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ABSTRACT 

Motivated by a recent observation that the monopoles in grand unified theories 
tend to force QCD to become nontrivial, we analyze the global topology of the extended 
QCD as a nontrivial non-Abelian gauge theory. In the electric gauge not only the 

*quarks but also the valence part of the potential develop the Nambu string, but the 
dual part of the potential remains free of any string singularity. In contrast, in the 
magnetic gauge the dual potential develops the Dirac string while the valence potential 
as well as the quarks become regular. 
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Recently the old problem of defining the color in QCD in the presence of the 

colored monopoles has been readdressed by some authors1p2 within the context of 

grand unified theories. The observation is that selecting the color direction of the 

monopoles in grand unified theories3 amounts to a topological obstruction to the color 

gauge symmetry in such a way that a choice of a global color SU(3) basis is not always 

possible. This observation raises two questions; first how to define the color,:! but 

perhaps more importantly how to interprete QCD itself,l in the presence of such a 

topological obstruction. As for the definition of the color there is, of course, a much 

more deeply rooted problem which exists even without the topological obstruction: a 

theorem due to Schlieder4 tells that the conserved color charge in classical non-Abelian 

gauge theories has such a severe gauge dependence that one can always choose a 

I 3 gauge in which the total charge vanishes completely, even when there is no topological 

obstruction. The impact of the topological obstruction to QCD itself, however, is 

indeed devastating because in the absence of a global SU(3) basis there can be no 

- globally-defined gauge potentials, and consequently no perturbative &CD. Obviously 

the conventional QCD is not suited to this kind of circumstance. Fortunately there 

exists in the literature an unconventional version of QCD called the extended QCD5@ 

which can accommodate this difficulty. The purpose of this letter is to clarify the global 

topology of the extended QCD and discuss how it works under the above circumstance. 

Before we proceed, it is useful to clarify the problem that we face and put it in 

mathematical terms. Geometrically speaking the so-called topological obstruction1y2 

originates from the fact that6j7 when one reduces a principal fibre bundle P(M, G) 

(with the base manifold M and the structure group G) to a reduced bundle P*(M, H*) 

where H* is a closed subgroup of G, P*( M, H*) could become nontrivial even when one 

starts from a trivial P(M, G). Thus P*(M, H*) does not always admit a global section 
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even if P(M, G) does. This means that even if one starts from a smooth potential of 

G which is reducible to H*, the reduced potential will necessarily develop a string 

singularity when restricted to H*, if the potential contains a long-range magnetic flux. 

In grand unified theories G is the unifying group and H* is the unbroken little group of 

the Higgs fields which contains the color SU(3). So even if the Higgs fields do not break 

the color SU(3) they prevent us from having smooth color gauge potentials globally, in 

the presence of colored monopoles. lp2 Under this circumstance we have no choice but 

to deal with a nontrivial &CD. The situation here is very similar to the case of Dirac’s 

theory of monopole in which one has to deal with a nontrivial U(1) bundle.8 Notice 

that the conventional QCD always assumes the existence of a global trivialization of 

the underlying principal fibre bundle. 

So the problem is to construct a color gauge theory in the absence of a global 

section, and we will do so in several steps. 5j6 First start from the connection space 

(i.e., the space of the potentials) of a trivial P(M, G) where from now on G is the 

color gauge group, and separate a subspace called the restricted connection9 whose 

holonomy group becomes the Cartan’s subgroup H* of G. Notice that the restricted 

potential is globally defined since we start from a trivial bundle. More significantly 

the restricted potential has a dual structure: it can describe not only the color electric 

charges but also the color magnetic ones. Besides, it can be reduced to an Abelian 

potential on the reduced bundle P*(M, H*). However, when the potential contains a 

color magnetic flux P*(M, H*) b ecomes nontrivial so that the magnetic part of the 

potential develops a string singularity. A best way to separate the restricted connec- 

tion is to impose the magnetic symmetry,6lg i.e., a left isometry H which commutes 

3 



with G, on a generic connection on P(A4, G). For simplicity let us assume G = SU(2) 

and H* = U(1). In this case the magnetic symmetry may be written as 

D, fh = 0, (?h2 = 1) (1) 

where ti is a globally defined (except on isolated point singularities) scalar triplet which 

forms a left isometry Killing vector6y10 in P(M, G). Then the restricted potential B, 

is obtained as the solution of the potential B, of Eq. (l), 

(2) 

:. 

where A, = ti . 2, is the color electric potential which is globally defined with 

no string singularity. Now, when the second homotopy IIz(G/H) defined by ti is 
a- 

nontrivial, @, becomes dual so that its magnetic part ti X 3, ti, describes point-like 

colored monopoles. The duality can be made more explicit in the magnetic gauge6Jg 

I where ti becomes &= (0, 0, I), 

where G, is the singular magnetic potential. Notice that although G, can be absorbed 

into A, locally, this is not possible globally. Physically G, is the part of the potential 

which violates the Bianchi identity. 

Due to the magnetic symmetry the field strength GpV of b, must be proportional 

to ??I, 

. G,v = (F,w + f&v) r?~ (4 

where 
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FPY =i+,A,-&A, 

=a,&-a,c, . 
This means that the field ti not only specifies the global topology of the gauge sym- 

metry, but also naturally selects the color electric direction, and it does so without 

breaking the gauge invariance since the magnetic symmetry (1) is a gauge covariant 

constraint which can be applied in any gauge. This observation allows us to circum- 

vent the disturbing theorem by Schlieder4 and the other difficulties2 in defining the 

color in extended &CD. 

I r- In the magnetic gauge the most general potential B, may be written as 

&,=(A,+C,)i3+X;il+X;i2 (5) 

where Xi and Xz are globally defined fields free of any string singularity. Now let us 

-try to remove the string in a, by going back to the original gauge which we will call 

the electric gauge from now on. In the electric gauge one finds 

&;A, h-i rbx~pfh+x~rb~+x;rj12 

where 

(6) 

. 
mi =uii (i= 1,2,3; ti3=4 . 

Here come two points to be emphasized. First XP = Xj ir + Xi 82 transforms 

covariantly under a gauge transformation. This is due to the Afhne nature of the con- 

nection space: since 3, is the difference between the two points (2, and BP) in the con- 

nection space it must transform covariantly under a gauge transformation. More im- 

portantly, by writing 3, = B,+X, we have made a gauge independent decomposition 
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of the potential into the dual part and the covariant part. The second point is that 

in the electric gauge the covariant part &, develops a string singularity while the dual 

part b, becomes regular. This is so because when &(G/H) is nontrivial, no global 

basis for G is possible. This can best be shown in the one monopole sector which may 

be reached by the following U, 

cos 6 cos2 f#~ + sin2 f$ , - sin2 (j sin 24 , sin8 cos+ , 

U= - sin2 i sin 24 , cos 8 sin2 f$ + cos2 f$ , sin 0 sin 4 , 

-sin8 cos# , - sin 8 cos Q , ~0~ e J 

where B and $ are the angular variables of the spherical coordinates of M. This 

shows that XP through t?11 and 69 develops a string along the negative z-axis. This 

demonstrates the fact that we are dealing with a gauge theory in which no global 

,section for its potentials exists. For obvious reasons5,’ we call bP the binding gluon 

and 2, the valence gluon. 

The Lagrangian for the extended &CD may be written in the magnetic gauge as 

” follows, 

L = - ; G$, - $(a, + igB,)X, - (a, + ig&)Xp12 

+ p2X;lXp + P rp(if3, + i BP) r + 6 qp(i3, - f BP) b 

- m(Pr + 6b) + -f---(&rprXl + FypbXp) 
fi 

(7) 

g2 - ig G,, XpX; + 2 [ X,‘X;” - (X;Xp)2] 

where G,, = Fpy + HP”, BP = A, + GP, XP = (I/ &)(Xj + ix,“,, and (r, b) is the 

quark doublet. Notice that, unlike in the conventional &CD, the valence gluons can 

have a mass term in the Lagrangian without breaking the gauge invariance. This is 

so since the valence gluons form a covariant multiplet. Now in the magnetic gauge 



the red and blue quarks are assumed to be globally defined with no string singularity. 

However, in the electric gauge they acquire a string for the same reason that the 

valence gluons do. Explicitly in the one monopole sector one has 

co9 !i 
- 0 -i$ -sang e 

sin; e’@  cos ; 

so that the quarks develop a string along the negative z-axis. In conclusion, in the 

electric gauge alJ the colored objects, the quarks as well as the valence gluons, develop 

a string while in the magnetic gauge only the binding gluon does. Naturally the string 

in the electric gauge may be called the Nambu string and that in the magnetic gauge 

the Dirac string. Notice, however, that all these strings are for the moment purely 

topological and carry no energy.” 
a- 

Now a few words about the confinement are in order. For this one has to study 

the vacuum structure of the theory. In the absence of any colored objects (the quarks 

as well as the valence gluons) the theory may be described (in the electric gauge) by 

the two regular fields; a charged scalar field c!~ which represents the point-like magnetic 

charge and its regular dual magnetic potential CP given by 

H* = f cpvpa HP= PV 

=a,c,-a,cp . 

Then one may suppose that the theory could be approximated by the following La- 

grangian, 

Lo=I(a,+i~C,)~12-~H;: . 

This Lagrangian with a proper renormalization condition is known to generate a dy- 

namical symmetry breaking, l2 which in our case could be interpreted as a magnetic 
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condensation of the vacuum. This will guarantee the dual Meissner effect which con- 

fines any colored flux. Once the condensation takes place, the Nambu strings will of 

course become physical and carry energy. Finally as for the asymptotic freedom13 we 

notice that inside the hadrons (after the confinement) the magnetic potential 6, in the 

Lagrangian (7) may safely be neglected, since the magnetic condensation must occur 

only outside the hadrons. In this approximation the Lagrangian describes exactly the 

conventional (i.e., the trivial) &CD. This will guarantee the asymptotic freedom for 

the extended QCD inside the hadrons. 

To sum up, we have shown how a nontrivial QCD which does not allow a global 

section for its potentials could describe the strong interaction within the context of 

the extended &CD. Although our argument here is based on SU(2) it can easily be 

_-generalized to SU(3). Th e crucial difference between the conventional QCD and the 

extended one is the presence of the scalar field +$ of which the magnetic potential 

becomes a composite field. The role of ti is trifold. First it specifies the global 

- topology II,(G/H) of the gauge symmetry. Secondly it automatically selects the color 

electric direction and thus allows us to define the color charge in a gauge invariant 

way. Thirdly and perhaps most importantly, it makes the physical meaning of the 

theory more transparent by providing us with a gauge independent decomposition 

of the gluon fields into the dual part and the valence part. The dual part could be 

important to study the vacuum structure of the theory and the valence part could be 

useful to discuss the spectrum of the glueballs and their mixing with q ij pairs.5T’4 The 

idea of the magnetic condensation of the QCD vacuum has been speculated by many 

authors.” In extended QCD one may find ways to test this idea. 
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