.

3The parton-level sample was provided by the POWHEL collaboration.
4This procedure exploits the new LHEF v3.0 standard adopted in [173].
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The fiducial cross-section was estimated using RIVET 2.2.1 [175] and is shown in

Table 14.3 for each of the aforementioned models.

Several observations can be made by comparing the predicted cross-sections to the

measured one:

1. by comparing the results obtained with the BDDP and HT/4 scales, or equiva-

lently by comparing the upper and lower limits of each prediction, it is evident

that the data favor the predictions obtained with soft renormalization/factorization

scales,

2. comparing the 4FS (AMC@NLO) with 5FS (POWHEL) predictions, at equivalent

values of the renormalization/factorization scales5, we observe that the 5FS

calculation gives a higher cross-section than the 4FS one. We note that the 5FS

resums logarithms of the kind ln Q2

m2
b

arising from g → bb̄ splitting and is thus

expected to give a higher cross-section than the 4FS one. If large logarithms of

this kind affect the 4FS calculation, choosing soft renormalization/factorization

scales in the calculation would have an equivalent effect on the cross-section as

a resummation of these terms, as has been discussed in Section 2.2 and [5]. The

difference of the cross-sections between the two flavor schemes is nonetheless

significantly smaller than their respective scale uncertainties,

3. concerning the different models for the g → bb̄ splitting, the two extremal pre-

dictions, corresponding to the wgtq3 and wgtq5, sgtq=1 models are shown in

Table 14.3. The wgtq3 model overestimates the tt̄bb̄ cross-section by more than

1σ6, indicating that this model predicts too high a g → bb̄ rate. This observation is

also confirmed by comparisons to the g → bb̄ measurements at LEP and SLC [177].

The variations between the remaining models are significantly smaller than the

factor of 2 difference between the extremal ones and are in agreement with the

measurement within the uncertainties. The spread between the remaining models

could be further constrained by more precise measurements of σtt̄bb̄ in the future,

4. the sgtq parameter available in some of the PYTHIA 8 models provides an ad-

ditional degree of freedom that could be used to tune the g → bb̄ rate to the

5Due to the difference in the nominal choice of scales, one has to compare the central value (lower
limit) of the AMC@NLO+PYTHIA 8 prediction with µ = HT/4 with the upper limit (central value)
of the POWHEL prediction.

6An even higher (more than 2σ) discrepancy was observed in the analyses with three resolved b-
jets [176].
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available measurements. The combination of the wgtq6 model with sgtq=0.25

was found to agree best with the measurement reported here.

A graphical representation of the different predictions and the measured cross-

section is shown in Figure 14.1.

Generator Scale mtop [GeV] mb [GeV] σfid, QCD
tt̄bb̄

[fb]

AMC@NLO+PYTHIA 8 BDDP 172.5 4.8 17.5+6.6
−5.4

AMC@NLO+PYTHIA 8 HT/4 172.5 4.8 11.7+4.3
−3.5

POWHEL+PYTHIA 8 HT/2 173.2 0 8.9+4.3
−1.8

MADGRAPH+PYTHIA 6 equation (7.7) 172.5 4.8 12.8+3.9
−2.7

PYTHIA 8 (wgtq3)
√

mT(t)mT(t̄) 172.5 4.8 29.0

PYTHIA 8 (wgtq5, sgtq=1)
√

mT(t)mT(t̄) 172.5 4.8 12.6

PYTHIA 8 (wgtq6, sgtq=0.25)
√

mT(t)mT(t̄) 172.5 4.8 15.7

POWHEG+PYTHIA 6
√

p2
T(t) + m2(t) 172.5 0 10.9

Measurement 17.8+6.9
−6.7 fb

Table 14.3: Comparison of the predictions for σfid, QCD
tt̄bb̄

obtained with a series of different
models with the measured cross-section.

We note that processes beyond the Standard Model (BSM) which lead to the pro-

duction of a tt̄bb̄ final state could affect the measurement. A characteristic example is

the production of a charged Higgs (H ± ) in association with a top quark, which occurs

in models with an extended Higgs sector, such as the 2 Higgs Doublet Models [178] or

the Minimal Supersymmetric Standard Model [179]. An inspection of the Feynman

diagrams for the process pp → t̄bH+ (Figure 14.2) reveals that such processes are

indistinguishable from the QCD production of tt̄bb̄ and could thus contribute to the

signal region. The distinctive characteristic of such processes is the resonant shape in

the invariant mass spectrum of the 4 b-jets in the final state, which is absent in the case

of the QCD production of tt̄bb̄. In inclusive measurements, like the one reported here,

it is impossible to differentiate between the two processes and therefore the existence

of such BSM processes would be manifested as an excess of the observed cross-section

compared to the SM expectation. More differential measurements exploiting variables

that can discriminate between the SM and BSM production of tt̄bb̄ are therefore nec-

essary and dedicated searches are under way in both ATLAS [180] and CMS [181]

collaborations.
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Figure 14.1: Comparison of the fiducial tt̄bb̄ cross-section, with theoretical predictions obtained
with the most accurate tt̄bb̄ theory predictions available to date. The colored bands
indicate the statistical and total uncertainties of the measurement, as described
in the legend. The data prefer a softer scale choice (BDDP instead of HT/4). The
difference between the 4FS (AMC@NLO) and 5FS (POWHEL) predictions seems
to be significantly smaller than the associated scale uncertainties. In the PYTHIA 8
predictions where the additional b-jets come only from the parton shower, the
different models for the description of g → bb̄ splitting have a significant impact
on the tt̄bb̄ cross-section, with the extremal predictions differing by more than a
factor of 2. The wgtq3 model seems to overestimate the g → bb̄ rate.
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Figure 14.2: The production of a charged Higgs H+ in association with a top quark (left)
leads to a final state with a tt̄ and a bb̄ pair, which is indistinguishable from the
QCD production of tt̄bb̄ (right). In contrast to the QCD production of tt̄bb̄, the
process with the charged Higgs would produce a distinctive resonant shape in the
invariant mass of the 4 b-jets in the final state. In an inclusive measurement, such
as the one reported here, the existence of such BSM processes would be manifested
as an enhancement of the tt̄bb̄ cross-section compared to the SM expectation.



Chapter 15

Conclusions and outlook

This thesis presented the measurement of the tt̄bb̄ production cross-section. The fidu-

cial cross-section for the production of a tt̄bb̄ final state irrespective of the production

mechanism has been found to be

σfid
tt̄bb̄

= 18.9± 3.5 (stat)+5.6
−5.5 (sys)± 0.6 (Lumi) fb. (15.1)

Subtracting the contributions of the tt̄H(bb̄) and tt̄Z(bb̄) final states, based on the

respective theory estimates, we obtain

σfid,QCD
tt̄bb̄

= 17.8± 3.5 (stat)+5.9
−5.7 (sys)± 0.6 (Lumi) fb. (15.2)

The measured cross-section has been compared with a series of theoretical predic-

tions utilizing the latest developments in NLO+PS matching techniques as well as

with models that offer different descriptions of the g → bb̄ splitting kernels. The most

extreme PYTHIA 8 model is shown to be in tension with the measurement, overestimat-

ing the tt̄bb̄ cross-section by more than 1σ. While the accuracy of the measurement is

not as high as to exclude any of the remaining models, it does reveal certain systematic

trends among the theoretical predictions. Most notably, the data is shown to favor the

calculations performed with renormalization and factorization scales which are softer

than the typical scales used in similar calculations involving multi-particle final states.

The spread between the theoretical predictions indicates that future, more precise

measurements could differentiate between those models. A measurement of the tt̄bb̄

production could therefore provide supplementary constrains for the modeling of

g → bb̄ in the parton shower generators.
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The dominant uncertainties affecting the measurement come from the modeling

of the tt̄bb̄ final state, statistics and b-tagging. The upcoming Run 2 of the LHC

with an increased center-of-mass energy will provide the opportunity to collect more

data, thereby helping to reduce the statistical uncertainty of the measurement. For√
s = 13 TeV, the tt̄bb̄ cross-section is expected to increase by a factor of 5 compared

to
√

s = 8 TeV [89] and with an integrated luminosity of 100 fb−1 expected to be

collected during Run 2, the statistical uncertainty of the measurement would decrease

by a factor of 5. The statistics could also be increased by lowering the pT threshold

of the leptons. Preliminary studies indicated a gain of more than 25% in statistics

when the sub-leading lepton pT threshold was lowered from 25 to 15 GeV. Extending

the phase space towards the softer region comes at the expense of higher systematic

uncertainties, therefore detailed studies would be needed to verify whether lowering

the pT thresholds would reduce the total uncertainty of the measurement.

A possible way to reduce the systematic uncertainties, once a tt̄bb̄ sample with

large statistics is available, would be to increase the jet pT threshold. This is expected

to reduce both the detector related systematic uncertainties (e.g. jet energy scale) as

well as the modeling ones, since the modeling of hard jets is better controlled than the

modeling of soft jets, which involves substantially different phenomenological models

of soft QCD. This avenue was already exploited by the CMS collaboration in [182].

Including more measurement regions, enriched in c and LF jets, is substantial

in order to constrain the background contributions from the tt̄+charm and tt̄+LF

processes, which are not well known theoretically and could also help in reducing

the total uncertainty by constraining some of the systematic uncertainties from in-

situ measurements. This has been exploited by the ATLAS collaboration in [176]. A

more sophisticated measurement method, e.g. based on multivariate discriminants,

could also help to enhance the signal-to-background ratio thereby also reducing the

total uncertainty of the measurement. Such techniques have been used by the CMS

collaboration in [182, 183]. Employing the latest available theoretical predictions

for tt̄bb̄, based on NLO calculations could potentially help to reduce the modeling

uncertainties.

Measurements performed in different phase space regions have also been per-

formed, both in the ATLAS as well as the CMS collaborations [176, 182, 183]. Results

have been obtained both in the lepton plus jets channel, as well as the di-lepton one

with either 3 or 4 resolved b-jets in the final state, as well as for the cross-section

ratio σtt̄bb̄/σtt̄jj. While the lepton plus jets channel offers higher statistics, due to the
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increased branching ratio, it suffers from larger backgrounds, particularly from events

where one of the W bosons decays into a c-quark. While measuring the phase space

region with 4 resolved b-jets is closer to the region that is probed by the tt̄H measure-

ments, the region with 3 resolved b-jets provides complementary information on the

rate of collinear g → bb̄ splittings, which result in b-jets with 2 clustered b-hadrons and

on the soft end of the spectrum. This information is important not only for constraining

the total tt̄bb̄ rate for the tt̄H measurements but also for testing the QCD calculations

at high energy scales and putting constraints on Monte-Carlo generators.

Finally, it has to be emphasized that inclusive measurements of the tt̄bb̄ production

only offer a limited amount of information (a single number) with which one can

interpret the agreement between data and theory and identify the sources of any

potential discrepancies. Differential measurements of the tt̄bb̄ production (e.g. as a

function of the jet multiplicity or as a function of the b-jet pT), which will become

possible only with higher statistics, are thus of prime importance for a conclusive

interpretation of the results.





Appendix A

Pile-up jet identification and

suppression

One of the main challenges for the
√

s = 8 TeV analyses was the large number of in-

elastic pp collisions in each bunch crossing. The mean number of inelastic interactions

〈µ〉 is defined as follows

〈µ〉 = L σinel

Nbunch fLHC
, (A.1)

where L is the instantaneous luminosity, σinel is the inelastic pp cross-section, Nbunch is

the number of proton bunches and fLHC is the bunch revolution frequency. During

the
√

s = 8 TeV run, events with a maximum of approximately 40 interactions were

recorded, with an average of 〈µ〉 ≈ 21, as shown in Figure A.1.

The presence of additional interactions in the same bunch crossing, referred to as in-

time pile-up, produces additional signal in the ATLAS sub-detectors. In sub-detectors

whose read-out time is longer than the bunch spacing (such as the LAr calorimeter),

signal modulation can also occur from signals in surrounding bunch crossings, an

effect known as out-of-time pile-up. Pile-up interactions have a detrimental effect

on the reconstruction of physics objects, particularly jets, leading to a net increase of

particle and jet multiplicities, the modification of the jet structure and jet kinematics

an overall resolution degradation.

Different techniques exist to mitigate the effect of pile-up on the jet kinematics

and suppress pile-up jets, as described in Section 5.2. While these techniques have

been demonstrated to perform well for the 2012 pile-up conditions, the increase of the

instantaneous luminosity in the upcoming LHC runs calls for a deeper understanding
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Figure A.1: Mean number of inelastic pp interactions in the 2011 and 2012 datasets.

of the characteristics of pile-up jets. Moreover, the pile-up suppression techniques

developed so far rely on tracking information, which is not available for |η| > 2.5.

In this appendix we examine how pile-up jets could be defined in Monte-Carlo,

investigate their characteristic properties and propose a novel way to suppress pile-up

jets using only calorimeter information.

A.1 Classification schemes

As shown in Figure A.2, jets reconstructed in events with pile-up (PU) interactions

will typically contain particles from both the hard-scattering (HS) interaction as well

as from PU interactions. The HS interaction is defined as the interaction which leads

to the primary vertex with the highest ∑track p2
T,track. In order to separate PU from HS

jets, a well defined classification scheme is needed. The main characteristics that such

a scheme must possess are

• independence of pile-up, i.e. the scheme must return the same number of HS jets

independently of the amount of PU interactions in the event

• a high efficiency in finding the HS jets in an event.
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Figure A.2: A cartoon depicting two interactions, a hard-scattering interaction (blue) and a
pile-up interaction (red). The outgoing particles from the different interactions are
clustered into jets (grey blobs), which may contain particles from both the HS as
well as from PU interactions.

Several classification schemes can be developed using the following starting point

∑
HS ∈ jet

OHS > ∑
PU ∈ jet

OPU ⇒ jet is HS

∑
HS ∈ jet

OHS < ∑
PU ∈ jet

OPU ⇒ jet is PU, (A.2)

where the sums run over the HS and PU particles that are clustered in a given jet

and OHS(PU) refers to a characteristic observable built from those particles, such as

the particle multiplicity N, energy E, transverse momentum pT etc. The classification

schemes obtained are respectively called N-scheme, E-scheme, pT-scheme and so on.

The main criterion for assessing the performance of the aforementioned classi-

fication schemes is their stability under different amounts of pile-up. This can be

quantified by comparing the number of HS jets predicted by each scheme for different

pile-up conditions.

This was accomplished by generating1 semi-leptonic tt̄ events using the MC@NLO

generator interfaced to HERWIG and JIMMY using the CT10 PDF set. The effect of

in and out-of-time pile-up was modeled by overlaying GEANT4 digitized hits from

events with exactly one tt̄ event with hits from minimum-bias events generated with

PYTHIA 8.160 using the A2M tune and the MSTW2008LO PDF. The number of overlaid

minimum-bias events was sampled from a Poisson distribution with mean values of

1Monte-Carlo samples were kindly provided by Gabriel Facini.
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〈µ〉 = 20 and 〈µ〉 = 40. The jets were reconstructed from stable particles excluding

muons and neutrinos and were required to have pT > 15 GeV and |η| < 2.5.

In semi-leptonic tt̄ events with no pile-up interactions, two LF jets are expected

from the hadronically decaying top. Additional radiation in the initial and final states

can increase this number, with the acceptance cuts in pT and η smearing the truth jet

multiplicity spectrum. These effects result in a distribution peaked at N = 3, as shown

in Figure A.3.

The multiplicity distributions of truth HS LF jets obtained in the N and E-schemes

are shown in Figure A.3. In the N-scheme, the HS jets have an abundance of HS

particles, while PU jets have an abundance of PU particles. As expected, when the

amount of pile-up increases, more PU particles get clustered in the jets and the amount

of HS jets decreases. For high pile-up almost no HS jets are found, which indicates

that the N-scheme behaves poorly. In the E-scheme on the other hand, HS jets are

defined as the jets in which most of the energy is carried by HS particles. The predicted

HS jet multiplicity in this scheme is stable up to 〈µ〉 = 20 but becomes sensitive to

pile-up for higher values of 〈µ〉. This scheme would thus be suitable for the 7 and 8

TeV runs but not for the upcoming 13 TeV one. Other schemes based on pT, p2
T etc

have a comparable performance to the E-scheme.
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Figure A.3: Truth jet multiplicity for HS LF jets in tt̄ events obtained with the N-scheme (left)
and the E-scheme (right) for three different pile-up scenarios. We observe that the
N-scheme is very sensitive to the amount of pile-up and therefore not a suitable
classification scheme. The E-scheme is able to reproduce the correct jet multiplicity
for medium amounts of pile-up (〈µ〉=20), but its performance deteriorates in high
pile-up environments (〈µ〉=40).

The classification scheme with the highest stability against pile-up is the so-called

CRSS scheme, introduced in [184]. The CRSS scheme is based on two independent jet

clusterings. In the first clustering only HS particles are used to build “hard jets”. In
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the second clustering all particles in the event (HS and PU) are clustered building “full

jets”. The common constituents between hard and full jets are identified and the ratio

CpT
≡ pcommon

T

p
hard jet
T

=

√
∑common(p2

x,common + p2
y,common)

p
hard jet
T

(A.3)

is calculated for each pair of hard and full jets. If CpT
> 0.5 then the full jet is considered

to be a HS jet. It is evident that in this way only one full jet can be matched to a given

hard jet and this scheme provides an unambiguous classification even in very dense

environments with overlapping jets. Since the identification of HS jets is based only in

the HS constituents, the CRSS scheme is very robust against pile-up and has a very

high HS jet identification efficiency, as shown in Figure A.4.
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Figure A.4: Truth jet multiplicity for HS LF jets in tt̄ events obtained (left) and efficiency for
finding a given HS jet (right) in the CRSS scheme. We observe that the CRSS
scheme has a very high efficiency for identifying the HS jets and it is very robust
against pile-up.

The investigation of the above jet classification schemes, has revealed the fact that

the 2012 pile-up conditions were at the border were different classification schemes

could be used based on discriminants built from simple kinematic variables, as in

equation (A.2). For the upcoming 13 TeV run, with a projected pile-up of 〈µ〉 ≈ 40,

the CRSS scheme seems to be the only viable option for correctly classifying HS and

pile-up jets in Monte-Carlo.
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A.2 Properties of pile-up jets

With the help of the CRSS scheme, we can now unambiguously distinguish HS jets

from PU jets in Monte-Carlo. The next question that we want to address is if we can use

this information in order to identify and suppress pile-up jets in data. Since the CRSS

scheme is based on the use of Monte-Carlo information, it is not directly applicable in

data. Nevertheless one can make use of this scheme in order to distinguish HS jets

from PU jets in Monte-Carlo and identify systematic differences in their properties,

which would in turn be directly observable in data.

The first discriminating characteristic that we found is the transverse momentum

of the HS and PU constituents, shown in Figure A.5. We observe that HS jets tend

to contain hard particles from the HS interaction and soft particles from the PU

interaction with a significant pT spread between the two. On the other hand PU jets

contain soft HS and PU particles of roughly the same pT. This has a profound impact

on the substructure of the jets. As shown in Figure A.6, the HS jets have a discernible

high-density core consisting of hard particles from the HS interaction, while PU jets

have a uniform surface density of particles, with no distinguishable substructure.
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Figure A.5: Transverse momentum of HS particles (blue) and PU particles (red) clustered in
HS jets (left) and PU jets (right). It is evident that HS jets contain two distinct
collections of particles; hard particles from the HS interaction and soft particles
from the PU interaction. On the other hand, PU jets contain soft HS and PU
particles with a small pT spread between the two. The plots are normalized to the
total number of jet constituents.

This characteristic structure of PU jets may strike as being in contradiction with

what one expects from the development of a QCD parton cascade. More precisely,

color coherence forces successive parton branchings to self-collimate [49], thereby

leading to jets with a higher particle density in the core. We have found that if one
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Figure A.6: Surface density of HS particles (blue) and PU particles (red) clustered in HS jets
(left) and PU jets (right). The total surface density of clustered particles is shown
in magenta. We observe that HS jets have a clear high-density core, while PU jets
appear more like a uniform collection of particles with no distinguishable core.

considers a single PU interaction removing the HS interaction, the resulting jets display

the characteristic high-density core expected from the coherent parton branching

formalism. However in a high pile-up environment, the PU jets are comprised of a

collection of particles of approximately equal momenta (Figure A.5). The resulting jet’s

momentum, which is given by the sum of the constituents’ momenta, will therefore be

roughly equidistant from the constituents’ momenta giving rise to a jet with a uniform

surface density.

A.3 Suppression of pile-up jets using only calorimeter

information

Having established that significant differences exist between HS and PU jets the

salient question becomes whether these differences can be exploited to construct

discriminants that can be used for PU jet suppression. The simplest discriminant that

can be constructed is the fraction of energy deposited in a cone of certain radius R

around the jet axis, e.g. for R = 0.15 one defines

Econe15 ≡


 ∑

i∈ jet
∆R(i,jet)<0.15

Ei


 · E−1

jet . (A.4)



172 Pile-up jet identification and suppression

As shown in Figure A.7, for HS jets most of the jet’s energy is deposited within a cone

of R = 0.15 around the jet axis, while for PU jets this fraction is almost always less

than 40%. Placing a cut at Econe15 = 0.4 we obtain a rejection of 95% for PU jets with

an efficiency of 82% for selecting HS jets. Other discriminants can be constructed by

exploiting the fact that high-energy particles in HS jets are clustered near the jet axis,

therefore one can introduce a weighted sum in equation (A.4), using functions of the

particles’ distance from the jet axis as a weight. One such example, using

E
weighted
cone15 ≡ ∑

i∈ jet
∆R(i,jet)<0.15

Ri · Ei

Ejet
(A.5)

is illustrated in Figure A.7. Placing a cut at E
weighted
cone15 = 5, we obtain a 92% rejection
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Figure A.7: Discriminants that can be used to separate HS from PU jets based purely on
calorimetric information. The plot on the left shows the fraction of the jet’s energy
deposited within a cone of radius R = 0.15 from the jet axis for HS jets (blue)
and PU jets (red). The plot on the right shows the sum of the energy of the
jet constituents within the same cone, weighted by the inverse of the particle’s
distance from the jet axis.

against PU jets and a 82% efficiency for selecting HS jets, which is comparable with

the Econe15 method.

In conclusion we note that while jet substructure might prove to be a valuable

tool to identify and suppress pile-up jets, especially in the forward regions, there are

several aspects of jet reconstruction in the detector that may change the above picture

and therefore warrant a closer examination. More precisely, while the above studies

were performed with jets not corrected for pile-up contamination, it is known that

the jet-area based pile-up subtraction method alters the jet shapes. The above study

should therefore be repeated after the PU contamination has been subtracted from the
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jets. Moreover the granularity in the forward region of the detector might worsen the

performance of the discriminants that we proposed. It is therefore necessary to repeat

these studies taking into account the characteristics of the detector in the forward

region.





Appendix B

Breakdown of systematic uncertainties
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Source Uncertainty on σtt̄bb̄ [%]

jeff -0.02
jer 1.73

BJesUnc down 2.47
BJesUnc up -1.57

EtaIntercalibrationModel down 1.46
EtaIntercalibrationModel up -1.78

EtaIntercalibrationStatMethod down 0.63
EtaIntercalibrationStatMethod up -0.17

JesEffectiveDet1 down 0.98
JesEffectiveDet1 up -0.37

JesEffectiveDet2 down -0.03
JesEffectiveDet2 up -0.07

JesEffectiveDet3 down -0.27
JesEffectiveDet3 up -0.05

JesEffectiveMix1 down -0.01
JesEffectiveMix1 up -0.05

JesEffectiveMix2 down -0.24
JesEffectiveMix2 up -0.01

JesEffectiveModel1 down 2.08
JesEffectiveModel1 up -3.42

JesEffectiveModel2 down -0.02
JesEffectiveModel2 up 0.39

JesEffectiveModel3 down -0.24
JesEffectiveModel3 up -0.39

JesEffectiveModel4 down -0.05
JesEffectiveModel4 up -0.05
JesEffectiveStat1 down 1.00

JesEffectiveStat1 up -0.40
JesEffectiveStat2 down -0.33

JesEffectiveStat2 up -0.28
JesEffectiveStat3 down -0.27

JesEffectiveStat3 up 0.02
Pileup OffsetMu down -0.01

Pileup OffsetMu up -0.04
Pileup OffsetNPV down 1.08

Pileup OffsetNPV up -0.59
Pileup Pt down -0.04

Pileup Pt up -0.03
Pileup Rho down 1.79

Pileup Rho up -1.23
SinglePart down -0.01

SinglePart up -0.02
eer down -0.60

eer up -0.58
ees down 0.27

ees up -0.60
el idSF down 1.94

el idSF up -1.92
el recSF down 0.21

el recSF up -0.25
el trigSF down 0.06

el trigSF up -0.09
flavor comp down 0.60

flavor comp up -0.80
flavor response down 0.27

flavor response up -0.49

Source Uncertainty on σtt̄bb̄ [%]

jvf down -1.30
jvf up 2.66

mu idSF down 0.55
mu idSF up -0.58

mu recSF down 0.45
mu recSF up -0.48

mu trigSF down 0.18
mu trigSF up -0.21
muid down -1.00

muid up -1.08
mums down -1.64

mums up -0.97
musc down -1.07

musc up -1.87
btag0 down 1.86

btag0 up 0.72
btag1 down -0.04

btag1 up 0.13
btag2 down 4.94

btag2 up -4.61
btag3 down -1.74

btag3 up 1.88
btag4 down -8.60

btag4 up 9.58
btag5 down 6.65

btag5 up -6.12
mistag0 down -0.02

mistag0 up -0.01
mistag1 down -0.01

mistag1 up -0.02
mistag2 down -0.01

mistag2 up -0.03
mistag3 down 0.01

mistag3 up -0.05
mistag4 down -0.11

mistag4 up 0.08
mistag5 down -0.13

mistag5 up 0.10
mistag6 down 0.16

mistag6 up -0.20
mistag7 down -0.03

mistag7 up -0.01
mistag8 down 0.42

mistag8 up -0.45
mistag9 down 0.43

mistag9 up -0.47
mistag10 down -1.11

mistag10 up 1.07
mistag11 down -4.32

mistag11 up 4.16
ctautag0 down 0.76

ctautag0 up 0.77
ctautag1 down 0.58

ctautag1 up -0.58
ctautag2 down 0.37

ctautag2 up -0.38
ctautag3 down -1.41

ctautag3 up 1.38

Total 21

Table B.1: Relative uncertainties (in %) on the cross-section obtained using the Powheg+Pythia
AFII sample.
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Source Uncertainty on ǫfid [%]

jeff 0.01
jer -5.70

BJesUnc down -1.50
BJesUnc up 1.52

EtaIntercalibrationModel down -0.91
EtaIntercalibrationModel up 1.70

EtaIntercalibrationStatMethod down -0.46
EtaIntercalibrationStatMethod up -0.04

JesEffectiveDet1 down -0.94
JesEffectiveDet1 up -0.04

JesEffectiveDet2 down 0.04
JesEffectiveDet2 up 0.09

JesEffectiveDet3 down 0.06
JesEffectiveDet3 up 0.06

JesEffectiveMix1 down 0.02
JesEffectiveMix1 up 0.06

JesEffectiveMix2 down 0.03
JesEffectiveMix2 up -0.42

JesEffectiveModel1 down -1.34
JesEffectiveModel1 up 2.20

JesEffectiveModel2 down -0.42
JesEffectiveModel2 up -0.44

JesEffectiveModel3 down 0.02
JesEffectiveModel3 up 0.10

JesEffectiveModel4 down 0.06
JesEffectiveModel4 up 0.06
JesEffectiveStat1 down -0.96

JesEffectiveStat1 up -0.00
JesEffectiveStat2 down 0.02

JesEffectiveStat2 up 0.07
JesEffectiveStat3 down 0.06

JesEffectiveStat3 up -0.46
Pileup OffsetMu down 0.02

Pileup OffsetMu up 0.04
Pileup OffsetNPV down -0.62

Pileup OffsetNPV up -0.45
Pileup Pt down 0.04

Pileup Pt up 0.03
Pileup Rho down -1.45

Pileup Rho up 0.31
SinglePart down 0.02

SinglePart up 0.02
eer down 0.50

eer up 0.47
ees down -0.19

ees up 0.48
el idSF down -1.78

el idSF up 1.82
el recSF down -0.21

el recSF up 0.23
el trigSF down -0.06

el trigSF up 0.08
flavor comp down -0.41

flavor comp up -0.49
flavor response down -0.41

flavor response up -0.01

Source Uncertainty on ǫfid [%]

jvf down 0.08
jvf up 0.39

mu idSF down -0.49
mu idSF up 0.52

mu recSF down -0.41
mu recSF up 0.43

mu trigSF down -0.16
mu trigSF up 0.17
muid down -0.05

muid up 0.01
mums down 0.49

mums up 0.49
musc down 0.01

musc up 0.49
btag0 down -1.47

btag0 up -0.41
btag1 down 0.01

btag1 up -0.11
btag2 down -5.02

btag2 up 5.14
btag3 down 1.80

btag3 up -1.88
btag4 down 9.33

btag4 up -8.73
btag5 down -6.16

btag5 up 6.40
mistag0 down 0.01

mistag0 up 0.01
mistag1 down 0.01

mistag1 up 0.01
mistag2 down -0.01

mistag2 up 0.03
mistag3 down 0.01

mistag3 up 0.01
mistag4 down 0.01

mistag4 up 0.01
mistag5 down 0.02

mistag5 up -0.01
mistag6 down -0.07

mistag6 up 0.08
mistag7 down 0.02

mistag7 up -0.00
mistag8 down -0.16

mistag8 up 0.17
mistag9 down 0.06

mistag9 up -0.04
mistag10 down 0.14

mistag10 up -0.12
mistag11 down 0.75

mistag11 up -0.73
ctautag0 down 0.00

ctautag0 up -0.04
ctautag1 down -0.08

ctautag1 up 0.04
ctautag2 down -0.02

ctautag2 up -0.02
ctautag3 down 0.13

ctautag3 up -0.17

Table B.2: Relative uncertainties (in %) on the fiducial efficiency obtained using the
Powheg+Pythia AFII sample.
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Source Uncertainty on N
mis−tagged
tt̄+jets [%]

jeff -0.06
jer 8.70

BJesUnc down -0.47
BJesUnc up -0.00

EtaIntercalibrationModel down -0.12
EtaIntercalibrationModel up 3.78

EtaIntercalibrationStatMethod down -0.05
EtaIntercalibrationStatMethod up 3.82

JesEffectiveDet1 down -0.01
JesEffectiveDet1 up 3.72

JesEffectiveDet2 down -0.00
JesEffectiveDet2 up -0.05

JesEffectiveDet3 down -0.00
JesEffectiveDet3 up -0.05

JesEffectiveMix1 down -0.03
JesEffectiveMix1 up 0.00

JesEffectiveMix2 down -0.03
JesEffectiveMix2 up 3.84

JesEffectiveModel1 down -1.67
JesEffectiveModel1 up 3.41

JesEffectiveModel2 down 3.84
JesEffectiveModel2 up -0.01

JesEffectiveModel3 down -0.05
JesEffectiveModel3 up 3.90

JesEffectiveModel4 down -0.00
JesEffectiveModel4 up -0.05
JesEffectiveStat1 down -0.01

JesEffectiveStat1 up 3.83
JesEffectiveStat2 down 3.84

JesEffectiveStat2 up 0.00
JesEffectiveStat3 down 0.00

JesEffectiveStat3 up 3.75
Pileup OffsetMu down -0.04

Pileup OffsetMu up -0.07
Pileup OffsetNPV down 2.69

Pileup OffsetNPV up -0.26
Pileup Pt down -0.10

Pileup Pt up -0.00
Pileup Rho down -1.35

Pileup Rho up 3.72
SinglePart down -0.03

SinglePart up -0.00
eer down -0.06

eer up -0.06
ees down -0.12

ees up -1.73
el idSF down -2.58

el idSF up 2.48
el recSF down -0.37

el recSF up 0.24
el trigSF down -0.15

el trigSF up 0.02
flavor comp down -1.34

flavor comp up 3.26
flavor response down -0.78

flavor response up 3.77

Source Uncertainty on N
mis−tagged
tt̄+jets [%]

jvf down 2.71
jvf up 6.74

mu idSF down -0.52
mu idSF up 0.39

mu recSF down -0.44
mu recSF up 0.32

mu trigSF down -0.24
mu trigSF up 0.11
muid down -0.19

muid up -0.19
mums down -0.19

mums up -0.20
musc down -0.06

musc up -0.06
btag0 down -3.83

btag0 up -4.26
btag1 down -0.39

btag1 up 0.23
btag2 down -2.73

btag2 up 2.62
btag3 down 1.24

btag3 up -1.38
btag4 down 4.07

btag4 up -4.15
btag5 down -4.42

btag5 up 4.34
mistag0 down -0.01

mistag0 up -0.11
mistag1 down -0.04

mistag1 up -0.09
mistag2 down -0.11

mistag2 up -0.02
mistag3 down -0.23

mistag3 up 0.10
mistag4 down 0.34

mistag4 up -0.47
mistag5 down 0.17

mistag5 up -0.30
mistag6 down -0.33

mistag6 up 0.20
mistag7 down 0.08

mistag7 up -0.21
mistag8 down -0.16

mistag8 up 0.04
mistag9 down -1.50

mistag9 up 1.33
mistag10 down 1.47

mistag10 up -1.63
mistag11 down 8.37

mistag11 up -7.99
ctautag0 down -3.56

ctautag0 up -3.67
ctautag1 down -4.91

ctautag1 up 5.04
ctautag2 down -3.19

ctautag2 up 3.27
ctautag3 down 9.26

ctautag3 up -8.81

Table B.3: Relative uncertainties (in %) on the number of “mis-tag” events N
mis−tagged
tt̄+jets obtained

using the Powheg+Pythia AFII sample.
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Source Uncertainty on fsig [%]

jeff -0.01
jer -3.41

BJesUnc down 0.89
BJesUnc up -0.08

EtaIntercalibrationModel down 0.53
EtaIntercalibrationModel up 0.18

EtaIntercalibrationStatMethod down 0.16
EtaIntercalibrationStatMethod up 0.08

JesEffectiveDet1 down 0.03
JesEffectiveDet1 up -0.13

JesEffectiveDet2 down 0.00
JesEffectiveDet2 up 0.01

JesEffectiveDet3 down -0.21
JesEffectiveDet3 up 0.00

JesEffectiveMix1 down -0.00
JesEffectiveMix1 up 0.01

JesEffectiveMix2 down -0.22
JesEffectiveMix2 up -0.13

JesEffectiveModel1 down 0.58
JesEffectiveModel1 up -1.03

JesEffectiveModel2 down -0.15
JesEffectiveModel2 up -0.05

JesEffectiveModel3 down -0.22
JesEffectiveModel3 up 0.01

JesEffectiveModel4 down 0.01
JesEffectiveModel4 up 0.01
JesEffectiveStat1 down 0.02

JesEffectiveStat1 up -0.10
JesEffectiveStat2 down -0.01

JesEffectiveStat2 up -0.21
JesEffectiveStat3 down -0.21

JesEffectiveStat3 up -0.15
Pileup OffsetMu down 0.01

Pileup OffsetMu up -0.01
Pileup OffsetNPV down 0.67

Pileup OffsetNPV up -1.06
Pileup Pt down -0.00

Pileup Pt up 0.00
Pileup Rho down 0.21

Pileup Rho up -0.63
SinglePart down -0.00

SinglePart up -0.00
eer down -0.11

eer up -0.11
ees down 0.07

ees up -0.26
el idSF down -0.10

el idSF up 0.07
el recSF down -0.03

el recSF up 0.01
el trigSF down -0.01

el trigSF up -0.01
flavor comp down 0.09

flavor comp up -1.03
flavor response down -0.20

flavor response up -0.20

Source Uncertainty on fsig [%]

jvf down -1.02
jvf up 3.60

mu idSF down 0.00
mu idSF up -0.03

mu recSF down -0.01
mu recSF up -0.02

mu trigSF down -0.00
mu trigSF up -0.02
muid down -1.07

muid up -1.09
mums down -1.17

mums up -0.50
musc down -1.07

musc up -1.40
btag0 down 0.06

btag0 up -0.03
btag1 down -0.07

btag1 up 0.05
btag2 down -0.61

btag2 up 0.57
btag3 down 0.18

btag3 up -0.21
btag4 down 0.35

btag4 up -0.41
btag5 down -0.37

btag5 up 0.34
mistag0 down -0.02

mistag0 up -0.01
mistag1 down -0.00

mistag1 up -0.02
mistag2 down -0.03

mistag2 up 0.00
mistag3 down 0.00

mistag3 up -0.03
mistag4 down -0.07

mistag4 up 0.05
mistag5 down -0.09

mistag5 up 0.07
mistag6 down 0.07

mistag6 up -0.10
mistag7 down 0.00

mistag7 up -0.03
mistag8 down 0.25

mistag8 up -0.28
mistag9 down 0.37

mistag9 up -0.40
mistag10 down -0.86

mistag10 up 0.82
mistag11 down -2.97

mistag11 up 2.76
ctautag0 down 0.48

ctautag0 up 0.45
ctautag1 down 0.11

ctautag1 up -0.15
ctautag2 down 0.10

ctautag2 up -0.14
ctautag3 down -0.56

ctautag3 up 0.52

Table B.4: Relative uncertainties (in %) on the signal fraction parameter fsig obtained using the
Powheg+Pythia AFII sample.
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