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Chapter I

Introduction

In Physics, symmetries are playing a very crucial role. Especially in particle physics so-called

local gauge symmetries are fundamentally needed in order to predict interactions of bosons

and fermions. Using the techniques of non-abelian gauge field theory, also called Yang-Mills

theory, the standard model of particle physics was developed in the last century. One of the

major achievements was the unification of the electromagnetic and the weak interaction in one

theory, which is done by introducing a SU(2) × U(1) gauge theory. Via the Higgs mechanism

and the idea of spontaneous symmetry breaking the weak gauge bosons get endowed with a

mass. This is necessary since such masses were observed in particle accelerators. Since the

quarks are living in SU(3) multiplets, the full gauge group of the standard model turns out to

be SU(3) × SU(2) × U(1). So far almost all predicted particles of the standard model were

confirmed by experimental physicists. The only missing piece here is the observation of the

Higgs boson which is a scalar particle.

Even though great predictions are formulated by the standard model, there are still aspects

physicists are not satisfied with. One could for instance imagine that there might be a further

unification of the electroweak and the strong interaction, referred to as grand unified theory

(GUT). Most GUTs that have been considered so far are based on higher gauge groups containing

the original standard model gauge group, for instance SU(5), SO(10) or the exceptional group

E8. Furthermore, the standard model requires a large amount of parameters that has to be

taken from experiments and therefore cannot be deduced from the model. There are about

seventeen such parameters containing for instance the quark masses as well as the masses of the

leptons.

Some other problems arise by trying to include gravity to the theory. Due to renormalization

problems in such quantum field theories it is not possible to include gravity this way at all. But

if one supposes that in the classical theory, the elementary particles we see are rather short

strings than point particles, one arrives at a resulting theory that naturally comes along with

a spin 2 field which can be interpreted as the quantum particle of gravity, i. e. the graviton.

Having these hopes in mind, theoretical physicists investigated string theories since 1984 more



10 Introduction

intensive, even though the idea was born much earlier.

In the framework of string theory, it becomes necessary to consider the world we are living in

not to be a four dimensional Lorentzian space-time but rather being a space of higher dimension.

Since we do not observe these extra dimensions, we need to introduce these dimensions to our

theory in a way such that they are hidden which means for instance that they need to have a

very small size and furthermore have to be compact. This procedure is called compactification

and is required to yield dimensional reduction to four dimensional space-time.

In order to get a realistic physical theory, string theory has to be equipped with supersym-

metry which provides every bosonic particle with a fermionic superpartner and vice versa. In

most of the known consistent string theories this requirement of supersymmetry also restricts the

overall dimension of the space where the theory lives in to be ten. Some realizations of compact-

ifications providing N = 1 unbroken supersymmetry in the resulting low energy effective action

can be realized by assuming the internal six dimensional space to be a Calabi-Yau manifold,

i. e. having SU(3) holonomy [1]. This was firstly considered in the mid 1980’s as verypromising.

However, due to moduli appearance in the low-energy effective action and due to the fact that

the specific values of these moduli are not known, predictions about certain quantities such as

coupling constants are not possible. Two examples of such moduli are for instance the so-called

dilation, determining the string coupling and the radial modulus determining the size of the

internal manifold. This problem is usually referred to as the moduli stabilization or moduli

space problem. One possibility to solve the moduli stabilization problem is the so-called flux

compactification. In such theories certain tensor fields are considered to have non-vanishing

background values yielding fluxes that thread cycles of the internal manifold. Such fluxes can

be thought of as generalized electromagnetic fluxes that belong to some field strength. For

such compactifications, the condition on the internal manifold to be Calabi-Yau is no longer

necessary but weaker restrictions to the internal space apply. This yields manifolds referred to

as manifolds with an SU(3)-structure. The defining property for such manifolds is simply that

the structure group of the tangent bundle can be reduced to SU(3), which is a milder condition

than the requirement of SU(3)-holonomy for Calabi-Yau manifolds.

One way of performing a dimensional reduction of the compact internal manifold is by

considering this internal manifold to be a homogeneous coset space. This procedure, referred to

as coset space dimensional reduction (CSDR) (see e. g. [2]), is taking advantage of the fact that

homogeneous spaces admit isometries. One can then define a gauge theory on the full space

and require the fields to depend on the internal coordinates only up to gauge transformations.

Doing this the Higgs and the gauge sector are unified naturally which is another nice feature of

the theory. Being endowed with additional dimensions, also Yang-Mills theories on such higher
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dimensional spacetimes become important for certain superstring theories [3], e. g. for heterotic

or type IIA string theory [4] as well as for supergravity considerations [5], [6]. Also a subclass

of such, namely the so-called nearly Kähler manifolds were investigatet in such frameworks [7],

[8], [9], [10], [11], [12], [13], [14]. In the case of six dimensions these nearly Kähler manifolds are

contained in a class of coset spaces referred to as non-symmetric coset spaces.

Therefore in this thesis we investigate the structure of U(k) Yang-Mills theories and the

corresponding equations of motion as well as their solutions on spaces of the form R × G/H,

where G/H stands for a (non-)symmetric reductive coset space and R for one of the four flat

dimensions we live in. This is a simplification, which could be generalized to four dimensional

Minkowski space for instance. All these ansätze are G-equivariant which implements the dimen-

sional reduction of the additional coset variables. The gauge potential of the theory is given by a

connection on an associated principal bundle. If we consider the U(k) gauge group to be broken

down to
∏m
i=1 U(ki), also the gauge potential on the bundle decomposes in such pieces and in

general for each block we get a number of Higgs fields that are responsible for the corresponding

breakdown [15]. A physical interpretation of this situation is given in the context of type IIA

string theory where we can think of these subbundles to be ki coincident D2-branes and the

Higgs fields being open string excitations between neighboring blocks of these D2-branes [16].

Specifically we will consider Yang-Mills theories with different gauge groups on different homo-

geneous spaces. Firstly we investigate the general ansatz of a Yang-Mills theory with gauge

group G over the base space R×G/H. In this case we are able to write down the ansatz gener-

ically without explicit knowledge about the coset. From the G-equivariant ansatz for the gauge

potential we derive the corresponding field strength as well as Yang-Mills equations. Then we

distinguish between the two cases of a symmetric or non-symmetric coset spaces which yields

two different equations for the Higgs field. We then analyze the equation of the symmetric

case, consider BPS as well as non-BPS type solutions yielding instanton configurations as well

as sphalerons respectively. The latter can be interpreted as a chain of instanton-anti-instanton

pairs.

We do the same considerations for the non-symmetric case which for the BPS-type equations

yield configurations that are modifications of bundles [17], [18]. Furthermore we perform a

transformation of the metric in order to get a Lorentzian signature and derive the solutions of

the corresponding equations of motion. These considerations on almost arbitrary coset spaces

are actually generalizations of specific case such as R×S3 and R×G that were already considered

in [19], [20], [21]. Finally, for this ansatz, we derive the Yang-Mills flow equations over the coset

space whose solution is a one-parameter family of gauge potentials. This one-parameter family

contains also solutions of the Yang-Mills equations at the critical points of the gauge potential,
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i. e. points satisfying dA
dτ

∣∣
τcrit

= 0. The solutions to these equations turn out to be bundle

modifications similar to those coming from Yang-Mills equations.

Next we will consider U(n) gauge theories for specific n on the symmetric space CP 2 =
SU(3)

SU(2)×U(1) as well as on the non-symmetric space Q3 = SU(3)
U(1)×U(1) . Such theories are equivalent

to quiver gauge theories and SU(3)-equivariant ansätze where derived in [22] explicitly. Here

symmetry breaking takes place and the resulting number of Higgs fields is depending on the

chosen representation of SU(3) which in our case is also determined by the gauge group. For

CP 2 we will take the ansätze for a U(6) and U(8) gauge theory which yields two and four Higgs

fields respectively and derive the equation of motion for these fields. For Q3 we will consider a

U(3) gauge theory which involves three Higgs fields and derive the Yang-Mills equations for these

using a connection with non-vanishing torsion. In order to obtain solvable equations we need to

choose a specific value for the torsion. Lastly we consider the slightly different product space

R×CP 1×CP 2, where we generalize and combine the equivariant ansätze from [19] and [22] to a

U(3(m+ 1)) gauge theory, where 2m+ 1 Higgs fields are involved. From the gauge potential we

derive the gauge field and furthermore the Yang-Mills equations which yield a system of 2m+ 1

coupled cubic second order differential equations for the Higgs fields.

The outline of the thesis is as follows. In Chapter II we will introduce basic notions of

Riemannian differential geometry containing the notion of a metric, connection and curvature of

a manifold. In Chapter III we will have a look at the group structure of manifolds, specifically

on Lie groups and the properties of invariant tensor fields. In Chapter IV we take a look at the

subclass of differential manifolds, referred to as manifolds with an almost complex structure.

There we are going to introduce all notions, needed to define Kähler as well as the more general

type of nearly Kähler manifolds which are a subclass of manifolds with SU(3) structure. Chapter

V is dedicated to the specific type of manifold we are dealing with, namely the homogeneous

spaces. In order to formulate Yang-Mills theories properly we need to understand the notion

of a fibre bundle specifically a principal bundle as well as all the generalized notions from

Chapter II, i. e. connections and curvature on such bundles. This purely mathematical part of the

thesis does not follow one particular book but was motivated and influenced by a wide range of

literature, e .g. [23], [24], [25], [26], [27], [28] [29] [30] [31] [32], as well as by lectures on differential

geometry and K-theory given by Prof. K. Smoczyk, Instituts für Differentialgeometrie

and Prof. E. Schrohe Institut für Analysis at Gottfried Wilhelm Leibniz Universität,

Hannover. In Chapter VII we briefly introduce the idea of gauge field theory and then pull

together this idea with the geometry of associated principal bundles identifying the corresponding

notions following [23] and [33]. The Chapters VIII-XIV are finally dedicated to the explicit

calculations of Yang-Mills equations on certain spaces as well as the analysis of their solutions
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as described above. The results from Chapters VIII-X can be found in [34].
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Chapter II

Differential Geometry

II.1 Topological Preliminary

We want to start at the very bottom of the mathematics we are dealing with during the next few

chapters. To provide the background for everything that will follow, especially for the concepts

of a manifold, we need a quite weak but fundamental structure of sets, called topology. In this

section, we simply want to introduce this and a couple of other definitions and see how we can

think of continuous functions between topological spaces.

II.1.1 Topological spaces. A topological space (X,T ), or briefly X, is defined by a set X

and a set of subsets T = {Ui, i ∈ I} of X, wherein I is an arbitrary index set. The elements of

T , called the open sets, are required to satisfy the following conditions:

X ∈ T, ∅ ∈ T,⋃
j∈J

Uj ⊂ T, ∀J ⊂ I,

n⋂
j=1

Uj ⊂ T, ∀n ∈ N . (II.1)

Most common spaces are equipped with a topological structure. For instance it is known that

an inner product naturally induces a norm, and a norm naturally induces a metric. One can also

show that a metric naturally induces a topology, so all these spaces are topological spaces. The

reverse generically fails but it may be true for topological spaces satisfying additional constraints.

In the following we will see how these conditions arise.

Firstly, we define a topological space X to be compact if an arbitrary open cover {Ui} of X

can be reduced to a finite cover, i. e.

X ⊂
⋃
j∈J

Uj ⇒ ∃ i1, ..., in ∈ J s.t. X ⊂
in⋃
j=i1

Uj .

We do not exactly know yet what a manifold is, but it should generalize common flat spaces like

the Rn and hence compactness should not be constraining the manifold. We are actually going
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to consider a weaker condition here, namely paracompactness. For such a space X if {Ui, i ∈ I}
is an arbitrary open cover of X, then there is another open cover {Vj , j ∈ J} having the property

∀j ∈ J, ∃i ∈ I : Vj ⊂ Ui ,

i. e. there is a refinement of the open cover satisfying

∀x ∈ X, ∃Vx ∈ V, x ∈ Vx and Vx ∩ Vj 6= ∅

only for a finite number of j ∈ J , i. e. the refinement is locally finite. So a topological space is

called paracompact if and only if every open cover has a locally finite refinement.

A last condition which is needed to define a manifold is that for every pair of points x1 6= x2

in X there must be open sets U1, U2 in T , such that x1 ∈ U1, x2 ∈ U2 and U1 ∩ U2 = ∅.
Topological spaces, equipped with this property are called Hausdorff. This condition is needed

but most spaces in Physics we can think of naturally satisfy this condition anyway.

II.1.2 Continuity. Let (X,TX) and (Y, TY ) be topological spaces with given mapping ϕ :

X → Y . We define ϕ to be continuous if ∀ V ∈ TY , ϕ−1(V ) ∈ TX . This is another way of saying

that the preimage of an arbitrary open set of Y has to be an open set of X. By definition, the

continuous maps preserve the topology and therefore topological spaces and continuous maps

together form a category and hence bijective continuous maps are called homeomorphisms.

As mentioned in the beginning, topological spaces generically do not carry a metric. However,

for paracompact Hausdorff spaces, one can always find a homeomorphism to a metric space. Such

spaces are called metrizable.

II.2 Smooth Manifolds

Now we have everything to define the central object of our mathematical considerations, namely

the manifold.

II.2.1 Manifolds. A topological manifold M is a topological paracompact Hausdorff space,

endowed with a collection of homeomorphisms

{ϕi : Ui −→ Rn} ,

where U = {Ui} is an open cover of M . These maps locally describe the underlying space and

are therefore called charts. For obvious reasons the set of all possible charts {(ϕi, Ui)} is called

an atlas of M . Considering different elements of the atlas we define the transition functions tij
by

tij : ϕi(Ui ∩ Uj) −→ ϕj(Ui ∩ Uj)

tij := ϕ−1
i ◦ ϕj .
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In case that all transition functions in an atlas are smooth maps, the atlas is called smooth. A

smooth atlas that contains all possible charts satisfying this condition is called a differentiable

structure. A topological manifold equipped with a differentiable structure is called a differen-

tiable or smooth manifold. If all the charts in the smooth structure of M are mapping to the

same real space Rn, we call n the real dimension of M .

II.3 (Co-)Tangent Spaces and Bundles

In the last section we have defined a smooth manifold. One can think of simple examples of

manifolds, e. g. curves embedded in R2. Due to the embedding, we can always imagine what is

meant by a tangent vector. For the curve, we just take the derivative of the parameterized posi-

tion vector and get something we can think of as a velocity vector that spans a one-dimensional

vector space, tangent to the corresponding point of the curve. For a 2-dimensional surface, the

procedure works similarly and is still intuitive. The only difference here is that we have two

curves the latter case, yielding two linearly independent tangent vectors, hence we get a two-

dimensional tangent space. These vector spaces are just subspaces of the embedding space of

the manifold, here for instance R3. In this section we want to find a notion of a tangent vector

as well as the notion of a tangent space that we can apply to an arbitrary manifold even without

any knowledge about a specific embedding. Hence we need something that allows the definition

of a vector space at each point of the manifold, satisfying the given requirements. There are

many equivalent ways to define it.

II.3.1 Tangent space. Let M be a smooth manifold, x : U −→ Rn be a chart on a neigh-

borhood of an element p ∈M . A map γ : I −→M , I ∈ R, given by t 7→ γ(t) is called smooth if

the composition x ◦ γ : I −→ Rn is a smooth map. Such a map is called a curve.

Now let γ and γ′ be curves on M , such that γ(0) = γ′(0) = p. We define an equivalence

relation γ ∼ γ′ for all such curves, by

γ ∼ γ′ ⇔ d
dt

∣∣∣
t=0

xi(γ(0)) =
d
dt

∣∣∣
t=0

xi(γ′(0)) . (II.2)

An equivalence class with respect to this equivalence relation is called a tangent vector in p and

the set of equivalence classes is called the tangent space in p and denoted by TpM . Although,

this definition of the tangent space is quite intuitive, it is not very convenient to work with.

Hence, we are going to state another definition, which is equivalent to the one above, but easier

to handle.

For this purpose we first need a few more definitions. A map f : U → R is called a smooth

function if the map f ◦ (x−1) is a smooth function in the usual sense. The set of all smooth

functions defined on U are denoted by F(U). Defining the sum and the multiplication by a
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scalar in the canonical way, we see that this set actually forms an R-algebra. We define Fp(M)

to be the set of equivalence classes of smooth functions on a neighborhood of p, where two of

them are equivalent if they coincide on some neighborhood of p. Furthermore we define a map

∂

∂xµ
: F(M) −→ R,

by
∂

∂xµ

∣∣∣
p
(f) := ∂µf(x−1)

∣∣∣
x(p)

, (II.3)

where ∂µ denotes the usual partial derivative in Euclidian space.

Let V : FpM → R be an R-linear map, satisfying

V (g · f) = f · v(g) + g · v(f), ∀f, g ∈ FpM . (II.4)

We call V a tangent vector at p and the set of all possible tangent vectors forms a vector space,

defined as the tangent space. One can show that the maps
{

∂
∂xµ

∣∣∣
p
, µ = 1, ..., n

}
, from (II.3)

form a basis of the tangent space, called the coordinate basis.

II.3.2 Cotangent space and tensor product. Starting with the definition of the tangent

space TpM of M in p, we can define the cotangent space as the dual space of TpM , the vector

space containing all linear maps from TpM to R. We denote the cotangent space in the usual way

by T ∗pM . Since TpM is finite dimensional vector space, its dual space has the same dimension

and hence we can choose a specific basis of the cotangent space, dual to the coordinate basis

which is denoted by
{

dxµ
∣∣∣
p
, µ = 1, ..., n

}
and satisfies

∂

∂xν
ydxµ := dxµ

(
∂

∂xν

)
= δµν . (II.5)

The elements of T ∗pM are called covectors.

Since we are only dealing with finite-dimensional vector spaces, we can carry over notions

and concepts from linear algebra for those spaces, e. g. arbitrary tensor products of TpM and

T ∗pM :

Tp
r
sM := TpM ⊗ · · · ⊗ TpM︸ ︷︷ ︸

r−times

⊗T ∗pM ⊗ · · · ⊗ T ∗pM︸ ︷︷ ︸
s−times

(II.6)

Elements of TprsM are called tensors and can be expanded with respect to the coordinate basis

covering some neighborhood of p. In order to distinguish indices of the tensor, those belonging

to a tangent space are written as upper, and those belonging to a cotangent space are written

as lower indices. An arbitrary tensor T ∈ TprsM therefore decomposes as

T = Tµ1...µr
ν1...νs

∂

∂xµ1

∣∣∣
p
⊗ ...⊗ ∂

∂xµr

∣∣∣
p
⊗ dxν1

∣∣∣
p
⊗ ...⊗ dxνs

∣∣∣
p
. (II.7)
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Finally, we want to consider a subspace of Tp0
sM , namely all tensors carrying only lower

indices which are totally antisymmetric in addition, e. g. Tν1ν2...νs = −Tν2ν1...νs . They are de-

composed as

T = Tν1...νsdx
ν1

∣∣∣
p
⊗ ...⊗ dxνs

∣∣∣
p
, (II.8)

and will play a crucial role later on.

It is convenient to write down these tensors in a slightly different way. For this purpose we

define the antisymmetric tensor product of covectors by

V ∗ ∧W ∗ := V ∗ ⊗W ∗ −W ∗ ⊗ V ∗ . (II.9)

Using this notation, equation (II.8) can be written as

T =
1
s!
Tν1...νsdx

ν1

∣∣∣
p
∧ ... ∧ dxνs

∣∣∣
p
. (II.10)

Since we can express such kind of tensors with the wedge product ∧, this space is denoted by

ΛsT ∗pM

II.3.3 Vector bundles and sections. So far we have figured out how to attach certain

vector spaces to a point p ∈M . We now want to find a way in which we can deal not only with

the vector space at a certain point p but with all the spaces at all other points of the manifold

in a direct manner. Such a union of vector spaces is called a vector bundle, or a tensor bundle in

case when the vector space is actually a tensor product of vector spaces. Since we do not want

to loose the information that tells us which subspace of the bundle belongs to the point of the

manifold, we need a map, called the projection map, containing this information. Formally, we

define a vector bundle as follows:

Let M be a smooth manifold, also called the base space in this context. Let furthermore

E be a topological space, called the total space, and π : E → M be a smooth map, such that

π−1(p) =: Ep is a vector space of dimension k for all p ∈ M , called the fibre over p. The triple

(E, π,M) is called a vector bundle if

∀p ∈M ∃ open U 3 p, such that π−1(U) ' U × Ep, (II.11)

where an isomorphism between vector bundles is simply the natural generalization of an isomor-

phism of vector spaces. Furthermore, a smooth map s : M → E, such that s(p) ∈ Ep is called a

section in E. The set of sections of a bundle E is denoted by Γ(E).

II.3.4 Tangent bundle, cotangent bundle and tensor bundle. Now we want to describe

some very important vector bundles of a manifold M as well as their sections. One can show

that the space

TM :=
⋃
p∈M

TpM (II.12)
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defines a vector bundle over M with the natural projection, mapping tangent vectors of p onto p.

This vector bundle is called the tangent bundle. The set of sections Γ(TM) forms a vector space

and its elements are called vector fields. A basis of this space is given locally in the coordinates

{xµ, µ = 1, ..., n} by
{

∂
∂xµ , µ = 1, ..., n

}
. Also the set of all cotangent spaces,

T ∗M :=
⋃
p∈M

T ∗pM , (II.13)

defines a vector bundle over M with the natural projection. It is called the cotangent bundle

and the space of sections, denoted by Γ(T ∗M), contains elements called 1-forms. A basis of

1-forms is locally given by {dxµ, µ = 1, ..., n}.
It is quite obvious these definitions can be generalized to an arbitrary tensor product. Hence

T rsM :=
⋃
p∈M

Tp
r
sM (II.14)

defines a vector bundle called the tensor bundle on M . The space of sections Γ(T rsM) is locally

spanned by the tensor products of the basis vector fields and the basis 1-forms{
∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµr
⊗ dxν1 ⊗ · · · ⊗ dxνs , µi, νi = 1, ..., n

}
. (II.15)

The sections of the tensor bundle are called tensor fields. At last we consider the special case,

where the fibre is a wedge product of cotangent spaces, namely the bundle

Λs(TM) :=
⋃
p∈M

ΛsT ∗pM . (II.16)

Sections of this bundle are called s-forms and the space they span is denoted by Ωs(M) :=

Γ(Λs(TM)). A basis for the space of s-forms is locally given by the wedge product of basis

1-forms, namely

{dxµ1 ∧ ... ∧ dxµs , 1 ≤ µ1 ≤ ... ≤ µs ≤ n} . (II.17)

II.3.5 Exterior derivative. As a next point, we want to introduce a differential operator

that acts on s-forms and maps them to s + 1 forms. Since the result of the derivative lies in a

different space than the s-form that we plugged in, it is called exterior derivative. It is denoted

by d and defined as follows

d : Ωs(M) −→ Ωs+1(M) ,

ω 7−→ dω ,

dω :=
1
s!
∂ωµ1...µs

∂xρ
dxρ ∧ dxµ1 ∧ ... ∧ dxµs . (II.18)
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Let α and ω be an r-form and an s-form, respectively. The exterior derivative has the

following properties:

d(λα) = λd(α) ∀λ ∈ R, (d is R-linear) (II.19)

d(α ∧ ω) = dα ∧ ω + (−1)rα ∧ dω (II.20)

ddω = 0 (II.21)

An s-form ω satisfying dω = 0 is called closed. If there is an (s−1)-form η such that dη = ω,

ω is said to be exact. According to (II.21) it is obvious that every exact form is also closed.

II.3.6 Holonomic and non-holonomic basis. Let us consider the basis of the tangent

space
{

∂
∂xµ , µ = 1, ..., n

}
and the basis of the cotangent space {dxµ, µ = 1, ..., n}, locally given

by the coordinates {xµ, µ = 1, ..., n} once more. As already mentioned in paragraph II.3.4 and

making use of the definition of the Lie bracket, we find

∂
∂xµ
ydxν = dxν

(
∂
∂xµ

)
= δνµ and[

∂
∂xµ

, ∂
∂xν

]
= 0 . (II.22)

Since the vector fields contained in this basis commute, we call it a holonomic basis. In general

it is not necessary that the vector fields forming an arbitrary basis do commute and therefore we

also consider the more general case, where they do not. Let {ea, a = 1, ..., n} and {ea, a = 1, ..., n}
be a different basis of vector fields and 1-forms satisfying the equations

eayeb = eb(ea) = δba and

[ea, eb] = fab
cec . (II.23)

Here the elements of the basis do not commute and therefore form a so-called non-holonomic

basis. Since (II.22) and (II.23) are both bases of the same space, they have to be linearly

dependent in each fibre, namely

ea = eµa
∂

∂xµ
,

∂

∂xµ
= eaµea (for vector fields) ,

ea = eaµdxµ , dxµ = eµae
a (for 1-forms) .

(II.24)

Since the ea form a non-holonomic basis, it is obvious that the matrices eµa, eaµ cannot be

constant, otherwise the ea would commute. In order to see which basis we are using, we will

only take indices from the late Greek alphabet to denote components of tensors with respect

to the coordinate basis while using letters from the Latin alphabet to denote components with

respect to the non-holonomic basis.
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II.4 Bundle Metric and Riemannian Manifolds

In the last section, we introduced the tangent space and the tangent bundle, by attaching vector

spaces to each point of the manifold. Now we can add some more structure to these spaces, i. e.

we want to find a way to equip every tangent space with an inner product, which is later be

used to define a metric on the manifold. An inner product for an arbitrary vector space V over

R is defined as a map 〈·, ·〉 : V × V → C satisfying three conditions

〈V,W 〉 = 〈W,V 〉 , ∀V,W ∈ V (symmetric) ,

It is R-linear in the first argument,

〈V, V 〉 ≥ 0 and 〈V, V 〉 = 0, iff V = 0 (positive definite) .

(II.25)

In the following we are going to introduce the notion of a metric on the manifold that reduces

to such an inner product on every tangent space.

II.4.1 Riemannian metric and Riemannian manifolds. We start by simply defining an

object in a straightforward manner by requiring a so-called metric to satisfy the properties of an

inner product (II.25) locally. We state these definitions first in a general way and then have a

closer look at the case where the vector space is the tangent space and the bundle is the tangent

bundle. The generalization of these results back to the general case of a tensor bundle is then

straightforward.

Let M be a smooth manifold, p an arbitrary point in M and (U, x) a chart such that p ∈ U .

Furthermore, let (E, π,M) be a vector bundle. We define a bundle metric g on E to be an

element of Γ(E∗ ⊗ E∗) satisfying two conditions

gp(V,W ) = gp(W,V ) for all V,W ∈ Ep , (II.26)

gp(V, V ) ≥ 0 and gp(V, V ) = 0, iff V = 0 . (II.27)

Hence if E = TM , g maps two tangent vectors to a real number. It is easy to see that one

can also consider g as a map of vector fields to smooth functions. Since it is a section, we can

express the metric in terms of local coordinates

g = gµνdxµ ⊗ dxν . (II.28)

The symmetry condition reads then

gµν = gνµ . (II.29)

A bundle metric defined on the tangent bundle like above, is also called a Riemannian metric

and a smooth manifold endowed with a Riemannian metric is called a Riemannian manifold and

denoted by (M, g).
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II.4.2 Theorem. Every smooth manifold M admits a Riemannian metric, which is induced

by the smooth structure.

Considered as a local statement, this theorem is straightforward to prove. For a neighborhood

U of p, we have a corresponding diffeomorphism that maps U to some open set in Rn. Since Rn

is already endowed with an inner product, one can simply define the metric on the tangent space

to be the pullback of the Euclidian inner product. Since a smooth manifold is also paracompact,

one can use a partition of unity to define a metric globally on M . �

II.4.3 Induced metric. Another consequence which is also straightforward to see is that a

Riemannian metric on M induces a metric on the cotangent space and on arbitrary products of

the tangent space and the cotangent space. Therefore, a Riemannian manifold is also endowed

with a metric on the tensor bundle T rsM for arbitrary r and s. This will become important in

further sections, when we associate some sort of derivative on a bundle with the corresponding

bundle metric.

II.5 Lie Derivative

In this section we first want to introduce a notion of a derivative of tensor fields, namely the Lie

derivative. Later on we will also consider another kinds of derivatives. The idea of this one is

quite intuitive. The goal is to describe how a tensor field changes in different directions which

can be specified by a vector field. In addition, we need a mechanism that allows us to compare

tensors in different points of the manifold, which is not obvious, since the tensor field maps each

point of the manifold to a different space.

II.5.1 Local flow and Lie transport. Let M be a manifold, γ : [0, 1] −→ M be a smooth

curve. Of course, we can take the derivative of this map and obtain a tangent vector for each

τ ∈ I. These tangent vectors are lying in the corresponding tangent space of γ(τ),

d
dτ
γ(τ) ∈ Tγ(τ)M . (II.30)

Now we can imagine a vector field, mapping the image of the curve to its derivative. It can

be shown that for each vector field v and tangent vector vp ∈ TpM , where p ∈M , there is locally

exactly one curve γv, satisfying

γv(0) = p and
d
dτ
γv(0) = vp . (II.31)

This curve is completely specified by the vector field v and is called an integral curve of v. Hence

on a neighborhood U of p, we can define a map Fs : U −→ M by Fs(p) := γv(τ). This map is

called a local flow. Due to its properties

Fτ1 ◦ Fτ2 = Fτ1+τ2 , F−τ = (Fτ )−1 (II.32)
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it is also referred to as a one parameter group of transformations.

Since Fτ is a smooth map from M to M , we can find a corresponding map from the tensor

bundle T rs (M) to itself, using its pullback F ∗τ :

F ∗τ : T rs (M) −→ T rs (M) . (II.33)

This map allows us to compare tensors in different spaces, e. g. a tensor in Tp1M with a tensor

in Tp2M , where p1 and p2 are elements of the neighborhood U of p. It is called the Lie transport.

II.5.2 Lie derivative. Now we have gathered the necessary basics to measure the rate of

changing of tensor fields in a given direction. Therefore, the definition of a derivative can be

stated in a reasonable way. We define the Lie derivative Lvt of a tensor field t ∈ T rs (M) as the

derivative of the pullback of the local flow, evaluated at τ = 0:

Lvt :=
d
dτ

∣∣∣
t=0

F ∗τ t . (II.34)

It is easy to show that the Lie derivative satisfies all the properties needed for a proper

derivative: It is R-linear and satisfies the Leibniz rule, i. e.

Lv(t⊗ t′) = Lv(t)⊗ t′ + t⊗ Lv(t′) . (II.35)

There is one more property, telling us how the Lie derivative acts on a generic tensor fields,

Lv(t(v1, ..., α1, ..., αs)) = (Lvt)(v1, ..., α1, ..., αs)

+ t(Lvv1, ..., α1, ..., αs) + ...

+ t(v1, ...,Lvα1, ..., αs) + ...

+ t(v1, ..., α1, ...,Lvαs) , (II.36)

where v1, ..., vr are are vector fields and α1, ..., αs are 1-forms.

Using all these properties, we obtain the explicit formula for the Lie derivative of a tensor

field t which reads in components

(Lvt)µ1...µr
ν1...νs = vρ

∂

∂xρ
tµ1...µr
ν1...νs +

∂vρ

∂xν1
tµ1...µr
ρ...νs + ...+

∂vρ

∂xνs
tµ1...µr
ν1...ρ

−∂v
µ1

∂xρ
tρ...µrν1...νs − ...−

∂vµr

∂xρ
tµ1...ρ
ν1...νs . (II.37)

For the special cases, where t is a function, a vector field or a 1-form, (II.37) is written in an

especially nice form:

Lvf = vρ
∂

∂xρ
f = v(f) , ∀f ∈ C∞(M) , (II.38)

Lvw = (vρ
∂

∂xρ
wσ − wρ ∂

∂xρ
vσ)

∂

∂xσ
= [v, w] , ∀w ∈ Γ(TM) , (II.39)

Lvα = (vρ
∂

∂xρ
ασ + αρ

∂

∂xσ
vρ)dxσ = (ιv ◦ d + d ◦ ιv)α , ∀α ∈ Γ(T ∗M) . (II.40)
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Using the non-holonomic basis defined by equation (II.23) as well as equations (II.38)-(II.40),

one can show that the Lie derivative of a tensor which is a tensor again, has the following

components in the non-holonomic basis

Lect
a1...ar
b1...bs

= ec(ta1...ar
b1...bs

) + fce
a1te...ar b1...bs + ...+ fce

ar ta1...e
b1...bs

−fcb1eta1...ar
e...bs − ...− fcbseta1...ar

b1...e . (II.41)

II.5.3 Killing vector fields. As we have stated above, every vector field v gives rise to a

local flow Ft : M −→ M in a neighborhood of some point p ∈ M . Now suppose that M is a

Riemannian manifold with the Riemannian metric g. Then it can be shown that there are vector

fields whose one-parameter group is an isometry, i. e. it preserves the metric. These vector fields

are called Killing vector fields. If we consider the Lie derivative of the metric with respect to a

Killing vector field we find that

Lvgµν = vρ
∂

∂xρ
gµν +

(
∂

∂xµ
vρ
)
gρν +

(
∂

∂xν
vρ
)
gµρ . (II.42)

For an isometry this equation simply vanishes,

Lvgµν = 0 . (II.43)

Since this equation determines the Killing vector fields, it is called the Killing equation. Defining

vσ = vτgτσ and using the Leibniz rule for the partial derivative, we can rewrite (II.42) as

Lvgµν = vτg
τρ

(
∂

∂xρ
gµν −

∂

∂xν
gµρ −

∂

∂xµ
gνρ

)
+
∂xµ

∂vν
+
∂xν

∂vµ

=:
∂xµ

∂vν
+
∂xν

∂vµ
− 2Γτµνvτ , (II.44)

wherein

Γτµν :=
1
2
gτρ
(

∂

∂xν
gµρ +

∂

∂xµ
gνρ −

∂

∂xρ
gµν

)
(II.45)

are called the Christoffel symbols. We will recognize them in a later section, when we will define

the so-called covariant derivative. Its construction will be done in terms of a so-called connection

of the tangent bundle which is quite different from the definition of the Lie derivative.

Another notable property of the Killing vector fields is that the Lie bracket of two Killing

vector fields again yields a Killing vector field, in other words, the set of Killing vector fields

closes under [·, ·]. Due to the R-linearity of the Lie derivative, the linear combination of Killing

vector fields again results in a Killing vector field. Hence they form a subalgebra of the algebra

of vector fields on M which is always finite-dimensional. If it has dimension n(n+ 1)/2, where

n denotes the dimension of M , then M is called a maximally symmetric space.
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II.6 The Levi-Civita Connection

In the previous sections, we were dealing with different kinds of bundles, e. g. with the vector

bundle. These bundles are defined by attaching vector spaces to each point of the manifold. But

since the manifold does not necessarily have to be flat, the attached spaces do not need to be

identical but may be twisted against each other for instance. So we do not have the information

in which way elements of different fibres can be compared. For instance, tangent vectors from

different tangent spaces cannot be compared straight away, since they are elements of different

vector spaces. We discussed a similar thing in section II.5.2, where we used the pullback of the

Lie transport to compare tangent vectors with each other. We will therefore define an object

which can be used to connect fibres of some vector bundle at different points of the manifold.

Such an object is called a connection and is formally defined in the next paragraph.

II.6.1 Connections and the covariant derivative. Let M be a smooth manifold, and E be

a vector bundle over M . Furthermore, let s, s1, s2 ∈ Γ(E) be sections of E and v, v1, v2 ∈ Γ(TM)

be vector fields. A connection on E is defined as a C∞-linear map

∇ : Γ(E)→ Γ(T ∗M ⊗ E) , (II.46)

s 7−→ ∇s , (II.47)

which straightforwardly induces a second map, the covariant derivative on E, defined by

∇s : Γ(TM)→ Γ(E) , (II.48)

v 7−→ ∇vs. (II.49)

It is furthermore required to be R-linear and to satisfy the following rule:

∇v(fs) = v(f) · s+ f∇v(s) . (II.50)

This is a very generic notion, and in order to define the most canonical, but important Levi-

Civita connection, we need to introduce a couple of properties of a connection. From now on

we will constrain ourselves to connections on the tangent and cotangent bundle and their tensor

products. One can show that if we have a connection on the tangent bundle, this connection

induces a connection on the cotangent bundle and also on arbitrary tensor products of those

bundles. Therefore we only need to know how the connection acts on basis vectors of the tangent

and cotangent bundle.

II.6.2 Connection coefficients. Let ∇ be a connection on the tangent bundle. It is con-

venient to use the same symbol for the induced connections mentioned above. We define the
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connection coefficients to be the coefficients of the covariant derivative of one basis vector field

with respect to another basis vector fields, i. e.

∇µ
∂

∂xν
=: Γρµν

∂

∂xρ
, ∇aeb =: Γcabec, (II.51)

where

∇µ := ∇ ∂
∂xµ

, ∇a := ∇ea . (II.52)

In this notation, the covariant derivative of the basis 1-forms with respect to the induced

connection can be expressed as follows:

∇µdxν = −Γνµρdx
ρ, ∇aeb = −Γbace

c (II.53)

If we plug the transformation rule (II.24) into the definition of the connection coefficients (II.51),

we arrive at the following relations:

Γcab = eµa(
∂

∂xµ
eρb + eνbΓρµν)ecρ (II.54)

Γρµν = eaµ(−ea(eρb) + eρcΓcab)e
b
ν (II.55)

The relations (II.54) and (II.55) show that the connection coefficients cannot be coefficients

of a tensor, due to an extra term in the transformation law which does not appear in tensor

transformations. Since we are free to change the name of silent indices, we can easily see that

the spurious piece, i. e. the first summand of the right hand side (II.54) and (II.55), is symmetric

in the two lower indices of the connection coefficients. Hence, this term disappears in an object

antisymmetric in the connection coefficients with respect to these two indices and we get a

proper transformation rule for an object constructed in such a way.

II.6.3 Covariant derivative of tensor fields. In the last paragraph we have shown how to

take the covariant derivative of the basis vector fields and 1-forms, stated in equations (II.51)

and (II.53). This can be easily generalized to arbitrary tensor fields. Let T ∈ Γ(T rsM) be a

tensor field on M . Note that using either the holonomic or the non-holonomic basis does not

make a difference in our formulae. The difference only appears in the connection coefficients,

so we only state the result with respect to the non-holonomic basis. The components of T are

defined by

T = T a1...ar
b1...bsea1 ⊗ ...⊗ ear ⊗ eb1 ⊗ ...⊗ ebs . (II.56)

Therefore, by taking advantage of equations (II.51), (II.53) and (II.50), we arrive at the following

formulae for the components of the covariant derivative of T :

∇cT a1...ar
b1...bs = ec(T a1...ar

b1...bs)

+Γa1
ceT

e...ar
b1...bs + ...+ ΓarceT

a1...e
b1...bs

−Γecb1T
a...ar

e...bs − ...− ΓecbsT
a...ar

b1...e . (II.57)
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II.6.4 Connection 1-form. There is an equivalent way to express how the connection acts

on the basis vector fields and 1-forms. We define a matrix valued 1-form, namely the connection

1-form with respect to a non-holonomic basis and its connection coefficients:

Θc
b := Γcabe

a . (II.58)

This formalism allows us to formulate many equations in a different and sometimes more trans-

parent manner.

II.6.5 Metric compatibility, torsion and the Levi-Civita connection. As already men-

tioned in paragraph II.6.2, we can construct tensors using the connection coefficients, even

though they are not tensors themselves. An example is the torsion tensor T : Γ(TM ⊗ TM)→
Γ(TM), defined with respect to a given connection as

T (v, w) = ∇vw +∇wv − [v, w] , v, w ∈ Γ(TM) . (II.59)

It has the components

T ρµν := Γρµν − Γρνµ , (II.60)

in some holonomic basis, and the components

T abc := Γabc − Γacb − fbca . (II.61)

in some non-holonomic basis.

Using the components of the torsion tensor in a non-holonomic basis, we can define the

torsion 2-form:

T a :=
1
2
T abce

b ∧ ec. (II.62)

There is a relation between the connection 1-form and the torsion 2-form, given by the following

equation

dea + Θa
b ∧ eb = T a . (II.63)

We now want to restrict our generic connection by a two specific conditions. Firstly we say

a connection ∇ on a Riemannian manifold (M, g) is compatible with the metric g if ∀u, v, w ∈
Γ(TM)

∇g = 0 ⇔ ∇u (g(v, w)) = 0 . (II.64)

If we choose local coordinates as in (II.22) and (II.23), we get the following equations:

∂

∂xµ
(gνρ) = Γσµν gσρ + Γσµρ gνσ , (II.65)

ea (gbc) = Γdab gdc + Γdac gbd . (II.66)
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One can show that there is a unique connection which is compatible with the metric and has

vanishing torsion and it is called the Levi-Civita connection. In local coordinates, the second

condition of vanishing torsion is given by (II.60) and (II.61)

Γρµν − Γρνµ = 0, (II.67)

Γcab − Γcba = fab
c . (II.68)

By virtue of (II.63) the condition of vanishing torsion in terms of the connection 1-form reads

dea + ωab ∧ eb = 0 . (II.69)

In order to distinguish different connections, we will use the symbol ω for the Levi-Civita connec-

tion one forms and Θ for arbitrary connections. The two defining properties of the Levi-Civita

connection, denoted by ∇LC can be summarized to one defining equation:

g(∇LC
u (v), w) :=

1
2
{u (g(v, w)) + v (g(u,w))− w (g(u, v))}

+
1
2
{g([u, v], w)− g([u,w], v)− g(u, [v, w])} .

(II.70)

Now we can easily read off the connection coefficients from the Levi-Civita connection, by

plugging the basis vector fields into this equation and obtain:

Γρµν =
1
2
gρσ

{
∂

∂xν
gµσ +

∂

∂xµ
gνσ −

∂

∂xσ
gµν

}
, (II.71)

Γcab =
1
2
gcd {ea(gbd) + eb(gad)− ed(gab) + ged fab

e − geb fade − gea fbde}

⇔ Γcab =
1
2
gcd {ea(gbd) + eb(gad)− ed(gab) + fabd − fadb − fbda} . (II.72)

The connection coefficients of the Levi-Civita connection are called Christoffel symbols and they

match with definition (II.45) from paragraph II.5.2.

II.7 Curvature

In this section we are considering the curvature of a manifold. It also depends on how the

connection coefficients look like.

II.7.1 Riemann tensor. In the last section, we combined the connection coefficients in such

a way that they form an object that transforms as a tensor, namely the torsion tensor. The

torsion tensor contained terms of first order in the connection coefficients, i. e. first covariant

derivatives. The tensor we introduce in this section will be a combination of second derivatives
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of vector fields and called the Riemann curvature tensor or just Riemann tensor. It is defined

by

R(u, v, w) := ∇u∇vw −∇v∇uw −∇[u,v]w . (II.73)

It tells us how a vector changes under an infinitesimal parallel transport induced by the con-

nection. Parallel transportation here roughly means the transport of a vector under some path

such that the vector only changes in the same way, the whole tangent space changes. Since the

connection tells us how the tangent space changes from one point of the manifold to another, it

also tells us how to perform a parallel transport of a vector. If we plug in the holonomic and

non-holonomic basis from equations (II.22) and (II.23), and use equation (II.51) we see that the

components of the Riemann tensor in a local basis look like

Rκλµν =
∂

∂xµ
Γκνλ −

∂

∂xν
Γκµλ + ΓκµηΓ

η
νλ − ΓκνηΓ

η
µλ , (II.74)

Rabcd = ec(Γadb)− ed(Γacb) + ΓaceΓ
e
db − ΓadeΓ

e
cb − fcdeΓaeb . (II.75)

It is obvious from the definition that the Riemann tensor is antisymmetric with respect to µ

and ν, i. e. in the last two indices.

Considering the Levi-Civita connection and pulling down the first index of the Riemann ten-

sor, using the corresponding metric, we obtain in total six identity equations for the components

of the Riemann tensor in the holonomic basis:

Rκλµν = −Rκλνµ , Rκλµν = −Rλκµν , (II.76)

Rκλµν = Rµνκλ , Rκµκν = Rκνκµ . (II.77)

along with the Bianchi identities:

First Bianchi identity: Rκλµν +Rκµνλ +Rκνλµ = 0 . (II.78)

Second Bianchi identity: ∇κRξλµν +∇µRξλνκ +∇νRξλκµ = 0 . (II.79)

In the following, we contract the first with third index of the Riemann tensor. The resulting

tensor is called the Ricci tensor :

Ricµν := Rκµκν (II.80)

Contracting the remaining two indices with each other, we get a smooth function called the

Ricci scalar :

R := Ricµµ := gµνRicµν (II.81)
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II.7.2 Curvature 2-form. In the previous section we defined the vector-valued torsion 2-

form in equation (II.62). Analogously, we can define the curvature 2-form with respect to the

last two components of the curvature tensor. Due to the antisymmetry in the last two indices of

the Riemann tensor, we are able to think of it as of the components of a matrix valued 2-form,

the curvature 2-form, where we consider the first two indices to be the matrix indices, i. e.

Rab :=
1
2
Rabcd e

c ∧ ed . (II.82)

By definition, the Riemann tensor depends on the connection. Therefore we can also derive a

relation between the curvature 2-form and the connection 1-form, similar to what we did for the

torsion 2-form in (II.63):

dΘa
b + Θa

c ∧Θc
b = Rab . (II.83)

The equations (II.63) and (II.83) together are called the Cartan structure equations. If we take

the exterior derivative of these equations, we obtain precisely the Bianchi identities, already

formulated in the holonomic basis in equations (II.78) and (II.79). We get

dT a + ωab ∧ T b = Rab ∧ eb, (II.84)

dRab + ωac ∧Rcb −Rac ∧ ωcb = 0 , (II.85)

respectively.
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Chapter III

Lie Groups and Lie Algebras

In this chapter we want to introduce the notion of Lie groups, Lie algebras and their relation to

each other. We also want to see how a group is able to act not only on a vector space, but also

on manifolds.

III.1 Lie Groups and Group Action

III.1.1 Lie groups. First in this paragraph we want to discuss the notion of a group. A

group G is defined to be a set, endowed with a map ◦ : G × G −→ G which satisfies three

conditions

(g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3) ∀g1, g2, g3 ∈ G , (III.1)

∃e such that: e ◦ g = g ∀g ∈ G , (III.2)

∀g ∈ G ∃g−1 ∈ G such that: g−1 ◦ g = e . (III.3)

A map satisfying equation (III.1) is said to be associative. The element e is called the identity

element and g−1 the inverse of the element g. We usually suppress the symbol ◦ for the group

operation. A topological group is a group which is also a topological space such that the group

operation and the map g 7−→ g−1 are continuous.

We can now define a Lie group as a topological group, which is also a smooth manifold. For

Lie groups, the group operation and the inverse map are required to be smooth maps.

III.1.2 Group action and representations. Let G be a group and M be a smooth man-

ifold. We define the action of G on M as a map Θ : M × G → M , fulfilling the following

properties:

Θ(·, g) : M −→ M is smooth , (III.4)

Θ(Θ(x, g), h) = Θ(x, gh) , ∀g, h ∈ G, x ∈M . (III.5)

Now let V be an n-dimensional vector space. Every vector space naturally carries all the

structures, needed to define a manifold, and therefore it is sensible to talk about the group
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action on a vector space. So, let G be a group and Θ be an action of G on V . If the group

action is linear in the first argument, we define

ρ : G −→ GL(n,K) ,

g 7−→ Θ(·, g) . (III.6)

The tuple (V, ρ) is called an n-dimensional representation of G.

Obviously, the group operation of a Lie group defines an action on itself via the given left or

right multiplication of a group element.

L·(·) : G×G −→ G, Lg(h) = gh , (III.7)

R·(·) : G×G −→ G, Rg(h) = hg . (III.8)

Clearly, these are not the only ways to define an action of G on G. For instance we can make

use of the inverse elements in order to define an action on G by

Θ : G×G −→ G, Θ(g, h) = ghg−1 . (III.9)

This defines a map adg : G→ G in the following way:

adg := Θ(g, ·)

adg(h) := Θ(g, h) = ghg−1 (III.10)

One can show that this map is a homomorphism called the adjoint representation of G. By

definition we find that

adg(e) = e . (III.11)

Since adg is a map from G to G we can define a map on the tangent space of G as follows

Adg : TeG −→ TeG (III.12)

Adg := adg∗(e) . (III.13)

This map induces the map Ad: G× TeG→ TeG, which we call the adjoint map of G. One can

show that this map is an action of G on TeG and it is also called the adjoint representation of

G.

III.1.3 Left translation. We have shown above that the group defines two group actions

on itself in a very simple way. Like the adjoint representation, there are also maps G → G

corresponding to these actions (equations (III.8) and (III.7)). We are considering only the first

one, since all the results can be derived for the right action in an analogous manner.

Lg : G −→ G, g ∈ G, where

h 7−→ gh ∀h ∈ G (III.14)
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This map is called the left translation and, as we defined in paragraph III.1.1, it is a smooth and

bijective map, i. e. a diffeomorphism. One can observe the following, using the differential which

is also called the push-forward: Every diffeomorphism between manifolds induces a homomor-

phism (i.e. a linear and bijective map) for the tangent bundle, which means a homomorphism of

the tangent space for every element of the base. This way the differential of the left translation

Lg∗ allows us to map a tangent vector from the tangent space in one point to the tangent space

of another point of the manifold. Since Lg is smooth, we will be able to obtain a vector field

from each tangent vector of a given tangent space. In the following we display how one can

apply push-forward and pull-back maps to both vector fields and 1-forms. For vector fields, we

have:

Push-forward:

Lg∗ : Γ(TG)→ Γ(TG) ,

Lg∗|e : TeG→ TgG .

Pull-back:

L∗g : Γ(TG)→ Γ(TG), L∗g := (L−1
g )∗ ,

L∗g|e : TgG→ TeG ,

(III.15)

where we made use of the ordinary differential of a smooth map to define the push-forward and

defined the pull-back to be the push-forward of the inverse map. For 1-forms, we find:

Pull-back:

L∗g : Γ(T ∗G)→ Γ(T ∗G) ,

L∗g|e : T ∗gG→ T ∗eG .

Push-forward:

Lg∗ : Γ(T ∗G)→ Γ(T ∗G), Lg∗ := (L−1
g )∗ ,

Lg∗|e : T ∗eG→ T ∗gG ,

(III.16)

where of course the pull-back is defined via the ordinary pull-back of 1-forms and the push-

forward to be the pull-back of the inverse map.

Having defined push-forward maps for vector fields and 1-forms, it is straightforward to

define push-forward maps for arbitrary tensor fields t ∈ Γ(T rsG). Hence we can shift an arbitrary

tensor te in the tensor product of tangent spaces and cotangent spaces of the identity element

TeG⊗ . . . TeG⊗ T ∗eG . . .⊗ T ∗eG =: T rs,eG to the corresponding tensor product of spaces T rs,gG at

an arbitrary point g ∈ G. That means that we have a map, Lg∗|e : T rs,eG→ Γ(T rsG) mapping a

tensor te ∈ T rs,eG to a tensor field on G.

t(g) := Lg∗|ete . (III.17)

As already mentioned in the beginning, any object defined via the left action in this section

works out in the same way for a right action as well.

III.2 Invariance of Tensor Fields

Having defined the group action and its application to arbitrary tensor fields, we are now able

to introduce the notion of left invariance for these fields.
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III.2.1 Left invariance. Let t be a tensor field on a Lie group G, i.e. a smooth map of the

manifold to the tensor bundle t : M → T rsG, such that t(p) ∈ T rs,p. We call t left-invariant, if:

Lg∗t(h) = t(gh) ∀h ∈ G . (III.18)

This notion of left invariance allows us to define a basis of the tangent space which gives us a

basis of tensor fields in which all such tensor fields show up in a simple form. For this purpose

let {Ea} be a basis of the tangent space of G at the identity element e. As we have seen in

III.1.2, it is possible to define a unique left-invariant vector field from every tangent vector via

performing the push-forward of the left action on it. Therefore we get a set of vector fields {ea}
depending on the basis of TeG which forms a basis of all vector fields. The procedure works in

the same way for a basis {Eb} of the cotangent space at the identity. Denoting the left-invariant

basis of 1-forms on G as {eb} we are able to express arbitrary tensor fields t ∈ T rsG in this basis:

t = ta1...ar
b1...bsea1 ⊗ . . . ear ⊗ eb1 ⊗ . . . ebs (III.19)

As shown in [23], the left invariance condition (III.18) for a tensor is equivalent to the tensor

having only constant components with respect to the left-invariant basis,

ta1...ar
b1...bs = const , ∀a1, ..., ar, b1, ..., bs . (III.20)

Because the left-invariant vector field even form a subalgebra, one can decompose every left-

invariant vector field and 1-form in the left-invariant basis and we get that

t(v1, ..., vr, α1, ..., as) = const , (III.21)

for all left-invariant vector fields vi and left-invariant 1-forms αj and hence their Lie derivatives

along left-invariant vector fields vanish. The fact that the coefficients are constant together with

equation (II.41) yields the following condition on the coefficients of t:

Lect
a1...ar
b1...bs

= fce
a1te...ar b1...bs + ...+ fce

ar ta1...e
b1...bs

−fcb1eta1...ar
e...bs − ...− fcbseta1...ar

b1...e = 0 . (III.22)

Note that the Lie bracket [·, ·] : Γ(TG) × Γ(TG) → Γ(TG) of vector fields preserves the

left invariance. Plugging in two elements of the left-invariant basis, we obtain a different left-

invariant vector field, which is just a linear combination of the left-invariant basis vector fields

and has constant components according to equation (III.20):

[ea, eb] = fab
cec. (III.23)
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The Lie bracket satisfies the Jacobi identity

[[u, v] , w] + [[w, u] , v] + [[v, w] , u] = 0 , ∀u, v, w ∈ Γ(TG) (III.24)

and therefore the space of left-invariant vector fields forms a so-called finite dimensional Lie

algebra.

Additionally, the tangent space becomes a Lie algebra with a Lie bracket induced by the Lie

bracket for vector fields:

[Ea, Eb] := [ea, eb](e) = fab
cEc. (III.25)

The structure constants of these two Lie algebras are of course the same and therefore both are

called the Lie algebra of G and are denoted by G.

III.3 The Killing Form and The Invariant Metric

As motivated above, the Lie algebra G of a Lie group G plays a crucial role for the structure

of the corresponding Lie group. We will see that one can get information about topological

properties such as connectedness and compactness of G by analyzing a special bilinear form on

G which we define in the following.

III.3.1 Killing form and adjoint representation. Let G be a Lie algebra with generators

{Ea}. The Killing form K is defined as a mapping K : G × G → R given by

Kab = K(Ea, Eb) := tr(adEaadEb), (III.26)

where adEa denotes the adjoint representation of the generator Ea:

adEa : G → G, adEa(Eb) := [Ea, Eb] . (III.27)

Since the trace is a linear map satisfying the cyclic condition wich allows cyclic permutations

of its arguments, e. g. tr(ABC) = tr(CAB), it is obvious that (III.26) is a symmetric bilinear

form on G. Employing the commutation relation of the Lie algebra, we can write the Killing form

in terms of the structure constants. Using the definition of the adjoint representation (III.27)

and the commutation relation of the Lie algebra, we get

(adEaadEb)(Ec) = [Ea, [Eb, Ec]] = [Ea, fbcdEd] = fbc
dfad

fEf , (III.28)

where for every pair of generators Ea and Eb, we obtain a matrix with components

(adEaadEb)ec = fad
efbc

d . (III.29)

Taking the trace of this matrix, i.e. summing over all diagonal components e = c, obtain the

Killing form

Kab = tr(adEaadEb) = tr(fadefbcd) = fad
cfbc

d . (III.30)
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III.3.2 Theorem. A Lie group G is compact, connected and has no conjugation invariant

subgroups beside the trivial ones, i. e. G is compact and simple, if and only if its Killing form is

negative definite.

From this theorem and from III.1.2 we can deduce that given a simple compact Lie group,

we can always define a metric ge on G and therefore a metric g on all of G, which is invariant

under the group action:

gab(h) := −Lh∗
∣∣∣Kab, h ∈ Γ. (III.31)

III.4 Maurer-Cartan Form

In this section we want to introduce the Maurer-Cartan forms on a group manifold. We will

need the Maurer-Cartan forms as well as its properties later on, for instance in order to derive

the geometric structure of so-called coset spaces, which are given by the quotient of a Lie group

and some subgroup.

III.4.1 Maurer-Cartan form and equation. Let {Ea} and {Ea} be bases of the tangent

and cotangent space of the identity, respectively, and in addition, let {ea} and {ea} be the

left-invariant bases of Γ(TG) and Γ(T ∗G) such that

eaye
b = δa

b . (III.32)

Then it is easy to show that the left-invariant basis of Γ(T ∗G) satisfies the Maurer-Cartan

equation

dea = −1
2
fbc

aeb ∧ ec . (III.33)

One can define the canonical 1-form or Maurer-Cartan form onG as a Lie-algebra-valued 1-form,

ω : TgG→ TeG , (III.34)

ω(X) := (Lg∗)−1
∣∣
e
X, X ∈ TgG . (III.35)

III.4.2 Theorem. The Maurer-Cartan form satisfies the following equations:

ω = ea ⊗ Ea, (III.36)

0 = dω +
1
2

[ω ∧ ω], (III.37)

where we define [· ∧ ·] for arbitrary Lie algebra valued 1-forms by

[α ∧ β] := [Ea, Eb]⊗ αa ∧ βb . (III.38)

Since it is quite obvious how to multiply such 1-forms we are going to suppress this notation in

the rest of this thesis and simply write the wedge product as usual.
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Manifolds with Almost Complex Structure

This chapter is dedicated to the classification of manifolds with almost complex structure. This

is needed later on when we will construct certain bundles over so-called Kähler manifolds in

order to obtain a Yang-Mills theory on such spaces.

IV.1 Complex Manifolds and Holomorphic Vector Bundles

In this section we start by introducing manifolds that generalize the idea of a real manifold,

which locally looks like Rn (see definition II.2.1). The generalization simply replaces R by C
and changes the requirement of the charts in a reasonable way. Then we will see how these

changes affect all other quantities and objects we defined for real manifolds in Chapter II.

IV.1.1 Complex manifolds. The definition of these objects is fairly intuitive, if we remind

ourself of the definition of smooth manifolds II.2.1. Here, we used a topological space and an atlas

consisting of smooth charts. Analogously, we define a complex manifold M to be a paracompact

topological Hausdorff space, as usual. The only difference to the smooth manifold is that we

define the charts as maps ϕi : Ui −→ Cn, where U = {Ui} is an open cover of M . Furthermore,

the transition functions are required to be holomorphic. As in (II.2.1), we require the atlas to

contain all possible charts satisfying this condition and call this atlas a complex structure. So

a complex manifold is simply a topological manifold equipped with a complex structure. If all

charts of the given complex structure are mappings to the complex space Cn of fixed dimension

n, we call n the complex dimension of M . Since all holomorphic maps are smooth, it is obvious

that every complex manifold M of complex dimension n can also be considered as a smooth

manifold, with real dimension equals 2n.

IV.1.2 Tangent space of a complex manifold. Let M be a complex manifold of complex

dimension n. In Chapter II, we defined the tangent space with respect to the local coordinates.

Analogously, the tangent space of a complex manifold M should be a complex vector space.

This is simply realized by a complexification of the (real) tangent space at a point p of M . It

is denoted by TC
p M . Note that elements of the (real) tangent space are mappings from C∞(R)
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to R. Now the elements of the complexified tangent space are maps from the space of the

complexified smoth functions C∞(R)C to C, with

C∞(R)C := {g + ih, g, h ∈ C∞(R)} . (IV.1)

Of course, the complexified tangent spaces are still given by the corresponding real tangent

spaces. Since M can be considered to be a manifold of real dimension 2n, local coordinates

{(xµ, yµ), µ = 1, ..., n} can be used to define a basis of the tangent and the cotangent spaces of

M . The bases are denoted by {
( ∂
∂xµ ,

∂
∂yµ ), µ = 1, ..., n

}
, (IV.2)

{(dxµ,dyµ), µ = 1, ..., n} . (IV.3)

Since the complex coordinates are given by zµ = xµ + iyµ, this gives rise to the choice of a

certain basis in the complexified tangent and cotangent spaces, yielding a basis for the sections

of the complexified tangent and cotangent bundle, namely vector fields and 1-forms:

∂
∂zµ := ∂

∂xµ − i ∂
∂yµ (holomorphic vector fields) ,

∂
∂z̄µ̄ := ∂

∂xµ̄ + i ∂
∂yµ̄ (antiholomorphic vector fields) , (IV.4)

dzµ := dxµ + idyµ (holomorphic 1-forms) ,

dz̄µ̄ := dxµ̄ − idyµ̄ (antiholomorphic 1-forms) . (IV.5)

Here we denote the indices of the antiholomorphic vector fields and 1-forms by µ̄ = 1, ..., n in

order to distinguish the corresponding components of arbitrary tensor filds. Let t ∈ Γ(T rsM) be

an arbitrary tensor field. According to (IV.4) and (IV.5), there is the canonical decomposition

Γ(TCM) = Γ(T+M)⊕ Γ(T−M) and hence we can write t with respect to this basis’ as

t = tµ1...µr
ν1...νs

r⊗
i=1

∂

∂zµi

s⊗
i=1

dzνi + ...+ tµ̄1...µ̄r
ν̄1...ν̄s

r⊗
i=1

∂

∂z̄µ̄i

s⊗
i=1

dz̄ν̄i ,

(IV.6)

wherein between the two summands there are terms of any combination of holomorphic and

antiholomorphic indices. There is a special case of a q-form ω ∈ Ωq
C(M), where a lot of coefficients

actually vanish and one can write:

ω =
1

r! s!
ωµ1...µr ν̄1...ν̄sdz

µ1 ∧ ... ∧ dzµr ∧ dz̄ν̄1 ∧ ... ∧ dz̄ν̄s , (IV.7)

where r + s = q. We call such a q-form to be of bidegree (r, s) or simply an (r, s)-form. The
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exterior derivative of an (r, s)-form is given by

dω =
∂

∂zρ
ωµ1...µr ν̄1...ν̄s dzρ ∧ dzµ1 ∧ ... ∧ dzµr ∧ dz̄ν̄1 ∧ ... ∧ dz̄ν̄s

+
∂

∂z̄ρ̄
ωµ1...µr ν̄1...ν̄s dz̄ρ̄ ∧ dzµ1 ∧ ... ∧ dzµr ∧ dz̄ν̄1 ∧ ... ∧ dz̄ν̄s .

(IV.8)

We use this splitting of the exterior derivative in a holomorphic and an antiholomorphic part in

order to define the so-called Dolbeault operators ∂ and ∂̄ by

d = ∂ + ∂̄ . (IV.9)

IV.1.3 Almost complex structure on a complex manifold. If we have a complex struc-

ture, we are always able to choose a holomorphic and antiholomorphic basis of the tangent space.

Hence we are able to define a map J : Γ(M) −→ Γ(M) as follows

J := i dzµ ⊗ ∂

∂zµ
− i dz̄µ ⊗ ∂

∂z̄µ
. (IV.10)

The tensor J of type (1, 1) is called an almost complex structure on M and in this case it

completely specifies the complex structure on M . Obviously it satisfies J2 = −id. Furthermore,

if v is a purely holomorphic vector field and w a purely antiholomorphic vector field, then

J(v) = iv and J(w) = −iw . (IV.11)

IV.2 From Almost Complex to Kähler Manifolds

In the last section we started with a complex manifold and ended up with an almost complex

structure, defined by the complex structure. In fact it is not necessary for a smooth manifold

of dimension 2n to be actually endowed with a complex structure in order to admit an almost

complex structure. In other words, there are manifolds with an almost complex structure that do

not admit a complex structure. At the very begining of this section we will see what conditions on

the almost complex structure are necessary in order to define a corresponding complex structure.

IV.2.1 Almost complex structures. An almost complex structure J on a 2n-dimensional

smooth manifold M is defined as an element of Γ(TM⊗T ∗M) such that the map J : TM → TM

satisfies the following condition:

J(J(v)) = −v ⇔ J2 = −id, (IV.12)

or in components:

Jµ
νJν

ρ = −δµρ . (IV.13)

A smooth manifold endowed with an almost complex structure is called an almost complex

manifold.
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IV.2.2 Remark. As the definition already suggests, and as we have seen above, a complex

manifold is always a manifold endowed with an almost complex structure induced by the complex

structure. In general the reverse is not true. In order for an almost complex manifold to be

a complex manifold, one has to impose restrictions on the almost complex structure, which we

will state in the following.

IV.2.3 Integrability. Let (M,J) be a manifold with an almost complex structure. We call

J integrable if

Nµν
ρ = 0, (IV.14)

where the Nijenhuis torsion tensor N is defined by:

Nµν
ρ := Jµ

σ(∇σJνρ −∇νJσρ)− Jνσ(∇σJµρ −∇µJσρ). (IV.15)

IV.2.4 Theorem. An almost complex structure induces a complex structure on a manifold,

if and only if it is integrable.

IV.2.5 Hermitian metric. In the following we are going to introduce a metric in the context

of almost complex manifolds. Let (M, g, J) be an almost complex Riemannian manifold. We

call the Riemannian metric g hermitian, if it is compatible with the almost complex structure,

i.e.

gρτJµ
ρJν

τ = gµν . (IV.16)

An almost complex manifold, endowed with a hermitian metric is called an almost hermitian

manifold and if J is integrable, we call it a hermitian manifold. This notion of hermicity is quite

intuitive, since it generalizes the notion of a hermicity of a metric on a vector space.

IV.2.6 Theorem. Every almost complex manifold admits a hermitian metric.

IV.2.7 Geometry of an hermitian manifold. In the following we want to take a closer

look at hermitian manifolds and their corresponding geometry. Let {zµ} be complex coordinate

on M . The condition of hermicity yields a couple of constrains for the components of the metric.

gµν = 0 and gµ̄ν̄ = 0 . (IV.17)

This follows from the fact that the almost complex structure J acts on the basis vector fields

according to (IV.11) and we get an i for each argument. The only non-vanishing components of

the hermitian metric are the ‘mixed’ components and g can locally be expressed as

g = gµν̄ dzµ ⊗ dz̄ν + gµ̄ν dz̄µ ⊗ dzν . (IV.18)

Considering M as a smooth manifold, we can characterize a connection ∇ by its connection

coefficients, introduced in section II.6.2, and find:

∇A
∂

∂zµ
= ΓBAµ

∂

∂zB
, ∇A

∂

∂zµ̄
= ΓBAµ̄

∂

∂zB
, (IV.19)
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where the indices A and B take the values of both holomorphic and anti-holomorphic indices.

If we suppose that the connection here is compatible with the almost complex structure, which

is a reasonable assumption, we would find

∇ν
∂

∂zµ
= Γρνµ

∂

∂zρ
, ∇ν̄

∂

∂z̄µ
= Γρ̄ν̄µ̄

∂

∂zρ̄
, (IV.20)

∇ν̄
∂

∂zµ
= 0 , ∇ν

∂

∂z̄µ
= 0 . (IV.21)

If this is the case, i. e. all connection coefficients with mixed indices are zero, ∇ is called a

hermitian connection. Straightforwardly we can deduce:

∇νdzµ = −Γµνρdz
ρ, ∇ν̄dz̄µ̄ = −Γµ̄ν̄ρ̄

∂

∂zρ̄
. (IV.22)

In the following, we want to state all the properties and tensors that we already derived in

II.6 in this context. The condition of a hermitian connection to be compatible to the hermitian

metric, as stated in (II.64), yields a simple shape of the connection coefficients:

∇µgνρ̄ = ∇µ̄gνρ̄ = 0 (IV.23)

⇔ Γρµν = gσ̄ρ ∂
∂zµ gνσ̄, Γρ̄µ̄ν̄ = gσρ̄ ∂

∂z̄µ gν̄σ . (IV.24)

Using these properties, one can actually show that the covariant derivative of the almost

complex structure is zero with respect to the hermitian connection.

If we plug the connection coefficients of the hermitian connection into equation (II.60) we

get the following non-vanishing components for the torsion tensor:

T ρµν = gσ̄ρ
∂

∂zµ
gνσ̄ − gσ̄ρ

∂

∂zν
gµσ̄, T ρ̄µ̄ν̄ = gσρ̄

∂

∂z̄µ
gν̄σ − gσρ̄

∂

∂z̄ν
gµ̄σ . (IV.25)

If we plug the connection coefficients of the hermitian connection into equation (II.74) we

get the Riemann tensor for the hermitian connection. Using equation (II.76), we find that the

only independent components are

Rρντ̄µ =
∂

∂z̄τ
Γρµν =

∂

∂z̄τ

(
gσ̄ρ

∂

∂zµ
gνσ̄

)
,

Rρ̄ν̄τ µ̄ =
∂

∂zτ
Γρ̄µ̄ν̄ =

∂

∂zτ

(
gσρ̄

∂

∂z̄µ
gν̄σ

)
. (IV.26)

IV.2.8 Kähler form and Kähler manifold. We can now define a very important class of

almost hermitian manifolds. In order to do this, we need a certain 2-form, defined by a hermitian

metric. Let (M,J, g) be an almost hermitian manifold with g being the hermitian metric. We

define the Kähler form Ω as

Ω :=
1
2

Ωµνdxµ ∧ dxν , Ωµν := gµρJν
ρ . (IV.27)
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This definition is reasonable, because Ωµν is antisymmetric in µ, ν as one can easily see in the

following:

Ωµν = gντJµ
τ

= gρσJν
ρJτ

σJµ
τ , since g is hermitian

= gρσJν
ρ(−δµσ), because of (IV.12)

= −gρµJνρ

= −Ωνµ (IV.28)

A hermitian manifold is called a Kähler manifold, if its Kähler form is closed, i.e.

dΩ = 0 . (IV.29)

The hermitian metric g of a Kähler manifold is called the Kähler metric. Since ∇ is the Levi-

Civita connection with respect to the Kähler metric, and hence

dΩ = ∇Ω, (IV.30)

we obtain that the condition (IV.29) is equivalent to

∇µJνρ = 0 . (IV.31)

We can use the properties of J in order to find an equivalent but firstly weaker looking formu-

lation of (IV.31), namely the condition

∇µJντ −∇νJµτ = 0 . (IV.32)

This is proven in the following:

0 = ∇µJντ −∇νJµτ

= gτρ (∇µΩνρ −∇µΩνρ +∇νΩρµ −∇νΩρµ +∇ρΩµν −∇ρΩµν)

= gτρ (∇µΩνρ +∇µΩρν +∇νΩρµ +∇νΩµρ +∇ρΩµν +∇ρΩνµ)

= gτρ ((∇µΩνρ +∇νΩµρ) + (∇µΩρν +∇ρΩµν) + (∇νΩρµ +∇ρJνµ))

= gτρ (2(∇µΩνρ +∇µΩρν +∇νΩρµ))

= gτρ (∇νΩρµ)

= ∇µJντ ,

wherein we have used the fact that the Levi-Civita connection is compatible with the metric,

and the antisymmetry property of the components of the Kähler form.�

Summarizing, we can say that a hermitian manifold is Kähler if

dΩ = 0 ⇔ ∇µJνρ = 0 ⇔ ∇[µJν]
τ = 0 . (IV.33)
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IV.2.9 Geometry of a Kähler manifold. In order to see how the Kähler metric is explicitly

restricted by the defining properties of the Kähler manifold, we use equation (IV.30). As stated

in (IV.9), there is a decomposition of the exterior derivative, namely d = ∂ + ∂̄. So if we apply

this decomposition to the Kähler form Ω, we get two independent equations from (IV.30) for

the metric
∂gµν̄
∂zλ

=
∂gλν̄
∂zµ

,
∂gµν̄
∂z̄λ

=
∂gµλ̄
∂z̄ν

. (IV.34)

Formally these equations are the integrability conditions for the metric. Since g satisfies these

equations, we can locally find a potential KU ∈ C∞(M) for g, called the Kähler potential,where

U is an open neighborhood that belongs to the corresponding chart. Therefore the hermitian

mertic is given by

gµν̄ =
∂

∂zµ
∂

∂z̄ν
KU . (IV.35)

These results can be used to show that the torsion for a connection defined by the Kähler

metric vanishes. The Riemann tensor becomes

Rκλ̄µν̄ = − ∂

∂z̄ν
(gξ̄

∂

∂zµ
gλ̄ξ̄) (IV.36)

= Rκµλ̄ν̄ , (IV.37)

and we get the following additional properties:

Rκ̄λ̄µ̄ν = Rκ̄µ̄λ̄ν , (IV.38)

Rκλµ̄ν = Rκνµ̄λ , (IV.39)

Rκ̄λ̄µν̄ = Rκ̄ν̄µλ̄ . (IV.40)

IV.2.10 Almost Kähler and nearly Kähler manifold. Suppose that all conditions for a

manifold to be Kähler are satisfied besides the one that the almost complex structure induces

a complex structure, i.e. (M,J, g) is not necessarily a complex manifold. Then we call such

(M,J, g) an almost Kähler manifold and the corresponding complex structure an almost complex

structure.

We now quickly want to introduce another class of almost hermitian manifolds, whose defin-

ing condition looks similar to the one of an almost Kähler manifold. Let (M,J, g) be an almost

hermitian manifold, with the hermitian metric g. We call (M,J) nearly Kähler if J satisfies

∇µJνρ +∇νJµρ = 0 , ⇔ ∇(µJν)
ρ = 0 . (IV.41)

Due to (IV.31) it is obvious that a Kähler manifold is always also a nearly Kähler manifold.

In summary, the three types of manifolds corresponding to their almost complex structure are
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related as follows:

Tµν
ρ = 0 and ∇[µJν]

τ = 0 ⇔ (M,J, g) is Kähler , (IV.42)

∇[µJν]
τ = 0 ⇔ (M,J, g) is almost Kähler , (IV.43)

∇(µJν)
τ = 0 ⇔ (M,J, g) is nearly Kähler . (IV.44)



Chapter V

Homogeneous Spaces

The following chapter introduces the notion and properties of so-called homogeneous and sym-

metric spaces. Such spaces are needed for so-called coset space compactifications in string theory.

In later chapters we will consider such spaces and derive their corresponding Yang-Mills theories.

We are going to define these spaces in a formal and quite generic way in the first two sections

of this chapter. In the last two sections we are going to write down the consequences that follow

for such spaces explicitly and develop the geometry of such spaces. Namely we are going to

write down certain connections on the tangent bundle as well as the corresponding torsion and

curvature tensors. We end the chapter by stating the simple form of the covariant derivative of

left-invariant tensors, which was introduced in the context of Lie groups in (III.20) for instance.

V.1 Group Action and Coset Spaces

In this section we will start and introduce the concept of so-called homogeneous spaces, which

are smooth manifolds of special kind. They do not come alone but carry an additional manifold

which is a Lie group. This Lie group has a specific action on them which we will explain in

detail in the following.

V.1.1 Homogeneous space. Let G be an arbitrary group, acting on a smooth manifold M ,

and Θ be the corresponding group action. We say that G acts on M transitively if:

∀x, y ∈M ∃ g ∈ G : Θg(x) = y. (V.1)

In order to define an action, G only needs the structure of a group. In the case where G is even

a Lie group, we call M a homogeneous space of the Lie group G.

The stabilizer subgroup Hx of G is defined as the set of those group elements that leave x

invariant:

Hx := {g ∈ G : Θg(x) = x} . (V.2)

One can show that if G acts on M transitively, there exists an isomorphism between Hx and

Hy for arbitrary x, y ∈ M . Hence all the stabilizer groups of M are isomorphic. Therefore we

denote the unique stabilizer group by H.
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One more thing needed in order to write down homogeneous spaces in a nice and convenient

way is the definition of so-called coset spaces. In order to define these, we need to know what

an equivalence relation means.

Let G be an arbitrary group and H some subgroup of G. One can define an equivalence

relation on G in the following way:

g1 ∼ g2, iff (g1)−1g2 ∈ H . (V.3)

This is indeed an equivalence relation, since ∼ has the following properties:

1. ∼ is reflexive: g ∼ g ⇔ g−1g = e ∈ H

2. ∼ is symmetric: g1 ∼ g2 ⇔ g−1
1 g2 = h ∈ H

⇔ H 3 h−1 = (g−1
1 g2)−1 = g−1

2 g1 ⇔ g2 ∼ g1

3. ∼ is transitive: g1 ∼ g2 ∼ g3 ⇔ g−1
1 g2 = h1, g

−1
2 g3 = h2

⇒ H 3 h1h2 = g−1
1 g2g

−1
2 g3 = g−1

1 g3 ⇔ g1 ∼ g3

The first condition is clearly true, since H is a subgroup and therefore it needs to contain inverse

elements to its elements as well as the identity. An equivalence class [g] with respect to this

equivalence relation is given by {gh : h ∈ H} = gH which is also denoted by [gH]. The set of

equivalence classes with respect to this equivalence relation is called the coset space G/H.

By definition, the right action Θ(x, ·) =: Θx : G → M is a continuous map for arbitrary

x ∈ M . Therefore the stabilizer group is the preimage of a closed set in M , i. e. H = Hx =

Θ−1
x (x), and due to continuity it is also a closed subgroup of G. It can be shown that in such

a case the coset space G/H is equipped with a differential structure and hence a submanifold

of G. Furthermore, there is a diffeomorphic map G/H → X, [gHx] 7−→ Θ(x, g) and therefore

X ∼= G/H. This means that we can always consider a homogeneous space to be a coset space

with respect to its stabilizer group.

V.2 Symmetric Spaces

As mentioned in the beginning there are less generic homogeneous spaces that are also of in-

terest in the context of coset space compactifications. These spaces are referred to as so-called

symmetric spaces and their formal definition along with some important properties are treated

in this section.

V.2.1 Symmetric space. Let X be a smooth simply connected Riemannian manifold and g

be its Riemannian metric. (X, g) is called a symmetric space, if

∇Rµνρσ = 0, (V.4)
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where ∇ is an affine connection and ∇g = 0, i. e. ∇ is compatible with the metric. From this

equation we can deduce:

R = Ricµµ = const, (V.5)

RµνρσRµνρσ = const. (V.6)

As mentioned in the beginning, symmetric spaces S are always homogeneous. The corre-

sponding group is the

isometry group := {f : S → S such that f∗g = g} , (V.7)

which is the group of the metric preserving maps. Usually this is only a local property, but since

we defined S to be connected, it is true globally as well.

In general we can distinguish between two types of symmetric spaces that do not cover all

symmetric spaces, but an important subclass of them, namely the semisimple spaces. Since

S is a Lie group, we can talk about all the notions introduced in the previous chapter. The

distinction is based on the properties of the Killing form and we define Type I and Type II

symmetric spaces in the following way:

• Type I : S is compact, which is equivalent to S being a closed subgroup of O(n) ⇒ the

Killing form is negative definite,

• Type II: S is not compact ⇒ the Killing form is indefinite.

Since we consider only semisimple Lie groups, the Killing form is non-degenerate. Therefore,

for type I we can use the push-forward of the left action to define a metric on all of S. One can

prove the following statements:

V.2.2 Theorem.

1. Let G be a simple Lie group and g be a bi-invariant metric on G. Then g is proportional

to the Killing metric.

2. The Ricci tensor of the Killing metric is proportional to the Killing metric.

V.3 Explicit Description of Homogeneous Spaces

In the following let G be a Lie group, H a closed subgroup and G/H the corresponding homo-

geneous space. We are now interested in the explicit shape of all the structure introduced in II

and III, namely what the corresponding Lie algebra, connection, torsion and curvature becomes.
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V.3.1 Decomposition of the Lie algebra of G. Let TeG =: G, i. e. G is the Lie-algebra of

G and H := TeH is the Lie algebra of H. Then we can find a vector space K such that

G = H⊕K . (V.8)

Let {EA} be a basis of G. From this full set of generators of G we choose the elements of H and

K to be {Ei} and {Ea}, respectively. In the following we always use indices with capital letters

to run over the full range of the Lie algebra of G and the indices i, j, k, l,m, n are running over

the range of the Lie algebra of H. The indices a, b, c, d, e are meant to run over the remaining

values of the Lie algebra G, which do not belong to H. Therefore

A,B,C ∈ {1, ...,dim (G)} , (V.9)

i, j, k ∈ {1, ...,dim (H)} , a, b, c ∈ {1, ...,dim (G/H)} . (V.10)

Since H is an algebra, we stay in this algebra when we multiply elements since it is closed

under the group multiplication. Hence we define fijk to be the structure constants of H. We

cannot say anything else for the commutation relations of the other generators and therefore in

general we find the following expressions

[Ei, Ej ] = fij
kEk,

[Ei, Ea] = fia
bEb + fia

kEk,

[Ea, Eb] = fab
cEc + fab

kEk . (V.11)

In specific cases it is possible to choose a decomposition of the Lie-algebra of G, such that all the

components fiak vanish, which means that the Lie-bracket of any element of G with an element

of H lies in H again. Then we call G/H reductive and (V.11) becomes

[Ei, Ej ] = fij
kEk,

[Ei, Ea] = fia
bEb

[Ea, Eb] = fab
cEc + fab

kEk . (V.12)

If G/H is not only homogeneous, but also symmetric, we find that the structure constants fabc

also vanish and hence the Lie-bracket of two elements of K lies in H. From now we are going to

consider the case, where G/H is a reductive homogeneous space.

V.3.2 The Levi-Civita connection on G/H. We are now interested in finding the Levi-

Civita connection on the homogeneous space, defined via a metric that is invariant under the

group action of G. This means that we are looking for a connection, defined in II.6 by equations
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(II.64) and (II.69):

dgab − ωcagcb − ωcbgac = 0 , (V.13)

dea + ωab ∧ eb = 0 . (V.14)

The {ea} from these equations are in this context the left-invariant 1-forms of G/H. Since we

want g to be invariant under the group action, it needs to have constant coefficients in this basis

and hence dgab = 0. Let
{
ei
}

be a set of one-forms which completes the set of left invariant

one-forms on G/H to a basis of one-forms on the full Lie group G. In this notation we can use

equation (III.36) to write down the Maurer-Cartan 1-form of G,

Θ := eA ⊗ EA = ea ⊗ Ea + ei ⊗ Ei . (V.15)

In order to avoid confusions between the Levi-Civita connection 1-form, we used Θ instead of ω

from III.4.1. As stated in theorem III.4.2, we get the equation

0 = dΘ +
1
2

[Θ ∧Θ]

= dΘ +
1
2
(
[EA, EA]⊗ eA ∧ eB

)
deaEa + dekEk +

1
2

(
[Ea, Eb]⊗ ea ∧ eb

)
+

1
2
(
[Ei, Ej ]⊗ ei ∧ ej

)
+
(
[Ea, Ei]⊗ ea ∧ ei

)
= deaEa + dekEk +

1
2

(fabcEc + fab
kEk)⊗ ea ∧ eb

+
1
2

(
fij

kEk ⊗ ei ∧ ej
)

+
(
fai

bEb ⊗ ea ∧ ei
)

= (dec +
1
2
fab

cea ∧ eb + fai
cea ∧ ei)⊗ Ec

+ (dek +
1
2
fab

kea ∧ eb +
1
2
fij

kei ∧ ej)⊗ Ek . (V.16)

Linear independence of Ec and Ek allows to compare their coefficients and hence leads to the

following equations for the 1-forms ea and ei:

dea +
1
2
fcb

aec ∧ eb + fkb
aek ∧ eb = 0 , (V.17)

dei +
1
2
fjk

iej ∧ ek +
1
2
fbc

ieb ∧ ec = 0 . (V.18)

In order to calculate the connection 1-form for the Levi-Civita connection, we use equation

(II.72) to calculate the Christoffel symbols first. Note that we used small letters for the non-

holonomic basis there, which correspond to capital letters here. We can simplify the expression

for the connection coefficients by taking advantage of the fact that the components gab of the
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metric are constant with respect to the left-invariant basis {ea}. Hence the terms proportional

to derivatives of the metric simply vanish and we arrive at

ΓCAB =
1
2
gCD {g([eA, eB], eD)− g([eA, eD], eB)− g(eA, [eB, eD]} . (V.19)

In order to avoid confusions with respect to rising and lowering of indices, we chose the form,

where all the metric components are still in the equation. We are interested in the components

ΓcAb, for which we need the Lie-brackets between the non-holonomic basis on G. These are

simply given by the corresponding commutators of the generators from equation (V.12):

[ei, ej ] = fij
kek,

[ei, ea] = fia
beb ,

[ea, eb] = fab
cec + fab

kek . (V.20)

The following components of the Christoffel-symbols of G that are going to be relevant for G/H:

Γcab =
1
2
gcD {g([ea, eb], eD)− g([ea, eD], eb)− g(ea, [eb, eD]} , (V.21)

Γcib =
1
2
gcD {g([ei, eb], eD)− g([ei, eD], eb)− g(ei, [eb, eD]} . (V.22)

Now if we assume that all components of the metric gAB where A = a and B = i, to be zero,

i. e. gai = 0 which is true for instance for the Killing metric, we obtain that gadgdb = δab and

hence

Γcab =
1
2
gcd (fabe ged − fadegbe − fbdegea)

=
1
2
fab

c +
1
2
gcd(fdaegbe + fdb

egab)

=
1
2
fab

c + gcdfd(a
e gb)e

=:
1
2
fab

c +Kab
c , (V.23)

along with

Γcib = gcdfib
egde ,

which is equivalent to

Γcib = fib
c , (V.24)

where we used that gck = 0. In (V.23) also we used the usual notation for the symmetric sum:

t(ab) :=
1
2

(tab + tba) .
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To evaluate the Γcib we used not only the assumption that the metric gAB is block diagonal but

also the G-invariance of gab, which says that

fia
c gcb + fib

c gca = 0 . (V.25)

Obviously (V.23) shows a decomposition of the Γcab into an antisymmetric and a symmetric

part in a, b, where Kab
c denotes the symmetric part. So far we have derived the connection

coefficients of the full Lie group. It is straightforward to show that these results pretty much

hold for the coset space. The difference there is that the invariant 1-forms ea and ei are no

longer linearly independent and therefore these connection coefficients (V.24) and (V.23) are

both contained in the new connection coefficients of the coset. How this looks like in terms of

the connection 1-form of the tangent bundle will be the content of the next paragraph.

V.3.3 Connection 1-form and curvature of homogeneous spaces. Due to (V.24) and

(V.23) the connection 1-form for the Levi-Civita connection on G/H is given by

ωcb = ΓcAbe
A (V.26)

= fib
cei + (

1
2
fab

c +Kab
c)ea (V.27)

=
(
fib

ceia + (
1
2
fab

c +Kab
c)
)
ea . (V.28)

Here we used the decomposition of the left-invariant 1-forms ei in the basis 1-forms ea on G/H.

Similar to this Levi-Civita connection we can consider a connection containing a non-

vanishing torsion. For this more general case, we get additional terms in the connection co-

efficients that are symmetric in the lower two indices. Formally we have

ωcb = ΓcAbe
A = (T cib + fib

c) ei +
(
T cab +

1
2
fab

c +Kab
c

)
ea , (V.29)

T cib = T cbi , T cab = T cba

Following equation (II.83), we can derive the curvature 2-form of this connection:

Rab =
1
2

(ΓedbΓ
a
ce − ΓecbΓ

a
de − fcdkΓakb − fcdeΓaeb)ec ∧ ed . (V.30)

Inserting the connection 1-form of G/H to equation (II.83), we get the components of Rieman-

nian curvature tensor with respect to the invariant basis as

Rabcd = −fcdkfkba −
1
2
fcd

efeb
a +

1
2
fb[c

efd]e
a + fb[c

eKd]e
a

−fe[caKd]b
e − fcdeKeb

a +Kdb
eKce

a −Kcb
eKde

a . (V.31)

This is the most general result for the components of the curvature tensor for any homo-

geneous space in the invariant basis. We define the subset of homogeneous spaces, for which
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the Kab
c are equal to zero, as naturally reductive. For symmetric spaces, all fabc are zero and

therefore, symmetric spaces are naturally reductive spaces. For them, only the first term of

equation (V.31) survives.

Now we can calculate the remaining quantities related to the Riemann tensor, i. e. the Ricci

tensor and the Ricci scalar, defined in (II.80) and (II.81). We arrive at

Ricbd = −fcdkfkbc −
1
2
fcd

efeb
c +

1
2
fb[c

efd]e
c + fb[c

eKd]e
c

−fe[ccKd]b
e − fcdeKeb

c +Kdb
eKce

c −Kcb
eKde

c , (V.32)

R = −fkcdf cdk −
1
2
fab

cf bc
a − 1

4
fab

cf bac (V.33)

V.4 Invariant Tensors and Covariant Derivative

V.4.1 Covariant derivative. In the last section we have found the explicit form of the Levi-

Civita connection and the corresponding curvature. Now we are interested in the covariant

derivative with respect to this connection and how it is applied explicitly to arbitrary tensors

in the left-invariant basis. Let t ∈ Γ(T rs (G/H) be a tensor field on G/H. We can write t with

respect to left-invariant basis:

t = ta1...ar
b1...bsea1 ⊗ ...⊗ ear ⊗ eb1 ⊗ ...⊗ ebs (V.34)

Using (II.57) and the formulae for the connection coefficients of G from section V.3.2, we

can formulate the covariant derivative by

∇cta1...ar
b1...bs = + Γa1

cEt
E...ar

b1...bs + ...+ ΓarCEt
a1...E

b1...bs

− ΓEcb1t
a...ar

E...bs − ...− ΓECbst
a...ar

b1...E . (V.35)

V.4.2 Invariant tensor fields. Let t be an arbitrary tensor on G/H, as above, which is ad-

ditionally invariant under the G-action. As mentioned in III.1.1 we know that the Lie derivative

along left invariant vector fields vanishes. Therefore we use equation (III.22) and get

0 = fie
a1te...ar b1...bs + ...+ fie

ar ta1...e
b1...bs

−fib1eta1...ar
e...bs − ...− fibseta1...ar

b1...e . (V.36)

Generically the covariant derivative of a left-invariant tensor was given in (V.35) but due to

(V.36) it becomes

∇cta1...ar
b1...bs = + Γa1

ce t
e...ar

b1...bs + ...+ Γarce t
a1...e

b1...bs

− Γecb1t
a...ar

e...bs − ...− Γecbst
a...ar

b1...e . (V.37)
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Here we also used the fact that a left-invariant tensor has constant components with respect

to the invariant basis. If we remind ourselves in the explicit shape of the Γabc (V.23), we can

already see that if we are dealing with a symmetric space, i. e. fabc = 0, all the Γcab also vanish

and therefore all left-invariant tensors are covariantly constant. Let me once again remark

that the these Γcab are some of the connection coefficients of G which we used to formulate the

covariant derivative on G/H. In later chapters we might change this notation by using the Γcab
as connection coefficients of the coset space itself.



56 Homogeneous Spaces



Chapter VI

Fibre Bundles

VI.1 Fibre Bundle, Principal Bundle and Associated Bundle

In this section we are going to extend the notion of vector bundles which locally look like the

product of a manifolds with a vector space to a more general case. These so-called fibre bundles

are formally defined in a similar way than vector bundles were defined before. The difference is

that the fibre does not fulfill all conditions of a vector space, but those of a smooth manifold on

which a group, called the structure group, is acting from the left.

VI.1.1 Fibre bundle. Let E, M and F be smooth manifolds, called the total space, the base

and the fibre, respectively. In addition, let G be a Lie group, called the structure group, acting

on F , and π : E →M be a surjective smooth map, called the projection, satisfying the following

conditions:

• Ep := π−1(p) is diffeomorphic to F ∀p ∈M .

• There is an open cover {Ui} of M and diffeomorphisms φi : Ui × F → EUi satisfying the

condition that ∀p ∈ Ui : φi({(p, f) : f ∈ F}) ⊂ Ep.
Such a collection of maps {φi} is called a local trivialization.

• The map φi,p := φi

∣∣∣
p

: F → Ep has to be a diffeomorphisms as well.

• For mutually intersecting neighborhoods Ui, Uj of p, the transition function tij(p) :=

φ−1
i,p ◦ φj,p : F → F is required to be an element of G and a smooth map mapping Ui ∩ Uj

to G.

Then (E, π,M,F,G) is called a fibre bundle. An important subclass of fibre bundles which

are mostly used in Physics is formed by those whose fibres F are identical to the their structure

group G and they are called principal bundles or (principal) G-bundle, sometimes also denoted

by π : P → M . An important property of the principal bundle is that one can define a group

action of G on the total space E. This follows from the fact that due to G=F , a right action of

G on F can be defined using the local trivialization.
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Since it is possible to define an action of G on F from the right (since G=F this is obvious)

one can use the local trivialization to define an action of G on all of the total space E. This action

is constructed making use of the local trivialization but independent of this specific trivialization

anyway.

One can see that the action of G on F is free, i. e. it has trivial stabilizers, and transitive.

Therefore following V.1 F is a homogeneous space of G. An important example of such a bundle

is the following: Let G be a Lie group. If H is a closed subgroup of G, then we know that G/H

is a smooth manifold. For these it is easy to show that (G, π,G/H,H) is a principal bundle,

where G is the total space, G/H the base, H the fibre and π the natural projection mapping an

element of G to its equivalence class in the coset space.

VI.1.2 Functions of type ρ and the associated bundle. Let π : P −→M be a principal

G-bundle. Furthermore, let (V, ρ) be a representation of the Lie-group G. A function

Φ : P −→ V (VI.1)

is called equivariant on P , if it satisfies

Φ ◦Rg = ρ−1(g) ◦ Φ

⇔ Φ(ug) = ρ−1(g)Φ(u), ∀u ∈ P, ∀g ∈ G . (VI.2)

Let us now consider a point p ∈M and the corresponding fibre Pp ⊂ P . We define a function

of type ρ to be an equivariant function that maps Pp to V . One can show that functions of type

ρ are related to sections of another bundle over M .

We define the associated bundle π′ : E →M , which is a vector bundle on M endowed with a

right action G on E, as follows. The total space is P×ρV := (P×V )/ ∼, where for e1, e2 ∈ P×V
we have e1 ∼ e2 if e1 = (u, v), e2 = (ug, ρ(g−1)v), u ∈ P , and v ∈ V for some g ∈ G. This means

that the total space is just the space of orbits with respect to the right action of G, acting on

the elements (u, v) by (ug, ρ(g)−1). On every fibre Ep it is straightforward to define vector space

operations on the associated bundle by

[(u, v)] + λ[(u,w)] := [(u, v + λw)] .

It is obvious that each fibre of the associated principal bundle endowed with this vector space

structure is isomorphic to the vector space V itself by the isomorphism [(u, v)] 7−→ v. The

transition functions of the associated bundle turn out to be the transition functions of the original

principal bundle embedded in the representation (V, ρ), i. e. if Ui and Uj are neighborhoods of

p ∈ M with transition functions tij for P , then we get the transition functions ρ(tij) for the
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associated bundle. One can show that the equivariant functions of type ρ defined above are now

simply given as sections in the associated bundle, namely

Φ : M −→ P ×ρ V . (VI.3)

VI.2 Connection on Principal Bundles

In this section, the notion of a connection on a principal bundle is introduced. This is important

in order to be able to perform parallel transports and define objects like the covariant derivative

and curvature of a principal bundle. In gauge theories the corresponding forms, i. e. the connec-

tion 1-form and the curvature 2-form, are important, since their pullbacks to the base manifold

describe the gauge potential and the field strength of the theory respectively.

VI.2.1 Horizontal and vertical subspaces. Let π : P → M be a principal bundle, G '
F ' Pp for p ∈M be the fibre. In order to define a connection, we consider the tangent bundle

TP of the total space P and define a connection on a principal bundle to be a decomposition

of the tangent space into a vertical subspace, parallel to the fibre, and a horizontal subspace

respectively. This decomposition arises from the local trivialization of P , i. e. P = Ui × G,

where Ui is a neighborhood around some point p ∈ M . Hence we have coordinates (x, g) and

therefore get a basis for the tangent space ( ∂
∂xµ , ea), here ea is a left invariant basis of TG. The

decomposition of the bundle, can be written down as

HoruP ⊕VeruP = TuP, u ∈ P . (VI.4)

This is possible since every tangent vector V in TuP decomposes in a unique way into a horizontal

and a vertical part,

V = verV + horV . (VI.5)

One also requires vector fields on P to decompose in the same way, i. e.

Γ(TP ) = Γ(HorP )⊕ Γ(VerP ). (VI.6)

Obviously, we can already see that the vertical part is locally given by the ea. However the

horizontal part still needs to be specified. Another condition on the connection is that the

different horizontal subspaces of the same fibre, as well as the different fibres at the same

horizontal space, are obtained by applying the push-forward of the right action, i. e.

HorugP = Rg∗HoruP , VerugP = Rg∗VeruP . (VI.7)

We also get that

HorRg∗V = Rg∗HorV , VerRg∗V = Rg∗VerV . (VI.8)
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VI.2.2 Connection 1-form. An alternative way of thinking about a connection defined by

the decomposition that we introduced in VI.2 is possible by introducing the so-called connection

1-form which generalizes the connection 1-form for the tangent bundle to one of fibre bundles.

Let π : P →M be a fibre bundle as above and let Rg be the right action of G on P , X ∈ G. We

are considering the following curve on P :

gu(τ) := Rγ(τ)u, (VI.9)

where γ(τ) is the one parameter subgroup, namely

γ(τ) = eτX . (VI.10)

Then we define

ξX(u) :=
d
dτ

∣∣∣
0
Rγ(τ)u =

d
dτ

∣∣∣
0
gu(τ) (VI.11)

as the fundamental vector field, generated by X. Furthermore, this map can also be considered

as a map ξu : G → VeruP . One can show that this map is linear and bijective, therefore we are

able to define the corresponding inverse map ξ−1
u : Veru → G.

Now we have gathered everything that is needed in order to state the definition of the

connection 1-form ω ∈ G ⊗ Γ(T ∗P ) defined by formulae

ωu := ξ−1
u ◦ ver : TuP −→ G, (VI.12)

vu 7−→ ξ−1
u (ver vu) , (VI.13)

vu ∈ TuP . (VI.14)

Hence we can write the connection in terms of the generators of G, namely

ω = EAω
A ,

where EA denote the generators of G. It is clear that the connection 1-form maps all the

horizontal vectors to zero and since ξp is a bijection, we even get that a vector is an element

of the horizontal space if and only if the connection 1-form maps it to zero. We get following

properties of ω:

ω(hor(v)) = 0, ∀v ∈ TuP , (VI.15)

ω(ξX) = X, ∀X ∈ G , (VI.16)

R∗gω = Adg−1ω, ∀g ∈ G . (VI.17)

Here Ad denotes the adjoint representation of the Lie group G as introduced in III.1.2.
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One can show that it is always possible first to define the connection 1-form ω ∈ G⊗Γ(T ∗P )

satisfying conditions VI.12 and VI.14 and then obtain the connection from it. In order to do

that, one defines the horizontal part of TuP to be the kernel of ω and the vertical part to be the

complement of the horizontal subspace. Therefore both ways, i. e.

1. defining a connection as the decomposition of the tangent space of P or

2. as the connection 1-form,

turned out to be equivalent.

VI.3 Covariant Derivative and Curvature 2-Form

Since we have defined a connection, one can go on and wonder what curvature may be in this

context. We answer that question by defining the curvature of a fibre bundle via a Lie algebra

valued 2-form depending on the connection 1-form. This curvature 2-form is of course the

generalized curvature 2-form of a vector bundle.

VI.3.1 Covariant derivative. Let V be a vector space and η be a V -valued r-form, i. e.

η = v ⊗ σ is an element of V ⊗ Ωr(P ). We define the covariant derivative of η by formula

Dη := v ⊗ hor(d(σ)), (VI.18)

where d is just the exterior derivative of r-forms, mapping an r-form to an (r + 1)-form.

We can apply the covariant derivative for instance to a local section Φ : U −→ P ×ρ V of

the associated principal bundle, where U ⊂M . We get

DΦ = dΦ + ρ′(ω)Φ , (VI.19)

where (ρ′, V ) is a representation of G.

We define the curvature 2-form to be the covariant derivative of the connection 1-form:

Ω := Dω (VI.20)

Therefore Ω is an element of G ⊗ Ω2(P ). Finally one can show that it holds the same equation

for the curvature of a principal bundle as the one for the curvature of vector bundles, namely

the Cartan structure equation holds

Ω = dω + ω ∧ ω . (VI.21)
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Furthermore, the curvature 2-form satisfies the following equations:

hor(Ω) = Ω (VI.22)

R∗gΩ = Adg−1Ω (VI.23)

DΩ = DDω = 0 (VI.24)

We may now also take the second derivative of a section in the associated bundle and get

DDΦ = ρ′(Ω)Φ, . (VI.25)

VI.4 Parallel Transport and Holonomy Group

We introduced the notion of curvature via the Riemannian curvature tensor in paragraph II.7.1.

This tensor told us how a vector changes by the parallel transport. Also here we can find a

relation between the curvature form and the effect of parallel transport along closed paths on

vectors. In order to do that, we first have to define how a fibre is transported along a path on

the base in a parallel way. There is a theorem stating that the curvature form of the fibre bundle

is related to the Lie algebra of the group of transformations induced by the parallel transport

of elements of the fibre. So let us start with the parallel transport.

VI.4.1 Parallel transport. Let π : P → M be a principal bundle and γ : [0, 1] → M be a

smooth path on the base such that γ(0) = p and γ(1) = p′. We say that a path γ̄ : [0, 1] → P

lies above γ if

π(γ̄(t)) = γ(t), ∀t ∈ [0, 1]. (VI.26)

A path γ̄ lying above γ is called a horizontal lift if

γ̄(t) = u ⇒ d
dt
γ̄(t) ∈ Horu(P ) . (VI.27)

If we imagine the simple case, where the base is just a curve and the fibre is a straight line in

each point, perpendicular to the tangent vector at the point, it is clear that there exist many

such horizontal lifts, i. e. all the curves parallel to the base curve. In general one can show that

a horizontal lift is unique if one fixes the starting point of γ̄ in P .

Let γ̄u : [0, 1] → P be the unique lift of γ such that γ̄u(0) = u. We define the parallel

transport of the fibre π−1(p) = Pp from p to p′ via γ to be the set

{
u′ ∈ P : u′ = γ̄u(1), for some u ∈ Pp

}
. (VI.28)
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VI.4.2 Holonomy group. Having defined parallel transport of elements of the fibre, it is

clear that if we perform a parallel transport on such an element along a closed path, we have to

end up in the same fibre as we started. But the horizontal lift of a closed path does not necessarily

has to be a closed path on the bundle. Hence the transported element is obviously dependent

on the path transporting it, which means that the closed paths induce a transformation on the

fibre. Therefore we can introduce the notion of a holonomy group for fibre bundles as follows:

Let π : P → M be a principal G-bundle, u ∈ Pp, p ∈ M . We define the holonomy group

Holu of P in u to be the following subgroup of G:

Holu = {h ∈ G : ∃ closed loop γ : [0, 1]→M s.t. γ̄u(1) = uh} . (VI.29)
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Chapter VII

Gauge Field Theories and Associated Principal

Bundles

In this chapter we want to draw the connection to the field of theoretical particle physics that

makes use of the mathematical tools we introduced so far, identifying the physical terms “gauge

field” and “gauge potential” with the corresponding mathematical objects. We want to consider

gauge theories and the way how to describe them using the theory of fibre bundles. We start

with a quick introduction to gauge field strength theory .

VII.1 Gauge Invariance and Yang-Mills Equations

Let us consider the case, in which the so-called matter field φ is a vector of n real scalar fields

φ = (φi, i = 1, ..., n) on a manifold M equipped with some metric g on the cotangent space.

The corresponding Lagrangian may be given by

L = g(dφ>,dφ)−m2φ>φ , (VII.1)

where we chose the way of writing ∂µφ>∂µφ = g(dφ>,dφ) for a reason which will become clear

later on. We define a global gauge transformation to be a transformation of the fields which is

constant on the whole manifold M . As we can see, this Lagrangian is invariant under the global

gauge transformation of the field denoted as B, where B>B = id. Here the B are meant to be

an n-dimensional matrix representation of SO(n). One can easily see the invariance under such

transformations, since

φ′ = B−1φ, φ> = Bφ> , (VII.2)

and hence the transformation matrices compose to the identity in both terms in L.

Now we want to generalize the notion of global gauge transformations to such referred to as

local gauge transformations, i. e. transformations that depend on the position x ∈M explicitly.

For the SO(n) case these transformations still dissappears in the mass term which is no longer
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true for the kinetic term:

(dφ>)′ = d(φ>B) = φ>d(B) + dφ>B (VII.3)

(dφ)′ = d(B−1φ) = d(B−1)φ+B−1dφ . (VII.4)

From these two equations, it is easy to see that due to the terms containing derivatives of the

transformation matrices, the invariance of the Lagrangian is spoiled. Since we still require its

invariance, we have to find a way in order to restore this.

The canonical solution is to introduce a new field A, coupled to φ which transforms in such a

way that the unwanted terms, namely the first terms in equations (VII.3) and (VII.4) disappear.

According to this requirement, the so-called gauge field A has to transform as

A′ = B−1AB +B−1dB (VII.5)

and has therefore to be a G-valued 1-form on M . Hence we obtain a gauge invariant Lagrangian

by performing the replacement

d 7→ d +A =: D .

D is then called the gauge covariant derivative. To see the invariance, let us see how Dφ changes

under local gauge transformations:

(Dφ)′ = dφ′ +A′φ′

= d(B−1φ) + (B−1AB +B−1dB)B−1φ

= d(B−1)φ+B−1dφ+B−1Aφ+B−1d(B)B−1φ

= B−1dφ+B−1Aφ+ d(B−1)φ+
(
d(B−1B)B−1 − (dB−1)BB−1

)
φ

= B−1(d +A)φ+ d(B−1)φ− d(B−1)φ

= B−1Dφ . (VII.6)

Similarly we get the transformation rule for the transposed quantity

(Dφ>)′ = BDφ> . (VII.7)

Using these transformation rules, it is trivial that (VII.1) is invariant under local SO(n) gauge

transformations.

So far we have managed to preserve the gauge invariance by introducing the gauge potential.

However, this new field has a physical meaning, and can be interpreted as a new particle of

the corresponding theory. But so far, we only have interaction terms for A in our Lagrangian.

We would like to derive equations of motion for this new particle, either. Hence, we also need

to allow dynamical terms for the gauge potential to enter our Lagrangian, i. e. term containing
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derivatives of the gauge potential A. These terms of course need to be gauge invariant under

the gauge group in order to preserve invariance for the whole Lagrangian.

In order to find such a term, we define the gauge field or field strength to be

F := dA+A ∧A . (VII.8)

Obviously this is a G-valued 2-form on M. We find the following gauge transformation for the

gauge field strength

F ′ = B−1FB, (VII.9)

which is obviously not an invariant term and not even a scalar. If we remind ourselves of some

linear algebra, we remember that traces of matrix products are cyclically invariant. So F would

be an invariant quantity, but we know that F is also so(n)-valued and hence traceless. One can

now find that ∗F , where ∗ is the Hodge operator, transforms in the same way as F and hence

F ∧ ∗F does. This term is not traceless and hence we get the gauge invariant dynamical term

for the gauge potential by

tr(F ∧ ∗F) , (VII.10)

and therefore the new full invariant Lagrangian is

L = g(Dφ>,Dφ)−m2φ>φ + tr(F ∧ ∗F) . (VII.11)

To sum up, we started with a Lagrangian that was invariant under global gauge transforma-

tions. Then by the requirement for the Lagrangian to be also invariant under local transforma-

tions, we obtained interaction terms involving both gauge potential and matter fields, as well as

the dynamical term for the gauge potential. In these cases, we provided local gauge invariance

by replacing all the partial derivatives by gauge covariant derivatives. If all interacting terms

of matter fields and gauge bosons in a theory are obtained by such replacements we talk about

minimal coupling.

VII.2 Gauge Theory and Fibre Bundles

In the last chapter, we introduced the geometry of fibre bundles in a rather general framework.

In the following we want to describe a relation between the idea of gauge field theory and the

theory of fibre bundles. As already pointed out, certain objects and equations, we introduced in

the theory of gauge fields, look similar to corresponding objects and equations in the theory of

fibre bundles. For instance it is easy to see that the defining equation of the gauge field strength

(VII.8) looks like the Cartan structure equation for the curvature form on a fibre bundle and,

indeed, these quantities turn out to be related.
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In order to see how this relation arises, consider π : P −→ M to be a principal G-bundle,

s, ŝ : U −→ P to be local sections on U ⊂ M , ω ∈ G ⊗ Γ(T ∗P ) to be a connection 1-form on

P and Ω = Dω the corresponding curvature 2-form on P . Moreover let Φ : M −→ P ×ρ V be

a section in the associated vector bundle and, for the Lie group G, ωG be the Maurer-Cartan

form. Then the pull-backs under the local sections s and ŝ are denoted by

A := s∗ω, Â := ŝ∗ω , (VII.12)

F := s∗Ω, F̂ := ŝ∗Ω , (VII.13)

φ := s∗Φ, φ̂ := ŝ∗Φ . (VII.14)

One can show that there is a unique way to transform s to ŝ, namely

ŝ(x) = RT (x)s(x), ∀x ∈ U , (VII.15)

via the unique map T : U −→ G. This map allows us to pull-back the Maurer-Cartan form ωG

on G to the base manifold,

ω̃G := S∗ωG .

Our goal is to see how the pulled back objects with respect to the sections s and ŝ are related

to each other and how they change under the change of a local section. Therefore we consider

an arbitrary vector field v ∈ Γ(TM) on the base by s and the push-forward of v by s, which is

related to the push-forward by ŝ in the following way:

(ŝ∗v)(u) = RT (x)∗(s∗v) |u +ξω̃G(v) |u , (VII.16)

where u is given by u = ŝ(x) = RT (x)s(x) while ξωG(v) ∈ vert(TP ) is the fundamental vector field

generated by ω̃G(v) ∈ G as defined in (VI.11). Using (VII.16), we can derive how the change of

a section is performed on A, F , and Φ:

Â(v) = (ŝ∗(ω) (v) = ω(ŝ∗v)

= ω
(
RT∗(s∗v) + ξω̃G(v)

)
= ω (RT∗(s∗v)) + ω

(
ξω̃G(v)

)
= (RT∗ω) (s∗v) + ω̃G(v)

= (AdT−1A) (v) + (T ∗ωG) (v) .

Here we made use of (VI.15) and (VI.16).

F̂ (v, w) = (ŝ∗(Ω) (v, w) = Ω(ŝ∗v, ŝ∗w)

= Ω (RT∗(s∗v), RT∗(s∗w)) + Ω
(
ξω̃G(v), ξω̃G(w)

)
= (AdT−1F ) (v, w) + 0 ,
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where we made use of the fact that Ω is a horizontal 2-from and the fundamental vector field is

purely vertical.

φ̂(x) = (ŝ∗Φ)(x) = Φ(ŝ(x))

= Φ(RT (x)s(x)) = ρ
(
T−1(x)

)
Φ(s(x))

= ρ
(
T−1(x)

)
(s∗Φ)(x)

= ρ
(
T−1(x)

)
φ(x) .

Here we made use of the fact that a section in the associated bundle is nothing but a function

of type ρ and therefore satisfying (VI.2). Summing up all the results, we have

Â = (AdT−1A) (v) + (T ∗ωG) (v) (VII.17)

F̂ = (AdT−1F ) (v, w) (VII.18)

φ̂ = ρ
(
T−1(x)

)
φ(x) . (VII.19)

The only thing which remains to be done is to consider the rules of changing sections in the

matrix representation (ρ, V ) of the structure group G. For this purpose we define B mapping

points of the base manifold M to (n× n)-matrices, n = dim(V ) by:

B := ρ ◦ T . (VII.20)

Moreover let (ρ′, V ) be a representation of the Lie algebra G in V and

A := ρ′(A) , (VII.21)

F := ρ′(F ) , (VII.22)

meaning that the Lie-algebra part of the Lie-algebra valued forms are for A and CF given in

the representation (ρ′, V ).

If we plug (VII.21) and (VII.22) into (VII.17) and (VII.18) and use the matrix representation

for equation (VII.19), we obtain

Â = B−1AB +B−1dB , (VII.23)

F̂ = B−1FB , (VII.24)

φ̂ = B−1φ . (VII.25)

Since we are only dealing with pull-backs of forms on P , we can define a covariant derivative,

acting on such pull-backs by D ◦ s∗ := s∗ ◦D, where D is the covariant derivative of the fibre
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bundle. Using this, as well as equations (VI.20), (VI.24), (VI.19), (VI.25) and definition (III.38),

we find

F = DA = dA+A ∧A , (VII.26)

DF = dF + [F ∧A] , (VII.27)

Dφ = dφ+Aφ , (VII.28)

DDφ = Fφ . (VII.29)

Amazingly these are precisely the transformation rules under gauge transformations and

the defining properties we derived for the gauge potential, the field strength and the matter

fields in section VII.1. This means that the gauge potential is the pull-back of some connection

on a principal bundle, the gauge field strength is actually the pull-back of the curvature 2-

form of the same principal bundle and the matter fields are the pull-back of a section in the

associated principal bundle. What we defined to be a gauge transformation in section VII.1,

is a change of the local section in the principal bundle, i. e. s(x) 7→ ŝ(x) = RT (x)s(x). The

gauge transformations we called global, refer to a change of sections, wherein T (x) is constant

on U ⊂ M and the local gauge transformations refer to the change of sections, where the T (x)

is indeed dependent on x ∈ U .
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Instantons on Symmetric Coset Spaces

VIII.1 From Yang-Mills on R×G/H to the Kink

In this section we want to derive Yang-Mills equations on the product space R × G/H, where

G is a semi-simple Lie group, H a closed subgroup and G/H a reductive homogeneous space.

VIII.1.1 The geometry of R × G/H. We are going to use the notation and formulas of

section V.3. We use the Killing-Cartan metric, induced by the Killing form that we introduced

in (III.26). Therefore its components are given by

gAB = fCAD f
D
CB . (VIII.1)

One can choose the generators of the Lie-algebra in a way such that we have

gAB = δAB (VIII.2)

As in V.3, we are using A,B,C = 1, ...,dim (G) to be the components of the Lie group,

a, b, c = 1, ...,dim (G/H) those of the coset space and i, j, k = 1, ...dim (H) to be the components

of the subgroup H. Since we are dealing with reductive homogeneous space, (V.12) applies and

we obtain the following components of the Killing-Cartan metric

gij = fkilf
l
kj + f biaf

a
bj = δij , gia = 0 , (VIII.3)

gab = 2f iadfdib + f cadf
d
cb = δab . (VIII.4)

For the coset space we use the induced metric. We do not want to use the Levi-Civita

connection, but a connection with non-vanishing torsion on G/H. The torsion 2-form (II.62)

is given by the torsion tensor (II.61). As stated in equation (II.63) the torsion two-form T a

satisfies

dea + ωab ∧ eb = T a .

For our considerations we need the coefficients of the torsion to have the following form:

T abc = κ fabc . (VIII.5)
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Using equation (V.29), the torsion-full connection 1-form on the coset space is given by

ωab = faibe
i +

1
2

(κ+ 1) facb ec =: ωacb e
c , (VIII.6)

which defines the components ωabc by

ωacb = faibe
i
c +

1
2

(κ+ 1) facb . (VIII.7)

Considering the whole space R×G/H, we see that all the connection coefficients and therefore

all coefficients of the connection 1-form containing indices of R vanish due to the fact that we

use the flat metric for this part of the space, namely

ds2 = dτ2 + ds2
G/H , (VIII.8)

where

ds2
G/H = δabe

aeb . (VIII.9)

VIII.1.2 Yang-Mills equations. Now we collected everything we need to take the covariant

derivative of tensor fields on R×G/H. What we are actually looking for are the Yang-Mills field

strength and solutions to the Yang-Mills equations. As we learned in section VII.2, this means

we are considering a gauge theory which is given by a principal bundle with some structure

group and a connection. We choose the principal G-bundle P (R × G/H,G) over R × G/H.

Therefore a gauge potential for this bundle is locally written as

A := A0e
0 +Aaea , (VIII.10)

and we choose a gauge in which A0 = 0. The field strength, depending on the curvature of the

principal bundle with respect to the chosen connection, is given by the gauge covariant derivative

of the gauge potential (VII.26), namely

F = dA+A ∧A

=: F0ae
0 ∧ ea +

1
2
Fabea ∧ eb (VIII.11)

In order to achieve dimensional reduction with respect to this coset space, we choose a

G-equivariant ansatz for the gauge potential and therefore obtain a real scalar field φ(τ), τ ∈ R:

A = eiEi + φ ea Ea, Aa = eiaEi + φEa (VIII.12)

where Ei and Ea are the generators of H and G/H respectively as used in V.3. If we calculate

(VII.26) with respect to the ansatz (VIII.12) we arrive at the following gauge field strength:

F = φ̇ e0 ∧ eaEa −
1
2
{

(1− φ2)fbciEi + (φ− φ2)fbcaEa
}
eb ∧ ec , (VIII.13)
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where φ̇ := dφ
dτ . Hence we read off the corresponding components

F0a = φ̇ Ea, Fbc = −
{

(1− φ2)f ibcEi + (φ− φ2)fabcEa
}
, (VIII.14)

The Yang-Mills equations on R×G/H are given by the condition that the gauge covariant

derivative of the gauge field strength vanishes, namely

DaFa0 := ∇G/Ha Fa0 + [Aa,Fa0]

:= ea
(
Fa0

)
+ ωaabFb0 + [Aa,Fa0] = 0 (VIII.15)

D0F0b +DaFab = e0

(
F0b

)
+∇G/Ha Fab + [Aa,Fab]

= e0

(
F0b

)
+ ea

(
Fab

)
+ ωddaFab + ωbcdFcd + [Aa,Fab] = 0 .

(VIII.16)

Here we denoted by ∇G/H the covariant derivative on G/H with respect to the torsion-full

connection from (VIII.6). If we plug (VIII.14) in (VIII.16), after pulling down all the indices,

which does not matter due to equation (VIII.9), we arrive at the following differential equation

for φ:

φ̈ Ea +
[
(φ− 1

2
(κ+1))(φ− φ2)fabcfdbc + φ (1− φ2)facifdci

]
Ed = 0 . (VIII.17)

Here we also made use of the Jacobian identity for the structure constants. For further

simplifications we constrain ourselves to the case, where we have the following relations for the

structure constants:

facifbci =
1
2

(1−α)δab ⇔ facdfbcd = α δab , α ∈ R , (VIII.18)

where α is some real parameter. This simplification still covers a fair amount of interesting

spaces (see for instance [35]). Taking this into account, we get

2 φ̈ = (1+α)φ3 − α(κ+3)φ2 − (1−α(κ+2))φ

= −φ (1− φ2) + αφ (1− φ)(2− φ) + ακφ (1− φ)

= (1+α)φ (φ− 1)
(
φ− (κ+ 2)α− 1

α+ 1
)
.

(VIII.19)

If we consider the last line of equation (VIII.19) to be the derivative of some potential V (φ),

namely

V ′(φ) = (1+α)φ (φ− 1)
(
φ− (κ+ 2)α− 1

α+ 1
)
, (VIII.20)

on can recognize

φ̈ =
1
2
V ′(φ) (VIII.21)
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to be simply a static equation of motion of some φ4-model.

In the following two sections we want to solve this equation for φ choosing certain values of α

and κ and therefore obtain solutions A of the Yang-Mills equations. We are especially interested

in the asymptotic behavior of A(τ) for τ −→ ±∞.

VIII.2 Yang-Mills Solutions on Symmetric Coset Spaces

VIII.2.1 BPS kink equations for α = 0. We start with the simplest case for our equation

(VIII.19), where α = 0 and hence κ arbitrary. This situation happens in case when G/H is a

symmetric space and therefore

fabc = 0 ,∀a, b, c = 1, ...,dim (G/H) . (VIII.22)

It follows that facifbci = 1
2δab and hence (VIII.19) becomes

φ̈ = −1
2
φ(1− φ)2 . (VIII.23)

Before focusing our attention to the solution of equation (VIII.23) we want to see how the

action functional behaves in this situation. As we have learnt in section (VII.1), the most general

invariant term for our gauge field strength is given by (VII.10), namely

L = tr(F ∧ ∗F) , (VIII.24)

where ∗ is the Hodge operator. Therefore we get the Yang-Mills action functional to be the

integrated Lagrangian with a factor:

S = −1
4

∫
R×G/H

tr(F ∧ ∗F) . (VIII.25)

Since we are dealing with compact G/H and F is depending on the coset variables only up to

gauge transformations we can easily compute this part of the action functional:

S = −1
4

∫ +∞

−∞
dτ
∫
G/H

tr (F(τ) ∧ ∗F(τ))

= −1
4

∫ +∞

−∞
dτ

(
tr(F(τ) ∧ ∗F(τ))

∫
G/H

)

= −1
4

Vol(G/H)
∫ +∞

−∞
dτ tr (F(τ) ∧ ∗F(τ))

= −1
4

Vol(G/H)
∫ +∞

−∞
dτ
(
φ̇2 +

1
4

(1− φ2)2

)
=: −1

4
Vol(G/H) · E . (VIII.26)
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Here E is precisely the φ4 energy functional. It is easy to see that the energy functional and

therefore the Yang-Mills action functional has a lower bound, given by the topological charge of

the vacuum

q :=
1
2

∫ +∞

−∞
dφ . (VIII.27)

In order to see that, we need to integrate (VIII.23) to a first order BPS equation, namely

φ̇ = ±1
2

(1− φ2) . (VIII.28)

Let us use this to rearrange the energy functional a little bit:

E =
∫ +∞

−∞
dτ
(
φ̇2 +

1
4

(1− φ2)2

)
=

∫ +∞

−∞
dτ
(
φ̇∓ 1

2
(1− φ2)

)2

±
∫ +∞

−∞
dφ
(
1− φ2

)
≥ 4

3
|q| . (VIII.29)

The vacua of the kink model are given by the asymptotical values of the scalar fields and

can therefore be identified with the topological charges q. They can take values in {1, 0,−1}
since φ(−∞) = ±1 and φ(+∞) = ±1. The corresponding solutions of (VIII.28) and hence of

(VIII.23) for either q = +1 or q = −1 are known as the φ4-kink and the φ4-antikink respectively.

The kink is simply given by the positive hyperbolic tangens with obvious asymptotical values

and topological charge

φ = tanh(
τ

2
), φ(τ) −→ ±1, τ −→ ±∞, q = +1 . (VIII.30)

The antikink is then just given by the negative kink profile function and therefore has the

opposite asymptotical behavior and topological charge

φ = − tanh(
τ

2
), φ(τ) −→ ±1, τ −→ ∓∞, q = −1 . (VIII.31)

The inequality (VIII.29) in this case becomes an equality and hence both solutions yield the

same energy E = 4
3 .

VIII.2.2 Instantons on R ×G/H. Because we have solved the equation (VIII.23), we also

have solved the Yang-Mills equations on R×G/H . So if we plug (VIII.30) into the ansatz for

the gauge potential (VIII.12) and the gauge field strength (VIII.13), we get

A = eiEi + tanh
τ

2
eaEa , (VIII.32)

and

F =
1
2

cosh−2 τ

2
(
e0 ∧ eaEa − f iab ea ∧ ebEi

)
(VIII.33)
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If we take a look at the asymptotic behavior of the φ and hence of the A, one can see that

A± := A(±∞) also defines a connection on

(G/H)± := G/H ∪ {±∞} , (VIII.34)

respectively. If we consider the infinity limit of F from (VIII.33), we can see that

F± := F(±∞) = 0 . (VIII.35)

Therefore both gauge potentials A± describe vacuum configurations. Our gauge potentials can

now be written in terms of G-valued functions as

A− = h−1
− dh−, A+ = h−1

+ dh+ . (VIII.36)

Performing the gauge transformation

Ã := h−Ah−1
− + h−dh−1

− , (VIII.37)

we find that the corresponding asymptotical connections become

Ã− = 0, Ã+ = g−1dg , with g := h+h
−1
− : G/H → G . (VIII.38)

One can see that the degree of g is equal to the topological charge of the kink. So (VIII.32)

is actually an instanton configuration that acts as a transition function between the two vacua

given in (VIII.38).

VIII.2.3 Instanton-anti-instanton chains. The solution φ that we found for the differen-

tial equation (VIII.23) is actually not unique. The most general solution for this differential

equation is actually given by a Jacobi elliptic function. Such a function in general has the

following form

C(k) sn[b(k) τ ; k] . (VIII.39)

If we take k to be zero, this simply is a sinus. Changing k from zero to one, the sin deforms to

a hyperbolic tangens. Therefore for k = 1 this is the kink solution we found in (VIII.30). In all

other cases, the Jacobi elliptic functions are periodic with period K(K) which is the complete

elliptic integral of the first kind with infinite sum expansion

K(k) =
π

2

∞∑
n=0

(
(2n− 1)!!

(2n)!!

)2

k2n (VIII.40)

So one can see that this expression becomes infinite in the limit k → 1 and hence spoils

periodicity. Therefore, if we require φ(τ) to be periodic in τ , namely

φ(τ + L) = φ(τ) , (VIII.41)
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we can think of the solution to (VIII.30) as of a function on the 1-sphere S1 with circumference

L. For our case this periodicity condition yields the following solution:

φ(τ ; k) = 2k b(k) sn[b(k)τ ; k], where (VIII.42)

b(k) = (2 + 2k2)−1/2, 0 ≤ k ≤ 1 .

In the literature, such a solution is known as a sphaleron [36], which are non-BPS solutions

unlike the kink and antikink solutions from paragraph VIII.2.1. If we compare (VIII.41) and

(VIII.42), we find the following condition on k:

b(k)L = 4K(k)n for n ∈ N . (VIII.43)

It follows that as soon as we have a circumference L ≥ 2π
√

2N , we get a solution

φ(τ ; k(L, n)) ∀n ∈ N, n ≤ N . (VIII.44)

The topological charge defined in (VIII.29) equals zero due to the periodicity of the solution.

Comparing this periodic solution with the (anti)kink case, we can interpret each half of a full

period going from one minimum of φ(τ) to a maximum, as a kink and the other half of the

period going from a maximum to a minimum as an antikink. Therefore the sphaleron solution

describes a chain of kink-antikink pairs winding around the 1-sphere and the subscript n in φn

denotes the number of such pairs.

The value of the energy functional for the sphaleron solutions is given in terms of the complete

Jacobi integral of the first as well as of the second kind. The latter one is given by

E(k) =
π

2

{
1−

∞∑
n=1

(
(2n− 1)!!

(2n)!!

)2 k2n

2n− 1

}
. (VIII.45)

We arrive at the following energy for the sphaleron

E[φn] =
2n

3
√

2

[
8(1 + k2) E(k) − (1− k2)(5 + 3k2)K(k)

]
. (VIII.46)

If one takes the circumference L of the circle to be infinity, the energy of the sphaleron config-

uration is simply given by the sum over the energies of all kinks and antikinks contained in it,

namely

lim
L→∞

E[φn] = 2n · 4
3
. (VIII.47)

In paragraph VIII.2.1, we inserted the kink and antikink solution into the ansatz of the gauge

potential and the gauge field strength and arrived at an instanton or anti-instanton configuration.

Therefore, if we insert the sphaleron solution (VIII.42) into this ansatz (VIII.13) we obtain a

chain of instanton-anti-instanton pairs on the space S1
L × G/H which corresponds to a field
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configuration with finite action. The gauge potential (VIII.13) and the gauge field strength

(VIII.13) are given by

A = eiEi + φn e
aEa ,

F = φ̇n e
0 ∧ eaEa −

1
2
{

(1− φ2
n)fbciEi + (φn − φ2

n)fbcaEa
}
eb ∧ ec .

(VIII.48)

Since integrating over the coset gives only a constant factor, these solutions yield a finite value

for the action.



Chapter IX

Yang-Mills Configurations on Non-Symmetric

Spaces

IX.1 BPS Kink Equation for Non-Vanishing Torsion

Let us now consider the more generic case where G/H is a homogeneous, but not symmetric

space. This means that the structure constants fbca do not all vanish and hence a non-zero α

may appear. So the geometric torsion can actually appear in the equations of motion. In the

following we are going to choose certain values for the torsion and the parameter α and see how

(VIII.19) and the corresponding solutions will change. Let us use the ansatz

φ = ϕ+ β , (IX.1)

where β is constant, and insert it into (VIII.19) choosing the following relation between β and

κ:

β =
κ+3

3
α

1+α
and (IX.2)

κ = −3 , κ =
3(1−α)

2α
or κ =

3
α
. (IX.3)

This relation makes sure that the coefficient of the ϕ2 term and the constant term in (VIII.19)

vanish. Furthermore we perform the following rescaling

τ → τ√
1 + α

⇒ φ̈→ φ̈

1 + α
. (IX.4)

Now we are able to take explicit values for (β, κ) in order to satisfy (IX.2). Taking the an-
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tiderivative of the corresponding V ′(φ) we get

a) (β, κ) = (0,−3) : 2φ̈ = −φ (1− φ2)

⇔ V =
1
4
(
φ2 − 1

)2
, (IX.5)

b) (β, κ) = (
1
2
,
3(1−α)

2α
) : 2φ̈ = −[φ−1

2
](

1
4
− [φ−1

2
]2)

⇔ V =
1
4
(
[φ−1

2
]2 − 1

4
)2
, (IX.6)

c) (β, κ) = (1,
3
α

) : 2φ̈ = −[φ−1](1− [φ−1]2)

⇔ V =
1
4
(
[φ−1]2 − 1

)2
. (IX.7)

Similar to the symmetric case, we can again find the first order (BPS) equations and solutions

for these three second order equations. Formally this is done by taking the square root of the

potential. We get

a) 2φ̇ = ±(1− φ2) ⇔ φ = ± tanh
τ

2
(IX.8)

b) 2φ̇ = ±(
1
4
− [φ−1

2
]2) ⇔ φ =

1
2
± 1

2
tanh

τ

4
(IX.9)

c) 2φ̇ = ±(1− [φ−1]2) ⇔ φ = 1± tanh
τ

2
. (IX.10)

These three solutions can now be written in terms of a new parameter γ as

φ = β ± γ tanh
γτ

2
, (IX.11)

where we now recover the cases a), b), c) at the values (β, κ) = (0, 1), (1
2 ,

1
2), (1, 1). As in the

symmetric case these solutions interpolate between two vacua, namely between φ(−∞) = β ∓ γ
and φ(+∞) = β ± γ, where the upper sign represents the kink and the lower sign the antikink

solution. One can also see that φ(0) = β since tanh(0) = 0. We denote these three points by φ̂,

and they are actually the critical points of the potential V since V ′(φ) |−∞,0,∞= 0.

Summarizing we have

case β γ φ(−∞) φ(0) φ(+∞)

a) 0 1 −1 0 1

b) 1
2

1
2 0 1

2 1

c) 1 1 0 1 2

. (IX.12)

IX.2 Modification of Bundles

IX.2.1 Modifications of bundles over G/H. Since we have managed to solve the derived

equations for φ, we get the corresponding solutions for the Yang-Mills equations on R × G/H
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by inserting (IX.11) to the gauge potential (VIII.12) and the gauge field strength (VIII.13). For

the kink type solution we get

A = eiEi + (β + γ tanh
γτ

2
) eaEa ,

F =
γ2

2
cosh−2γτ

2
e0∧ eaEa −

1
2
{
h(τ) f ibcEi +m(τ) fabcEa

}
eb∧ ec ,

(IX.13)

with
h(τ) := (1− β − γ tanh

γτ

2
) (1 + β + γ tanh

γτ

2
) ,

m(τ) := (1− β − γ tanh
γτ

2
) (β + γ tanh

γτ

2
) .

(IX.14)

What we can see from this solution by considering the limit τ → ±∞ is that there always

survive constant terms in F in (IX.13). Therefore the integral over τ in the Yang-Mills action

functional is not finite,

S = −1
4

∫
R×G/H

tr(F ∧ ∗F) =∞ . (IX.15)

Obviously this does not happen, if we do not perform the τ -integration, but keep τ ∈
R ∪ {±∞} fixed. Even though we allow τ to be infinite, the integral

SG/H = −1
4

∫
G/H

tr(F ∧ ∗F) (IX.16)

is finite due to compactness of G/H.

The question of interest is, whether this gauge potential with some fixed τ is actually a

solution of the Yang-Mills equations on G/H. The difference of these equations to the Yang-

Mills equations on R × G/H is just that the term e0(F0b) appearing in (VIII.16) simply does

not appear any more. So for an arbitrary choice of τ it cannot be true that we have a solution

for the Yang-Mills equations on G/H. One can easily see that the second derivative φ̈ vanishes

for τ = 0 and is asymptotically zero for τ = ±∞. Therefore, also Ä vanishes for these choices

of τ and hence we obtain one solution of the Yang-Mills equations on G/H for each such τ in

all cases a), b), and c). Let φ̂ := φ(τcrit) where τcrit ∈ {−∞, 0, +∞} denotes the critical points

of V , as above. Then we define

Acrit := eiEi + φ̂ eaEa,

Fcrit := −1
2
{

(1− φ̂)(1 + φ̂) f ibcEi + (1− φ̂) φ̂ f abcEa
}
eb∧ ec .

(IX.17)

In order to introduce matter fields, we already mentioned in section (VII.2) that it is nec-

essary to define an associated bundle with respect to the principal bundle P (R×G/H), G over

R × G/H. So let (ρ, VG) be a representation of G where VG is a finite-dimensional vector

space. For the associated bundle we clearly have the base space R × G/H and the total space
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given by the fibred product P (R × G/H) ×G VG or if we use the notation of section VI.1, by

P (R×G/H)×ρ VG. In the following, the associate vector bundle is denoted by

E = P (R×G/H,G)×G VG → R×G/H . (IX.18)

So far we have defined the associate bundle over R×G/H, where we have a connection A. But

we can fix τ in order to obtain an associate bundle Eτ : P (G/H,G)→ G/H with corresponding

connection A(τ). Certainly the topology depends on the connection and hence on the choice of

τ . In the following table we list all possible values of the φ that we are interested in, namely

critical points φ̂, the corresponding functions ĥ and m̂ and corresponding topological properties

of the bundle.

value of φ̂ −1 0 1/2 1 2

bundle Ecrit E− Ecan E0 Eflat E+

topology irreducible reducible irreducible trivial irreducible

ĥ = 1−φ̂2 0 1 3/4 0 −3

m̂ = φ̂−φ̂2 −2 0 1/4 0 −2

. (IX.19)

In these cases where we have an operation that allows to obtain new bundles over G/H out

of given ones, we talk about modifications of bundles. These modifications in our case are given

by the gauge potential (IX.13) and describe

a) E− → Ecan → Eflat , (IX.20)

b) Ecan → E0 → Eflat , (IX.21)

c) Ecan → Eflat → E+ . (IX.22)

Of course the corresponding gauge field strength and hence the curvature of bundles over G/H

are given in (IX.13) by inserting the corresponding values from (IX.19).

The case from section (VIII.2), where we chose α to be zero and hence considered a sym-

metric space, can actually be described in the same way as we described the non-symmetric

counterparts. Of course, the corresponding β needs to vanish. We get the following set of

parameters and label this case as d)

case d) β = 0 , γ = 1 , φ(−∞) = −1, φ(0) = 0, φ(+∞) = 1 , (IX.23)

which yields the following values of h and m in the gauge field strength

h(τ) = cosh−2 τ

2
, m(τ) ≡ 0 . (IX.24)

As above, the corresponding gauge potential describes a modification of bundles:

Eflat → Ecan → Eflat . (IX.25)
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The constants β and γ as well as the critical points are the same as for cases a) and d). The

only difference lies in the corresponding modification of bundles. In a) we had an interpolation

between something irreducible, topologically non-trivial bundle over an irreducible bundle ending

up with a trivial one. In d) we start with a trivial bundle, pass a reducible one and end up with

a trivial bundle again. This is of course due to the fact that in d) m(τ) ≡ 0 ∀τ ∈ R and in a)

we have a non-vanishing value for m at τ = −∞.

IX.2.2 Chains of bundle modifications. We have previously seen in paragraph VIII.2.3

that there were periodic solutions to the corresponding differential equations for the symmetric

case (VIII.23), namely sphaleron solutions. The same is true for the corresponding equations

on the nonsymmetric space treated in the last paragraph IX.2.1. Therefore, if we require our

solutions to be periodic, we find the following non-BPS solutions for equations (IX.5)-(IX.7):

a) φ(τ ; k) = 2k b(k) sn[b(k)τ ; k]

b) φ(τ ; k) =
1
2

+ k b(k) sn[b(k)
τ

2
; k]

c) φ(τ ; k) = 1+ 2k b(k) sn[b(k)τ ; k]

(IX.26)

where b(k) = (2 + 2k2)−1/2 and 0 ≤ k ≤ 1 as before.

If we insert these solutions into the ansatz of the gauge potential, we obtain a chain of bundle

modifications as follows:

a) · · · → E− → Ecan → Eflat → Ecan → E− → · · · ,

b) · · · → Ecan → E0 → Eflat → E0 → Ecan → · · · ,

c) · · · → Ecan → Eflat → E+ → Eflat → Ecan → · · · .
(IX.27)

IX.3 Dyons on R×G/H

So far we have always considered the metric on R × G/H having Euclidean signature so that

τ is considered to be some spatial variable. But this is not a necessary assumption and we can

also consider the R part of our manifold to play the role of time. The difference is that our

metric then has a Lorentzian signature. Formally, we can consider this to be the Wick rotation

of e0 = dτ

t := −iτ ⇒ ẽ0 := dt = −idτ , (IX.28)

and hence we get the following metric with Lorentzian signature

ds2 = −
(
ẽ0
)2 + δabe

aeb . (IX.29)
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If we use the same G-equivariant ansatz (VIII.12) we arrive at the corresponding gauge field

strength that looks exactly the same as before with the only difference that the e0’s are replaced

by ẽ0’s:

F =
dφ
dt

ẽ0∧ eaEa −
1
2
{

(1− φ2)f ibcEi + (φ− φ2)fabcEa
}
eb∧ ec . (IX.30)

By performing the Wick rotation (IX.28), we find the following transformation rule for the

real scalar field φ:

φ(τ)→ φ(it),
d
dτ
φ→ −i d

dt
φ,

d2

dτ2
φ→ − d2

dt2
φ , (IX.31)

and hence the potential V corresponding to the Lorentzian version of (VIII.19) transforms as

V → −V . (IX.32)

If we do the same rescaling of t as we did for τ in (IX.4), namely

t→ t√
1 + α

⇒ φ̈→ φ̈

1 + α
, (IX.33)

where the dots now represent t-derivatives, we end up with the following set of differential

equations:

ã) (β, κ) = (0,−3) : 2φ̈ = +φ (1− φ2) , (IX.34)

b̃) (β, κ) = (
1
2
,
3(1−α)

2α
) : 2φ̈ = +[φ−1

2
](

1
4
− [φ−1

2
]2) ,

(IX.35)

c̃) (β, κ) = (1,
3
α

) : 2φ̈ = +[φ−1](1− [φ−1]2) . (IX.36)

d̃) (α, β, κ) = (0, 0, κ) : 2φ̈ = +φ (1− φ2) . (IX.37)

The solutions of these equations can be summarized using the parameter γ to take the values

1, 1
2 , 1, 1 for ã), b̃), c̃) and d̃) respectively, which are the same as in the Euclidean case:

φ(t) = β +
√

2 γ cosh−1 γt√
2
. (IX.38)

This configuration is just the bounce in an inverted double-well potential −V .

We get the dyon-type configuration for the Yang-Mills theory, if we insert our solution for

the scalar field into the ansatz for the gauge potential (VIII.12) and the gauge field strength

(VIII.13). For (β, γ) = (0, 1), this is

A = eiEi +
√

2 cosh−1 t√
2
eaEa

F = −1
2

cosh−2 t√
2

(
2 sinh

t√
2

dt∧ eaEa + (sinh2 t√
2
− 1) f ibcEi e

b∧ ec
)
.

(IX.39)
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This solution represents the symmetric case where the fbca vanish. The non-symmetric case

includes another term containing the fbca.

Clearly, the energy functional defined in (VIII.26) given by

E = −1
4

∫
G/H

(tr(F ∧ ∗F))

is a function of t proportional to the volume of the coset space and hence finite for all t ∈ R. It

is given by

E = −Vol(G/H) · tr(2 F0aF0a + FabFab) . (IX.40)

Due to the asymptotical behavior of F , the Yang-Mills action functional (VIII.26) becomes

infinite in the symmetric as well as in the non-symmetric case.
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Chapter X

Yang-Mills Flows on G/H

X.1 Reduction of the Yang-Mills Flow Equations

In this chapter we are going to find solutions to the Yang-Mills flow equations on a reductive

coset space G/H and compare them to those solutions obtained in Chapter IX from the second

order Yang-Mills equations.

The Yang-Mills flow equations are first order differential equations for the gauge potential.

Since the gauge potential depends on a parameter they are differential equations with respect to

this parameter and therefore represent a family of connections on the coset space. So generically

we have the Yang-Mills flow

A(τ), τ ∈ R , (X.1)

satisfying the Yang-Mills flow equations

d
dτ
A(τ) = − ∗ D (∗F) , (X.2)

where D denotes the gauge covariant derivative on the coset space. This differs from the gauge

covariant derivative on R × G/H only by a derivative in R-direction. We use the same G-

equivariant ansatz for the gauge potential as before (VIII.12), namely

A = eiEi + φ ea Ea

with corresponding gauge field strength

F = −1
2
{

(1− φ2)fbciEi + (φ− φ2)fbcaEa
}
eb ∧ ec . (X.3)

Since we are considering the Yang-Mills flow on G/H, there are no components of the gauge

field strength pointing in an R-direction as we had in (VIII.13). The Yang-Mills flow equations

(X.2) can be written in terms of the left-invariant basis {ea, a = 1, ...,dim (G/H)} of the coset

space as
d
dτ
Aa = −Db Fab . (X.4)
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Subsituting the gauge field strength and the gauge potential into the Yang-Mills flow equa-

tions, we get the following first order differential equation for φ:

2 φ̇ = (1+α)φ3 − α(κ+3)φ2 − (1−α(κ+2))φ

= −φ (1− φ2) + αφ (1− φ)(2− φ) + ακφ (1− φ)

= (1+α)φ (φ− 1)
(
φ− (κ+ 2)α− 1

α+ 1
)

= V ′(φ) .

(X.5)

Here the parameter κ got involved via the covariant derivative on the coset space, as happend

before. These equations actually only differ from those obtained by Yang-Mills equations in the

order of the derivative. Before, we had a second order differential equation and now we have

a first order differential equation. The stable points of the Yang-Mills flow are now given at

those points, where the first derivative of φ vanishes. These points are the critical points of the

potential V introduced in (X.5) as before. They are given by the following values φ̂ of the field

φ:

φ̂ = 0 , (X.6)

φ̂ = 1 , (X.7)

φ̂ =
(κ+ 2)α− 1

α+ 1
=: ρ . (X.8)

If we substitute these critical values into (X.3), we get the following corresponding critical gauge

field strengths

Fcrit
bc = −fbci Ei = Fcan

Fcrit
bc = 0 = Fflat

Fcrit
bc = −(1− ρ2)fbciEi + (ρ− ρ2)fbcaEa = Fcrit

bc (α, κ) fbca Ea
}
.

(X.9)

The third case provide a gauge field strength that depends on the values of the parameters α

and κ. If we choose three values of κ from (IX.2) as in the symmetric case, we get the following

critical gauge field strengths:

a) Fcrit
bc (α,−3) = − 2fabcEc = F−

b) Fcrit
bc (α,

3(1− α)
2α

) = − 3
4
fbc

iEi −
1
4
fbc

aEa = F0

c) Fcrit
bc (α,

3
α

) =
3
2
fbc

iEi + fbc
aEa = F+

d) Fcrit
bc (0, κ, fbca = 0) = 0 = Fflat

(X.10)
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X.2 Explicit Solutions

The choice of parameters κ, α we made in a)− d) corresponds to the ρ-values of −1, 1
2 , 2, −1

respectively. If we substitute these values into (X.5) and do a rescaling τ → τ(1 + α)−1, we

arrive at the following equations and their solutions

a) ρ = −1 ⇒ 2φ̇ = φ (φ− 1)
(
φ+ 1

)
⇒ φ = ±(1 + exp τ)−1/2

b) ρ =
1
2

⇒ 2φ̇ = φ (φ− 1)
(
φ− 1

2
)
⇒ φ =

1
2
± 1

2
(1 + exp

τ

4
)−1/2

c) ρ = 2 ⇒ 2φ̇ = φ (φ− 1)
(
φ− 2

)
⇒ φ = 1± (1 + exp τ)−1/2

d) ρ = −1 ⇒ 2φ̇ = φ (φ− 1)
(
φ+ 1

)
⇒ φ = ±(1 + exp τ)−1/2 .

(X.11)

We can now insert these solutions into our gauge potential and gauge field strength. Due to

their asymptotical behavior, the corresponding Yang-Mills flows describe bundle modifications

similar to those we found for the second order equations. The only difference is that these

solutions here only give one half of the interpolation we found in (IX.20) and (IX.25). For the

lower minus sign and the upper plus sign, we get

a) E− → Ecan and Eflat → Ecan ,

b) Ecan → E0 and Eflat → E0 ,

c) Ecan → Eflat and E+ → Eflat ,

d) Eflat → Ecan and Eflat → Ecan ,

(X.12)

respectively.

X.3 First Order Flow Equations

In this section we finally want to find a first order flow equation meaning an equation which is

of lower order than equation (X.2). We have already done such a thing in Chapters VIII and

IX, where we took the Yang-Mills equation and integrated those to BPS type equations that

were first order differential equations in the scalar fields. Therefore, what we are going to do

now is finding a BPS analog for the Yang-Mills flow equations which should be an algebraic

equation in the field strength and hence a first order differential equations in the Higgs field φ.

For the space R×G/H, where G/H is simply the three-sphere S3 such equations referred to as

Yang-Mills self-duality equations are already known and read

Ȧa = −1
2
εabcFbc , (X.13)

where we sum over the coset indices. The ε here denotes the structure constants of SU(2).

Some more equations of such kind, namely equations which induce the full Yang-Mills equations
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were discovered for different spaces already. In [21] for instance such an equation was found for

spaces of type R × G where G is a semi-simple Lie group. Another generalization of the self

duality equations on Rd that are analogue to the case of R×G was done in [37] and [38]. There

specifically in [38] also BPS-type equations where considered that do not necessarily solve the

full Yang-Mills equation, denoted by Bn and Cn in that paper. Here we want to state a similar

first order flow equation by

Ȧa = ∓λ fabc Fbc . (X.14)

Here the fabc denote the structure constant that correspond the decomposition of the tangent

space of G an in Chapter VIII. Obviously the stable points of the Yang-Mills flow, i. e. Ȧ = 0

are here given by the algebraic condition

fabc Fbc = 0 , (X.15)

which is obviously satisfied for the case that G/H is a symmetric coset space. If we insert

the components of the G-equivariant ansatz (VIII.12) for the gauge potential as well as the

corresponding components of the gauge field strength (VIII.13) to the first order flow equation

(X.14) we arrive at the following first order differential equation

φ̇ = ±λ (
1
4
− [φ−1

2
]2) . (X.16)

This equation is precisely the equation we found as BPS type equation for a non-symmetric

space with a specific non-vanishing value for the torsion (IX.9). Hence its solution also stated

in (IX.9), which is a solution to the Yang-Mills equation for that specific case, is also a solution

of the first order flow equation (X.14).



Chapter XI

Yang-Mills on R× CP 2 in C(2,0) Quiver

Representation

XI.1 Quivers and Higgs fields

In the last chapter we considered a lot of homogeneous spaces at the same time, since we had

an ansatz (VIII.12) that was written in a nice generic way. So with a couple of assumptions

(VIII.18), we managed to write down the full Yang-Mills equations without any other knowledge

about the generators and therefore obtained fairly general results.

It is not so easy to turn to theories where a breakdown of the original gauge symmetry

takes place and therefore more scalar fields get involved. These scalar fields are interpreted as

Higgs fields that are responsible for the corresponding symmetry breaking. Specifically SU(3)-

equivariant ansätze that yield the corresponding dimensionally reduced Yang-Mills theory, are

equivalent to quiver gauge theories. Such ansätze may become more complicated and hence

generic ways of writing them down, although they exist, are much harder to work with than

(VIII.12). The explicit shape also depends on the chosen representation in the following way.

One considers some highest weight representation Ck,l of SU(3). The corresponding represen-

tation for the subspace H from our homogeneous space G/H is reducible, say

Ck,l |H=
m∑
i=1

ρi . (XI.1)

The number of Higgs fields in our theory then depends on the so-called quiver diagram, containing

as many vertices as irreps of H exist, and is determined by the number of maps between these

irreps induced by the corresponding lowering operators of SU(3). Therefore a quiver diagram

is simply based on the weight diagram of the corresponding SU(3) representation. Hence, the

higher the quiver representation we choose, the more Higgs fields come into play.

For the product space R×G/H one can generically write the corresponding associated vector

bundle as

E =
m⊕
i=1

ER
i ⊗ Vi , (XI.2)
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where ER
i is a bundle over R and Vi a bundle over G/H having the same rank as the corre-

sponding irrep ρi of H. The gauge group for such bundles is given by
m∏
i=1

U(ki)× U(di) , (XI.3)

where ki corresponds to the rank of the bundle ER
i over MD = R and di to the rank of the

bundle Vi over G/H. A G-equivariant gauge potential on (XI.2) is then admitted and given by

a block-diagonal part and an off-diagonal one. The block diagonal part can be written as

Adiag =
m⊕
i=1

Ai , (XI.4)

where the size of the blocks Ai depend on the dimensions of the H-irreps as well as of the rank

of the bundle over R. In our case we considered the bundle ER
i over R to be of rank ki = 1

and the connection Ai on R to be flat. Therefore, the part of the connection belonging to this

bundle vanishes and we find

Ai = Ai ⊗ 1di + 1ki ⊗B
i

⇒ Ai = 0 + 1 ·Bi , (XI.5)

with Bi denoting the connection on the coset part of the product space. Therefore the Ai are

di × di matrices, where di is the dimension of the irrep ρi.

The off-diagonal part can be written by

Aoff ij = (1− δij) Φij , (XI.6)

where (no summing over i, j) Aoff ij is meant to be the (i, j)-th block of the gauge connection for

i 6= j and zero on the block diagonal part. The Φij on the right hand side denotes the specific

map that connects the ith and the jth vertex of the quiver and is the tensor product of maps

between the corresponding bundles. This means

Φij = φij ⊗ βij , (XI.7)

where βij are maps connecting the two H-irreps ρi and ρj that contain the left-invariant basis

on the coset space, and φij are size ki × kj Higgs fields depending on the R-part in R × G/H.

For our consideration, these are just real valued scalar fields, one for each arrow of the quiver.

In order to catch up with the notation used in chapter VIII one can notice that we are consid-

ering a G-equivariant associated vector bundle over R×G/H with respect to the corresponding

representation of SU(3) chosen in (XI.1) by

Ek,l =
m⊕
i=1

P (R×G/H,U(di))×ρi V i → R×G/H , (XI.8)
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where V i is a finite dimensional representation space for the representations ρi of the subgroup

H. Each term comes along with the structure group U(di) and hence the overall structure group

is given by

U

(
m∑
i=1

di

)
, (XI.9)

obviously depending on the chosen representation of SU(3).

The explicit construction of the quivers, their representation and the underlying SU(3)-

equivariant gauge theories was done in [22]. It includes also the explicit formulae of the gauge

potential and the field strength for spaces of the form

MD ×G/H , (XI.10)

where G/H is either CP 2 = SU(3)
S(U(2)×U(1)) or Q3 = SU(3)

U(1)×U(1) . We are going to use these results

for the specific case MD = R in order to derive the Yang-Mills equations for these quiver gauge

theories.

XI.2 Invariant 1-forms on CP 2

Firstly, we want to summarize all the ingredients from [22] that we will need to write down

the G-equivariant ansatz. As we have seen in chapter VIII, it is quite convenient to do all

the calculations in the invariant basis of the corresponding space because we can choose our

metric to have constant coefficients in this basis. Hence the covariant derivative with respect to

this metric is only depends on the structure constants of the space (II.72). CP 2 is a complex

manifold and therefore we can choose complex coordinates (y1, y2, ȳ1, ȳ2) of C2. Using them one

can write down the invariant 1-forms as in [22], namely

β̄ :=

β̄1̄

β̄2̄

 with β̄ē =
1
γ

dȳē − ȳē

γ2 (γ + 1)
yd dȳd̄ , (XI.11)

β =

β1

β2

 with βe =
1
γ

dye − ye

γ2 (γ + 1)
ȳd̄ dyd . (XI.12)

Obviously, this basis contains two holomorphic and two anti-holomorphic one-forms. As usual,

we denote the coset indices by early Latin letters, namely a, b, c = 1, 1̄, 2, 2̄, and the components

with respect to the subgroup H by i, j, k, l = 5, ..., 8. Furthermore, for convenience we choose

the indices d, e to take values only in {1, 2}. As we have seen in chapter IV, the hermitian metric

with respect to this basis only has components with mixed holomorphic and anti-holomorphic

indices (IV.17) and therefore we get (IV.18)

gG/H = δd̄e β̄
d̄ ⊗ βe + δdē β

d ⊗ β̄ē (XI.13)
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Pulling down indices with this particular metric we obtain that indices get complex conjugated

T a = Tā δ
āa . (XI.14)

Our metric on the product space becomes

g = dτ ⊗ dτ + δd̄e β̄
d̄ ⊗ βe + δdē β

d ⊗ β̄ē , (XI.15)

which allows us to pull down τ indices without changing the coefficients:

T 0 = T0 δ
00 , with δ00 = 1 . (XI.16)

XI.3 The Symmetric C(1,0) Quiver Bundle

Next we want to state the simplest case of a quiver theory for CP 2 in order to see how it works.

We will not use this specific ansatz to derive Yang-Mills equations, since considerations with

one scalar field were already done in chapter VIII and would lead to similar results here.

One can use the Yang tableaux in order to get the decomposition of the reducible represen-

tation of H with respect to the fundamental representation of SU(3) into irreducible represen-

tations of H. We have

C1,0
∣∣
SU(2)×U(1)

= (1, 1) ⊕ (0,−2) , (XI.17)

where we can already see that there may be only one arrow between the irreps of H and hence we

are going to get one scalar field in our gauge potential. We can also see, using equation (XI.9),

that the structure group in this example equals U(3). The quiver diagram of this situation is

given as
R⊗ V(1,1)

R⊗ V(0,−2)

φ⊗β
77ppppppppppp

(XI.18)

In the following we are going to write down the G-equivariant connection for the correspond-

ing vector bundle explicitly which requires the explicit form of the generators. For the funda-

mental 3-dimensional representation of SU(3) the generators corresponding to G/H = CP 2 are

given by

E1 =


0 0 0

0 0 0

1 0 0

 , E2 =


0 0 0

0 0 0

0 1 0

 , (XI.19)

E1̄ =


0 0 1

0 0 0

0 0 0

 , E2̄ =


0 0 0

0 0 1

0 0 0

 . (XI.20)
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And the generators of H = S(U(2)× U(1)) are given by

E5 =


0 1 0

0 0 0

0 0 0

 , E6 =


0 0 0

1 0 0

0 0 0

 , (XI.21)

E7 =


1 0 0

0 1 0

0 0 0

 , E8 =


1 0 0

0 1 0

0 0 −2

 . (XI.22)

If we use the notation of the matrix units for 3× 3 matrices, defined by

(eij)kl = δikδjl , (XI.23)

these generators can be identified as

E1 = e31 , E2 = e32 , E1̄ = e13 , E2̄ = e23 ,

E5 = e12 , E6 = e21 , E7 = e11 − e22 , E8 = e11 + e22 − 2e33 .
(XI.24)

The Maurer-Cartan form in the fundamental 3-dimensional representation of SU(3) is a flat

connection on the trivial bundle CP 2 × C3 over CP 2 and given by

A0 =

 B β̄

−β> −2a

 (XI.25)

where

B =
1
γ2

(
− 1

2 d(Y † Y ) 12 + Ȳ dȲ † + Λ dΛ
)
, (XI.26)

a = − 1
4γ2

(
Ȳ † dȲ − dȲ † Ȳ

)
, (XI.27)

along with

Y =

(
y1

y2

)
, Λ := γ 12 −

1
γ + 1

Y Y † and γ :=
√

1 + Y † Y . (XI.28)

The Maurer-Cartan equation (III.4.1) is satisfied and reads

dA0 +A0 ∧A0 = 0 , (XI.29)

which yields

dB +B ∧B − β̄ ∧ β> = 0 , (XI.30)

da− 1
2
β† ∧ β = 0 , (XI.31)

dβ̄ +B ∧ β̄ − 2β̄ ∧ a = 0 , (XI.32)

dβ> + β> ∧B − 2a ∧ β> = 0 . (XI.33)
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Using this one can extend the flat connection on the trivial bundle to a connection on the

bundle over R×G/H. It is given ((3.50) in [22]) by the following 3× 3 matrix:

A =

(
B(1) + a φβ̄

−φβ> −2a

)
, (XI.34)

where we defined the su(2)-valued one-instanton field B(1) on CP 2 by the 2× 2 matrix

B(1) := B − a12 =:

(
B11 B12

−B12 −B11

)
. (XI.35)

The corresponding gauge field strength is easily calculated using (XI.30)-(XI.33) and takes the

form

F =

(
(1− φ2) (β̄ ∧ β>) φ̇ dτ ∧ β̄
−φ̇ dτ ∧ β> −(1− φ2) (β† ∧ β)

)
, (XI.36)

with (
β̄1 ∧ β1 β̄1 ∧ β2

β̄2 ∧ β1 β̄2 ∧ β2

)
= β̄ ∧ β> (XI.37)

(β̄1 ∧ β1 + β̄2 ∧ β2) = β† ∧ β. (XI.38)

Using the explicit form of the generators of the fundamental representation of SU(3), we can

write the Maurer-Cartan form as

A0 = −β1 E1 − β2 E2 + β̄1̄ E1̄ + β̄2̄ E2̄

+B12 E5 −B12 E6 +B11 E7 + a E8 (XI.39)

and (XI.34) is nothing but

A = φ
(
−β1E1 − β2E2 + β̄1̄E1̄ + β̄2̄E2̄

)

+

=:eibEi e
b︷ ︸︸ ︷

B12E5 −B12 E6 +B11 E7 + a E8 (XI.40)

where

e1 = β1, e2 = β2, e1̄ = β̄1̄, e2̄ = β̄2̄, and

e5
b = B12

b , e6
b = −B12

b , e7
b = B11

b , e8
a = ab .

(XI.41)

We will need (XI.41) later on in order to differentiate the gauge field strength covariantly. From

(XI.40) we can see that this ansatz would yield the same results we already deduced in chapter

VIII. Getting more scalar fields involved requires higher representations.
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XI.4 Symmetric C(2,0) Quiver Bundle

For CP 2 we have seen so far how the quiver bundle looks like for the case of a fundamental

representation of SU(3). We now want to use the generalizations to the 6-dimensional quiver

representation C(2,0). An important point is that (XI.39) actually holds for arbitrary quiver

representations by inserting the corresponding higher dimensional generators. Specifically for

C(2,0), we have the following generators:

E1 =
√

2
(
e41 + e64

)
+ e52 , E1̄ =

√
2
(
e14 + e46

)
+ e25 ,

E2 = e42 +
√

2
(
e53 + e65

)
, E2̄ = e24 +

√
2
(
e35 + e56

)
,

E5 =
√

2
(
e12 + e23

)
+ e45 , E6 =

√
2
(
e21 + e32

)
+ e54 ,

E7 = 2(e1 − e3) + e4 − e5 , E8 = 2(e1 + e2 + e3)− e4 − e5 − 4e6 .

(XI.42)

Using the formalism of Yang tableaux again, we find the following decomposition into irre-

ducible subspaces:

C2,0
∣∣
SU(2)×U(1)

= (2, 2) ⊕ (1,−1) ⊕ (0,−4) (XI.43)

The corresponding quiver diagram is then given by

R⊗ V(2,2)

R⊗ V(1,−1)

φ1⊗β1

77ppppppppppp

R⊗ V(0,−4)

φ2⊗β2

77ooooooooooo

(XI.44)

As we can see one ends up with aG-equivariant connection containing two Higgs fields φ1(τ), φ2(τ)

which is a connection on the corresponding associated bundle (XI.8) with structure group U(6).

This gauge potential is in general given in (3.108) from [22] and in our case simplifies to the

6× 6 matrix

A :=


B(2) + 2 a 13 φ1β̄1 0

−φ1β̄
†
1 B(1) − a 12 φ2β̄2

0 −φ2β̄
†
2 −4 a

 (XI.45)

where the one-instanton connection B(2) in the 3-dimensional irreducible representation is de-

fined as

B(2) =


2B11

√
2B12 0

−
√

2 B12 0
√

2B12

0 −
√

2 B12 −2B11

 . (XI.46)
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The matrices β̄1 and β̄2 (not to be confused with the invariant one-forms β̄1̄ and β̄1̄) are given

by

β̄1 =


√

2 β̄1̄ 0

β̄2̄ β̄1̄

0
√

2 β̄2̄

 and β̄2 =
√

2

β̄1̄

β̄2̄

 . (XI.47)

We also take the gauge field strength from [22], which is obtained from F = dA + A ∧ A
using the fact that the flat connection, namely the Maurer-Cartan form (XI.39), satisfies the

Maurer-Cartan equations. One arrives at the following gauge field strength:

F =


(1− φ2

1) β̄1 ∧ β̄†1 φ̇1 dτ ∧ β̄1 0

−φ̇1 dτ ∧ β̄†1
(1− φ2

1) β̄†1 ∧ β̄1

(1− φ2
2) β̄2 ∧ β̄†2

φ̇2 dτ ∧ β̄2

0 −φ̇2 dτ ∧ β̄†2 (1− φ2
2) β̄†2 ∧ β̄2

 (XI.48)

where

β̄1 ∧ β̄†1 =


2 β̄1 ∧ β1

√
2 β̄1 ∧ β2 0

√
2 β̄2 ∧ β1 β̄1 ∧ β1 + β̄2 ∧ β2

√
2 β̄1 ∧ β2

0
√

2 β̄2 ∧ β1 2 β̄2 ∧ β2

 , (XI.49)

β̄†1 ∧ β̄1 = −

2 β̄1 ∧ β1 + β̄2 ∧ β2 β̄1 ∧ β2

β̄2 ∧ β1 β̄1 ∧ β1 + 2 β̄2 ∧ β2

 , (XI.50)

β̄2 ∧ β̄†2 = 2

β̄1 ∧ β1 β̄1 ∧ β2

β̄2 ∧ β1 β̄2 ∧ β2

 , (XI.51)

β̄†2 ∧ β̄2 = −2
(
β̄1 ∧ β1 + β̄2 ∧ β2

)
. (XI.52)

XI.5 Yang-Mills Equations

Now we collected all the information needed to write down the Yang-Mills equations and are

prepared to derive the corresponding differential equations for the scalar fields φ1 and φ2. Due

to (II.72) and hence (V.26), we find the following connection 1-form for CP 2 with respect to the

invariant metric (XI.13):

ωcb = fib
cei = −fbicei, ei = eiae

a (XI.53)

with eia from (XI.41). We also used the fact that CP 2 is a symmetric space and hence

fab
c = 0 ∀a, b, c ∈ {1, 2, 1̄, 2̄} , (XI.54)
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which can easily be seen by computing the commutation relation of the generators (XI.42)

explicitly. We find the following non-vanishing structure constants fbic of CP 2:

f15
2 = 1 f1̄6

2̄ = −1 f26
1 = 1 f2̄5

1̄ = −1

f17
1 = 1 f1̄7

1̄ = −1 f27
2 = −1 f2̄7

2̄ = 1

f18
1 = 3 f1̄8

1̄ = −3 f28
2 = 3 f2̄8

2̄ = −3 .

(XI.55)

Again since we use the direct product metric on R× CP 2, we have

ω0
0b = ωa0b = ω0

cb = 0 , (XI.56)

and the non-vanishing components are

ωcab = −fbic eia ea . (XI.57)

So the Yang-Mills equations read

DaFa0 = 0 , (XI.58)

D0F0b +DaFab = 0 , (XI.59)

where D0 := d
dt and DaFab := ea(Fab) + ωaacFcb + ωbacFac, cf. (VIII.15).

In order to simplify these equations, we use the splitting of the gauge potential in its block-

diagonal and off-diagonal parts:

A = Adiag +Aoff . (XI.60)

Inserting this splitting of the gauge potential as well as (XI.57) into (XI.59), we get

0 =

= 0, trivially︷ ︸︸ ︷
−eia

(
fci

a Fc0
)

+
[
Adiag
a ,Fa0

]
+
[
Aoff
a ,Fa0

]
, (XI.61)

0 =
d
dτ
F0b − eia

(
fci

a Fcb + fci
b Fac

)
+
[
Adiag
a ,Fab

]
+
[
Aoff
a ,Fab

]
.

(XI.62)

We find that equation (XI.61) is trivially satisfied and therefore yields no restrictions to the

fields. From equation (XI.62) we get

eia

(
fci

a Fcb + fci
b Fac

)
=
[
Adiag
a ,Fab

]
, (XI.63)

and therefore (XI.62) becomes

0 =
d
dτ
F0b +

[
Aoff
a ,Fab

]
, (XI.64)
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which for every index b becomes a matrix equation containing two independent differential

equations:

1) φ̈1 = −φ1

(
3− (5φ2

1 − 2φ2
2)
)

(XI.65)

2) φ̈2 = −φ2

(
3− (6φ2

2 − 3φ2
1)
)

(XI.66)

Even though it is not so easy to find a solution to this equation, we can at least recognize that

for φ1 = φ2 = φ we obtain only one differential equation, similar to (VIII.23), namely

φ̈ = −3φ
(
1− φ2

)
, (XI.67)

which is solved for instance by

φ(τ) = tanh

(√
6

2
τ

)
. (XI.68)

In case that we put one of the φi to zero we get either

φ̈1 = −φ1

(
3− 5φ2

1

)
, φ2 = 0 (XI.69)

or

φ1 = 0 , φ̈2 = −φ2

(
3− 6φ2

2

)
. (XI.70)

These two equations are also solved by the Jacobi elliptic functions, for instance

φ1(τ) =

√
3
5

tanh

(√
6

2
τ

)
, φ2 = 0 (XI.71)

and

φ1 = 0 , φ2 (τ) =
√

1− C1
2 sn

√3 C1 τ + C2,

√
1− C1

2

C1
2

 , (XI.72)

respectively where C1 and C2 are constants. In the first case we chose the constants such that

one obtains a hyperbolic tangens. Since we need the second argument of the Jacobi elliptic

function sn (·, ·) to be 1 in order to obtain such a hyperbolic tangens, this cannot be achieved

for the solution φ2 in the case where φ1 vanishes.



Chapter XII

Yang-Mills on R× CP 2 in C(1,1) Quiver

Representation

In the last chapter we introduced the notion of a quiver bundle and wrote down the gauge

potential and gauge field strength as well as the equations of motion coming from Yang-Mills

equations for the C2,0 representation. The next step here would be to consider a representation

that decomposes into more irreps in order to obtain more than two scalar fields. So in the

following we are going to quote the gauge connection and gauge field strength again from [22]

and use these to derive the corresponding Yang-Mills equations and hence the equations of

motion for the Higgs-fields.

XII.1 The Symmetric C(1,1) Quiver Bundle

We are choosing the C1,1 highest weight representation of SU(3) where we obtain the following

decomposition of the subgroup H in this representation:

C1,1
∣∣
SU(2)×U(1)

= (1,−3) ⊕ (2, 0) ⊕ (0, 0) ⊕ (1, 3) , (XII.1)

We have the following quiver diagramm:

R⊗ V(1,3)

R⊗ V(0,0)

φ3⊗β3

77ppppppppppp
R⊗ V(2,0)

φ4⊗β4

ggNNNNNNNNNNN

R⊗ V(1,−3)

φ1⊗β1

ggNNNNNNNNNNN φ2⊗β2

77ppppppppppp

(XII.2)

From this one can already see that there will appear four independent scalar fields in the

gauge connection. The generators of this eight-dimensional representation can be written in

terms of the matrix units again as

E1 = e12 +
√

2 (e45 + e56) + e78 , (XII.3)

E1̄ = e21 +
√

2 (e54 + e65) + e87 , (XII.4)
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E2 = e14 +

√
3
2

(e23 + e37) +

√
1
2

(e25 + e57) + e68 , (XII.5)

E2̄ = e41 +

√
2
3

(e32 + e73) +

√
1
2

(e52 + e75) + e86 , (XII.6)

E5 =

√
3
2

(e13 − e38)−
√

3
2

(e15 − e58) + (e47 − e26) , (XII.7)

E6 =

√
2
3

(e31 − e83)−
√

2
3

(e51 − e85) + (e74 − e62) , (XII.8)

E7 = −(e11 − e22) + 2(e44 − e66) + (e77 − e88) , (XII.9)

E8 = 3(e11 + e22 − e77 − e88 , (XII.10)

where as before the generators with subscripts {1, 2, 1̄, 2̄} correspond to the coset space and the

others with subscripts {5, 6, 7, 8} denote the generators of the subgroup H.

We also see from the decomposition of the subgroupH that the associated vector bundle given

in (XI.9) comes with the structure group U(8) in this case. The corresponding G-equivariant

connection is then given (equation (3.125) in [22]) by

A =


B(1) + 3a 12 φ3 β̄3 φ4 β̄4 0

−φ3 β̄
†
3 0 0 φ1 β̄1

−φ4 β̄
†
4 0 B(2) φ2 β̄2

0 −φ1 β̄
†
1 −φ2 β̄

†
2 B(1) − 3a 12

 , (XII.11)

with B(1), B(2) from (XI.35), (XI.46) and

β̄3 =

√
3
2

(
β̄1̄

β̄2̄

)
, β̄4 =

β̄2̄ −
√

1
2 β̄

1̄ 0

0
√

1
2 β̄

2̄ −β̄1̄

 ,

β̄1 =

√
3
2
(
β̄2̄ , −β̄1̄

)
, β̄2 =


β̄1̄ 0√
1
2 β̄

2̄
√

1
2 β̄

1̄

0 β̄2̄

 .

(XII.12)

We have the following field strength

F = dA+A ∧A

(1− φ2
3) β̄3 ∧ β̄3

†

+(1− φ2
4) β̄4 ∧ β̄4

† dφ3 ∧ β̄3 dφ4 ∧ β̄4 (φ3φ1 − φ4φ2) β̄3 ∧ β̄1

−dφ3 ∧ β̄3
† (φ3

3 − φ3
1) β̄1 ∧ β̄†1 (φ3φ4 − φ1φ2) β̄1 ∧ β̄2

† dφ1 ∧ β̄1

−dφ4 ∧ β̄4
† (φ1φ2 − φ3φ4) β̄1

† ∧ β̄2

(1− φ2
4) β̄4

† ∧ β̄4

+(1− φ2
2) β̄2 ∧ β̄2

† dφ2 ∧ β̄2

(φ4φ2 − φ3φ1) β̄3
† ∧ β̄1

† −dφ1 ∧ β̄1
† −dφ2 ∧ β̄2

† (1− φ2
1) β̄†1 ∧ β̄1

+(1− φ2
2) β̄†2 ∧ β̄2


(XII.13)
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The wedge products of the different βi matrices from (XII.12) are given by

β̄3 ∧ β̄3
† =

3
2

(
β̄1̄ ∧ β1 β̄1̄ ∧ β2

β̄2̄ ∧ β1 β̄2̄ ∧ β2

)
, (XII.14)

β̄4 ∧ β̄4
† =

(
1
2 β̄

1̄ ∧ β1 + β̄2̄ ∧ β2 −1
2 β̄

1̄ ∧ β2

−1
2 β̄

2̄ ∧ β1 β̄1̄ ∧ β1 + 1
2 β̄

2̄ ∧ β2

)
, (XII.15)

β̄4
† ∧ β̄4 =


β2 ∧ β̄2̄ −

√
1
2 β

2 ∧ β̄1̄ 0

−
√

1
2 β

1 ∧ β̄2̄ 1
2

(
β1 ∧ β̄1̄ + β2 ∧ β̄2̄

)
−
√

1
2 β

2 ∧ β̄1̄

0 −
√

1
2 β

1 ∧ β̄2̄ β1 ∧ β̄1̄

 ,

(XII.16)

β̄1 ∧ β̄1
† = 3

2

(
β̄1̄ ∧ β1 + β̄2̄ ∧ β2

)
, (XII.17)

β̄1
† ∧ β̄1 =

3
2

(
β2 ∧ β̄2̄ −β2 ∧ β̄1̄

−β1 ∧ β̄2̄ β1 ∧ β̄1̄

)
, (XII.18)

β̄2 ∧ β̄2
† =


β̄1̄ ∧ β1

√
1
2 β̄

1̄ ∧ β2 0√
1
2 β̄

2̄ ∧ β1 1
2

(
β̄1̄ ∧ β1 + β̄2̄ ∧ β2

) √
1
2 β̄

1̄ ∧ β2

0
√

1
2 β̄

2̄ ∧ β1 β̄2̄ ∧ β2

 ,

(XII.19)

β̄2
† ∧ β̄2 =

(
β1 ∧ β̄1̄ + 1

2 β
2 ∧ β̄2̄ 1

2 β
2 ∧ β̄1̄

1
2 β

1 ∧ β̄2̄ 1
2 β

1 ∧ β̄1̄ + β2 ∧ β̄2̄

)
, (XII.20)

β̄3 ∧ β̄1 = 3
2 β̄

1̄ ∧ β̄2̄
12 , (XII.21)

β̄1 ∧ β̄2
† =

√
3
2

(
β̄2̄ ∧ β1 , −

√
1
2

(
β̄1̄ ∧ β1 + β̄2̄ ∧ β2

)
, −β̄1̄ ∧ β2

)
.

(XII.22)

XII.2 Yang-Mills Equations

In the last section we have collected all the necessary ingredients from [22] in order to derive the

equation of motion for the Higgs fields from the Yang-Mills equations for the gauge potential

and gauge field strength (XII.11) and (XII.13).

As in the previous chapters, the connection 1-form on the tangent bundle is given by the

following formula:

ωcb = fib
cei = −fbicei, ei = eiae

a (XII.23)
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with eia from (XI.41). We still have

fab
c = 0 ∀a, b, c ∈ {1, 2, 1̄, 2̄} . (XII.24)

For the calculations we are going to use the structure constants given in (XI.55).

The form of the Yang-Mills equations does not change and is given by

DaFa0 = 0 , (XII.25)

D0F0b +DaFab = 0 , (XII.26)

with the same notation as in section XI.5.

Again, we split the gauge potential into its block-diagonal and off-diagonal part as

A =: Adiag +Aoff (XII.27)

If we insert the gauge potential and (XII.23) into (XII.25), we recognize again that the left hand

side vanishes and does not restrict our scalar fields.

The other set of equations (XII.26) with a free coset superscript becomes

0 =
d
dτ
F0b − eia

(
fci

a Fcb + fci
b Fac

)
+
[
Adiag
a ,Fab

]
+
[
Aoff
a ,Fab

]
. (XII.28)

By inserting (XII.11), (XII.13) as well as (XI.55) and (XI.41) into (XII.28) and after a fair

amount of calculations, we find that

0 = eia

(
fci

a Fcb + fci
b Fac

)
−
[
Adiag
a ,Fab

]
, (XII.29)

which was a trivial condition for the case of two scalar fields (XI.63), is not trivial here, but

restricts our fields by the algebraic constraint

φ1 φ2 = φ3 φ4 . (XII.30)

The remaining part of (XII.28), yields

0 =
d
dτ
F0b +

[
Aoff
a ,Fab

]
, (XII.31)

which for every index b becomes a matrix equation containing six differential equations for the

four scalar fields. For β = 1, 1̄, four out of six equations turn out to be independent:

d2

dτ2
φ1 = 3 φ1

(
3
2
φ2

1 − 1 +
1
2
φ2

2

)
− 3 φ2 φ3 φ4

d2

dτ2
φ2 = 3 φ2

(
5
6
φ2

2 − 1 +
2
3
φ2

4 +
1
2
φ2

1

)
− 3 φ1 φ3 φ4

d2

dτ2
φ3 = 3 φ3

(
3
2
φ2

3 − 1 +
1
2
φ2

4

)
− 3 φ1 φ2 φ4

d2

dτ2
φ4 = 3 φ4

(
5
6
φ2

4 − 1 +
2
3
φ2

2 +
1
2
φ2

3

)
− 3 φ1 φ2 φ3 .

(XII.32)
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With free coset index 2 or 2̄, we get the following six independent equations

d2

dτ2
φ1 = 3 φ1

(
3
2
φ2

1 − 1 +
1
6
φ2

2

)
− 2 φ2 φ3 φ4

d2

dτ2
φ2 = 3 φ2

(
5
6
φ2

2 − 1− 1
2
φ2

1 +
2
3
φ2

4

)
d2

dτ2
φ2 = 3 φ2

(
5
6
φ2

2 − 1 +
1
2
φ2

1 +
2
3
φ2

4

)
− 3 φ1 φ3 φ4

d2

dτ2
φ3 = 3 φ3

(
3
2
φ2

3 − 1 +
1
6
φ2

4

)
− 2 φ1 φ2 φ4

d2

dτ2
φ4 = 3 φ4

(
5
6
φ2

4 − 1− 1
2
φ2

3 +
2
3
φ2

2

)
d2

dτ2
φ4 = 3 φ4

(
5
6
φ2

4 − 1 +
1
2
φ2

3 +
2
3
φ2

2

)
− 3 φ1 φ2 φ3 .

(XII.33)

If we make use of the algebraic constraint (XII.30), the system (XII.32) as well as the six

equations (XII.33) reduce to the following four coupled differential equations:

d2

dτ2
φ1 = 3 φ1

(
3
2
φ2

1 − 1− 1
2
φ2

2

)
(XII.34)

d2

dτ2
φ2 = 3 φ2

(
5
6
φ2

2 − 1− 1
2
φ2

1 +
2
3
φ2

4

)
(XII.35)

d2

dτ2
φ3 = 3 φ3

(
3
2
φ2

3 − 1− 1
2
φ2

4

)
(XII.36)

d2

dτ2
φ4 = 3 φ4

(
5
6
φ2

4 − 1− 1
2
φ2

3 +
2
3
φ2

2

)
. (XII.37)

These equations could be solved in principle and one could do the whole analysis we already

did for the case of one scalar field. But we do not want go any further here.



106 Yang-Mills on R× CP 2 in C(1,1) Quiver Representation



Chapter XIII

Yang-Mills on R×Q3 in C(1,0) Quiver

Representation

We are now considering the special case of the coset space G/H = Q3 given by

Q3 :=
SU(3)

U(1)× U(1)
, (XIII.1)

which, in contrast to the case of CP 2, is a homogeneous but not symmetric space.

XIII.1 Invariant 1-Forms and Generators

As in (XI.2) we firstly want to write down the invariant 1-forms on Q3 and the G-invariant gauge

potential with respect to the fundamental representation of SU(3). These results are taken from

[22], and the explicit derivation can be looked up there.

Q3 is a space with three complex dimensions and therefore we have six linearly independent

invariant 1-forms. The explicit form of these 1-forms is given in (3.39) from [22]. They are

denoted by {
e1, e2, e3, e1̄, e2̄, e3̄

}
=:
{
γ1, γ2, γ3, γ̄1̄, γ̄2̄, γ̄3̄

}
. (XIII.2)

Since the subgroup H is a different than before, we get a different decomposition of the

reducible representation of H. This means that if we choose the fundamental representation for

SU(3) as the simplest case we get the following decomposition:

C1,0
∣∣
U(1)×U(1)

= (1, 1) ⊕ (−1, 1) ⊕ (0,−2) . (XIII.3)

As one can see here, we already have a decomposition into three irreps of H. The corresponding

quiver diagram shows that there will appear three independent scalar fields in the G-equivariant

gauge potential of the corresponding associated quiver bundle:

R⊗ VQ3

(−1,1)

φ3⊗γ3 // R⊗ VQ3

(1,1)

R⊗ VQ3

(0,−2)

φ2⊗γ2

ffMMMMMMMMMM φ1⊗γ1

88rrrrrrrrrr

. (XIII.4)
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Due to the fact that each term in (XIII.3) corresponds to a 1-dimensional representation of H,

the corresponding structure group for the associated vector bundle is here U(3).

The generators corresponding to Q3 in this representation are then given by

E1 = e31 , E2 = e32 , E3 = e21 ,

E1̄ = e13 , E2̄ = e23 , E3̄ = e12 ,
(XIII.5)

along with the generators of H,

E7 = e11 − e22, E8 = e11 + e22 − 2e33 . (XIII.6)

Hence, we have the following structure constants:

fab
c : f3̄2̄

1̄ = +1 f3̄1
2 = −1 f2̄1

3 = +1

f32
1 = −1 f31̄

2̄ = +1 f21̄
3̄ = −1

fai
c : f3̄7

3̄ = −2 f2̄7
2̄ = +1 f1̄7

1̄ = −1

f37
3 = +2 f27

2 = −1 f17
1 = +1

f3̄8
3̄ = 0 f2̄8

2̄ = −3 f1̄8
1̄ = −3

f38
3 = 0 f28

2 = +3 f18
1 = +3 . (XIII.7)

XIII.2 Connection and Curvature

Next we want to write down the flat connection on the trivial C3-bundle over Q3 what we also

firstly did for the CP 2 case in (XI.25). The flat connection on the trivial bundle over Q3 is given

in the invariant basis as

A0 =


a1 γ̄3̄ γ̄1̄

−γ3 −a1 − a2 γ̄2̄

−γ1 −γ2 a2

 . (XIII.8)

Here, the a1 and a2 are u(1)-valued connection 1-forms given in equation (3.38) from [22]. The

remaining invariant 1-forms of G decompose as 1-forms on G/H and can be written in terms of

the a1, a2 where we denote the 1-forms on H by e7, e8. They have the following components:

e7
b =

(
a1 +

1
2
a2

)
b

e8
b = −1

2
(a2)b . (XIII.9)

The flat connection satisfies the Maurer-Cartan equations

dA0 +A0 ∧A0 = 0 (XIII.10)
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which yields the following equations for the invariant one forms and u(1)-valued connection

1-forms:

da1 − γ̄1 ∧ γ1 − γ̄3 ∧ γ3 = 0 , (XIII.11)

da2 + γ̄1 ∧ γ1 + γ̄2 ∧ γ2 = 0 , (XIII.12)

dγ1 − (a1 − a2) ∧ γ1 − γ2 ∧ γ3 = 0 , (XIII.13)

dγ2 + (a1 + 2a2) ∧ γ2 + γ1 ∧ γ̄3 = 0 , (XIII.14)

dγ3 − (2a1 + a2) ∧ γ3 − γ1 ∧ γ̄2 = 0 . (XIII.15)

The extension to the non-flat connection on the corresponding extended bundle, taken from

(3.50) in [22], reads

A =


a1 φ3 γ̄

3̄ φ1 γ̄
1̄

−φ3 γ
3 −a1 − a2 −φ2 γ̄

2̄

−φ1 γ
1 −φ2 γ

2 a2

 . (XIII.16)

The corresponding gauge field F = dA+A∧A is then easily calculated using Maurer-Cartan
equations (XIII.11)-(XIII.15):

F =



(1− φ2
1)γ̄1̄ ∧ γ1

+ (1− φ2
3)γ̄3̄ ∧ γ3

dφ3 ∧ γ̄3̄

+ (φ3 − φ1φ2) γ̄1̄ ∧ γ2

dφ1 ∧ γ̄1̄

+ (φ1 − φ3φ2) γ̄2̄ ∧ γ̄3̄

−dφ3 ∧ γ3

− (φ3 − φ1φ2) γ1 ∧ γ̄2̄

−(1− φ2
3) γ̄3̄ ∧ γ3

+ (1− φ2
2) γ̄2̄ ∧ γ2

dφ2 ∧ γ̄2̄

+ (φ2 − φ3φ1) γ3 ∧ γ̄1̄

−dφ1 ∧ γ1

− (φ1 − φ3φ2) γ2 ∧ γ3

−dφ2 ∧ γ2

− (φ2 − φ3φ1) γ̄3̄ ∧ γ1

−(1− φ2
1) γ̄1̄ ∧ γ1

− (1− φ2
2) γ̄2̄ ∧ γ2


. (XIII.17)

XIII.3 Yang-Mills Equations

The Yang-Mills equations on Q3 look a little different in this case, since we have another set of

non-vanishing structure constants, namely those with coset indices. We can therefore endow Q3

with a non-vanishing torsion tensor with non-holonomic components

T bac = κ fac
b . (XIII.18)

We end up with the following Yang-Mills equations:

YMb :=
d
dτ
F0b +

(1 + κ)
2

(
fac

bFac + fac
aFcb

)
−eia

(
fci

a Fcb + fci
b Fac

)
+
[
Aa,Fab

]
= 0 . (XIII.19)
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If we insert (XIII.16) and (XIII.17) into equation (XIII.19), we find an independent differ-

ential equation for the scalar fields φ1, φ2, φ3 for each superscript b = 1, 2, 3, 1̄, 2̄, 3̄. These

six equations actually differ via three algebraic conditions on the fields which come from the

term containing the coset structure constants in (XIII.19). We can separate the algebraic condi-

tions by adding and subtracting those equations that have conjugated indices from each other,

schematically

YM1 ±YM1̄, YM2 ±YM2̄, YM3 ±YM3̄ . (XIII.20)

By doing that, we arrive at three independent differential equations

d2

dτ2
φ1 = 2φ1

(
φ2

1 − 1 +
1
2
(
φ2

2 + φ2
3

))
− 2φ2 φ3

d2

dτ2
φ2 = 2φ2

(
φ2

2 − 1 +
1
2
(
φ2

1 + φ2
3

))
− 2φ1 φ3

d2

dτ2
φ3 = 2φ3

(
φ2

3 − 1 +
1
2
(
φ2

1 + φ2
2

))
− 2φ1 φ2

(XIII.21)

along with the algebraic constraints

(κ+ 1) · (φ1 − φ2 φ3) = 0 (XIII.22)

(κ+ 1) · (φ2 − φ1 φ3) = 0 (XIII.23)

(κ+ 1) · (φ3 − φ1 φ2) = 0 . (XIII.24)

In order to satisfy the algebraic constraints, we are forced to choose the value κ = −1 for the

torsion. Otherwise these conditions would restrict us to constant fields with value 1, 0 or −1.

If we choose the specific value for the torsion, (XIII.21) is again solvable in principle. But as in

the case of CP 2 in the last chapter, we do not want to go further in the analysis here but simply

finish all our considerations with this result. The next thing one could do would be considering

higher representations such as C2,0 or C1,1 for SU(3) and would get further decompositions of

the subgroup H = U(1) × U(1) and hence of the gauge potential. Therefore more scalar fields

would arise, using the corresponding G-equivariant ansätze, derived and written down in [22].



Chapter XIV

Yang-Mills on R× CP 1 × CP 2

In this chapter we want to consider the base space R×CP 1 ×CP 2 and a vector bundle over it

endowed with the structure group U(3(m+1)). Therefore, in contrast to all the other examples,

we get a more general ansatz for the corresponding gauge potential on the corresponding asso-

ciated vector bundle which contains 2m+ 1 scalar fields. Here we do not want to fix the specific

number of Higgs-fields, but try to derive the equation of motion for this ansatz in general.

XIV.1 Gauge Potential and Gauge Field

XIV.1.1 The ansatz for the gauge potential. We are considering the following ansatz for

a u(3(m+ 1))-valued gauge potential (in the temporal gauge Aτ = 0):

A = Am ⊗ 13 + 1m+1 ⊗

(
B 0

0 −2a

)
+ Ψm ⊗

(
02 β̄

−β> 0

)
(XIV.1)

where

B := B(1) + a · 12 . (XIV.2)

As in chapter XI the B(1) denotes the su(2)-valued one-instanton field on CP 2 and the β, β̄ are

row vectors of the invariant basis of 1-forms of CP 2,

Ψm := diag(ψ1, ψ2, ..., ψm+1) , (XIV.3)
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were all the ψi are considered to be real scalar fields on R. Furthermore, we have

Am := b(m) +
1
2

Φmγ̄ −
1
2

Φ†mγ, (XIV.4)

b(m) := Υmb, (XIV.5)

Υm := diag(m,m− 2, ...,−m+ 2,−m), (XIV.6)

b :=
1

2(R2 + yȳ)
(ȳ dy − y dȳ), (XIV.7)

γ :=
√

2R2

R2 + yȳ
dy, γ̄ :=

√
2R2

R2 + yȳ
dȳ , (XIV.8)

Φm :=


0 φ1 · · · 0
... 0

. . .
...

...
...

. . . φm

0 · · · · · · 0

 , (XIV.9)

where also all the φi are required to be real scalar fields on R. Here the one form b is the gauge

potential on the Dirac one-monopole line bundle over CP 1 and the (1, 0)-form γ as well as the

(0, 1)-form γ̄ are the invariant basis of 1-forms on CP 1.

As one can easily see, the invariant 1-forms read

γ = eγy dy, (XIV.10)

γ̄ = eγ̄ ȳ dȳ , (XIV.11)

where

ρ := eγy = eγ̄ ȳ =
√

2R2

R2 + yȳ
. (XIV.12)

The invariant metric g on CP 1 × CP 2 is given by the non vanishing components

gab̄ = δab, a, b ∈ {1, 2, 1̄, 2̄} , (XIV.13)

gyȳ = ρ2, and hence gȳy = ρ−2 . (XIV.14)

XIV.1.2 Maurer-Cartan equations and the field strength. We are dealing with invari-

ant 1-forms on symmetric spaces and therefore these 1-forms fulfil the Maurer-Cartan equations

(as we have seen in chapter XI), and are easy to calculate for the case of CP 1. The resulting
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equations for all invariant 1-forms become

db− 1
2R2

γ̄ ∧ γ = 0 (XIV.15)

dB +B ∧B − β̄ ∧ β> = 0

da− 1
2
β† ∧ β = 0

dγ − 2b ∧ γ = 0 (XIV.16)

dγ̄ + 2b ∧ γ̄ = 0 (XIV.17)

dβ̄ +B ∧ β̄ − 2β̄ ∧ a = 0

dβ> + β> ∧B − 2a ∧ β> = 0 .

If we insert the ansatz (XIV.1) into the definition F = dA+A∧A and perform the calculations,
written down in the appendix A.1.2, we find the following field strength:

F =

(
ρ2

(
1

4

[
Φ>m,Φm

]
+

1

2R2
Υm

)
⊗ 13

)
dȳ ∧ dy +

ρ

2
∂tΦm dt ∧ dȳ − ρ

2
∂tΦ

>
m dt ∧ dy

ρ

2
[Φm,Ψm]⊗

(
02 dȳ ∧ β̄

−dȳ ∧ β> 0

)
− ρ

2

[
Φ>m,Ψm

]
⊗

(
02 dy ∧ β̄

−dy ∧ β> 0

)
(
Ψ2
m − 1m+1

)
⊗

(
−β̄ ∧ β> 0

0 β† ∧ β

)
+ ∂t(Ψm)⊗

(
0 dt ∧ β̄

−dt ∧ β> 0

)
,

(XIV.18)

where (
β̄1 ∧ β1 β̄1 ∧ β2

β̄2 ∧ β1 β̄2 ∧ β2

)
= β̄ ∧ β> (XIV.19)

(β̄1 ∧ β1 + β̄2 ∧ β2) = β† ∧ β . (XIV.20)

XIV.2 Yang-Mills Equations

The Yang-Mills equations on the space R×CP 1×CP 2 look slightly different, since the dimension

is higher then in the previous cases. If we compare this to chapter XI for instance, we can see

that, since we consider a product of two projective spaces, we will get one more matrix equation

for each additional belonging to CP 1. This means we have

DAFAδ = 0, δ ∈ {ȳ, y}

DAFAa = 0, a ∈ {1, 2, 1̄ , 2̄}
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which reads

∂tF tδ +∇αFαδ +
[
Aα,Fαδ

]
+∇cFcδ +

[
Ac,Fcδ

]
= 0

∂tF td +∇αFαd +
[
Aα,Fαd

]
+∇cFcd +

[
Ac,Fcd

]
= 0 .

(XIV.21)

Here the repeated Greek indices are summed over the components belonging to CP 1, namely α ∈
{y, ȳ} and the Latin letters are summed over the CP 2 components. The covariant derivatives

of the gauge field strength for the projective spaces are given in the canonical way for product

spaces.

If we insert (XIV.1) and (VII.8) into (XIV.21), which is written down in detail in appendix

A.2, we arrive at the following matrix equations:

0 = ∂2
t Φm −

1
4

[
Φm,

[
Φ>m,Φm

]]
+

1
R2

Φm − [Ψm, [Φm,Ψm]]

(XIV.22)

0 = ∂2
t Ψm −

1
2

[
Φ>m, [Φm,Ψm]

]
+ 3 (Ψm −Ψ3

m) . (XIV.23)

Inserting Φm and Ψm into these matrix equations (XIV.22) and (XIV.23), we find the fol-

lowing independent differential equations for our scalar fields ψi and φi:

0 = ∂2
t φi +

1
4

(φ2
i−1 − 2φ2

i + φ2
i+1)φi +

1
R2

φi −
(
ψ2
i+1 − 2ψi+1ψi + ψ2

i

)
φi

0 = ∂2
t ψi −

1
2
(
φ2
i−1(ψi − ψi−1) + φ2

i (ψi+1 − ψi)
)

+ 3(ψi − ψ3
i ) .

(XIV.24)

Solutions to similar equations were found in [20] and possibly also solutions for the equations

(XIV.24) do exist. Seeking for such solutions could therefore be a further task.



Appendix A

Explicit Calculations for R× CP 1 × CP 2

A.1 Gauge Field on R× CP 1 × CP 2

A.1.1 The ansatz for the gauge potential. We are now considering the R× CP 1 × CP 2

together with the following Ansatz for a u(3(m+ 1))-valued gauge potential (in temporal gauge

Aτ = 0):

A = Am ⊗ 13 + 1m+1 ⊗

(
B 0

0 −2a

)
+ Ψm ⊗

(
02 β̄

−β> 0

)
(A.1)

where

B := B(1) + a · 12 . (A.2)

As in chapter XI the B(1) denotes the su(2)-valued one-instanton field on CP 2 and the β, β̄ are

row vectors of the invariant basis of 1-forms of CP 2. Furthermore, in (A.1)

Ψm := diag(ψ1, ψ2, ..., ψm+1) , (A.3)

were all the ψi are considered to be real scalar fields on R. We also have

Am := b(m) +
1
2

Φmγ̄ −
1
2

Φ†mγ, (A.4)

b(m) := Υmb, (A.5)

Υm := diag(m,m− 2, ...,−m+ 2,−m), (A.6)

b :=
1

2(R2 + yȳ)
(ȳ dy − y dȳ), (A.7)

γ :=
√

2R2

R2 + yȳ
dy, γ̄ :=

√
2R2

R2 + yȳ
dȳ (A.8)

Φm :=


0 φ1 · · · 0
... 0

. . .
...

...
...

. . . φm

0 · · · · · · 0

 , (A.9)
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where all the φi are required to be real scalar fields on R. Here the one-form b is the gauge

potential on the Dirac one-monopole line bundle over CP 1, and the (1, 0)-form γ together with

the (0, 1)-form γ̄ are the invariant basis of 1-forms on CP 1.

As one can easily see, the invariant 1-forms are proportional to the complex coordinates,

namely

γ = eγy dy, (A.10)

γ̄ = eγ̄ ȳ dȳ, where (A.11)

ρ := eγy = eγ̄ ȳ =
√

2R2

R2 + yȳ
. (A.12)

The invariant metric g on CP 1 × CP 2 is given by the non vanishing components

gab̄ = δab, a, b ∈ {1, 2, 1̄, 2̄} , (A.13)

gyȳ = ρ2, and hence gȳy = ρ−2 . (A.14)

A.1.2 Maurer-Cartan equations and the field strength. We are dealing with invariant

1-forms on symmetric spaces and therefore these 1-forms fulfill the Maurer-Cartan equations

which are given in [22] for CP 2 and easy to calculate for the case of CP 1. The resulting

equations for all invariant 1-forms become

db− 1
2R2

γ̄ ∧ γ = 0 (A.15)

dB +B ∧B − β̄ ∧ β> = 0 (A.16)

da− 1
2
β† ∧ β = 0 , (A.17)

along with

dγ − 2b ∧ γ = 0 (A.18)

dγ̄ + 2b ∧ γ̄ = 0 (A.19)

dβ̄ +B ∧ β̄ − 2β̄ ∧ a = 0 (A.20)

dβ> + β> ∧B − 2a ∧ β> = 0 . (A.21)

For convenience we split A into two pieces,

A =: A(m) ⊗ 13 +ACP 2 ,

then the field strength F = dA+A ∧A becomes

dA(m) ⊗ 13 + dACP 2 + (A(m) ⊗ 13 +ACP 2) ∧ (A(m) ⊗ 13 +ACP 2).
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We split the calculations into three big pieces, namely in

F = dA(m) ⊗ 13 +A(m) ⊗ 13 ∧A(m) ⊗ 13

+ dACP 2 +ACP 2 ∧ACP 2

+ (A(m) ⊗ 13) ∧ACP 2 +ACP 2 ∧ (A(m) ⊗ 13)

= dA(m) ⊗ 13 +A(m) ∧A(m) ⊗ 13 (A.22)

+ dACP 2 +ACP 2 ∧ACP 2 (A.23)

(A(m) ⊗ 13) ∧ACP 2 +ACP 2 ∧ (A(m) ⊗ 13) . (A.24)

In the following we are going to calculate the terms (A.22)-(A.24) in this order:

A.1.3 Piece A.22 of the field strength. First the differential of A(m):

dA(m) = dbΥm +
1
2

(
dΦm ∧ γ̄ + Φm dγ̄ − dΦ>m ∧ γ − Φ>m dγ

)
=

1
2R2

Υm γ̄ ∧ γ +
1
2

(
∂t(Φm) dt ∧ γ̄ − ∂t(Φ>m) dt ∧ γ

)
+

1
2

(
−Φm 2b ∧ γ̄ − Φ>m 2b ∧ γ

)
=

1
2R2

Υm γ̄ ∧ γ +
1
2

(
∂t(Φm) dt ∧ γ̄ − ∂t(Φ>m) dt ∧ γ

)
− 1

2

(
Φm 2b ∧ γ̄ + Φ>m 2b ∧ γ

)
.

Now turn to the wedge product

A(m) ∧A(m) =
1
2

Υm Φm b ∧ γ̄ − 1
2

Υm Φ>m b ∧ γ

+
1
2

Φm Υm γ̄ ∧ b− 1
4

Φm Φ>m γ̄ ∧ γ

− 1
2

Φ>m Υm γ ∧ b− 1
4

Φ>m Φm γ ∧ γ̄

=
1
2

(
[Υm,Φm] b ∧ γ̄ −

[
Υm,Φ>m

]
b ∧ γ +

1
2

[
Φ>m,Φm

]
γ ∧ γ̄

)
= Φm b ∧ γ̄ + Φ>m b ∧ γ +

1
4

[
Φ>m,Φm

]
γ̄ ∧ γ .

In the last step we used that [Υm,Φm] = 2Φm as well as
[
Υm,Φ>m

]
= −2Φm, and in total we

have

dA(m) +A(m) ∧A(m) =
(

1
4

[
Φ>m,Φm

]
+

1
2R2

Υm

)
γ̄ ∧ γ

+
(
∂t(Φm) dt ∧ γ̄ − ∂t(Φ>m) dt ∧ γ

)
.

(A.25)
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A.1.4 Piece A.23 of the gauge field strength. Using (A.16) and (A.17), we get

dACP 2 +ACP 2 ∧ACP 2 =

= 1m+1 ⊗

(
dB +B ∧B 0

0 −2da

)

+ ∂t(Ψm)⊗

(
0 dt ∧ β̄
0 0

)
− ∂t(Ψm)⊗

(
0 0

dt ∧ β> 0

)

+ Ψm ⊗

(
0 dβ̄

0 0

)
+ Ψm ⊗

(
0 B ∧ β̄
0 0

)
+ Ψm ⊗

(
0 −2β̄ ∧ a
0 0

)

−Ψm ⊗

(
0 0

−2a ∧ β> 0

)
−Ψm ⊗

(
0 0

dβ> 0

)
−Ψm ⊗

(
0 0

β> ∧B 0

)

−Ψm Ψm

(
β̄ ∧ β> 0

0 0

)
−Ψm Ψm

(
0 0

0 β> ∧ β̄

)

= 1m+1 ⊗

(
β̄ ∧ β> 0

0 −β† ∧ β

)

+ ∂t(Ψm)⊗

(
0 dt ∧ β̄
0 0

)
− ∂t(Ψm)⊗

(
0 0

dt ∧ β> 0

)

−Ψm Ψm ⊗

(
β̄ ∧ β> 0

0 0

)
+ Ψm Ψm ⊗

(
0 0

0 β† ∧ β

)

= 1m+1 ⊗

(
β̄ ∧ β> 0

0 −β† ∧ β

)

+ ∂t(Ψm)⊗

(
0 dt ∧ β̄

−dt ∧ β> 0

)
+ Ψ2

m ⊗

(
−β̄ ∧ β> 0

0 β† ∧ β

)

=
(
Ψ2
m − 1m+1

)
⊗

(
−β̄ ∧ β> 0

0 β† ∧ β

)
+ ∂t(Ψm)⊗

(
0 dt ∧ β̄

−dt ∧ β> 0

)
.

(A.26)

In the last as step we have used equation (A.21) as well as equation (A.20).

A.1.5 Piece (A.24) of the gauge field strength.

(A.24) = A(m) ⊗ 13 ∧

(
1m+1 ⊗

(
B 0

0 −2a

)
+ Ψm ⊗

(
02 β̄

−β> 0

))

+

(
1m+1 ⊗

(
B 0

0 −2a

)
+ Ψm ⊗

(
02 β̄

−β> 0

))
∧A(m) ⊗ 13
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=
[
A(m),Ψm

]
∧ ⊗

(
02 β̄

−β> 0

)

=
[
Υmb+

1
2

Φmγ̄ −
1
2

Φ>mγ,Ψm

]
∧ ⊗

(
02 β̄

−β> 0

)

=
1
2

(
[Φm,Ψm] γ̄ −

[
Φ>m,Ψm

]
γ
)
∧ ⊗

(
02 β̄

−β> 0

)
. (A.27)

Here we used the commutativity [Υm,Ψm] = 0. It is useful to change the basis for CP 1 from
the invariant one to the simple holomorphic complex basis {y, ȳ} according to equation (A.8).
Putting (A.22)-(A.24) together and performing the already mentioned basis transformation, we
arrive at

F =

(
ρ2

(
1

4

[
Φ>m,Φm

]
+

1

2R2
Υm

)
⊗ 13

)
dȳ ∧ dy +

ρ

2
∂tΦm dt ∧ dȳ − ρ

2
∂tΦ

>
m dt ∧ dy

ρ

2
[Φm,Ψm]⊗

(
02 dȳ ∧ β̄

−dȳ ∧ β> 0

)
− ρ

2

[
Φ>m,Ψm

]
⊗

(
02 dy ∧ β̄

−dy ∧ β> 0

)
(
Ψ2
m − 1m+1

)
⊗

(
−β̄ ∧ β> 0

0 β† ∧ β

)
+ ∂t(Ψm)⊗

(
0 dt ∧ β̄

−dt ∧ β> 0

)
,

(A.28)

where (
β̄1 ∧ β1 β̄1 ∧ β2

β̄2 ∧ β1 β̄2 ∧ β2

)
= β̄ ∧ β> , (A.29)

(β̄1 ∧ β1 + β̄2 ∧ β2) = β† ∧ β . (A.30)

A.2 Yang-Mills Equations for B ∈ {y, ȳ}

We are now going to write down the Yang-Mills equations and deduce the corresponding equa-

tions for the Φm, Ψm and hence for the φi, ψi explicitly. The Yang-Mills equations are given

by

∂tF tB +∇AFAB +
[
AA,FAB

]
= 0, A,B ∈ {y, ȳ, 1, 2, 1̄, 2̄} .

We are going to start with the case where B = δ ∈ {y, ȳ}. We have

∂tF tδ +∇αFαδ +
[
Aα,Fαδ

]
+∇cFcδ +

[
Ac,Fcδ

]
= 0,

c ∈ {1, 2, 1̄, 2̄} , α ∈ {y, ȳ} . (A.31)

We know that the Φm contain only maps from R to R, so all other derivatives of these fields and

hence of the gauge field strength vanish (all but the derivative of components of F containing
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b). If we use

∇AFAδ = ΓAACFCδ + ΓδACFAC ,

then we get the remaining equation for (A.53):

∂αFαδ + ΓααCFCδ + ΓδαCFαC + ΓccCFCδ + ΓδcCFcC = 0 .

We notice, that the Christoffel symbols with mixed indices from CP 1 and CP 2 vanish, and

therefore we get the simplification

∂αFαδ + ΓααεF εδ + ΓδαεFαε +
[
Aα,Fαδ

]
+
[
Ad,Fdδ

]
+
[
Ad̄,F d̄δ

]
+ ΓccbFbδ = 0.

We can see from (A.28) that the only non-vanishing components Fαε are F ȳy and Fyȳ. We also

know that the only non-vanishing Christoffel symbols are Γyyy and Γȳȳȳ. Hence, it remains

∂δ̄F δ̄δ + Γδ̄δ̄δ̄F
δ̄δ + 0 +

[
Aδ̄,F δ̄δ

]
+
[
Ad,Fdδ

]
+
[
Ad̄,F d̄δ

]
+ ΓccbFbδ = 0.

Here, of course, we do not sum over δ. It is either δ = y or δ = ȳ. The index d is supposed to

take values in {1, 2} and b ∈ {1, 2, 3, 4}.
The last ingredient, we need to calculate the Christoffel symbols on CP 1 and CP 2. On

CP 1 we are using the complex basis {y, ȳ} rather than the invariant basis. Since the only

non-vanishing components of the metric are gyȳ = gȳy, we get

Γyyy = gȳy ∂y gyȳ = ρ−2 ∂y ρ
2 = ρ−2 (− 2ȳ√

2R2
)ρ3 = − 2ȳ√

2R2
ρ

Γȳȳȳ = Γyyy = − 2y√
2R2

ρ . (A.32)

Now we are going to express the Christoffel symbols in terms of the by, bȳ:

by =
ȳ

2

(
1

R2 + yȳ

)
·
√

2R2

√
2R2

=
1
2

ȳ√
2R2

ρ = −1
4

Γyyy (A.33)

bȳ = −y
2

(
1

R2 + yȳ

)
·
√

2R2

√
2R2

= −1
2

y√
2R2

ρ =
1
4

Γȳȳȳ . (A.34)

For CP 2 we are using the invariant basis and can therefore use the convenient shape of the

Christoffel symbols, making use of the structure constants:

Γccb = −eicfbic ,

where the eic as well as the structure constants can be taken from section XI.3.
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It will again turn out to be useful to split the gauge potential into its block-diagonal and

off-diagonal parts as done before:

Adiag := b(m) ⊗ 13 + 1m+1 ⊗

(
B 0

0 −2a

)
, (A.35)

Aoff :=
ρ

2
(Φmdȳ − Φ†mdy)⊗ 13 + Φm ⊗

(
02 β̄

−β> 0

)
. (A.36)

We get

0 = ∂tF tδ (A.37)

+ ∂δ̄F δ̄δ (A.38)

+ Γδ̄δ̄δ̄F
δ̄δ +

[
Adiag

δ̄
,F δ̄δ

]
(A.39)

+
[
Aoff
δ̄ ,F

δ̄δ
]

(A.40)

+
[
Adiag
d ,Fdδ

]
+
[
Adiag

d̄
,F d̄δ

]
− eicfdicFdδ − eicfd̄icF d̄δ (A.41)

+
[
Aoff
d ,Fdδ

]
+
[
Aoff
d̄ ,F

d̄δ
]

(A.42)

which we are going to calculate piecewise in the next few paragraphs.

A.2.1 Piece (A.38) from the Yang-Mills equations. We start evaluating term (A.38).

We have to take into account that the metric with respect to the complex basis {y, ȳ} is not

constant and since ∂δ̄ρ
−n = n·δ√

2R2 ρ
−n+1, (A.38) becomes

(A.38) = bδ̄ ρ
−4 4 ρ2Fȳy . (A.43)

Here we made use of bδ̄ = ∓ δ
2
√

2R2 ρ, where the upper sign stands for δ = y and the lower one

for δ = ȳ.

A.2.2 Piece (A.39) from the Yang-Mills equations. In order to calculate this piece of

the Yang-Mills equations, we express the Christoffel symbols in terms of bδ̄:

Γδ̄δ̄δ̄ = ±4 bδ̄ .

Using this, (A.39) becomes

(A.39) = ±4 bδ̄ρ
−4
(
∓ρ2Fȳy

)
⊗ 13 +

∓ρ−4

[
Υmbδ̄, ρ

2

(
1
4

[
Φ>m,Φm

]
+

1
2R2

Υm

)]
⊗ 13 .

Since the first two terms inside the second argument of the commutator are diagonal matrices,

they commute with Υm. So the remaining part of (A.39) is

(A.39) = −4ρ−2 bδ̄Fȳy . (A.44)
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A.2.3 Piece (A.40) from the Yang-Mills equations. We are now considering piece (A.40)

from the Yang-Mills equation:

(A.40) =
([
Aoff
δ̄ ,F

δδ̄
])

=
(
ρ−4

[
Aoff
δ̄ ,Fδδ̄

])
= ρ−4

([
Aoff
ȳ ,Fyȳ

][
Aoff
y ,Fȳy

])

= ρ−4

( {[
1
2ρ Φm ⊗ 13,−

(
ρ2 (1

4

[
Φ>m,Φm

]
+ 1

2R2 Υm

)]}
⊗ 13{[

−1
2ρ Φ>m ⊗ 13,+

(
ρ2 (1

4

[
Φ>m,Φm

]
+ 1

2R2 Υm

)]}
⊗ 13

)

= − 1
2
ρ−3

({[
Φm ⊗ 13,+

(
ρ2 (1

4

[
Φ>m,Φm

]
+ 1

2R2 Υm

)]}
⊗ 13{[

+Φ>m ⊗ 13,
(
ρ2 (1

4

[
Φ>m,Φm

]
+ 1

2R2 Υm

)]}
⊗ 13

)

= − 1
2
ρ−3

 {
1
4ρ

2
[
Φm,

[
Φ>m,Φm

]]
+ ρ2

2R2 [Φm,Υm]
}
⊗ 13{

−1
4ρ

2
[
Φ>m,

[
Φm,Φ>m

]]
+ ρ2

2R2

[
Φ>m,Υm

]}
⊗ 13



= − 1
2
ρ−3

 {
1
4ρ

2
[
Φm,

[
Φ>m,Φm

]]
+ ρ2

2R2 (−2) · Φm

}
⊗ 13{

−1
4ρ

2
[
Φ>m,

[
Φm,Φ>m

]]
+ ρ2

2R2 (+2) · Φ>m
}
⊗ 13



= − 1
2
ρ−3

 {
1
4ρ

2
[
Φm,

[
Φ>m,Φm

]]
− ρ2

R2 Φm

}
⊗ 13{

−1
4ρ

2
[
Φ>m,

[
Φm,Φ>m

]]
+ ρ2

R2 Φ>m
}
⊗ 13

 . (A.45)

A.2.4 Piece (A.41) from the Yang-Mills equations. This piece of the Yang-Mills equa-

tions dissapears, due to the fact that[(
Bd 0

0 −2ad

)
,

(
0 β̄d̄

0 0

)]
− eicfdic

(
0 β̄d̄

0 0

)
= 0 (A.46)

and [(
Bd̄ 0

0 −2ad̄

)
,

(
0 0

β>d 0

)]
− eicfdic

(
0 0

β>d 0

)
= 0 . (A.47)

A.2.5 Piece (A.42) from the Yang-Mills equations.

(A.42) =
[
Aoff
b , ρ

−2Fb̄δ̄
]

= ρ−2
[
Aoff
b ,−Fδ̄b̄

]

=

[
Ψm ⊗

(
02 β̄b̄

−β>b 0

)
,

{
ρ−2 ρ

2 [Φm,Ψm]

−ρ−2 ρ
2

[
Φ>m,Ψm

]}⊗( 0 β̄b̄

−β>b 0

)]



A.3 Yang-Mills Equations for B ∈ {1, 2, 1̄, 2̄} 123

=
ρ−1

2

{
+ [Ψm, [Φm,Ψm]]

−
[
Ψm,

[
Φ>m,Ψm

]]}⊗(−β̄d̄β>d 0

0 −β>d β̄d̄

)

=
ρ−1

2

{
− [Ψm, [Φm,Ψm]]

+
[
Ψm,

[
Φ>m,Ψm

]]}⊗ 13 . (A.48)

The upper (lower) row represents δ = y (δ = ȳ).

A.2.6 Putting all pieces from this part of Yang-Mills equations together. For B = y

we arrive therefore at the following two equations for the Φm:

0 =
(
ρ−1

2
∂2
t Φm + ρ−4 bȳ

(
4 ρ2Fȳy

)
+ ρ−4 bȳ

{
−4 ρ2 Fȳy

}
−1

2
ρ−3

(
+

1
4
ρ2
[
Φm,

[
Φ>m,Φm

]]
− ρ2

R2
Φm

))
⊗ 13

− ρ−1

2
[Ψm, [Φm,Ψm]]⊗ 13

=
(
ρ−1

2
∂2
t Φm −

1
8
ρ−1

[
Φm,

[
Φ>m,Φm

]]
+
ρ−1

2R2
Φm

)
⊗ 13

− ρ−1

2
[Ψm, [Φm,Ψm]]⊗ 13 .

(A.49)

This is equivalent to

0 = ∂2
t Φm −

1
4

[
Φm,

[
Φ>m,Φm

]]
+

1
R2

Φm − [Ψm, [Φm,Ψm]] .

(A.50)

Hence we obtain the following equations for the φi and ψi:

0 = ∂2
t φi +

1
R2

φi +
1
4

(φ2
i−1 − 2φ2

i + φ2
i+1)φi −

(
ψ2
i+1 − 2ψi+1ψi + ψ2

i

)
φi .

(A.51)

A.3 Yang-Mills Equations for B ∈ {1, 2, 1̄, 2̄}

We will now derive the equations for the Φm and φi for the case that the free index in the

Yang-Mills-equation is an index B = d ∈ {1, 2, 1̄, 2̄} of the coset space:

∂tF td +∇αFαd +
[
Aα,Fαd

]
+∇cFcd +

[
Ac,Fcd

]
= 0

c ∈ {1, 2, 1̄, 2̄} , α ∈ {y, ȳ} (A.52)

which is equivalent to

0 = ∂tF td +∇αFαd +
[
Aα,Fαd

]
+∇cFcd +

[
Ac,Fcd

]
(A.53)
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⇔ 0 = ∂tF td + ∂αFαd + ΓααCFCd + ΓdαCFαC +
[
Aα,Fαd

]
(A.54)

+ ΓccCFCd + ΓdcCFcC +
[
Ac,Fcd

]
. (A.55)

Hence

⇔ 0 = ∂tF td (A.56)

+∂αFαd + ΓyyyFyd + ΓȳȳȳF ȳd +
[
Adiag
α ,Fαd

]
(A.57)

+
[
Aoff
α ,Fαd

]
(A.58)

+ΓccbFbd + ΓdcbFcb +
[
Adiag
c ,Fcd

]
(A.59)

+
[
Aoff
c ,Fcd

]
. (A.60)

After some calculations, one can see that (A.59) vanishes. So in the following we calculate

the remaining pieces.

A.3.1 Second piece (A.57) from the Yang-Mills equations.

(A.57) = ∂α
(
ρ−2Fᾱd̄

)
+ Γyyy ρ

−2 Fȳd̄ + Γȳȳȳ ρ
−2 Fyd̄ + ρ−2

[
Adiag
α ,Fαd

]
= ρ−2∂αFᾱd̄ + Fᾱd̄ ∂αρ−2 − 4by ρ−2 Fȳd̄ + 4bȳ ρ−2 Fyd̄

+ ρ−2

[
byΥm ⊗ 13,

ρ

2
[Φm,Ψm]⊗

(
0 β̄

−β> 0

)
d̄

]

− ρ−2

[
bȳΥm ⊗ 13,

ρ

2

[
Φ>m,Ψm

]
⊗

(
0 β̄

−β> 0

)
d̄

]

= ρ−2∂αFᾱd̄ + +Fᾱd̄
2ᾱ√
2R2

ρ−1 − 4ρ−2
(
by Fȳd̄ − bȳ Fyd̄

)
+ ρ−2by · 2 ·

ρ

2
[Φm,Ψm]⊗

(
0 β̄

−β> 0

)
d̄

− ρ−2bȳ · 2 ·

(
−ρ

2

[
Φ>m,Ψm

]
⊗

(
0 β̄

−β> 0

)
d̄

)
= ρ−2∂αFᾱd̄ + ρ−2

(
4by Fȳd̄ − 4bȳ Fyd̄

)
− 4ρ−2

(
by Fȳd̄ − bȳ Fyd̄

)
+ ρ−1

(
by [Φm,Ψm] + bȳ

[
Φ>m,Ψm

])
⊗

(
0 β̄

−β> 0

)
d̄

= ρ−2∂αFᾱd̄ + ρ−1
(
by [Φm,Ψm] + bȳ

[
Φ>m,Ψm

])
⊗

(
0 β̄

−β> 0

)
d̄

.

(A.61)
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The last thing to do for this piece is to calculate the partial derivative from the first term of

(A.61),

ρ−2∂αFᾱd̄ =

= ρ−2 ∂yFȳd̄ + ρ−2 ∂yFȳd̄

= ρ−2

(
∂y

1
2
ρ [Φm,Ψm]⊗

(
0 β̄

−β> 0

)
d̄

− ∂ȳ
1
2
ρ
[
Φ>m,Ψm

]
⊗

(
0 β̄

−β> 0

)
d̄

)

= ρ−2(−1
2

ȳ√
2R2

ρ︸ ︷︷ ︸
=−by

·ρ [Φm,Ψm] +
1
2

y√
2R2

ρ︸ ︷︷ ︸
=−bȳ

·ρ
[
Φ>m,Ψm

]
)⊗

(
0 β̄

−β> 0

)
d̄

= ρ−1
(
−by [Φm,Ψm]− bȳ

[
Φ>m,Ψm

])
⊗

(
0 β̄

−β> 0

)
d̄

. (A.62)

Therefore (A.61) vanishes and hence we have

(A.57) = 0 . (A.63)

A.3.2 Third piece (A.58) from the Yang-Mills equations.

(A.58) =
[
Aoff
y , ρ

−2Fȳd̄
]

+
[
Aoff
ȳ , ρ

−2Fyd̄
]

=

[
−1

2
ρΦ> ⊗ 13, ρ

−2 · ρ · 1
2

[Φm,Ψm]⊗

(
0 β̄

−β> 0

)
d̄

]

+

[
1
2
ρΦ⊗ 13, ρ

−2 · ρ · 1
2

[
Φ>m,Ψm

]
⊗

(
0 β̄

−β> 0

)
d̄

]

= − 1
4

([
Φ>m, [Φm,Ψm]

]
+
[
Φm,

[
Φ>m,Ψm

]])
⊗

(
0 β̄

−β> 0

)
d̄

= − 1
2

([
Φ>m, [Φm,Ψm]

])
⊗

(
0 β̄

−β> 0

)
d̄

. (A.64)

In the last step, we made use of the fact that
[
Φ>m, [Φm,Ψm]

]
is a diagonal matrix.

A.3.3 Piece (A.60) from the Yang-Mills equations. There are only components of F
with one bar index and one without a bar. Since d ∈ {1, 2, 1̄, 2̄}, we get

(A.60) =
[
Aoff
c ,Fcd

]
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=

[
Ψm ⊗

(
02 β̄c

−β>c 0

)
,Ψ2

m ⊗

(
(−β̄ ∧ β>)c̄d̄ 0

0 (β† ∧ β)c̄d̄

)]

−

[
Ψm ⊗

(
02 β̄c

−β>c 0

)
,1m+1 ⊗

(
−(β̄ ∧ β>)c̄d̄ 0

0 (β† ∧ β)c̄d̄

)]
(
Ψ3
m −Ψm

)
⊗

[(
02 β̄c

−β>c 0

)
,

(
(−β̄ ∧ β>)c̄d̄ 0

0 (β† ∧ β)c̄d̄

)]

=
(
Ψ3
m −Ψm

)
⊗ (−3)

(
02 β̄c̄

−β>c̄ 0

)

= 3 (Ψm −Ψ3
m)⊗

(
02 β̄d̄

−β>
d̄

0

)
. (A.65)

A.3.4 Putting all pieces from this part of Yang-Mills equations together.

0 = ∂2
t Ψm −

1
2

([
Φ>m, [Φm,Ψm]

])
+ 3 (Ψm −Ψ3

m) . (A.66)

This yields the following equations for the φi, ψi:

∂2
t ψi −

1
2
(
φ2
i−1(ψi − ψi−1) + φ2

i (ψi+1 − ψi)
)

+ 3(ψi − ψ3
i ) = 0 ,

∀i = 1, ...,m+ 1 . (A.67)

Here as usual, φm+1 := 0 =: φ0.

A.4 All Yang-Mills Equations

If we summarize everything, we have the following equations for the Φm, Ψm:

0 = ∂2
t Φm −

1
4

[
Φm,

[
Φ>m,Φm

]]
+

1
R2

Φm − [Ψm, [Φm,Ψm]]

0 = ∂2
t Ψm −

1
2

[
Φ>m, [Φm,Ψm]

]
+ 3 (Ψm −Ψ3

m) .

which are equivalent to the component equations

0 = ∂2
t φi +

1
4

(φ2
i−1 − 2φ2

i + φ2
i+1)φi +

1
R2

φi −
(
ψ2
i+1 − 2ψi+1ψi + ψ2

i

)
φi ,

0 = ∂2
t ψi −

1
2
(
φ2
i−1(ψi − ψi−1) + φ2

i (ψi+1 − ψi)
)

+ 3(ψi − ψ3
i ) .
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