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These notes provide a brief introduction to the lattice regularization of quan-
tum field theory. Classical field theory is introduced as a generalization of point
mechanics to systems with infinitely many degrees of freedom. Quantum me-
chanics is formulated with path integrals first in real and then in Euclidean time.
Field theories in Euclidean space-time resemble 4-d systems of classical statisti-
cal mechanics. Lattice fermions suffer from the doubling problem which can be
solved by an appropriate definition of chiral symmetry on the lattice. Lattice
gauge theories naturally explain confinement in the strong coupling limit. Monte
Carlo simulations support the assumption that confinement persists in the weak
coupling continuum limit.
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Chapter 1

Introduction and Motivation

The standard model of particle physics summarizes all we know about the fun-
damental forces of electromagnetism, as well as the weak and strong interactions
(but not gravity). It has been tested in great detail up to energies in the hundred
GeV range and has passed all these tests very well. The standard model is a
relativistic quantum field theory that incorporates the basic principles of quan-
tum mechanics and special relativity. Like quantum electrodynamics (QED) the
standard model is a gauge theory, however, with the non-Abelian gauge group
SU(3)c ⊗ SU(2)L ⊗ U(1)Y instead of the simple Abelian U(1)em gauge group of
QED. The gauge bosons are the photons mediating the electromagnetic inter-
actions, the W - and Z-bosons mediating the weak interactions, as well as the
gluons mediating the strong interactions. Gauge theories can exist in several
phases: in the Coulomb phase with massless gauge bosons (like in QED), in the
Higgs-phase with spontaneously broken gauge symmetry and with massive gauge
bosons (e.g. the W - and Z-bosons), and in the confinement phase, in which the
gauge bosons do not appear in the spectrum (like the gluons in quantum chromo-
dynamics (QCD)). All these different phases are indeed realized in Nature and
hence in the standard model that describes it.
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1.1 The Need for a Non-perturbative

Regularization

Field theories are systems with infinitely many degrees of freedom — a given
number per space point. Their quantization is a subtle issue because too naive
approaches lead to divergent results. In order to avoid meaningless divergent
results, quantum field theories must be regularized by introducing an ultraviolet
cut-off. In particular, just writing down the action of a classical field theory
and saying “quantum mechanics will take care of the rest” is cheating. In order
to properly define a quantum field theory one must also specify the integration
measure of the fields in a path integral. One approach is to expand the path
integral in powers of the coupling constant. The resulting Feynman diagrams
are then regularized order by order in the coupling. This perturbative approach
to field theory has led to impressive results in weakly interacting theories. For
example, the anomalous magnetic moment of the electron derived from QED
is the quantitatively best understood quantity in physics. Still, even at weak
coupling the perturbative approach to field theory is not entirely satisfactory. It
is known that perturbation theory is only an asymptotic expansion. The sum of
all orders is divergent and thus does not define the theory beyond perturbation
theory. Even more important, for strongly coupled theories, like QCD at low
energies, the perturbative regularization is completely useless.

Confinement or the Higgs mechanism are non-perturbative phenomena. In
order to study them from first principles one must first define the theory beyond
perturbation theory. The lattice regularization provides a clean way of doing this
by replacing the space-time continuum with a discrete mesh of lattice points. One
should not view the lattice as an approximation to the continuum theory. It rather
provides a definition of a theory that is undefined directly in the continuum. Of
course, in order to recover the continuum limit, the theory must be renormalized
by sending the lattice spacing to zero while adjusting the bare coupling constants
appropriately. This requires the existence of a second order phase transition in the
corresponding 4-d statistical mechanics system. In fact, the lattice is a beautiful
regularization because it is local and it respects local gauge symmetries. The
fact that it violates some space-time symmetries is less important, because these
symmetries are automatically recovered in the continuum limit.

Maintaining chiral symmetry on the lattice is a subtle (but most important)
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issue. Lattice fermions have several technical problems that have prevented the
non-perturbative formulation of the standard model for many years. For example,
chiral fermions — like neutrinos — suffer from the lattice fermion doubling prob-
lem. Every left-handed neutrino necessarily comes with a right-handed partner.
Until recently, it was not known how to couple only the left-handed particles to an
electroweak lattice gauge field. Thanks to a recent breakthrough in lattice gauge
theory, the standard model is now consistently defined beyond perturbation the-
ory. Even the perturbative definition of the standard model has been incomplete
beyond one loop, due to ambiguities in treating γ5 in dimensional regularization.
All these ambiguities are now eliminated, thanks to the new lattice results. It is
good to know that the standard model now stands on a firm mathematical basis
and that the path integral expressions we write down to define it are completely
well-defined even beyond perturbation theory.

1.2 An Unappreciated Hierarchy Problem

Physical phenomena arise over a vast range of energy scales. Attempts to unify
gravity with the other fundamental forces suggest that the Planck scale

MP =
1√
G

≈ 1019 GeV, (1.2.1)

which is constructed from Newton’s constant G (and from h̄ and c which we
have put to 1) is the highest energy scale relevant to particle physics. On the
other hand, ordinary matter receives almost all of its mass from protons and
neutrons which have a mass M ≈ 1 GeV. Can we understand why nucleons
exist so far below the Planck scale? This is a typical hierarchy problem of which
there are several in physics (also including the notorious cosmological constant
problem). As Wilczek has pointed out, the large hierarchy between the Planck
scale MP and the nucleon mass M is responsible for the feebleness of gravity. To
understand this, let us compare the strengths of the gravitational attraction and
the electrostatic repulsion between two protons at some large distance R. The
force of gravity is given by

Fg = G
M2

R2
, (1.2.2)

while the electrostatic force is

Fe =
e2

R2
, (1.2.3)
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where e is the proton’s electric charge. The ratio of the two forces is thus

Fg

Fe
= G

M2

e2
≈ 137

M2

M2
P

≈ 10−36. (1.2.4)

Hence, if we can understand why M ≪MP , we can understand why gravity is a
very weak force.

As Wilczek has pointed out, the nucleon mass M is much smaller than the
Planck scale MP partly due to the asymptotic freedom of QCD. At the classical
level, QCD with massless quarks (QCD Lite as Wilczek calls it) has no dimen-
sionful parameter at all. When the theory is quantized, a scale enters through
the mechanism of dimensional transmutation. A non-zero nucleon mass arises
even in massless QCD due to the confinement of colored quarks and gluons in-
side color-neutral hadrons. Thus, the nucleon mass M is a non-perturbatively
generated scale which cannot be understood using perturbation theory. The
continuum theory, i.e. dimensional regularization and renormalization applied to
the QCD Lagrangian, is not even defined at a non-perturbative level. The only
non-perturbative definition of QCD is provided by lattice field theory in which
continuous space-time is replaced by a hypercubic lattice. In particular, it should
be pointed out that lattice QCD is not an approximation to any pre-existing non-
perturbatively well-defined theory in the continuum. Of course, as in any other
quantum field theory, one must ultimately remove the cut-off. On the lattice,
the shortest physical distance is the lattice spacing a which defines an ultraviolet
momentum cut-off 1/a. Removing the cut-off thus means taking the continuum
limit a → 0. The masses of hadrons M = 1/ξ are the inverse of a correlation
length ξ. Taking the continuum limit means that the physical mass M must be
much smaller than the cut-off, i.e.

M ≪ 1

a
⇒ ξ ≫ a. (1.2.5)

Hence, in the continuum limit the physical correlation length ξ goes to infinity
in units of the lattice spacing. In the language of classical statistical mechanics
this corresponds to a second order phase transition.

Most of the time lattice QCD is used as a very powerful tool for numerical
calculations of hadronic properties. However, the lattice can do a lot more than
just that. To illustrate this, we will now use lattice QCD to explain why nucleons
can exist naturally far below the Planck scale. Of course, it is well known that
QCD is not valid up to the Planck scale. In particular, it is embedded in the
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standard model which itself is an effective theory limited to energies below about
1 TeV. However, unlike the full standard model, thanks to asymptotic freedom
QCD alone makes sense at arbitrarily high energy scales. Whatever replaces
QCD and the standard model at ultra-short distances — be it string theory or
some tiny wheels turning around at the Planck scale — Nature must have found
a concrete way to regularize the QCD physics at ultra-short distances. Due to
renormalizability and universality, only the symmetries but not the details of this
regularization should matter at low energies. For simplicity, we will use lattice
QCD (and not, for example, string theory) as an admittedly oversimplified model
of Nature at ultra-short distances. In other words, we identify the lattice cut-off
1/a with the Planck scale MP .

Using lattice QCD, how can we then understand why the nucleon mass M is
far below MP = 1/a? As Wilczek pointed out, one key ingredient is asymptotic
freedom. Thanks to asymptotic freedom, without any fine-tuning of the bare
gauge coupling a non-Abelian lattice Yang-Mills theory produces a correlation
length ξ that is larger than the lattice spacing a by a factor exponentially large in
the inverse coupling. In particular, choosing a bare coupling that is not unnatu-
rally small, one can easily generate a hierarchy of scales like MP/M = ξ/a ≈ 1019.
Interestingly, the situation is not as simple when one proceeds from a pure gluon
Yang-Mills theory to full lattice QCD including quarks. In particular, unlike con-
tinuum QCD, lattice QCD does not naturally have a chiral symmetry that can
protect the quark masses from running up to the “Planck scale” 1/a. Indeed,
for about two decades lattice field theorists have suffered from a hierarchy prob-
lem in the fermion sector. This problem first arose when Wilson removed the
unwanted doubler fermions by breaking chiral symmetry explicitly. Recovering
chiral symmetry in the continuum limit then requires a delicate fine-tuning of
the bare fermion mass. In particular, if at ultra-short distances Nature would
be a lattice gauge theory with Wilson fermions, without unnatural fine-tuning,
quarks would have masses at the Planck scale and the lightest particles would be
glueballs. In that case it would be very puzzling why ordinary matter consists
not just of gluons, but also of light quarks. If one works in continuum QCD one
often takes chiral symmetry for granted, and one may view this hierarchy puzzle
just as a problem of the lattice formulation. However, one should not forget that
continuum QCD is not even defined beyond perturbation theory. In addition,
subtleties of the definition of γ5 in the framework of dimensional regularization
affect even the continuum theory, and are just another aspect of the same deep
problem of chiral symmetry that is manifest on the lattice. Indeed, there is a se-
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vere hierarchy problem for non-perturbative fermion dynamics that Nature must
have solved somehow because it presents us with nucleons that exist far below
the Planck scale.

Remarkably, the long-standing hierarchy problem of lattice fermions — and
hence of the non-perturbative regularization of chiral symmetry — has recently
been solved very elegantly. Using previous research of Callan and Harvey, Ka-
plan realized that massless four-dimensional lattice fermions arise naturally, i.e.
without fine-tuning, as zero-modes localized on a domain wall embedded in a
five-dimensional space-time. In particular, left- and right-handed fermions can
be localized on a domain wall and an anti-wall. When the wall and the anti-wall
are separated by a sufficiently large distance, the left- and right-handed modes
cannot mix, simply because they are spatially separated. As a result, a Dirac
fermion arises which is protected from picking up a large mass and which is thus
naturally light. Remarkably, in contrast to four dimensions, a Wilson term in
a five-dimensional lattice theory removes the doubler fermions without breaking
the chiral symmetry of the light four-dimensional domain wall fermions.

When Kaplan proposed his idea of regulating chiral fermions using domain
walls, Narayanan and Neuberger were developing independently another approach
to regulating chiral fermions using an infinite number of flavors. Based on this
approach they developed what is now referred to as overlap lattice fermions.
Since the flavor-space can be viewed as an extra dimension, the overlap approach
is closely related to the domain wall approach. When one separates the wall
and the anti-wall by an infinite distance, domain wall fermions turn into overlap
fermions. Overlap fermions have the advantage that they have an exact chiral
symmetry, while the chiral symmetry of domain wall fermions is only approximate
for a finite wall-anti-wall separation. Both overlap and domain wall fermions yield
naturally light quarks, and both are naturally related to the physics of a higher-
dimensional space-time.

Hasenfratz and Niedermayer have investigated non-perturbative renormaliza-
tion group blocking transformations on the lattice. The fixed points of such
transformations correspond to lattice actions which are completely free of cut-off
effects — so-called perfect actions. Perfect actions for pure gauge theory, as well
as for free Wilson and staggered fermions have also been investigated. In the pro-
cess of these investigations Hasenfratz rediscovered an old paper by Ginsparg and
Wilson. He also realized that what is now called the Ginsparg-Wilson relation is
the key to understanding chiral symmetry on the lattice. The Ginsparg-Wilson
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relation represents a general requirement on a lattice action which guarantees
that it has good chiral properties. When Ginsparg and Wilson discovered this
relation, it seemed impossible to explicitly construct lattice actions that obey it.
By now it has been shown that classically perfect lattice actions can be approx-
imated well enough, so that the Ginsparg-Wilson action is satisfied with high
accuracy. From the point of view of practical lattice QCD calculations this rep-
resents very important progress. However, the explicit construction of perfect
actions is a delicate problem that can be considered a very elaborate form of
fine-tuning. Hence, it seems unnatural that Nature has chosen anything like a
perfect action to regularize the strong interactions at ultra-short distances. Unlike
perfect fermions, overlap fermions can describe massless quarks in QCD without
fine-tuning. By integrating out the extra dimension, Neuberger has constructed
lattice Dirac operators for massless quarks analytically and these Dirac operators
do indeed satisfy the Ginsparg-Wilson relation exactly. Remarkably, both overlap
as well as domain wall fermions, which naturally have a chiral symmetry without
fine-tuning, are related to the physics in a higher-dimensional space-time. Hence,
the existence of light four-dimensional fermions may be a concrete hint to the
physical reality of extra dimensions.

The full strength of the Ginsparg-Wilson relation was realized by Lüscher
who discovered that it suggests a natural definition of lattice chiral symmetry
which reduces to the usual one in the continuum limit. Based on this insight,
Lüscher achieved a spectacular breakthrough: the non-perturbative construction
of lattice chiral gauge theories. Hence, not only QCD in which chiral symmetry is
global, but also the standard model with its local chiral symmetry now stands on
a solid non-perturbative basis. Even continuum perturbation theory can benefit
from these developments. In particular, the ambiguities in the definition of γ5 that
arise in multi-loop calculations using dimensional regularization can be eliminated
when one uses the lattice regularization. Still, there is a very long way to go from
Lüscher’s theoretical construction to practical numerical calculations in chiral
gauge theories like the standard model.

The situation is a lot simpler, but still highly non-trivial, in applications of
Ginsparg-Wilson fermions to simulations of QCD. Compared to the standard
Wilson or staggered lattice fermions, which are already very difficult to treat
fully dynamically, domain wall, overlap, or perfect fermions demand even much
larger computing power. Hence, at present they are often used in the so-called
quenched approximation in which the fermion determinant is ignored. If one
does not want to wait a long time for even bigger computers, it will require an
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algorithmic breakthrough to bring the theoretical developments of lattice chiral
symmetry to fruition in fully dynamical simulations of lattice QCD.

If one imagines that Nature has used something like domain wall fermions to
regularize the strong interactions, it is natural that nucleons (and not just glue-
balls) exist far below the Planck scale. However, it remains mysterious where the
quark masses themselves come from. In the standard model the quark masses
arise from Yukawa couplings to the Higgs field, but the values of these couplings
are free parameters. Still, within the standard model the traditional gauge hi-
erarchy problem arises: why is the electroweak scale so small compared to the
Planck scale? Chiral symmetry can protect fermion masses from running to the
ultimate high-energy cut-off, but it cannot protect scalars. A potential solution
of the gauge hierarchy problem is provided by supersymmetry. Supersymmetry
relates scalars to fermions and thus allows chiral symmetry to indirectly gener-
ate naturally light scalars as well. At a non-perturbative level, supersymmetry
is as undefined as chiral symmetry was before the recent developments on the
lattice. In the worst case, supersymmetry may just be a perturbative illusion
which does not arise naturally at a non-perturbative level. Unfortunately, unlike
for chiral symmetry, Nature has not yet provided us with experimental evidence
for supersymmetry (except as an accidental symmetry in heavy nuclei). Hence,
one cannot be sure that it is indeed possible to construct naturally light scalars
at a non-perturbative level. Perhaps the many beautiful results obtained within
supersymmetric continuum theories should make us optimistic that these theories
actually exist at a rigorous level beyond perturbation theory. Again, Kaplan and
his collaborators have taken very interesting steps towards constructing super-
symmetric theories on the lattice. It remains to be seen whether these develop-
ments will lead to a repetition of the Ginsparg-Wilson revolution of lattice chiral
symmetry.



Chapter 2

Quantum Field Theory

This chapter provides a brief summary of the mathematical structure of quan-
tum field theory. Classical field theories are discussed as a generalization of point
mechanics to systems with infinitely many degrees of freedom — a given number
per space point. Similarly, quantum field theories are just quantum mechani-
cal systems with infinitely many degrees of freedom. In the same way as point
mechanics systems, classical field theories can be quantized with path integral
methods. The quantization of field theories at finite temperature leads to path
integrals in Euclidean time. This provides us with an analogy between quantum
field theory and classical statistical mechanics.

2.1 From Point Mechanics to Classical Field

Theory

Point mechanics describes the dynamics of classical non-relativistic point par-
ticles. The coordinates of the particles represent a finite number of degrees of
freedom. In the simplest case — a single particle moving in one spatial dimen-
sion — we are dealing with a single degree of freedom: the x-coordinate of the
particle. The dynamics of a particle of mass m moving in an external potential
V (x) is described by Newton’s equation

m∂2
t x = ma = F (x) = −dV (x)

dx
. (2.1.1)

13
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Once the initial conditions are specified, this ordinary second order differential
equation determines the particle’s path x(t), i.e. its position as a function of time.
Newton’s equation results from the variational principle to minimize the action

S[x] =
∫

dt L(x, ∂tx), (2.1.2)

over the space of all paths x(t). The action is a functional (a function whose
argument is itself a function) that results from the time integral of the Lagrange
function

L(x, ∂tx) =
m

2
(∂tx)

2 − V (x). (2.1.3)

The Euler-Lagrange equation

∂t
δL

δ(∂tx)
− δL

δx
= 0, (2.1.4)

is nothing but Newton’s equation.

Classical field theories are a generalization of point mechanics to systems
with infinitely many degrees of freedom — a given number for each space point
~x. In this case, the degrees of freedom are the field values φ(~x), where φ is
some generic field. In case of a neutral scalar field, φ is simply a real number
representing one degree of freedom per space point. A charged scalar field, on
the other hand, is described by a complex number and hence represents two
degrees of freedom per space point. The scalar Higgs field φa(~x) (with a ∈
{1, 2}) in the standard model is a complex doublet, i.e. it has four real degrees of
freedom per space point. An Abelian gauge field Ai(~x) (with a spatial direction
index i ∈ {1, 2, 3}) — for example, the photon field in electrodynamics — is a
neutral vector field with 3 real degrees of freedom per space point. One of these
degrees of freedom is redundant due to the U(1)em gauge symmetry. Hence, an
Abelian gauge field has two physical degrees of freedom per space point which
correspond to the two polarization states of the massless photon. Note that the
time-component A0(~x) does not represent a physical degree of freedom. Instead,
it is a Lagrange multiplier field that enforces the Gauss law. A non-Abelian gauge
field Aa

i (~x) is charged and has an additional index a. For example, the gluon field
in chromodynamics with a color index a ∈ {1, 2, ..., 8} represents 2 × 8 = 16
physical degrees of freedom per space point, again because of redundancy due
to the SU(3)c color gauge symmetry. The field that represents the W - and Z-
bosons in the standard model has an index a ∈ {1, 2, 3} and transforms under the
gauge group SU(2)L. Thus, it represents 2 × 3 = 6 physical degrees of freedom.
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However, in contrast to the photon, the W - and Z-bosons are massive due to the
Higgs mechanism and have three (not just two) polarization states. The extra
degree of freedom is provided by the Higgs field.

The analog of Newton’s equation in field theory is the classical field equation of
motion. For example, for a neutral scalar field this is the Klein-Gordon equation

∂µ∂
µφ = −dV (φ)

dφ
. (2.1.5)

Again, after specifying appropriate initial conditions it determines the classical
field configuration φ(x), i.e. the values of the field φ at all space-time points
x = (t, ~x). Hence, the role of time in point mechanics is played by space-time in
field theory, and the role of the point particle coordinates is now played by the
field values. As before, the classical equation of motion results from minimizing
the action

S[φ] =
∫

d4x L(φ, ∂µφ). (2.1.6)

The integral over time in eq.(2.1.2) is now replaced by an integral over space-
time and the Lagrange function of point mechanics gets replaced by the Lagrange
density function (or Lagrangian)

L(φ, ∂µφ) =
1

2
∂µφ∂

µφ− V (φ). (2.1.7)

A simple interacting field theory is the φ4 theory with the potential

V (φ) =
m2

2
φ2 +

λ

4
φ4. (2.1.8)

Here m is the mass of the scalar field and λ is the coupling strength of its self-
interaction. Note that the mass term corresponds to a harmonic oscillator poten-
tial in the point mechanics analog, while the interaction term corresponds to an
anharmonic perturbation. As before, the Euler-Lagrange equation

∂µ
δL

δ(∂µφ)
− δL

δφ
= 0, (2.1.9)

is the classical equation of motion, in this case the Klein-Gordon equation. The
analogies between point mechanics and field theory are summarized in table 2.1.
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Point Mechanics Field Theory

time t space-time x = (t, ~x)
particle coordinate x field value φ

particle path x(t) field configuration φ(x)
action S[x] =

∫

dt L(x, ∂tx) action S[φ] =
∫

d4x L(φ, ∂µφ)
Lagrange function Lagrangian

L(x, ∂tx) = m
2
(∂tx)

2 − V (x) L(φ, ∂µφ) = 1
2
∂µφ∂

µφ− V (φ)
equation of motion field equation
∂t

δL
δ(∂tx)

− δL
δx

= 0 ∂µ
δL

δ(∂µφ)
− δL

δφ
= 0

Newton’s equation Klein-Gordon equation

∂2
t x = −dV (x)

dx
∂µ∂

µφ = −dV (φ)
dφ

kinetic energy m
2
(∂tx)

2 kinetic energy 1
2
∂µφ∂

µφ

harmonic oscillator potential m
2
ω2x2 mass term m2

2
φ2

anharmonic perturbation λ
4
x4 self-interaction term λ

4
φ4

Table 2.1: The dictionary that translates point mechanics into the language of

field theory.

2.2 The Path Integral in Real Time

The quantization of field theories is most conveniently performed using the path
integral approach. Here we first discuss the path integral in quantum mechanics
— quantized point mechanics — using the real time formalism. A mathematically
more satisfactory formulation uses an analytic continuation to so-called Euclidean
time. This will be discussed in the next section.

The real time evolution of a quantum system described by a Hamilton operator
H is given by the time-dependent Schrödinger equation

ih̄∂t|Ψ(t)〉 = H|Ψ(t)〉. (2.2.1)

For a time-independent Hamilton operator the time evolution operator is given
by

U(t′, t) = exp(− i

h̄
H(t′ − t)), (2.2.2)

such that
|Ψ(t′)〉 = U(t′, t)|Ψ(t)〉. (2.2.3)
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Let us consider the transition amplitude 〈x′|U(t′, t)|x〉 of a non-relativistic point
particle that starts at position x at time t and arrives at position x′ at time t′.
Using

〈x|Ψ(t)〉 = Ψ(x, t) (2.2.4)

we obtain

Ψ(x′, t′) =
∫

dx 〈x′|U(t′, t)|x〉Ψ(x, t), (2.2.5)

i.e. 〈x′|U(t′, t)|x〉 acts as a propagator for the wave function. The propagator is
of physical interest because it contains information about the energy spectrum.
When we consider propagation from an initial position x back to the same position
we find

〈x|U(t′, t)|x〉 = 〈x| exp(− i

h̄
H(t′ − t))|x〉

=
∑

n

|〈x|n〉|2 exp(− i

h̄
En(t′ − t)). (2.2.6)

We have inserted a complete set,
∑

n |n〉〈n| = 11, of energy eigenstates |n〉 with

H|n〉 = En|n〉. (2.2.7)

Hence, according to eq.(2.2.6), the Fourier transform of the propagator yields the
energy spectrum as well as the energy eigenstates 〈x|n〉.

Inserting a complete set of position eigenstates we arrive at

〈x′|U(t′, t)|x〉 = 〈x′| exp(− i

h̄
H(t′ − t1 + t1 − t))|x〉

=
∫

dx1〈x′| exp(− i

h̄
H(t′ − t1))|x1〉

× 〈x1| exp(− i

h̄
H(t1 − t))|x〉

=
∫

dx1〈x′|U(t′, t1)|x1〉〈x1|U(t1, t)|x〉. (2.2.8)

It is obvious that we can repeat this process an arbitrary number of times. This
is exactly what we do in the formulation of the path integral. Let us divide the
time interval [t, t′] into N elementary time steps of size ε such that

t′ − t = Nε. (2.2.9)
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Inserting a complete set of position eigenstates at the intermediate times ti, i ∈
{1, 2, ..., N − 1} we obtain

〈x′|U(t′, t)|x〉 =
∫

dx1

∫

dx2...
∫

dxN−1〈x′|U(t′, tN−1)|xN−1〉...
× 〈x2|U(t2, t1)|x1〉〈x1|U(t1, t)|x〉. (2.2.10)

In the next step we concentrate on one of the factors and we consider a single
non-relativistic point particle moving in an external potential V (x) such that

H =
p2

2m
+ V (x). (2.2.11)

Using the Baker-Campbell-Haussdorff formula and neglecting terms of order ε2

we find

〈xi+1|U(ti+1, ti)|xi〉 = 〈xi+1| exp(− iεp2

2mh̄
) exp(−iε

h̄
V (x))|xi〉

=
1

2π

∫

dp〈xi+1| exp(− iεp2

2mh̄
)|p〉〈p| exp(−iε

h̄
V (x))|xi〉

=
1

2π

∫

dp exp(− iεp2

2mh̄
) exp(− i

h̄
p(xi+1 − xi))

× exp(−iε
h̄
V (xi)). (2.2.12)

The integral over p is ill-defined because the integrand is a very rapidly oscillating
function. To make the expression well-defined we replace the time step ε by ε−ia,
i.e. we go out into the complex time plane. After doing the integral we take the
limit a→ 0. Still, one should keep in mind that the definition of the path integral
required an analytic continuation in time. One finds

〈xi+1|U(ti+1, ti)|xi〉 =

√

m

2πih̄ε
exp(

i

h̄
ε[
m

2
(
xi+1 − xi

ε
)2 − V (xi)]). (2.2.13)

Inserting this back into the expression for the propagator we obtain

〈x′|U(t′, t)|x〉 =
∫

Dx exp(
i

h̄
S[x]). (2.2.14)

The action has been identified in the time continuum limit as

S[x] =
∫

dt [
m

2
(∂tx)

2 − V (x)]

= lim
ε→0

∑

i

ε[
m

2
(
xi+1 − xi

ε
)2 − V (xi)]. (2.2.15)
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The integration measure is defined as
∫

Dx = lim
ε→0

√

m

2πih̄ε

N−1 ∫

dx1

∫

dx2...
∫

dxN−1. (2.2.16)

This means that we integrate over the possible particle positions for each inter-
mediate time ti. In this way we integrate over all possible paths of the particle
starting at x and ending at x′. Each path is weighted with an oscillating phase
factor exp( i

h̄
S[x]) determined by the action. The classical path of minimum ac-

tion has the smallest oscillations, and hence the largest contribution to the path
integral. In the classical limit h̄→ 0 only that contribution survives.

2.3 The Path Integral in Euclidean Time

As we have seen, it requires a small excursion into the complex time plane to
make the path integral mathematically well-defined. Now we will make a big
step into that plane and actually consider purely imaginary so-called Euclidean
time. The physical motivation for this, however, comes from quantum statistical
mechanics. Let us consider the quantum statistical partition function

Z = Tr exp(−βH), (2.3.1)

where β = 1/T is the inverse temperature. It is mathematically equivalent to
the time interval we discussed in the real time path integral. In particular, the
operator exp(−βH) turns into the time evolution operator U(t′, t) if we identify

β =
i

h̄
(t′ − t). (2.3.2)

In this sense the system at finite temperature corresponds to a system propagating
in purely imaginary (Euclidean) time. By dividing the Euclidean time interval
into N time steps, i.e. by writing β = Na/h̄, and again by inserting complete
sets of position eigenstates we now arrive at the Euclidean time path integral

Z =
∫

Dx exp(−1

h̄
SE[x]). (2.3.3)

The action now takes the Euclidean form

SE[x] =
∫

dt [
m

2
(∂tx)

2 + V (x)]

= lim
a→0

∑

i

a[
m

2
(
xi+1 − xi

a
)2 + V (xi)]. (2.3.4)
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In contrast to the real time case the measure now involves N integrations

∫

Dx = lim
a→0

√

m

2πh̄a

N ∫

dx1

∫

dx2...
∫

dxN . (2.3.5)

The extra integration over xN = x′ is due to the trace in eq.(2.3.1). Note that
there is no extra integration over x0 = x because the trace implies periodic
boundary conditions in the Euclidean time direction, i.e. x0 = xN .

The Euclidean path integral allows us to evaluate thermal expectation values.
For example, let us consider an operator O(x) that is diagonal in the position
state basis. We can insert this operator in the path integral and thus compute
its expectation value

〈O(x)〉 =
1

Z
Tr[O(x) exp(−βH)] =

1

Z

∫

Dx O(x(0)) exp(−1

h̄
SE [x]). (2.3.6)

Since the theory is translation invariant in Euclidean time one can place the
operator anywhere in time, e.g. at t = 0 as done here. When we perform the low
temperature limit, β → ∞, the thermal fluctuations are switched off and only
the quantum ground state |0〉 (the vacuum) contributes to the partition function,
i.e. Z ∼ exp(−βE0). In this limit the path integral is formulated in an infinite
Euclidean time interval, and describes the vacuum expectation value

〈O(x)〉 = 〈0|O(x)|0〉 = lim
β→∞

1

Z

∫

Dx O(x(0)) exp(−1

h̄
SE [x]). (2.3.7)

It is also interesting to consider 2-point functions of operators at different in-
stances in Euclidean time

〈O(x(0))O(x(t))〉 =
1

Z
Tr[O(x) exp(−Ht)O(x) exp(Ht) exp(−βH)]

=
1

Z

∫

Dx O(x(0))O(x(t)) exp(−1

h̄
SE [x]). (2.3.8)

Again, we consider the limit β → ∞, but we also separate the operators in time,
i.e. we also let t→ ∞. Then the leading contribution is |〈0|O(x)|0〉|2. Subtracting
this, and thus forming the connected 2-point function, one obtains

lim
β,t→∞

〈O(x(0))O(x(t))〉 − |〈O(x)〉|2 = |〈0|O(x)|1〉|2 exp(−(E1 −E0)t). (2.3.9)

Here |1〉 is the first excited state of the quantum system with an energy E1.
The connected 2-point function decays exponentially at large Euclidean time
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separations. The decay is governed by the energy gap E1−E0. In a quantum field
theory E1 corresponds to the energy of the lightest particle. Its mass is determined
by the energy gap E1 − E0 above the vacuum. Hence, in Euclidean field theory
particle masses are determined from the exponential decay of connected 2-point
correlation functions.

2.4 Spin Models in Classical Statistical

Mechanics

So far we have considered quantum systems both at zero and at finite tempera-
ture. We have represented their partition functions as Euclidean path integrals
over configurations on a time lattice of length β. We will now make a completely
new start and study classical discrete systems at finite temperature. We will see
that their mathematical description is very similar to the path integral formu-
lation of quantum systems. Still, the physical interpretation of the formalism is
drastically different in the two cases. In the next section we will set up a dictio-
nary that allows us to translate quantum physics language into the language of
classical statistical mechanics.

For simplicity, let us concentrate on simple classical spin models. Here the
word spin does not mean that we deal with quantized angular momenta. All
we do is work with classical variables that can point in specific directions. The
simplest spin model is the Ising model with classical spin variables sx = ±1.
(Again, these do not represent the quantum states up and down of a quantum
mechanical angular momentum 1/2.) More complicated spin models with an
O(N) spin rotational symmetry are the XY model (N = 2) and the Heisenberg
model (N = 3). The spins in the XY model are 2-component unit-vectors,
while the spins in the Heisenberg model have three components. In all these
models the spins live on the sites of a d-dimensional spatial lattice. The lattice
is meant to be a crystal lattice (so typically d = 3) and the lattice spacing has a
physical meaning. This is in contrast to the Euclidean time lattice that we have
introduced to make the path integral mathematically well-defined, and that we
finally send to zero in order to reach the Euclidean time continuum limit. The
Ising model is characterized by its classical Hamilton function (not a quantum
Hamilton operator) which simply specifies the energy of any configuration of
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spins. The Ising Hamilton function is a sum of nearest neighbor contributions

H[s] = J
∑

〈xy〉

sxsy − µB
∑

x

sx, (2.4.1)

with a ferromagnetic coupling constant J < 0 that favors parallel spins, plus a
coupling to an external magnetic field B. The classical partition function of this
system is given by

Z =
∫

Ds exp(−H[s]/T ) =
∏

x

∑

sx=±1

exp(−H[s]/T ). (2.4.2)

The sum over all spin configurations corresponds to an independent summation
over all possible orientations of individual spins. Thermal averages are computed
by inserting appropriate operators. For example, the magnetization is given by

〈sx〉 =
1

Z

∏

x

∑

sx=±1

sx exp(−H[s]/T ). (2.4.3)

Similarly, the spin correlation function is defined by

〈sxsy〉 =
1

Z

∏

x

∑

sx=±1

sxsy exp(−H[s]/T ). (2.4.4)

At large distances the connected spin correlation function typically decays expo-
nentially

〈sxsy〉 − 〈sx〉〈sy〉 ∼ exp(−|x− y|/ξ), (2.4.5)

where ξ is the so-called correlation length. At general temperatures the cor-
relation length is typically just a few lattice spacings. When one models real
materials, the Ising model would generally be a great oversimplification, because
real magnets, for example, not only have nearest neighbor couplings. Still, the
details of the Hamilton function at the scale of the lattice spacing are not always
important. There is a critical temperature Tc at which ξ diverges and univer-
sal behavior arises. At this temperature a second order phase transition occurs.
Then the details of the model at the scale of the lattice spacing are irrelevant for
the long range physics that takes place at the scale of ξ. In fact, at their critical
temperatures some real materials behave just like the simple Ising model. This is
why the Ising model is so interesting. It is just a very simple member of a large
universality class of different models, which all share the same critical behavior.
This does not mean that they have the same values of their critical temperatures.
However, their magnetization goes to zero at the critical temperature with the
same power of Tc − T , i.e. their critical exponents are identical.
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2.5 Quantum Mechanics versus Statistical

Mechanics

We notice a close analogy between the Euclidean path integral for a quantum me-
chanical system and a classical statistical mechanics system like the Ising model.
The path integral for the quantum system is defined on a 1-dimensional Euclidean
time lattice, just like an Ising model can be defined on a d-dimensional spatial
lattice. In the path integral we integrate over all paths, i.e. over all configurations
x(t), while in the Ising model we sum over all spin configurations sx. Paths are
weighted by their Euclidean action SE[x] while spin configurations are weighted
with their Boltzmann factors depending on the classical Hamilton function H[s].
The prefactor of the action is 1/h̄, and the prefactor of the Hamilton function is
1/T . Indeed h̄ determines the strength of quantum fluctuations, while the tem-
perature T determines the strength of thermal fluctuations. The kinetic energy
1
2
((xi+1 − xi)/a)

2 in the path integral is analogous to the nearest neighbor spin
coupling sxsx+1, and the potential term V (xi) is analogous to the coupling µBsx

to an external magnetic field. The magnetization 〈sx〉 corresponds to the vacuum
expectation value of an operator 〈O(x)〉 and the spin-spin correlation function
〈sxsy〉 corresponds to the 2-point correlation function 〈O(x(0))O(x(t))〉. The in-
verse correlation length 1/ξ is analogous to the energy gap E1 − E0 (and hence
to a particle mass in a Euclidean quantum field theory). Finally, the Euclidean
time continuum limit a→ 0 corresponds to a second order phase transition where
ξ → ∞. The lattice spacing in the path integral is an artifact of our mathemat-
ical description which we send to zero while the physics remains constant. In
classical statistical mechanics, on the other hand, the lattice spacing is physical
and hence fixed, while the correlation length ξ goes to infinity at a second order
phase transition. All this is summarized in the dictionary of table 2.2.

2.6 The Transfer Matrix

The analogy between quantum mechanics and classical statistical mechanics sug-
gests that there is an analog of the quantum Hamilton operator in the context
of classical statistical mechanics. This operator is the so-called transfer matrix.
The Hamilton operator induces infinitesimal translations in time. In classical
statistical mechanics, on the other hand, the analog of continuous time is a 1-
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Quantum mechanics Classical statistical mechanics

Euclidean time lattice d-dimensional spatial lattice
elementary time step a crystal lattice spacing

particle position x classical spin variable s
particle path x(t) spin configuration sx

path integral
∫ Dx sum over configurations

∏

x

∑

sx

Euclidean action SE[x] classical Hamilton function H[s]
Planck’s constant h̄ temperature T

quantum fluctuations thermal fluctuations

kinetic energy 1
2
(xi+1−xi

a
)2 neighbor coupling sxsx+1

potential energy V (xi) external field energy µBsx

weight of a path exp(− 1
h̄
SE[x]) Boltzmann factor exp(−H[s]/T )

vacuum expectation value 〈O(x)〉 magnetization 〈sx〉
2-point function 〈O(x(0))O(x(t))〉 correlation function 〈sxsy〉

energy gap E1 − E0 inverse correlation length 1/ξ
continuum limit a→ 0 critical behavior ξ → ∞

Table 2.2: The dictionary that translates quantum mechanics into the language

of classical statistical mechanics.
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dimensional spatial lattice. Hence, the transfer matrix cannot induce infinitesimal
space translations. Instead it induces translations by the smallest possible dis-
tance — namely by one lattice spacing. For a quantum mechanical system the
transfer matrix transports us by one lattice spacing in Euclidean time, and it is
given by

T = exp(−a
h̄
H). (2.6.1)

Now we want to construct the transfer matrix for the 1-dimensional Ising model
without an external magnetic field. The corresponding partition function is given
by

Z =
∏

x

∑

sx=±1

exp(βJ
∑

x

sxsx+1). (2.6.2)

The transfer matrix obeys
Z = TrTN , (2.6.3)

where N is the number of lattice points, and its matrix elements are given by the
Boltzmann factor corresponding to a nearest neighbor pair by

〈sx+1|T |sx〉 = exp(βJsxsx+1). (2.6.4)

This is a 2 × 2 matrix. The eigenvalues of the transfer matrix can be written as
exp(−E0) and exp(−E1). The energy gap then determines the inverse correlation
length as

1/ξ = E1 −E0. (2.6.5)

It is instructive to compute ξ as a function of β to locate the critical point of the
1-d Ising model.

Here we will do the corresponding calculation for the 1-d XY model. In the
XY model the spins are unit vectors (cosϕx, sinϕx) in the XY-plane that are
attached to the points x of a d-dimensional lattice. Here we consider d = 1, i.e.
we study a chain of XY-spins. The standard Hamilton function of the XY model
is given by

H[ϕ] = J
∑

〈xy〉

(1 − cos(ϕx+1 − ϕx)). (2.6.6)

In complete analogy to the Ising model the transfer matrix is now given by

〈ϕx+1|T |ϕx〉 = exp(−βJ(1 − cos(ϕx+1 − ϕx))), (2.6.7)

which is a matrix with an uncountable number of rows and columns, because there
is a continuum of values for ϕx and ϕx+1. Still, we can ask about the eigenvalues
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of this matrix. For this purpose we consider the Fourier representation

〈ϕx+1|T |ϕx〉 =
∑

m∈ZZ

〈ϕx+1|m〉 exp(−βJ)Im(βJ)〈m|ϕx〉, (2.6.8)

where
〈ϕx|m〉 = exp(imϕx), (2.6.9)

are the eigenvectors of the transfer matrix. The eigenvalues are given in terms of
modified Bessel functions

exp(−Em) = exp(−βJ)Im(βJ). (2.6.10)

The energy gap between the ground state and an excited state is given by

Em −E0 = log
I0(βJ)

Im(βJ)
, (2.6.11)

which is non-zero for finite β. In the zero temperature limit β → ∞ we have

I0(βJ)

Im(βJ)
∼ 1 +

m2

2βJ
, (2.6.12)

such that
ξ = 1/(E1 −E0) ∼ 2βJ → ∞. (2.6.13)

Hence, there is a critical point at zero temperature. In the language of quantum
mechanics this implies the continuum limit of a Euclidean lattice theory corre-
sponding to a quantum mechanical problem. In the continuum limit the energies
corresponding to the eigenvalues of the transfer matrix take the form

Em − E0 ∼
m2

2βJ
. (2.6.14)

These energies are in lattice units (the lattice spacing was put to 1). Hence, to
extract physics we need to consider energy ratios and we find

Em − E0

E1 −E0
∼ m2. (2.6.15)

These are the appropriate energy ratios of a quantum rotor — a particle that
moves on a circle. Indeed the XY-spins describe an angle, which can be in-
terpreted as the position of the quantum particle. Also the eigenvectors of the
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transfer matrix are just the energy eigenfunctions of a quantum rotor. Hence,
we just solved the Schrödinger equation with a discrete Euclidean time step us-
ing the transfer matrix instead of the Hamilton operator. The fact that energy
ratios approach physically meaningful constants in the continuum limit is known
as scaling. Of course, the discretization introduces an error as long as we are not
in the continuum limit. For example, at finite β the energy ratio is

Em

E1

=
log(I0(βJ)/Im(βJ))

log(I0(βJ)/I1(βJ))
, (2.6.16)

which is different from the continuum answer m2. This cut-off effect due to a
finite lattice spacing is known as a scaling violation.

There are formulations of the path integral that are free of cut-off effects and
hence exhibit perfect scaling. The actions in these path integrals are known as
perfect actions. As an example of a perfect action let us consider the 1-d XY
model with the so-called Villain action. Then the transfer matrix is modified to

〈ϕx+1|T |ϕx〉 =
∑

n∈ZZ

exp(−βJ
2

(ϕx+1 − ϕx + 2πn)2). (2.6.17)

By a Fourier transformation we now find

〈ϕx+1|T |ϕx〉 =
∑

m∈ZZ

〈ϕx+1|m〉 exp(− m2

2βJ
)〈m|ϕx〉, (2.6.18)

which leads to the same eigenvectors but to new eigenvalues

Em =
m2

2βJ
, (2.6.19)

which lead to the exact continuum ratio (Em − E0)/(E1 − E0) = m2 even at
finite temperature, i.e. even away from the continuum limit. Perfect actions
are of great importance, because they yield exact continuum physics although
the lattice spacing is still finite. In general, it is difficult to construct perfect
actions for interacting field theories. Later we will see how perfect actions can be
constructed for simple free field theories.

2.7 Lattice Scalar Field Theory

So far we have restricted ourselves to quantum mechanical problems and to clas-
sical statistical mechanics. The former were defined by a path integral on a 1-d
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Euclidean time lattice, while the latter involved spin models on a d-dimensional
spatial lattice. When we quantize field theories on the lattice, we formulate
the theory on a d-dimensional space-time lattice, i.e. usually the lattice is 4-
dimensional. Just as we integrate over all configurations (all paths) x(t) of a
quantum particle, we now integrate over all configurations φ(x) of a quantum
field defined at any Euclidean space-time point x = (~x, xd). Again the weight
factor in the path integral is given by the action. Let us illustrate this for a free
neutral scalar field φ(x) ∈ R. Its Euclidean action is given by

SE [φ] =
∫

ddx [
1

2
∂µφ∂µφ+

m2

2
φ2]. (2.7.1)

Interactions can be included, for example, by adding a λ
4
φ4 term to the action.

The Feynman path integral for this system is formally written as

Z =
∫

Dφ exp(−SE [φ]). (2.7.2)

(Note that we have put h̄ = c = 1.) The integral is over all field configurations,
which is a divergent expression if no regularization is imposed. One can make
the expression mathematically well-defined by using dimensional regularization
of Feynman diagrams. This approach is, however, limited to perturbation the-
ory. The lattice allows us to formulate field theory beyond perturbation theory,
which is very essential for strongly interacting theories like QCD, but also for the
standard model in general. For example, due to the heavy mass of the top quark,
the Yukawa coupling between the Higgs and top quark field is rather strong. The
above free scalar field theory, of course, does not really require a non-perturbative
treatment. We use it only to illustrate the lattice quantization method in a sim-
ple setting. On the lattice the continuum field φ(x) is replaced by a lattice field
Φx, which is restricted to the points x of a d-dimensional space-time lattice with
spacing a. The above continuum action can be approximated by discretizing the
continuum derivatives such that

SE[Φ] = ad
∑

x,µ

1

2a
(Φx+µ̂ − Φx)

2 + ad
∑

x

m2

2
Φ2

x. (2.7.3)

Here µ̂ is a vector of length a in the µ-direction. The integral over all field
configurations now becomes a multiple integral over all values of the field at all
lattice points

Z =
∏

x

∫ ∞

−∞
dΦx exp(−SE [Φ]). (2.7.4)
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For a free field theory the partition function is just a Gaussian integral. In fact,
one can write the lattice action as

SE [Φ] =
1

2

∑

x,y

ΦxMxyΦy, (2.7.5)

where the matrix M describes the couplings between lattice points. Diagonalizing
this matrix by a unitary transformation U one has

M = U †DU . (2.7.6)

Introducing

Φ′
x = UxyΦy (2.7.7)

one obtains

Z =
∏

x

∫

dΦ′
x exp(−1

2

∑

x

Φ′
xDxxΦ

′
x) = (2π)N/2detD−1/2, (2.7.8)

where N is the number of lattice points.

To extract the energy values of the corresponding quantum Hamilton operator
we need to study the 2-point function of the lattice field

〈ΦxΦy〉 =
1

Z

∫

DΦ ΦxΦy exp(−SE [Φ]). (2.7.9)

This is most conveniently done by introducing a source field in the partition
function, such that

Z[J ] =
∫

DΦ exp(−SE [Φ] + ad
∑

x

JxΦx). (2.7.10)

Then the connected 2-point function is given by

〈ΦxΦy〉 − 〈Φ〉2 =
∂2 logZ[J ]

∂Jx∂Jy
|J=0. (2.7.11)

The Boltzmann factor characterizing the problem with the external sources is
given by the exponent

1

2
ΦMΦ − JΦ =

1

2
Φ′MΦ′ − 1

2
JM−1J. (2.7.12)
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Here we have introduced

Φ′ = Φ −M−1J. (2.7.13)

Integrating over Φ′ in the path integral we obtain

Z[J ] = (2π)N/2detD−1/2 exp(
1

2
JM−1J), (2.7.14)

and hence

〈ΦxΦy〉 = M−1
xy . (2.7.15)

It is instructive to invert the matrix M by going to Fourier space, i.e. by writing

Φx =
1

(2π)d

∫

B
ddp Φ(p) exp(ipx). (2.7.16)

The momentum space of the lattice is given by the Brillouin zone B =] −
π/a, π/a]d. For the 2-point function in momentum space one then finds

〈Φ(−p)Φ(p)〉 = [
∑

µ

(2 sin(pµa/2))2 +m2]−1. (2.7.17)

This is the lattice version of the continuum propagator

〈Φ(−p)Φ((p)〉 = (p2 +m2)−1. (2.7.18)

From the lattice propagator we can deduce the energy spectrum of the lattice the-
ory. For this purpose we construct a lattice field with definite spatial momentum
~p located in a specific time slice

Φ(~p)t =
∑

x

Φ~x,t exp(−i~p · ~x), (2.7.19)

and we consider its 2-point function

〈Φ(−~p)0Φ(~p)t〉 =
1

2π

∫ π/a

−π/a
dpd〈Φ(−p)Φ(p)〉 exp(ipdt). (2.7.20)

Inserting the lattice propagator of eq.(2.7.17) one can perform the integral. One
encounters a pole in the propagator when pd = iE with

(2 sinh(Ea/2))2 =
∑

i

(2 sin(pia/2))2 +m2. (2.7.21)
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The 2-point function then takes the form

〈Φ(−~p)0Φ(~p)t〉 = C exp(−Et), (2.7.22)

i.e. it decays exponentially with slope E. This allows us to identify E as the
energy of the lattice scalar particle with spatial momentum ~p. In general, E
differs from the correct continuum dispersion relation

E2 = ~p2 +m2. (2.7.23)

Only in the continuum limit, i.e. when E, ~p and m are small in lattice units, the
lattice dispersion relation agrees with the one of the continuum theory. Again,
we observe scaling violations, i.e. deviations from continuum results, as long as
we are not in the continuum limit.
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Chapter 3

Symmetries of the Strong
Interactions

In this chapter we review some aspects of symmetries in the continuum formula-
tion of QCD with an emphasis on chiral symmetry.

3.1 SU(Nc) Yang-Mills Theory in the

Continuum

Let us consider an anti-Hermitean non-Abelian SU(Nc) gauge field

Aµ(x) = igAa
µ(x)T

a, (3.1.1)

which (for Nc = 3) describes the gluons of QCD. Here g is the gauge coupling,
Aa

µ(x) (with a ∈ {1, 2, ..., N2
c −1}) is the real-valued non-Abelian vector potential

at the Euclidean space-time point x, and the T a (which obey Tr(T aT b) = 1
2
δab)

are the Hermitean generators of the SU(Nc) algebra. The algebra-valued field
strength takes the form

Fµν(x) = ∂µAν(x) − ∂νAµ(x) + [Aµ(x), Aν(x)], (3.1.2)

and the corresponding Euclidean Yang-Mills action is given by

SY M [A] =
∫

d4x
1

2g2
Tr(FµνFµν). (3.1.3)
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The action is invariant under group-valued gauge transformations Ω(x)∈SU(Nc),

A′
µ(x) = Ω(x)(Aµ(x) + ∂µ)Ω(x)†, (3.1.4)

under which the field strength transforms as

Fµν(x) = Ω(x)Fµν(x)Ω(x)†. (3.1.5)

The quantum theory is defined by a functional integral over all gluon fields

Z =
∫

DA exp(−SY M [A]), (3.1.6)

which is a formal expression before it is properly regularized. In perturba-
tion theory this is possible using standard dimensional regularization techniques.
Through the regularization, a scale is introduced into the quantum theory which
explicitly breaks the scale invariance of the classical Yang-Mills theory. This
anomaly in the scale invariance is responsible for the phenomenon of dimensional
transmutation: in the quantum theory the dimensionless coupling constant g of
the classical theory is traded for a dimensionful scale. In the modified mini-
mal subtraction renormalization scheme this scale is ΛMS which is defined in the
framework of perturbation theory. We will soon define the theory beyond per-
turbation theory by regularizing it on a space-time lattice. In a non-perturbative
context, a natural scale is the dynamically generated mass gap M — the energy
of the lowest state above the vacuum. In a Yang-Mills theory this state is the
lightest glueball. The SU(Nc) Yang-Mills theory is a quantum theory without
any free parameter. For example, the dimensionless ratio M/ΛMS is a pure num-
ber predicted by the theory. The relation of M or ΛMS to units like GeV, on the
other hand, is, of course, not predicted by the theory. Such man-made mass units
are related to the kilogram, defined by the arbitrary amount of platinum-iridium
alloy deposited near Paris a long time ago.

Another quantity of physical interest is the topological charge

Q[A] = − 1

32π2

∫

d4x εµνρσTr(FµνFρσ) ∈ Π3[SU(Nc)] = ZZ, (3.1.7)

which takes integer values in the third homotopy group of the gauge group. The
topological charge gives rise to an additional parameter, the vacuum angle θ, in
the Yang-Mills functional integral

Z(θ) =
∫

DA exp(−SY M [A] + iθQ[A]). (3.1.8)
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For θ 6= 0 or π the θ-term explicitly breaks parity as well as CP. The bound
|θ| < 10−9 derived from the measurement of the electric dipole moment of the
neutron suggests that θ = 0 in Nature. This result is puzzling because in the
Standard Model CP is already explicitly broken by the complex phase of the
Cabbibo-Kobayashi-Maskawa matrix. The puzzle to understand why θ = 0 is
known as the strong CP problem.

3.2 QCD with Nf Quark Flavors

In the next step we add Nf massless quarks to the pure gluon theory. Quarks
and anti-quarks are described by anti-commuting Dirac spinor fields ψ(x) and
ψ(x). In Euclidean space-time these two fields represent independent Grassmann
degrees of freedom. Under a non-Abelian gauge transformation the quark and
anti-quark fields transform in the fundamental representations {Nc} and {Nc},
respectively, i.e.

ψ(x)′ = Ω(x)ψ(x), ψ(x)′ = ψ(x)Ω(x)†. (3.2.1)

The fermionic part of the Euclidean action of massless QCD takes the form

SF [ψ, ψ,A] =
∫

d4x ψγµ(∂µ + Aµ)ψ, (3.2.2)

which is gauge invariant by construction. The Euclidean Dirac matrices are
Hermitean and obey the anti-commutation relations

{γµ, γν} = 2δµν , {γµ, γ5} = 0, γ5 = γ1γ2γ3γ4. (3.2.3)

We now decompose the quark fields into left- and right-handed components

ψL(x) = PLψ(x), ψR(x) = PRψ(x), ψ(x) = ψL(x) + ψR(x),

ψL(x) = ψ(x)PR, ψR(x) = ψ(x)PL, ψ(x) = ψL(x) + ψR(x). (3.2.4)

The chiral projectors are given by

PR =
1 + γ5

2
, PL =

1 − γ5

2
. (3.2.5)

Inserting the decomposed spinors into the fermionic part of the action one obtains

SF [ψ, ψ,A] =
∫

d4x
[

ψLγµ(∂µ + Aµ)ψL + ψRγµ(∂µ + Aµ)ψR

]

, (3.2.6)
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i.e. the action decouples into two contributions from left- and right-handed quarks.

As a result, the action of massless QCD is invariant against U(Nf )L⊗U(Nf )R

chiral transformations

ψ′
L(x) = L ψL(x), ψ

′
(x) = ψL(x)L+, L ∈ U(Nf )L,

ψ′
R(x) = R ψR(x), ψ

′
(x) = ψR(x)R+, R ∈ U(Nf )R. (3.2.7)

Due to an anomaly in the axial U(1)A symmetry, the symmetry of the quantum
theory is reduced to SU(Nf)L ⊗ SU(Nf )R ⊗ U(1)B where the U(1)B = U(1)L=R

symmetry represents baryon number conservation.

Chiral symmetry is only approximate in Nature, because the quark mass terms
couple left- and right-handed fermions. The mass terms in the QCD action take
the form

SM [ψ, ψ] =
∫

d4x
[

ψRMψL + ψLM†ψR

]

, (3.2.8)

which is again gauge invariant but no longer chirally invariant. The quark mass
matrix takes the form

M = diag(mu, md, ms, ..., mNf
). (3.2.9)

If all quark masses are equal, i.e. if M = m11, the mass term is invariant only
against simultaneous transformations L = R. Hence, chiral symmetry is then
explicitly broken down to

SU(Nf)L=R ⊗ U(1)L=R = SU(Nf )F ⊗ U(1)B, (3.2.10)

which corresponds to the flavor and baryon number symmetry. In Nature the
quark masses are all different, and the symmetry is in fact explicitly broken down
to

Nf
∏

f=1

U(1)f = U(1)u ⊗ U(1)d ⊗ U(1)s ⊗ ...⊗ U(1)Nf
. (3.2.11)

The physical up and down quark masses are a lot smaller than ΛMS while the
strange quark mass is of the order of ΛMS. Consequently, SU(2)L ⊗ SU(2)R is
a very good approximate global symmetry, while SU(3)L ⊗ SU(3)R is broken
more strongly. It should be noted that the actual values of the quark masses
are reasonably well known from comparison with experiment, but are at present
not at all understood theoretically. In particular, we don’t know why there are
three light quark flavors. Before one understands the relevant physics beyond the
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Standard Model, the origin of the chiral symmetry of QCD remains mysterious
and the symmetry itself seems accidental.

The total action of QCD is simply given by

SQCD[ψ, ψ,A] = SY M [A] + SF [ψ, ψ,A] + SM [ψ, ψ], (3.2.12)

and the corresponding QCD functional integral is

Z =
∫

DψDψDA exp(−SQCD[ψ, ψ,A]). (3.2.13)

Again, this is a formal mathematical expression before it is properly regularized.
In the continuum this can be done only perturbatively. We will soon discuss the
lattice regularization which defines QCD non-perturbatively.

3.3 The Axial Anomaly and the Index

Theorem

The U(1)A symmetry of the classical action of massless QCD is explicitly broken
by quantum effects. As a consequence of this anomaly the flavor-singlet axial
current

j5
µ(x) = ψ(x)γµγ5ψ(x), (3.3.1)

which is conserved at the classical level, has a non-zero divergence

∂µj
5
µ(x) = − Nf

32π2
εµνρσTr[Fµν(x)Fρσ(x)], (3.3.2)

due to instantons (and other topological charge carriers) in the quantum theory.
In particular, the variation of the axial charge Q5(t) =

∫

d3x j0(~x, t) is given by

Q5(t = ∞) −Q5(t = −∞) = Nf Q[A], (3.3.3)

where Q[A] is the topological charge of eq.(3.1.7). Only in the Nc → ∞ limit the
anomaly vanishes and the chiral symmetry of massless QCD is enhanced to the
full U(Nf )L ⊗ U(Nf )R group.

The axial anomaly is deeply connected with the Atiyah-Singer index theorem,
which relates the zero-modes of the massless Dirac operator D[A] = γµ(∂µ +Aµ)
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to the topological charge Q[A]. The eigenvalues of the Dirac operator are purely
imaginary and come in complex conjugate pairs. Only the zero eigenvalues are not
paired. Since the Dirac operator anti-commutes with γ5, the eigenvectors of the
zero-modes (which obey D[A]ψ = 0) have a definite handedness, i.e. γ5ψ = ±ψ.
The index theorem states that

index(D[A]) = n+ − n− = Nf Q[A], (3.3.4)

i.e. the index of the operator D[A], which is defined as the difference between the
number of left- and right-handed zero-modes, is given by the topological charge.

As a consequence of the index theorem, topologically non-trivial gluon field
configurations (with Q[A] 6= 0) necessarily induce zero-modes in the Dirac opera-
tor and thus lead to a vanishing fermion determinant detD[A] = 0. As a function
of the vacuum angle θ, the functional integral of massless QCD takes the form

Z(θ) =
∫

DψDψDA exp(−SQCD[ψ, ψ,A] + iθQ[A])

=
∫

DA detD[A] exp(−SY M [A] + iθQ[A])

=
∫

DA detD[A] exp(−SY M [A]) = Z(0). (3.3.5)

Since detD[A] = 0 when Q[A] 6= 0, there are no θ-vacuum effects in massless
QCD. This would “solve” the strong CP problem (why is θ = 0 ?) if, for example,
the up quark would be massless. Of course, this would leave us with the “up quark
problem”: why should mu = 0 ? In any case, mu = 0 seems not to be realized in
Nature and the strong CP problem remains puzzling.

3.4 Spontaneous Chiral Symmetry Breaking

Due to the approximate chiral symmetry of QCD one would expect correspond-
ing near degeneracies in the spectrum of strongly interacting particles. Indeed,
hadrons can be classified as isospin multiplets. The isospin transformations act
on left- and right-handed fermions simultaneously, i.e. SU(2)I = SU(2)L=R. The
SU(3)F = SU(3)L=R flavor symmetry is more approximate but is still clearly
visible in the spectrum. The full SU(Nf )L ⊗SU(Nf )R ⊗U(1)B chiral symmetry,
on the other hand, is not manifest in the spectrum at all. In particular, one
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does not observe mass-degenerate parity doublets of hadrons, as one should if
chiral symmetry was manifest in the spectrum. Furthermore, one observes very
light pseudo-scalar particles — the pions π+, π0, and π− — as well as somewhat
heavier pseudo-scalars — the four kaons K+, K0, K0, K− and the η-meson.

From the experimental evidence one concludes that chiral symmetry must
be spontaneously broken. Indeed, when a continuous global symmetry breaks
spontaneously, massless Goldstone bosons appear in the spectrum. According to
Goldstone’s theorem, the number of massless bosons is given by the difference of
the number of generators of the full symmetry group G and the subgroup H that
remains unbroken. In massless QCD the full chiral symmetry group is

G = SU(Nf )L ⊗ SU(Nf)R ⊗ U(1)B, (3.4.1)

while the unbroken subgroup is the flavor symmetry

H = SU(Nf )L=R ⊗ U(1)B. (3.4.2)

Hence, in this case one expects N2
f − 1 massless Goldstone bosons. For Nf = 2

these are the three pions, while for Nf = 3 there are eight Goldstone bosons —
the pions, the kaons, and the η-meson. In Nature these particles are not exactly
massless, because chiral symmetry is explicitly broken by the quark masses. The
masses of the up and down quarks are much smaller than the QCD scale ΛMS

which leads to the very small pion mass. The mass of the strange quark, on the
other hand, is of the order of ΛMS, thus leading to larger masses of the kaons
and the η-meson. Still, their masses are small enough to identify these particles
as pseudo-Goldstone bosons.

Chiral symmetry breaking has not yet been derived analytically from the
QCD Lagrangian. In particular, spontaneous chiral symmetry breaking is a non-
perturbative phenomenon whose understanding requires a formulation of QCD
beyond perturbation theory. Such a formulation is provided by lattice field theory
which will be discussed below. Indeed, numerical simulations in lattice QCD
confirm that chiral symmetry is spontaneously broken. For example, one detects
spontaneous chiral symmetry breaking by investigating the chiral order parameter

〈ψψ〉 = 〈0|ψ(x)ψ(x)|0〉 = 〈0|ψR(x)ψL(x) + ψL(x)ψR(x)|0〉. (3.4.3)

The order parameter is invariant against simultaneous transformations R = L,
but not against general chiral rotations. If chiral symmetry would be intact the
chiral condensate would vanish. When the symmetry is spontaneously broken,
on the other hand, 〈ψψ〉 is non-zero.
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Chapter 4

Free Lattice Fermions

In this chapter we begin to formulate QCD on a space-time lattice which serves as
an ultraviolet regulator. We replace Euclidean space-time by a hypercubic lattice
of points x with lattice spacing a. The lattice provides an ultraviolet momentum
cut-off 1/a. The continuum limit is reached when a → 0. One has a lot of
freedom in writing down a lattice regularized theory. In order to ensure that
one reaches the desired theory in the continuum limit one must pay attention to
the relevant symmetries. The most important symmetry of QCD is the SU(Nc)
gauge invariance. It is an important strength of the lattice regularization that
it manifestly respects gauge invariance. The fact that space-time symmetries
are explicitly broken down to discrete translations and the hypercubic rotation
group of the lattice is not a severe problem. In particular, in QCD the hypercubic
symmetry is powerful enough to ensure that the full Poincaré symmetry of the
continuum is automatically recovered as a → 0. Discrete symmetries like parity
and charge conjugation are also easy to maintain on the lattice. This review
concentrates on the question of how to realize chiral symmetry on the lattice. In
this chapter we consider lattice theories of free quarks only. Gluon fields will be
added in the next chapter.
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4.1 Fermionic Path Integrals and Grassmann

Algebras

We have defined the path integral by using the classical action. Theories with
fermions have no immediate classical limit, and the definition of the path integral
needs special care. The first step is to define a so-called Grassmann algebra,
which works with anticommuting classical variables ηi with i ∈ 1, 2, ..., N . A
Grassmann algebra is characterized by the anticommutation relations

{ηi, ηj} = ηiηj + ηjηi = 0. (4.1.1)

An element of the Grassmann algebra is a polynomial in the generators

f(η) = f +
∑

i

fiηi +
∑

ij

fijηiηj +
∑

ijk

fijkηiηjηk + ... (4.1.2)

The fij...l are ordinary complex (or sometimes real) numbers, which are anti-
symmetric in i, j, ..., l. One also defines formal differentiation and integration
procedures. The differentiation rules are

∂

∂ηi
ηi = 1,

∂

∂ηi
ηiηj = ηj,

∂

∂ηi
ηjηi = −ηj , (4.1.3)

and integration is defined by
∫

dηi = 0,
∫

dηi ηi = 1,
∫

dηidηj ηiηj = −1. (4.1.4)

These integrals are formal expressions. One should not ask over which range of
ηi we actually integrate.

The Grassmann algebra we use to define fermion fields is generated by Grass-
mann numbers Ψx and Ψ̄x, which are completely independent. The index x runs
over all space-time points as well as over all spin, flavor or color indices. Let us
consider the simplest (completely unrealistic) case of just two degrees of freedom
Ψ and Ψ̄, and let us perform the Gaussian integral

∫

dΨ̄dΨ exp(−mΨ̄Ψ) =
∫

dΨ̄dΨ (1 −mΨ̄Ψ) = m. (4.1.5)

Note that the expansion of the exponential terminates because Ψ2 = Ψ̄2 = 0.
When we enlarge the Grassmann algebra to an arbitrary number of elements the
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above formula generalizes to

∏

x

∫

dΨ̄xdΨx exp(−Ψ̄xMxyΨy) =
∫

DΨ̄DΨ exp(−Ψ̄MΨ) = detM. (4.1.6)

In the two variable case we have
∫

dΨ̄dΨ Ψ̄Ψ exp(−mΨ̄Ψ) = 1, (4.1.7)

which generalizes to
∫

DΨ̄DΨ Ψ̄xΨy exp(−Ψ̄MΨy) = M−1
ij detM. (4.1.8)

4.2 Naive Lattice Fermions and the Doubling

Problem

In the continuum the Euclidean action of a free Dirac fermion in d space-time
dimensions is given by

S[ψ, ψ] =
∫

ddx ψ(γµ∂µ +m)ψ, (4.2.1)

and the functional integral takes the form

Z =
∫

DψDψ exp(−S[ψ, ψ]). (4.2.2)

On the lattice the continuum fermion field ψ(x), ψ(x) is replaced by Grassmann
variables Ψ̄x,Ψx which live on the lattice points x. The continuum derivative can
be discretized by a finite difference, such that

S[Ψ̄,Ψ] = ad Ψ̄DΨ = ad
∑

x,µ

1

2a
(Ψ̄xγµΨx+µ̂ − Ψ̄x+µ̂γµΨx)+ad

∑

x

mΨ̄xΨx. (4.2.3)

Here µ̂ is a vector of length a in the µ-direction. In the continuum limit a → 0
the lattice sum ad∑

x becomes the continuum integral
∫

ddx over space-time. The
corresponding lattice Dirac operator which is a matrix in the Dirac- and space-
time indices takes the form

Dx,y =
∑

µ

1

2a
(γµδx+µ̂,y − γµδx−µ̂,y) +mδx,y. (4.2.4)
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The lattice functional integral can be written as

Z =
∫

DΨ̄DΨ exp(−ad Ψ̄DΨ) =
∏

x

∫

dΨ̄xdΨx exp(−S[Ψ̄,Ψ]). (4.2.5)

In particular, the fermionic Grassmann integration measure is completely regu-
larized explicitly.

The momentum space of the lattice theory is a d-dimensional Brillouin zone
B = [−π/a, π/a]d with periodic boundary conditions. Going to momentum space,
the naive fermion action from above gives rise to the lattice fermion propagator

〈Ψ̄(−p)Ψ(p)〉 = [i
∑

µ

γµ
1

a
sin(pµa) +m]−1. (4.2.6)

By performing a Fourier transform in the Euclidean energy pd one obtains the
fermion 2-point function

〈Ψ̄(−~p, 0)Ψ(~p, xd)〉 =
1

2π

∫ π/a

−π/a
dpd 〈Ψ̄(−p)Ψ(p)〉 exp(ipdxd) ∼ exp(−E(~p)xd).

(4.2.7)
At large Euclidean time separation xd the 2-point function decays exponentially
with the energy E(~p) of a fermion with spatial momentum ~p. For the naive
fermion action the lattice dispersion relation takes the form

sinh2(E(~p)a) =
∑

i

sin2(pia) + (ma)2. (4.2.8)

The continuum dispersion relation E(~p)2 = ~p 2 + m2 is indeed recovered in the
continuum limit a → 0. However, besides ~p = 0 there are other momenta ~p
for which E(~p) becomes small. These are located at the corners of the Brillouin
zone where the components of the momentum vector take the values pi = 0 or
π/a, such that sin(pia) = 0. As a consequence, the lattice dispersion relation
leads to additional states in the spectrum which are absent in the continuum
theory and which do not disappear in the continuum limit. Hence, the naive
lattice fermion action does not lead to the correct continuum theory. The extra
states appearing in the lattice dispersion relation show up as additional physical
particles — the so-called doubler fermions. Fermion doubling is a manifestation of
a deep fundamental problem of lattice regularized fermionic theories with a chiral
symmetry. The fermion doubling problem leads to a multiplication of fermion
species. The lattice fermion propagator of eq.(4.2.6) has 2d poles instead of just
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one as in the continuum. The origin of the doubling problem is deeply connected
with chiral symmetry and can be traced back to the axial anomaly. The doubler
fermions pose a severe problem in lattice field theory. Without removing them
we cannot describe Nature’s QCD (which has 3 and not 2d = 24 = 16 light quark
flavors).

4.3 The Nielsen-Ninomiya Theorem

Before we try to eliminate the doubler fermions let us prove a general theorem due
to Nielsen and Ninomiya: a chirally invariant free fermion lattice action, which
is local, translation invariant, and real necessarily has fermion doubling. The
theorem is based on topology. It holds because the lattice momentum space (the
Brillouin zone B) is a torus. A general chirally symmetric and translationally
invariant lattice action for free fermions takes the form

S[Ψ̄,Ψ] = ad
∑

x,y

Ψ̄xγµρµ(x− y)Ψy. (4.3.1)

The function ρµ(x − y) determines the strength of the coupling between the
fermion field values Ψ̄x and Ψy at two points x and y which may be separated by
an arbitrarily large distance. Locality of the lattice action does not mean that the
points x and y must be nearest neighbors. It only means that ρµ(x − y) decays
exponentially at large separations x − y. Going to momentum space, locality
implies that in Fourier space ρµ(p) is a regular function (without poles) over the
Brillouin zone. The corresponding lattice fermion propagator takes the form

〈Ψ̄(−p)Ψ(p)〉 = [i
∑

µ

γµρµ(p)]−1. (4.3.2)

Reality and translation invariance of the lattice action imply that ρµ(p) is a real-
valued periodic function over the Brillouin zone.

Poles of the propagator — and hence physical or doubler fermions — corre-
spond to zeros of ρµ(p), i.e. to points p with ρµ(p) = 0 for all µ. The Nielsen-
Ninomiya theorem states that a regular, real-valued, and periodic function ρµ(p)
necessarily vanishes at more than just one point. It is trivial to prove this for
d = 1. In that case, there is a single regular periodic function ρ1(p) which should
at least have one zero in order to describe the physical fermion pole. The func-
tion is positive on one side of the zero and negative on the other side. Hence,
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it must go through zero again in order to satisfy periodicity, thus leading to a
doubler fermion pole in the lattice propagator. In higher dimensions the proof is
analogous. For example, for d = 2 there are two functions ρ1(p) and ρ2(p). The
zeros of ρ1(p) lie on a closed curve in the two-dimensional Brillouin zone. This
curve may be closed via the periodic boundary conditions. The zeros of ρ2(p) lie
on another closed curve that intersects the first one in the pole position of the
physical fermion. Due to the periodic boundary conditions of the Brillouin zone,
the two curves must necessarily also intersect somewhere else. The curves cannot
just touch each other because this would lead to an incorrect dispersion relation
for the physical fermion. In d dimensions the zeros of ρµ(p) (with µ = 1, 2, ..., d)
lie on d closed (d − 1)-dimensional surfaces. Again, those cannot intersect in
just one point. If they intersect once they necessarily intersect also somewhere
else. This proves lattice fermion doubling for a chirally symmetric, translation
invariant, real-valued lattice action. It should be noted that the theorem does
not specify the number of doubler fermions. It is indeed possible to reduce the
number of doublers from 2d −1 to 1, but it is impossible to eliminate the doubler
fermions completely.

One may try to evade the theorem by violating one of its basic assumptions.
Giving up translation invariance or the reality of the action has not led to accept-
able solutions of the fermion doubling problem. Giving up locality is probably
the last thing one should do in field theory. For example, the early idea of SLAC
fermions turned out to be unacceptable for this reason.

4.4 Wilson Fermions

In his work on lattice gauge theory Wilson removed the doubler fermions in a
direct and radical way by breaking chiral symmetry explicitly. Then the Nielsen-
Ninomiya theorem is evaded because the propagator contains additional terms
without γµ. The so-called Wilson term gives the fermion doublers a mass of the
order of the cut-off while the physical fermion remains massless. Hence, in the
continuum limit chiral symmetry is recovered in the physical sector. Wilson’s
modification of the naive fermion action takes the form of a discretized second
derivative

S[Ψ̄,Ψ] = ad
∑

x,µ

1

2a
(Ψ̄xγµΨx+µ̂ − Ψ̄x+µ̂γµΨx) + ad

∑

x

mΨ̄xΨx



4.5. PERFECT LATTICE FERMIONS 47

+ ad
∑

x,µ

1

2a
(2Ψ̄xΨx − Ψ̄xΨx+µ̂ − Ψ̄x+µ̂Ψx). (4.4.1)

Then the lattice propagator takes the form

〈Ψ̄(−p)Ψ(p)〉 = [i
∑

µ

γµ
1

a
sin(pµa) +m+

∑

µ

2

a
sin2(

pµa

2
)]−1. (4.4.2)

The Wilson term acts as a momentum-dependent mass term. For small momenta
it vanishes quadratically, and hence it does not affect the dispersion of the physical
fermion, at least in the continuum limit. For the doubler fermions, on the other
hand, the Wilson term is non-zero, and gives them a mass of the order of the cut-
off 1/a. In the continuum limit the doubler fermions are hence eliminated from
the spectrum of the theory. Unfortunately, in lattice QCD this leads to a variety
of complications. In particular, recovering chiral symmetry in the continuum
limit requires unnatural fine-tuning of the bare fermion mass.

4.5 Perfect Lattice Fermions

In this section we relate the continuum theory of free fermions to a corresponding
lattice theory by an exact renormalization group transformation. This is achieved
by defining lattice fermion fields as block averages of continuum fields integrated
over hypercubes. The resulting lattice theory is in all respects equivalent to the
underlying continuum theory, i.e. it is completely free of lattice artifacts. For
example, it has the same energy-momentum dispersion relation as the continuum
theory. Even more important, it has an exact chiral symmetry (which may,
however, be hidden). Lattice actions with these properties are known as perfect
actions.

Let us derive a perfect fermion action by blocking from the continuum. For
this purpose we average the continuum fermion field ψ(y) over hypercubes cx of
size ad centered at the points x of a d-dimensional Euclidean lattice

Ψx =
1

ad

∫

cx

ddy ψ(y), Ψ̄x =
1

ad

∫

cx

ddy ψ(y), (4.5.1)

which in momentum space corresponds to

Ψ(p) =
∑

l∈ZZ
d

ψ(p+2πl/a)Π(p+2πl/a), Ψ̄(−p) =
∑

n∈ZZ
d

ψ(−p−2πn/a)Π(p+2πn/a),

(4.5.2)
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Note that the lattice fermion field is periodic over the Brillouin zone. The Fourier
transform of the blocking kernel is given by

Π(p) =
d
∏

µ=1

2 sin(pµa/2)

pµa
. (4.5.3)

The lattice fermion propagator is related to the continuum propagator by

〈Ψ̄(−p)Ψ(p)〉 =
∑

l∈ZZ
d

〈ψ(−p− 2πl/a)ψ(p+ 2πl/a)〉Π(p+ 2πl/a)2

=
∑

l∈ZZ
d

[iγµ(pµ + 2πlµ/a) +m]−1Π(p+ 2πl/a)2. (4.5.4)

For m = 0 the lattice propagator corresponds to a lattice action

S[Ψ̄,Ψ] = ad
∑

x,y

Ψ̄xγµρµ(x− y)Ψy, (4.5.5)

with couplings ρµ(x − y) calculable by a Fourier transformation. This lattice
action is perfect by construction, i.e. its spectrum is identical with the one of the
continuum theory. Hence, there should be no fermion doubling. On the other
hand, the action is manifestly chirally invariant. This seems to contradict the
Nielsen-Ninomiya theorem. However, the theorem is evaded because the action
turns out to be non-local. Its couplings ρµ(x− y) do not decay exponentially at
large distances. Instead for d ≥ 2 they decay only power-like. As a consequence,
in momentum space ρµ(p) is not regular (it actually has poles) and therefore the
topological arguments behind the Nielsen-Ninomiya theorem do not apply. The
non-locality can be seen easily for d = 1. Then γ1 = 1 and the sum in eq.(4.5.4)
can be performed analytically, resulting in a massless propagator that takes the
form

〈Ψ̄(−p)Ψ(p)〉 =
∑

l∈ZZ

[i(p+ 2πl/a)]−1Π(p+ 2πl/a)2 =
a

2i
cot(

pa

2
). (4.5.6)

This implies

ρ1(p) =
2

a
tan(

pa

2
), (4.5.7)

which is singular at the edge of the Brillouin zone (p = ±π/a). The corresponding
coupling in coordinate space,

ρ1(x− y) =
1

a
(−1)(x−y)/a, (4.5.8)
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does not decay at all at large distances x−y and thus describes an extremely non-
local action. For d ≥ 2 the chirally symmetric perfect action remains non-local
with a power-law decay of the couplings at large distances.

Although the non-locality of the perfect action arose naturally by blocking the
theory from the continuum, from a practical point of view it is very inconvenient.
For example, in a numerical simulation it would be very demanding to include
couplings to far away neighbors. It follows from the Nielsen-Ninomiya theorem
that, in order to obtain a local perfect action, one must break chiral symmetry
explicitly. This can be done by modifying the above way of blocking from the
continuum which was chirally covariant. If one chooses to break chiral symmetry
explicitly in the blocking procedure, the resulting perfect lattice action is not
manifestly chirally invariant, but it is local. This can be achieved by constructing
a perfect lattice action S[Ψ̄,Ψ] as

exp(−S[Ψ̄,Ψ]) =
∫

DψDψ exp{− 1

(2π)d

∫

ddp ψ(−p)[iγµpµ +m]ψ(p)}

× exp{−1

c

1

(2π)d

∫

B
ddp

× [Ψ̄(−p) −
∑

n∈ZZ
d

ψ(−p− 2πn/a)Π(p+ 2πn/a)]

× [Ψ(p) −
∑

l∈ZZ
d

ψ(p+ 2πl/a)Π(p+ 2πl/a)]. (4.5.9)

The coefficient c is a source of explicit chiral symmetry breaking, which is in-
jected into the theory via the renormalization group transformation that maps
the continuum theory to the lattice theory. For c → 0 we recover the chirally
invariant but non-local perfect lattice action from before. In general one obtains

〈Ψ̄(−p)Ψ(p)〉 =
∑

l∈ZZ
d

[iγµ(pµ + 2πlµ/a) +m]−1Π(p+ 2πl/a)2 + c, (4.5.10)

which corresponds to a local perfect action as long as c 6= 0.

Let us vary c in order to optimize the locality of the perfect action. For this
purpose we again consider d = 1. Then the sum in eq.(4.5.10) can be performed
analytically and the fermion propagator takes the form

〈Ψ̄(−p)Ψ(p)〉 =
1

m
− 2

m2a
[coth(

ma

2
) − i cot(

pa

2
)]−1 + c. (4.5.11)
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If we choose

c =
exp(ma) − 1 −ma

m2a
, (4.5.12)

the propagator reduces to

〈Ψ̄(−p)Ψ(p)〉 =

(

exp(ma) − 1

ma

)2 [

i
1

a
sin(pa) +

exp(ma) − 1

a
+

2

a
sin2(

pa

2
)

]−1

.

(4.5.13)
This corresponds to the standard Wilson fermion action except that the mass
m is now replaced by (exp(ma) − 1)/a. Hence, for the above choice of c, in
one dimension the perfect action is ultralocal, i.e. it has only nearest-neighbor
interactions. In the massless limit m = 0 the optimal choice for locality is c = a/2.
When we go to more than one dimension the action remains local, but it is no
longer ultralocal.

Next we derive the energy-momentum dispersion relation of perfect lattice
fermions. The fermion 2-point function takes the form

〈Ψ̄(−~p, 0)Ψ(~p, xd)〉 =
1

2π

∫ π/a

−π/a
dpd 〈Ψ̄(−p)Ψ(p)〉 exp(ipdxd)

=
1

2π

∫ π/a

−π/a
dpd







∑

l∈ZZ
d

[iγµ(pµ + 2πlµ/a) +m]−1

× Π(p+ 2πl/a)2 + c
}

exp(ipdxd)

=
1

2π

∫ ∞

−∞
dpd

∑

l∈ZZ
d−1

m

(~p+ 2π~l/a)2 + p2
d +m2

×
d−1
∏

i=1

(

2 sin(pia/2)

pia + 2πli

)2 (
2 sin(pda/2)

pda

)2

exp(ipdxd) + c δxd,0

=
∑

~l∈ZZ
d−1

C(~p+ 2π~l/a) exp(−E(~p + 2π~l/a)xd) + c δxd,0.

(4.5.14)

The sum over ld has been combined with the integral of pd over [−π/a, π/a] to
an integral over the momentum space of the continuum theory. The sum over
the spatial ~l ∈ ZZ

d−1 leads to infinitely many poles of the integrand, and hence to
infinitely many states that contribute an exponential to the 2-point function. The
energies of these states are given by the location of the poles, E(~p+2π~l/a) = −ipd,
with

E(~p+ 2π~l/a)2 = −p2
d = (~p+ 2π~l/a)2 +m2. (4.5.15)
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Hence, the energy-momentum dispersion relation of perfect lattice fermions is
exactly the same as in the continuum. In particular, as a result of exact blocking
from the continuum, there are no lattice artifacts. Furthermore, the form of
the renormalization group blocking transformation has no effect on the physical
spectrum. In particular, the explicit chiral symmetry breaking term proportional
to c only leads to a contact term c δxd,0 in the 2-point function. Hence, it has
no effect on the spectrum which is extracted from the 2-point function at large
Euclidean time separations xd. Remarkably, the spectrum of the lattice theory
displays the consequences of Poincaré invariance despite the fact that the lattice
action only has the discrete lattice symmetries.

Chiral symmetry is hidden in a similar way. Due to the explicit chiral symme-
try breaking parameter c in the renormalization group blocking transformation,
even for m = 0 the perfect lattice action is not manifestly chirally invariant.
Still, all physical consequences of chiral symmetry are correctly reproduced by
the perfect action. As we will see later, this is the due to the by now famous
Ginsparg-Wilson relation,

{D−1, γ5} = aγ5. (4.5.16)

Here D is the lattice Dirac operator and D−1 is the lattice fermion propagator.
Indeed, using the optimal parameter c = a/2 for the perfect action one obtains

{D−1, γ5} = {
∑

l∈ZZ
d

[iγµ(pµ + 2πlµ/a)]
−1Π(p+ 2πl/a)2 + c, γ5} = 2cγ5 = aγ5.

(4.5.17)
The Ginsparg-Wilson relation is the key to understanding chiral symmetry on
the lattice. In the continuum, chiral symmetry implies {D−1, γ5} = 0. If one
insists on this relation also on the lattice, i.e. if one insists on manifest chiral
symmetry for a lattice action, the Nielsen-Ninomiya theorem implies fermion
doubling (or, even worse, a violation of locality). The Ginsparg-Wilson relation
{D−1, γ5} = aγ5 reduces to the relation {D−1, γ5} = 0 in the continuum limit
a → 0. Still, at finite lattice spacing a, the right-hand side of the Ginsparg-
Wilson relation implies an explicit breaking of chiral symmetry. In the case of
the perfect action the explicit breaking is due to the parameter c = a/2 in the
renormalization group blocking transformation. This minimal explicit violation
of chiral symmetry is sufficient to evade the Nielsen-Ninomiya theorem, and thus
to avoid fermion doubling. Still, as we have seen explicitly for the perfect action,
the physics (for example, the spectrum) remains the same as in the continuum.
We will see later that the Ginsparg-Wilson relation leads to a natural definition
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of chiral symmetry on the lattice which reduces to the usual one in the continuum
limit.



Chapter 5

Lattice QCD

While many properties of lattice chiral symmetry can be studied in the free theory,
one certainly also needs to understand it in the interacting theory. Hence, it is
now time to endow the quarks with their non-trivial QCD dynamics by coupling
them to the gluon field. However, before doing so, we first discuss lattice Yang-
Mills theory without quarks.

5.1 Lattice Yang-Mills Theory

Maintaining manifest gauge invariance is essential when gauge theories are regu-
larized on the lattice. In the continuum, gauge transformations involve space-time
derivatives of group-valued functions Ω(x). On the lattice there are no infinitesi-
mally close points, and continuum derivatives are usually simply replaced by finite
differences. However, in order to maintain gauge invariance, one must proceed
more carefully. Wegner and Wilson, as well as Smit, independently introduced
the concept of a parallel transporter Ux,µ ∈ SU(Nc) connecting neighboring lat-
tice points x and x + µ̂. The parallel transporter is related to an underlying
continuum gauge field Aµ(x) = igAa

µ(x)T
a by

Ux,µ = P exp
∫ a

0
dt Aµ(x+ µ̂t), (5.1.1)

53
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where P denotes path-ordering. Under a non-Abelian gauge transformation the
parallel transporter transforms as

U ′
x,µ = ΩxUx,µΩ

†
x+µ̂. (5.1.2)

Wilson has constructed the Yang-Mills part of a simple lattice QCD action by
multiplying parallel transporters around an elementary plaquette. The standard
Wilson action is constructed as a sum over all plaquettes

SY M [U ] = −a4
∑

x,µ,ν

1

g2a2
Tr[Ux,µUx+µ̂,νU

†
x+ν̂,µU

†
x,ν +Ux,νUx+ν̂,µU

†
x+µ̂,νU

†
x,µ]. (5.1.3)

It reduces to the continuum Yang-Mills action in the limit a→ 0.

To fully define the path integral we must also consider the measure. The
lattice functional integral is obtained as an integral over all configurations of
parallel transporters Ux,µ, i.e.

Z =
∏

x,µ

∫

SU(Nc)
dUx,µ exp(−SY M [U ]). (5.1.4)

One integrates independently over all link variables using the local Haar measure
dUµ,x for each parallel transporter. The Haar measure is a left- and right-invariant
measure, i.e.

∫

SU(Nc)
dU f(ΩU) =

∫

SU(Nc)
dU f(UΩ) =

∫

SU(Nc)
dU f(U), (5.1.5)

for any function f(U) and for any SU(Nc) matrix Ω. It is convenient to normalize
the measure such that

∫

SU(Nc)
dU = 1. (5.1.6)

For compact groups like SU(Nc) the integration is over a finite domain. This
makes it unnecessary to fix the gauge in lattice QCD because the functional
integral is finite even without gauge fixing. This is another important advantage
of the formulation using parallel transporters.

The Yang-Mills functional integral from above contains a single parameter —
the bare gauge coupling g. When one wants to perform the continuum limit, one
must search for values of g for which the correlation length of the lattice theory
diverges in lattice units. In the language of statistical mechanics one is looking for
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a second order phase transition. Due to asymptotic freedom, in lattice QCD one
expects a second order phase transition at g → 0. To analyze the phase structure
of a gauge theory one needs to study order parameters. A simple local order
parameter like 〈Ux,µ〉 is not useful. This follows from Elitzur’s theorem which
states that gauge-variant observables simply vanish. A useful order parameter in
a gauge theory must be gauge invariant and, in addition, non-local. In a pure
gluon theory a good order parameter was suggested independently by Wegner
and Wilson as

WC = Tr
∏

(x,µ)∈C

Ux,µ. (5.1.7)

For a rectangular curve C with side lengths R and T the Wilson loop describes
the instantaneous creation and annihilation of a static quark-anti-quark pair at
distance R which then exists for a time T . The Wilson loop is related to the
static quark-anti-quark potential V (R) by

lim
T→∞

〈WC〉 ∼ exp(−V (R)T ). (5.1.8)

In QCD we expect quarks and anti-quarks to be confined to one another by a
potential rising linearly at large separations R, i.e.

lim
R→∞

V (R) ∼ σR, (5.1.9)

where σ is the string tension. In a confinement phase the Wilson loop hence
shows an area law

lim
R,T→∞

〈WC〉 ∼ exp(−σRT ). (5.1.10)

Confinement is indeed verified very accurately in numerical simulations of lattice
Yang-Mills theories.

5.2 Confinement in the Strong Coupling Limit

In lattice gauge theory it is straightforward to prove confinement for large val-
ues of the bare gauge coupling g. In the strong coupling region, however, the
correlation length is small and we cannot take the continuum limit. In fact, due
to asymptotic freedom we expect the continuum limit to be at g → 0. It is an
open question if confinement persists in the continuum limit. However, there is
a lot of positive numerical evidence that this is indeed the case. Assuming that
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there is no phase transition between the strong and weak coupling regions, the
derivation of confinement in the strong coupling regime would carry over to the
continuum limit. In the strong coupling expansion we expand in powers of 1/g
around g = ∞. To leading order the pure gluon action is then simply zero. The
Wilson loop operator takes the form

WC = U1ijU2jkU3kl...UNmi, (5.2.1)

where N = 2(R + T ) is the number of links along the loop. Using the group
integration formula

∫

SU(Nc)
dU Uij = 0,

∫

SU(Nc)
dU UijUkl =

1

Nc
δjkδil, (5.2.2)

then immediately implies WC = 0. The second formula of eq.(5.2.2) suggests that
to get a non-zero result one needs to have the product of two matrix elements
for each link variable on the Wilson loop. This can be achieved by expanding
the Boltzmann factor of the action to higher orders in 1/g. The lowest non-zero
contribution comes from tiling the Wilson loop with plaquettes that result from
expanding

exp(− 1

2g2
Re Tr(1 − Uµν,x)) = exp(−Nc

2g2
)(1 +

1

2g2
Re TrUµν,x) (5.2.3)

for the plaquettes in the interior of the Wilson loop. Taking the Uµν,x term for
all these plaquettes and using the second formula of eq.(5.2.2) gives

〈WC〉 =
1

(g2)RT
. (5.2.4)

Indeed we find an area law and we read off the string tension as

σ = − log(
1

g2
). (5.2.5)

Higher order corrections arise from deformations of the simple tiling from above.
The leading correction comes from eliminating one of the RT plaquettes of the
original tiling, and replacing it with five plaquettes at the surface of an elementary
lattice cube, such that the resulting surface bounded by the Wilson loop has no
holes. The cube can be attached above and below the plane of the Wilson loop,
and it can go out in the two possible orthogonal directions. This results in 4RT
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contributions, which all have four more plaquettes than the leading term, and are
hence suppressed by 1/(g2)4. Up to that order one finds

〈WC〉 =
1

(g2)RT
(1 + 4RT

1

(g2)4
). (5.2.6)

The last two terms are the first term in an exponential, and hence we can read
off the corrected string tension as

σ = − log(
1

g2
) + 4

1

(g2)4
. (5.2.7)

The string tension has been computed to higher orders. Still, one is unable
to go to high enough orders to reach the physically interesting scaling region in
which we can perform the continuum limit. At present, only numerical simulation
techniques are powerful enough to enter that regime. Consequently, the above
result for the string tension cannot yet be compared with experimental results. It
is instructive to derive the glueball mass in a similar manner. For this purpose one
considers the correlation function of two elementary plaquette operators separated
in Euclidean time. Using the strong coupling expansion one can identify the
exponential decay, and extract the correlation length whose inverse is the massgap
or glueball mass.

5.3 Standard Wilson Action for Lattice QCD

We still need to couple the quarks to the gluons. First we do this by gauging
SU(Nc) in the action of free Wilson fermions of eq.(4.4.1)

SQCD[Ψ,Ψ, U ] = a4
∑

x,µ

1

2a
(Ψ̄xγµUx,µΨx+µ̂ − Ψ̄x+µ̂γµU

†
x,µΨx) + a4

∑

x

mΨ̄xΨx

+ a4
∑

x,µ

1

2a
(2Ψ̄xΨx − Ψ̄xUx,µΨx+µ̂ − Ψ̄x+µ̂U

†
x,µΨx)

− a4
∑

x,µ,ν

1

g2a2
Tr[Ux,µUx+µ̂,νU

†
x+ν̂,µU

†
x,ν + Ux,νUx+ν̂,µU

†
x+µ̂,νU

†
x,µ].

(5.3.1)

In order to eliminate the doubler fermions we have introduced the Wilson term
which breaks chiral symmetry explicitly. The lattice regularized functional inte-
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gral takes the form

Z =
∏

x

∫

dΨ̄xdΨx

∏

x,µ

∫

SU(Nc)
dUx,µ exp(−SQCD[Ψ̄,Ψ, U ]). (5.3.2)

It depends on two parameters — the bare gauge coupling g and the bare quark
mass m. Due to asymptotic freedom, in order to reach the continuum limit one
must take g → 0. When one puts m = 0 for free Wilson fermions one reaches
the chiral limit. In the interacting theory, on the other hand, this is no longer
the case. In particular, since chiral symmetry is explicitly broken, the bare quark
mass m must be fine-tuned in order to reach a massless limit. This fine-tuning is
very unnatural from a theoretical point. In particular, following the discussion in
the introduction, if one imagines Wilson’s lattice QCD as an oversimplified model
for the short-distance physics at the Planck scale, one could not understand at all
why there are light fermions in Nature. The fine-tuning of m is also inconvenient
from a practical point of view. For example, in a numerical simulation of Wilson’s
lattice QCD one must fine-tune m to many digits accuracy in order to make the
pion massless. If one does this at relatively large g, i.e. before one reaches the
continuum limit g → 0, this massless “pion” is not even a proper Goldstone boson
of a spontaneously broken chiral symmetry. For Wilson fermions an exact chiral
symmetry that can break spontaneously does not exist at finite lattice spacing.
It emerges only in the continuum limit after a delicate fine-tuning of m.

5.4 Ginsparg-Wilson Relation and Lattice

Chirality

In the discussion of the perfect free fermion action we have encountered the
Ginsparg-Wilson relation eq.(4.5.16). Following Lüscher, we will now use this
relation to construct a version of chiral symmetry that is natural for a lattice
theory and reduces to the usual one in the continuum limit. For this purpose we
consider a lattice fermion action

S[Ψ̄,Ψ, U ] = a4 Ψ̄D[U ]Ψ = a4
∑

x,y

Ψ̄xD[U ]x,yΨy, (5.4.1)

which is defined in terms of the lattice Dirac operator D[U ]. This operator
should be local (i.e. it should decay exponentially at large distances x − y) but
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not ultralocal. The lattice Dirac operator obeys the Ginsparg-Wilson relation if
the corresponding fermion propagator D[U ]−1 satisfies

{D[U ]−1, γ5} = D[U ]−1γ5 + γ5D[U ]−1 = aγ5. (5.4.2)

Alternatively, the Ginsparg-Wilson relation can be written as

γ5D[U ] +D[U ]γ5 = aD[U ]γ5D[U ]. (5.4.3)

It is non-trivial to construct lattice actions that obey the Ginsparg-Wilson rela-
tion. Until now we have seen that the perfect action for massless free fermions
indeed satisfies this relation. In the next section we will see that the same is true
for overlap fermions. For the moment we don’t worry about the concrete form of
D[U ], we just assume that it obeys eq.(5.4.3).

Let us first consider an infinitesimal chiral rotation of the form familiar from
the continuum

Ψ′ = Ψ + δΨ = (1 + iεaT aγ5)Ψ,

Ψ̄′ = Ψ̄ + δΨ̄ = Ψ̄(1 + iεaT aγ5). (5.4.4)

Here T a (with a ∈ {1, 2, ..., N2
f − 1}) are the generators of SU(Nf ) and εa is a

small parameter. In order to discuss flavor-singlet axial transformations with an
infinitesimal parameter ε0 we also define T 0 = 11. If the lattice action is local and
has no fermion doubling, the Nielsen-Ninomiya theorem implies that it cannot be
invariant under the above chiral rotations. On the other hand, the lattice fermion
measure is invariant under the full chiral symmetry U(Nf )L ⊗ U(Nf )R. This is
very different from massless QCD in the continuum. In the continuum the action
is invariant under U(Nf )L ⊗U(Nf )R chiral transformations, while the measure is
invariant only under SU(Nf )L ⊗ SU(Nf )R ⊗ U(1)L=R. In particular, due to the
anomaly the measure of the continuum theory is not invariant under flavor-singlet
axial transformations, while the measure of the lattice theory is invariant.

Next we consider Lüscher’s modification of the standard chiral transformation

Ψ′ = Ψ + δΨ =
(

1 + iεaT aγ5(1 − a

2
D[U ])

)

Ψ,

Ψ̄′ = Ψ̄ + δΨ̄ = Ψ̄
(

1 + iεaT a(1 − a

2
D[U ])γ5

)

. (5.4.5)

Through D[U ] Lüscher’s lattice version of a chiral transformation depends on
the gluon field. Still, in the continuum limit a → 0 it reduces to the standard
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chiral symmetry of the continuum theory. It is remarkable that eq.(5.4.5) is a
symmetry of any lattice action that obeys the Ginsparg-Wilson relation eq.(5.4.3).
This follows from

Ψ̄′D[U ]Ψ′ = Ψ̄
(

1 + iεaT a(1 − a

2
D[U ])γ5

)

D[U ]
(

1 + iεaT aγ5(1 − a

2
D[U ])

)

Ψ

= Ψ̄D[U ]Ψ + Ψ̄ (iεaT a[γ5D[U ] +D[U ]γ5 − aD[U ]γ5D[U ]]) Ψ

+ O(ε2)

= Ψ̄D[U ]Ψ + O(ε2). (5.4.6)

Similarly, the variation of the lattice fermion measure takes the form

DΨ̄′DΨ′ = DΨ̄
(

1 + iεaT a(1 − a

2
D[U ])γ5

)(

1 + iεaT aγ5(1 − a

2
D[U ])

)

DΨ

= DΨ̄DΨ (1 + iεaTr[T aγ5(2 − aD[U ])]) + O(ε2)

= DΨ̄DΨ
(

1 − iε0aTr[γ5D[U ]]
)

+ O(ε2). (5.4.7)

Hence, while any Ginsparg-Wilson fermion action is invariant under Lüscher’s
lattice chiral symmetry, the lattice fermion measure is not. Exactly as in the
continuum, the fermionic measure of the lattice theory changes under flavor-
singlet axial transformations, while it is invariant under SU(Nf )L ⊗ SU(Nf )R ⊗
U(1)L=R. We will see later that the non-invariance of the fermionic measure under
flavor-singlet axial transformations indeed gives rise to the correct axial anomaly.

5.5 Domain Wall and Overlap Fermions

In the early nineties Kaplan proposed a novel method to preserve chirality on
the lattice. The idea was to use the fact that chiral fermions become trapped
on domain walls. Kaplan used a Wilson-Dirac operator in five dimensions with
a mass term that is a function of the fifth direction. In particular, the mass
term changes sign creating a four-dimensional domain wall at the points where it
vanishes. A four-dimensional chiral fermion is then trapped on the domain wall.
In the meantime Narayanan and Neuberger were developing an idea of using an
infinite number of regulator “flavor” fields to preserve chirality. They realized
that Kaplan’s construction was equivalent to their idea since the fifth dimension
is analogous to a flavor space. They used their interpretation and argued that the
determinant of a chiral fermion in the background of a gauge field is equivalent
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to the overlap of two many-body fermionic ground states. Initially, it seemed
that the overlap was a reliable technique to regulate even chiral gauge theories
on a lattice. Unfortunately, it was soon realized that the fermions with opposite
chirality (which originate from an anti-wall) could not be easily decoupled.

Although it was not clear whether the domain wall and overlap approach gave
a completely satisfactory formulation of lattice chiral gauge theories involving no
doublers of opposite chirality, something highly non-trivial had been achieved. It
was possible to construct a lattice theory with a fermion with opposite chirality
and use it effectively to preserve chiral symmetry in a vector-like gauge theory.
An elegant way to use a five-dimensional fermion action to represent quarks in
lattice QCD was first proposed by Shamir and elaborated further by Furman
and Shamir. This fermion is commonly referred to as a domain wall fermion
and is used extensively in lattice simulations. Its action is constructed on a
five-dimensional space-time lattice with coordinates (x, x5), where x refers to the
usual four dimensions and x5 ∈ {a5, 2a5, ..., L5} refers to the fifth direction of
finite extent L5. Since the fifth direction is physically different from the other
directions we have introduced a new lattice spacing a5 in that direction. The
domain wall fermion action is given by

SF [Ψ̄,Ψ, U ] = a4a5

∑

x,x5,y,y5

Ψ̄x,x5
DDW [U ]x,x5;y,y5

Ψy,y5
. (5.5.1)

The domain wall Dirac operator is given by

DDW [U ]x,x5;y,y5
= δx5,y5

D‖[U ]x,y + δx,yD
⊥[U ]x5,y5

,

D‖[U ]x,y = Mδx,y +
∑

µ

1

2a

(

γµUx,µδx+µ̂,y − γµU
†
x−µ̂,µδx−µ̂,y

)

−
∑

µ

1

2a

(

2δx,y − Ux,µδx+µ̂,y − U †
x−µ̂,µδx−µ̂,y

)

,

D⊥[U ]x5,y5
=











(PR δ2a5,y5
− δa5,y5

)/a5 −mPL δL5,y5
for x5 = 1,

(PR δx5+a5,y5
+ PL δx5−a5,y5

− δx5,y5
)/a5 for a5 < s < L5,

(PL δL5−a5,y5
− δL5,y5

)/a5 −mPR δa5,y5
for x5 = L5.

(5.5.2)

Here PR and PL are the chiral projection operators defined in eq.(3.2.5). In
the above action the parameter M is not the mass of the quark that is bound
to the wall. By comparing with Wilson fermions one sees that the sign of the
Wilson term has changed. In order to produce massless quarks one should set
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0 ≤ M ≤ 2/a5 at tree level and take L5 → ∞. There is a technical problem
that needs to be taken into account. When L5 becomes infinite there are only
Nf flavors of four-dimensional massless quarks bound to the wall, but there is an
infinite number of modes at the cut-off. This may cause spurious effects at low
energies. Hence one needs to use bosonic (Pauli-Villars type fields) to cancel the
contribution of these high-energy modes.

There is a close connection between the domain wall approach and the overlap
formula developed by Narayanan and Neuberger. Neuberger realized that it is
possible to find an analytic formula for an effective Dirac operator that describes
the massless chiral mode of the domain wall fermion. Using his insight on the
overlap formula for vector-like gauge theories, he found a simple and elegant
formula for the four-dimensional Dirac operator, which is referred to as the overlap
Dirac operator and which is given by

DO[U ] =
1

2a

[

1 + γ5
H [U ]
√

H [U ]2

]

(5.5.3)

where H [U ] = γ5D
‖[U ] and D‖[U ] is the operator we defined above in the context

of the domain wall fermion. In order to obtain massless quarks one needs to set
0 ≤Ma ≤ 2/a5 as before. In fact, it is possible to find an analytic formula for an
effective Dirac operator that represents the chiral massless modes of the domain
wall fermion even for finite L5 . This operator takes the form

DL5
[U ] =

1

a

[

1 + γ5
(1 + H̃[U ])L5/a5 − (1 − H̃[U ])L5/a5

(1 + H̃[U ])L5/a5 + (1 − H̃[U ])L5/a5

]

, (5.5.4)

where

H̃[U ] = γ5X̃[U ], X̃[U ] =
a5D

‖[U ]

2 + a5D‖[U ]
. (5.5.5)

In the limit of L5 → ∞ one obtains

lim
L5→∞

DL5
[U ] = DDWO[U ] =

1

2a

[

1 + γ5
H̃[U ]
√

H̃ [U ]2

]

, (5.5.6)

which reduces to the overlap Dirac operator DO[U ] when a5 → 0.

Although today we know that the Ginsparg-Wilson relation leads to an exact
chiral symmetry on the lattice, this connection was not appreciated until recently.
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After Ginsparg and Wilson discovered this interesting relation they found it dif-
ficult to explicitly construct a local operator that satisfies it. The relation was
soon forgotten. After the discovery of perfect and overlap fermions the relation
was rediscovered by Hasenfratz. It is straightforward to check that DO[U ] and
DDWO[U ] indeed satisfy the Ginsparg-Wilson relation. These new Dirac opera-
tors couple every pair of sites on the lattice. It is possible to show that if one
wants to benefit from good chiral properties of Ginsparg-Wilson fermions, one
has to give up the notion of ultralocal actions. However, close to the continuum
limit the couplings in the overlap Dirac operator fall off exponentially with the
distance. In this sense these new Dirac operators are still local. Unfortunately,
the closeness to the continuum limit is quite important to maintain both the
chiral and local properties of the Dirac operator. Recently, a physical picture
based on the locality of zero modes of the Dirac operator was used to map out
the regions in coupling constant space where DO[U ] and DDWO[U ] lead to a good
regularization of massless quarks.
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Chapter 6

The Monte Carlo Method

A powerful numerical technique to solve problems in statistical mechanics or lat-
tice field theory is the so-called Monte Carlo method. Here we discuss the appli-
cation of the method in the context of classical spin models. The generalization to
other statistical mechanics systems and to lattice field theory is straightforward.
The idea behind the Monte Carlo method is to compute expectation values by
generating spin configurations numerically. Of course, the partition function is an
extremely large sum, such that doing it with numerical brute force is completely
hopeless. In the Monte Carlo method predominantly those spin configurations
are generated that have the largest contribution to the partition function. In fact,
the Boltzmann factor exp(−βH[s]) is used as the probability to generate the spin
configuration [s].

6.1 The Concept of a Markov Chain

In a Monte Carlo simulation one generates a sequence of spin configurations

[s(1)] → [s(2)] → ...→ [s(N)], (6.1.1)

which form a so-called Markov chain, by applying an algorithm that turns the
configuration [s(i)] into [s(i+1)]. The initial configuration [s(1)] is either picked at
random or selected otherwise. Ultimately, nothing should depend on this choice.
After a (possibly large) number M of Monte Carlo iterations (applications of
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the algorithm) an equilibrium is reached, and the system has forgotten about
the initial configurations. Only the configurations generated after equilibration
are used in the actual calculation. To estimate the expectation value of some
observable one averages its values over all configurations of the Monte Carlo
sample

〈O〉 = lim
N→∞

1

N −M

N
∑

i=M+1

O[s(i)]. (6.1.2)

In the limit N → ∞ the calculation becomes exact. At finite N−M one makes a
calculable statistical error that decreases in proportion to 1/

√
N −M − 1. Hence,

to increase the numerical accuracy by a factor of two one must run the Monte
Carlo algorithm four times as long. The Boltzmann factor exp(−βH[s]) is not
explicitly included in the above sum. It is implicitly included, because the con-
figurations in the Markov chain occur with probability exp(−βH[s]).

6.2 Ergodicity and Detailed Balance

To demonstrate that a particular Monte Carlo algorithm converges to the correct
equilibrium distribution it is sufficient to show that it is ergodic and obeys detailed
balance. Ergodicity means that starting from an arbitrary initial configuration
the algorithm can in principle reach any other spin configuration. This condition
is obviously necessary, because the correct value for the expectation value can be
obtained only if all spin configurations are included. Detailed balance means that

exp(−βH[s])w[s, s′] = exp(−βH[s′])w[s′, s]. (6.2.1)

Here w[s, s′] is the transition probability for the algorithm to turn the configu-
ration [s] into [s′]. A Monte Carlo algorithm is completely characterized by the
corresponding w[s, s′]. Since the algorithm definitely generates a new configura-
tion the proper normalization is

∑

[s′]

w[s, s′] = 1. (6.2.2)

When the Monte Carlo algorithm converges to an equilibrium distribution p[s] of
spin configurations, this distribution is an eigenvector of w[s, s′] with eigenvalue
1

∑

[s]

p[s]w[s, s′] = p[s′]. (6.2.3)
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Now we want to show that the canonical Boltzmann distribution

p[s] = exp(−βH[s]) (6.2.4)

is indeed an eigenvector of w[s, s′] if the algorithm obeys detailed balance. We
find

∑

[s]

exp(−βH[s])w[s, s′] =
∑

[s]

exp(−βH[s′])w[s′, s]

= exp(−βH[s′])
∑

[s]

w[s′, s]

= exp(−βH[s′]). (6.2.5)

Assuming ergodicity one can show that only one eigenvector with eigenvalue 1
exists, and that the equilibrium distribution is therefore unique.

6.3 The Metropolis Algorithm

A simple example of an algorithm that is ergodic and obeys detailed balance is
the so-called Metropolis algorithm. In this algorithm a new configuration [s′] is
randomly chosen based on the old configuration [s]. If the energy of the new
configuration is smaller than the energy of the old configuration, the new config-
uration is accepted, i.e.

H[s′] < H[s] ⇒ w[s, s′] = 1. (6.3.1)

On the other hand, if the new energy is larger, the new configuration is accepted
only with a certain probability, i.e.

H[s′] > H[s] ⇒ w[s, s′] = exp(−β(H[s′] −H[s])). (6.3.2)

Otherwise the old configuration is kept. This algorithm obeys detailed balance.
Let us consider two configurations [s] and [s′]. We can assume that H[s′] <
H[s] such that w[s, s′] = 1. Then of course, H[s] > H[s′] such that w[s′, s] =
exp(−β(H[s] −H[s′])), and hence

exp(−βH[s])w[s, s′] = exp(−βH[s])

= exp(−βH[s′]) exp(−β(H[s] −H[s′]))

= exp(−βH[s′])w[s′, s]. (6.3.3)
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We still need to specify how a new configuration is proposed. In the Ising
model one visits the spins one by one and proposes to flip them. The resulting
change of the energy is calculated by investigating the neighboring spins. Then
following the Metropolis algorithm, it is decided if a given spin is flipped or not.
When all spins on the lattice have been updated in this way one has completed
one Metropolis sweep. It is obvious that any spin configuration can, at least in
principle, be reached in this way, i.e. the Metropolis algorithm is indeed ergodic.
A typical Monte Carlo simulation consists of a large number of sweeps, say 1
million, for example.

6.4 Error Analysis

Since any practical Monte Carlo simulation has a finite length, the results are not
exact but are affected by statistical errors. Hence, an important part of every
Monte Carlo calculation is the error analysis. An ideal Monte Carlo algorithm
(which doesn’t exist in practice) would generate a Markov chain of statistically
independent configurations. If the Monte Carlo data for an observable O are
Gaussian distributed, the standard deviation from their average (i.e. their statis-
tical error) is given by

∆O =
1√

N −M − 1
〈(O − 〈O〉)2〉 =

1√
N −M − 1

(〈O2〉 − 〈O〉2). (6.4.1)

In order to reduce the statistical error by a factor of two, the number of indepen-
dent equilibrated configurations N −M must hence be increased by a factor of
four.

Practical Monte Carlo algorithms (like the Metropolis algorithm) are not ideal,
i.e. they do not generate statistically independent configurations. In particular,
the Metropolis algorithm is rather simple, but not very efficient. Since the new
configuration is generated from the previous configuration in the Markov chain,
subsequent configurations are correlated. This implies that the actual statistical
error is larger than the above naive estimate of the standard deviation. In order
to detect the autocorrelation of the Monte Carlo data it is useful to bin these
data. For this purpose one averages a number Nb of subsequent measurements
and treats this average as a statistically independent result. One then computes
the standard deviation based on the (N −M)/Nb statistically independent aver-
ages. Of course, if the bin size Nb is too small, the averages are still correlated
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and the corresponding standard deviation still underestimates the true statistical
error. When one increases the bin size Nb, the corresponding standard devia-
tion increases until subsequent bin averages are indeed statistically independent.
Once the standard deviation has reached a plateau (by increasing Nb), one has
obtained a reliable estimate of the true statistical error.

In order to estimate the number τ of Monte Carlo iterations that separate
statistically independent spin configuration, it is also useful to determine the
autocorrelation function of some observable O

〈O(i)O(i+t)〉 = lim
N→∞

1

N −M − t

N−t
∑

i=M+1

O[s(i)]O[s(i+t)] ∝ exp(−t/τ). (6.4.2)

The autocorrelation time τ of the Metropolis algorithm actually increases when
one approaches a second order phase transition. At a second order phase transi-
tion the correlation length ξ diverges. One finds so-called critical slowing down

τ ∝ ξz, (6.4.3)

where z is a dynamical critical exponent characterizing the efficiency of a Monte
Carlo algorithm. For the Metropolis algorithm one finds z ≈ 2, which leads to a
very bad critical slowing down behavior.
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Chapter 7

Conclusions

These lectures have only covered the most basic features of field theory on the lat-
tice. Recent lattice developments have put chiral symmetry on a solid theoretical
basis at a non-perturbative level. As discussed in the introduction, lattice QCD
can now explain non-perturbatively why nucleons can exist naturally, i.e. without
fine-tuning, far below the Planck scale, provided that space-time has additional
hidden dimensions. This in turn explains why gravity is so weak, a non-trivial
result one obtains from lattice QCD without doing any numerical work. Even
chiral gauge theories like the standard model have now been constructed rigor-
ously beyond perturbation theory. This is a very substantial step forward in the
theoretical formulation of the basic laws of Nature. The development of Ginsparg-
Wilson lattice fermions is also beginning to revolutionize practical lattice QCD
simulations. In particular, if new algorithmic developments go hand in hand with
the recent theoretical insights, Ginsparg-Wilson fermions may lead to substan-
tial progress towards an accurate numerical solution of QCD. As usual, many
new questions arise based on the new insights. For example, supersymmetry still
waits to be put on rigorously solid grounds beyond perturbation theory. Also
many practical numerical calculations with Ginsparg-Wilson fermions still need
to be done. These notes may provide a certain basis for newcomers to enter this
very active field of current research.

There is a vast literature of research articles on lattice field theory and there
are some text books as well. Michael Creutz’s book is still a good elementary
introduction to the subject. The book by Gernot Münster and Istvan Montvay
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is more complete and can be highly recommended. However, it is already a
number of years old and does not cover the more recent developments, especially
concerning chiral symmetry on the lattice. A more recent very good book that
incorporates the breakthrough in the understanding of lattice chiral symmetry is
the one authored by Thomas DeGrand and Carleton DeTar. Martin Lüscher has
written a number of beautiful reviews on various advanced aspects of lattice field
theory, including chiral gauge theories. These are perhaps the best pedagogical
texts available at this level. However, the most exciting way to learn lattice field
theory is probably to pick an interesting non-perturbative research problem and
try to solve it using this very powerful technique.
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Chapter 8

Exercises

The following simple exercises may be useful to get started working on lattice
field theory problems.

1) Path Integral for a Free Particle

A free non-relativistic particle of massmmoves on an infinite line. Use Feynman’s
path integral in real time to evaluate the transition amplitude for going from the
point x at time t = 0 to the point x′ at time t = T .

2) Free Particle on a Circle

A free non-relativistic particle of mass m moves on a circle of circumference L.
Use Feynman’s path integral in real time to evaluate the transition amplitude for
returning to the point x after a time T . Extract the energy spectrum from this
result.
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3) Transfer Matrix of the 1-dimensional Ising Model

Consider the ZZ(2)-symmetric Ising model with spin variables sx = ±1 on a 1-di-
mensional periodic lattice with N points and with the nearest-neighbor Hamilton
function

H[s] = −J
∑

〈xy〉

sxsy.

Evaluate the partition function

Z =
N
∏

x=1

∑

sx=±1

exp(−βH[s]) = TrT N ,

and analyze the N -dependence in order to extract the spectrum of the transfer
matrix

T (sx, sy) = exp(βJsxsy).

Determine the correlation length as a function of β. Is there a second order phase
transition, and if so at what temperature?

4) Spectrum of the 1-dimensional XY-Model

Consider the O(2)-symmetric XY-model with variables ϕx ∈ [−π, π] on a 1-di-
mensional lattice with the nearest-neighbor Hamilton function

H[ϕ] = −J
∑

〈xy〉

cos(ϕx − ϕy).

Construct the transfer matrix T (ϕx, ϕy) and determine its spectrum. Determine
the correlation length as a function of β. Is there a second order phase transition,
and if so at what temperature?

5) Lattice Scalar Field

Consider a real-valued free scalar field Φ on a 4-dimensional space-time lattice.
Derive the 2-point function 〈Φ(−p)Φ(p)〉 in momentum space. Use this result in
order to obtain the lattice dispersion relation between energy E and momentum
pi.
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6) Fermionic Lattice Path Integral

Consider Grassmann variables Ψx, Ψ̄x, Ψy and Ψ̄y on a lattice with two points x
and y. The fermionic Euclidean action is given by

S[Ψ̄,Ψ] = Ψ̄xΨy + Ψ̄yΨx +m(Ψ̄xΨx + Ψ̄yΨy).

Evaluate the partition function

Z =
∫

DΨ̄DΨ exp(−S[Ψ̄,Ψ]),

using the rules for Grassmann integration. Determine the values of the 2-point
function 〈Ψ̄xΨx〉 and 〈Ψ̄xΨy〉.

7) From the Group to the Algebra

Assume that Ω(x) is an SU(Nc) gauge transformation, and prove that the ex-
pression iΩ(x)∂µΩ(x)† is in the su(Nc) algebra.

8) Gauge Covariance of a Parallel Transporter

Consider a parallel transporter UC = P exp
∫

C dxµAµ(x) constructed from a non-
Abelian SU(N) gauge field Aµ(x) along an open curve C from x0 to x1. Show
that the gauge transformation Aµ(x)

′ = Ω(x)(Aµ(x)+∂µ)Ω(x)† induces the trans-
formation U ′

C = Ω(x0)UCΩ(x1)
†.

9) Metropolis Algorithm for the 1-d Ising

Model

The purpose of this exercise is to develop a Metropolis Monte Carlo code for
the 1-d Ising model. It would be useful to have a MAIN program from which
appropriate subroutines are called. In the MAIN program one could define a
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field (e.g. SPIN(N)) that contains the spin value for each lattice point N. It is
also useful to define fields that contain the left and right neighbors of a given
lattice point (e.g. ILEFT(N) and IRIGHT(N)). In this way periodic boundary
conditions are easily implemented.

The MAIN program should call a subroutine START which sets an initial
spin configuration. In principle, it does not matter which initial configuration
one picks. However, it will be a good check of the procedure that the final
answers should be statistically independent of the initial configuration. Hence,
it would be useful to allow for different initial configurations, e.g. a completely
ordered one with all spins parallel, or a random one. In order to assign a random
value to an Ising spin, one can put it to 1 if a random number is larger than 1/2
and to −1 otherwise.

The program should then contain a subroutine METROPOLIS in which one
Metropolis sweep through the lattice is performed. In one sweep each spin is sub-
jected to one Metropolis update, i.e. its neighbors are examined and the change
of the energy under spin flip is calculated. Then the spin is flipped or not, ac-
cording to the rules of the Metropolis algorithm. If the spin should be flipped
with probability p, one can pick a random number x and flip the spin if x < p.

There could also be a subroutine MAGNETIZATION which measures the
magnetization of a given configuration. This value is then used in the computa-
tion of the susceptibility. An even more efficient method is to keep track of the
magnetization after each individual spin update.

An important part of each Monte Carlo routine is the error analysis. When
the Monte Carlo data are written into a file, the error analysis can be performed
with a separate program.

Finally, we like to compare the results of our Monte Carlo simulation with the
exact analytic results. For this purpose we need a separate routine that evaluates
the exact result numerically. One can then compare Monte Carlo and analytic
results and decide if they agree within the statistical errors. At first they will
usually not and one must start the sometimes painful process of debugging the
code.
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10) Metropolis Algorithm for the 2-d Ising

Model

The Monte Carlo program for the 2-d Ising model can be based on the one for
the 1-d model and requires only minor modifications. In particular, the neighbor
lists must be modified and the change of the energy under spin flip must take
into account the interactions of a spin with all four neighbors.

One can now measure the susceptibility and show that it peaks near the an-
alytically known critical temperature. It is also useful to monitor the statistical
errors as one approaches the critical temperature. One will then see that the
Metropolis algorithm becomes rather inefficient. It suffers from critical slowing
down, i.e. the number of sweeps between statistically independent spin configu-
rations increases dramatically when one approaches criticality.


