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We extend previous calculations of leading-order correlation functions of spin-0 and spin-1 light
quarkonium hybrids to include QCD condensates of dimensions five and six, with a view to improving the
stability of QCD sum-rules analyses in previously unstable channels. Based on these calculations, prior
analyses in the literature, and its experimental importance, we identify the exotic JPC ¼ 0þ− channel as the
most promising for detailed study. Using Gaussian sum rules constrained by the Hölder inequality, we
calculate masses of light (nonstrange and strange) quarkonium hybrid mesons with JPC ¼ 0þ−. A model-
independent analysis of the hadronic spectral function indicates that there is distributed resonance strength
in this channel. Hence, we study two hadronic models with distributed resonance strength: a single wide
resonance model and a double narrow resonance model. The single wide resonance model is disfavored as
it leads to an anomalously large resonance width (greater than 1 GeV). The double narrow resonance model
yields excellent agreement between QCD and phenomenology: in both nonstrange and strange cases, we
find hybrid masses of 2.60 GeV and 3.57 GeV.
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I. INTRODUCTION

It has long been conjectured that hadrons could exist
beyond the conventional quark model of quark-antiquark
(qq̄) mesons and three-quark (qqq, q̄q̄q̄) baryons. In
particular, color-singlet hybrid mesons consisting of a
quark, antiquark, and explicit gluonic degree of freedom
have a long history [1]. While evidence of hadronic
structures outside of the conventional model has been
accumulating with experimental observations and confir-
mations of tetraquarks [2–4] and pentaquarks [5], an
experimental confirmation of hybrid mesons has eluded
observation. Designed to search for light hybrid mesons

(particularly those with exotic JPC that do not exist in the
conventional quark model), the GlueX experiment at
Jefferson Lab [6] is currently underway, and is anticipated
to give crucial insight into the existence and structure of
light hybrids.
The characterization of light hybrid states within the

framework of QCD is important. Identifying the spectrum
of the lightest hybrid supermultiplet (JPC ∈ f1−−;
ð0; 1; 2Þ−þg, where the qq̄ are in an S-wave configuration)
and the neighboring larger supermultiplet (JPC ∈
f0þ−; 1þ−; 2þ−; 3þ−; ð0; 1; 2Þþþg, where the qq̄ are in a
P-wave configuration) is of particular interest from an
experimental perspective, and is aligned with the mandate
of the GlueX experiment [6]. There have been numerous
studies done on light quark hybrids covering a range of
quantum numbers using QCD Laplace sum rules (LSRs)
[7–23], lattice QCD [24,25], the Schwinger-Dyson formal-
ism [26–28], the flux tube model [29,30], and the MIT bag
model [31,32]. In particular, Ref. [11] contains a compre-
hensive LSRs analysis of light hybrids for all JPC with
J ∈ f0; 1g that takes into account condensates up to
dimension four (i.e., 4d). Analyses of the 0þþ, 0−−,
1þþ, and 1−− sectors were stable; analyses of the 0þ−,
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0−þ, 1þ−, and 1−þ sectors were unstable. Expected
to be the lightest hybrid with exotic quantum numbers,
the 1−þ has been the subject of much additional study.
Reference [15] contains a (error-free) 1−þ hybrid correlator
that includes condensates up to 6d. By analyzing lower-
weight LSRs than those used in [11], the authors arrived
at a stable mass prediction. Subsequently, a variety of
improvements (e.g., radiative corrections and higher
dimension condensates) were included in the 1−þ hybrid
correlator, and the LSRs analyses were updated accord-
ingly [17–22]. In the LSRs analysis of [16], a stable mass
prediction for the 0−þ was found using a current different
from that of [11]. The only stable LSRs analysis of the 0þ−

channel [13] used higher-dimension currents and required
estimation of the low-energy theorem term from other
channels, introducing multiple sources of theoretical uncer-
tainty. Thus, further QCD sum rules studies of the 0þ−

channel are necessary.
In [33–36], it was found that the inclusion of higher-

dimension condensates stabilized previously unstable
LSRs analyses from [11] of hybrids containing heavy
quarks. Therefore, in Sec. II we provide a systematic
computation of leading-order (LO) 5d and 6d condensate
contributions for all light quarkonium hybrids of spin-zero
and spin-one. Unfortunately, as discussed in Sec. III, these
higher-dimension condensates do not stabilize the unstable
light hybrid LSRs analyses as they do for heavy hybrids.
However, in [11], it was proposed that the instability in the
LSRs might be resolved by accounting for finite width
effects, an issue also raised in [13]. As we show in Sec. V, a
model-independent analysis of the 0þ− hadronic spectral
function indicates that there is distributed (as opposed to
concentrated) resonance strength in this channel. To
explore width effects and the possibility of excited states,
we depart from previous LSRs methods. Gaussian sum
rules (GSRs) [37] are sensitive probes of width effects and
both ground and excited states, and have been shown to be
a powerful and versatile analysis methodology [38–41]. In
particular, the QCD sum-rules paradigm of the ρ meson
was used to benchmark and validate these GSR method-
ologies [38]. Thus, in this article, we use GSRs to
investigate the possibility of distributed resonance strength
in the exotic 0þ− light hybrid channel.
In Sec. II, we calculate LO spin-0 and spin-1 correlation

functions of light quarkonium hybrid currents, including
condensates up to 6d. Section III includes a review of the
GSRs formalism, and a theoretical constraint on the GSRs
based on the Hölder inequality is developed in Sec. IV. The
GSRs analysis methodology and results for the 0þ− channel
are presented in Sec. V with concluding remarks in Sec. VI.

II. HYBRID CURRENTS AND
CORRELATION FUNCTIONS

To investigate light quarkonium hybrids, we use currents
of the form

jμ ¼ gsq̄ΓνtaGa
μνq; ð1Þ

where q is a light (nonstrange or strange) quark field and ta

are generators of the fundamental representation of SU(3).
Each combination of Ga

μν ∈ fGa
μν; G̃

a
μν ¼ 1

2
ϵμνρσGa

ρσg and
Dirac structure Γν together corresponds to particular values
of JPC [11,15]; these combinations are summarized in
Table I.
For each current (1), we calculate and decompose a

diagonal correlation function as follows:

ΠμνðqÞ ¼ i
Z

d4xeiq·xh0jτjμðxÞj†νð0Þj0i ð2Þ

¼ qμqν
q2

Πð0Þðq2Þ þ
�
qμqν
q2

− gμν

�
Πð1Þðq2Þ ð3Þ

where Πð0Þ probes spin-0 states and Πð1Þ probes spin-1
states.
The calculation of (2) is performed in the framework of

the operator product expansion (OPE),

hΩjτfOðxÞOð0ÞgjΩi ¼
X
n

CnðxÞhΩj∶Onð0Þ∶jΩi: ð4Þ

In (4), the vacuum expectation value (VEV) of a time-
ordered, non-local product of composite operators is
expanded in a series, each term of which is a product of
a perturbative Wilson coefficient CnðxÞ and a nonzero VEV
of a local composite operatorOnð0Þ, i.e., a condensate. The
condensates parametrize the nonperturbative nature of the
QCD vacuum, and we include in our correlator calculations
the following set:

hq̄qi ¼ hq̄αi qαi i ð5Þ

hαG2i ¼ hαsGa
μνGa

μνi ð6Þ

hgq̄σGqi ¼ hgsq̄αi σμνij λaαβGa
μνq

β
j i ð7Þ

hg3G3i ¼ hg3sfabcGa
μνGb

νρGc
ρμi ð8Þ

hq̄qq̄qi ¼ hq̄αi qαi q̄βjqβj i; ð9Þ

respectively the 3d quark condensate, the 4d gluon
condensate, the 5d mixed condensate, the 6d gluon

TABLE I. The JPC combinations probed through different
choices of Γν and Ga

μν in (1).

Γν Ga
μν JPC

γν Ga
μν 0þþ; 1−þ

γν G̃a
μν 0−þ; 1þþ

γνγ5 Ga
μν 0−−; 1þ−

γνγ5 G̃a
μν 0þ−; 1−−
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condensate, and the 6d quark condensate. In (5)–(9),
superscripts on quark fields are color indices whereas
subscripts are Dirac indices and σμν ¼ i

2
½γμ; γν�.

Regarding Wilson coefficients, we consider LO calcu-
lations in αs, and we compute Oðm2Þ light quark mass
corrections to perturbation theory as a way to distinguish
between the nonstrange- and strange-flavored cases,
similar to [42]. Also, the values of (5), (7), and (9)
depend on whether the light quarks are nonstrange or

strange. The diagrams representative of the correlation
function calculation are displayed in Figure 1. We use
dimensional regularization in D ¼ 4þ 2ϵ dimensions at
MS renormalization scale μ. The program TARCER [44] is
utilized to reduce the resulting integrals to a selection of
well-known master integrals using the Tarasov recurrence
relations [45,46].
All of the correlators defined between (1) and Table I can

be written in general as

Πðq2Þ¼ αsðA1q6þA2m2q4Þ
�
log

�
−q2

μ2

�
þ 1

2ϵ

�
þðA4q2hαG2iþαsðA3q2mhq̄qiþA5hq̄qi2þA6hg3G3iþA7mhgq̄σGqiÞÞ

×

�
log

�
−q2

μ2

�
þ1

ϵ

�
þαsðB1q6þB2m2q4þB3q2mhq̄qiþB4q2hαG2iþB5hq̄qi2þB6hg3G3iþB7mhgq̄σGqiÞ

ð10Þ

(a) Diagram I (LO perturbation
theory)

(b) Diagram II (dimension-three) (c) Diagram III (dimension-four)

(d) Diagram IV (dimension-six) (e) Diagram V (dimension-six) (f) Diagram VI (dimension-six)

(g) Diagram VII (dimension-five) (h) Diagram VIII (dimension-five) (i) Diagram IX (dimension-five)

(j) Diagram X (dimension-five) (k) Diagram XI (dimension-five) (l) Diagram XII (dimension-five)

(m) Diagram XIII (dimension-five) (n) Diagram XIV (dimension-five)

FIG. 1. The Feynman diagrams calculated for the correlator (2). Feynman diagrams were created using JAXODRAW [43].
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where we have suppressed the superscript (J) on the left-
hand side. The coefficients Ai and Bj contained in (10) are
given in Tables II and III respectively. We note that, as
Diagram IV has no loops, A5 is trivially zero. In all
channels, perturbation theory, the 3d quark condensate
term, and the 4d gluon condensate term were benchmarked
against [11]. The 0−− and 1−þ correlators were bench-
marked against [15].

III. QCD SUM RULES

Each functionΠðJÞðq2Þ defined in (3) satisfies a dispersion
relation at Euclidean momentum Q2 ¼ −q2 > 0,

ΠðQ2Þ ¼ Q8

Z
∞

t0

1
π ImΠðtÞ
t4ðtþQ2Þ dtþ � � � ; ð11Þ

where we have again suppressed the superscript (J). In (11),
t0 is a hadron production threshold and � � � are subtraction
constants, together a third degree polynomial in Q2.
Equation (11) connects theoretical predictions of QCD,
i.e., ΠðQ2Þ on the left-hand side, to properties of hadrons
contained in ImΠðtÞ, the hadronic spectral function, on the
right-hand side.
Regarding (11), to eliminate subtraction constants and to

accentuate the low-energy region of the integral on the
right-hand side, some transformation is typically applied.
A popular choice is to formulate unsubtracted LSRs of
(usually nonnegative) integer weight k,

RkðMBÞ ¼ M2
B lim

N;Q2→∞
M2
B
¼Q2=N

ð−Q2ÞN
ΓðNÞ

�
d

dQ2

�
N
fð−Q2ÞkΠðQ2Þg;

ð12Þ

at Borel parameterMB [47–50]. Details on how to evaluate
(12) for a correlator such as (10), denoted ΠQCD from here
on to emphasize that it is a quantity calculated using QCD,
can be found in the literature (e.g., [47]). The result is

RkðMBÞ ¼
Z

∞

0

tke−t=M
2
B
1

π
ImΠQCDðtÞdt ð13Þ

for k ∈ f0; 1; 2;…g and where

1

π
ImΠQCDðtÞ ¼ −A1αst3 − A2αsm2t2

− A3αsthmq̄qi − A4thαG2i
− A7αsmhgq̄σGqi: ð14Þ

Recall, the Ai are given in Table II.
In (11), we impose on ImΠðtÞ a general resonances-plus-

continuum model with onset of the QCD continuum at
threshold s0,

ImΠðtÞ ¼ ρhadðtÞ þ θðt − s0ÞImΠQCDðtÞ; ð15Þ

TABLE II. Coefficients of the logarithmic and divergent terms of the perturbative and condensate contributions to
the correlation function (10) for the JPC summarized in Table I.

0þþ 1−þ 0−− 1þ− 0−þ 1þþ 0þ− 1−−

A1 − 1
480π3

− 1
240π3

− 1
480π3

− 1
240π3

− 1
480π3

− 1
240π3

− 1
480π3

− 1
240π3

A2 0 1
12π3

1
16π3

5
48π3

0 1
12π3

1
16π3

5
48π3

A3
1
3π − 2

9π − 1
3π − 4

9π
1
3π − 2

9π − 1
3π − 4

9π
A4

1
24π − 1

36π
1

24π − 1
36π − 1

24π
1

36π − 1
24π

1
36π

A5 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 0
A7

1
9π

0 11
72π − 19

72π − 1
9π

0 − 11
72π

19
72π

TABLE III. Coefficients of the finite terms of the perturbative and condensate contributions to the correlation
function (10) for the JPC summarized in Table I.

0þþ 1−þ 0−− 1þ− 0−þ 1þþ 0þ− 1−−

B1
97

19200π3
39

3200π3
97

19200π3
39

3200π3
19

6400π3
77

9600π3
19

6400π3
77

9600π3

B2
1

32π3
− 7

32π3 − 55
384π3

− 109
384π3

1
32π3

− 13
96π3

− 31
384π3

− 23
128π3

B3 − 1
2π

7
27π

1
6π

17
27π

1
6π − 5

27π − 1
2π − 7

27π

B4 − 13
144π

11
216π − 13

144π
11

216π − 5
144π

7
216π − 5

144π
7

216π

B5 − 4π
3

4π
9

4π
3

− 4π
9

0 − 8π
9

0 − 8π
9

B6 − 1
192π2

1
192π2

− 1
192π2

1
192π2

5
192π2

− 5
192π2

5
192π2

− 5
192π2

B7 − 461
1728π − 83

1728π − 731
1728π

1019
1728π − 217

1728π
265

1728π
41

1728π
71

1728π
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where ρhadðtÞ represents the resonance content of the
hadronic spectral function and θðtÞ is the Heaviside step
function. To isolate the resonance contributions to the
LSRs, we consider (continuum-) subtracted LSRs

RkðMB; s0Þ ¼ RkðMBÞ −
Z

∞

s0

tke−t=M
2
B
1

π
ImΠQCDðtÞdt:

ð16Þ

Then, Eqs. (11)–(13), (15), and (16) together imply that

RkðMB; s0Þ ¼
Z

∞

t0

tke−t=M
2
B
1

π
ρhadðtÞdt ð17Þ

where

RkðMB; s0Þ ¼
Z

s0

0

tke−t=M
2
B
1

π
ImΠQCDðtÞdt ð18Þ

and (again) ImΠQCDðtÞ is given in (14).
There are a number of interesting observations we can

make concerning the LSRs of light quarkonium hybrids. In
particular, the 6d gluon condensate terms do not contain a
logarithm, i.e., A6 ¼ 0 for all JPC values considered (see
Table II), and hence do not contribute to the imaginary part
(14). This result is surprising: both Diagrams Vand VI (see
Fig. 1) have logarithmic contributions, but they cancel
when the two diagrams are added together. Thus, the LO 6d
gluon condensate terms cannot stabilize light quarkonium
hybrid LSRs analyses as they have done in some heavy
quarkonium hybrid analyses [33–36].
Another observation relates to the mixed condensate

contributions. Using (12), if we try to formulate k ¼ −1
(i.e., lower-weight) unsubtracted LSRs, we get a piece that
formally looks like the right-hand side of (13) at k ¼ −1
and another piece:

−B5hq̄qi2 − B6hg3G3i −
�
A7

ϵ
þ B7

�
mhgq̄σGqi: ð19Þ

If A7 ≠ 0, then neither piece is well-defined: the integral
from (13) diverges and (19) contains a ϵ−1 field theory

divergence. But for JPC ∈ f1−þ; 1þþg, we find that A7 ¼ 0
which allows for the construction of lower-weight LSRs in
these two channels. Unlike the k ¼ 0 LSRs, the k ¼ −1
LSRs do receive contributions from the 6d quark and gluon
condensates as both B5 and B6 are nonzero. An analysis of
these k ¼ −1 LSRs does require some knowledge of the
subtraction constants in (11).
As noted in Sec. I, in the multichannel LSRs analysis of

[11], the 0þ−, 0−þ, 1þ−, and 1−þ sectors were unstable. The
1−þ has since been stabilized using lower-weight LSRs
[15], and the 0−þ has been stabilized [16] using a different
current than that used in [11]. That leaves the non-
exotic 1þ− and the exotic 0þ− channels. Given the
GlueX emphasis on exotics and the possible complicated
features of mixing between hybrids and conventional quark
mesons in the 1þ− channel, we focus our attention on 0þ−

light quarkonium hybrids. Attempts to stabilize the 0þ−

channel have involved higher-dimension currents com-
bined with lower-weight sum rules requiring estimation
of the dispersion-relation low-energy constant within the
analysis [13]. Because higher-dimension currents tend to
enhance the continuum, the mass determination combined
with an estimated low-energy term merits further study.
As in [11], we perform a conventional single narrow

resonance (SNR) LSRs analysis of the 0þ− channel by
letting

ρhadðtÞ ¼ πf2δðt −m2
HÞ ð20Þ

in (17) where f is the resonance coupling and mH is
its mass. We include our higher-dimension condensate
contributions as well as updated QCD parameter values,
yet the analysis remains unstable. The 5d mixed con-
densate term in the LSRs is small, and, as noted above,
the 6d condensates do not contribute at all. In [11], it was
suggested that the instability in this channel could be
related to a distribution of resonance strength. To inves-
tigate this possibility, we use GSRs, an alternative to
LSRs which provide a fundamentally different weighting
of the hadronic spectral function that makes them
well-suited to analyzing distributed resonance strength
hadron models. Unsubtracted GSRs of integer weight k
are defined as [37]

Gkðŝ; τÞ ¼
ffiffiffi
τ

π

r
lim

N;Δ2→∞
τ¼Δ2=ð4NÞ

ð−Δ2ÞN
ΓðNÞ

�
d

dΔ2

�
N
�ðŝþ iΔÞkΠð−ŝ − iΔÞ − ðŝ − iΔÞkΠð−ŝþ iΔÞ

iΔ

�
: ð21Þ

Details on how to evaluate (21) for a correlator such as (10) can be found in [37–39]. The result is

Gkðŝ; τÞ ¼
1ffiffiffiffiffiffiffiffi
4πτ

p
Z

∞

0

tke−
ðŝ−tÞ2
4τ

1

π
ImΠQCDðtÞdt ð22Þ

for k ∈ f0; 1; 2;…g and where 1
π ImΠQCDðtÞ is given in (14). Subtracted GSRs are defined in much the same way as

subtracted LSRs leading to the following GSRs analogues of (17) and (18):
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Gkðŝ; τ; s0Þ ¼
1ffiffiffiffiffiffiffiffi
4πτ

p
Z

∞

t0

tke−
ðŝ−tÞ2
4τ

1

π
ρhadðtÞdt ð23Þ

where

Gkðŝ; τ; s0Þ ¼
1ffiffiffiffiffiffiffiffi
4πτ

p
Z

∞

0

tke−
ðŝ−tÞ2
4τ

1

π
ImΠQCDðtÞdt: ð24Þ

The difference between (17)–(18) and (23)–(24) is in the
kernel of the integrals: a decaying exponential for LSRs
and a Gaussian for GSRs. The two sum rules represent
fundamentally different weightings of the spectral function
ρhadðtÞ; whereas in the LSRs have a duality interval of
width ∼1=M2

B near the low-energy threshold of the spectral
function, the GSRs have a duality interval of width ∼

ffiffiffiffiffi
2τ

p
near ŝ (23). In the τ → 0þ limit, we have

lim
τ→0þ

1ffiffiffiffiffiffiffiffi
4πτ

p e−
ðŝ−tÞ2
4τ ¼ δðŝ − tÞ; ð25Þ

which, when applied to (23), yields

lim
τ→0þ

Gkðŝ; τ; s0Þ ¼ ŝk
1

π
ρhadðŝÞ for ŝ > t0: ð26Þ

Hence, at least in principle, ρhadðtÞ can be extracted directly
from GSRs. Realistically, the τ → 0þ limit cannot be
achieved, however, because, through renormalization-
group (RG) improvement (see Sec. V), the renormalization
scale at which αs is evaluated decreases with decreasing τ
[37]. Nevertheless, it is desirable to use low values of τ to
minimize the smearing of ρhadðtÞ by the kernel of the GSRs.
To further emphasize this, we draw upon an analogy
introduced in the seminal GSRs paper [37]. Gaussian
sum rules satisfy the classical heat equation

∂2Gkðŝ; τ; s0Þ
∂ŝ2 ¼ ∂Gkðŝ; τ; s0Þ

∂τ ; ð27Þ

reinterpreting the parameter ŝ as “position,” the Gaussian
width τ as “time,” and the GSRs Gkðŝ; τ; s0Þ as “temper-
ature.” The smaller the value of τ (i.e., the less time that has
passed), the better we may assess the original (i.e., τ → 0þ)
temperature distribution [i.e., ŝk 1

π ρ
hadðŝÞ].

Compared to LSRs, GSRs permit greater access to the
structure of ρhadðtÞ. The LSRs methodology is specifically
formulated to accentuate the ground state region of the
hadronic spectral function while suppressing higher ener-
gies. With GSRs, this need not be the case as ŝ, the position
of the Gaussian kernel’s peak, is a free parameter. By
varying ŝ, GSRs can probe a wide region of the hadronic
spectral function with the same sensitivity as the ground
state region. As such, GSRs are generally preferable to
LSRs when studying distributed resonance strength mod-
els, as demonstrated in the successful analysis of the ρ

meson using GSRs methodology [38]. Integrating (23) with
respect to ŝ givesZ

∞

−∞
Gkðŝ; τ; s0Þdŝ ¼

Z
∞

t0

tk
1

π
ρhadðtÞdt ð28Þ

from which we recognize the quantity on the left-hand side
as the finite-energy sum rule of weight k. As shown in [37],
a resonance plus continuum model evolved through the
diffusion equation only reproduces the QCD prediction at
large energy scales if s0 is constrained by (28). To isolate
the information contained in the GSRs formalism that is
independent of (28), we consider normalized Gaussian sum
rules (NGSRs) [38]

Nkðŝ; τ; s0Þ ¼
Gkðŝ; τ; s0Þ
Mk;0ðτ; s0Þ

; ð29Þ

i.e., GSRs scaled by their 0th-order moments Mk;0ðŝ; τÞ
where, in general,

Mk;nðτ; s0Þ ¼
Z

∞

−∞
ŝnGkðŝ; τ; s0Þdŝ: ð30Þ

Combining (23), (28), and (29), we get a NGSRs analogue
of (23),

Nkðŝ; τ; s0Þ ¼
1ffiffiffiffiffi
4πτ

p
R∞
t0
tke−

ðŝ−tÞ2
4τ 1

π ρ
hadðtÞdtR∞

t0
tk 1

π ρ
hadðtÞdt : ð31Þ

Finally, to emphasize the low-energy region of the spectral
function, we work with the lowest-weight sum rules (i.e.,
k ¼ 0) as in previous applications of GSRs to the prediction
of resonance properties [38,39].

IV. HÖLDER INEQUALITY

Previous investigations of hadronic systems using LSRs
have employed Hölder inequalities to restrict the set of
allowed τ and s0 values [51–53]. The Hölder Inequality is
expressed generally as

����
Z

t2

t1

fðtÞgðtÞdμ
���� ≤

�Z
t2

t1

jfðtÞjpdμ
�1

p

×

�Z
t2

t1

jgðtÞjqdμ
�1

q ð32Þ

under the condition

1

p
þ 1

q
¼ 1 ð33Þ

and where dμ is an arbitrary integration measure. From
positivity of the hadronic spectral function for diagonal
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correlators, we can use ImΠQCDðtÞ > 0 to form an inte-
gration measure. Substituting this integration measure into
(32) leads to restrictions on the allowed values of ŝ, τ, and
s0 in the GSRs. We consider the inequality (32) with the
assignments

dμ ¼ ImΠQCDðtÞdt ð34Þ

fðtÞ ¼ tα
�
e−

ðŝ−tÞ2
4τffiffiffiffiffiffiffiffi

4πτ
p

�a

ð35Þ

gðtÞ ¼ tβ
�
e−

ðŝ−tÞ2
4τffiffiffiffiffiffiffiffi

4πτ
p

�b

ð36Þ

t1 ¼ t0; t2 ¼ s0 ð37Þ

aþ b ¼ 1 ð38Þ

where αþ β is a non-negative integer. Defining

τ1 ¼
τ

ap
and τ2 ¼

τ

bq
; ð39Þ

the inequality (32) becomes

Gαþβðτ; ŝ; s0Þ ≤
�
τ1
τ

� 1
2p
�
τ2
τ

� 1
2q

×G
1
p
αpðτ1; ŝ; s0ÞG

1
q

βqðτ2; ŝ; s0Þ ð40Þ

where we have used Gkðτ; ŝ; s0Þ > 0, the weakest con-
straint on the GSRs that emerges from positivity of the
spectral function. We define ω as follows:

ω ¼ 1

p
⇔ 1 − ω ¼ 1

q
; 0 < ω < 1 ð41Þ

and consider (40) with zero-weight GSRs (i.e., α ¼ β ¼ 0),

G0ðτ; ŝ; s0Þ ≤
�
τ1
τ

�ω
2

�
τ2
τ

�1−ω
2

Gω
0 ðτ1; ŝ; s0ÞG1−ω

0 ðτ2; ŝ; s0Þ:

ð42Þ

Equations (34), (39), and (41) together imply that

τ ¼ τ1τ2
ð1 − ωÞτ1 þ ωτ2

ð43Þ

which, when substituted into (42), gives

G0

�
τ1τ2

ð1 − ωÞτ1 þ ωτ2
; ŝ; s0

�
≤
�ð1 − ωÞτ1 þ ωτ2

τ2

�ω
2

�ð1 − ωÞτ1 þ ωτ2
τ1

�1−ω
2

Gω
0 ðτ1; ŝ; s0ÞG1−ω

0 ðτ2; ŝ; s0Þ: ð44Þ

Following [53], we set

τ1 ¼ τ ð45Þ

τ2 ¼ τ þ δτ ð46Þ

which implies

0 ≤ G0

�
τðτ þ δτÞ

ωðτ þ δτÞ þ ð1 − ωÞτ ; ŝ; s0
�
−
�
ωðτ þ δτÞ þ ð1 − ωÞτ

ðτ þ δτÞ
�ω

2

�
ωðτ þ δτÞ þ ð1 − ωÞτ

τ

�1−ω
2

× Gω
0 ðτ; ŝ; s0ÞG1−ω

0 ðτ þ δτ; ŝ; s0Þ: ð47Þ

We can perform a local analysis of (47) by expanding about δτ ¼ 0,

0 ≤
ωðω − 1Þ

�
1 − 2τ2

�
G0

0
ðŝ;τ;s0Þ

G0ðŝ;τ;s0Þ
	
2 þ 2τ

�
2
�
G0

0
ðŝ;τ;s0Þ

G0ðŝ;τ;s0Þ
	
þ τ

�
G00

0
ðŝ;τ;s0Þ

G0ðŝ;τ;s0Þ
			

ðδτÞ2
4τ2

þOððδτÞ3Þ; ð48Þ

where primes indicate τ-derivatives. Then, (41) and (48) together imply

Hðŝ; τ; s0Þ≡ 1 − 2τ2
�
G0

0ðŝ; τ; s0Þ
G0ðŝ; τ; s0Þ

�
2

þ 2τ

�
2

�
G0

0ðŝ; τ; s0Þ
G0ðŝ; τ; s0Þ

�
þ τ

�
G00

0ðŝ; τ; s0Þ
G0ðŝ; τ; s0Þ

��
≥ 0: ð49Þ
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At some ðτ; ŝ; s0Þ, if the GSRG0ðŝ; τ; s0Þ is to be consistent
with a positive hadronic spectral function, then it must
satisfy the inequality (49).

V. ANALYSIS METHODOLOGY AND RESULTS

Before we can analyze 0þ− light quarkonium hybrids
using (31), we need to discuss the QCD parameters
appearing in (10), i.e., the coupling, the quark mass, and
the QCD condensates.
To implement RG improvement we replace αs and m in

(10) by one-loop, MS running quantities [37]. In our
analysis, we use the QCD running coupling anchored at
the τ-lepton mass,

αsðμÞ ¼
αsðMτÞ

1þ αsðMτÞ
12π ð33 − 2nfÞ logð μ

2

M2
τ
Þ
; ð50Þ

where we use PDG [54] values for the τ mass and

αsðMτÞ ¼ 0.325� 0.015: ð51Þ

For the light quark masses, we use

mðμÞ ¼ mð2 GeVÞ
�

αsðμÞ
αsð2 GeVÞ

� 12
33−2nf ; ð52Þ

where

mð2GeVÞ¼ 1

2
ðmuð2GeVÞþmdð2GeVÞÞ¼ 3.5þ0.7

−0.3 MeV

ð53Þ

for nonstrange quarks and

mð2 GeVÞ ¼ 96þ8
−4 MeV ð54Þ

for strange quarks [54]. In both (50) and (52), we
set nf ¼ 4.
Renormalization-group arguments identify our renorm-

alization scale as μ ¼ τ1=4 [37,38], putting a lower bound
on our choice of τ restricted by the reliability of perturba-
tion theory. A related issue associated with τ is reliability of
the GSRs as quantified by the relative contributions of
perturbative versus nonperturbative effects and the relative
contributions of the resonance versus continuum. We
therefore restrict our analysis to τ ≥ Mτ, approximately
equivalent to τ > 10 GeV4 as discussed in Sec. V. We also
work with an upper bound τ ≤ 20 GeV4 emerging from the
Hölder inequality constraint (49), as presented in detail in
Section V.
Turning to the condensates, the value of the RG-invariant

quantity hmq̄qi is well-known from PCAC [55]. Using the
conventions of [50], we have

hmq̄qi ¼
�− 1

2
f2πm2

π; for nonstrange q

− 1
2
f2Km

2
K; for strange q

ð55Þ

where PDG values are used for the meson masses [54] and
the decay constants are [56]

fπ ¼ð92.2�3.5ÞMeV; fK ¼ð110.0�4.2ÞMeV: ð56Þ

We use the following value for the 4d gluon con-
densate [57]:

hαG2i ¼ ð0.075� 0.020Þ GeV: ð57Þ

The nonstrange- and strange-flavored 5d mixed con-
densates are estimated by [58,59] to be

mhgq̄σGqi
hmq̄qi ≡M2

0 ¼ ð0.8� 0.1Þ GeV2: ð58Þ

Finally, we note that while the 6d quark and gluon
condensates were included in the correlator calculation
(10), Table II shows that neither contributes to the k ¼ 0
GSRs (24) or NGSRs (29).
As noted in Sec. III, a SNR analysis of 0þ− light

quarkonium hybrids fails within the LSRs methodology,
and so we turn our attention to models with distributed
resonance strength using GSRs. As confirmation of the
consistency between the LSRs and GSRs methodology, we
analysed the original stabilizing channels in the LSRs
methodology JPC ∈ f0��; 1��g [11] and found excellent
agreement between the results for both mass predictions
and continuum onsets. To confirm the need for a distributed
resonance model in the case of JPC ¼ 0þ−, we consider the
quantity [39]

σ20ðτ; s0Þ≡M0;2ðτ; s0Þ
M0;0ðτ; s0Þ

−
�
M0;1ðτ; s0Þ
M0;0ðτ; s0Þ

�
2

ð59Þ

where the QCDmoments,Mk;nðτ; s0Þ, were defined in (30).
Combining (23) and (59) gives

σ20ðτ; s0Þ ¼
R∞
t0
ðt2 þ 2τÞρhadðtÞdtR∞

t0
ρhadðtÞdt −

�R∞
t0
tρhadðtÞdtR∞

t0
ρhadðtÞdt

�2

:

ð60Þ

For a SNR model, substituting (20) into (60) yields

σ20ðτ; s0Þ ¼ 2τ: ð61Þ

Hence, the quantity σ20ðτ; s0Þ − 2τ provides a QCD-calcu-
lated, model-independent way to assess the suitability of
representing a particular hadronic spectral function as a
single narrow resonance. If σ20ðτ; s0Þ − 2τ ≈ 0, then a single
narrow resonance model is appropriate. On the other hand,
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if σ20ðτ; s0Þ − 2τ ≉ 0, then the hadronic spectral function
has distributed resonance strength. And so, in Fig. 2, we
plot the QCD prediction σ20ðτ; s0Þ − 2τ versus τ for non-
strange quarks at several values of s0 over the range
10 GeV2 ≤ s0 ≤ 30 GeV2. Clearly, σ20ðτ; s0Þ − 2τ ≉ 0,
providing further motivation to consider models other than
the SNR. An analogous analysis for strange quarks leads to
the same conclusion.
If the distributed resonance strength indicated by Fig. 2 is

due to a single wide resonance (SWR), then we can
determine a rough lower bound on the resonance’s width
using a rectangular pulse resonance model,

ρhadðtÞ ¼ πf
2mHΓ

½θðt −m2
H þmHΓÞ − θðt −m2

H −mHΓÞ�;

ð62Þ
where f is the resonance’s coupling, Γ is its width, and mH
is its mass. Substituting (62) into (60) gives

σ20ðτ; s0Þ ¼ 2τ þ 1

3
m2

HΓ2 ð63Þ

⇒ Γ ¼ 1

mH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðσ20ðτ; s0Þ − 2τÞ

q
: ð64Þ

From (64), we see that Γ decreases as mH increases.
However, to ensure that the resonance does not merge
with the continuum, we require

m2
H þmHΓ < s0 ð65Þ

which implies that the largest possible resonance mass for a
particular s0 is given by

mH;maxðτ; s0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðσ20ðτ; s0Þ − 2τÞ

qr
ð66Þ

where we have used (63). By letting mH → mH;max in (64),
we find that the smallest possible resonance width for a
particular s0 is given by

Γminðτ; s0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðσ20ðτ; s0Þ − 2τÞ
s0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðσ20ðτ; s0Þ − 2τÞ

p
s

: ð67Þ

From Fig. 2, we see that σ20ðτ; s0Þ − 2τ shows almost no τ-
dependence; hence, the same can be said about Γminðτ; s0Þ.
In Fig. 3, we plot Γminðτ; s0Þ versus s0 at τ ¼ 10 GeV4 for
nonstrange quarks. An analogous plot for strange quarks
looks nearly identical. At s0 ¼ 10 GeV2, we find that
Γmin ≈ 1.46 GeV, far larger than a typical hadron width.
As s0 increases, so too does Γmin. For these reasons, we
abandon SWR models in favor of a multi-resonance model.
We consider a double narrow resonance (DNR) model

ρhadðtÞ ¼ πðf21δðt −m2
1Þ þ f22δðt −m2

2ÞÞ; ð68Þ

FIG. 2. The QCD prediction for the quantity σ20 − 2τ (where σ20 is defined in (59)) for nonstrange quarks versus τ at several values of
the continuum threshold s0.

FIG. 3. Minimum rectangular pulse resonance width, Γmin from
(67), at τ ¼ 10 GeV4 for nonstrange quarks versus the continuum
threshold, s0.
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where f1, f2 and m1, m2 are the resonances’ couplings and
masses respectively. Substituting (68) into (31) gives

N0ðŝ; τ; s0Þ ¼
�
re−

ðŝ−m2
1
Þ2

4τ þ ð1 − rÞe−
ðŝ−m2

2
Þ2

4τ

	
ffiffiffiffiffiffiffiffi
4πτ

p ð69Þ

where

r ¼ f21
f21 þ f22

⇔ 1 − r ¼ f22
f21 þ f22

: ð70Þ

At fixed values of τ and s0, we perform a fit of (69) over ŝ
[60] to find best fit parameters for r, m1, and m2. In
Figure 4, we plot the best fit r versus s0 at τ ¼ 10 GeV4 for
nonstrange quarks. Again, an analogous plot for strange
quarks looks nearly identical. From the s0-stability in r
versus s0, we determine an optimized continuum onset for
both the nonstrange- and strange-flavored cases as

sopt0 ¼ ð14.5� 1.2Þ GeV2 ð71Þ

where the uncertainties originate from the QCD input
parameters; details of the uncertainty analysis are discussed
below. Then, a fit to (69) at s0 ¼ 14.5 GeV2 and
τ ¼ 10 GeV4, leads to DNR model parameters

r ¼ 0.712� 0.005 ð72Þ

m1 ¼ 3.57� 0.15 GeV ð73Þ

m2 ¼ 2.60� 0.14 GeV ð74Þ

in the nonstrange-flavored case and

r ¼ 0.711� 0.005 ð75Þ

m1 ¼ 3.57� 0.13 GeV ð76Þ

m2 ¼ 2.60� 0.14 GeV ð77Þ
in the strange-flavored case. Figure 5 shows negligible τ
dependence in the mass predictions. Figure 6 shows com-
parisons between the NGSRs and the DNR model [respec-
tively the left- and right-hand sides of (69)] for parameters
(72)–(74) at τ ¼ 10 GeV4 and τ ¼ 20 GeV4. We note that
the strange and nonstrange 0þ− hybrid mass predictions are
degenerate within the uncertainties of our analysis; we find
this to be consistent with other recent SR analyses [42,61].
We note that the correlator terms that contain the strange
quark mass and condensates are numerically small in our
calculation, and do not significantly impact the resulting
mass prediction. The relatively small numerical difference
between strange and nonstrange 0þ− hybrids could suggest a
dominance of constituent gluonic effects in these systems.
Utilizing the Hölder Inequality test (49), we can perform

a consistency check on our analysis. To determine whether
(49) is satisfied within the expected uncertainties of the
GSRs, we examine the inequality at sopt0 ¼ 14.5 GeV2 for
various values of τ. Because our QCD calculations of
Wilson coefficients are truncated perturbative series in αs,
in addition to the QCD parameter uncertainties, we use the
1−þ channel [62] to provide an estimated next-order
perturbative correction characteristic of hybrid correlators.
We find that the Hölder inequality constraint (49) is
violated for τ ≳ 20 GeV4, and the inequality test for the
minimum value τ ¼ 10 GeV4 is shown in Fig. 7. Thus, the
τ range used in our analysis, 10 GeV4 < τ < 20 GeV4, is
consistent with the Hölder inequality.
To explore the lower bound on τ in more detail, we

consider OPE convergence and resonance dominance in the
GSR. As in LSRs, a reliable GSR analysis requires that
perturbation theory dominates power-law corrections and
that the resonance contributions dominate the continuum.
The average relative contribution of the non-perturbative
terms is calculated over the region 10 GeV2 −

ffiffiffiffiffi
2τ

p
< ŝ

< 10 GeV2 þ ffiffiffiffiffi
2τ

p
to encompass the peak in Fig. 6.

FIG. 4. Plot of the best fit r [defined in (70)] to (69) at τ ¼
10 GeV4 as a function of continuum threshold, s0.

FIG. 5. Plot of 0þ− light quarkonium hybrid masses m1ðτ; sopt0 Þ
and m2ðτ; sopt0 Þ of the DNR model (68) at continuum threshold
sopt0 ¼ 14.5 GeV2.

HO, BERG, STEELE, CHEN, and HARNETT PHYS. REV. D 98, 096020 (2018)

096020-10



For τ ¼ 10 GeV4, the ŝ-averaged nonperturbative contri-
butions are less than 20% of the total and are thus safely
controlled. As τ decreases, the relative nonperturbative
contribution increases (e.g., to 25% at τ ¼ 5 GeV4). The
relative contribution of the resonance versus continuum
contribution is much more sensitive to τ. For τ ¼ 10 GeV4

the ŝ-averaged ratio of resonance to continuum effects is
50% but for τ ¼ 5 GeV4 the ratio decreases to 30%. We
thus conclude that the criteria of OPE convergence and
resonance dominance requires τ > 10 GeV4 for a reliable
GSR analysis. The combination of the Hölder inequality,
OPE convergence, and resonance dominance constrains our
GSR window of analysis to 10 GeV4 < τ < 20 GeV4.
We verify the s0 optimization (71) obtained from Fig. 4

by looking at an independent analysis developed in [39]
based on the properties of the ŝ peak position (maximum)

of the NGSRs. For the SNR model (20) the ŝ-peak occurs
at ŝ ¼ m2, independent of τ. Thus, an alternative
s0-optimization criterion for the SNR is minimizing the
τ-dependence of the peak position ŝpeakðτ; s0Þ defined
implicitly from

∂
∂ŝ N

QCD
0 ðŝ; τ; s0Þ

����
ŝ¼ŝpeakðτ;s0Þ

¼ 0: ð78Þ

For the DNR model (68), the peak position acquires
τ-dependence modeled by

ŝpeakðτ; s0Þ ¼ Aþ B
τ
þ C
τ2

þ D
τ3

ð79Þ

where the unknown parameters fA; B;C;Dg are con-
strained by minimizing the χ2

χ2ðA;B;C;D;s0Þ¼
X20GeV4

τ¼10GeV4

�
AþB

τ þ C
τ2
þD

τ3

ŝpeakðτ;s0Þ
−1

�2

: ð80Þ

By minimizing (80) with respect to A, B, C, D, and s0, we
find an optimum continuum threshold sopt0 ¼ 14.0 GeV2 in
excellent agreement with the value obtained in (71).
To obtain errors in sopt0 , r, m1, and m2, we examine

how the errors in the QCD parameters impact the values
of these optimized parameters by varying each independ-
ently and examining the impact on the model parameters.
Additionally, there exists a methodological error in deter-
mining sopt0 as the variance in the QCD parameters will
affect the stability point of r. Contributions to the error in
sopt0 are summarized in Table IV and contributions to the
error in the DNR model parameters are summarized in
Tables V–VII. The dominant error in sopt0 comes from the
variation in hαG2i; in determining errors in the DNR

FIG. 7. Plot of inequality test (49) for τ ¼ 10 GeV4 with error
bars displayed. Errors are due to variations in the condensate
parameters, variations in αs, and uncertainties in sopt0 (71).

FIG. 6. Comparison of the two sides of (69) for nonstrange DNR parameters (72)–(74) and for τ ¼ 10 GeV4 and τ ¼ 20 GeV4 at
sopt0 ¼ 14.5 GeV2. Solid curves correspond to the left-hand side of (69); dots correspond to the right-hand side at selected values of ŝ.
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parameters, the error in r is driven by the variation in hαG2i
while the dominant errors in the masses m1 and m2 arise
from variations in sopt0 , followed by hαG2i. Errors in hq̄qi
and hgq̄σGqi contribute negligibly in the error of all DNR

parameters. Adding the values summarized in Tables IV–VII
in quadrature gives us a conservative error estimate summa-
rized in Table VIII; as the driving errors in each parameter
are approximately equivalent for the upper and lower bounds

TABLE V. Contributions to r error at τ ¼ 10 GeV4 due to variations in QCD parameter error. Columns �δ
indicate variations in DNR parameters at the upper (þδ) and lower (−δ) bounds of the corresponding QCD
parameters.

Error source Nonstrange Strange

þδ −δ þδ −δ
hmq̄qi −2.86 × 10−6 2.76 × 10−6 −2.58 × 10−6 3.04 × 10−6

hαG2i 4.79 × 10−3 −4.66 × 10−3 4.79 × 10−3 −4.66 × 10−3

hgq̄σGqi 1.43 × 10−6 −1.34 × 10−6 1.70 × 10−6 −1.06 × 10−6

αs −7.93 × 10−4 8.73 × 10−4 −7.93 × 10−4 8.73 × 10−4

sopt0
5.09 × 10−4 3.53 × 10−4 3.57 × 10−4 4.81 × 10−4

TABLE VI. Contributions to m1 error at τ ¼ 10 GeV4 due to variations in QCD parameter error. Columns �δ
indicate variations in DNR parameters at the upper (þδ) and lower (−δ) bounds of the corresponding QCD
parameters.

Error source Nonstrange Strange

þδ −δ þδ −δ
hmq̄qi −6.84 × 10−6 6.58 × 10−6 −7.06 × 10−6 6.35 × 10−6

hαG2i 5.79 × 10−3 −7.02 × 10−3 5.79 × 10−3 −7.02 × 10−3

hgq̄σGqi −3.07 × 10−6 3.01 × 10−6 −3.29 × 10−6 2.79 × 10−6

αs −1.06 × 10−3 1.13 × 10−3 −1.06 × 10−3 1.13 × 10−3

sopt0
1.48 × 10−1 −1.21 × 10−1 1.49 × 10−1 −1.20 × 10−1

TABLE VII. Contributions to m2 error at τ ¼ 10 GeV4 due to variations in QCD parameter error. Columns �δ
indicate variations in DNR parameters at the upper (þδ) and lower (−δ) bounds of the corresponding QCD
parameters.

Error source Nonstrange Strange

þδ −δ þδ −δ
hmq̄qi −3.72 × 10−5 3.58 × 10−5 −3.79 × 10−5 3.51 × 10−5

hαG2i 2.81 × 10−2 −3.64 × 10−2 2.81 × 10−2 −3.64 × 10−2

hgq̄σGqi −2.01 × 10−5 1.99 × 10−5 −2.08 × 10−5 1.93 × 10−5

αs −5.36 × 10−3 5.63 × 10−3 −5.36 × 10−3 5.63 × 10−3

sopt0
1.40 × 10−1 −1.12 × 10−1 1.40 × 10−1 −1.11 × 10−1

TABLE IV. Contributions to sopt0 error at τ ¼ 10 GeV4 due to variations in QCD parameter error. Columns �δ
indicate variations in DNR parameters at the upper (þδ) and lower (−δ) bounds of the corresponding QCD
parameters.

Error source Nonstrange Strange

þδ −δ þδ −δ
hmq̄qi 5.62 × 10−3 −6.74 × 10−4 9.38 × 10−3 3.09 × 10−3

hαG2i −9.20 × 10−1 1.18 × 100 −9.16 × 10−1 1.18 × 100

hgq̄σGqi 1.11 × 10−4 1.00 × 10−3 3.66 × 10−3 4.77 × 10−3

αs 1.70 × 10−1 −1.86 × 10−1 1.74 × 10−1 −1.82 × 10−1
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of the corresponding QCD parameters, we express our DNR
parameters (71)–(77) with symmetric error, taking the most
conservative bound.

VI. DISCUSSION

We have calculated 5d and 6d QCD condensate contri-
butions to all spin-0 and spin-1 light quarkonium hybrid
correlators with the goal of obtaining QCD LSRs mass
predictions in the previously-unstable channels of [11].
However, the 6d gluon and quark condensate contributions
do not have an imaginary part and hence do not contribute to
the LSRs. Also, the 5d mixed condensate contributions turn
out to be small. We therefore focused on the suggestion of
Refs. [11,13] that a distribution of resonance strength could
be the source of instability, a scenario ideally suited to GSRs
methods [37–39]. The 0þ− channel was chosen for detailed
investigation because of its phenomenological significance
in light of the GlueX experiment. Furthermore, a model-
independent analysis of the 0þ− hadronic spectral function
implies that there is a distribution of resonance strength in
this channel.
In examining the SWR (62) and DNR (68) models, we

found that the DNR model provided excellent agreement
between QCD and phenomenology. (See Fig. 6.) The SWR
model was rejected on the basis of an atypically large
resonance width. In the DNR model, we find degenerate

predictions in the case of both nonstrange and strange
quark states from the 0þ− current: a 2.60� 0.14 GeV state
(2.60� 0.14 GeV in the strange case) with 29% relative
coupling, and a state at3.57� 0.15 GeV (3.57� 0.13 GeV)
with 71% relative coupling. The smaller coupling of the
light state suggests the possibility ofmixingwith a tetraquark
because the expected tetraquark mass range is above
2 GeV [63].
The lighter state is consistent with recent lattice results

that find a predominantly nonstrange state around 2.4 GeV
and a predominantly strange state around 2.5 GeV in the
0þ− channel with mπ ¼ 391 MeV [25]. Our lighter-state
mass determination is somewhat larger than the 2.1–
2.5 GeV range of central values in [13]. The literature
does not provide a clear interpretation of the heavier 0þ−

state; however lattice studies [25] of the lightest hybrid
meson supermultiplet suggest that the 0þ− state exists as
part of an excited hybrid supermultiplet with radially-
excited qq̄ pair (i.e., quark total angular momentum
Lqq̄ ¼ 1). We suggest that this heavier second state arising
in the GSRs is a manifestation of an excited hybrid state.
In conclusion, we investigated light quarkonium, exotic

(JPC ¼ 0þ−) hybrid mesons with SWR and DNR models
using a GSRs analysis.We disfavored the SWRmodel as the
predicted resonancewidth was too large. The double-narrow
resonance model yielded two 0þ− hybrid states: ð2.60�
0.14Þ GeV and ð3.57� 0.15Þ GeV (ð2.60� 0.14Þ GeV
and ð3.57� 0.13Þ GeV in the strange case). Additionally,
we explored using the Hölder inequality derived for the
GSRs as a consistency check on our analysis.
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