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Abstract

We consider three models that address the nature of dark matter and that are
characterized by the presence of new scalar fields. In one of them, dark matter is
constituted by a particle with identical quantum numbers as the Higgs boson. In
the other two, the stability of dark matter is due to a discrete symmetry that arises
from the spontaneous breaking of a global symmetry. Consequently, both scenarios
contain a Goldstone boson and another particle that mixes with the Higgs boson.
We investigate the phenomenological consequences in cosmology as well as in direct
and indirect dark matter experiments. In particular, we analyze the gamma-ray
spectral features that arise in dark matter annihilations from every scenario, concretely
monochromatic lines, virtual internal bremsstrahlung and gamma-ray boxes. For
the first model, we show that the one-loop annihilation into gamma-rays violates
unitarity and argue that including the so-called Sommerfeld effect solves this problem.
In addition, for the second and third models, we study the contribution of their
Goldstone boson to the radiation density of the Universe as well as its role in dark
matter production during the Early Universe.

Zusammenfassung

Wir untersuchen drei Modelle, die die Beschaffenheit der Dunklen Materie beschreiben
und sich durch die Existenz von neuartigen Skalarfeldern auszeichnen. In einer
dieser Szenarien ist die Dunkle Materie ein Teilchen mit identischen Quantenzahlen
wie das Higgs-Boson, während in den anderen beiden Modellen die Stabilität des
Dunkle-Materie Teilchens durch eine diskrete Symmetrie garantiert wird, welche
ihren Ursprung in der spontanen Brechung einer globalen Symmetrie hat. Folglich
beinhalten beide Modelle ein Goldstone-Boson und ein weiteres Teilchen welches sich
mit dem Higgs-Boson mischt. Wir untersuchen die phänomenologischen Konsequenzen
im Gebiet der Kosmologie sowie für Experimente zur indirekten und direkten Suche
nach Dunkler Materie. Insbesondere untersuchen wir für jedes der Szenarien spektrale
Merkmale der Gammastrahlung, welche in der Annihilation der Dunklen Materie
entsteht; im speziellen betrachten wir monochromatische Linien, Virtuelle Interne
Bremsstrahlung und boxförmige Spektren. Im Falle des ersten Modells zeigen wir dass
die one-loop Annihilation in Gammastrahlung die Unitarität der Theorie verletzt, und
wir argumentieren, dass die Berücksichtigung des sogenannten Sommerfeld-Effekts
dieses Problem löst. Für das zweite und dritte Modell untersuchen wir den Beitrag
des Goldstone-Bosons zur Strahlungsdichte im Universum sowie seine Rolle in der
Produktion der Dunklen Materie in der Anfangsphase des Universums.
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Introduction

The Standard Model (SM) has been spectacularly confirmed at the Large Hadron Collider (LHC).
In particular, we are sure about the existence of the Higgs boson [1,2], which is -to the best of our
knowledge- the first elementary scalar that has been observed. Nevertheless, only a small part of
the Universe is described by the SM. In fact, the nature of so-called dark matter is unknown in
spite of its gravitational effects in the dynamics of galaxies, clusters of galaxies or in the Universe
at large scale (for a review see [3–5]). Because of this, it is reasonable that other scalar particles
exist and that they are closely related to the properties of dark matter. Consequently, in this
thesis we consider some extensions of the Standard Model that address the nature of dark matter
and that are characterized by the presence of new scalar particles.
In analogy to the Higgs boson, it is conceivable that some of these scalar particles belong to

another scalar doublet. In fact, this is not counter-intuitive as each fermionic representation in
the SM is repeated three times. In this work we address this possibility, specifically we study the
Inert Doublet Model (IDM) [6–18], a minimal extension of the SM which consists in introducing
one extra scalar doublet, odd under an unbroken Z2 symmetry, with identical gauge quantum
numbers as the SM Higgs. The discrete symmetry ensures the stability of the lightest extra
particle, which could therefore be a candidate for dark matter. In spite of the minimality of the
IDM, its phenomenology is very rich. In this work we particularly focus in the possibility of
detecting signatures of the IDM through the observation of the gamma-rays that are produced
in dark matter annihilations. We will see that -in order to do that properly- we must consider a
non-perturbative effect usually called Sommerfeld enhancement [19–28].

Even if dark matter is not made of scalar particles, these can still play an important role in its
phenomenology. In this thesis we investigate two models in which scalar particles are closely
related to the stability of dark matter. In general, the latter is likely due to the existence of a
preserved, or very mildly broken, symmetry in the Lagrangian (see [29] for a review of possible
explanations to the dark matter stability). The simplest symmetry that ensures the absolute
stability of the dark matter particle is a discrete Z2 symmetry, as in the IDM case. The discrete
symmetry in the Lagrangian could be imposed by hand or could, perhaps more plausibly, arise as
a remnant of the breaking of a global continuous symmetry. Indeed, if a global U(1) symmetry
is spontaneously broken by a scalar field with charge 2 under that symmetry, a discrete Z2

symmetry automatically arises in the Lagrangian [30].
As in the case of the IDM, the phenomenology of these models is very rich. In fact, the

spontaneous breaking of a global continuous symmetry, as is well known, gives rise to massless
Goldstone bosons in the spectrum [31–33]. In this work we show that the Goldstone boson that
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arises in this framework could contribute to the radiation density of the Universe and can mimic
neutrinos in the Cosmic Microwave Background [34,35]. In addition, we argue that the Goldstone
bosons associated to the stability of the dark matter also play a crucial role in the dark matter
production. Moreover, we show that these models predict the existence of a CP -even scalar
with similar properties to the SM Higgs. In fact, this leads to the interaction of the dark matter
particle with nucleons, thus opening the possibility of detecting signatures of these models in
direct dark matter search experiments. We also discuss the phenomenological implications of
these models in indirect detection experiments.

This thesis consists of four parts. Part I, which includes chapters 1 and 2, introduces the basics
of dark matter phenomenology. Part II, which consists of chapters 3, 4, 5 and 6, discusses the
IDM. Concretly, in chapter 3, we introduce the model. In chapter 4, we discuss the annihilation
of dark matter into photons and show that we must include a non-perturbative effect, which
we address in chapter 5. In chapter 6, we discuss the limits on the IDM coming from dark
matter indirect detection experiments with gamma-rays. Subsequently, in part III, consisting
on chapters 7,8, 9 and 10, we introduce two models in which the stability of dark matter is due
to the spontaneous breaking of a global symmetry. Chapter 9 discusses the conditions under
which the corresponding Goldstone-boson contributes to the radiation density of Universe, and
in chapter 10, using dark matter indirect detection experiments with gamma-rays, limits on these
models are derived. Finally, we conclude this thesis in part IV.
Some parts of this work have been also discussed in separate articles:

[36] Novel Gamma-ray Spectral Features in the Inert doublet Model,
C. Garcia-Cely and A. Ibarra,
JCAP 1309, 025 (2013)

[37] Dark matter production from Goldstone boson interactions and implications
for direct searches and dark radiation,
C. Garcia-Cely, A. Ibarra and E. Molinaro,
JCAP 1311, 061 (2013)

[38] Cosmological and astrophysical signatures of dark matter annihilations into
pseudo-Goldstone bosons,
C. Garcia-Cely, A. Ibarra and E. Molinaro,
JCAP 1402, 032 (2014)

[39] Sommerfeld Enhanced Gamma-Ray Spectral Features from the Inert doublet
Model,
C. Garcia-Cely, M. Gustafsson and A. Ibarra,
To be submitted
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Part I

Basics of Dark Matter Phenomenology





Chapter 1

Introduction to Dark Matter

Before describing the models under consideration in this thesis, we first introduce the basic
concepts of dark matter phenomenology. In particular, in this chapter we discuss the evidence
that supports the existence of dark matter and describe the properties that this must have.

1.1 Elements of Standard Cosmology

Standard Cosmology is built upon the Cosmological Principle, which states that the Universe at
sufficiently large scales is isotropic and homogeneous. By demanding a solution of the Einstein’s
General Relativity Equations in agreement with this principle, one arrives at the conclusion
that there is a reference frame where the space-time metric takes the so-called Friedmann-
Lemaître-Robertson-Walker (FLRW) form 1. In spherical coordinates t, r, θ, φ this metric is

ds2 = dt2 − a(t)2
(

dr2

1− kr2 + r2(sin2 θ + φ2)
)
, (1.1)

where k = 0, 1 or −1 for a flat, positively curved or negatively curved Universe respectively. The
reference frame where the metric takes this particular form is called the comoving frame.

The function a(t) in Eq. (1.1) is usually called the scale factor and it accounts for the expansion
of the Universe, whose rate is given by the Hubble parameter H ≡ ȧ/a [41].
In order to study the expansion of the Universe it is necessary to consider its energy content,

which -for an isotropic and homogeneous metric- is described by a perfect fluid with energy
density ρ and pressure p. In general, these quantities receive contributions from different types
of fluids: matter, radiation and dark energy. Matter is constituted by non-relativistic particles
- for instance, baryons or dark matter today- and it is therefore pressureless, that is pM = 0.
In contrast, radiation is made of relativistic particles like photons or neutrinos and follows the
equation of state pR = 1

3ρR. Finally, the nature of dark energy is currently unknown, however
for the sake of simplicity I assume here that this component of the Universe is described by a
cosmological constant Λ such that ρΛ = −pΛ = Λ.

1For a comprehensive review see, e.g., [40].
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With this, the Einstein’s equations for the FLRW Universe are∑
i

(ρ̇i + 3H(ρi + pi)) = 0, (1.2)

H2 + k

a2 = 8πG
3

∑
i

ρi. (1.3)

These expressions are called the Friedmann equations. Here i stands for M,R or Λ. On the one
hand, Eq. (1.2) is the energy conservation law for a fluid in a FLRW Universe. In fact, one can
assume that this equation holds individually for the matter, the radiation and the dark energy
fluids. If that is the case, one finds that, as the Universe expands, the different densities scale as
ρM ∝ a(t)−3, ρR ∝ a(t)−4 and ρΛ ∝ a(t)0. On the other hand, Eq. (1.3) describes the evolution
of the scale factor a(t). By writing the energy densities in terms of the critical density ρc

ρc ≡
3H2

8πG, (1.4)

one can write Eq. (1.3) as

1− Ωk = ΩR + ΩM + ΩΛ, where Ωi ≡
ρi
ρc

and Ωk ≡ −
k

a2H2 . (1.5)

Notice that if the total density of the Universe equals the critical density, then the Universe is
flat. If it is less or more, then the Universe is negatively or positively curved, respectively. Today
ρc = 10−5h2 GeV cm−3, where h ≈ 0.7 is the Hubble parameter in units of 100 Km s−1 Mpc−1.
Since the Universe is expanding, in other words a(t) is increasing, the matter and radiation

densities were much greater in the past. Furthermore, at some point in the Early Universe matter
and radiation were in thermal equilibrium due to the rapid collisions of photons with baryonic
matter. As time passed, the Universe became cooler and less dense, and eventually photons
began a free expansion. Today, these photons -which consequently have a thermal spectrum- are
observed as a Cosmic Microwave Background (CMB) with a temperature of T = 2.725K [40].
The moment when the CMB was formed is called recombination era because at this time electrons
bound in atomic nuclei and consequently the universe became transparent to light.
Using the Stefan-Boltzmann law, which states that ργ ∝ T 4, one can estimate the radiation

density from the temperature of the CMB. In fact, today ΩR h
2 = 4.15× 10−5 [40] . Likewise, a

careful analysis of the small temperature fluctuations in the CMB favors Ωk ≈ 0 [40] (see also
section 1.2). In contrast, a dedicated study of the expansion of Universe with observations of
Type Ia supernovae indicates that ΩM ≈ 0.28 [42–45] ,which according to the Friedmann Eq. (1.5)
implies that ΩΛ ≈ 0.72. All this conclusively shows the Universe today is made predominantly of
dark energy and matter. In section 1.2 it is shown that in fact most of the matter content is not
made of baryons -like stars or galaxies- but of a non-baryonic dark matter.
Although today the Universe is dominated by dark energy, at earlier times it was matter-

dominated since ρM ∝ a(t)−3, ρR ∝ a(t)−4 and ρΛ ∝ a(t)0. Furthermore, at times even earlier,
the Universe was dominated by radiation. The transition between the last two epochs occurred
shortly before recombination when the temperature of the Universe was about 1 eV.
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1.2 Experimental Evidence for Dark Matter

In this thesis, we are interested in the temperature dependence of the energy and entropy
densities during the radiation-dominated era. These are given by

ρ = π2g∗T
4

30 , s = 2π2g∗T
3

45 , (1.6)

where g∗ stands for the effective number of relativistic degrees of freedom of the thermal plasma
at a particular moment. Every bosonic helicity contributes to g∗ with a unit, whereas every
fermionic helicity contributes with a factor of 7/8. In addition, Eq. (1.3) implies that during the
radiation-dominated epoch, the Hubble parameter was given by H ' 1.66 g1/2

∗ T 2/mPl, where
we use mPl = G−1/2. Here is a good place to mention that along this thesis we only use natural
units.

Two more aspects of Standard Cosmology are Big Bang Nucleosynthesis and the anisotropies
in the CMB. Because they provide direct evidence for the existence of dark matter, we discuss
them in the next section. We also describe the history of radiation in more detail in section 2.4.

1.2 Experimental Evidence for Dark Matter

In this section we discuss the experimental facts that support the existence of dark matter. We
do not discuss them in the chronological order in which they were discovered or according to
the different scales in which they manifest. Instead, we show first the experimental indications
of a significant amount of non-visible matter in the Universe, and then we discuss the pieces of
evidence that show that such non-visible matter can not be accounted for in the Standard Model
of particle physics.

Virialized Clusters of Galaxies

The first observational evidence for dark matter is often attributed to Fritz Zwicky [46]. In 1933
he applied the virial theorem to estimate the mass of clusters of galaxies and found that in the
Coma Cluster there was about two orders of magnitude more mass than was visually observable.
Here I repeat his argument very succinctly.
Clusters are non-relativistic groups of galaxies that are bound together by the gravitational

force. If Newton’s Law of Gravitation is valid up to this scale and if they have reached a state of
statistical equilibrium in which individual galaxies are moving but there is no further statistical
evolution, then the virial theorem states that

2〈T 〉+ 〈V 〉 = 0. (1.7)

If M is the total mass of the cluster, it is possible to write the average kinetic and potential
energy as 〈T 〉 = 1

2M〈v
2〉 and 〈V 〉 = −1

2GM
2〈1r 〉 respectively, where 〈v

2〉 is the mass-weighted
average of the square velocity and 〈1/r〉 is the corresponding quantity for the inverse separation
of the galaxies. As a result, the virial theorem implies that the mass of a cluster is given by

M = 2〈v2〉
G〈1/r〉 . (1.8)
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Now 〈v2〉 can be estimated from the Doppler shift of the galaxies or from the X-ray spectrum
of the gas in the cluster. On the other hand, 〈1/r〉 can be obtained from measurements of the
angular separation between galaxies in the cluster. Moreover, if the absolute luminosity L of the
cluster is also measured, one can determine the mass-to-light ratio M/L. These estimates have
generally given results of order 300M�/L� (see, e.g., [40]), where M� and L� are the mass and
the absolute luminosity of the Sun. These results are approximately one hundred times greater
than what is expected if the mass of the galaxies is mostly in stars because -in that case- these
should have mass-to-light ratios of order unity in solar units. Based on this argument, Zwicky
inferred that there must be some non-visible form of matter in the Coma cluster. Notice that
using the same argument, one expects that galaxies account for only one percent or less of the
total matter in clusters of galaxies.

Galaxies Rotation Curves

Zwicky noted that a similar method could be applied to single galaxies. Nonetheless, a determina-
tion of 〈v2〉 was not feasible at that time because it was not possible to get accurate spectroscopic
measurements from different parts of a given galaxy. This situation changed since the work of
Vera Rubin and her collaborators [47] at end of the 1960’s. They worked with a new sensitive
spectrograph that could measure the velocity curve of spiral galaxies with a greater degree of
accuracy and concluded that most of the mass of these galaxies is also not in luminous stars.
Here I show a simplified version of the argument.

If the matter moving in the disk of a spiral galaxy obeys Newton’s Law of Gravitation, under the
assumption of spherical symmetry, their centripetal acceleration is given by ~a = −(v(r)2/r)r̂ =
−(GM(r)/r2)r̂, where v(r) is the rotational velocity of the stars at a distance r from the center
of the galaxy and M(r) is the mass enclosed within a sphere of radius r. It follows then that

M(r) = r v(r)2

G
. (1.9)

This is a generalization of Kepler’s Third Law which allows to determine the distribution of mass
within spiral galaxies, in analogy to Eq. (1.8). In particular, if most of the mass of a spiral galaxy
were in the luminous central regions, then the rotational speeds of stars outside this region would
scale as v(r) ∝ 1/

√
r. Instead, it is observed that v(r) outside the central region is roughly

constant, even beyond the visible disk of the galaxy. This would be expected for a spherical halo
with M(r) ∝ r, in which case most of the mass of the galaxy would be in the dark outer parts of
the halo. Thus we find again that there must exist some non-visible form of matter.

Gravitational Lensing

Gravitational lensing is the effect by which light coming from a distant source is bent by
distributions of mass in between the distant object and the observer. There are three types of
gravitational lensing and they are all used in order to infer the existence of dark matter and
study its properties.
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1.2 Experimental Evidence for Dark Matter

1. Strong Lensing: Galaxy clusters are massive enough to significantly bend light coming
from galaxies behind them. Since the effect is determined by the mass distribution, it is
possible to estimate the mass of the clusters for which this effect is observed by measuring the
geometrical distortions. In general, what is obtained is in agreement with mass measurements
based on the virial theorem or X-rays spectroscopy (see below). Furthermore, if the luminosity
is also determined, the resulting mass-to-light ratios are orders of magnitude greater than the
corresponding quantity for visible parts of galaxies, in agreement with observations based on
the virial theorem, and therefore with the existence of non-luminous matter. One remarkable
example of this is given by the galaxy cluster Abell 1689 (see, e.g., [48]).

2. Weak Lensing: Although light is bent by any mass distribution according to general
relativity, this effect seldom forms big arcs or multiple images like in the case of strong lensing.
However, even when the effect is very small, the presence of masses in between the observer
and sources can be detected by analyzing large numbers of sources in order to find coherent
distortions (see, e.g., [40]). These measurements have been used to map out the distribution of
dark matter in many clusters of galaxies. A remarkable example is the bullet cluster, which is
discussed below.

3. Microlensing: As opposed to the cases discussed previously, here the mass of the lens is
too small to produce a visible displacement of light. However, if the massive object is compact
enough the effect of the lensing is observed by an apparent brightening of the source, which can
take place on human time-scales, and therefore detected in order to determine mass distributions.
By using this method in the Milky Way, it has been argued that the dark matter of the halo can
not be composed of massive compact objects -such as planets or brown dwarfs- with masses in
between 10−7 M� < M < 15 M� [49].
Now, we discuss experimental evidence suggesting that this non-visible matter can not be

made of protons or neutrons.

X-rays from Clusters of Galaxies

Because only baryonic matter can emit light in a cluster of galaxies, it is possible to establish the
ratio of the amount of baryonic dark matter to the total non-relativistic matter by studying its
X-ray emission. Moreover, in these studies, it is assumed that the pressure and the gravitational
force balance each other out. Assuming spherical symmetry, at a distance r from the center, this
can be written as

pB(r + dr)− pB(r) = −G(ρB(r) dr)
(∫ r

0 4πr′2ρM (r′)dr′
)

r2 , (1.10)

here ρB and pB are the density and the pressure of the baryonic dark matter whereas ρM is the
total density of the non-relativistic dark matter. Accordingly, the right-hand side of the previous
equation is the force (per unit of area) felt by an infinitesimal portion of the baryonic matter
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Chapter 1 Introduction to Dark Matter

due to the non-relativistic matter enclosed within a radius r. If one assumes that the baryonic
matter behaves as an ideal gas and that its temperature is TB, then pB(r) = kρB(r)TB(r)/mB,
which can be used to write the hydrostatic equilibrium equation (1.10) as

d

dr

[
r2

ρB(r)
d

dr

(
kρB(r)TB(r)

mB

)]
= −4πGr2ρM (r). (1.11)

Now, X-rays coming from clusters of galaxies are produced only by the baryonic matter in their
hot gas. In fact, from the X-ray spectra it is possible to determine the temperature TB of the
baryons. Moreover, from the luminosity of the X-rays and the temperature it is possible to infer
the baryonic density ρB. All this information can be plugged in Eq. (1.11) to determine the
total density of non-relativistic matter. Using this method it is found that [40] within clusters of
galaxies ΩB/ΩM ≈ 0.12. Therefore only about 10% percent of the matter in galaxies clusters is
baryonic.

Big Bang Nucleosynthesis

Soon after the formation of protons and neutrons in the Early Universe, these particles were
present in equal amounts because weak interactions allow proton-neutron conversion by means
of the processes n 
 p + e− + ν̄, n + ν 
 p + e− and n + e+ 
 p + ν̄. However, when the
temperature of the Universe dropped below approximately 1 MeV, the neutron-proton ratio
started decreasing not only because of the Boltzmann suppression for the neutron density but
also because of the disappearance of the electron-positron pairs. Eventually this conversion of
neutrons into protons was stopped by the formation of heavy nuclei, in which neutrons are stable.
A detailed analysis of how and when these processes took place allows to infer the primordial
abundance of nuclei. In particular, for protons -or hydrogen 1H- it is predicted a primordial
mass abundance of around 75%, and for helium 4He a mass abundance of about 25%, along
with small amounts of deuterium 2H, helium 3He and lithium 7Li. These predictions have been
accurately confirmed by observations [50]. Although the exact value of the initial baryon density
does not affect the overall picture, an accurate measurement of the deuterium-hydrogen ratio
does allow to infer the initial baryon density with great precision. Such measurements imply a
ratio of the baryon density to the critical density of ΩB ≈ 0.045. This value is much less than
the fraction that all non-relativistic matter contributes to the critical density ΩM ≈ 0.28, which
can be inferred from studies of galaxies clusters or from the redshift-distance relation of type
Ia supernovae. It is this discrepancy that provided the original evidence for non-baryonic dark
matter in the universe [40].

Anisotropies in the Cosmic Microwave Background (CMB)

At some point in the Early Universe, matter and radiation were in thermal equilibrium due to
the rapid collisions of photons with baryonic matter. As time passed, the Universe became cooler
and less dense, and eventually photons began a free expansion. Today, these photons -which
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1.2 Experimental Evidence for Dark Matter

consequently have a thermal spectrum- are observed as a Cosmic Microwave Background (CMB).
Since these photons originated in the Early Universe, the CMB is highly isotropic. However,
small anisotropies in the CMB were also formed during the Early Universe due to acoustic
oscillations in the primordial plasma. The interactions responsible for these oscillations are the
gravitational and the electromagnetic interactions. Although baryonic matter and dark matter
were both non-relativistic at the time CMB was formed and therefore indistinguishable from a
gravitational point of view, they interacted differently with photons. Hence baryonic and dark
matter had different effects on the acoustic oscillations. Accordingly, the power spectrum of the
CMB anisotropies shows different effects for baryonic matter and dark matter. In particular,
the first peak of the CMB power spectrum -which is the largest- is related mostly to the density
of baryonic matter, whereas the third one is associated mostly to the density of dark matter.
These and other effects in the CMB anisotropies have been investigated by a large number of
experiments. In particular, from the relative heights of the acoustic peaks in the CMB, the
Planck collaboration has determined the following values for the ratios of the baryonic and the
dark matter densities to the critical density [35]

ΩBh
2 = 0.02207± 0.00033 and ΩDMh

2 = 0.1196± 0.0031 . (1.12)

This conclusively shows that the amount of baryonic matter is less than the dark non-baryonic
matter content of the Universe. In fact, dark matter constitutes 84.5% of the total matter.

The Bullet Cluster

The double galaxy cluster 1E0657-558, commonly known as the Bullet Cluster provides one of
the most vivid pieces of evidence for the existence of dark matter, or more precisely, of a form
of matter that does not have non-gravitational interactions with baryonic matter. The bullet
cluster consists of two colliding subclusters, whose major components are galaxies, hot gas and
dark matter [51]. The galaxies -which as argued before account for around one percent of the
total matter- are mostly grouped in the two distinct visible regions. In contrast, using X-rays
techniques, the hot gas is observed in the region in between these two subregions. Finally, using
weak lensing techniques, it is possible to infer that the dark matter also forms two subclusters
that are almost coincident with the galaxies. The interpretation is that two clusters collided. On
the one hand, the hot gas belonging to both clusters slowed much more than the galaxies and the
dark matter due to the electromagnetic interaction among the baryons; on the other hand, the
galaxies due to their smaller density had little chance of close encounters and therefore continued
mostly on their original paths. One therefore concludes that the dark matter continued along its
original path because it interacts weakly with ordinary matter. In particular, the dark matter
component might not interact electromagnetically, which explains why it can not emit light.
Furthermore, although some of the evidence for non-luminous matter can also be interpreted as a
failure of Newton’s Gravitational Law at large scales, the bullet cluster makes this interpretation
unlikely. In fact, at a statistical significance of 8σ, it was found that the spatial offset of the
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Chapter 1 Introduction to Dark Matter

center of the total mass from the center of the baryonic mass subregions can not be explained
with a modification of the gravitational force law [51].

1.3 The Dark Matter Particle

Big Bang Nucleosynthesis allows to conclude that most of the matter in the universe can not
be made of baryons, that is, of protons or neutrons. This conclusion is reinforced by studying
the anisotropies in the CMB and by a careful analysis of the Bullet cluster. We conclude that
some other form of matter exists. Although the nature of this new form of matter is currently
unknown, some its properties are well-established:

• It must be dark. This means that dark matter can not interact significantly with photons,
otherwise we could see dark matter directly in astronomical observations. An immediate
consequence of this is that the new form of matter can not be electrically charged.

• It can not be made of protons or neutrons.

• It must be stable at cosmological scales, otherwise dark matter would not be abundant
today, in contrast with astrophysical and cosmological observations.

• It must have been cold enough to allow for structure formation in the early universe. Cold
here does not refer to an actual temperature but instead refers to how slow the dark matter
moved at the moment when the first structures started to form. In particular, hot dark
matter candidates -such as neutrinos- have been ruled out because they can not form
large-scale structures in agreement with observations [52].

• As explained above, microlensing observations indicate that a significant amount of dark
matter is not made of massive compact objects such as planets or brown dwarfs.

• Experimental limits on the the scattering cross section between dark matter and ordinary
matter suggest that it is unlikely for dark matter to have color charge (see, e.g., [53]).

All this supports the existence of a particle that is not described in the Standard Model of
particle physics. Such particle must be electrically neutral, colorless, stable on cosmological
scales and massive enough to have been cold during the formation of the first structures in the
Early Universe.

There is a plethora of models of physics beyond the Standard Model that attempt to describe
this particle. An incomplete list of popular models is: sterile neutrinos [54], the sneutrino, the
neutralino and the gravitino in the context of supersymmetric theories [55–59], axion dark matter
models [60–65] , Minimal Dark Matter scenarios [24, 66, 67], the Inert Doublet Model [6–18],
Kaluza-Klein dark matter models [68–72] (see [5] for comprenhensive list) . In this work three
models will be discussed, they are introduced in chapters 3, 7 and 8. Their common feature is
the presence of additional scalar particles.
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1.3 The Dark Matter Particle

In general, all these models include more new particles besides the one that accounts for the
dark matter. In fact, these new particles -the dark sector- make the dark matter phenomenology
very rich even when the dark sector is intrinsically simple. The additional particles might be
divided in three groups

1. Particles much heavier than the dark matter. In general these particles do not contribute
to the dark matter phenomenology. In fact, in most cases these particles can be integrated
out from the effective theory describing the dark matter. For instance, this is the case of
the heavy supersymmetric particles in the MSSM.

2. Particles slightly heavier than the dark matter particle. These particles strongly influence
the dark matter phenomenology. In this work we concretely study three examples of this:
coannihilations for the production of dark matter in chapters 3 and 7, virtual internal
bremsstrahlung in chapter 4, and finally Sommerfeld enhancement between different pairs
of particles in chapter 5.

3. Light particles. The dark sector may contain particles lighter than the dark matter. For
instance, a distinctive prediction of the models introduced in part III is the existence of
(pseudo-)Goldstone bosons. These light particles may contribute to the radiation energy
density of the Universe and consequently have been dubbed dark radiation.

In the next chapter we give a general overview of these ideas.
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Chapter 2

The Dark Sector

As mentioned in chapter 1, dark matter models generally include more new particles besides
the one that describes dark matter. The set of all of them constitutes the dark sector. In this
chapter we investigate dark sectors with a Z2 symmetry. We also study those with relativistic
particles, which we call dark radiation.

2.1 Stability of Dark Matter and the Symmetries of the Dark Sector

One of the most striking features of the dark matter particle is its long lifetime, longer than
the age of the Universe - about 1018 seconds - and possibly much longer as indicated by the
non-observation of its decay products in cosmic ray experiments [73], for instance longer than
about 1026 seconds if antiprotons are produced copiously when the dark matter decays. This
observation suggests that the dark matter particle is stable.

As shown in Table 2.1, in the Standard Model the stability of all the particles can be explained
in terms of a symmetry principle. The photon is stable because it is the massless gauge boson
associated to the exact U(1)em gauge symmetry. Similarly, the electron is stable because it is
the lightest particle with electric charge, and its decay would violate the U(1)em symmetry. In
addition, the lightest neutrino is stable because it is the lightest particle with half-integer spin,
and hence Lorentz symmetry - or more precisely quantum angular momentum conservation-
forbids its decay. And finally, the proton is stable because it is the lightest particle with baryonic
number, and therefore U(1)B symmetry forbids its decay. Likewise, one would expect that the
longevity of the dark matter particle is likely due to the existence of a preserved, or very mildly

Particle Symmetry
Photon Gauged U(1)em
Electron U(1)em

Lightest Neutrino Lorentz Symmetry
Proton U(1)B

Dark Matter Z2, U(1)DM, ...

Table 2.1: Symmetries associated to the stability of each particle of the Standard Model.
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broken, symmetry.
Many popular dark matter models rely on this assumption. For instance, in the MSSM the

lightest supersymmetric particle -which is assumed to be a dark matter candidate- is stable due
to R−parity, which for any particle of spin S, lepton number L and baryon number B is given by
R = (−1)2S+3(B−L). With this charge assignment all the supersymmetric particles of the MSSM
are odd under R−parity while the SM particles are even. Although this symmetry was originally
introduced to forbid certain interactions that lead to proton decay, it was soon realized that
R−parity guarantees the stability of the lightest supersymmetric particle and therefore provides
a dark matter candidate. Another example is given by Minimal Dark Matter models. Here the
symmetry group is the same of the Standard Model. Nevertheless, an accidental symmetry at
renormalizable level arises when the dark matter belongs to a high SU(2)L multiplet. In the
IDM, to be discussed in part II, the dark matter particle belongs to a gauge multiplet with the
same quantum numbers of the Standard Model scalar, but it is charged under a Z2 symmetry
group. For a comprehensive review of similar examples (see, e.g., [29]).
From now on, for the sake of simplicity and because it is the case of the models discussed in

this thesis, we assume that a Z2 symmetry ensures the stability of the dark matter.

2.1.1 The Z2 Symmetry

The discrete group Z2 describes the behavior of even and odd integers under addition. This is a
group operation because the addition of two even numbers or two odd numbers is even and the
addition of an even and odd number is odd. Accordingly, the representations of this group are
also called even and odd. Notice that this group is isomorphic to the set {1,−1} along with the
number multiplication.

The Z2 group is the simplest non-trivial group and in fact it can be used to ensure the absolute
stability of dark matter if all the Standard Model particles are even under this group while
the dark matter particle -and possibly other particles- are odd. Furthermore, it is necessary to
assume that dark matter corresponds to the lightest odd particle because, in that case, the dark
matter can not decay into lighter particles.

2.1.2 Postulated or Derived from First Principles?

This discrete symmetry in the Lagrangian could be imposed by hand. Nevertheless, it is desirable
to give an explanation for the origin of such symmetry. For instance, this symmetry could arise
as a remnant of the breaking of a global continuous symmetry. Indeed, if a global U(1) symmetry
is spontaneously broken by a scalar field with charge 2 in units of the smallest U(1)-charge, a
discrete Z2 symmetry automatically arises in the Lagrangian. Moreover, all the fields with even
(odd) charge under the global group will acquire, after the spontaneous symmetry breaking, an
even (odd) discrete charge under the Z2 transformation [30]. Therefore, the lightest particle with
odd charge is absolutely stable and a potential candidate for dark matter. This is the case of the
models discussed in this work in part III.
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2.2 Dark Matter Annihilation in the Early Universe and its
Abundance Today

Although the Z2 symmetry in the dark sector forbids the decay of dark matter particles, a pair of
them may annihilate without violating such discrete symmetry. As a consequence, the number of
dark matter particles is not conserved. Nevertheless, as we show in this section, the abundance
of dark matter today does not depend on the initial conditions of the Universe as long as it was
in equilibrium with the rest of particles at some point. When this happens, we say that the dark
matter has been thermally produced [40,74–77].

2.2.1 Thermal Production of Dark Matter

Dark matter annihilations occurred more often in the Early Universe because its density was
much higher back then. Moreover, the inverse processes also took place when the thermal energy
of ordinary particles was high enough to produce dark matter pairs. Thus, at that point, the dark
matter number density nDM was given by the chemical equilibrium conditions of the primordial
plasma, or equivalently, by a Boltzmann distribution, which is proportional to the temperature to
the third power for relativistic particles. Because the comoving volume is inversely proportional
to T 3, this means that the dark matter density only changed due to the expansion of the Universe.

However, soon after the temperature dropped below the dark matter mass, it was not possible
for the lighter particles to annihilate into dark matter pairs and consequently the density of dark
matter decreased faster than T 3. Moreover, at some point the abundance of dark matter was
so little, that the equilibrium between lighter particles and dark matter did not exist anymore.
This point is called freeze-out. As a matter of fact, since the annihilation rate is proportional to
the density, at some point this became smaller than the expansion rate of the Universe, that is,
the annihilation process stopped being efficient and hence the dark matter density changed again
only due to the expansion of the Universe, and therefore became proportional to T 3 as before.
When the Universe became matter dominated, the critical density also became proportional to
T 3 and therefore ΩDM became constant.
Since ΩDM can be measured very precisely, invoking thermal production of dark matter in a

particular model constrains severely its parameter space. Because of this reason, it is essential to
study such mechanism quantitatively. This can be done by means of the Boltzmann equation.

2.2.2 The Boltzmann Equation

Suppose that there are N particle species, that have an odd charge under the Z2 symmetry, and
that each of them has a density equal to ni, where i = 1, ...N . The lightest among these particles
corresponds to the dark matter. We now derive the Boltzmann equation that describes the total
density of odd particles n =

∑N
i=1 ni.
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Chapter 2 The Dark Sector

The simplest case. For the sake of illustration, we consider first the case of N = 1 and constant
annihilation cross section σv. Then, the dark matter annihilation rate per particle is given by nσv,
where v is its relative velocity. The number of particles in a comoving volume is na3, and hence
the decrease rate of dark matter particles in such volume is (na3)(nσv). Since the thermal plasma
also creates particles at rate G the total rate is d(na3)/dt = −(na3)(nσv)+G. Since in equilibrium
this rate is zero we have that G = (neq)2a3σv and consequently d(na3)/dt = −(n2 − (neq)2)a3σv.
Using the fact that the Hubble parameter is H = ȧ/a, we conclude [74]

dn

dt
+ 3H n = −σv(n2 − (neq)2) . (2.1)

This is the Boltzmann equation for the case when N = 1 and σv is independent of the velocity.
Here neq is the equilibrium density given by the Boltzmann distribution of a particle of mass M
and g internal degrees of freedom

neq = gM2T

π2 K2

(
M

T

)
, (2.2)

where Kn(x) is the modified Bessel function of the second kind of nth order.

General case. The general case requires some modifications. If the cross section depends on the
velocity of the dark matter, it is necessary to perform an average over the dark matter velocity,
or equivalently, a thermal average. Furthermore, if there are many particles charged under the
Z2 group, it is necessary to introduce an effective annihilation cross section [78]

〈σeffv〉 =
N∑

i,j=1
〈σijv〉n

eq
i

neq
neqj
neq

, (2.3)

with

〈σijv〉 =
∫∞

(Mi+Mj)2
ds√
s
K1

(√
s
T

)
(s− (Mi +Mj)2)(s− (Mi −Mj)2)σ(ij → all)

8TM2
iM

2
jK2(Mi

T )K2(Mj

T )
, (2.4)

neqi = giM
2
i T

π2 K2

(
Mi

T

)
and neq =

∑
i

neqi . (2.5)

Here gi is the particle internal degrees of freedom. In terms of these quantities, the generalization
of the Boltzmann Eq. (2.1) reads

dn

dt
+ 3H n = −〈σeffv〉(n2 − (neq)2) . (2.6)

For the models that are considered in this work, we solve the Boltzmann Eq. (2.6) using
micrOMEGAs 3.1 [79]. The solution gives the total density of particles that are charged under
Z2 group. All these particles must eventually decay into the dark matter. As a result, n
corresponds to the dark matter density nDM today. From this, the dark matter energy density
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ρDM = MDMnDM can be calculated and, if this quantity is divided by the critical density, one
obtains the relic density ΩDM .
In general, not all the particles that are charged under the Z2 group should be included in

the Boltzmann equation because the equilibrium densities, given in Eq. (2.5), are proportional
to K2(Mi/T ) which decays exponentially with the mass. As a consequence, it is a very good
approximation to include only the dark matter and the particles whose mass is similar to dark
matter mass in the Boltzmann equation. These particles are called the coannihilating species.

2.2.3 Instantaneous Freeze-out Approximation

In general, a full integration of the Boltzmann equation is needed in order to calculate the
relic density. Nonetheless, an approximate solution - the so-called instantaneous freeze-out
approximation [80]- can be applied under the following circumstances:

• When the annihilation process is not mediated by resonances.

• When the annihilation process is not close to a kinematical threshold. In other words,
when the total mass of the annihilating particles and the total mass of the annihilation
products are not close to each other.

Then it is possible to identify two regions where the Boltzmann equation can be solved analitically.
On the one hand, at very early times when the temperature was much higher than the dark matter
mass, its density was given by the Boltzmann distribution neq, because under that circumstance
- as explained before- neq ∝ T 3 ∝ 1/a3 and n = neq is a solution of Eq. (2.5). On the other
hand, for temperatures much smaller than its mass, the density of dark matter deviated from
the equilibrium density, in fact n� neq. Then, the two conditions from above can be used to
prove [80] that there was transition between the two regions corresponding to the moment when
the dark matter density started deviating from the the equilibrium distribution. This transition
is called the freeze-out. The temperature at which it happened can be estimated by comparing
the annihilation rate with the expansion rate, that is, by solving

neq 〈σv〉eff
H

∣∣∣∣∣
T=Tf

≈ 1, (2.7)

which implies that the freeze-out temperature Tf implicitly satisfies

xf ∼ log

0.038gDMmPlMDM 〈σeffv〉
g∗(xf )1/2x

1/2
f

 , where xf = MDM/Tf . (2.8)

From the general discussion at the beginning of this section, one expects xf > 1. In fact, typically
xf ≈ 20− 30, and therefore dark mater is non-relativistic at Tf .

After the freeze-out, the equilibrium density was much smaller than n in Eq. (2.6). Consequently
n2 − neq2 ≈ n2 and the resulting expression can be integrated from the freeze-out to the present.
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In fact one obtains that

n(t0) = 1
a(t0)3

(
1

n(tf )a(tf )3 +
∫ t0
tf

〈σeffv〉dt
a(t)3

) ' 1
a(t0)3 ∫ t0

tf

〈σeffv〉dt
a(t)3

. (2.9)

Recalling that during the radiation-dominated era H = 1.66 g
1/2
∗ T 2/mPl and that ρc =

10−5h2 GeV cm−3, one finds that the dark matter relic density is approximately equal to

ΩDMh
2 = MDM n(t0)

ρc/h2 (2.10)

' 1.07× 109 GeV−1

J(xf ) g∗(xf )1/2mPl
= 1.02× 10−27 cm3s−1

J(xf ) g∗(xf )1/2 , (2.11)

where J is called post freeze-out annihilation integral and is given by

J(xf ) =
∫ ∞
xf

〈σeffv〉
x2 dx . (2.12)

Suppose now that there are no coannihilations, resonances or kinematical thresholds. Furthermore,
assume a constant annihilation cross section σv so that the post freeze-out annihilation integral
can be solved. Then Eq. (2.11) gives the annihilation cross section as a function of the dark
matter abundance. For ΩDMh

2 = 0.1196 and g∗(xf ) ∼ 100, one obtains

σv ' 3× 10−26cm3s−1. (2.13)

This is the so-called thermal cross section and it is the expected value for the simplest case but
it does not apply in general. Moreover, this cross section is of the same order of magnitude as
the weak interaction cross sections of particles with masses around the electroweak scale. This
supports the hypothesis that dark matter is in fact made of a weakly interacting massive particle
(WIMP). In fact, the thermal production of dark matter is generally associated to WIMPs.

Since at the freeze-out dark matter is non-relativistic, the effective thermal cross section 〈σeffv〉
can be expanded in the velocity. In fact,

〈σijv〉 = a+ 6
(
b− a

4

) 1
x
, if σijv = a+ bv2 . (2.14)

The first term in this expansion is called the s-wave and the second term the p-wave.
In chapters 3, 7 and 8, we apply the formalism of this section in order to calculate the dark

matter relic abundance for the different models under consideration in this thesis.

2.3 Dark Matter Searches

In spite of its gravitational effects in the dynamics of galaxies, clusters of galaxies or in the
Universe at large scale, dark matter has not been observed on Earth. In this section we describe
some search strategies that are currently pursued in order to achieve that goal. In particular, we
describe direct and indirect dark matter experiments. For others, in particular collider searches,
see [5].
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2.3.1 Direct Detection Experiments

A very promising search strategy of dark matter goes under the name of direct detection (For
a comprehensive review see [5]). This sort of experiments aims at detecting WIMPs through
the observation of their recoil off atomic nuclei [81]. In fact, if the Milky Way dark matter halo
is made of WIMPs, the motion of the earth across the galaxy can produce a flux of WIMPs
sufficiently large so that some of them elastically scatter off nuclei. In fact, those recoils can be
detected by measuring the ionization of atoms struck by the recoiling nucleus, or by counting
the photons emitted by these atoms, or by measuring the vibrations in the crystal lattice of the
detector. Moreover, failing to observe nuclear recoil events excludes regions in the plane direct
detection cross section vs. dark matter mass. As of 2014, the best limits on this plane has been
provided by the LUX collaboration [82]. In chapters 6, 7, 8 and 10, we consider these limits in
order to constrain the parameter space of the models of this thesis.

2.3.2 Indirect Detection Experiments and Photons from Dark Matter Annihilations

Dark matter particles may annihilate without violating the Z2 symmetry. As shown in section
2.2, this property is essential to understand the thermal production of dark matter in the Early
Universe. In particular, a detailed analysis of dark matter annihilations allows to establish
when their rate became smaller than the expansion rate of the Universe and therefore when
annihilations effectively stopped taking place, leading to the abundance of dark matter that is
observed today.
While annihilations no longer continue on the whole Universe, they may still go on in those

regions where the density of dark matter is relatively large. In fact, searching for the products
of theses annihilations is another promising method to identify dark matter and its properties.
Experiments with this aim are called indirect detection experiments because they do not attempt
to detect dark matter directly but only its annihilation products. For a review see [5].
The general idea goes as follows. Somewhere in the Universe where its density is high, dark

matter annihilates into some particles and these in turn decay producing a flux of photons,
electrons, protons, positrons, antiprotons and/or (anti-)neutrinos. Subsequently, these propagate
from the point where they are produced until they reach the earth. Among all of them, photons
play a significant role because of two reasons. On the one hand, because they propagate basically
unperturbed and hence they directly point to their source. On the other hand, and more
importantly, because the photon spectra typically exhibits spectral features.
The photon flux produced in dark matter annihilations and received at Earth from a given

solid angle in the sky, ∆Ω, is given by

dΦγ

dEγ
= 1

8π

( 1
∆Ω

∫
∆Ω

JdΩ
) 〈σv〉

M2
DM

∑
f

Bf
dNf

dEγ

 , (2.15)

where the J-factor is the integral of the squared dark matter density ρDM along the line of sight
J =

∫
l.o.s. dsρ

2
DM , Bf the branching ratio into a channel f , and Nf the number of photons per
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annihilation associated to that channel at a particular energy. The second parenthesis includes
the particle physics input, that is, the photon spectrum dNf/dEγ and the cross sections into
gamma-rays of each individual annihilation channel. In contrast, the first parenthesis includes all
the astrophysics information, in particular the distribution of the dark matter whose annihilation
gives rise to gamma-rays. Although other targets can be used, in this thesis we consider only
dark matter annihilations in the center of the Milky Way.

In our galaxy, two popular dark matter distributions are the Einasto profile, favored by recent
N -body simulations [83–85],

ρDM(r) ∝ exp
[
− 2
α

(
r

rs

)α]
(2.16)

with rs = 20 kpc and α = 0.17 [86,87], as well as the Navarro-Frenk-White (NFW) profile [88,89]

ρDM(r) ∝ 1
(r/rs)[1 + (r/rs)]2

, (2.17)

with scale radius rs = 21 kpc [90], both profiles normalized to a local dark matter density
ρDM(r = 8.5 kpc) = 0.39 GeV cm−3 [91–94]. Here we have assumed that the distance from the
earth to the galactic center is 8.5 kpc.

Notice that the gamma-ray flux is proportional to the dark matter annihilation cross section.
This can be expanded on partial waves: σv = a+ bv2, because dark matter is non-relativistic
today. As we discussed before, the first term in this expansion is called the s-wave and the second
term the p-wave. If the first term does not vanish, the gamma-ray flux is not suppressed by v2.
In contrast, if the s-wave vanishes, or equivalently if the dark matter annihilates via p-waves,
the flux is suppressed and in general very small. Therefore, the phenomenology of indirect dark
matter detection crucially depends on whether the annihilation proceeds via s-waves or p-waves.
We will see an example of this in chapter 10.

We now discuss the gamma-ray spectra. If dark matter annihilates producing quarks, leptons,
gauge or Higgs bosons, then their hadronization and further decay create a soft featureless
photon spectrum with a cutoff at the kinematical energy limit, which is the dark matter mass.
This spectrum is universal in the sense that it is very similar for almost all the final states and
depends very weakly on the mass (if the energy is normalized with respect to it). Since the
astrophysical background, which is not well understood, is also soft and extends over many orders
of magnitude, it is very difficult to claim a discovery of dark matter based only on signals like
this one.

In contrast, there are at least three known processes that give rise to features in the photon
spectrum which are directly related to dark matter properties, in particular, to its mass. We
show examples of these processes in Fig. 2.1.
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Figure 2.1: Example of three known processes that lead to spectral features in the photon spectrum:
annihilation into photons (left), VIB (center) and gamma-ray boxes (right).

Monochromatic Lines

The simplest and best known case corresponds to monochromatic lines coming from dark matter
annihilations [10,72,95–102]. An example of this is shown on Fig. 2.1 on the left. Indeed, if dark
matter annihilates into a particle of mass m and a photon, conservation of energy-momentum
indicates that the energy of the latter in the center of mass frame is

Eγ = MDM

(
1− m2

4M2
DM

)
. (2.18)

If the dark matter is a WIMP, this photon shows up as a line in the gamma-ray spectrum.
Moreover, the line coincides with the dark matter mass, provided that this is much greater
than m. Because known astrophysical processes do not produce monochromatic high-energy
gamma-rays, it is practically impossible for the astrophysical background to mimic a signature
like this. As a consequence, this spectral feature is usually considered a smoking-gun evidence of
dark matter.
Since dark matter does not couple to photons directly, unfortunately these processes are

generally loop-suppressed and the expected flux in Eq. (2.15) is generally small. In this work
and in particular in chapters 4 and 6 we study monochromatic lines in the IDM.

Virtual Internal Bremsstrahlung (VIB)

Although dark matter can not couple to photons directly, it can couple to charged particles,
and these can subsequently emit photons. As a result, dark matter annihilations at tree-level
can produce photons as long as the final state has at least three particles. Accordingly, in this
case there is no loop suppression but there is a phase-space suppression in comparison with the
two-body final state of monochromatic lines.
An example of this sort process is shown in the central part of Fig. 2.1. Photons emitted

in this way can be classified in two categories: as final state radiation and as virtual internal
bremsstrahlung (VIB) [71, 103–112]. In the former case, photons are emitted from final state
particles, whereas in the second case they are emitted from charged virtual states. We stress
however that these definitions are not completely rigorous because emissions from individual
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Feynman diagrams are not gauge-invariant in general. In fact, when there is VIB, there is
typically final state radiation as well. Nevertheless, the converse is not true, and therefore
speaking of only final state radiation is justified.

In general, final state radiation is dominated by collinear photons and the spectrum is therefore
roughly model independent and characterized by a sharp cut-off at its kinematical end-point.
On the other hand, VIB can produce line-like spectral features under certain circumstances:

• When the three-body state satisfies a symmetry of the initial state that cannot be satisfied
by the two-body final state. For instance, this is the case of Majorana dark matter
annihilation into chiral fermions, where the initial and final state necessarily have different
helicities, and the emission of a photon anti-parallel to the chiral fermions restores the
symmetry of the initial state. Moreover, the kinematics of this process allows only photons
with energies close to the dark matter mass, and therefore in this case the gamma-ray
spectrum presents a bump at its end-point.

• Line-like features in the spectrum can also be produced when the final state consists of
bosons and there is a charged particle in the t-channel whose mass is similar to the one
of the dark matter [105]. In this work and in particular in chapters 4 and 6 we study an
example of VIB for the IDM, where this situation takes place.

Boxes

Likewise, a box-shaped photon spectrum is produced if dark matter annihilates into two interme-
diate neutral scalar particles and then these decay into photons. This can be understood from
the fact that the intermediate particles have a fixed energy in the center of mass, but the photons
that are produced in their decay might have different energies depending on the directions in
which they are emitted with respect to the intermediate particle. From this argument one can
see that that box is centered around half the dark matter mass and its width is determined by
the mass of the intermediate particle.

Moreover, due to the resolution of the gamma-ray instruments, the box spectrum can resemble
a line in certain limits as argued in [113], providing therefore another class of spectral feature.
An example of this sort of processes is shown on Fig. 2.1 on the right. In chapter 10 we
study an example of gamma-ray boxes. In this particular case, dark matter annihilates into a
pseudo-Goldstone boson which subsequently decays into two photons.

2.4 Dark Radiation

Any relativistic particle in the dark sector that contributes to the radiation density of the Universe
can be called dark radiation. Before discussing this topic in detail, we review the history of
radiation in Standard Cosmology.

36



2.4 Dark Radiation

When the temperature of the Universe dropped below the muon mass, only photons, neutrinos,
electrons and positrons were relativistic and therefore only they contributed to the radiation
density of the Universe. Moreover, all these particles were in equilibrium due to electroweak
interactions. In fact, weak processes such as e+e− 
 νν̄ kept neutrinos in equilibrium with
the positrons and electrons, which were in turn in equilibrium with photons. Nevertheless, the
neutrinos decoupled from the rest of particles once the weak interactions were no longer efficient
compared to the expansion rate of the Universe. Indeed, the neutrino decoupling happened when

neqν 〈σv〉νν̄→e+e−
H

∣∣∣∣∣
T=T dν

≈ 1 . (2.19)

Here neqν is the equilibrium density of neutrinos and T dν is the temperature at which the decoupling
took place. A careful analysis of the previous equation allows to conclude that T dν ' 2 − 3
MeV [40,114–116].
Subsequently, at the end of the neutrino decoupling epoch, when the temperature of the

Universe dropped below the electron mass, positrons could no longer be thermally produced
and therefore disappeared from the thermal bath due to their annihilation with electrons. At
the same time, electrons became gradually non-relativistic and therefore stopped contributing
to the radiation density. These processes led to an increase in the temperature of the photons,
which can be quantified by considering the conservation of the entropy per comoving volume s
during that period of time. This law implies that s ∝ g∗ T 3 remained constant, where g∗ stands
for the effective number of relativistic degrees of freedom of the thermal plasma. Every bosonic
helicity contributes to g∗ with a unit, whereas every fermionic helicity contributes with a factor
of 7/8. As a consequence, the ratio of photon temperatures before and after the positron-electron
annihilation satisfies (see Fig. 2.2 )

(
Tbefore
Tafter

)3
= g∗after

g∗before
= 2

2 + 7
8(2 + 2)

= 4
11 . (2.20)

Consequently, the ratio between the neutrino and the photon temperatures after the electron-
positron annihilation is given by

T 0
ν

T 0
γ

=
( 4

11

)1/3
. (2.21)

Here the superindex 0 refers to times after the electron-positron annihilation, for example to
the recombination era, when the CMB was formed. In Fig. 2.2 we sketch the processes that the
radiation of the universe underwent when the neutrinos decoupled from the photons and when
the electron-positron pairs annihilated.

Ever since the electron-positron annihilation, only photons and neutrinos have contributed to
the radiation density ρ0

R of the universe, that is, ρ0
R = ρ0

γ + ρ0
ν . Since any radiation density is
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annihilation

t

T

Figure 2.2: Sketch of the processes that the radiation of the universe underwent when the neutrinos went
out of equilibrium with the photons and when the electron-positron pairs annihilated. The
red line represents the relative temperature of the different fluids. The thicker the line, the
higher the relative temperature. At first electrons, positrons, photons and neutrinos were in
equilibrium. Subsequently weak interactions stopped being efficient and neutrinos decoupled.
Afterwards, the electron-positron pairs annihilate, heating the photons with respect to the
neutrinos.

proportional to the temperature to the fourth power and to the effective number of relativistic
degrees of freedom, the total radiation density is given by

ρ0
R = ρ0

γ

(
1 + 7

8

( 4
11

)4/3
Neff

)
, (2.22)

where the first term on the right hand side is the contribution of the photons and the second
term is the contribution of the neutrinos. Here Neff is the number of neutrinos species, which
we expect to equal 3. Nonetheless, in the Standard Model of Cosmology this is not the case,
because neutrinos did not decouple instantaneously. In fact, the neutrino decoupling is not
entirely complete by the time of electron-positron annihilation. In spite of that, Eq. (2.22) can
be used to define Neff in terms of the total radiation density and the photon density. If the
non-instantaneous neutrino decoupling is accounted for, the predicted value for the effective
number of neutrino species is Neff = 3.046 . By performing a detailed analysis of the CMB from
Planck data, WMAP9 polarization data and ground-based observations of high-` multipoles
of the power spectrum, the Planck Collaboration has determined that Neff = 3.36+0.68

−0.64 at 95%
C.L. [35].
If there exists a particle that contributes to the radiation density of the universe ρR, the

predicted value for Neff would be different from 3.046. For instance, as mentioned before, a
prediction of the models introduced in part III is the existence of (pseudo-)Goldstone bosons. We
discuss their contribution to Neff and explain their phenomenological consequences in chapter 9.
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The Inert Doublet Model





Chapter 3

Model I : Dark Matter as an Inert Higgs

3.1 The Inert Doublet Model (IDM)

The IDM is an extension the Standard Model with a colorless SU(2) doublet Ψ with hypercharge
1/2. Furthermore, a discrete Z2 symmetry is postulated so that the Standard Model particles are
even under this group while the extra scalar Ψ is odd. Because this symmetry forbids a coupling
between the SM fermions and Ψ, the extra doublet is called inert. The Lagrangian of the model
is

LIDM ⊃ LΦ,Ψ = LYukawa + (DµΦ)†(DµΦ) + (DµΨ)†(DµΨ)−m2
1Φ†Φ−m2

2Ψ†Ψ (3.1)

−λ1(Φ†Φ)2 − λ2(Ψ†Ψ)2 − λ3(Φ†Φ)(Ψ†Ψ)− λ4(Φ†Ψ)(Ψ†Φ)− 1
2
(
λ5(Φ†Ψ)(Φ†Ψ) + h.c.

)
,

where Dµ stands for the covariant derivative and Φ is Standard Model doublet. We remark that,
due to the Z2 symmetry, LYukawa does not depend on the extra scalar and is therefore identical to
the Yukawa Lagrangian of the Standard Model. In addition, it is assumed that the Z2 symmetry
remains unbroken after the electroweak symmetry breaking and consequently that only the Higgs
doublet acquires an expectation value. With these assumptions the doublets can be cast as

Φ =

 G+

vh+h+iG0
√

2

 , Ψ =

 H+

1√
2
(
H0 + iA0)

 , (3.2)

where vh =
√
−m2

1
λ1
≈ 246GeV, G0 and G+ provide the longitudinal components of the of the Z

and W bosons through the Brout-Englert-Higgs mechanism and h is the Standard Model Higgs.
On the other hand, the inert scalars are two additional charged states H±, one CP-neutral state
H0 and one CP-odd neutral state A0. Because of the discrete symmetry, the lightest particle
described by the inert doublet is stable. If it is neutral, it is also a dark matter candidate.

3.2 Gauge Interactions

The term in the Lagrangian (3.1) with the covariant derivatives gives rise to the gauge interactions
between the inert scalars. These can be divided in two: cubic and quartic interactions

(DµΨ)†(DµΨ) ⊃ LGauge,Ψ = LCubic + LQuartic (3.3)
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Particle
Feynman Rule

1 2 3 4
H− H+ A - −ie (pµ3

1 − p
µ3
2 )

H0 H− W+ - ig
2 (pµ3

1 − p
µ3
2 )

A0 H− W+ - −g
2 (pµ3

1 − p
µ3
2 )

H0 A0 Z - − g
2cW (pµ3

1 − p
µ3
2 )

H− H+ Z - ig(2c2W−1)
2cW (pµ3

1 − p
µ3
2 )

H− H+ A A 2ie2gµ3µ4

H− H0 A W+ ieg
2 gµ3µ4

H− A0 A W+ − eg
2 gµ3µ4

H0 H0 W− W+ ig2

2 gµ3µ4

A0 A0 W− W+ ig2

2 gµ3µ4

H− H+ W− W+ ig2

2 gµ3µ4

H− H+ A Z
ieg(2c2W−1)

cW
gµ3µ4

H0 H− W+ Z − ie2

2cW gµ3µ4

A0 H− W+ Z e2

2cW gµ3µ4

H0 H0 Z Z ie2

2c2W s2W
gµ3µ4

A0 A0 Z Z ie2

2c2W s2W
gµ3µ4

H− H+ Z Z
ie2(2c2W−1)2

2c2W s2W
gµ3µ4

Table 3.1: Feynman rules for the gauge interactions of the inert particles according to Eqs. (3.4)
and (3.8).

Cubic Gauge Interactions In this case the gauge bosons interact with the inert scalars by
means of gauge currents

LCubic = JµAAµ + JµZZµ +
(
Jµ†W−W

−
µ + h.c.

)
, (3.4)

with

JµA = ie
(
∂µH+H− −H+∂µH−

)
(3.5)

JµZ = ig

2cW

(
(−1 + 2c2

W )(∂µH+H− −H+∂µH−) + iA0∂µH0 − iH0∂µA0
)

(3.6)

JµW− = − ig2
(
∂µH−(H0 + iA0)−H−∂µ(H0 + iA0)

)
(3.7)

Quartic Gauge Interactions These are contact interactions between two gauge bosons and two
scalars

LQuartic = e2AµA
µH+H− + eg

cW
(1− 2c2

W )AµZµH+H−

+ g2

4c2
W

ZµZ
µ
(1

2(H02 +A02) + (1− 2c2
W )2H+H−

)
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+ g2

2 W
−
µ W

+µ
(1

2(H02 +A02) +H+H−
)

+ eg

2cW
(−sWZµ + cWAµ)

(
W−µH+(H0 − iA0) + h.c.

)
. (3.8)

All the corresponding Feynman rules are listed on Table 3.1

3.3 Scalar Interactions and Parameters of the Model

In the Feynman Gauge the scalar potential reads

− LScalar = 1
2
(
M2
hh

2 +M0
H0H02 +M2

A0A02)+M2
H+H+H−

+ λ1
4
(
4vhh+ h2 +G02 + 2G+G−

) (
h2 +G02 + 2G+G−

)
(3.9)

+ λ2

(1
2A

02 + 1
2H

02 +H+H−
)2

+ λ5(vh + h)G0H0A0

+ H0

2
(
H+G−

(
(λ4 + λ5)(vh + h) + i(λ4 − λ5)G0)

)
+ h.c.

)
+ A0

2
(
H+G−

(
i(−λ4 + λ5)(vh + h) + (λ4 + λ5)G0)

)
+ h.c.

)
+ H02

2

((
λ3 + λ4 + λ5

2

)(
2vhh+ h2

)
+
(
λ3 + λ4 − λ5

2

)
G02 + λ3G

+G−
)

+ A02

2

((
λ3 + λ4 − λ5

2

)(
2vhh+ h2

)
+
(
λ3 + λ4 + λ5

2

)
G02 + λ3G

+G−
)

+ H+H−

2
(
λ3
(
2vhh+ h2 +G02)+ 2 (λ3 + λ4)G+G−

)
+ λ5

2
(
(H+G−)2 + h.c.

)
where

M2
h = −2m2

1 , M2
H+ = m2

2 + 1
2λ3v

2
h ,

M2
H0 = m2

2 + 1
2(λ3 + λ4 + λ5)v2

h , M2
A0 = m2

2 + 1
2(λ3 + λ4 − λ5)v2

h . (3.10)

The corresponding Feynman rules are listed on Table 3.2.
The scalar potential is determined by seven independent parameters, which can be the Higgs

boson mass Mh ≈ 125GeV, the vacuum expectation value of the Higgs field, the dark matter
mass MH0 and the quartic couplings λ2, λ3, λ4 and λ5. These parameters are constrained from
the requirement of vacuum stability [117,118]

λ1 > 0 , λ2 > 0 , λ3 > −2(λ1λ2)
1
2 , λ3 + λ4 − |λ5| > −2(λ1λ2)

1
2 . (3.11)

Besides, the unitarity of the S-matrix for scalar-to-scalar scattering sets upper limits on certain
combinations of couplings [119,120]

λ1 + λ2 ±
√

(λ1 − λ2)2 + λ2
4 < 8π, λ3 ± λ4 < 8π

λ1 + λ2 ±
√

(λ1 − λ2)2 + λ2
5 < 8π, λ3 ± λ5 < 8π (3.12)

3(λ1 + λ2)±
√

9(λ1 − λ2)2 + (2λ3 + λ4)2 < 8π, λ3 + 2λ4 ± 3λ5 < 8π .
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Lastly, it is common to impose also perturbativity on the parameters of the model. This condition
along with the vacuum stability requirement significantly constrain the mass splittings among
the exotic particles. Moreover, for a heavy exotic neutral Higgs (MH0 � MW ) the splitting
is relatively small and we expect the particles belonging to the extra doublet to have nearly
degenerate masses. This is consistent with the fact that at very high energies electroweak
symmetry breaking effects are negligible and that therefore the members of any SU(2)× U(1)
multiplet should have similar masses. Notice that λ4 and λ5 determine the mass splittings
between the different inert scalars at tree level. Nevertheless, loops of SM gauge bosons between
the neutral and charged components also give rise to a mass splitting. This effect has been
calculated in [66] and is equal to

(MH+ −MH0)Quantum = αMZ

2 ≈ 0.36GeV . (3.13)

The scalar potential is indeed Z2 symmetric. Moreover, by performing
(
H0, A0, H+) →(

−A0, H0, iH+) and λ5 → −λ5 the potential remains invariant. This shows that H0 and A0 can
be interchanged. We will then assume in what follows, and without loss of generality, that H0 is
the dark matter candidate. Due to its similarity to the Standard Model scalar, H0 is usually
called inert Higgs dark matter.

3.4 Inert Higgs Abundance

The inert scalars interact with the particles of the Standard Model by virtue of the electroweak
interactions and via the scalar potential. The inert Higgs H0 is thus a WIMP, which presumably
was in thermal equilibrium with ordinary matter in the early universe until the moment in
which its interaction rate became so small that its abundance remained fixed (see section
2.2). The thermal production has been studied extensively in the literature for the IDM (see
e.g. [8, 9, 15,121,122]). In particular, it has been found that co-annihilations play a significant
role in dark matter production, specially for masses above the electroweak scale. Accordingly,
to calculate the relic abundance -as discussed in section 2.2- the following Boltzmann equation
must be solved

dn

dt
+ 3Hn = −〈σeffv〉

(
n2 − (neq)2

)
where n = nH0 + nA0 + nH+ + nH− , (3.14)

with equilibrium densities given by

neqi = M2
i T

π2 K2

(
M±
T

)
. (3.15)
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Particle
Feynman Rule

1 2 3 4
h H0 H0 - −ivh (λ3 + λ4 + λ5)
h A0 A0 - −ivh (λ3 + λ4 − λ5)
h H+ H− - −ivhλ3

G− H0 H+ - −1
2 ivh (λ4 + λ5)

G− A0 H+ - 1
2vh (λ5 − λ4)

G0 H0 A0 - −ivhλ5

H0 H0 H0 H0 −6iλ2

H0 H0 A0 A0 −2iλ2

A0 A0 A0 A0 −6iλ2

H0 H0 H+ H− −2iλ2

A0 A0 H+ H− −2iλ2

H+ H+ H− H− −4iλ2

G0 G0 H0 H0 −i (λ3 + λ4 − λ5)
G+ G− H0 H0 −iλ3

h h H0 H0 −i (λ3 + λ4 + λ5)
G0 G0 A0 A0 −i (λ3 + λ4 + λ5)
G+ G− A0 A0 −iλ3

h h A0 A0 −i (λ3 + λ4 − λ5)
G0 G0 H+ H− −iλ3

G+ G− H+ H− −i (λ3 + λ4)
h h H+ H− −iλ3

G0 G− H0 H+ 1
2 (λ4 − λ5)

G− h H0 H+ −1
2 i (λ4 + λ5)

G0 G− A0 H+ −1
2 i (λ4 + λ5)

G− h A0 H+ 1
2 (λ5 − λ4)

G0 h H0 A0 −iλ5

G− G− H+ H+ −2iλ5

G+ G+ H− H− −2iλ5

Table 3.2: Feyman rules for the scalar interactions of the inert particles according to Eq. (3.9).
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The effective thermal cross section is given by [78]

〈σeffv〉 =
∑
i,j=±

〈σijv〉n
eq
i

neq
neqj
neq

, (3.16)

with

〈σijv〉 =
∫∞

(Mi+Mj)2
ds√
s
K1

(√
s
T

)
(s− (Mi +Mj)2)(s− (Mi −Mj)2)σ(ij → all)

8TM2
iM

2
jK2(Mi

T )K2(Mj

T )
. (3.17)

The observed abundance Ωh2 = 0.1199± 0.0027 [123] in the IDM can be reproduced in three
dark matter mass ranges:

• Low-mass regime. For masses in the GeV range below the W boson mass, dark matter
annihilates mostly into light fermions with a rate controlled by the size of the quartic
couplings in order to match the observed abundance of dark matter. In this regime, three
body annihilations of the type H0H0 →WW ∗ →Wff̄ ′ are also important in some regions
of the parameter space [14].

• Intermediate regime. When the dark matter mass is above MW and below 535 GeV,
the annihilations into weak gauge bosons is so efficient that the dark matter relic density is
smaller than the observed abundance. There is an exception to this for dark matter masses
in between MW .MH0 . 150GeV, if some annihilation diagrams are chosen so that they
can cancel each other out, allowing for a relic density in agreement with observations.
Nevertheless, this region has been ruled out by the XENON100 experiment [15,124].

• High-Mass Regime. When MH0 ∼ 535GeV and the quartic couplings vanish, the
annihilation rate into gauge bosons is small enough to match the observed value of the
relic density. It turns out that the effect of non-zero quartic couplings is to increase
the annihilation cross section. Consequently for masses MH0 & 535GeV, the observed
abundance of dark matter can also be obtained for an appropriated choice of the quartic
couplings. As a consequence of this, the larger the dark matter mass, the larger the
quartic couplings. Likewise, the upper limit on the dark matter is set by the perturbativity
constraint, which is around 58 TeV for quartic couplings of order 4π. In this work we do
not consider quartic couplings so large, in fact we consider only λi . 2, for which M . 6
TeV.

In order to illustrate the dark matter production, we perform a scan over the five dimensional
parameter space. For every point we require perturbativity and unitarity, by demanding that
the quartic couplings satisfy Eqs. (3.11) and (3.13). For each of the points we then solve
numerically the Boltzmann equation Eq. (3.14) by using micrOMEGAs 3.1 [79], working under an
implementation of our model made with FeynRules [125], and select only those points for which the
computed relic density is in agreement within 3σ with the observed value ΩDMh

2 = 0.1199±0.0027.
In Fig. 3.1 we show the relic abundance obtained from the scan. The orange points correspond
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Figure 3.1: Relic abundance obtained from scanning the parameter space of the IDM. The orange points
correspond to those choices that correctly reproduce the cold dark matter relic abundance.

to those choices that correctly reproduce the cold dark matter relic abundance. In this plot we
can clearly see the low-mass and the high-mass regime. We do not tune any parameter of the
model and as a result in the scan we do not find the intermediate regime.

Dark matter direct and indirect detection experiments as well as collider searches have severely
constrained the IDM in the low-mass regime. Although some regions are still allowed, they
either rely on coannihilation or on resonant effects [17]. We take this as motivation to study the
high-mass regime and in this work we only consider that part of the parameter space.
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Chapter 4

Gamma-Rays from Dark Matter Annihilations
in the IDM

In the high-mass regime of the IDM, dark matter annihilations can produce gamma-rays in three
different ways. On first place, when the gauge and Higgs bosons produced in annihilations decay
and fragment. Secondly, from the VIB process H0H0 →W+W−γ. And lastly, from the one-loop
processes H0H0 → γγ and H0H0 → γZ 1. In this chapter, we study H0H0 → γγ and VIB at
the perturbative level. As we will see, non-perturbative effects must be included in order to
satisfy the requirements from unitarity. These effects will be studied in chapter 5. After that, we
will see that including the process H0H0 → γZ in the analysis is straightforward.

4.1 One-loop Annihilation of Inert Scalars into Photons

The invariant amplitude for the process H0H0 → γγ can be cast as

M =Mα3α4εα3(p3)εα4(p4) , (4.1)

3

4

1

2

where ε stands for the photon polarization vectors and the subscripts 3 and 4 refer to the
final state photons, as shown in the figure. As is well known, electromagnetic gauge invariance
severely constrains this amplitude. In fact, Mα3α4 must satisfy the Ward Identities

p3α3Mα3α4 = p4α4Mα3α4 = 0. (4.2)

In the s-wave annihilation limit, both particles of the initial state have the same momentum
(p3 + p4)/2 and therefore the tensor Mα3α4 depends only on p3 and p4. Using this fact, the
transformations properties ofMα3α4 under Lorentz transformations and the Ward identities in

1The corresponding study for the low-mass regime of the IDM was done in [10]
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Figure 4.1: Examples of diagrams contributing to (a) A0, (b) A2 and (c) A3.

Eq. (4.2), it is possible to prove thatMα3α4 must take the form

Mα3α4
∣∣∣
s−wave

= A

(
gα3α4 − pα3

4 pα4
3

2M2
H0

)
, (4.3)

where A is a complex scalar function of the dark matter mass and the quartic couplings. With a
FeynRules [126] implementation of the IDM for FeynArts [127], we calculated the annihilation
amplitude (4.1) in the Feynman gauge. In total there are one hundred and forty diagrams
contributing to it, we only show a subset of them in Fig. 4.1. We found that s-wave piece
effectively takes the form indicated in Eq. (4.3). Furthermore we deduced an analytical formula
for A.
A careful look of the one-loop Feynman diagrams reveals that the only inert scalars in the

loop propagators are H0 and H+. Furthermore, as explicit couplings in the diagrams λ4 and
λ5 appear only in the combination λ4 + λ5, which equals 2 (M2

H0 −M2
H+)/v2

h if we neglect the
quantum effects of Eq. (3.13). As a result the dependence on these quartic couplings can be
written in terms of MH0 and MH+ . A further look shows that the dependence on the other
quartic couplings λ2 and λ3 can be separated explicitly. As a result we find convenient to write
A as

A = A0(MH0 ,MH+) +A2(MH0 ,MH+ , λ2) +A3(MH0 ,MH+ , λ3) . (4.4)

Since the quartic couplings do not change under gauge transformations, the functions A0, A2 and
A3 are gauge-invariant and therefore physically meaningful. In Fig. 4.2 we plot their absolute
values as a function of the dark matter mass, for different choices of the quartic couplings and
the mass splitting between the charged scalar and the dark matter mass. From the plots is clear
that A0 dominates over A2 and A3, specially for heavy dark matter masses. This implies that
the dependence on λ2 and λ3 of the annihilation amplitude is subdominant.
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Figure 4.2: Absolute value of the functions A0, A1 and A2 introduced in Eq. (4.4) for different quartic
couplings combinations. Here δm = MH+ −MH0 . For the continuous lines δm = 0 GeV, for
the dashed lines δm = 1 GeV and for the dotted lines δm = 10 GeV.

As a function of A, the cross section for dark matter annihilation into photons is given by the
expression

σv
(
H0H0 → γγ

) ∣∣∣
s−wave

= |A|2

32πM2
H0
. (4.5)

In order to study the dependence with the mass, we plot σv
(
H0H0 → γγ

) ∣∣
s−wave in the

left panel of Fig. 4.3 for three mass splittings, namely δm = MH+ −MH0 = 0, 1 and 10 GeV
in continuous, dashed and dotted lines, respectively. In addition, we show the effect of the
quartic couplings by plotting the annihilation cross section when λ2 = λ3 = 0 in black, when
λ2 = 2, λ3 = 0 in pink and finally when λ2 = 0, λ3 = 2 in magenta. We can see that the cross
sections depend mildly on the quartic couplings λ2 and λ3 , and depend strongly on the quartic
coupling combination λ4 + λ5, as expected from Fig. 4.2, because this combination determines
the mass splitting δm.

When all the quartic couplings vanish, the cross section is a constant function of the dark matter
mass. This behavior can be traced back to the fact that for TeV dark matter A0 ∝MH0/MW ,
as shown in Fig. 4.2. Partial-wave unitarity [128] sets an upper bound on the total s-wave cross
section

σv|s−wave .
4π

M2
H0v

≈ 1
v

(1TeV
MH0

)2
1.47× 10−22cm3/s . (4.6)

Therefore, we are forced to conclude that the one-loop cross section exceeds the upper bound set
by unitarity for extremely large masses. This violation of perturbative unitarity does not appear
when relativistic velocities are considered. This is shown in the right panel of Fig. 4.3, where
it is possible to see that for heavy dark matter with large velocities the cross section goes like
∼ 1/M2

H0 as opposed to the non-relativistic case.
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Figure 4.3: Left plot: s-wave cross sections for the one-loop processes H0H0 → γγ for three mass

splittings, namely δm = MH+ −MH0 = 0, 1 and 10 GeV in continuous, dashed and dotted
lines respectively. In addition we show the effect of the quartic couplings λ2 and λ3 in different
colors. Right plot: One-loop cross sections for different dark matter relative velocities when
δm = 0. Notice that only for v = 0 the cross section is a constant. In the other case, the cross
section goes like ∼ 1/M2

H0 , as expected from unitarity arguments. Notice that horizontal
scale is different on each plot.

Similar difficulties have been found for neutralino dark matter in the context of the MSSM
[96]. In this scenario, one-loop annihilation cross sections into photons are not suppressed by the
dark matter mass but rather by the W boson mass. It has been shown [22] that this anomalous
behavior is alleviated when higher-order effects are included. The same problem arises in IDM.
The origin of the problem and its solution will be studied in chapter 5.

4.2 Virtual Internal Bremsstrahlung (VIB)

The Invariant Amplitude

The annihilation process into W bosons with the associated emission of a photon, H0H0 →
W+W−γ, is described in the unitary gauge by the fourteen diagrams shown in Fig. 4.4. In
general, the invariant amplitude for this process can be cast as

M =Mα3α4α5ε
α3(p3)εα4(p4)εα5(p5) , (4.7)

3

4

1

2

5
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4.2 Virtual Internal Bremsstrahlung (VIB)

where ε stands for the spin-1 polarization vectors and p3, p4 and p5 are the momenta of the
W+, W− and the photon respectively, as shown in the figure. If p1 and p2 are the momenta
of the annihilating dark matter particles in the CM frame, their s-wave limit is given by
p1 = p2 = P = (MH0 , 0, 0, 0). In terms of these variables, the s-wave amplitude can be cast as

Mα3α4α5

∣∣∣
s−wave

= g2e

2

[
− (p3 + p5)α4(p3 − p4)α5(p4 + p5)α3

((P − p3)2 −M2
H+)((P − p4)2 −M2

H+)
(4.8)

+(p4α5p3α4 − p5α4p3α5 + p5 · (p3 + p4)gα5α4) (p4 + p5)α3

p4 · p5((P − p3)2 −M2
H+)

−(p3α5p4α3 − p5α3p4α5 + p5 · (p3 + p4)gα5α3) (p3 + p5)α4

p3 · p5((P − p4)2 −M2
H+)

+p5α3gα5α4 + p4α5gα3α4 − p5α4gα3α5

p4 · p5
− p5α4gα5α3 + p3α5gα3α4 − p5α3gα4α5

p3 · p5

]
+ g(λ3 + λ4 + λ5) eMW vhp

λ
5

(4M2
H0 −M2

h)p5 · p3 p5 · p4
[(p5α3 gα4α5 − p5α4 gα3α5) (p3 + p4)λ

− (p3α5 p4λ − p4α5 p3λ) gα3α4 ] .

As is well known, electromagnetic gauge invariance severely constrains this amplitude. In fact,
the previous expression forMα3α4α5 satisfies the Ward Identities

p5α5Mα3α4α5 = 0. (4.9)

In order to exploit gauge invariance, we can write the scattering amplitude only as a function of
MH0 , λ3, λ4 and λ5 using Eq. (3.10), if we neglect the quantum effects of Eq. (3.13). Furthermore,
we notice that M depends on λ4 and λ5 only through the combination λ4 + λ5. Now, since
gauge transformations do not transform the quartic couplings, M can be separated in two
gauge-invariant pieces

M(MH0 , λ3, λ4 + λ5) =MGauge(MH0) +MQuartic(MH0 , λ3, λ4 + λ5) , (4.10)

where the first term is the scattering amplitude when the quartic couplings are set to zero.
Accordingly, the squared amplitude can be cast as

|M|2 = |MGauge|2 + |MQuartic|2 + 2Re
(
MGaugeM†Quartic

)
. (4.11)

The expression for |M|2 is very complicated in general. However, in the limit of zero dark matter
velocity, we find that

|M(MH0 , λ3, λ4 + λ5)|2
∣∣∣∣∣
v→0

= |M(MH0 , λ3, 0)|2
∣∣∣∣∣
v→0

+O
(
M2
W

M2
H0

(λ4 + λ5)
)
, (4.12)

since in the high-mass regime of the IDMMW �MH0 , the dependence on λ4 +λ5 is subdominant.
As a result, it is a good approximation to neglect λ4 + λ5, especially for dark matter masses
much heavier than the W mass. Interestingly, this effect can be understood in the Feynman
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Figure 4.4: Feynman diagrams contributing to the annihilation process H0H0 →W+W−γ in the unitary
gauge.

gauge from the Goldstone boson equivalence theorem [129,130]. In the TeV scale the longitudinal
components of the W± bosons are equivalent to the Goldstone bosons G±. Furthermore, in
that regime the vev vh can be neglected so that cubic interactions are effectively negligible and
the dark matter annihilations into a pair of longitudinal W bosons - or equivalently into a pair
G+G−- can only take place via the quartic coupling λ3 (see Table 3.2). The further emission of
a photon in order to complete the final state W+W−γ does not alter this picture. This shows
why the only quartic coupling on which the VIB spectrum strongly depends is λ3 and why the
dependence on λ4 + λ5 becomes more and more subdominant for higher masses.
Under the approximation λ4 + λ5 ≈ 0 and dropping the label v → 0, we find

|MGauge|2 = e2g4

2M2
H0(x+ − 1)2(x+ x+ − 1)2(x+ − 2µ)2(2µ+ x+ x+ − 2)2
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4.2 Virtual Internal Bremsstrahlung (VIB)

[
x6
(
− µ+ x+ − 1

)
+ x5

(
3x2

+ + (2µ− 9)x+ − 4µ2 + 6
)

+ x4
(
5x3

+ − (µ+ 20)x2
+

+ 2(7µ2 − 6µ+ 15)x+ − 10µ3 − 6µ2 + 11µ− 15
)

+ x3
(
5x4

+ − (6µ+ 25)x3
+

+ 2(3µ2 + 6µ+ 25)x2
+ + (40µ3 − 66µ2 + 20µ− 50)x+ − 4(6µ4 + 3µ3 − 12µ2 + 6µ− 5)

)
+ x2

(
3x5

+ − (3µ+ 20)x4
+ +

(
−16µ2 + 28µ+ 50

)
x3

+ + (40µ3 + 2µ2 − 44µ− 65)x2
+

+ 2(12µ4 − 72µ3 + 49µ2 − 2µ+ 24)x+ − 16− 24µ5 + 16µ4 + 78µ3 − 76µ2 + 22µ
)

+ x(x+ − 1)
(
x5

+ − 8x4
+ + (−8µ2 + 8µ+ 22)x3

+ + 4(10µ2 − 8µ− 7)x2
+

+ (24µ4 − 64µ3 − 2µ2 + 20µ+ 20)x+ − 4(12µ4 − 26µ3 + 14µ2 − 3µ+ 2)
)

− (x+ − 1)2
(
x4

+ − 4x3
+ + (−8µ2 + 4µ+ 6)x2

+ + 4(4µ2 − 2µ− 1)x+

+ 24µ4 − 40µ3 + 18µ2 − 4µ+ 2
)]
, (4.13)

|MQuartic|2 = e2λ2
3

M2
H0(x+ − 1)2(x+ x+ − 1)2(1− µh)2[

2µx4 + 4µx3(x+ − 1) + x2(4µx2
+ + 12µ2x+ − 12µx+ + x+ − 12µ3 − 8µ2 + 7µ− 1)

+ x(12µ2 − 4µ+ 1)(x2
+ − 3x+ + 2)− (12µ2 − 4µ+ 1)(x+ − 1)2

]
, (4.14)

2Re
(
MGaugeM†Quartic

)
= 2e2g2µλ3
M2
H0(x+ − 1)2(x+ x+ − 1)2(1− µh)(x+ − 2µ)(2µ+ x+ x+ − 2)[

x4(1− x+) + x3
(
x2

+ + (3− 12µ)x+ + 6µ2 + 9µ− 4
)

+ x2
(
4x3

+ − 3(4µ+ 3)x2
+

− 6µ(2µ− 7)x+ + 12µ3 − 27µ+ 5
)

+ x(x+ − 1)
(
2x3

+ − 10x2
+ + 2(−6µ2 + 9µ+ 4)x+

+ 24µ2 − 30µ+ 3
)
− (x+ − 1)2

(
− 12µ2 + 12µ+ 2x2

+ − 4x+ − 1
)]
, (4.15)

where µh = M2
h
s = M2

h

4M2
H0

and µ = M2
W

4M2
H0

. Notice that the interference term is proportional to µ
and it is therefore subdominant.

The Cross Section

The differential cross section for the process H0H0 →W+W−γ can be written as

dσ = 1
(2π)5J

|M|2d3(PS), (4.16)
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whereM is the scattering amplitude, J the initial flux and d3(PS) the three-body phase-space
factor. These are defined by

J = 4E1E2v, where v =
∣∣∣∣ ~p1
E1
− ~p2
E2

∣∣∣∣ , (4.17)

d3(PS) = δ4(p1 + p2 − p3 − p4 − p5)d
3p3

2E3

d3p4
2E4

d3p5
2E5

. (4.18)

Here the labeling of the momenta is self-explanatory. We are interested in the limit of zero dark
matter velocity, for which E1, E2 →MH0 in the CM frame. Besides, the three-body phase-space
factor after integration of the delta function can be written as

d3(PS) = π2M2
H0dx+dx, where x+ = E4

M0
H

and x = E5
M0
H

. (4.19)

The ranges for x+ and x are determined by the energy range of the photon and the W+ and are
given by

0 < x < 1− 4µ and x+ ≶
1
2

(
2− x± x

√
1− 4µ

1− x

)
. (4.20)

As a result we have

d(σv)
dx

∣∣∣∣∣
v→0

= 1
128π3

∫ x+max

x+min
|M|2

∣∣∣∣∣
v→0

dx+ . (4.21)

Using the previous expressions for the invariant amplitude square, the total differential velocity
weighted annihilation cross section can be cast as

d(σv)W+W−γ

dx
= d(σv)

dx

∣∣∣∣∣
Gauge

+ d(σv)
dx

∣∣∣∣∣
Quartic

+ d(σv)
dx

∣∣∣∣∣
Interference

. (4.22)

The expressions for each individual term are rather complicated and are presented in Appendix
B2. Each of them is separately gauge invariant. In the unitary gauge, the part labeled as “gauge”
receives contributions from the diagrams with a charged scalar in the t-channel and generates, in
addition to the usual contribution from final state radiation, a spectral feature [105]. The piece
labeled as “quartic”, on the other hand, receives contributions from the diagrams with the SM
Higgs in the s-channel and leads to a spectrum without distinctive spectral features. Then, the
shape of the differential photon spectrum from VIB essentially depends on the relative weight of
the gauge and the quartic contributions to the cross section, which is in turn determined by the
quartic coupling λ3.

We show in Fig. 4.5, the three different contributions in Eq. (4.22) as a function of x = Eγ/MH0

in the limit MH0 = MH+ for the cases MH0=0.5 TeV, 1 TeV and 5 TeV and for different values of
the quartic coupling λ3. We also multiply the spectrum by x2 to emphasize the spectral structure.
The blue, green and red lines represent, respectively, the gauge, quartic and interference terms,
2We have used CalcHEP [131,132] for parts of the analytical as well as for numerical computations.
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Figure 4.5: Cross section for the VIB process H0H0 →W+W−γ, when the charged scalar is degenerate
in mass with the dark matter particle. The blue, green and red lines correspond, respectively,
to the gauge, quartic and interference terms, the latter in absolute value. The different
darknesses of the lines correspond to varying the absolute value of the quartic coupling |λ3|
between 0 (darkest lines) and 2 (lightest lines) in intervals of 0.4 (note that for |λ3| = 0 the
quartic and interference terms vanish).

the latter in absolute value. Besides, the darkest lines correspond to |λ3| = 0 and the lines
become lighter as |λ3| is increased in intervals of 0.4, the lightest lines corresponding to |λ3| = 2.
The pure gauge part produces a spectrum that depends only on the dark matter mass and that
displays a feature close to the end-point of the spectrum which becomes sharper and sharper as
MH0 increases. The quartic part is proportional to λ2

3 and becomes more and more important as
|λ3| increases, eventually dominating over the gauge part for values of x closer and closer to one.
For a dark matter mass MH0 = 0.5 TeV and |λ3| = 2 the sharp spectral feature is practically
erased in the total spectrum due to the effect of the final state radiation, however, for large dark
matter masses the sharp spectral feature remains clearly visible even for |λ3| = 2.
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Figure 4.6: Total multiplicity of the VIB process H0H0 →W+W−γ. Left Panel: the charged scalar is
degenerate in mass with the dark matter particle and the different darknesses of the lines
correspond to varying the absolute value of the quartic coupling |λ3| between 0 (darkest lines)
and 2 (lightest lines) in intervals of 0.4. Right panel: λ3 = 0 and (λ4 + λ5)/2, which controls
the mass splitting between the charged scalar and the dark matter, varies between 0 (darkest
lines) and −2 (lightest lines) in intervals of 0.4.
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This behavior can be better appreciated in the left panel of Fig.4.6, where we show the photon
multiplicity from VIB, defined as:

dN IB
W+W−γ
dx

= 1
(σv)W+W−

d(σv)W+W−γ

dx
. (4.23)

As before, we consider MH0 = MH+ = 0.5 TeV, 1 TeV and 5 TeV and for different values of
the quartic coupling λ3, the darkest line corresponds to |λ3| = 0 and the lightest to |λ3| = 2 and
the intermediate lines correspond to changing λ3 in intervals of 0.4.
For completeness, in the right panel of Fig. 4.6, we also analyze the photon multiplicity from

VIB when the neutral and charged exotic Higgs particles are not degenerate in mass. We fixed
λ3 = 0 and we changed (λ4 + λ5)/2 from 0 to −2 in intervals of −0.4, from darkest to lightest;
the mass splitting corresponding to that choice of quartic couplings can be easily derived from
M2
H+ −M2

H0 = −1
2(λ4 + λ5)v2

h. As expected from the previous discussion, the spectrum is quite
insensitive to the mass splitting, as apparent from the plot, especially for large dark matter
masses.
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Chapter 5

Non-Perturbative Effects in Dark Matter
Phenomenology

As shown in section 4.1, in the high-mass regime of the IDM, the one-loop annihilation into
two photons is described by a cross section that is a constant function of the dark matter mass
when all the quartic couplings vanish. For extremely large masses, this results exceeds the upper
bound (4.6) set by unitarity. In this chapter we address this problem. In particular, in section 5.1
we identify its origin and argue that this anomalous behavior is alleviated when non-perturbative
effects are included.

These effects, as we will see, are associated to long range interactions between the annihilating
dark matter particles. In fact, they are related to the exchange of gauge bosons. While this
exchange is normally described by the interaction between two currents (see Eq. (3.4)), for scalar
particles gauge invariance dictates other interactions (see Eq. (3.8)). Consequently, including such
non-perturbative effects demands to consider a formalism where gauge invariance requirements
-and particularly the quartic terms from Eq. (3.8)- are accounted for. Such formalism was
introduced in [20–24] in the context of neutralino dark matter.

This formalism rests upon the following observation. If the velocity of the dark matter is very
small, its dynamics can be described using non-relativistic quantum mechanics. This is however
not the situation for the gauge and the Higgs bosons produced in annihilations if the dark matter
is very heavy, because in that case these particles are all relativistic. This is circumvented by
integrating out these light particles. The resulting effective theory is the non-relativistic limit of
the IDM, which we study in detail in this chapter.

5.1 Origin of the Problem with Perturbative Unitarity

As shown in section 4.1,the s-wave invariant amplitude for the process H0H0 → γγ can be cast
as

M
∣∣∣
s−wave

= A

(
gα3α4 − pα3

4 pα4
3

2M2
H0

)
εα3(p3)εα4(p4) , (5.1)

where A is a complex scalar function of the dark matter mass and the quartic couplings, and
the subscripts 3 and 4 refer to the final state photons. The dependence on the other quartic
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Γ
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Figure 5.1: Two dark matter particles exchanging a W boson. This diagram leads to a finite piece that
violates perturbative unitarity.

couplings λ2 and λ3 can be separated explicitly as

A = A0(MH0 ,MH+) +A2(MH0 ,MH+ , λ2) +A3(MH0 ,MH+ , λ3). (5.2)

Since σv
(
H0H0 → γγ

) ∣∣∣
s−wave

= |A|2/32πM2
H0 , a constant annihilation cross section suggests

that |A| ∝ MH0 . This is indeed the case for A0 as shown in Fig. 4.2. Consequently, the
problematic part of the annihilation amplitude must be in the diagrams contributing to this
piece of the amplitude. In fact A2 and A3 approach constant values for large dark matter masses
as shown in Fig. 4.2 and therefore they do not lead to any problem with unitarity.
This argument implies that the problem with unitarity arises on diagrams that depend only

on gauge interactions. For instance, one of such diagrams is shown in Fig. 5.1. There, a W
boson is exchanged between the initial state particles. Before analyzing this case carefully, we
consider first a similar but simpler process: the up-scattering of two dark matter particles into
two charged scalars. For simplicity we assume that all the quartic couplings are set to zero. In
that case there are only two Feynman diagrams, which correspond to the exchange of a W boson
in the t and u channels. The resulting tree-level scattering amplitude is given by

MScattering =
(
g

2

)2
(
−s+ u

t−M2
W

+ −s+ t

u−M2
W

)
→ 2g2

(
MH0

MW

)2
when v → 0 . (5.3)

For dark matter masses much larger than theW mass, this scattering amplitude is thus arbitrarily
large for small velocities. Higher order diagrams are therefore needed to restore partial-wave
unitarity. A similar situation happens in one-loop diagrams when a W is exchanged between the
initial state particles. As an example, we now consider the diagram of Fig. 5.1 assuming again
vanishing quartic couplings. This diagram is divergent, nevertheless it contains a finite piece
which exhibits the anomalous behavior that we want to understand. If q is momentum that runs
through the W propagator and P = (MH0 , 0, 0, 0) is the dark matter momentum in the s-wave
limit, then such finite piece is

A0 ⊃ 2i(2e2)
(
g

2

)2
(2P )µ(2P )νgµν J = 64iπ2αα2M

2
H0J , (5.4)
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where

J =
∫

d4q

(2π)4
1(

q2 −M2
W

) (
(q − P )2 −M2

H0

) (
(q + P )2 −M2

H0

) (5.5)

= i

16π2MH0MW

∫ 1

0
dx

1√
1− x

arctan
(
MH0

MW

x√
1− x

)
. (5.6)

Notice that the loop integral is proportional to 1/(MH0MW ), instead of 1/M2
H0 , consequently

we find that the corresponding piece of the diagram grows with the dark matter mass

A0 ⊃ −
4αα2MH0

MW

∫ 1

0
dx

1√
1− x

arctan
(
MH0

MW

x√
1− x

)
. (5.7)

This result corresponds to a constant contribution to the s-wave cross section according to
σv
(
H0H0 → γγ

) ∣∣∣
s−wave

= |A|2/32πM2
H0 . Although this is only one piece of an individual

diagram, it is still possible that -after considering the total gauge-invariant amplitude- this
behavior is somehow canceled. However, a posteriori we find that this is not the case, that is, we
find that the s-wave cross section is indeed a constant, leading to a violation of unitarity.
Using similar arguments, it is possible to see that for each W boson that is exchanged in the

initial state one gets a factor that goes like α2MH0/MW , as we found in Eqs. (5.3) and (5.7). If
MH0 & MW /α2 ≈ 2TeV, the perturbative calculation breaks down because higher-order loop
diagrams become more and more important. For these masses and in general in the high-mass
regime of the IDM, the one-loop calculation is not reliable until these effects are taken into
account.
In this chapter, we show how to calculate the non-perturbative effects associated to the

exchange of light bosons between two annihilating dark matter particles for the high-mass regime
of the IDM. To this end, we use the formalism introduced in [20,22, 24], whose starting point
is the following observation. When the dark matter moves slowly, its phenomenology can be
described using non-relativistic quantum mechanics. In contrast, this may not be done with the
gauge and the Higgs bosons produced in annihilations for very heavy dark matter, because in
that case these particles are relativistic. Because of this reason, light particles must be integrated
out of the theory. We will see that this process leads to a non-relativistic potential that describes
the interaction between pairs of dark matter particles and its SU(2)L partners. Moreover, since
the dark matter and its partners can annihilate into the gauge and the Higgs bosons, there is
an absorptive -or imaginary- potential that describes how the dark matter pairs disappear, and
therefore the corresponding annihilation rates.

5.2 Non-relativistic Expansion of the Inert Fields

When the inert scalars move slowly, the inert doublet Ψ of Eq. (3.2) can be expanded in terms of
non-relativistic fields in the following way

H0(x) = 1√
2MH0

(
e−iMH0 tζH0(x) + e+iMH0 tζ†H0(x)

)
, (5.8)
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A0(x) = 1√
2MH0

(
e−iMH0 tζA0(x) + e+iMH0 tζ†A0(x)

)
, (5.9)

H+(x) = 1√
2MH0

(
e−iMH0 tζH+(x) + e+iMH0 tζ†H−(x)

)
, (5.10)

where ζi(x) is a non-relativistic field that annihilates particles i. Because H+ is a charged field,
it is expanded in terms of the annihilation field associated to particle H+ and the creation field
associated to the antiparticle H−. For the neutral fields H0 and A0, since they are self-conjugate,
the creation and annihilation fields in each expansion correspond to the same particle. Because
ζi(x) is non-relativistic, its time variations are very small compared to the mass scale, that is,∣∣∣∣ 1

ζi

dζi
dt

∣∣∣∣�MH0 . (5.11)

As we saw in section 3.3, the mass splitting between the different inert particles is negligible
compared to the dark matter mass. As a result, in this formalism all the non-relativistic fields are
assumed to have the same mass and the corresponding splitting is taken as a perturbation in the
action. With this, the kinetic part of the scalar Lagrangian as a function of the non-relativistic
fields is given by

LKin =
∫
d4x

(1
2(∂H0)2 + 1

2(∂A0)2 + |∂H+|2 − 1
2M

2
H0H02 − 1

2M
2
A0A02 −M2

H+ |H+|2
)

=
∫
d4x

[
ζ†
(
iζ̇ + ∆2ζ

2MH0
− δmζζ

)]
, (5.12)

with

ζ =


ζH0

ζA0

ζH−

ζH+

 and δmζ =


0 0 0 0
0 MA0 −MH0 0 0
0 0 MH+ −MH0 0
0 0 0 MH+ −MH0

 . (5.13)

In this formula we also include the mass splitting of Eq. (3.13) which is due to quantum effects.
Since our goal is to study dark matter annihilations, we must consider pairs H0H0. However, the
exchange of Z and W bosons among the dark matter particles leads to pairs A0A0 and H+H−

respectively (see Fig. 5.2). As a result, what we do in the following sections is to derive an
effective action that describes these pairs, that is, at a given time x0 we consider

s(x,y) =


ζH0 (x)ζH0 (x0,y)√

2
ζA0 (x)ζA0 (x0,y)√

2
ζH+(x)ζH−(x0,y)

 . (5.14)

The difference in normalization for the first two components of s(x,y) comes from the fact that
they correspond to states with two identical particles.
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5.3 Integrating out the Relativistic Particles

5.3.1 Gauge Bosons

Before integrating out the gauge bosons, we write their action in a compact way. In the IDM,
the action describing the gauge bosons is the sum of a kinetic term and the interaction term of
the gauge bosons with the scalar particles

SGauge = SGauge,Kin + SGauge,Ψ. (5.15)

In this chapter we work in the Feynman Gauge, then SGauge,Ψ is given by Eqs. (3.3), (3.4) and
(3.8), whereas the kinetic term is

SGauge,Kin =
∫
d4x

(
−1

4
(
FAFA + FZFZ + 2FW−FW+)+ 1

2M
2
ZZ

2 +M2
WW

+W−

−1
2
(
(∂A)2 + (∂Z)2

)
− ∂W−∂W+

)
. (5.16)

As usual F Vµν = ∂µVν − ∂νVµ. In order to deal with the gauge bosons collectively, we introduce

A =


A

Z

W−

W+

 . (5.17)

Using this, the kinetic term can be written as

SGauge,Kin = 1
2A
†∆0A = 1

2

∫
d4xd4yA†(x)∆0(x, y)A(y) , (5.18)

with

(∆0)µν(x, y) = gµν


∂2 0 0 0
0 ∂2 +M2

Z 0 0
0 0 ∂2 +M2

W 0
0 0 0 ∂2 +M2

W

 δ(4)(x− y). (5.19)

Similarly,

SGauge,Ψ = SCubic + SQuartic, (5.20)

SCubic = J †A =
∫
d4x

(
JµA(x)Aµ(x) + JµZ(x)Zµ(x) + (Jµ†W−(x)W−µ (x) + h.c.)

)
, (5.21)

SQuartic = A†QA =
∫
d4x d4yA†(x)Q(x, y)A(y), (5.22)

where

J =


JA

JZ

JW−

JW+

 and Q(x, y) =


QAA(x) QAZ(x) QAW (x) Q∗AW (x)
QAZ(x) QZZ(x) QZW (x) Q∗ZW (x)
Q∗AW (x) Q∗ZW (x) QWW (x) 0
QAQ(x) QZW (x) 0 QWW (x)

 δ(4)(x− y), (5.23)
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QAA = e2H+H−, QZZ = g2

4c2
W

(1
2(H02 +A02) + (1− 2c2

W )2H+H−
)
,

QAZ = eg(1−2c2W )
2cW H+H−, QWW = g2

4

(1
2(H02 +A02) +H+H−

)
,

QAW = g2sW
4 H+(H0 − iA0), QZW = −g

2cW
4 H+(H0 − iA0).

With this, the total action is

SGauge = 1
2A
†∆A+ J †A, where ∆ = ∆0 + 2Q. (5.24)

In order to integrate out the gauge fields, we perform the path integral with respect to A. Notice
that A† is not an independent variable because it is related to A by permuting its third and
fourth components. Moreover, notice that J †A = A†J . Then the path integral is

ZGauge =
∫
DA ei(

1
2A
†∆A+J †A). (5.25)

In order to perform the integration, we consider field oscillations around the stationary value of
the action, that is, around the classical solution, which is given by

Acl = −∆−1J . (5.26)

Consequently, in Eq. (5.25) we make the following replacement A → A+Acl. After some
simplifications one obtains

ZGauge =
(∫
DA e

i
2A
†∆A

)
e−

i
2J
†∆−1J . (5.27)

The integral in the parenthesis can be performed by means of a change of variables. In fact,∫
DA e

i
2A
†∆A = N (Det∆)−

1
2 = N e−

1
2Tr log ∆, (5.28)

where N is an arbitrary constant. As a result,

ZGauge = N eiSeff , and Seff = −1
2J
†∆−1J + i

2Tr log ∆ . (5.29)

Our goal now is to simply Seff as much as possible. On the one hand, by expanding ∆ in terms
of Q, which is proportional to the gauge coupling constants, one obtains at leading order

∆−1 = (∆0 − 2Q)−1 = ∆−1
0 − 2∆−1

0 Q∆−1
0 . (5.30)

The second term in the previous equation and each current J are quadratic in the inert fields.
Since in this work we do not consider effective interactions with six legs of inert scalars, we can
assume in Eq. (5.29) that

J †∆−1J = J †∆−1
0 J . (5.31)
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Likewise, we can expand the second term of the effective action in terms of Q. Indeed,
i

2Tr log ∆ = i

2Tr log
[
∆0(1 + 2∆−1

0 Q)
]

= i

2Tr
[
log ∆0 + log

(
1 + 2∆−1

0 Q
)]

= i

2
[
Tr log ∆0 + 2 Tr log

(
∆−1

0 Q
)
− 2 Tr log

(
∆−1

0 Q∆−1
0 Q

)]
. (5.32)

Here the first term only contributes to N and it is therefore irrelevant. The second term is
quadratic in the scalar fields and it accounts for radiative corrections to the mass. After moving
these corrections into the scalar mass terms, we obtain the following effective action

Seff = Seff,1 + Seff,2, (5.33)

Seff,1 = −1
2J
†∆−1

0 J , (5.34)

Seff,2 = −i Tr log
(
∆−1

0 Q∆−1
0 Q

)
. (5.35)

From this procedure we can clearly see that Seff,1 is the contribution of the cubic gauge terms to
the effective interactions between the scalars once the gauge bosons are integrated out, whereas
Seff,2 is associated to the quartic guage interactions.

Coulomb and Yukawa Interactions We now calculate Seff,1 in the non-relativistic limit. We
start by noticing that

(∆0)−1
µν (x, y) = −

∫
d4q

(2π)4 e
iq(x−y)



1
q2+iε 0 0 0

0 1
q2−M2

Z+iε 0 0
0 0 1

q2−M2
W+iε 0

0 0 0 1
q2−M2

W+iε

 gµν (5.36)

and hence

Seff,1 =
∫
d4x d4y d4q

2(2π)4 eiq(x−y)
(
JµA(x)JAµ(y)
q2 + iε

+ JµZ(x)JZµ(y)
q2 −M2

Z + iε
+

2JµW+(x)JW−µ(y)
q2 −M2

W + iε

)
. (5.37)

We would like to calculate this action in the non-relativistic limit. To this end, we write each
current as JV = (J0

V ,JV ), where V is any of the gauge bosons. With this, each term of Eq. (5.34)
can be written as

JµV (x)JV µ(y)
q2 −M2

V + iε
= −J

0
V (x)J0

V (y)
q2 +M2

V

+ J0
V (x)J0

V (y) q02

(q2 +M2
V )(q2 −M2

V + iε)
+ JV (x)JV µ(y)
q2 −M2

V + iε
. (5.38)

The third term of this equation contains the magnetic interactions between the currents. For
non-relativistic currents, we expect |JV | � J0

V and consequently this term can be neglected. In
addition, the second term is related to retarded effects on the interaction between the currents.
In fact, integrating by parts it can be written as∫

d4x d4y d4q eiq(x−y)J0
V (x)J0

V (y) q02

(q2 +M2
V )(q2 −M2

V + iε)
=
∫
d4x d4y d4q eiq(x−y)J̇0

V (x)J̇0
V (y)

(q2 +M2
V )(q2 −M2

V + iε)
. (5.39)
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Figure 5.2: Feynman diagrams contributing to VGauge(r).

Because of Eq. (5.11), we can conclude that |J̇0
V | � J0

V and therefore retarded effects can be
neglected in the non-relativistic limit as well. In contrast, the first of Eq. (5.38) can not be
neglected and the integration in the momentum space must be done. This is given by∫

d4q

(2π)4
eiq(x−y)

q2 +M2
V

= δ(x0 − y0)
∫

d3q

(2π)3
eiq(x−y)

q2 +M2
V

= e−MV |x−y|

4π|x− y| δ(x
0 − y0). (5.40)

Consenquently,

Seff,1 = −
∫

d4xd3y

8π|x− y|
(
J0
A(x)J0

A(x0,y) + J0
Z(x)J0

Z(x0,y)e−MZ |x−y|

+ 2 J0
W+(x)J0

W−(x0,y)e−MW |x−y|
)
. (5.41)

Hence, in the non-relativistic limit the first term of Seff,1 describes the Coulomb force between
the non-relativistic particles, whereas the other terms describe Yukawa interactions associated to
the exchange of W and Z bosons.
As explained in the previous section, we consider only pairs H0H0, A0A0 and H+H−. As a

consequence we limit ourselves to describe interactions corresponding to these pairs of particles.
With this in mind, we write the time-like components of the currents in terms of the non-relativistic
fields of Eq. (5.10)

J0
A ⊃ e

(
−ζH−ζ

†
H− + ζ†H+ζH+

)
(5.42)

J0
Z ⊃ g

2cW

[
(1− 2c2

W )
(
−ζH−ζ

†
H− + ζ†H+ζH+

)
+ i

(
−ζA0ζ†H0 + ζH0ζ†A0

)]
(5.43)

J0
W− ⊃ g

2
[
−ζH−

(
ζ†H0 + i ζ†A0

)
+ ζ†H+ (ζH0 + i ζA0)

]
(5.44)

Here the terms that are omitted are the ones that do not lead to pairs H0H0, A0A0 and H+H−.
By plugging these currents in Eq. (5.41), we obtain

Seff,1 = −
∫
d4xd3y s(x,y)†VGauge(|x− y|)s(x,y) (5.45)

where s(x,y) was introduced in Eq. (5.14) and

VGauge(r) = − g2

4πr


0 e−MZr

4c2W
e−MWr

2
√

2
e−MZr

4c2W
0 e−MWr

2
√

2
e−MWr

2
√

2
e−MWr

2
√

2 s2
W + (1−2c2W )2e−MZr

4c2W

 . (5.46)
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Q Q

Figure 5.3: Sort of Feynman diagrams contributing to Seff,2 = −i Tr log
(
∆−1

0 Q∆−1
0 Q

)
.

Absorptive Term In general non-relativistic inert scalars can annihilate into relativistic particles,
in this case into gauge bosons. Since we are integrating out the latter, in the effective theory
the annihilations are described by an imaginary potential -or an absorptive term in the action-
which allows for the disappearance of pairs of non-relativistic particles. We argue here that
the absorptive term comes from Seff,2 given in Eq. (5.35). We first interpret Seff,2 in terms of
Feynman diagrams by noticing that the matrix ∆−1

0 describes the propagators of the gauge fields,
whereas each Q is a vertex with two gauge fields and two inert scalar fields. Consequently each
term of Seff,2 is a diagram like the one shown in Fig. 5.3. Furthermore, for simplicity we neglect
the mass of the gauge bosons and then we have

Seff,2 = −i Tr log
(
∆−1

0 Q∆−1
0 Q

)
= −4i

∫
d4xd4yd4zd4w

d4q

(2π)4
d4k

(2π)4
eiq(x−y)

q2 + iε

eik(z−w)

k2 + iε
Tr[Q(y, z)Q(w, x)]. (5.47)

The factor of 4 is the trace over the space-time index of the gauge fields. Since we are interested
in the imaginary part, we set the gauge bosons in the loop on-shell by performing

1
q2 + iε

→ −2πiδ(q2). (5.48)

Furthermore, we carry out the integration over the time-like component of the four-momenta by
noticing that d4q δ(q2)→ d3q

2|q| when the gauge particles are on-shell. In this way the integration
over the four-momenta can be cast as∫

d4q

(2π)4
d4k

(2π)4
eiq(x−y)

q2 + iε

eik(z−w)

k2 + iε
→ (−i)2

∫
d3q

(2π)3(2|q|)
d3k

(2π)3(2|k|)e
i(q−k)(x−y)

= −
∫
d4Q

d3q

(2π)3(2|q|)
d3k

(2π)3(2|k|)δ
(4)(Q− q + k)eiQ(x−y)

→ − 1
8π

∫
d4Q

(2π)4 e
iQ(x−y) = − i

8πδ
(4)(x− y). (5.49)

If we plug this into Eq. (5.47), we obtain

Seff,2 = i

2π

∫
d4x Tr




QAA(x) QAZ(x) QAW (x) Q∗AW (x)
QAZ(x) QZZ(x) QZW (x) Q∗ZW (x)
Q∗AW (x) Q∗ZW (x) QWW (x) 0
QAQ(x) QZW (x) 0 QWW (x)


2

. (5.50)
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Figure 5.4: Feynman diagrams contributing to VScalar(r)

Keeping again only the terms that give rise to pairs H0H0, A0A0 and H+H−, one obtains

Seff,2 = i

2π

∫
d4x

(
QAA(x)2 +QZZ(x)2 + 2 QWW (x)2 + 2QAZ(x)2

)
= ig4

16π

∫
d4x

[(
8s4
W + 4s2

W (1− 2c2
W )2

c2
W

+ (1− 2c2
W )4

2c4
W

+ 1
)

(H+H−)2

+ 1
4

(
1

2s4
W

+ 1
)(

H02 +A02)2
+
(

(1− 2c2
W )2

2c4
W

+ 1
)(

H02 +A02)
H+H−

]
. (5.51)

This expression is manifestly imaginary and therefore corresponds to an absorptive action as
expected. In terms of the non-relativistic fields of Eq. (5.10), it can be written as

Seff,2 = 2i
∫
d4xd3y s(x,y)†ΓGaugeδ

(3)(|x− y|)s(x,y) , (5.52)

where s(x,y) was introduced in Eq. (5.14) and

ΓGauge = 1
32πM2

H0


a
2

a
2

b√
2

a
2

a
2

b√
2

b√
2

b√
2 c

 , (5.53)

a = g4

2

(
1

2s4
W

+ 1
)
, b = g4

2

(
(1− c2

W )2

2s4
W

+ 1
)
,

c = g4
(

4s4
W + 2s2

W (1− 2c2
W )2

c2
W

+ (1− 2c2
W )4

4c4
W

+ 1
2

)
.

Hence the path integral (5.29) after integrating out the gauge bosons is

ZGauge = N exp{i
∫
d4xd3y s(x,y)†

(
−VGauge(|x− y|) + 2iΓGaugeδ

(3)(|x− y|)
)
s(x,y)}. (5.54)

5.3.2 The Higgs and the Goldstone Bosons

In the Feynman Gauge, the masses of the Goldstone bosons G± and G0 from the doublet Φ of
Eq. (3.2) are MW and MZ . These along the Higgs particle are very light compared to the inert
scalars in the high-mass regime of the IDM. Accordingly they must be integrated out. This is
done in exactly the same way as in the previous section. Moreover, this integration is simpler
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because h,G0 and G± are scalars as opposed to the gauge bosons which are described by vector
fields. After performing the integration one obtains

ZScalar = N exp{i
∫
d4xd3y s(x,y)†

(
−VScalar(|x− y|) + 2iΓScalarδ

(3)(|x− y|)
)
s(x,y) , } (5.55)

where VScalar arises from the exchange of light scalars between the pairs H0H0, A0A0 and H+H−

as shown in Fig. 5.4, and it is given by

VScalar(r) = − v2
h

8πrM2
H0


(λ3+λ4+λ5)2

2 e−Mhr λ2
5

4 e
−MZr (λ4+λ5)2

4
√

2 e−MW r

λ2
5

4 e
−MZr (λ3+λ4−λ5)2

2 e−Mhr (λ4−λ5)2

4
√

2 e−MW r

(λ4+λ5)2

4
√

2 e−MW r (λ4−λ5)2

4
√

2 e−MW r λ2
3

2 e
−Mhr .

 (5.56)

Notice that this potential is suppressed by the dark matter mass squared. This is due to the fact
that the cubic interactions -according to the potential of Eq. (3.9)- have dimensionful couplings
proportional to v2

h.
Similarly, ΓScalar arises from the quartic interactions of the potential in Eq. (3.9) and it is

ΓScalar = 1
32πM2

H0


λ2

3 + λ4λ3 + λ2
4

2 + λ2
5

2 λ2
3 + λ4λ3 + λ2

4
2 −

λ2
5

2
√

2λ3 (λ3 + λ4)
λ2

3 + λ4λ3 + λ2
4

2 −
λ2

5
2 λ2

3 + λ4λ3 + λ2
4

2 + λ2
5

2
√

2λ3 (λ3 + λ4)√
2λ3 (λ3 + λ4)

√
2λ3 (λ3 + λ4) 2λ2

3 + 2λ4λ3 + λ2
4

 . (5.57)

5.4 Effective Action for Pairs of Inert Particles

Putting together Eqs. (5.12),(5.54) and (5.55), one gets the path integral over the non-relativistic
fields of Eq. (5.10), which reads

Z =
∫
Dζ Dζ† exp

{
i

∫
d4x

[
ζ(x)†

(
iζ̇(x) + ∆2ζ(x)

2MH0
− δmζζ(x)

)]
(5.58)

+ i

∫
d4xd3y s(x,y)†

(
−(VGauge + VScalar)(|x− y|) + 2i(ΓScalar + ΓScalar)δ(3)(|x− y|)

)
s(x,y)

}
,

where

s(x,y) =


s1(x,y)
s2(x,y)
s3(x,y)

 =


ζH0 (x)ζH0 (x0,y)√

2
ζA0 (x)ζA0 (x0,y)√

2
ζH+(x)ζH−(x0,y)

 . (5.59)

In the previous expression s(x,y), is not a dynamical field. However, we can apply the following
identity to introduce a path integral over it 1

1 =
∫
Ds Ds† Dσ Dσ† exp

{
i

∫
d4xd3y

(
σ1(x,y)†

(
s1(x,y)− ζH0(x)ζH0(x0,y)√

2

)
(5.61)

+ σ2(x,y)†
(
s2(x,y)− ζA0(x)ζA0(x0,y)√

2

)
+ σ3(x,y)†

(
s3(x,y)− ζH+(x)ζH−(x0,y)

)
+ h.c.

)}
.

1This identity is a generalization of

1 =
∫

dx dp

2π ei(x−a). (5.60)
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With this the path integral of Eq. (5.59) can be cast as

Z =
∫
Dζ Dζ† Ds Ds† Dσ Dσ† exp

{
i

∫
d4xζ(x)†

(
iζ̇(x) + ∆2ζ(x)

2MH0
− δmζζ(x)

)
(5.62)

+ i

∫
d4xd3y

[
s(x,y)†

(
−(VGauge + VScalar)(|x− y|) + 2i(ΓScalar + ΓScalar)δ(3)(|x− y|)

)
s(x,y)

+
(
σ1(x,y)†

(
s1(x,y)− ζH0(x)ζH0(x0,y)√

2

)
+ σ2(x,y)†

(
s2(x,y)− ζA0(x)ζA0(x0,y)√

2

)
+ σ3(x,y)†

(
s3(x,y)− ζH+(x)ζH−(x0,y)

)
+ h.c.

)]}
.

The full Lagrangian at this point is quadratic in the non-relativistic fields ζ and ζ†, with
coefficients that depend on the field σ(x,y). Therefore, the path integral with respect to these
variables can be performed using elementary methods of path integration. The result is

Z =
∫
Ds Ds† Dσ Dσ† exp

{
i

∫
d4xd3y

(
−σ(x,y)†K−1(x,y)σ(x,y)− s(x,y)†V(x,y)s(x,y)

+ σ(x,y)†s(x,y) + s(x,y)†σ(x,y)
)}
, (5.63)

where

K(x,y) = i∂x0 −
∇2
x

2MH0
−
∇2
y

2MH0
+ 2 δm, (5.64)

V(x,y) = (VGauge + VScalar)(|x− y|)− 2i(ΓScalar + ΓScalar)δ(3)(|x− y|), (5.65)

with

δm =


0 0 0
0 MA0 −MH0 0
0 0 MH+ −MH0

 . (5.66)

The stationary value of the action associated to Eq. (5.63) is given by

σ(x,y) = V(x,y)s(x,y) and s(x,y) = K−1(x,y)σ(x,y). (5.67)

With this it is possible to integrate out the field σ(x,y). The final result for the path integral
over the filed s(x,y) that describes the pairs H0H0, A0A0 and H+H− in the non-relativistic
limit is

Z =
∫
Ds Ds† exp

{
i

∫
d4xd3r s†(x,~r)

(
i∂x0 + ∇2

x

4MH0
+ ∇2

r

MH0
− V (r) + 2iΓδ(~r)

)
s(x,~r)

}
. (5.68)

Here x is the position of the center of mass and ~r is the relative position vector for the pair of
particles. In addition V (r) is a 3× 3 potential matrix and Γ is a 3× 3 matrix that characterizes
the tree-level annihilation rates

V (r) = 2 δm+ VGauge(r) + VScalar(r) and Γ = ΓGauge + ΓScalar . (5.69)
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5.5 Another Way to Calculate the Annihilation Matrix Γ

Using the Optical Theorem, in [22] it was proven that the matrix Γ can also be calculated by
considering all the possible final states of the light particles that are integrated out. In fact,

Γ =
∑
f

Γf , (5.70)

where f is any final state in which the pair of dark matter particles or its partners can annihilate
into. For each of them

(Γf )ii′,jj′ = Nii′Njj′

4M2
H0

∫ ∏
a∈f

d3qa
(2π)32Ea

 (2π)4δ4
(
pi + p′i −

∑
a∈f

qa

)
M (ii′ → f)M (jj′ → f)∗ , (5.71)

where NH0H0 = NA0A0 = 1/
√

2 and NH−H+ = 1. Also, M (ii′ → f) stands for the tree-level
scattering amplitude for the corresponding annihilation process.

Two-body final state processes

For the IDM, in these cases the matrix Γf can be cast as

Γf = 1
32πM2

H0

(
V f
G
T
V f
G + V f

S
T
V f
S

)
, (5.72)

where V f
G and V f

S are row vectors, that we report in Table 5.1. Their interpretation is clear for
final states with gauge bosons: the first vector corresponds to the emission of transverse bosons,
whereas the second vector corresponds to the emission of longitudinal bosons, which -by virtue
of the Equivalence Theorem- is equivalent to the emission of Goldstone bosons in the high-mass
regime.
If we add all the contribution of the two-body final states, we find again the same results of

Eq. (5.53) and Eq. (5.57), which were derived using path-integral methods. That is, we find
ΓGauge + ΓScalars =

∑
f Γf , for the states f of Table 5.1.

Final State f V f
G V f

S

W+W−
(
g2

2 ,
g2

2 ,
g2
√

2

) (
λ3√

2 ,
λ3√

2 , λ3 + λ4
)

ZZ

(
g2

2
√

2c2W
, g2

2
√

2c2W
,
g2(1−2c2W )2

2c2W

) (
−λ3−λ4+λ5

2 , −λ3−λ4−λ5
2 ,− λ3√

2

)
γγ (0, 0, 2e2) (0, 0, 0)
γZ

(
0, 0,
√

2(1− 2c2
W ) gecW

)
(0, 0, 0)

hh (0, 0, 0)
(
−λ3−λ4−λ5

2 , −λ3−λ4+λ5
2 ,− λ3√

2

)
Table 5.1: Row vectors V fG and V fS for calculating Γf using Eq. (5.72) for each two-body final state. For

the case of gauge bosons, they correspond to the emission of transversely and longitudinally
polarized particles, respectively.
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Three-body final state processes and VIB

This method is particularly useful for calculating the contribution from three-body final states.
However, in this case the expression of Γf is more complicated. In this work, we only consider
the process H0H0 →W+W−γ, since it is the only one playing an important role, specially for
calculating the gamma-ray spectra. We follow section 4.2, in particular Eqs. (4.17),(4.18), (4.19)
and (4.20), to manipulate the required three-body phase integration of Eq. (5.71). In this way,
the matrix Γ - differential in the variable x- can be written as

d
(
ΓW+W−γ

)
ii′,jj′

dx
= Nii′Njj′

128π3

∫ x+max

x+min
M
(
ii′ →W+W−γ

)
M
(
jj′ →W+W−γ

)∗
dx+. (5.73)

Although µ is very small in the high-mass regime of the IDM, we can not neglect it in the last
equation because it regularizes infrared divergences in the different VIB processes. Analytical
expressions for the previous equation can be obtained, but they are in general very long and
because of this we do not report them here.

5.6 The Sommerfeld Effect

Now we show how to include the non-perturbative effects in cross section calculations. Using the
path integral of Eq. (5.68), it is possible to prove that the s-wave annihilation cross section can
be calculated using the following algorithm [22]:

1. If v is the relative velocity of the initial state particles, the differential equation

g′′(r) +MH0

(1
4MH0v211− V (r)

)
g(r) = 0 (5.74)

for the 3× 3 matrix g(r) is solved for two boundary conditions 2. At the origin

g(0) = 11 , (5.75)

whereas for large values of r, the solution describes the states H0H0, A0A0 and H−H+

according to the mass splitting:

• If the mass splitting δmii′,ii′ associated to the inert pair ii′ is smaller than the initial
kinetic energy MH0v2/4, then there is enough energy to produce on-shell states of the
corresponding pair, and therefore the matrix elements gii′,jj′(r) at infinity behave as
an out-going wave, with momentum given according to Eq. (5.74) by

pii′ =

√
MH0

(
1
4MH0v2 − Vii′,ii′(∞)

)
=

√
MH0

(
1
4MH0v2 − 2 .δmii′,ii′

)
(5.76)

2Other boundary conditions have been considered in the literature (see, e.g., [25, 27]). Moreover, in [27] it
was proven that under certain circumstances, other choices for boundary conditions are equivalent to the
prescription described in the present work.
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The corresponding boundary condition at infinity is
dgii′,jj′(∞)

dr
= i pii′ gii′,jj′(∞) . (5.77)

• In the opposite case, that is if δmii′,ii′ > MH0v2/4, there is not enough energy to
produce on-shell states of the corresponding pair, and therefore the matrix elements
gii′,jj′(r) decays exponentially at infinity. Hence

gii′,jj′(∞) = 0 . (5.78)

2. Once the solution is obtained, the oscillating phases of g(r) at large values of r are factorized
by writing it as

g(r)→ eir
√
MH0( 1

4MH0v211−2 δm)d . (5.79)

3. Subsequently, the s-wave cross section for the annihilation of the pair (i, i′) into a final
state f is calculated by means of the equation

σv
(
ii′ → f

) ∣∣∣
s−wave

= 1
N2
ii′

(dΓf d†)ii′,ii′ . (5.80)

Notice that d = 11 when the potential in Eq. (5.74) is negligible, and therefore Eqs. (5.71) and
(5.80) reduce to the standard expressions for calculating the cross section in the s-wave limit.

We are particularly interested in dark matter annihilation, in that case Eq. (5.80) can be cast
as

σv
(
H0H0 → f

) ∣∣∣
s−wave

= 1
4M2

H0

∫ ∏
a∈f

d3qa
(2π)32Ea

 (2π)4δ4
(
pH0 + p′H0 −

∑
a∈f

qa

)

·

∣∣∣∣∣d11 M
(
H0H0 → f

)
+ d12 M

(
A0A0 → f

)
+
√

2d13 M
(
H+H− → f

) ∣∣∣∣∣
2

, (5.81)

where f here stands for any final state of light particles. The quantities d11,d12 and d13 are
therefore interpreted as non-perturbative enhancement factors that account for the long range
interactions between the annihilating dark matter particles due to the exchange of gauge and
Higgs bosons in the non-relativistic limit.
As an example, we show in Fig. 5.5 the absolute value of d11,d12 and d13 as a function of the

dark matter mass, for the case in which all the quartic couplings vanish. Observe that including
these factors in the calculation is irrelevant for masses below approximately 2 TeV. However,
once we approach higher values for the dark matter mass, the enhancement factors dramatically
affect the annihilation cross sections, as shown in Eq. (5.81). Furthermore, we find a resonant
behavior, in agreement with what was found in [22] for neutralino dark matter.

75



Chapter 5 Non-Perturbative Effects in Dark Matter Phenomenology

Èd11È Èd12 È Èd13È

0 2 4 6 8 10
10-2

10-1

1

101

102

MH 0 HTeVL

S
o

m
m

er
fe

ld
F

ac
to

rs

Figure 5.5: Absolute value of the Sommerfeld enhancement factors d11,d12 and d13 as a function of the
dark matter mass when all the quartic couplings vanish.
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Figure 5.6: Cross section for the process H0H0 → γγ according to the one-loop calculation (dashed line)
and according to the Born approximation described in Eq. (5.92) (continuous line).
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Annihilation into γγ and γZ According to Table 5.1,

Γγγ = 2πα2

M2
H0


0 0 0
0 0 0
0 0 1

 , ΓγZ = παα2(1− 2c2
W )2

M2
H0c2

W


0 0 0
0 0 0
0 0 1

 , (5.82)

using Eq. (5.80) we then find that

σv
(
H0H0 → γγ

)
= 4πα2|d13|2

M2
H0

, σv
(
H0H0 → γZ

)
= 2παα2(1− 2c2

W )2|d13|2

M2
H0c2

W

. (5.83)

In [22] it was shown that for very high masses, these cross sections do not violate perturbative
unitarity, in contrast to the one-loop results of chapter 4. This implies that the cross sections
scale like 1/M2

H0 for large dark matter masses.

5.7 The Born Approximation as the One-loop Result

In this section we study under which circumstances the one-loop calculation of section 4.1
matches the results of Eq. (5.83), which are obtained using the non-relativistic approach described
previously. In order to do that, notice that in any one-loop calculation the interaction between
the particles is treated perturbatively and corresponds to the first order in the expansion. We
thus show that the calculation of section 4.1 matches the results obtained with Eq. (5.83) when
one solves Eq. (5.74) by performing a perturbative expansion on the potential.

Details of the Born Expansion

The differential equation (5.74) for the Sommerfeld enhancement can be cast as

d2g

dr2 + k2g(r) = MH0V (r)g(r) with k = 1
2MH0v. (5.84)

A formal solution of this equation is

g(r) = eikrg0 + e−ikrg′0 +
∫ ∞

0
dr′h(r − r′)MH0V (r′)g(r′) , (5.85)

where h(r) is a Green’s function of the harmonic oscillator

d2h

dr2 + k2h(r) = δ(r). (5.86)

If the kinetic energy is smaller than the mass splitting, the matrix g(r) admits only out-going
waves for large r. In that case g′0 = 0 in Eq. (5.85). Similarly, the only Green’s function h(r) in
agreement with this boundary condition is

h(r) = 1
2ik

(
eikrθ(r) + e−ikrθ(−r)

)
, (5.87)
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and consequently the solution (5.85) is

g(r) = eikrg0 + MH0

2ik

∫ ∞
0

dr
(
eik(r−r′)θ(r − r′) + e−ik(r−r′)θ(r′ − r)

)
V (r′)g(r′). (5.88)

If the potential is small enough, the previous equation can be solved by expanding in the potential.
The first term of that expansion -the Born approximation- is

g(r) =
(
eikr + MH0

2ik

∫ ∞
0

dr
(
eik(r−r′)θ(r − r′) + e−ik(r−r′)θ(r′ − r)

)
V (r′)eikr′

)
g0. (5.89)

After applying the boundary condition g(0) = 11 and factorizing out the oscillating phase at
r →∞, one finds

d = 11− MH0

k

∫ ∞
0

dr′ sin(kr′)V (r′)eikr′ , (5.90)

which gives for the 31 component

d13|Born Approx. = − 1
2
√

2

(
MH0

MW +
√

2MH0(MH+ −MH0)

)(
α2 + v2

h(λ4 + λ5)2

16πM2
H0

)
. (5.91)

Annihilation into Photons under the Born Approximation

Eqs. (5.91) and (5.83) implies then that

σv(H0H0 → γγ)|Born Approx. = πα2

2

 α2 + v2
h(λ4+λ5)2

16πM2
H0

MW +
√

2MH0(MH+ −MH0)


2

. (5.92)

In Fig. 5.6 we plot this cross section for different quartic couplings (continuous lines) and
compare it with the one-loop calculation of section 4.1 (dashed lines). The agreement is very
good, specially for masses in TeV range.
In general, the potential matrix is not small and can not be treated perturbatively. This

happens when the exchange of gauge or Higgs bosons between the initial state particles has
a significant effect. In that case Eq. (5.74) must be solved numerically in order to obtain the
enhancement factors.

78



Chapter 6

Gamma-Ray Spectral Features from the IDM

In this chapter we calculate limits on the IDM, coming from indirect dark matter experiments
with gamma-rays. In order to do that, we include the Sommerfeld Effect.

6.1 Scan over the Parameter Space

In order to study gamma-ray spectra in the high-mass regime of the IDM, we perform a scan
over the five dimensional parameter space of the dark matter sector. More specifically, we let
MH0 vary in between 500 GeV and 6 TeV, and the quartic couplings in the range |λi| . 3. We
do not take larger masses, because in general they lead to thermally-produced dark matter with
quartic couplings larger than three or more, and we do not consider such values in order to
ensure perturbativity. In addition, for every point we impose vacuum stability by requiring
that the quartic couplings satisfy Eq. (3.11). For each of the points we then solve numerically
the Boltzmann equations for the relic abundance by means of micrOMEGAs 3.1 [79] and
select only those points for which the result is in agreement within 3σ with the observed value
ΩDMh

2 = 0.1199± 0.0027.
Subsequently, for each point of our scan we numerically solve Eq. (5.74) and calculate the

enhancement factors d11, d12 and d13, assuming a dark matter relative velocity of v = 10−3. For
the points of the scan we calculate the total annihilation cross section by adding the contribution
from the 2→ 2 annihilation channels, H0H0 →W+W−, Z0Z0 and hh with (without) Sommerfeld
enhancement and show the results in Fig. 6.1 in orange (yellow). They are safely below the limits
on the cross section derived in [133] from the PAMELA data on the cosmic antiproton-to-proton
fraction [134] assuming 100% branching fraction into WW and hh. We also show the limits [135]
on the total annihilation cross section coming from gamma-ray searches performed by the HESS
collaboration, assuming a NFW profile. We see that some of the points of the scan are excluded
by this limit.
In order to assess the effect of the Sommerfeld enhancement, for each point of the scan we

calculate the ratio of the total enhanced cross section to the unenhanced cross section. The
results are shown in Fig. 6.2. We find that Sommerfeld effect is not negligible.
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Figure 6.1: Total annihilation cross section for the points of the scan. The orange points take into account
the Sommerfeld enhancement, whereas the yellow ones do not. We show the limits from
antiprotons assuming 100% branching fraction into WW (blue line) or hh (green line) [133].
We also show the limits [135] on the total annihilation cross section coming from gamma-
ray searches perfomed by the HESS collaboration (red Line). In addition, we display the
benchmark points of Table 6.1.
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Figure 6.2: Impact of the Sommerfeld enhancement on the total annihilation cross section for the points
of the scan. We also show the benchmark points of Table 6.1.
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6.1 Scan over the Parameter Space

Spectrum Benchmarks
BMP 1: MH0 = 2.59 TeV ρ = 125.6 κ = 0.5 BMP 2: MH0 = 5.84 TeV ρ = 78.5 κ = 0.5

λ3 = −0.5 λ4 = 1.05 λ5 = −1.06 λ3 = −0.86 λ4 = 2.46 λ5 = −2.47

10
0

10
1

10
-29

10
-28

10
-27

10
-26

EΓ HTeVL

x
2
.7
d
HΣ

v
L�
d
x
H
c
m

3
s
-
1
L

BMP 1 M
H

0= 2.59 HTeVL

10
0

10
1

10
-29

10
-28

10
-27

10
-26

EΓ HTeVL

x
2
.7
d
HΣ

v
L�
d
x
H
c
m

3
s
-
1
L

BMP 2 M
H

0= 5.84 HTeVL

Dominated
by γ lines

BMP 3: MH0 = 0.71 TeV ρ = 46.9 κ = 0.9 BMP 4: MH0 = 1.15 TeV ρ = 43.9 κ = 2.3

λ3 = −0.23 λ4 = 0.1 λ5 = −0.15 λ3 = 0.23 λ4 = −0.54 λ5 = −0.31

10
0

10
1

10
-29

10
-28

10
-27

10
-26

EΓ HTeVL

x
2
.7
d
HΣ
v
L�
d
x
H
c
m

3
s
-
1
L

BMP 3 M
H

0= 0.71 HTeVL

10
0

10
1

10
-29

10
-28

10
-27

10
-26

EΓ HTeVL

x
2
.7
d
HΣ
v
L�
d
x
H
c
m

3
s
-
1
L

BMP 4 M
H

0= 1.15 HTeVL

Dominated
by VIB

BMP 5: MH0 = 4.68 TeV ρ = 10.9 κ = 4.7 BMP 6: MH0 = 5.92 TeV ρ = 36.5 κ = 1.1

λ3 = 2.9 λ4 = −2.47 λ5 = −0.79 λ3 = 0.53 λ4 = 1.25 λ5 = −2.73

10
0

10
1

10
-29

10
-28

10
-27

10
-26

EΓ HTeVL

x
2
.7
d
HΣ

v
L�
d
x
H
c
m

3
s
-
1
L

BMP 6 M
H

0= 4.68 HTeVL

10
0

10
1

10
-29

10
-28

10
-27

10
-26

EΓ HTeVL

x
2
.7
d
HΣ

v
L�
d
x
H
c
m

3
s
-
1
L

BMP 8 M
H

0= 5.92 HTeVL

Dominated
by the

continuum

Table 6.1: Gamma-ray differential cross sections (black) for some benchmark points. The contributions
of the VIB, the soft part, and the γγ and γZ monochromatic lines are in blue, green, magenta
and pink, respectively. The spectra have been convoluted with a Gaussian detector response
characterized by a standard deviation σ(E) = 0.1E. The dashed line is the spectra with no
Sommerfeld enhancement.
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Chapter 6 Gamma-Ray Spectral Features from the IDM

In the IDM, the gamma-ray flux (2.15) can be cast as

dΦγ

dEγ
= 1

8π

( 1
∆Ω

∫
∆Ω

JdΩ
) σv

M3
H0

∑
f

Bf
dNf

dx

 , (6.1)

where we used x = Eγ/MH0 and the fact that all the processes proceed via s-waves which imply
that we can safely take 〈σv〉 = σv. In addition, the flux has different contributions. On first
place, a soft part consisting on secondary photons from the decay and fragmentation of the gauge
and Higgs bosons that are produced in dark matter annihilations. We calculate this contribution
using PYTHIA 6.4 [136]. Secondly, from the monochromatic photons produced in the processes
H0H0 → γγ and H0H0 → γZ. And lastly, from the VIB photons. As a result we have∑

f

Bf
dNf

dx
= 1

σv

[
d(σv)secWW

dx
+ d(σv)secZZ

dx
+ d(σv)sechh

dx

+ 2(σv)γγδ (x− 1) + (σv)γZδ
(
x− 1 + M2

Z

4M2
H0

)
+ d(σv)WWγ

dx

]
. (6.2)

In this expression we include the Sommerfeld enhanced formulas of chapter 5. In order to illustrate
each contribution, we show in Table 6.1 six benchmarks from the scan, and their corresponding
gamma-ray differential cross sections. The contributions of the VIB, the soft part, and the γγ
and γZ monochromatic lines are in blue, green, magenta and pink, respectively. The spectra
have been convoluted with a Gaussian detector response characterized by a standard deviation
σ(E) = 0.1E. We also show the effect of not including the Sommerfeld enhancement as a black
dashed line. The six points were chosen following the next criteria: two points where the lines
dominate, two points where the VIB dominates and two where the soft part is more significant.
Also, in order to make the spectral features more noticeable and to establish gamma-ray limits,
we multiply the differential cross sections by x2.7.
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Figure 6.3: Interplay between the parameters ρ and κ from Eq. (6.3). See the text for details.
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6.2 Monochromatic Lines and VIB

The relative importance of the VIB signature and the monochromatic lines can be quantified by
introducing the following two quantities

κ =
∫ 1−4µ
0.8

d(σv)WWγ

dx dx

2(σv)γγ + (σv)γZ
, ρ =

2(σv)γγ + (σv)γZ +
∫ 1−4µ

0.8
d(σv)WWγ

dx dx∫ 1−4µ
0.8

(
d(σv)secWW

dx + d(σv)secZZ
dx + d(σv)sec

hh
dx

)
dx

. (6.3)

Similar variables were also used for analyzing spectral features in dark matter models of heavy
neutralinos [105]. We expect the VIB signature to dominate over the monochromatic lines for large
values of κ. Similarly, we expect the combination of the VIB spectrum and the monochromatic
lines to dominate over the soft gamma-ray spectra for large values of ρ.
In order to study the relation between these two variables precisely we calculate them for

the points of the scan. The results are shown in the left panel of Fig. 6.3. From this plot, we
can conclude that if the VIB contribution is much greater than the monochromatic lines - for
instance for values of κ larger than 3- then the associated spectral feature is lost within the soft
part of the spectrum due to the low values of ρ. An example of this is benchmark 5. On the
other hand, when the combined spectral feature stands out of the spectrum, the monochromatic
lines are at least as significant as the VIB. Nonetheless, this does not mean that the latter can be
neglected, in fact, as it is apparent from the plot, in most cases the VIB and the monochromatic
lines are of the same order of magnitude.

As shown in section 4.2, the internal bresmmstrahlung spectrum is composed of a gauge part
-independent of the quartic couplings with a sharp spectral feature- and a featureless quartic
piece proportional to the coupling λ3. The former is associated to transverse W bosons, whereas
the latter to the longitudinal ones. A possible explanation for the fact that large values of κ
correspond to low values of ρ is that, for these cases, the VIB signature dominates over the
monochromatic lines because the quartic piece is much greater than both the gauge part and
the lines. Accordingly, there should be no spectral feature in the spectrum. We corroborate this
hypothesis in the right panel of Fig. 6.3, which shows that large values of κ are obtained only
when λ3 is correspondingly large, and consequently, when the quartic piece of the VIB spectrum
dominates over the gauge part, erasing the spectral feature.

6.3 H.E.S.S. Limits on the IDM

We now calculate the gamma-ray flux given by Eq. (6.1) corresponding to the first four benchmark
models of Table 6.1. We do not consider benchmarks 4 and 5 because their overall spectral
feature does not stand out over the soft part. We choose for our study NFW profile [88, 89] (see
section 2.3.2). We will compare our predicted flux to the limits recently derived by the H.E.S.S.
collaboration from a search for line-like gamma-ray features in the central part of the Milky Way
halo with energies between ∼ 500 GeV and ∼ 25 TeV [137], which adopts a complicated search
region with a J-factor given J = 6.4× 1024 GeV2 cm−5 for the NFW profile [135].
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Table 6.2: H.E.S.S. limits on the benchmarks of Table 6.1. See text for details.

The predicted flux for each benchmark is shown as a blue curve in Table 6.2. The gamma-ray
data measured by the collaboration with the respective error bars are also shown. In order to
derive limits, we parametrize and fit the background as it was done in [137] and show it in black.
Finally in red (upper lines) we show the total spectrum that would be excluded at a 95 % C.L. if
the annihilation signal is multiplied by the factor that is shown in the upper part of the plots
and that we call ΦHESS/Φ. We also show in red (lower lines) the corresponding signal when
multiplied by that factor. We add that for doing this study the χ2 method was used.

As apparent from the table, present instruments are not sensitive enough to observe the
spectral of the IDM, unless the annihilation signal is boosted by astrophysical or particle physics
effects by a factor O(10). Future instruments, such as DAMPE [138], GAMMA-400 [139] or
CTA [140] will, however, close in on the signals from the IDM.
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6.3 H.E.S.S. Limits on the IDM

It is important to contrast these limits with the corresponding limits from direct detection.
We calculate the latter following [16,66, 122] and then compare them with the current sensitivity
of the LUX experiment [82] . We show the results in Table 6.3. We conclude that gamma-ray
limits can do much better than direct detection experiments when the dark matter mass is large.

BMP M (TeV) ΦHESS/Φ σLUX/σSI

1 2.59 9.1 31.9
2 5.84 14.0 103.9
3 0.71 4.6 2.6
4 1.15 19.9 2.4

Table 6.3: Gamma-ray limits vs. spin independent direct detection limits.
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Part III

Dark Matter Stability from a
Spontaneously Broken Global Group





Chapter 7

Model II: Dark Matter from a Dirac Fermion

As conjectured in section 2.1, the stability of the dark matter is very likely due to the existence
of a symmetry in the Lagrangian. The simplest symmetry that ensures the absolute stability of
the dark matter particle is a discrete Z2 symmetry, under which all the Standard Model particles
are even while the dark matter particle is odd. The discrete symmetry in the Lagrangian could
be imposed by hand or could arise as a remnant of the breaking of a global symmetry. In fact,
suppose that the global symmetry is described by an U(1) group and that a scalar field with
charge 2 in units of the smallest U(1)−charge acquires a vacuum expectation value, then the
global symmetry is spontaneously broken and a discrete Z2 symmetry emerges in the Lagrangian.
Moreover, all the fields with even and odd charges under the global group will acquire, after the
spontaneous symmetry breaking, an even and odd discrete charge under the Z2 transformation,
respectively. Therefore, the lightest particle with odd charge is absolutely stable and a potential
candidate for dark matter.
The spontaneous breaking of a global continuous symmetry, as is well known, gives rise to

massless Goldstone bosons in the spectrum [31–33]. While the presence of Goldstone bosons is
usually an unwanted feature in model building, it was recently argued by Weinberg [34] that the
Goldstone boson that arises in this framework could contribute to energy density of th Universe.
More specifically, if the Goldstone bosons are in thermal equilibrium with the Standard Model
particles until the era of muon annihilation, their contribution to the effective number of neutrino
species Neff would be 0.39, in remarkable agreement with the central value obtained in [35] from
combining Planck data, WMAP9 polarization data and ground-based observations of high-`,
which imply Neff = 3.36+0.68

−0.64 at 95% C.L.
In this chapter we introduce these ideas in a particular model and show -as opposed to the

original claim- that the Goldstone bosons associated to the stability of dark matter particle play
a crucial role in the dark matter production. We leave for chapter 9 the discussion of Neff .

7.1 Description of the Model

We consider the model proposed in [34], where the Standard Model (SM) is extended by one
complex scalar field φ and one Dirac fermion field ψ. The new fields are singlets under the SM
gauge group and are charged under a global U(1)DM symmetry, namely: U(1)DM(ψ) = 1 and
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U(1)DM(φ) = 2. Besides, all the SM fields transform trivially under the global symmetry. As a
consequence, the dark sector interacts with the SM fermions only through the Higgs portal. The
corresponding interaction Lagrangian reads:

L = (DµΦ)† (DµΦ) + µ2
Φ Φ†Φ − λΦ

(
Φ†Φ

)2

+ ∂µφ
∗∂µφ + µ2

φ φ
∗ φ − λφ (φ∗ φ)2 − κ

(
Φ†Φ

)
(φ∗ φ) + LDM , (7.1)

where Dµ is the covariant derivative, Φ is the SM Higgs doublet and

LDM = iψγµ∂µψ −Mψψ −
(
f√
2
φψψc + h.c.

)
, (7.2)

with ψc ≡ Cψ
T . In the following we discuss separately the scalar sector and the dark matter

sector.

7.1.1 The Scalar Sector

Both the scalar field φ and the neutral component of the Higgs doublet acquire non-zero vacuum
expectation values (vev), which spontaneously break the symmetry group SU(3)c × SU(2)W ×
U(1)Y × [U(1)DM]→ U(1)em ×Z2. In order to analyze the physical mass spectrum of the theory,
we conveniently parametrize the scalar fields in Eq. (7.1) as: 1

Φ =

 G+

vh+h̃+iG0
√

2

 , φ = vφ + ρ̃+ iη√
2

, (7.3)

where the SM Higgs vev is vh ' 246 GeV. Then, from the minimization of the scalar potential in
Eq. (7.1) we get the following tree-level relations between the parameters of the Lagrangian and
the vacuum expectation values:

µ2
Φ = 1

2
(
2 v2

h λΦ + v2
φ κ
)
, µ2

φ = 1
2
(
2 v2

φ λφ + v2
h κ
)
. (7.4)

The neutral CP -odd component of the Higgs doublet, G0, provides the longitudinal polarization
of the Z boson through the Brout-Englert-Higgs mechanism. On the other hand, the pseudo-
scalar field η corresponds to the Goldstone boson that arises from the spontaneous breaking of
the global U(1)DM symmetry. Therefore, the physical mass spectrum consists of two CP -even
massive real scalars, denoted by h and ρ, which are linear combinations of the interaction fields
h̃ and ρ̃ in Eq. (7.3), and a CP -odd massless scalar η. The mass matrix of the CP -even scalars
in the basis of interaction fields (h̃, ρ̃) reads

MS =
(

2λΦ v
2
h κ vh vφ

κ vh vφ 2λφ v2
φ

)
, (7.5)

1In contrast to [34], with this parametrization only renormalizable terms in the Lagrangian are necessary to
analyze, at lowest order, the phenomenology of the dark sector.
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where we have used Eq. (7.4). The mass eigenstates h and ρ are thus obtained by the basis
transformation:(

h̃

ρ̃

)
= RS

(
h

ρ

)
, (7.6)

with

RS ≡
(

cos θ sin θ
− sin θ cos θ

)
and tan 2θ = κ vh vφ

λφ v
2
φ
−λΦ v2

h
. (7.7)

The masses of the physical states are:

m2
h = 2λΦ v

2
h cos2 θ + 2λφ v2

φ sin2 θ − κ vh vφ sin 2θ , (7.8)

m2
ρ = 2λΦ v

2
h sin2 θ + 2λφ v2

φ cos2 θ + κ vh vφ sin 2θ . (7.9)

In the following, we assume that the CP -even state h corresponds to the Standard Model Higgs
boson with mh = 125 GeV. Notice that, after the electroweak symmetry breaking, the scalar
sector can be described in terms of three independent unknown parameters, mρ, vφ and θ, as well
as the mass and the vev of the Higgs. With this choice, the quartic couplings are unambiguously
given by

λΦ =
m2
h cos2 θ +m2

ρ sin2 θ

2v2
h

, λφ =
m2
h sin2 θ +m2

ρ cos2 θ

2v2
φ

, (7.10)

κ =
(m2

ρ −m2
h) sin 2θ

2 vh vφ
.

The stability of the scalar potential implies the condition 4λΦ λφ − κ2 > 0, which is automatically
satisfied by the previous equations as long as m2

ρ > 0 and m2
h > 0.

7.1.2 The Dark Matter Sector

The coupling constant f of the interaction between the Dirac field ψ and the complex scalar φ in
Eq. (7.2) is in general complex. However, this phase can be absorbed by a redefinition of the
scalar field φ. As a result, the Lagrangian Eq. (7.2) conserves CP and both P and C separately.
Besides, the Dirac field ψ is no longer a mass eigenstate after Φ and φ acquire non-zero vacuum
expectation values. Indeed, it splits into two new mass-eigenstates, which correspond to the
Majorana fermions:

ψ+ = ψ + ψc√
2

, ψ− = ψ − ψc√
2i

, (7.11)

which are C-even and C-odd respectively (see Appendix A). In terms of them, the Lagrangian
can be cast as

L = 1
2
(
iψ+γ

µ∂µψ+ + iψ−γ
µ∂µψ− −M+ψ+ψ+ −M−ψ−ψ−

)
− f2

(
(− sin θ h+ cos θ ρ)(ψ+ψ+ − ψ−ψ−) + η (ψ+ψ− + ψ−ψ+)

)
, (7.12)
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with M± = |M ± fvφ|. Notice that this Lagrangian is invariant under the Z2 transformation
ψ± → −ψ±, which is a remnant of the spontaneously broken U(1)DM symmetry. As a result, the
lightest Majorana fermion is stable and, consequently, a dark matter candidate. If the coupling
constant f is positive, the lightest Majorana fermion is ψ−. Without loss of generality, we will
assume that this is the case. Notice that the dark sector contains five unknown parameters,
for example, M−, mρ, λφ, θ and f . Nevertheless, in some instances we will find convenient to
express observables in terms of the following dimensionless quantities:

r = mρ

M−
, z = M+

M−
. (7.13)

In this scenario, not only the dark matter particle survives until today, but also the Goldstone
boson. In fact, all other particles of the dark sector are unstable. On the one hand, ψ+ decays
into a dark matter particle and a Goldstone boson with a decay rate:

Γ(ψ+ → ψ−η) =
f2(M2

+ −M2
−)(M+ +M−)2

16πM3
+

. (7.14)

On the other hand, the scalar ρ decays into ψ± pairs, two Goldstone bosons or SM particles.
Decays into SM particles are negligible since the corresponding decay rate is proportional to
sin2 θ, which, as we will see in the next subsection, should be very small. Therefore the relevant
decay widths read:

Γ(ρ→ η η) =
m3
ρ cos2 θ

32π v2
φ

, (7.15)

Γ (ρ→ ψ±ψ±) = f2 cos2 θ

16πm2
ρ

(
m2
ρ − 4M2

±

)3/2
. (7.16)

7.1.3 Constraints from Invisible Higgs Decays

The enlarged scalar and fermion sectors affect the SM Higgs decay channels. The new decay
modes and the corresponding decay rates are:

Γ(h→ η η) = m3
h sin2 θ

32π v2
φ

, (7.17)

Γ(h→ ρ ρ) =

(
m2
h + 2m2

ρ

)2

128πm2
h v

2
h v

2
φ

√
m2
h − 4m2

ρ (vh cos θ − vφ sin θ)2 sin2 2θ, (7.18)

Γ (h→ ψ±ψ±) = f2 sin2 θ

16πm2
h

(
m2
h − 4M2

±

)3/2
. (7.19)

It is possible to constrain the value of the scalar mixing angle θ from the experimental upper
bound on the Higgs boson invisible decay width. Indeed, neglecting for simplicity the h decays
into a pair of ρ or ψ±, the total decay width of h takes the form:

Γtot
h = cos2 θ ΓSM

Higgs + Γ (h→ η η) , (7.20)
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where ΓSM
Higgs ' 4 MeV is the total decay width of the Higgs boson within the Standard Model for

a Higgs boson mass of 125GeV. Therefore, from Eq. (7.20) it follows that

Γ (h→ η η) <
Binv cos2 θ

1−Binv
ΓSM

Higgs , (7.21)

where Binv ' 20% (see, e.g., [141, 142]) is the conservative experimental upper limit on the
invisible branching ratio of the Higgs boson. Thus, from the expression of the h decay rate into
two Goldstone bosons, Eq. (7.17), the following upper limit on tan θ can be derived [34]:

|tan θ| <

√√√√32π v2
φ ΓSM

HiggsBinv

m3
h (1−Binv)

. 2.2×10−3
(

vφ
10 GeV

)
≈ 1.6×10−5λ

−1/2
φ

(
mρ

0.1 GeV

)
, (7.22)

where in the last expression it was replaced vφ ≈ mρ/
√

2λφ at leading order in θ.
Including the other two decay processes, Eqs. (7.18) and (7.19), when kinematically allowed,

would reduce the upper bound derived in Eq. (7.22) by up to 5%. As we will see in section 7.3,
stronger limits on the scalar mixing angle θ can be derived from dark matter direct detection
experiments.

7.2 Dark Matter Relic Abundance

As discussed in section 2.2, the dark matter relic abundance is obtained by solving the Boltzmann
equation

dn

dt
+ 3Hn = −〈σeffv〉

(
n2 − (neq)2

)
, (7.23)

where n = n+ + n−, with n± being the number densities of the (co)annihilating species ψ±. The
equilibrium densities are

neq± =
M2
±T

2π2 K2

(
M±
T

)
, (7.24)

where Kn(x) is the modified Bessel function of the second kind of nth order. The effective
thermal cross section is given by [78]

〈σeffv〉 =
∑
i,j=±

〈σijv〉n
eq
i

neq
neqj
neq

, (7.25)

with

〈σijv〉 =
∫∞
(Mi+Mj)2

ds√
s
K1

(√
s
T

)
(s− (Mi +Mj)2)(s− (Mi −Mj)2)σ(ij → all)

8TM2
iM

2
jK2(Mi

T )K2(Mj

T )
. (7.26)
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7.2.1 Scan Over the Parameter Space

In order to study the dark matter production mechanism in this model, we perform scans over the
five dimensional parameter space. More specifically, mρ and vφ vary in the range 200 MeV and
1 TeV, while the dark matter mass, between 1 GeV and 1 TeV. Besides, | tan θ| varies between
zero and the upper limit set by the invisible decay width of the Higgs, given in Eq. (7.22), and
f is taken between 10−2 and 4π. Lastly, for every point we require perturbativity by requiring
that the quartic couplings determined by Eq. (7.10) are smaller than 4π. For each of the points
we then solve numerically the Boltzmann equation Eq. (7.23) by using micrOMEGAs 3.1 [79],
working under an implementation of our model made with FeynRules [125], and select only those
points for which the computed relic density is in agreement within 3σ with the observed value
ΩDMh

2 = 0.1199± 0.0027.
The results of two different scans, withmρ = 500 MeV and 250 GeV, are reported in Figs. 7.1 and

7.2 respectively, where we show the relative contribution to the relic density of each annihilation
channel. In the former, the dominant annihilation channel is always into a pair of ρ scalars, when
this is kinematically open, i.e. for r = mρ/M− < 1. Conversely, the annihilation into Goldstone
bosons dominates in the region r > 1. As shown in the upper panel, the coannihilation process
ψ−ψ+ → ηρ is relevant only in the limit z = M+/M− ∼ 1. For this region of the parameter
space the annihilation of dark matter into the SM sector is always subdominant because either
these channels are kinematically closed or the coupling to SM particles is very small. We show
in Fig. 7.2 the corresponding plot for the case mρ = 250 GeV. In this case, due to the large
scalar mass, annihilation channels into SM fermions and gauge bosons might not be neglected.
In general, channels with SM particles in the final state contribute significantly to the dark
matter relic density only under two circumstances: when the mixing angle θ is non-negligible, or
when the dark matter annihilation proceeds via resonant s-channel exchange of CP -even scalars,
that is either ρ or h. This is manifest in Fig. 7.2, where the Higgs resonance takes place at
M− = mh/2 ≈ 63 GeV, while the one corresponding to ρ at M− = mρ/2 ≈ 125 GeV.

Limit θ � 1

In the following we focus in the limit θ � 1, which is motivated by the measurements of the
invisible Higgs decay width. In this regime, it is enough to consider the (co)annihilation channels
with only η or ρ in the final state. In the first column of Table 7.1, we show these channels and
their corresponding Feynman diagrams. Some comments are in order:

• Not every channel is always kinematically allowed. In particular, ψ−ψ− → ρρ, ψ+ψ+ → ρρ

and ψ−ψ+ → ηρ are only open if mρ < M−, mρ < M+ and mρ < (M− +M+) respectively,
or equivalently if r < 1, r < z and r < 1 + z. Consequently, a threshold effect (see section
2.2.3) associated to the opening of the channel ψ−ψ− → ρρ always takes place when r ∼ 1.
Furthermore, if coannihilations are relevant – that is if z ∼ 1– a threshold effect appears
also when r ∼ 2 and r ∼ 1, because of the opening of the channels ψ+ψ− → ηρ and
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ψ+ψ+ → ρρ respectively.

• ψ±ψ± → ηη is always open and exhibits a resonant behavior when the energy of the
initial state approaches the ρ mass (see section 2.2.3). This effect is more dramatic when
mρ > 2M− –or equivalently when r > 2– because in this case the integration region of
Eq. (7.26) contains the resonance. However, this effect might also be present when r > 1
because a part of the resonance peak might still be within the integration region.

As a result, when r & 0.8, a full integration of the Boltzmann equations is needed without any
approximation. In Appendix B, we show the exact formulas for the cross sections which should
be used in this case. Conversely, when r . 0.8, both resonance and threshold effects can be
safely neglected and a reliable estimate of the cross section can be derived from the so-called
instantaneous freeze-out approximation by expanding in partial waves, as explained in section
2.2. In Table 7.1 we report such expansion, that is, we show the cross sections for each process to
leading order in the relative velocity v of the particles of the initial state, assuming a vanishing
mixing angle θ.

7.2.2 Dark Matter (Co-)Annihilations and the C and CP Symmetries

As can be seen from Table 7.1, all the annihilation channels are p-wave suppressed. In contrast,
the coannihilation channels proceed via s-waves and are the dominant annihilation process in the
Early Universe if z ∼ 1. This can be understood from CP conservation.
To this end, we use the standard notation S, L and J for the spin, the orbital and the total

angular momenta with a subscript i or f for the corresponding quantities of the initial or final
state. Then, for the annihilation processes ψ−ψ− → ρρ and ψ−ψ− → ηη, the CP eigenvalues of
the initial and final states are (−1)Li+1 and (−1)Lf , respectively (as shown in Table A.1). Thus
CP -conservation implies that |Lf − Li| must be an odd number. In addition, since ρ and η are
scalars, then Jf = Lf . If the s-wave were allowed, that is if Li = 0 or Ji = Si, then we could
only have Si = 1 and Li = 0, which is impossible for a pair of Majorana fermions due to the
Pauli exclusion principle (see Eq. (A.9)). The only possibility is therefore Li ≥ 1. On the other
hand, for the coannihilation process ψ−ψ+ → ηρ, the CP eigenvalues of the initial and final
states are (−1)Li and (−1)Lf+1. We again have Jf = Lf and therefore |Ji − Li| must be an odd
number. Consequently, the s-wave is allowed as long as Ji = Si = 1. Finally, we remark that the
process ψ−ψ− → ρη does not exist, despite CP is conserved for some values of Li. In fact, in
this process the initial state is C-even whereas the final state is C-odd, hence it is forbidden by
C conservation (as shown in Table A.1).
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Chapter 7 Model II: Dark Matter from a Dirac Fermion

Figure 7.1: Relative contribution of each annihilation channel to the dark matter relic density versus the
degeneracy parameter z (upper panel) and the dark matter mass (lower panel) for mρ = 500
MeV. Only the the dark sector contributes to the relic density.
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Figure 7.2: Relative contribution of each annihilation channel to the dark matter relic density versus the
dark matter mass for mρ = 250 GeV.96



7.2 Dark Matter Relic Abundance

Process Cross Section
Annihilation ψ−ψ− → ρρ

σv = f4v2

16πM2
−
Gρρ(r, z)

ψ−
ψ−

ρ

ψ− ρ

ψ−

ψ−

ρ
ρ

ρ

Gρρ(r, z) ≡
√

1− r2(27r12 + 24r10z − 240r10

+8r8z2 − 268r8z + 908r8 − 96r6z2 + 1152r6z

−1920r6 + 420r4z2 − 2424r4z + 2436r4

−800r2z2 + 2560r2z − 1760r2 + 576z2

−1152z + 576)/(6(r2 − 4)2(r2 − 2)4(z − 1)2)
Annihilation ψ−ψ− → ηη

σv = f4v2

16πM2
−
Gηη(r, z)

ψ−
ψ+

η

ψ− η

ψ−

ψ−

ρ
η

η

Gηη(r, z) ≡ 2(3r4z4 + 2r4z3 + 5r4z2 + 2r4

+12r2z6 + 4r2z5 + 8r2z4 − 8r2z3 − 12r2z2

+4r2z − 8r2 + 12z8 − 16z5 − 8z4 + 16z2

−16z + 12)/(3(r2 − 4)2(z − 1)2(z2 + 1)4)
Annihilation ψ+ψ+ → ρρ

ψ+

ψ+

ρ

ψ+ ρ

ψ+

ψ+

ρ
ρ

ρ

σv = f4v2

16πM2
−z

2Gρρ( rz ,
1
z )

Annihilation ψ+ψ+ → ηη

ψ+

ψ−
η

ψ+ η

ψ+

ψ+

ρ
η

η

σv = f4v2

16πM2
−z

2Gηη( rz ,
1
z )

Coannihilation ψ−ψ+ → ρη

σv = f4

16πM2
−
Gρη(r, z)

ψ−
ψ+

η

ψ+ ρ

ψ−

ψ+

η
η

ρ Gρη(r, z) ≡ ((z + 1)2 − r2)5/(4(r2z − z2

ψ−
ψ−

ρ

ψ+ η

−2z − 1)2(r2 − z3 − 2z2 − z)2)

Table 7.1: (Co)annihilation channels of the dark matter particle and the corresponding cross sections
to leading order in the relative velocity v and the mixing angle θ. The exact expressions are
reported in Appendix B.
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Chapter 7 Model II: Dark Matter from a Dirac Fermion

7.2.3 Dark Matter Coupling Constant in the Coannihilation Limit
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Figure 7.3: Coupling constant f versus dark matter mass for random points of the five dimensional

parameter space (see the text for details). Only the orange points reproduce the observed
relic density. The black line in the lower plot corresponds to the coannihilation limit given in
Eq. (7.27). In the right panel we include only the points for which r . 0.8.

For the points that reproduce the correct relic density we expect, in the regime where r . 0.8,
a lower limit on the coupling f as a function of the dark matter mass, corresponding to the
points where z ∼ 1, namely to the coannihilation limit. In this case, annihilations are p-wave
suppressed while coannihilations are not. Consequently, in the former case larger values of f are
required in order to reproduce the same total annihilation cross section. The lower limit can be
analytically estimated using that 〈σeffv〉 → f4/(32πM2

−) when z → 1. Then, using Eq. (2.11),
we can solve for f as a function of M−

f

∣∣∣∣∣
z→1

'
(

1.07× 1011 GeV−1 xf
g∗(xf )1/2mPl ΩDMh2

)1/4

M
1/2
− , (7.27)

which corresponds to the lower bound on the coupling constant f . We show in Fig. 7.3 as
cyan points the values of the coupling constant f versus the dark matter mass M− obtained
from a scan over the five dimensional parameter space following the procedure described before;
the orange points correspond to the subset of points that reproduce the observed relic density
ΩDMh

2 = 0.1199 ± 0.0027. In the left plot we include all points, whereas in right plot we
show only those for which r . 0.8. From the latter, it is apparent the correlation between the
coupling and the dark matter mass, as well as the existence of a lower limit on the coupling.
This lower limit is reasonably well reproduced by the analytic expression reported in Eq. (7.27),
calculated for xf = 25 and shown in the plot as a black line, except for the orange points around
M− = mh/2 ' 63 GeV, due to the Higgs resonance. In contrast, a correlation does not exist in
the left plot, due to the presence of resonance and threshold effects.
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7.3 Constraints from Direct Detection Experiments

7.3 Constraints from Direct Detection Experiments

In Fig. 7.4, we show the diagrams that are relevant for dark matter direct detection experiments.
Following [143], we calculate the corresponding WIMP-nucleon scattering cross section

σψ−N = C2 f2m4
N M

2
−

4π v2
h (M− +mN )2

(
1
m2
h

− 1
m2
ρ

)2

sin2 2θ , (7.28)

where mN denotes the nucleon mass and C ' 0.27 [79] is a constant that depends on the nucleon
matrix element.

As shown in Fig. 7.4, there is a relative sign between the Higgs and the ρ particle amplitudes,
which is responsible for the destructive interference term in Eq. (7.28). Note that the scattering
cross section has a strong dependence with mρ (concretely with m−4

ρ ) when mρ < mh, while it
is independent of mρ when mρ > mh. These two limiting behaviors correspond to the regimes
where the scattering is dominated by the ρ scalar or by the Higgs boson, respectively. Besides,
the scattering cross section is suppressed when mρ ' mh.

The limits on the scattering cross section of dark matter particles with protons from the LUX
experiment [82] translate into limits on the parameter space of our scenario. In the left panel
of Fig. 7.5, as black lines we show the bounds on f | sin 2θ| as a function of mρ for various dark
matter masses in between 8 GeV and 1000 GeV; in blue, orange and green we show the bound
for M− = 8, 30 and 1000 GeV respectively. The limits are stronger for dark matter masses close
to 30 GeV, as a result of the larger sensitivity of the LUX experiment to WIMP masses around
this value. Also, the dependence of the cross section with mρ described above is reflected in the
bound on f | sin 2θ|, as apparent from the plot.
For small values of mρ, namely smaller than about 6 GeV, masses probed by LUX satisfy

r . 0.8. Hence, if the dark matter was produced thermally, the lower limit on f of Eq. (7.27) can
be applied in order to get an upper bound on | sin θ|. This is shown in Fig. 7.6. As before, the
left panel shows, as black lines, the upper limits on | sin θ| as a function of mρ for various dark
matter masses between 8 GeV and 1000 GeV; the limits for the concrete masses M− = 8, 30
and 1000 GeV are shown in blue, orange and green, respectively. Besides, in the right panel of
Fig. 7.6, we report the same limits as a function of the dark matter mass for fixed values of mρ.
Notice that, above dark matter masses of about 30 GeV, the LUX limits on | sin θ| are almost
independent of the dark matter mass. In fact, the green and the orange lines almost coincide.

− if
2 sin θ

− imq

vH
cos θ

ψ−
h

ψ−

q q

if
2 cos θ

− imq

vH
sin θ

ψ−
ρ

ψ−

q q

Figure 7.4: Relevant Feynman diagrams for dark matter direct detection experiments.
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Chapter 7 Model II: Dark Matter from a Dirac Fermion
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Figure 7.5: Upper bound on f | sin 2θ| from LUX current limits on WIMP-nucleon cross sections (see the
text for details).
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Figure 7.6: Same as Fig. 7.5, but for | sin θ| in the region r . 0.8 (see text for details).

The region around the Higgs resonance in the right panel is not included since Eq. (7.27) does
not apply.
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Chapter 8

Model III: Dark Matter from a Chiral Fermion

As discussed in chapter 7, a plausible scenario for the dark sector consists in postulating a global
U(1) symmetry which is spontaneously broken to a remnant discrete Z2 symmetry. In this way,
the lightest particle with odd charge is absolutely stable and a potential candidate for dark
matter. In the same chapter it was shown that the associated Goldstone boson plays a crucial
role in dark matter production. Nevertheless, observing signatures of this model in indirect dark
matter search experiments is challenging since all dark matter annihilation processes are p-wave
suppressed.
In this chapter, we propose a variant of the model, where the Dirac fermion is replaced by

a chiral fermion. We show that, due to the explicit C and P breaking, dark matter particles
can annihilate in the s-wave, leading to non-negligible signals in indirect detection experiments.
In fact, we consider a pseudo-Goldstone decaying into two photons, and show that under
certain assumptions the corresponding gamma-ray flux from dark matter annihilations displays a
characteristic box-shape spectrum with an intensity that could be at the reach of gamma-ray
telescopes. These decays and the corresponding limits are discussed in chapter 10.

8.1 Description of the Dark Sector

We extend the Standard Model (SM) Lagrangian with one complex scalar field φ, and one chiral
fermion field, which we assume for concreteness left-handed, ψL (the analysis for a right-handed
field is analogous). These new fields are SM singlets and are charged under a global U(1)DM

symmetry, namely U(1)DM(ψL) = 1 and U(1)DM(φ) = 2. On the other hand, all the SM fields
transform trivially under the additional global symmetry, which could be exact or nearly exact.
Let us discuss each case separately.

8.1.1 Exact U(1)DM symmetry

If the global symmetry is exact, the interaction Lagrangian is

L = µ2
Φ Φ†Φ − λΦ

(
Φ†Φ

)2
+ µ2

φ φ
† φ − λφ

(
φ† φ

)2
− κ

(
Φ†Φ

) (
φ† φ

)
+ iψLγ

µ∂µψL −
(
f√
2
φψL ψ

c
L + h.c.

)
, (8.1)
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where Φ is the SM Higgs doublet. Notice that the complex phase of the coupling constant f
can be absorbed by redefining the scalar field φ. As a result, CP is conserved in this model,
while C and P are explicitly broken. Both the scalar field φ and the neutral component of
the Higgs doublet acquire non-zero vacuum expectation values, which spontaneously break the
symmetry group SU(2)W × U(1)Y × [U(1)DM]→ U(1)em × Z2. In order to analyze the physical
mass spectrum of the theory, we conveniently parametrize the scalar fields in Eq. (8.1) as:

Φ =

 G+

vh+h̃+iG0
√

2

 , φ = vφ + ρ̃+ iη√
2

, (8.2)

where vh ' 246 GeV.

Scalar Sector: This sector is identical to the one considered in the model of chapter 7. The
scalar mass spectrum consists of a CP odd massless scalar η, which is the Goldstone boson that
arises from the spontaneous breaking of the global U(1)DM symmetry, and two CP even massive
real scalars, denoted by h and ρ and with mass mh and mρ respectively, which arise from the
mixing of the interaction fields h̃ and ρ̃ by means of an angle θ [37]. The quartic couplings in the
Lagrangian Eq. (8.1) can then be related to the masses and the mixing angle in the scalar sector
by:

λΦ =
m2
h cos2 θ +m2

ρ sin2 θ

2v2
h

, λφ =
m2
h sin2 θ +m2

ρ cos2 θ

2v2
φ

,

κ =
(m2

ρ −m2
h) sin 2θ

2 vh vφ
. (8.3)

Fermionic Sector: While the scalar potential of this model is identical to the one considered in
chapter 7, the fermionic sector contains significant differences. Indeed, in this model only one
Majorana fermion, which we denote by χ, arises after the symmetry breaking. The corresponding
mass-eigenstate and Majorana mass are

χ = ψL + (ψL)c , Mχ = fvφ . (8.4)

With these definitions, the part of the Lagrangian involving χ can be cast as

Lχ = i

2χγ
µ∂µχ−

f√
2

(φχPRχ+ φ∗χPLχ) , (8.5)

which after electroweak symmetry breaking becomes

Lχ = 1
2(iχγµ∂µχ−Mχχχ)− f

2 ((− sin θh+ cos θρ)χχ+ iηχγ5χ) . (8.6)

From Eqs. (8.3) and (8.4), it follows that there are four unknown independent parameters
describing the dark sector, which can be taken as mρ, θ, Mχ and f .

Notice that the Lagrangian in Eq. (8.5) is invariant under U(1)DM upon the field transformations
ψL → eiαψL, or equivalently, χ→ e−iαγ

5
χ. 1 On the other hand, after the symmetry breaking,

1This transformation also leaves the Majorana condition χ = χc invariant.
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and due to the presence of the Majorana mass Mχ, the Lagrangian is no longer invariant under
the continuous transformation although, as expected, it preserves a remnant discrete symmetry
χ→ −χ. The Majorana field χ then describes a stable neutral particle and is therefore a viable
dark matter candidate.

We have assumed here the simplest scenario where the Majorana field χ transforms as a
singlet of the global symmetry. More complicated scenarios can be constructed with identical
properties regarding the dark matter stability, for example by assuming that the Majorana field
transforms as a doublet of a global symmetry SO(2) ∼= U(1). This scenario is equivalent to the
axion-mediated dark matter model discussed in [144,145], in which the two components of the
doublet form a Dirac fermion.

8.1.2 Nearly exact U(1)DM symmetry

We consider now the situation in which the global U(1)DM is not an exact symmetry of the
Lagrangian. However, we assume that the Lagrangian Eq. (8.1) still describes to a very good
approximation the phenomenology of the dark sector, i.e., that the U(1)DM is a nearly exact
symmetry. In particular, we demand that the stability of the dark matter is not affected by the
explicit breaking of the global symmetry, that is we postulate that Z2 is a symmetry of the part
of the Lagrangian that breaks the global U(1)DM symmetry explicitly. If this is the case, the η
particle is a pseudo-Goldstone boson with a mass mη much smaller than the scale at which the
global symmetry spontaneously breaks, namely mη � vφ. We can therefore reasonably assume
that mη � mρ, and neglect the pseudo-Goldstone mass henceforth.

An important difference of this scenario compared to the one described in subsection 8.1.1 (or
in chapter 7) is that, when the symmetry is nearly exact, the (massive) pseudo-Goldstone boson
might decay into two photons. Such process is induced by the effective operator

Leff ⊇ −
1
4 gηγ ε

µναβ Fµν Fαβ η , (8.7)

where gηγ is a coupling constant with dimensions of inverse of energy and Fµν is the electro-
magnetic field strength tensor. This Lagrangian arises in dark sectors with new chiral fermion
representations charged under the SM group with masses of order Λ� vφ, that make the global
U(1)DM symmetry anomalous. Consequently, in analogy to the neutral pions in the Standard
Model, an effective coupling between the pseudo-Goldstone boson η and the gauge fields might
be generated by non-perturbative processes involving the new heavy degrees of freedom. For
instance, this happens in axion-mediated dark matter models where the pseudo-Goldstone boson,
the axion, arises from the spontaneous breaking of an anomalous Peccei-Quinn symmetry (see,
e.g., [144,145]). In this work we adopt a phenomenological approach and simply assume that the
operator given in Eq. (8.7) exists, without specifying the new physics responsible for its origin.
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8.2 Constraints from Direct Searches and the Invisible Higgs Decay
Width

Higgs Decay: The scalar ρ and the Higgs boson h might decay into two dark matter particles,
two (pseudo-)Goldstone bosons or SM particles. The relevant decay widths for ρ read

Γ(ρ→ η η) = f2 r2

32π mρ cos2 θ, (8.8)

Γ (ρ→ χχ) = f2

16π

(
1− 4

r2

)3/2
mρ cos2 θ , (8.9)

Γ (ρ→ SM particles) = sin2 θ ΓSM (Higgs→ SM particles) , (8.10)

where r ≡ mρ/Mχ. The corresponding expressions for h are obtained by exchanging cos θ for
sin θ and mρ for mh. In addition, the heaviest CP even scalar can decay into the lightest one
with a phase space suppressed rate (in the same way as explained in subsection 7.1.3). From
these equations and the experimental upper limit on the invisible decay width of the Higgs boson
(see, e.g., [141]), it follows that the mixing angle θ is bounded from above by [34]:

|tan θ| . 2.2× 10−3
(

vφ
10 GeV

)
or f |sin 2θ| . 4.4× 10−3

(
Mχ

10 GeV

)
, (8.11)

where in the last expression we have used Eq. (8.4).

Direct Detection Experiments: Direct dark matter searches constrain the same combination of
parameters, f |sin 2θ|. The calculation of the scattering cross section of dark matter off nucleons
is analogous as in section 7.3, the result being

σχN = C2 m4
N M

2
χ

4π v2
h (Mχ +mN )2

(
1
m2
h

− 1
m2
ρ

)2

(f sin 2θ)2 , (8.12)

where mN denotes the nucleon mass and C ' 0.27 [79] is a constant that depends on the nucleon
matrix element. In Fig. 8.1 we show, as black lines, the upper limit on f | sin 2θ| as a function
of mρ for various dark matter masses between 8 GeV and 1000 GeV from the invisible Higgs
decay width, Eq. (8.11), and from the LUX experiment [82], Eq. (8.12); the blue, orange and
green lines correspond to Mχ = 8, 30 and 1000 GeV respectively. It follows from the plot that
for ρ masses below 10 GeV the bound on f | sin 2θ| is determined by direct detection experiments,
whereas for mρ larger than 100 GeV, by the upper limit on the invisible Higgs decay width
(dominated in this mass range by h→ ηη).

8.3 Thermal Production of Dark Matter

The thermal production of dark matter is expected to be dominated by annihilation channels
involving the ρ scalar and the (pseudo-)Goldstone boson, as in the model introduced in chapter
7; the relevant diagrams are shown in Fig. 8.2 and the expressions for the corresponding cross
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Figure 8.1: Combined upper limit on f | sin 2θ| from direct dark matter searches and the invisible Higgs
decay width as a function of the mass of the CP even dark scalar for various values of the
dark matter mass.

sections are reported in Appendix B. On the other hand, annihilations into SM particles are
expected to have a fairly suppressed rate, due to the smallness of the mixing angle θ, except
when the dark matter annihilation proceeds via resonant s-channel exchange of CP even scalars,
that is, either ρ or h.
These expectations are confirmed by our numerical analysis. We have performed scans over

the four dimensional parameter space spanned by mρ, Mχ, f and θ. More specifically, we have
performed a logarithmic scan of mρ between 200 MeV and 1 TeV, Mχ between 1 GeV and 1 TeV,
f between 10−2 and 4π and | tan θ| between 0 and the maximal value allowed by the invisible
decay width of the Higgs, given in Eq. (8.11) with vφ = Mχ/f (see Eq. (8.4)). We have also
checked that the quartic couplings necessary to produce these parameters, inferred from Eq. (8.3),
are smaller than 4π, in order to ensure perturbativity. We have then calculated for each point
the dark matter relic density using micrOMEGAs 3.1 [79], working under an implementation
of our model made with FeynRules [125], and we have selected only those points for which
ΩDMh

2 = 0.1199± 0.0027 within 3σ. We report the results of one scan in Fig. 8.3, where we show
the relative contribution to the relic density of each annihilation process for the concrete case
mρ = 50 GeV. Indeed, the dominant channel is χχ→ ρ η, when this is kinematically open, i.e. for
mρ < 2Mχ, while χχ→ ηη dominates when mρ > 2Mχ. It is important to note that for certain
values of mρ threshold effects or resonant effects can have a dramatic impact in the calculation
of the relic density (see section 2.2.3), concretely when mρ ≈Mχ, close to the threshold of the
process χχ→ ρρ, or when mρ ≈ 2Mχ, close to the threshold of χχ→ ρη and where moreover

105



Chapter 8 Model III: Dark Matter from a Chiral Fermion
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Figure 8.2: Relevant diagrams for dark matter production in the limit θ � 1. The process into ρ η (first
row) proceeds via s-wave, whereas the other ones are p-wave suppressed.

the process χχ→ ηη via the s-channel mediation of ρ is resonantly enhanced. Resonance effects
are manifest in Fig. 8.3 at Mχ = mh/2 ≈ 63 GeV and Mχ = mρ/2 ≈ 25 GeV, where the Higgs
and ρ resonances take place, respectively.

In order to determine the precise regions where threshold and resonance effects have an
important impact on the relic density, we have calculated the thermal average of the annihilation
cross sections as a function of r = mρ/Mχ; the result is shown in Fig. 8.4 for a typical freeze-out
temperature, T ∼ Mχ/20, and for various values of f which, following Eqs. (8.8) and (8.9),
determine the width of ρ. As apparent from the plot, the threshold and resonant effects are
most relevant in the region 1.5 . r . 3. Furthermore, for r . 1.5 the largest annihilation cross
section corresponds to the process χχ→ ρη, while for r & 3 to χχ→ ηη. Notice that, for a given
coupling f , the upper limit r .

√
8π/f must hold from the requirement of perturbativity, as also

reflected in Fig. 8.4.

In the regions where both resonance and threshold effects are negligible, namely r . 1.5
or r & 3, the relic abundance can be accurately calculated using the instantaneous freeze-out
approximation [80]. Casting the annihilation cross section in the form σv = a+ bv2, according to
Eq.(2.11),the relic density can be approximated by

ΩDMh
2 '

(
1.07× 109 GeV−1

)
xf

g∗(xf )1/2mPl (a+ 3(b− a/4)/xf )
. (8.13)
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Figure 8.3: Relative contribution to the dark matter relic density from various annihilation channels as a
function of the dark matter mass, assuming mρ = 50 GeV.
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function of r ≡ mρ/Mχ at the typical freeze-out temperature T = Mχ/20. The resonant
behavior of the annihilation into ηη at r = 2 is due to the s-channel mediation of a ρ, with a
width determined by the coupling constant f .
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Chapter 8 Model III: Dark Matter from a Chiral Fermion

8.4 Dark Matter Annihilations and the CP Symmetry

In the regime r . 1.5 the three annihilation processes into dark sector particles χχ→ ρρ, ηη, ρη

and χχ→ SM SM are all kinematically accessible. The annihilations into ρρ and ηη are, however,
p-wave suppressed and can be safely neglected in the calculation of the relic density. This can be
understood analyzing the CP of the initial and final states. As in chapter 7, we use the standard
notation S, L and J for the spin, the orbital and the total angular momenta with a subscript i
or f for the corresponding quantities of the initial or final state. Then, the CP eigenvalues of
the initial and final states are (−1)Li+1 and (−1)Lf (as shown in Table A.1). CP conservation
thus implies that |Lf − Li| is an odd number. In addition, since ρ and η are scalars, we have
Ji = Lf . If the s-wave were allowed Li = 0 and Ji = Si. As a result we could only have Si = 1
and Li = 0, which is impossible for a pair of Majorana fermions due to the Pauli exclusion
principle (see Eq. (A.9)). The only possibility is then Li ≥ 1 and hence the cross sections are
p-wave suppressed. Explicitly, they read

σv(χχ→ ρρ) = f4v2√1− r2

384πM2
χ

(
3r4 − 8r2 + 8

) (
9r8 − 64r6 + 200r4 − 352r2 + 288

)
(r2 − 4)2 (r2 − 2)4 , (8.14)

σv(χχ→ ηη) = f4v2

192πM2
χ (r2 − 4)2

(
8 + r4

)
, (8.15)

which are manifestly velocity suppressed. In contrast, for the annihilation into ρη the CP
eigenvalues of the initial and final states are (−1)Li+1 and (−1)Lf+1 (as shown in Table A.1).
We again have Ji = Lf , and therefore |Ji − Li| is an even number. CP conservation therefore
allows the s-wave channel if Ji is even. The corresponding cross section is

σv(χχ→ ρη) = f4

16πM2
χ

(
1− r2

4

)3

. (8.16)

Lastly, annihilations into SM particles are p-wave suppressed due to CP conservation, and are
moreover θ-suppressed. Therefore, they can be safely neglected in our analysis.Hence, in the
regime r . 1.5 the relevant process for the calculation of the relic density is the annihilation
χχ → ρη. On the other hand, in the regime r & 3, the only kinematically open channels are
χχ→ ηη and χχ→ SM SM. Both processes are p-wave suppressed, however the latter has an
additional θ-suppression. Therefore, the dominant annihilation process is in this case into ηη
with a cross section given in Eq. (8.15).

Using Eq. (8.13) it is then possible to estimate the value of the dark matter coupling f as
function of r and Mχ (and xf ) leading to the observed dark matter abundance ΩDMh

2 ' 0.12
in the regime r . 1.5 (where the annihilation into ρ η with a cross section given by Eq. (8.16)
determines the dark matter freeze-out) and in the regime r & 3 (where the annihilation into ηη
is the relevant one, with cross section given by Eq. (8.15)). The coupling reads:
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Figure 8.5: Left plot: value of the coupling constant f required to produce thermally the observed
dark matter abundance for various values of the dark matter mass and the CP -even scalar
mass, expressed as r = mρ/Mχ. The color code denotes r > 3, r < 1.5 and 1.5 < r < 3
for blue, green and red respectively. Besides, the solid (dashed) line shows the maximum
(minimum) values of the coupling predicted by Eq. (8.17). Right plot: The same as the left
plot, but removing the points with 1.5 < r < 3, to highlight the validity of the approximation
Eq. (8.17).
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Figure 8.6: Left plot: allowed regions for the mass and proper lifetime of a pseudo-Goldstone boson
(adapted from Fig. 6-1 of [146] using Eq. (8.18)). Right plot: allowed regions for the mass
and lifetime of a pseudo-Goldstone bosons produced by dark matter annihilations assuming
Mχ = 500 GeV, compared to the time required to reach the earth from the galactic center.
Here τ ' (Mχ /mη) τ0 (see text for details).
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f '


0.39

(
xf

g∗(xf )1/2 (4−r2)3

)1/4 (
Mχ

100 GeV

)1/2
, if r . 1.5

0.20
(

(4−r2)2
x2
f

g∗(xf )1/2 (8+r4)

)1/4 (
Mχ

100 GeV

)1/2
, if r & 3

. (8.17)

To check the validity of our approximations, we have calculated the values of the coupling
constant f versus the dark matter mass Mχ leading to the observed dark matter abundance in
a scan over the four dimensional parameter space performed as described at the beginning of
this section. The result is shown in Fig. 8.5, left plot, where we have identified with a color the
value of r corresponding to each point: blue, green and red for r > 3, r < 1.5 and 1.5 < r < 3,
respectively. In the right plot, we have removed the points within the resonant and threshold
region 1.5 < r < 3, clearly showing the existence of two separate bands corresponding to the
regimes r < 1.5 and r > 3. In the former case, the freeze-out is dominated by the s-wave
annihilation channel into ρ η, whereas in the latter, by the p-wave annihilation into η pairs.
Consequently, in the case of r > 3, larger values of f are required in order to reproduce the
same relic abundance. We also show the lines corresponding to maximum (continuous) and
minimum (dashed) values predicted by Eq. (8.17) for both r < 1.5 and r > 3, assuming xf = 22.
As apparent from the plot, the lines obtained using Eq. (8.17) describe fairly well each region
except for the points around Mχ = mh/2 ' 63 GeV where, due to the existence of the Higgs
resonance, Eq. (8.17) does not apply.

8.5 Signatures of Pseudo-Goldstone Bosons

The signatures of the pseudo-Goldstone bosons in this model crucially depend on their lifetime.
If the pseudo-Goldstone bosons η are long-lived, they could have survived until the recombination
era, possibly leaving their footprints in the Cosmic Microwave Background (CMB) in the form of
dark radiation [34,37]. On the other hand, if they are short-lived, we could detect their decay
products after being produced in dark matter annihilations, e.g., in the center of our Galaxy.
The decay rate of η into two photons can be straightforwardly calculated from the effective

Lagrangian Eq. (8.7), the result being:

Γ(η → γ γ) =
g2
ηγm

3
η

64π . (8.18)

The relevant parameters mη and gηγ , or equivalently mη and the proper lifetime τ0 = Br(η →
γγ)/Γ(η → γ γ), are constrained by experimental searches for pseudo-Goldstone bosons. The
allowed values of the pseudo-Goldstone lifetime as a function of the mass are shown in the left
plot of Fig. 8.6, under the assumption Br(η → γγ) = 1 (plot adapted from Fig. 6-1 of [146]). As
apparent from the plot there are two disjoint allowed regions: either the pseudo-Goldstone has a
lifetime longer than ∼ 1020 years or it has a lifetime shorter than one minute.
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In the former case, if we assume that η contributes to the radiation density of the Universe at
the time of recombination or at Big Bang Nucleosynthesis, then the pseudo-Goldstone boson
must be present in the Universe also today. On the other hand, for the latter case, if the
pseudo-Goldstone has a lifetime much shorter than the age of the Universe, all the primordial
pseudo-Goldstone bosons must have decayed today. Nevertheless, the model predicts a non-
negligible pseudo-Goldstone production in regions with a high dark matter density, such as the
Milky Way center, from the s-wave annihilations into a pseudo-Goldstone boson and a CP even
dark scalar, provided this annihilation channel is kinematically open. These pseudo-Goldstone
bosons have an energy of the order of Mχ, which implies that their lifetime (in the Galactic
frame) is given by τ ' (Mχ /mη) τ0. In this window mη & 10 MeV, hence the lifetime of the
pseudo-Goldstone bosons produced in dark matter annihilations is typically much shorter than
one year, as shown in Fig. 8.6, right plot, for the particular case Mχ = 500 GeV, compared to the
lifetime required to reach the earth, shown as a blue line. Therefore, pseudo-Goldstone bosons
decay in flight before reaching the earth producing a gamma-ray flux that could be detected in
gamma-ray telescopes. A similar conclusion holds for other values of the dark matter mass. We
analyze these two possibilities separately in chapters 9 and 10 respectively.
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Chapter 9

Goldstone Bosons as Dark Radiation and the
Interplay with Direct Searches

In this chapter we assume that the (pseudo-)Goldstone boson is absolutely stable or at least that
it remained stable until the recombination era. If this is the case, it contributed to the radiation
energy density of the Universe when the CMB was formed.

9.1 Contribution of the (Pseudo-)Goldstone Bosons to Neff

Because the (pseudo-)Goldstone bosons are very light particles, they contribute to the radiation
energy density of the Universe. In particular, as pointed out in [34], if they go out of equilibrium
before the annihilation of the e± pairs, but after the decoupling of most of the SM fermions,
they might fake extra neutrino species in the measurements of the anisotropies in the cosmic
microwave background (CMB) [35]. This effect can be quantified in terms of the effective number
of neutrino types, Neff , present before the era of recombination.
In analogy to section 2.4 and following [147], we define T 0

η and T dη as the temperature of
the Goldstone bosons at the recombination era and at their decoupling from the thermal bath,
respectively. A similar notation is understood for all the other particles. In terms of these, the
energy density associated to the (pseudo-)Goldstone bosons compared to the photon energy
density is given by

ρ0
η

ρ0
γ

= 1
2

(
T 0
η

T 0
γ

)4

. (9.1)

The factor 1/2 in front is because photons have two helicities states and the (pseudo-)Goldstone
bosons only one. Using this expression and the definition of Neff from Eq. (2.22), it is possible to
conclude that the contribution of the (pseudo-)Goldstone bosons to Neff is

∆Neff = 4
7

(
T 0
η

T 0
ν

)4

. (9.2)

In the present scenario we expect the massless scalars to be very weakly interacting with the
SM particles, in fact even more than neutrinos. Therefore, they must decouple at a temperature
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annihilationannihilation

T

t

Figure 9.1: Sketch of the processes that the radiation of the universe underwent when the
(pseudo-)Goldstone bosons went out of equilibrium. The red line represents the
relative temperature of the different fluids. The thicker the line, the higher the
relative temperature. See Fig. 2.2 for comparison.

T dη > T dν , with T dν ' 2− 3 MeV [40,114–116], which in turn implies that the ratio Tη/Tν today is
the same as it was at T dν because neutrinos and Goldstone bosons have been decoupled from the
thermal bath ever since the temperature dropped below T dν . Moreover, the temperature of the
neutrinos and the Goldstone bosons are not the same at T dν because in between the Goldstone
boson and neutrino decoupling epochs, the thermal bath underwent a reheating process due to
the annihilations of some of the fermions in the plasma. These processes are sketched in Fig. 9.1.

The difference in temperature can be quantified by considering the conservation of the entropy
per comoving volume during that period of time. This implies that g∗ T 3 remained constant,
where g∗ stands for the effective number of relativistic degrees of freedom. As a consequence of
all this, we have(

T 0
η

T 0
ν

)3

=
(
Tη
Tν

)3

T dν

= g∗after
g∗before

, (9.3)

with1 g∗after = 43/4 = 10.75 (see Fig. 9.1). In this work we assume that the Goldstone bosons
decouple just before muon annihilation. As a result g∗before = 57/4, which from Eq. (9.2)
corresponds to an effective number of neutrinos Neff − 3 = (4/7)(43/57)4/3 ' 0.39 [34]. This is
consistent within 1σ with the recent experimental data [35], Neff = 3.36± 0.34.
1This results is strictly valid under the assumption that the neutrinos decouple instantaneously and that at T dν
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Figure 9.2: Relevant Feynman diagrams for Goldstone boson annihilation into SM fermions.

9.2 Boltzmann Equations for Dark Radiation

In order to analyze carefully the conditions under which the Goldstone bosons decouple from the
thermal bath, we consider the Boltzmann equation describing the evolution in the early Universe
of the Goldstone boson number density, nη. We assume for simplicity that the ρ scalar and the
dark matter are no longer present in the thermal bath at the decoupling of the Goldstone. If
that is the case, the evolution of nη is described by

dnη
dt

+ 3H nη = −
∑
f

〈σv〉ηη→ff̄
(
n2
η − (neqη )2

)
, (9.4)

where the sum runs over the fermions that are in equilibrium the thermal bath. Besides,
neqη = T 3/π2 is the number density of a massless (real) scalar and H ' 1.66

√
g∗(T )T 2/mPl is

the expansion rate of the Universe. This equation is valid under the assumptions that the SM
fermions in Eq. (9.4) are always in thermal equilibrium and that the Goldstone bosons remain in
kinetic equilibrium right after the decoupling [78], due to elastic scatterings. Moreover, we use
the Boltzmann energy distribution for all the interacting particles, which is a good approximation
for temperatures T . 3mf , mf being the mass of the fermions produced in Goldstone boson
annihilations.
The thermal averaged annihilation cross section 〈σv〉ηη→ff̄ is given by (see e.g. [78]):

〈σv〉ηη→ff̄ ≡
1

32T 5

∫ ∞
4m2

f

σ(ηη → ff̄) s
√
sK1

(√
s/T

)
ds , (9.5)

with 2

σ(ηη → ff̄) =
m2
f κ

2

8π

(
1− 4m2

f/s
)3/2

(
s2
(
m2
h −m2

ρ

)2
+ m2

ρm
2
h (mρ Γh −mh Γρ)2

)
(
m2
h −m2

ρ

)2 (
(s−m2

h)2 + Γ2
hm

2
h

) (
(s−m2

ρ)2 + Γ2
ρm

2
ρ

) , (9.6)

where Γh,ρ is the decay width of the scalar particle mediating the s-channel annihilation cross
section.

the e± pairs are essentially massless [148].
2Notice that in the definition (9.5) a factor 1/2 should be introduced to avoid double counting of the initial
particle states. On the other hand, the collision term in the Boltzmann equations (9.4) must be multiplied by 2
because of the annihilation of a pair of η’s. Therefore, the definitions (9.4) and (9.5) are consistent.
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Figure 9.3: Lower limit on | sin θ| for fixed values of λφ (continuous lines) corresponding to Goldstone
boson decoupling at T ≈ mµ. Upper limit on | sin θ| for fixed values of λφ (dashed lines)
given by the constraints on the Higgs boson invisible decay width. The thick dashed black
curve is obtained using the analytic expression reported in Eq. (9.14).

The departure from equilibrium, in this case the decoupling of η from the plasma, according to
Eq. (9.4), takes place roughly at the temperature T dη at which the following condition is satisfied:

neqη
∑
f 〈σv〉ηη→ff̄
H

∣∣∣∣∣
T=T dη

= 1 . (9.7)

Using the previous expression, we can calculate the minimum value of |κ| or, equivalently, | sin θ|
(see Eq. (7.10)), for which η decouples from the thermal bath at temperature T dη ≈ mµ. Notice
that since the cross section (9.6) is proportional to the squared mass of the fermion, it is enough
to consider only the annihilation into µ± pairs in (9.7).

We report in Fig. 9.3 the full numerical calculation of the lower limit of | sin θ|, for fixed values
of the quartic coupling λφ (continuous lines). We also show the corresponding upper bound
derived from the invisible decay width of the Higgs boson (dashed lines). We can see from this
plot that there are three different regimes according to the value of the ρ mass. It turns out,
that for each of them it is possible to find approximate analytical expressions.
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Regime I: mρ & 4 GeV

In this regime, the values of the center of mass energy contributing to the integral are always
much smaller the masses of the scalar particles which mediate the annihilation. As a result we
can neglect s in the denominator of (9.6). Furthermore, if the decay width of the ρ scalar can
be neglected with respect to the other terms in Eq. (9.6), then the thermal annihilation cross
section into µ+ µ− in Eq. (9.5) is approximately:

〈σv〉ηη→µ+µ− = κ2

128π
m2
µ T

4

m4
hm

4
ρ

∫ ∞
2mµ/T

w8K1(w) dw . (9.8)

Taking T = T dη ' mµ in the previous equation, then the requirement of having a scalar dark
radiation component, Eq. (9.7), implies

|κ| &
m2
hm

2
ρ

m
1/2
Pl m

7/2
µ

. (9.9)

This condition was derived for the first time in [34] and used to estimate a lower bound on |κ|
for mρ ≈ 500 MeV. Finally, from relation (7.10) we can express the condition above as a lower
limit on the scalar mixing angle θ. Namely, in this mass range for ρ we have

| sin θ| & 1.3× 10−7 λ
−1/2
φ

(
mρ

0.1GeV

)3
. (9.10)

Such values of the mixing angle are excluded by the present collider constraints on the invisible
decay width of the Higgs boson derived previously, Eq. (7.22).
In contrast, if the terms that depend on Γρ dominate in the numerator of (9.6), that is if

s < Γρmρ for the values of s that contribute to the integral, then the annihilation cross section
is described by

〈σv〉ηη→µ+µ− = κ2

128πm2
h

(
mµΓρ
mhmρ

)2 ∫ ∞
2mµ/T

w4K1(w) dw

= κ2

128πm2
h

(
mµ

mh

)2 ( λφ
16π

)2 ∫ ∞
2mµ/T

w4K1(w) dw , (9.11)

where in the last term we replaced, at leading order in θ, Γρ ' λφmρ/(16π). We assume for
simplicity M± & 2 GeV. Notice that in this case, the annihilation cross section, for fixed λφ, does
not depend on mρ.
The corresponding lower limits in |κ| and | sin θ| now result:

|κ| & 2× 103

λφ

m2
h

m
1/2
Pl m

3/2
µ

, | sin θ| & 2.8× 10−4 λ
−3/2
φ

(
mρ

0.1 GeV

)
. (9.12)

Combining the previous bound with the upper limit given by the invisible decay width of
the Higgs, we get that the two bounds are consistent only for a non-perturbative value of λφ.
Therefore, we conclude that the Goldstone bosons cannot play the role of a dark radiation for
mρ & 4 GeV, regardless of the value of Γρ.
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Regime II: 2mµ . mρ . 4 GeV

In this mass range the thermal annihilation cross section is resonantly enhanced due to the fact
that the annihilation proceeds via s-channel (see Fig. 9.2) and the typical center of mass energies
contributing to the integral in (9.5) are close to the ρ mass. In particular, in the case of a narrow
resonance, that is (Γρ/mρ)2 � 1, we can safely approximate

1
π

Γρmρ

(s−m2
ρ)2 + Γ2

ρm
2
ρ

→ δ(s−m2
ρ) . (9.13)

In this case the integral in (9.5) is easily computed and we obtain an analytic expression of the
averaged annihilation cross section in the given mass range:

〈σv〉ηη→µ+µ− = κ2

256
m2
µm

6
ρ

T 5m4
h Γρ

(
1−

4m2
µ

m2
ρ

)3/2

K1(mρ/T )

= κ2 π

16
m2
µm

5
ρ

T 5m4
h λφ

(
1−

4m2
µ

m2
ρ

)3/2

K1(mρ/T ) . (9.14)

As we did above, we impose T = T dη ' mµ and we derive the minimum value of κ for which the
Goldstone bosons may contribute to the effective number of relativistic neutrinos. Indeed, taking
into account Eq. (9.14) we obtain

|κ| & 17
m2
h λ

1/2
φ

m
1/2
Pl m

3/2
µ F (mρ/mµ)

> 5.3
m2
h λ

1/2
φ

m
1/2
Pl m

3/2
µ

≈ 7× 10−4 λ
1/2
φ , (9.15)

with F (w) ≡ w (w2−4)3/4K1(w)1/2. In the second inequality we report the least stringent bound,
which corresponds to mρ = 5.0mµ ' 525 MeV, where the function F (mρ/mµ) is maximized.
The corresponding lower bound of | sin θ| is independent of the quartic coupling λφ and is given
by

| sin θ| & 17 vH mρ√
2mµmPl F (mρ/mµ)mµ

> 3× 10−6 , (9.16)

where the minimum is obtained at mρ = 3.7mµ ' 390 MeV. We report in Fig. 9.3 the limit on
| sin θ| obtained using the analytic expression of the thermal annihilation cross section given in
Eq. (9.14) (thick dashed line). We can see that the analytic expression describes precisely the
numerical lower bound.

Regime III: mµ . mρ . 2mµ

In this case, at T = T dη ≈ mµ a fraction of the Goldstone bosons might have enough kinetic energy
to produce ρ particles. Consequently, the latter are still present in the thermal bath and the
Boltzmann equation (9.4), strictly speaking, is not appropriate to describe the η decoupling. In
order to account for that effect, the cross section in Eq. (9.7) should also include annihilation of ρ
scalars into µ± pairs. Nevertheless, such process is phase space suppressed at these temperatures
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and as a result we can still use Eq. (9.7) to estimate a lower bound of the quartic coupling κ.
Under this assumption, the thermal annihilation cross section is independent of mρ and takes
the form:

〈σv〉ηη→µ+µ− ' κ2

128π
m2
µ

m4
h

∫ ∞
2mµ/T

w4K1(w) dw , (9.17)

and

|κ| & 40m2
h

m
3/2
µ m

1/2
Pl
≈ 5× 10−3 , (9.18)

| sin θ| & 8× 10−4
(

vφ
10GeV

)
= 5.7× 10−6 λ

−1/2
φ

(
mρ

0.1GeV

)
. (9.19)

Notice that in this case the lower limit on | sin θ| is compatible with the corresponding upper
bound obtained from the invisible decay width of the Higgs boson, Eq. (7.22).

9.3 Interplay with Direct Detection Limits

Model II The results derived in section 7.3 can be applied to find the regions of the parameter
space that allow for Goldstone bosons as dark radiation and that are compatible with the negative
searches of present dark matter direct detection experiments. On the one hand, the requirement
of producing the correct Neff , together with the requirement of perturbativity λφ < 4π, gives a
lower limit on | sin θ| as a function of mρ, cf. Fig. 9.3. On the other hand, for thermally produced
dark matter particles, the LUX experiment sets an upper limit on | sin θ| as a function of mρ, as
long as mρ . 0.8M−, cf. Fig. 7.6. Therefore, only some windows for | sin θ| are allowed from the
requirement of Goldstone as dark radiation and the non-observation of a signal at LUX.

For illustration, we show this window in Fig. 9.4 for a dark matter mass of 25 GeV, highlighting
the values of mρ where both limits coincide (dashed lines), which define the allowed (white) and
excluded regions (gray).
By applying the same procedure we calculate the allowed regions of mρ (red thick lines) for

dark matter masses in the range 10 GeV and 1000 GeV; the result is shown in Fig. 9.5, where
we shaded in light red the areas excluded by LUX. For comparison we also show in dark red the
regions excluded by the XENON100 experiment. The cyan area, mρ > 4 GeV, corresponds to
the regime I discussed in section 9.2, for which it is not possible to have dark radiation due to
the upper bound on θ from the invisible Higgs decay width. Again, close to the Higgs boson
resonance (gray band) the limits previously derived do not apply.
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Figure 9.4: Allowed region of mρ (white areas) consistent with both the dark radiation hypothesis
and the LUX limits for a dark matter mass of 25 GeV.

XENON100

LUX

Hfin al phaseL

XENON1T
LUX

Higgs invisible decay width

10 20 50 100 200 500 1000

0.2

0.5

1.0

2.0

5.0

10.0

M-HGeVL

m
Ρ
HG

e
V
L

Figure 9.5: Excluded regions of mρ as a function of the dark matter mass for Model II under
the hypothesis of Goldstone bosons as dark radiation and thermally produced dark
matter. The dotted and dashed lines are the projected bounds from the final phase
of the LUX and XENON1T experiments, respectively. We do not include in the
analysis the Higgs resonance region (gray band).
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Figure 9.6: Excluded regions for Model III in the long-lived pseudo-Goldstone scenario from the
LUX experiment and the invisible Higgs decay width, under the assumption that the
dark matter particle was thermally produced and that the pseudo-Goldstone boson
contributes to the effective number of neutrino species before recombination. The
dotted and dashed lines are the projected bounds from the final phase of the LUX
and XENON1T experiments, respectively. We do not include in the analysis the
Higgs resonance region (blue band).

For dark matter masses larger than 100 GeV, dark radiation is allowed for 0.5 GeV . mρ .

0.9 GeV. This case corresponds to the regime II for which Goldstone annihilation into µ± pairs
is resonantly enhanced, thus allowing for | sin θ| values that can evade the LUX bound, for any
dark matter mass. This region is shown in the plot as the “throat” at 0.5 GeV . mρ . 0.9 GeV.
Besides, for M− . 19 GeV the upper bound on mρ given by direct detection disappears, making
masses as large as 4 GeV possible. We also report in Fig. 9.5 the corresponding prospects for the
direct detection experiments LUX (final phase) [149] and XENON1T [150]. It is remarkable that
a large part of the parameter space will be probed by these two experiments. In the former case,
dark matter masses larger than about 25 GeV could be excluded, whereas in the latter it would
be possible to exclude masses even as low as 15 GeV.

Model III As for Model II, we search for allowed windows of | sin θ| and translate them into
allowed regions in the plane mρ and Mχ. The allowed regions are shown in Fig. 9.6, being the
pink areas excluded by the LUX experiment and the cyan area by the upper limit on |θ| from
the invisible Higgs decay width. Notice that close to the Higgs boson resonance (blue band) the
limits previously derived do not apply and therefore we remove that region from our analysis.
We also report in Fig. 9.6 the corresponding prospects for the direct detection experiments
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LUX (final phase) [149] and XENON1T [150]. For Mχ & 100 GeV, dark radiation is possible
if 0.5 GeV . mρ . 1 GeV. It is remarkable that a significant portion of the parameter space
will be probed both by the LUX (final phase) and XENON1T experiments. For the former case,
Mχ & 25 GeV might be probed, while for the latter it would be possible to probe dark matter
masses as low as 15 GeV.
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Chapter 10

Gamma-Ray Spectral Features from Short-lived
Pseudo-Goldstone Bosons

The scenario introduced in chapter 8, which we called model III, predicts that dark matter particles
might be annihilating in the center of our galaxy with a non-negligible rate, concretely through
the s-wave process χχ→ ηρ, if kinematically allowed. This is in contrast to model II, which was
introduced in chapter 7, where all the annihilation channels are p-wave suppressed. Therefore,
model III might lead to observable signatures in indirect dark matter search experiments. We
discuss such signatures in this chapter.

10.1 Gamma-Ray Boxes

Following the discussion in Section 8.3 and to allow kinematically this annihilation process, we
will assume in what follows that r < 1.5.

The pseudo-Goldstone bosons produced in the annihilations χχ→ ρη decay in flight into two
photons well before reaching the earth, as follows from Fig. 8.6, thus generating a gamma-ray
flux with a characteristic spectrum. In the center of mass frame of the annihilating dark matter
particles, the energies of the ρ and pseudo-Goldstone bosons are

Eρ = Mχ

(
1 +

m2
ρ −m2

η

4M2
χ

)
and Eη = Mχ

(
1−

m2
ρ −m2

η

4M2
χ

)
. (10.1)

whereas the energy of the photons is

Eγ(α) =
m2
η

2Eη
(

1− cosα
√

1− m2
η

E2
η

) , (10.2)

where α is the angle between the pseudo-Goldstone boson and the emitted photons in the
annihilation frame. In the rest frame of the pseudo-scalar η the photons are emitted isotropically,
therefore the energy distribution in the galactic frame displays a characteristic box-shaped
spectrum [113], centered at Ec ≡ (E(0) + E(π))/2 and with width ∆E ≡ E(0)− E(π), which
are given by

Ec = 1
2Eη ≈

Mχ

2

(
1− r2

4

)
and ∆E =

√
E2
η −m2

η ≈Mχ

(
1− r2

4

)
, (10.3)
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where we assume that mη � mρ and r = mρ/Mχ. Namely, the center of the box is located at
half the energy of the pseudo-Goldstone boson, whereas the width is given by its momentum.
Besides, the dark CP even scalar decays ρ → ηη thus producing another contribution to the
gamma-ray flux from the subsequent decay η → γγ. This contribution arises at lower energies,
where the background is stronger, and therefore will be neglected in our analysis. The relevant
part of the photon spectrum is then:

dNγ

dEγ
= 2

∆EΘ
(
Eγ − Ec + 1

2∆E
)

Θ
(
Ec + 1

2∆E − Eγ
)
Br (η → γγ) (10.4)

and the gamma-ray flux given by Eq. (2.15) is

dΦγ

dEγ
= 〈σv(χχ→ ρη)〉

8πM2
χ

dNγ

dEγ

1
∆Ω

∫
∆Ω

dΩ Jann . (10.5)

10.2 Fermi-LAT Limits on Model III

The dark matter coupling f can then be constrained from searches of a box feature in the
cosmic gamma-ray energy spectrum. We use the limits derived in [113] (intermediate approach),
based on observations by the Fermi-LAT of the gamma ray flux from the galactic center. Those
limits, derived assuming dark matter annihilation into two scalar particles of the same mass, can
be appropriately adapted to our model by replacing 〈σv〉 → 〈σ(χχ → ρη)v〉(1− r2/4)2/2 and
mDM →Mχ(1− r2/4).
We report in Fig. 10.1 the upper bound on f , normalized to the values of f which allow for

thermal production of dark matter, given in Eq. (8.17). In the plot we assume Br(η → γγ) = 1,
xf = 20 and we vary r between 0.1 and 1.5 (gray area). Furthermore, we highlight in blue,
orange and green the bound for r = 0.1, 1 and 1.5 respectively. The blue shaded area corresponds
to the Higgs boson resonance, around which Eq. (8.17) does not apply for sizable values of the
mixing angle θ. We then conclude that, under the assumption of thermal dark matter production
and of the pseudo-Goldstone boson decaying dominantly into a pair of photons, dark matter
masses below ∼ 55GeV are excluded by the Fermi data.
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Figure 10.1: Upper bound on the coupling constant f as a function of the dark matter mass from
the negative searches of gamma-ray boxes in the Fermi-LAT data, normalized to the
value required to thermally produce the dark matter particles. We assume in the plot
Br(η → γγ) = 1, xf = 20 and vary r between 0.1 and 1.5 (gray area). We do not include in
the analysis the Higgs resonance region (blue band).
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Figure 10.2: Contours with the upper limit on the absolute value of the mixing angle |θ| in the short-lived
pseudo-Goldstone scenario from the LUX experiment and the Higgs invisible decay width,
under the assumption that the dark matter particle was thermally produced. The areas
shaded in cyan are excluded by searches of gamma-ray boxes assuming Br(η → γγ) = 0.6
and 1. We do not include in the analysis the threshold and resonance regions (dark blue
bands).
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We summarize in Fig. 10.2 the impact of the various limits on the parameter space of this
scenario under the assumption that the dark matter population in our Universe was thermally
produced. Under this assumption the dark matter coupling f is determined by Eq. (8.17) and
hence the parameter space of the model is spanned by the three parameters Mχ, mρ and θ. We
show in the mρ-Mχ plane the upper limit on |θ| (black lines) inferred from the LUX results and
the invisible Higgs decay width (see Fig. 8.1). Namely, points within a given region can not have a
value of the mixing angle larger than the one indicated by the corresponding label (the interior of
a given region is specified by the shaded contour). Besides, the excluded regions from gamma-ray
box searches are shown in cyan for the branching ratios Br(η → γγ) = 0.6 and 1. Lastly, we
remove the resonance and threshold regions, shown as dark blue bands, where the dark matter
coupling f cannot be univocally determined. It is remarkable that the combination of both
direct and indirect detection experiments can probe, and possibly exclude, a large portion of the
parameter space of the model for light CP even dark scalars, concretely when mρ . 1.5Mχ. On
the other hand, when mρ & 3Mχ the kinematically accessible dark matter annihilation channels
are all p-wave suppressed leading to no observable signature in indirect dark matter searches.
In this region of the parameter space, however, signals could be detected in direct dark matter
searches or in the invisible Higgs decay width.
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Conclusions

The high-mass regime of the IDM was studied, namely for dark matter masses greater than
500GeV. This scenario is our model I. In particular, we calculated the contribution to the
gamma-ray spectrum coming from dark matter annihilations into γγ and γZ . It was found
that the corresponding one-loop cross sections violate perturbative unitarity. The origin of
this anomaly was to found to be related to the long-range interaction that arises between the
annihilation particles due to the exchange of gauge bosons. We argued that the proper solution
to this problem is to account for this effect by multiplying the annihilation amplitude by the
so-called Sommerfeld enhancement factors. We developed a formalism in order to calculate this
in a gauge-invariant manner. Furthermore, it was shown that besides monochromatic photons,
the gamma-ray spectra of dark matter annihilations also include virtual internal bremsstrahlung
features coming from the process H0H0 →W+W−γ, which naturally emerge in the high-mass
regime of the IDM. Subsequently, we constructed a series of benchmark points exhibiting an
overall spectral feature with an intensity which is one order of magnitude below the H.E.S.S.
limits on this class of photon line-like signatures. The benchmarks are compatible with all
theoretical and experimental constraints on the IDM. Future searches for gamma-ray spectral
features by DAMPE, GAMMA-400 or CTA will continue closing in on the parameter space of
the inert doublet dark matter model.
Likewise, two more dark matter scenarios, called model II and III, were studied. In both of

them, the stability of the dark matter particle is attributed to the residual Z2 symmetry that
arises from the spontaneous breaking of a global U(1) symmetry. We argued that the scalar
sector responsible for the symmetry breaking plays a central role in the thermal production of
dark matter.
The key difference between both scenarios is that in model II dark matter annihilations

proceed via p-waves, whereas for model III annihilations into the CP even dark scalar and the
(pseudo-)Goldstone boson proceed in the s-wave. Furthermore, we argued that the existence of a
s-wave annihilation channel is due to the explicit C and P breaking induced by a chiral fermion
in model III.
The dark sector in these models communicate with the Standard Model via the Higgs portal.

As a result, after the spontaneous breaking of the electroweak symmetry and the dark global
U(1) symmetry, a mixing term arises between the Standard Model Higgs boson and the dark
sector CP -even scalar. The Higgs phenomenology is accordingly modified and in particular the
invisible Higgs decay width, since new decay channels into dark sector particles are possible.
Besides, the mixing induces the scattering of dark matter particles with nucleons, thus opening
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the possibility of observing signatures of this model in direct dark matter search experiments.
Working under the reasonable assumption that the dark matter particle was thermally produced
in the early Universe, we found a stringent upper limit on the mixing angle as a function of the
mass of the dark CP -even scalar from the negative searches by the LUX experiment.
The massless Goldstone boson predicted by this model is, as recently remarked by Weinberg,

an excellent candidate of dark radiation that could account for the exotic contribution to the
effective number of neutrinos hinted by various experiments, provided the Goldstone bosons were
in thermal equilibrium with the Standard Model particles until the era of muon annihilation. We
reevaluated, using the exact expression of the thermal annihilation cross section into µ+µ−, the
values of the model parameters necessary to reproduce the central value of Neff . We then derived
a lower limit on the mixing angle as a function of the mass of the dark CP -even scalar from the
requirement of perturbativity of the quartic couplings of the model. Lastly, we combined the
upper limit on the mixing angle which follows from the LUX experiment with the lower limit
imposed by the requirement of dark radiation and we found large regions of the parameter space
where both requirements are incompatible. The final phase of LUX and the future XENON1T
experiment will continue closing in on the parameter space of the model and will be able to rule
out the possibility that the Goldstone boson contributes sizably to Neff if the dark matter mass
is larger than ∼ 25 GeV.
Subsequently, we focused on the case in which the global U(1) symmetry is not exact, hence

the Goldstone boson is massive and decays into two photons. The mass and lifetime of the
pseudo-Goldstone boson are constrained by various experiments. There are at present two allowed
windows, one with a lifetime longer than ∼ 1020 years and one with a lifetime shorter than one
minute. We analyzed the experimental signatures of the pseudo-Goldstone bosons in those two
windows and analyzed the interplay with the limits from thermal production, the invisible Higgs
decay width and direct dark matter searches. In the former scenario, the pseudo-Goldstone
boson is a candidate of dark radiation, as in the case of exact U(1) symmetry. On the other
hand, in the latter scenario, for model III, s-wave dark matter annihilations in the galactic center
produce, if kinematically allowed, an intense gamma-ray flux displaying a box-shaped spectrum.
We determined the limits on this scenario from the Fermi-LAT data and found that, if the
CP -even scalar is much lighter than the dark matter, gamma-ray measurements exclude dark
matter masses below 220 GeV (120 GeV) when Br(η → γγ) = 1 (0.6).
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Appendix A

Dark Matter (Co-)Annihilations and the C, P
and CP Symmetries

In order to study dark matter (co-)annihilations, in this Appendix we consider how pair of
particles transform under parity and charge conjugation. Suppose that 1 and 2 are particles with
the sh same spin but not necessarily identical. A two-particle state |12〉 with definite orbital
angular momentum L and total spin S is given by

|12〉 =
∫

d3p1
(2π)3√2E1

d3p2
(2π)3√2E2

χL,Sσ1,σ2(p1,p2)a†1(p1, σ1)a†2(p2, σ2)|0〉, (A.1)

where σi and pi are the spin along a particular direction and the three-momentum of the
particle i and a†i (pi, σi) is the corresponding annihilation operator. Likewise, χL,Sσ1,σ2(p1,p2) is
the wave-function associated to the state |12〉.

Transformation under P : Suppose that the P−parity of the particle i is λiP , that is, that
Pa†i (p, σ)P−1 = λiPa

†
i (−p, σ). Then the action of P under the pair of particles 1 and 2 is given

by

P |12〉 = λ1Pλ2P

∫
d3p1

(2π)3√2E1

d3p2
(2π)3√2E2

χL,Sσ1,σ2(−p1,−p2)a†1(p1, σ1)a†2(p2, σ2)|0〉, (A.2)

hence

P |12〉 = λ1Pλ2P (−1)L|12〉. (A.3)

When the particle 2 is the antiparticle of 1, that is if 2 = 1̄, the P−parities are related to each
other [151]. In fact, it is well-known that λīP = (−1)Fλ∗iP , where F is 1 for fermions and 0 for
bosons. As a result

P |11̄〉 = (−1)L+F |11̄〉. (A.4)

Transformation under C: Suppose that the C−parity of the particle i is λiC . Then

C|12〉 = λ1Cλ2C |1̄2̄〉. (A.5)
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State C P CP

ρ, H0 1 1 1
η, A0 −1 1 −1
ψ− 1 i i

ψ+ −1 i −i
χ Broken Broken i

ρρ, ηη , H0H0, A0A0 1 (−1)L (−1)L

ηρ, H0A0 −1 (−1)L (−1)L+1

ψ±ψ± 1 (−1)L+1 (−1)L+1

ψ±ψ∓ −1 (−1)L+1 (−1)L

χχ Broken Broken (−1)L+1

ff (−1)L+S (−1)L+1 (−1)S+1

Table A.1: C,P and CP phases of the self-conjugate particles and the two-particle states of the
models considered in this work. Here f is any fermion of the Stadanrd Model.

It is well-known that the C-parity phases satisfy λīP = λ∗iP [151]. In particular, if the particle 2
is the antiparticle of 1, then C|11̄〉 = |1̄1〉. Now, under the exchange of the particles 1 and 2 the
wave-function transforms as

χL,Sσ1,σ2(p1,p2) = (−1)L+S+FχL,Sσ2,σ1(p2,p1) . (A.6)

This expression, Eq. (A.1) and the Pauli exclusion principle can be used to prove that

|21〉 = (−1)L+S |12〉, (A.7)

and therefore

C|11̄〉 = (−1)L+S |11̄〉. (A.8)

Another consequence of Eq. (A.7) is that a pair of identical particles must satisfy

(−1)L+S = 1 . (A.9)

For example, a pair of Majorana fermions in the s-wave state must have total spin zero. If the
particle 1 is self conjugate, the last two equations also imply that

C|11〉 = |11〉. (A.10)

The same relation holds when the particle 1 is self-conjugate.
All the previous expressions can be used to calculate the transformations properties under C,

P and CP of the self-conjugate particles and the two-particle states of the models considered in
this work. This is shown in table A.1.
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Appendix B

Cross Sections

Model I

Here we consider expressions for the VIB process H0H0 → W+W−γ. The total differential
velocity weighted annihilation cross section can be cast as

d(σv)W+W−γ

dx
= d(σv)

dx

∣∣∣∣∣
Gauge

+ d(σv)
dx

∣∣∣∣∣
Quartic

+ d(σv)
dx

∣∣∣∣∣
Interference

, (B.1)

with

d(σv)
dx

∣∣∣∣∣
Gauge

= − e2g4

128π3M2
H0(1− 2µ)3 (B.2)

×
[(

2− 4x+ 6x2 − 4x3 + x4 − 10µ+ 16xµ− 20x2µ+ 8x3µ+ 16µ2 − 20xµ2 + 18x2µ2 − 8µ3 + 8xµ3

(2− x− 4µ)2 (1− 2x+ x2 − 4µ+ 6xµ− x2µ+ 4µ2 − 4xµ2)

+1 + x2 − 4µ+ 6µ2

x2(1− µ)

)
x(1− x)(1− µ)(1− 2µ)A(x)

+ 1
x(1− x− 2µ)

(
x4 − 2x3(1− 2µ)(1− µ) + x2(3− 4µ)

(
1− 4µ+ 6µ2

)

−2x(1− 2µ)2
(
1− 4µ+ 6µ2

)
+ (1− 2µ)3

(
1− 4µ+ 6µ2

))
B(x)

+ 1
(2− x− 4µ)3(1− x− 2µ)

(
x6 − 2x5(1− 2µ)(4− µ)− 2x4(−12 + 53µ− 71µ2 + 24µ3)

−4x3(9− 57µ+ 136µ2 − 142µ3 + 52µ4)− 2x2(1− 2µ)2(−14 + 54µ− 87µ2 + 46µ3)

−4x(−1 + 2µ)3(−3 + 8µ− 13µ2 + 6µ3) + 4(1− 2µ)4(1− 2µ+ 3µ2)
)
C(x)

]
, (B.3)

d(σv)
dx

∣∣∣∣∣
Quartic

=
32e2M2

H0λ2
3

128π3
(
4M2

H0 −M2
h

)2

×
[
−
(1− x

x

)(
1− 2x2 − 4µ+ 12µ2

)
A(x) +

(1− x− 2µ
x

)(
1− 4µ+ 12µ2

)
B(x)

]
,

(B.4)
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d(σv)
dx

∣∣∣∣∣
Interference

= 16e2g2λ3µ

128π3
(
4M2

H0 −M2
h

) [−3
(1− x

x

)
A(x)

+
(
x4 − x3(7− 13µ)− 15x(1− 2µ)3 + 6(1− 2µ)4 + 2x2 (8− 31µ+ 30µ2)

x(2− x− 4µ)(1− 2µ)(1− x− 2µ)

)
B(x)

+
(
x3 − (1− 2µ)2 + x2(−3 + 5µ) + x

(
2− 6µ+ 4µ2)

(2− x− 4µ)(1− 2µ)(1− x− 2µ)

)
C(x)

]
, (B.5)

where

A(x) =
√

1− 4µ
1− x, B(x) = log

[1 +A(x)
1−A(x)

]
, C(x) = log

[2− x+A(x)x− 4µ
2− x−A(x)x− 4µ

]
.

Model II

Here we report the (co)annihilation cross sections of ψ± for an arbitrary center of mass-energy
in the limit θ = 0. We introduce for convenience the following notation

ω =
√
s

M−
, u(r, w) = (z − 1)2

( Γρ
mρ

)2

r4 +
(
r2 − ω2

)2
 . (B.6)

In terms of these variables, the cross sections are given by

σ(ψ−ψ− → ηη)(ω) = f4

64πM2
−ω

2 (w2 − 4)u(r, w)[ log
(
ω2−ω2

1+z2−2
ω2

1+z2

)
(z − 1) (ω2 + 2z2 − 2)

(
4r4

(
2ω2 + 4z4 − 2ω2z3 + 8z3 + 2ω2z2 − ω4z + 6ω2z − 8z − 4

)
+ 4r2ω2

(
−2ω2 − 4z4 + 2ω2z3 − 8z3 − 2ω2z2 + ω4z − 6ω2z + 8z + 4

)
+ u(r, w)(z − 1)

(
ω4 + 6z4 + 8z3 + 4

(
2ω2 − 3

)
z2 + 8

(
ω2 − 3

)
z − 10

))

+ 4ω2
1
(
−r4ω2 + 4r4z + 4r2ω2 − 4r2ω2z + u(r, w)z2 − 2u(r, w)z + u(r, w)

)
(z − 1)2

− (z + 1)4u(r, w)
ω2

1 − ω2 − z2 + 2
− (z + 1)4u(r, w)

ω2
1 + z2

]ω1=
√

w2
4 −1−w2

ω1=
√

w2
4 −1+w

2

, (B.7)

σ(ψ−ψ− → ρρ)(ω) = f4

64πM2
−ω

2 (w2 − 4)[ log
(

ω2
1+1

2r2−ω2+ω2
1+1

)
(z − 1) (2r4 − 3r2ω2 + ω4)

(
6r6(z + 7)− 2r4

(
−5ω2 + 5ω2z + 8z + 88

)

+ r2
(
−17ω4 + 64ω2 + 5ω4z + 32ω2z − 32z + 32

)
+ ω2

(
ω4 + 16ω2 − 32

)
(1− z)

)
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+ 4ω2
1
(
−3r2ω + r2z + 5r2 + ω2 − ω2z

) (
3r2ω + r2z + 5r2 + ω2 − ω2z

)
(z − 1)2 (r2 − ω2)2

−
(
r2 − 4

)2
2r2 − ω2 + ω2

1 + 1
−
(
r2 − 4

)2
ω2

1 + 1

]ω1=
√

ω2
4 −1−

√
ω2
4 −r2

ω1=
√

ω2
4 −1+

√
ω2
4 −r2

, (B.8)

σ(ψ−ψ+ → ρη)(ω) = f4

64πM2
−

(
ω2 − (z − 1)2

)(
ω2 − (z + 1)2

)
[
− 4r2(z + 1)

(
r2 + ω2 − 2z2 − 4z − 2

)
ω2(z − 1) log

[(
1− ω2

1

) (
r2 − ω2 − ω2

1 + 1
)]

−
2 log

(
r2−ω2−ω2

1+1
1−ω2

1

)
ω2(ω2 − r2)

(
2r6 − 5r4ω2 + 4r4z2 + 8r4z + 4r4 + 4r2ω4 − 2r2ω2 − 2r2ω2z2

− 4r2ω2z − ω6 − 8ω2z3 − 16ω2z2 − 8ω2z
)

+ 8r4ω2
1(ω2 − (z + 1)2)
ω4(z − 1)2 − 2(z + 1)2(r2 − 4z2)

ω2
1 − r2 + ω2 − 1

− 2
(
r2 − 4

)
(z + 1)2

ω2
1 − 1

]ω2
1=

r2ω2+r2z2−r2−ω4+ω2+ω2z2+(ω2−r2)
√

(ω2−1)2+z4−2(ω2+1)z2
2ω2

ω2
1= r2ω2+r2z2−r2−ω4+ω2+ω2z2−(ω2−r2)

√
(ω2−1)2+z4−2(ω2+1)z2

2ω2

, (B.9)

σ(ψ+ψ+ → ηη)(ω) = 1
z2σ(ψ−ψ− → ηη)

(
ω

z

) ∣∣∣∣∣
r→ r

z
,z→ 1

z

, (B.10)

σ(ψ+ψ+ → ρρ)(ω) = 1
z2σ(ψ−ψ− → ρρ)

(
ω

z

) ∣∣∣∣∣
r→ r

z
,z→ 1

z

. (B.11)

Model III

Here we report the annihilation cross sections of χ for an arbitrary center of mass energy
√
s in

the limit θ = 0. We introduce for convenience the notation

t =
√
s

Mχ
, r = mρ

Mχ
, γρ = Γρ

Mχ

and we define the functions

Kηη(t) =
√
−4 + t2 , Kρη(r, t) =

√
(r2 − t2)2 (−4 + t2)

t2
,

Kρρ(r, t) =
√

(−4 r2 + t2) (−4 + t2) .

135



Appendix B Cross Sections

In terms of these definitions, the annihilation cross sections are the following:

σ (χχ→ η η) =
f4
(
Kηη(t)

(
r4t2 − 4r2γ2

ρ − 4t4
)
− 2 t

(
−r4 + r2γ2

ρ + t4
))

log
(
t−Kηη(t)
t+Kηη(t)

)
64πM2

χ t (t2 − 4)
(
r2 γ2

ρ + (t2 − r2)2
) ,

σ (χχ→ ρ η) =
f4
(
r4Kρη(r, t) + 2

(
2r4 − 3r2t2 + t4

)
log

(
r2−t2−Kρη(r,t)
r2−t2+Kρη(r,t)

))
32πM2

χ t
4 (t2 − 4) ,

σ (χχ→ ρ ρ) = f4

128πM2
χ t

2 (t2 − 4)(
2Kρρ(r, t)

(
9r8 (t2 − 2

)
+ r6 (80− 48t2

)
+ r4 (3t4 + 16t2 − 32

)
+ 16r2t2

(
t2 + 4

)
− 4t4

(
t2 + 8

))
(r2 − t2)2 (r4 − 4r2 + t2)

−
4
(
18r6 + 10r4 (t2 − 8

)
+ r2 (−11t4 + 16t2 + 32

)
+ t2

(
t4 + 16t2 − 32

))
log

(
t2−2r2−Kρρ(r,t)
t2−2r2+Kρρ(r,t)

)
2r4 − 3r2t2 + t4

 .
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