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Abstract We present a statistical mechanics formalism for the theoretical descrip-
tion of the process of protein folding↔unfolding transition in water environment.
The formalism is based on the construction of the partition function of a protein
obeying two-stage-like folding kinetics. Using the statistical mechanics model of
solvation of hydrophobic hydrocarbons we obtain the partition function of infinitely
diluted solution of proteins in water environment. The calculated dependencies of
the protein heat capacities upon temperature are compared with the corresponding
results of experimental measurements for staphylococcal nuclease.

1 Introduction

Proteins are biological polymers consisting of elementary structural units, amino
acids. Being synthesized at ribosome proteins are exposed to the cell interior where
they fold into their unique three dimensional structure. The process of forming the
protein’s three dimensional structure is called the process of protein folding. The
correct folding of protein is of crucial importance for the protein’s proper functioning.
Despite numerous works devoted to investigation of protein folding this process is still
not entirely understood. The current state-of-the-art in experimental and theoretical
studies of the protein folding process are described in recent reviews and references
therein [1–5].
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In this chapter we develop a novel theoretical method for the description of
the protein folding process which is based on the statistical mechanics principles.
Considering the process of protein folding as a first order type phase transi-
tion in a finite system, we present a statistical mechanics model for treating
the folding↔unfolding phase transition in single-domain proteins. The suggested
method is based on the theory developed for the helix↔coil transition in polypep-
tides discussed in [6–14]. A way to construct a parameter-free partition function for
a system experiencing α-helix↔random coil phase transition in vacuo was studied
in [6]. In [8] we have calculated potential energy surfaces (PES) of polyalanines of
different lengths with respect to their twisting degrees of freedom. This was done
within the framework of classical molecular mechanics. The calculated PES were
then used to construct a parameter–free partition function of a polypeptide and to
derive various thermodynamical characteristics of alanine polypeptides as a function
of temperature and polypeptide length.

In this chapterr we construct the partition function of a protein in vacuo, which is
the further generalization of the formalism developed in [9], accounting for folded,
unfolded and prefolded states of the protein. This way of the construction of the parti-
tion function is consistent with nucleation-condensation scenario of protein folding,
which is a very common scenario for globular proteins [15] and implies that at
the early stage of protein folding the native-like hydrophobic nucleus of protein is
formed, while at the later stages of the protein folding process all the rest of amino
acids also attain the native-like conformation.

For the correct description of the protein folding in water environment it is of
primary importance to consider the interactions between the protein and the solvent
molecules. The hydrophobic interactions are known to be the most important driving
forces of protein folding [16]. In the present work we present a way how one can
construct the partition function of the protein accounting for the interactions with
solvent, i.e. accounting for the hydrophobic effect. The most prominent feature of our
approach is that it is developed for concrete systems in contrast to various generalized
and toy-models of protein folding process.

We treat the hydrophobic interactions in the system using the statistical mechanics
formalism developed in [17] for the description of the thermodynamical properties
of the solvation process of aliphatic and aromatic hydrocarbons in water.

However, accounting solely for hydrophobic interactions is not sufficient for the
proper description of the energetics of all conformational states of the protein and one
has to take electrostatic interactions into account. In the present work the electrostatic
interactions are treated within a similar framework as described in [18].

We have applied the developed statistical mechanics model of protein folding
for a globular protein, namely staphylococcal nuclease. This protein has simple
two-stage-like folding kinetics and demonstrate two folding↔unfolding transitions,
refereed as heat and cold denaturation [19, 20]. The comparison of the results of the
theoretical model with that of the experimental measurements shows the applicability
of the suggested formalism for an accurate description of various thermodynamical
characteristics in the system, e.g. heat denaturation, cold denaturation, increase of
the reminiscent heat capacity of the unfolded protein, etc.
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Our chapter is organized as follows. In Sect. 2.1 we present the formalism for
the construction of the partition function of the protein in water environment and
justify the assumptions made on the system’s properties. In Sect. 3 we discuss the
results obtained with our model for the description of folding↔unfolding transition
in staphylococcal nuclease. In Sect. 4 we summarize the chapter and suggest several
ways for a further development of the theoretical formalism.

2 Theoretical Methods

2.1 Partition Function of a Protein

To study thermodynamic properties of the system one needs to investigate its potential
energy surface with respect to all the degrees of freedom. For the description of
macromolecular systems, such as proteins, efficient model approaches are necessary.

The most relevant degrees of freedom in the protein folding process are the twisting
degrees of freedom along its backbone chain [6, 7, 9–11, 13, 14, 21, 22]. These
degrees of freedom are defined for each amino acid of the protein except for the
boundary ones and are described by two dihedral angles ϕi and ψi (for definition of
ϕi and ψi see e.g. [6, 7, 9–11, 13, 14]).

The degrees of freedom of a protein can be classified as stiff and soft ones. We
call the degrees of freedom corresponding to the variation of bond lengths, angles
and improper dihedral angles as stiff, while degrees of freedom corresponding to
the angles ϕi and ψi are soft degrees of freedom [6]. The stiff degrees of freedom
can be treated within the harmonic approximation, because the energies needed for
a noticeable structural rearrangement with respect to these degrees of freedom are
about several eV, which is significantly larger than the characteristic thermal energy
of the system (kT), being at room temperature equal to 0.026 eV [12–14, 23–25].

A Hamiltonian of a protein is constructed as a sum of the potential, kinetic and
vibrational energy terms. Assuming the harmonic approximation for the stiff degrees
of freedom it is possible to derive the following expression for the partition function
of a protein in vacuo being in a particular conformational state j [6]:

Z j = A j (kT )3N−3− ls
2

∫
ϕ∈� j

...

∫
ψ∈� j

e−ε j ({ϕ,ψ})/kT dϕ1...dϕndψ1...dψn, (1)

where T is the temperature and k is the Boltzmann constant. N in Eq. (1) is the total
number of atoms in the protein, ls is the number of soft degrees of freedom. A j in
Eq. (1) is defined as follows:

A j =
Vj · M3/2 ·

√
I (1)j I (2)j I (3)j

∏ls
i=1

√
μs

i

(2π)
ls
2 π�3N

∏3N−6−ls
i=1 ωi

. (2)
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A j is a factor which depends on the mass of the protein M , its three main momenta of
inertia I , specific volume V , the frequencies of the stiff normal vibrational modes ωi

and on the generalized masses μs corresponding to the soft degrees of freedom [6].
ε in Eq. (1) describes the potential energy of the system corresponding to the variation
of soft degrees of freedom.The contribution of the kinetic energy associated with soft
degrees of freedom is also accounted for in Eq. 1. Integration in Eq. (1) is performed
over a certain part of a phase space of the system (a subspaceΓ j ) corresponding to the
soft degrees of freedom ϕ and ψ . The form of the partition function in Eq. (1) allows
one to avoid the multidimensional integration over the whole coordinate space and
to reduce the integration only to the relevant parts of the phase space. ε j in Eq. (1)
denotes the potential energy surface of the protein as a function of twisting degrees
of freedom in the vicinity of protein’s conformational state j . Note, that in general
the proper choice of all the relevant conformations of a protein and the corresponding
set of Γ j is not a trivial task.

One can expect that the factors A j in Eq. (1) depend on the chosen conformation
of the protein. However, due to the fact that the values of specific volumes, momenta
of inertia and frequencies of normal vibration modes of the system in different con-
formations are expected to be close [9, 26], the values of A j in all conformations
become nearly equal, at least in the zero order harmonic approximation, i.e. A j ≡ A.
Another simplification of the integration in Eq. (1) comes from the statistical inde-
pendence of amino acids. We assume that within each conformational state j all
amino acids can be treated statistically independently, i.e. the particular conforma-
tional state of i-th amino acid characterized by angles ϕi ∈ Γ j and ψi ∈ Γ j does
not influence the potential energy surface of all other amino acids, and vice versa.
This assumption is well applicable for rigid conformational states of the protein such
as native state. Indeed, for the ensemble of bound harmonic oscillators the partition
function of the system depends only on the oscillators masses and spring strength, but
not on the particular way of bindings in the system. Therefore the partition function
of the protein in the rigid native state (i.e. all atoms vibrate harmonically) will depend
only on the shape of the potential energy surfaces of amino acids in the vicinity of
their minima, and not on the inter-amino acid interactions. For the native state of a
protein all atoms of the molecule move in harmonic potential in the vicinity of their
equilibrium positions. However, in unfolded states of the protein the flexibility of
the backbone chain leads to significant variations of the distances between atoms,
and consequently to a significant variation of interactions between atoms. Accurate
accounting (both analytical and computational) for the interactions between distant
atoms in the unfolded state of a protein is extremely difficult (see Ref. [27] for analyt-
ical treatment of interactions in unfolded states of a protein). In this work we assume
that all amino acids in unfolded state of a protein move in the identical mean field
created by all the amino acids and leave the corrections to this approximation for
further considerations.

With the above mentioned assumptions the partition function of a protein Z p

(without any solvent) reads as:
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Z p = A · (kT )3N−3− ls
2

ξ∑
j=1

a∏
i=1

∫ π

−π

∫ π

−π
exp

(
−ε

( j)
i (ϕi , ψi )

kT

)
dϕdψ, (3)

where the summation over j includes all ξ statistically relevant conformations of the
protein, a is the number of amino acids in the protein and ε( j)

i is the potential energy
surface as a function of twisting degrees of freedom ϕi and ψi of the i-th amino acid
in the j-th conformational state of the protein. The exact construction of ε( j)

i (ϕi , ψi )

for various conformational states of a particular protein will be discussed below. We
consider the angles ϕ and ψ as the only two soft degrees of freedom in each amino
acid of the protein, and therefore the total number of soft degrees of freedom of the
protein ls = 2a.

Partition function in Eq. (3) can be further simplified if one assumes (i) that each
amino acid in the protein can exist only in two conformations: the native state con-
formation and the random coil conformation; (ii) the potential energy surfaces for all
the amino acids are identical. This assumption is applicable for both the native and
the random coil state. It is not very accurate for the description of thermodynamical
properties of single amino acids, but is reasonable for the treatment of thermodynam-
ical properties of the entire protein. The judgement of the quality of this assumption
could be made on the basis of comparison of the results obtained with its use with
experimental data. Such comparison is performed in Sect. 3 of this work.

Amino acids in a protein being in its native state vibrate in a steep harmonic
potential. Here we assume that the potential energy profile of an amino acid in the
native conformation should not be very sensitive to the type of amino acid and thus
can be taken as e.g. the potential energy surface for an alanine amino acid in the
α-helix conformation [8]. This assumption is well justified for proteins with the
rigid helix-rich native structure. The staphylococcal nuclease, which we study here
has definitely high α-helix content. Using the same arguments the potential energy
profile for an amino acid in unfolded protein state can be approximated by e.g. the
potential of alanine in the unfolded state of alanine polypeptide (see Ref. [8] for
discussion and analysis of alanine’s potential energy surfaces).

Indeed, for an unfolded state of a protein it is reasonable to expect that once
neglecting the long-range interactions all the differences in the potential energy
surfaces of various amino acids arise from the steric overlap of the amino acids’s
side chains. This is clearly seen on alanine’s potential energy surface at values of
ϕ > 0◦ presented in Ref. [8]). But the part of the potential energy surface at ϕ > 0◦
gives a minor contribution to the entropy of amino acid at room temperature. This
fact allows one to neglect all the differences in potential energy surfaces for different
amino acids in an unfolded protein, at least in the zero order approximation.

For the description of the folding ↔ unfolding transition in small globular proteins
obeying simple two-state-like folding kinetics we assume that the protein can exist in
one of three states: completely folded state, completely unfolded state and partially
folded state where some amino acids from the flexible regions with no prominent
secondary structure are in the unfolded state, while other amino acids are in the



498 A. V. Yakubovich et al.

folded conformation. With this assumption the partition function of the protein reads
as:

Z p = Z0 +
a∑

i=a−κ

κ!
(i − (a − κ))!(a − i)! Zi , (4)

where Zi is defined in Eq. (1), Z0 is the partition function of the protein in completely
unfolded state, a is the total number of amino acids in a protein and κ is the number
of amino acids in flexible regions. The factorial term in Eq. (4) accounts for the states
in which various amino acids from flexible regions independently attain the native
conformation. The summation in Eq. (4) is performed over all partially folded states
of the protein, where a−κ is the minimal possible number of folded amino acids. The
factorial term describes the number of ways to select i − (a − κ) amino acids from
the flexible region of the protein consisting of κ amino acids attaining native-like
conformation.

Omitting the contribution of protein’s center of mass motion, the partition function
of the system can be written as:

Z p = Z̃ p · A(kT )3N−3−a, (5)

where

Z̃ p = Za
u +

a∑
i=a−κ

κ!Zi
b Za−i

u exp (i · E0/kT )

(i − (a − κ))!(a − i)! (6)

Zb =
∫ π

−π

∫ π

−π
exp

(
−εb(ϕ, ψ)

kT

)
dϕdψ (7)

Zu =
∫ π

−π

∫ π

−π
exp

(
−εu(ϕ, ψ)

kT

)
dϕdψ. (8)

Here εb(ϕ, ψ) (b stands for bound) is the potential energy surface of the amino acid in
the native conformation and εu(ϕ, ψ) (u - unbound) is the potential energy surface of
amino acid in the random coil conformation. E0 is the energy difference between the
two conformational states of the amino acid. The potential energy profile of an amino
acid is calculated as a function of its twisting degrees of freedom ϕ and ψ . Let us
denote by ε0

b and ε0
u the global minima on the potential energy surfaces of the amino

acid in folded and in unfolded conformations respectively. The absolute value of the
energy of the amino acid can be written as ε0 + ε(ϕ,ψ). By E0 in Eq. (8) is denoted
the energy difference between global minima of the potential energy surfaces of the
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amino acid in folded and in unfolded conformations, i.e. E0 = ε0
u − ε0

b . We count
the absolute value of the potential energy from the energy of the global minima on
the potential energy surface of the amino acid in unfolded conformation, ε0

u = 0 and
each potential energy function εb(ϕ, ψ) and εu(ϕ, ψ) is counted form a reference
energy value equal to ε0

b and ε0
u respectively.

The potential energy surfaces for amino acids as functions of angles ϕ andψ were
calculated and thoroughly analyzed in [8].

In nature proteins perform their function in the aqueous environment. The correct
theoretical description of the folding↔unfolding transition in water environment
should account for solvent effects.

2.2 Partition function of a protein in water environment

In this section we evaluate E0 and construct the partition function for the protein in
water environment.

The partition function of the infinitely diluted solution of proteins Z can be con-
structed as follows:

Z =
ξ∑

j=1

Z ( j)
p · Z ( j)

water, (9)

where Z ( j)
water is the partition function of all water molecules in the j-th conforma-

tional state of a protein and Z̃ ( j)
p is the partition function of the protein in its j-th

conformational state, in which we further omit the factor describing the contribution
of stiff degrees of freedom in the system. This is done in order to simplify the expres-
sions, because stiff degrees of freedom provide a constant contribution to the heat
capacity of the system since the heat capacity of the ensemble of harmonic oscillators
is constant, i.e. Z̃ p ≡ Z p.

There are two types of water molecules in the system: (i) molecules in pure water
and (ii) molecules interacting with the protein. We assume that only
the water molecules being in the vicinity of the protein’s surface are involved in
the folding↔unfolding transition, because they are affected by the variation of the
hydrophobic surface of a protein. This surface is equal to the protein’s solvent accessi-
ble surface area (SASA) of the hydrophobic amino acids. The number of interacting
molecules is proportional to SASA and include only the molecules from the first
protein’s solvation shell. This area depends on the conformation of the protein. The
main contribution to the energy of the system caused by the variation of the protein’s
SASA associated with the side-chains of amino acids because the contribution to the
free energy assosiated with solvation of protein’s backbone is small [28]. Thus, in
this work we pay the main attention to the accounting for the SASA change arising
due to the solvation of side chains.



500 A. V. Yakubovich et al.

We treat all water molecules as statistically independent, i.e. the energy spectra
of the states of a given molecule and its vibrational frequencies do not depend on a
particular state of all other water molecules. Thus, the partition function of the whole
system Z can be factorized and reads as:

Z =
ξ∑

j=1

Z p · ZYc( j)
s Z N0−Yc( j)

w , (10)

where ξ is the total number of states of a protein, Zs is the partition function of a water
molecule affected by the interaction with the protein and Zw is the partition function
of a water molecule in pure water. Yc is the number of affected water molecules in
the j-th conformational state of a protein. N0 is the total number of water molecules
in the system. Since we are focused on the change of the thermodynamic properties
of the system in the course of protein unfolding, in the partition function we do
not account for water molecules that do not interact with the protein in any of its
conformational states, i.e. N0 = max{Yc( j)}.

To construct the partition function of water we follow the formalism developed in
[17] and refer only to the most essential details of that work. The partition function
of a water molecule in pure water reads as:

Zs =
4∑

l=0

ξl fl exp(−El/kT ), (11)

where the summation is performed over 5 possible states of a water molecule (the
states in which water molecule has 4, 3, 2, 1 and 0 hydrogen bonds with the neigh-
boring molecules). El are the energies of these states and ξl are the combinatorial
factors being equal to 1, 4, 6, 4, 1 for l = 0, 1, 2, 3, 4, respectively. They describe the
number of choices to form a given number of hydrogen bonds. fl in Eq. (11) describe
the contribution to the partition function arising to to the translation and libration
oscillations of the molecule. In the harmonic approximation fl are equal to:

fl =
[
1 − exp(−hν(T )l /kT )

]−3 [
1 − exp(−hν(L)l /kT )

]−3
, (12)

where ν(T )l and ν(L)l are translation and libration motions frequencies of a water
molecule in its l-th state, respectively. These frequencies are calculated in Ref. [17]
and are presented in Table (1). The contribution of the internal vibrations of the water
molecule is not accounted for in Eq. (11) since frequencies of these vibrations can
be considered as equal in all energetic states of the molecule.

The partition function of a water molecule from the protein’s first solvation shell
reads as:
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Table 1 Parameters of the partition function of water

Number of hydrogen bonds u 1 2 3 4
Energy level, Ei (cal/mol) 6670 4970 3870 2030 0

Translational frequencies, ν(T )i , cm−1 26 86 61 57 210

Librational frequencies, ν(L)i , cm−1 197 374 500 750 750

Zs =
4∑

l=0

ξl fl exp(−E shell
l /kT ), (13)

where fl are defined as in Eq. (12) and E shell
l denotes the energy levels of a water

molecule interacting with aliphatic hydrocarbons of protein’s amino acids. For sim-
plicity we treat all side-chains of the hydrophobic core of a protein as being consisted
of aliphatic hydrocarbons since most of the protein’s hydrophobic amino acids con-
sists of aliphatic-like hydrocarbons.

In our theoretical model we also account for the electrostatic interaction of pro-
tein’s charged groups with the water.

The presence of electrostatic field around the protein leads to the reorientation of
H2O molecules in the vicinity of the charged groups due to the interaction of the H2O
molecules dipole moments with the electrostatic field. The corresponding factor in
the partition function of H2O molecules reads as:

Zelec =
(

1

4π

∫
exp

(
− E · d cos θ

kT

)
sin θdθdϕ

)α
, (14)

where E is the strength of the electrostatic field, d is the absolute value of the H2O
molecule dipole moment and α is the effective number of such molecules that are
affected by electrostatic interaction. Note that the effects of electrostatic interaction
turn out to be more pronounced in the folded state of the protein. This happens
because in the unfolded state of a protein opposite charges of amino acid’s side
chains are in average closer in space due to the flexibility of the backbone chain,
while in the folded state the positions of the charges are fixed by the rigid structure
of a protein.

Taking the integral in Eq. (14), the correction to the partition function of a water
molecule in pure water reads as:

Z ′
w =

(
4∑

l=0

[
ξl fl exp(−El/kT )

])(
kT sinh

[ Ed
kT

]
Ed

)α
. (15)

This equation shows how the electrostatic field enters the partition function. In
general, E depends on the position in space with respect to the protein. However,
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here we neglect this dependence and instead we treat the parameter E as an average,
characteristic electrostatic field created by the protein.

Having constructed the partition function of the system, we can evaluate with its
use the thermodynamic characteristics of the system, such as entropy, free energy,
heat capacity, etc. In this work we focus on the analysis of the dependence of protein’s
heat capacity on temperature and compare the predictions of our model with available
experimental data.

3 Results and Discussion

In this section we calculate the dependencies of the heat capacity on temperature for
a globular protein staphylococcal nuclease and compare the results obtained with
experimental data from [19, 20].

Staphylococcal nuclease is relatively small globular protein consisting of 149
amino acids. It is a relatively nonspecific enzyme that digests single-stranded and
double-stranded nucleic acids, but is more active on single-stranded substrates [31].
The structure native structure of the protein in shown in the centre in Fig. 1. Under
certain experimental conditions (salt concentration and pH) the staphylococcal nucle-
ase experience two folding↔unfolding transitions, which induce two peaks in the
dependency of heat capacity on temperature (see Fig. 1). The peaks at lower tempera-
ture are due to the cold denaturation of the proteins. The peaks at higher temperatures
arise due to the ordinary folding↔unfolding transition. The availability of experi-
mental data for the heat capacity profiles of the mentioned protein, the presence of
the cold denaturation and simple two-stage-like folding kinetics are the reasons for
selecting this particular protein as case study for the verification of the developed
theoretical model.

To calculate the SASA of staphylococcal nuclease in the folded state the 3D
structure of the protein was obtained from the Protein Data Bank [32] (PDB ID
1EYD). Using CHARMM27 [25] forcefield and NAMD program [33] we performed
the structural optimization of the protein and calculated SASA with the solvent probe
radius 1.63 Å.

The value of SASA of the side-chains in the folded protein conformation is equal to
6858 Å2. In order to calculate SASA for an unfolded protein state all the angles ϕ and
ψ have been taken to be equal to 180◦, i.e. as in a fully stretched conformation. Then,
the optimization of the structure with the fixed angles ϕ and ψ was performed. The
optimized geometry of the stretched molecule has a minor dependence on the value of
dielectric susceptibility of the solvent, therefore the value of dielectric susceptibility
was chosen to be equal to 20, in order to mimic the screening of charges by solvent.
SASA of the side-chains in the stretched conformation of the protein tuned out to be
equal to 15813 Å2. The volume of one mole of water is 18 cm3 therefore the volume
of one molecule is ∼30 Å3. To estimate the width of the solvation shell we consider
the water as being in dense honeycomb hexagonal packing on the surface of the
solute with a probe radius of the water molecule being equal to 1.4 Å [34]. The width
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of the first solvation shell of the solute equals to ∼3.26Å. Knowing the volume
of a single water molecule, and the width of the solvation shell, one can obtain the
total number of water molecules those interaction with the protein changes during
the protein unfolding as follows:

NH2 O = Sun f − S f ol

V0/hw
, (16)

where 15813−6858
30/(2·1.63) ≈ 973. Therefore, there are 973 “pure” water molecules in the

system with the folded protein that interact with the hydrophobic surface of the inner
amino acids when the protein gets unfolded.

To account for the effects caused by the electrostatic interaction of water molecules
with the charged groups of the protein it is necessary to evaluate the strength of
the electrostatic field E in Eq. (15). The strength of the field can be estimated as
E · d = kT/2, where d is the dipole moment of a water molecule, k is Bolzmann
constant and T = 300 K is the room temperature. According to this estimate the
energy of electrostatic interaction of water molecules is equal to half of the thermal
energy per degree of freedom of a molecule. This value of the field corresponds to the
distance ∼10 Åwith respect to a singly-charged atom. This distance was calculated
using the distance-dependent dielectric susceptibility derived in Ref. [35] as follows:

ε(r) = (ε∞ − ε0)

(
coth (α(r − r0))− 1

α(r − r0)

)
+ ε0, (17)

where ε(r) is the distance-dependent dielectric susceptibility, r is the distance from
the charge, ε∞ and ε0 are dielectric susceptibilities of water (78) and protein (2)
respectively, α = 0.45 Å−1 and r0 = 2.9 Å. These values of α and r0 were proposed
in [35] for the treatment of biomolecules.

The number of water molecules that interact with the electrostatic field can be
obtained as a number of the molecules being in the sphere around an amino acid’s
charge site. For simplicity we do no account for the spatial distribution of the charge
in the charged amino acid and treat it point-like. The dipole moments of H2O mole-
cules within the first and the second solvation shells of a charged atom are strongly
polarized by the atom’s electrostatic field [36]. Therefore, the orientation of the dipole
moments of these H2O molecules does not depend on the conformational state of the
protein. The number of water molecules, Nw, which change their orientation during
the of protein folding process can be calculated as follows:

Nw = 1

ρ

(
4

3
πR3 − 4

3
π(rion + 2 · 2rw)

3
)
, (18)

where rion=1 Åis the radius of the charged atom, rw=1.63 Åis the radius of a water
molecule, ρ=30 nm−3 is the density of water molecules and R is the radius of the
sphere around the charged atom. This radius can be calculated as follows. The change
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of the free energy of a water molecule �FE associated with the electrostatic inter-
action of H2O molecules can be calculated from Eq. (15):

ΔFE = −kT ln

⎛
⎝kT sinh

[
E(r)d

kT

]

E(r)d

⎞
⎠ , (19)

where the strength of electrostatic field E(r) depends on the distance r from the
charged atom. The averaged over the sphere ΔFE should be equal to the ΔFE

calculated for water molecules at the distance of ∼10 Åform a singly-charged atom.
Thus,

3
∫ R

rmin
ΔFE (r)r2dr

R3 − r3
min

= −kT ln

⎛
⎝kT sinh

(
E(r0)d

kT

)

E(r0)d

⎞
⎠ , (20)

where rmin = rion + 2 · 2rw and r0 =10 Å. R can be calculated from Eq. (20) using

series expansion ln
(

sinh(x)
x

)
≈ x2/6. The largest real root of Eq. (20) equals to

20.5 Å. Substituting the radius of sphere R = 20.5 Åto Eq. (18) one obtains the num-
ber of water molecules per charged residue of the protein Nw ≈1200. Staphylococcal
nuclease has 8 charged residues at physiological conditions [37], thus there are 9600
H2O molecules in the system that interact with the electrostatic field of the folded
protein. The value of α in Eq. (15) is calculated as a ratio of the number of electro-
statically interacting H2O molecules to the number of molecules that interact with
the hydrophobic surface of the protein: α = 9600

973 ≈ 10.
Note that number of molecules interacting with the electrostatic field Nw and the

strength of the electrostatic field E should be considered as the effective parameters
of our model. In this work we do not perform accurate accounting for the spatial
dependence of the electrostatic field. Instead, we introduce the parameters α and E
that can be interpreted as effective values of the number of H2O molecules and the
strength of the electrostatic field correspondingly. Let us stress that the number of
water molecules α and the strength of the field E are not independent parameters of
our model because by choosing the higher value of E and smaller α or vice versa
one can derive the same heat capacity profile. Therefore, below we focus on the
investigation of the dependence of the protein heat capacity on E at the fixed value
of α equal to 10.

Another important parameter of the model is the energy difference between the
two states of the protein normalized per one amino acid, E0 introduced in Eq. (8). This
parameter describes both the energy loss due to the separation of the hydrophobic
groups of the protein which attract in the native state of the protein via Van-der-Waals
interaction and the energy gain due to the formation of Van-der-Waals interactions
of hydrophobic groups of the protein with H2O molecules in the protein’s unfolded
state. Also, the difference of the electrostatic energy of the system in the folded and
unfolded states is accounted for in E0. The difference of the electrostatic energy
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Table 2 Values of E0 for staphylococcal nuclease at different values of pH of the solvent

pH value 7.0 5.0 4.5 3.88 3.23

E0 (kcal/mol) −1.0635 −1.07 −1.077 −1.093 −1.2

may depend on various characteristics of the system, such as concentration of ions
in the solvent and its pH, on the exact location of the charged sites in the native
conformation of the protein and on the probability distribution of distances between
charged amino acids in the unfolded state. Thus, exact calculation of E0 is a rather
difficult and separate task which we do not intend to solve in this work. Instead,
in the current study the energy difference between the two phases of the protein is
considered as a parameter of the model. We treat E0 as being dependent on external
properties of the system, in particular on the pH value of the solution.

Another characteristic of the protein folding↔unfolding transition is its cooper-
ativity. In the model it is described by the parameter κ in Eq. (4). κ describes the
number of amino acids in the flexible regions of the protein. The staphylococcal
nuclease possesses a prominent two-stage folding kinetics, therefore only 5–10% of
amino acids is in the protein’s flexible regions. Thus, the value of κ for this protein
is small can be estimated as being equal to 149 · 7 % ≈ 10 amino acids.

The values of E0 for staphylococcal nuclease at different values of pH are pre-
sented in Table 2. Note E0 is negative similarly to hydrophobic molecule butane (see
Ref. [17] for details).

The dependence of heat capacity on temperature calculated for staphylococcal
nuclease at different pH are presented in Fig. 1 by solid lines.

The results of experimental measurements form Ref. [19] are presented by sym-
bols. From Fig. 1 it is seen that staphylococcal nuclease experience two folding ↔
transitions in the range of pH between 3.78 and 7.0. At the pH value 3.23 no peaks
in the heat capacity is present. It means that the protein exists in the unfolded state
over the whole range of experimentally accessible temperatures.

In our calculation we have adjusted the absolute value of the heat capacity. How-
ever, the absolute value of the heat capacity is not a parameter of the model because
the experimentally measured absolute value of the heat capacity depends not entirely
on the properties of the protein but also on the properties of the solution, ion con-
centration, etc.

Comparison of the theoretical results with experimental data shows that our the-
oretical model reproduces experimental behavior better for the solvents with higher
pH. The heat capacity peak arising at higher temperatures due to the standard
folding↔unfolding transition is reproduced very well for pH values being in the
region 4.5–7.0. The deviations at low temperatures can be attributed to the inac-
curacy of the statistical mechanics model of water in the vicinity of the freezing
point.

The accuracy of the statistical mechanics model for low pH values around 3.88
is also quite reasonable. The deviation of theoretical curves from experimental ones



506 A. V. Yakubovich et al.

Fig. 1 Dependencies of the heat capacity on temperature for staphylococcal nuclease (PDB ID
1EYD) at different values of pH. Solid lines show results of the developed theoretical model.
Symbols present experimental data from Ref. [19]. Structure of the protein in native and unfolded
conformations are shown in temperature regions where the corresponding conformation exists.

likely arise due to the alteration of the solvent properties at high concentration of
protons or due to the change of partial charge of amino acids at pH values being far
from the physiological conditions.

Despite some difference between the predictions of the developed model and the
experimental results arising at certain temperatures and values of pH the overall
performance of the model can be considered as extremely good for such a complex
process as structural folding transition of a large biological molecule.

4 Conclusions

We have developed a novel statistical mechanics model for the description of
folding↔unfolding processes in globular proteins obeying simple two-stage-like
folding kinetics. The model is based on the construction of the partition function
of the system as a sum over all statistically significant conformational states of a
protein. The partition function of each state is a product of partition function of a
protein in a given conformational state, partition function of water molecules in pure
water and a partition function of H2O molecules interacting with the protein.

The introduced model includes a number of parameters responsible for certain
physical properties of the system. The parameters were obtained from available
experimental data and three of them (energy difference between two phases, coop-
erativity of the transition and the average strength of the protein’s electrostatic field)
were considered as being variable depending on a particular protein and pH of the
solvent.
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We have compared the predictions of the developed model with the results of
experimental measurements of the dependence of the heat capacity on temperature
for staphylococcal nuclease. The experimental results were obtained at various pH
of solvent. The suggested model is capable to reproduce well within a single frame-
work a large number of peculiarities of the heat capacity profile, such as the temper-
atures of cold and heat denaturations, the corresponding maximum values of the heat
capacities, the temperature range of the cold and heat denaturation transitions, the
difference between heat capacities of the folded and unfolded states of the protein.

The good agreement of the results of calculations obtained using the developed
formalism with the results of experimental measurements demonstrates that it can be
used for the analysis of thermodynamical properties of many biomolecular systems.
Further development of the model can be focused on its advance and application for
the description of the influence of mutations on protein stability, analysis of assembly
and stability of protein complexes, protein crystallization process, etc.
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