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Abstract

Ostrogradsky’s method allows one to construct Hamiltonian formulation for a higher derivative system. 
An application of this approach to the Pais–Uhlenbeck oscillator yields the Hamiltonian which is unbounded 
from below. This leads to the ghost problem in quantum theory. In order to avoid this nasty feature, the 
technique previously developed in [7] is used to construct an alternative Hamiltonian formulation for the 
multidimensional Pais–Uhlenbeck oscillator of arbitrary even order with distinct frequencies of oscillation. 
This construction is also generalized to the case of an N = 2 supersymmetric Pais–Uhlenbeck oscillator.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Higher derivative theories attract interest mostly due to their nice renormalization properties 
[1,2]. The method to construct Hamiltonian formulation for such systems has been proposed by 
Ostrogradsky [3]. In general, Hamiltonians obtained in such a way contain terms linear in mo-
menta and are unbounded from below. This leads to the ghost problem on quantization [4,5]. 
The desire to cure this problem stimulates the investigation of the Pais–Uhlenbeck (PU) oscilla-
tor [4].
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After applying an appropriate canonical transformation [4,6], Ostrogradsky’s Hamiltonian 
for the multidimensional PU oscillator of order 2n with distinct frequencies of oscillation ωk , 
k = 0, 1, .., n − 1, takes the form

H = 1

2

n−1∑
k=0

(−1)k+1(pk
i p

k
i + ω2

kx
k
i xk

i ). (1)

When conventional quantization scheme is applied, the harmonic oscillators with negative over-
all factor bring about troubles with unbounded from below energy spectrum and, hence, with the 
absence of the ground state [4,5]. This motivates a search for an alternative Hamiltonian formu-
lation and quantization procedure which lead to physically viable quantum theory [7–19]. So far 
the efforts have been focused mostly on the one-dimensional PU oscillator of the fourth order 
[7–16,19]. In particular, an elegant method to obtain an alternative canonical formalism with 
positive-definite Hamiltonian has been formulated in [7]. This alternative formulation has been 
realized in two steps. At the first stage, two functionally independent integrals of motion which 
are quadratic in variables have been used so as to write down an ansatz for the Hamiltonian of 
the fourth-order PU oscillator. The second step implies the derivation of an appropriate Poisson 
structure.

An attempt to generalize the results in [7] to the case of higher order PU oscillator has been 
made in [8]. However, this generalization exhibits some features which seem to contradict each 
other. On the one hand, the alternative Hamiltonian in [8] is not positive definite. In this sense it 
is not better than Ostrogradsky’s one. On the other hand, it was claimed in [8] that the quantum 
theory of the PU oscillator constructed with the use of the alternative Hamiltonian is ghost free. 
As will be demonstrated below, the reason is that the alternative Hamiltonian together with the 
Poisson structure in [8] do not reproduce the equation of motion of the original PU oscillator.

One of the goals of the present paper is to use the technique introduced in [7] in order to obtain 
an alternative Hamiltonian formulation for the multidimensional PU oscillator of arbitrary even 
order with distinct frequencies of oscillation. We also explain which claims in [8] are incorrect.

Recently, in [20,21] an N = 2 supersymmetric extension of the PU oscillator has been con-
structed. It has been shown that the invariance of the model under time translations implies 
unbounded from below spectrum. The Hamiltonian can be presented as the sum of decoupled 
N = 2 supersymmetric harmonic oscillators with alternating sign. The corresponding quantum 
theory is characterized by the presence of negative-norm states and by the absence of the ground 
state. Our second concern in this paper is the construction of an alternative Hamiltonian for an 
N = 2 supersymmetric PU oscillator which is achieved by generalizing the method in [7] to the 
N = 2 supersymmetric case.

The paper is organized as follows. In the next section we apply the method previously de-
veloped in Ref. [7] to obtain an alternative Hamiltonian formulation for the PU oscillator of 
order 2n. In Section 3, in the same manner we construct an alternative Hamiltonian formalism 
for an N = 2 supersymmetric PU oscillator. We summarize our results and discuss possible 
further developments in the concluding Section 4. Some technical details are given in Appendix.

2. An alternative Hamiltonian formulation for the PU oscillator

The equation of motion of the multidimensional PU oscillator of order 2n can be written in 
the following form [4]
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n−1∏
k=0

(
d2

dt2
+ ω2

k

)
xi =

n∑
k=0

σn
k x

(2k)
i = 0,

where σn
k =

∑
i1<i2<..<in−k

ω2
i1
ω2

i2
..ω2

in−k
, σ n

n = 1, (2)

where i = 1, 2, .., d is a spatial index, while the index in braces denotes the order of time deriva-
tive. For definiteness, we choose 0 < ω0 < ω1 < .. < ωn−1. This equation can be obtained from 
the action functional1

S = 1

2

∫
dt xi

n−1∏
k=0

(
d2

dt2
+ ω2

k

)
xi, (3)

which is invariant under time translations. The Noether theorem yields the integral of motion [4]

H =
n−1∑
k=0

(−1)k+1Jk, (4)

where we denoted

Jk = ρk

2

⎛
⎜⎜⎝

n−1∏
m=0
m �=k

(
d2

dt2
+ ω2

m

)
dxi

dt

⎞
⎟⎟⎠

2

+ ρkω
2
k

2

⎛
⎜⎜⎝

n−1∏
m=0
m �=k

(
d2

dt2
+ ω2

m

)
xi

⎞
⎟⎟⎠

2

,

ρk = (−1)k

n−1∏
m=0
m �=k

(ω2
m − ω2

k)

. (5)

It is easy to see that all ρk are positive. The quantities Jk are positive-definite integrals of motion 
which correspond to the symmetry transformations

δxi = −ρk

n−1∏
m=0
m �=k

(
d2

dt2
+ ω2

m

)
dxi

dt
εk,

where εk , k = 0, 1, .., n − 1, are infinitesimal parameters. The Noether integral of motion which 
corresponds to the invariance under time translations is unbounded from below. This implies a 
similar property for Ostrogradsky’s Hamiltonian which is the phase space analogue of (4). In 
quantum theory one reveals the well known problems which were discussed in the Introduction.

In the next subsection we remind some basic facts about the approach in [7] which leads to an 
alternative Hamiltonian formulation for the fourth-order PU oscillator.

2.1. The fourth-order PU oscillator

According to [7], one can use the quadratic integrals of motion J0 and J1 so as to write down 
an ansatz for an alternative Hamiltonian

1 Throughout the work the summation over repeated spatial indices is understood.
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H2 = α0J0 + α1J1, (6)

where α0 and α1 are arbitrary nonzero constants. This constant of the motion can play the role 
of the Hamiltonian provided the relations

{x(k)
i ,H2} = x

(k+1)
i , for k = 0,1,2; {x(3)

i ,H2} = −(ω2
0 + ω2

1)x
(2)
i − ω2

0ω
2
1xi (7)

hold with respect to some Poisson bracket {·, ·}. The latter is to be determined [7]. The conditions 
above can be expressed in the form of a system of linear algebraic equations. A unique solution 
to it yields the following nonvanishing Poisson-like structure relations for the variables of the 
configuration space [7]

{xi, x
(1)
j } = 1

ω2
1 − ω2

0

(
1

α0
+ 1

α1

)
δij , {xi, x

(3)
j } = − 1

ω2
1 − ω2

0

(
ω2

0

α0
+ ω2

1

α1

)
δij ,

{x(1)
i , x

(2)
j } = 1

ω2
1 − ω2

0

(
ω2

0

α0
+ ω2

1

α1

)
δij , {x(2)

i , x
(3)
j } = 1

ω2
1 − ω2

0

(
ω4

0

α0
+ ω4

1

α1

)
δij .

(8)

Evidently, this Poisson-like structure together with (6) correspond to Ostrogradsky’s Hamiltonian 
formalism if α0 = −1, α1 = 1.

The canonical coordinates with respect to the Poisson structure (8) have the form [4]

x0
i =

√
|α0|

ω2
1 − ω2

0

(
x

(2)
i + ω2

1xi

)
, p0

i = sign(α0)
dx0

i

dt
;

x1
i =

√
|α1|

ω2
1 − ω2

0

(
x

(2)
i + ω2

0xi

)
, p1

i = sign(α1)
dx1

i

dt
,

(9)

where sign(x) is the standard signum function. Indeed, it is straightforward to verify that these 
variables obey the following nonvanishing structure relations

{xk
i ,pm

j } = δij δkm (10)

under the Poisson bracket (8).
The Hamiltonian (6) in terms of the canonical variables (9) takes the form

H2 = 1

2
sign(α0)(p

0
i p

0
i + ω2

0x
0
i x0

i ) + 1

2
sign(α1)(p

1
i p

1
i + ω2

1x
1
i x1

i ).

If α0 and α1 are both positive, then one has a positive-definite Hamiltonian. This obviously leads 
to the ghost-free quantum theory for the fourth-order PU oscillator.

2.2. The general case

In order to generalize an alternative Hamiltonian structure obtained in [7] to the case of the 
PU oscillator of order 2n, let us introduce the following integral of motion

Hn =
n−1∑
k=0

αkJk, (11)

where constants αk with k = 0, 1, .., n − 1 can take arbitrary nonzero values.
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At the next step, we have to search for such a Poisson structure which produces the equations

{x(k)
i ,Hn} = x

(k+1)
i , k = 0,1, ..,2n − 2, {x(2n−1)

i ,Hn} = −
n−1∑
k=0

σn
k x

(2k)
i . (12)

In contrast to the analysis in the previous subsections, a straightforward calculation of this struc-
ture faces technical difficulties. Note, however, that (8) can be written in a more compact form

{x(s)
i , x

(m)
j } = wsmδij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, s + m – even;

(−1)
s+m−(−1)s

2

n−1∑
k=0

ωs+m−1
k ρk

αk

δij , s + m – odd.
(13)

The corresponding Poisson bracket is defined in the standard way

{A,B} =
2n−1∑
s,m=0

wsm

∂A

∂x
(s)
i

∂B

∂x
(m)
i

. (14)

One can straightforwardly verify that the equations (12) are satisfied with respect to this bracket 
by making use of the following identities2

n−1∑
m=0

(−1)mω2m
p σn

m,k = (−1)k

ρk

δkp;

n−1∑
k=0

(−1)k(−ω2
k)

sσ n
p,kρk =

⎧⎨
⎩

δsp, s = 0,1, .., n − 1;
−σn

p , s = n,

(15)

where we denote

σn
p,k =

n−1∑
i1<i2<..<in−p−1=0

i1,i2,..,in−p−1 �=k

ω2
i1
ω2

i2
..ω2

in−p−1
, σ n

n−1,k = 1.

One can also show with the aid of these identities that the variables

xk
i = √|αk|ρk

n−1∏
m=0
m �=k

(
d2

dt2
+ ω2

m

)
xi, pk

i = sign(αk)
dxk

i

dt
, k = 0,1, .., n − 1, (16)

obey the structure relations (10) under the Poisson bracket (14). The existence of these coordi-
nates implies also that the Jacobi identity is satisfied for the structure (13).

The Hamiltonian (11) can be rewritten in the following form

Hn = 1

2

n−1∑
k=0

sign(αk)(p
k
i p

k
i + ω2

kx
k
i xk

i ). (17)

2 The proof of the identities (15) is given in Appendix.
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The choice αk = (−1)k+1 corresponds to Ostrogradsky’s approach. But if all constants are posi-
tive, the alternative Hamiltonian is positive-definite and is more suitable for physical applications.

In Refs. [16,17], in order to obtain an alternative Hamiltonian formulation of the PU oscillator, 
another approach is used which is based on the observation that the equation of motion (2) is 
equivalent to a system of second-order differential equations which describe a set of decoupled 
harmonic oscillators. Then the Hamiltonian formulation of the latter system is linked to the PU 
oscillator as well. The Hamiltonian (17) coincides with that in [16,17].

2.3. About the results in Ref. [8]

Let us consider an alternative Hamiltonian structure for the one-dimensional PU oscillator of 
the order 2n which has been obtained in Ref. [8]. The authors introduce the alternative Hamilto-
nian of the form

H̃ =
n−1∑
k=0

bkH̃k,

where

bk = 1

ωk

n−1∏
j=0
j �=k

(ω2
k − ω2

j )

, H̃k = 1

2

(
n−1∑
m=0

σn
m,kx

(2m+1)

)2

+ ω2
k

2

(
n−1∑
m=0

σn
m,kx

(2m)

)2

.

(18)

It is evident that H̃ is not positive definite because for each value of n = 2, 3, .. there are negative 
coefficients among bk . In particular, for the fourth-order case one finds

H̃ = 1

ω0(ω
2
0 − ω2

1)
H̃0 + 1

ω1(ω
2
1 − ω2

0)
H̃1 = 1

ω0ω1(ω
2
1 − ω2

0)
(ω1H̃0 − ω0H̃1). (19)

In this sense the Hamiltonian H̃ is not better than Ostrogradsky’s one (4). It comes as a surprise 
that the quantum analogue of (19) presented in [8] has the form (Eq. (40) in [8])

Ĥ = h̄

1∑
k=0

ωk

(
a

†
kak + 1

2

)
, (20)

where ak , a†
k are the creation and annihilation operators which obey the conventional commuta-

tion relations. It is obvious that the quantum theory determined by (20) is ghost-free.
It was claimed in [8] that the Poisson structure

{x, x(1)} = 2(ω0 + ω1), {x, x(3)} = −2(ω3
0 + ω3

1),

{x(1), x(2)} = 2(ω3
0 + ω3

1), {x(2), x(3)} = 2(ω5
0 + ω5

1)
(21)

yield equations (7) which involve the Hamiltonian (19). However, the straightforward calcula-
tions give

{x, H̃ } = −2(ω2
0 + ω2

1)x
(1) − 4x(3), {x(1), H̃ } = 4ω2

0ω
2
1x + 2(ω2

0 + ω2
1)x

(2),

{x(2), H̃ } = 4ω2
0ω

2
1x

(1) + 2(ω2
0 + ω2

1)x
(3),

{x(3), H̃ } = −2ω2
0ω

2
1(ω

2
0 + ω2

1)x − 2(ω4
0 + ω4

1)x
(2),

which differ from (7).
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Suppose the coefficients bk are allowed to be amended, while the Poisson structure is fixed in 
the form (13). With the aid of (8) one can find the Hamiltonian which corresponds to the structure 
(21). Demanding the right hand sides in Eqs. (8) and (21) to be equal to each other, one gets the 
system of three linear equations involving two variables α0 and α1

1

ω2
1 − ω2

0

(
1

α0
+ 1

α1

)
= 2(ω0 + ω1),

1

ω2
1 − ω2

0

(
ω2

0

α0
+ ω2

1

α1

)
= 2(ω3

0 + ω3
1),

1

ω2
1 − ω2

0

(
ω4

0

α0
+ ω4

1

α1

)
= 2(ω5

0 + ω5
1),

which has the solution

αk = 1

2ωk(ω
2
1 − ω2

0)
.

Taking into account (5), one finally concludes that the correct choice of the coefficients bk in 
(18) for the fourth-order case is

bk = 1

2ωk(ω
2
1 − ω2

0)
2
.

Higher-order PU oscillators can be treated likewise.

2.4. Compatible generalizations

Consider the deformation of the Hamiltonian (11)

Hint =Hn + U, (22)

where U = U(xi, x
(1)
i , .., x(2n−1)

i ) is an arbitrary function. Let us require this function to obey 
the equations

{x(k)
i ,U} = 0, k = 0,1, ..,2n − 2

under the bracket (14). These conditions can be presented in the form

n−1∑
m=0

(−1)m
∂U

∂x
(2m+1)
i

n−1∑
k=0

ω2s+2m
k ρk

αk

= 0, s = 0,1, .., n − 1, (23)

n−1∑
m=0

(−1)m
∂U

∂x
(2m)
i

n−1∑
k=0

ω2s+2m
k ρk

αk

= 0, s = 0,1, .., n − 2. (24)

Subsystems (23) and (24) can be treated separately. The first subsystem (23) is homogeneous and 
includes n linear equations involving n partial derivatives of the function U . The matrix of this 
subsystem can be represented as follows

A =

⎛
⎜⎜⎜⎜⎜⎝

1 1 ... 1

ω2
0 ω2

1 ... ω2
n−1

... ... ... ...

ω
2(n−1)

ω
2(n−1)

... ω
2(n−1)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ρ0
α0

0 ... 0

0 ρ1
α1

... 0

... ... ... ...

0 0 ...
ρn−1

⎞
⎟⎟⎟⎟⎠ ×
0 1 n−1 αn−1
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×

⎛
⎜⎜⎜⎜⎝

1 −ω2
0 ... (−ω2

0)
n−1

1 −ω2
1 ... (−ω2

1)
n−1

... ... ... ...

1 −ω2
n−1 ... (−ω2

n−1)
n−1

⎞
⎟⎟⎟⎟⎠ .

The corresponding determinant reads

det A = (−1)
n(n−1)

2

⎛
⎝ n−1∏

i1<i2=0

(ω2
i2

− ω2
i1
)

⎞
⎠

2
n−1∏
i=0

ρi

αi

= (−1)
n(n−1)

2

n−1∏
i=0

αi

.

Then the matrix of the subsystem (23) is nondegenerate and one has only the trivial solution

∂U

∂x
(2m+1)
i

= 0, with m = 0,1, .., n − 1. (25)

The subsystem (24) is a homogeneous system of n −1 linear equations on n partial derivatives 
of the function U which has infinitely many solutions.

It is straightforward to verify that owing to (24) the following relations

1
n−1∑
k=0

αkσ
n
0,kρk

∂U

∂xi

= 1
n−1∑
k=0

αkσ
n
1,kρk

∂U

∂x
(2)
i

= . . . = 1
n−1∑
k=0

αkσ
n
n−1,kρk

∂U

∂x
2(n−1)
i

hold. When verifying these formulae, the identities (15) prove to be helpful. Thus, we have the 
following ansatz for the function U

U = U

⎛
⎝ n−1∑

k,m=0

αkσ
n
m,kρkx

(2m)
i

⎞
⎠ = U

(
n−1∑
k=0

sign(αk)
√|αk|ρkx

k
i

)
(26)

which preserves the Hamiltonian structure of the equations

{x(k)
i ,Hint} = x

(k+1)
i , k = 0,1, ..,2n − 2.

Then the Hamiltonian Hint can be viewed as describing a deformed PU oscillator whose equa-
tions of motion read

n∑
k=0

σn
k x

(2k)
i − {x(2n−1)

i ,U} = 0. (27)

In a recent work [17] (see also [16]), this modification of the one-dimensional PU oscillator3 has 
been investigated with the use of the concept of the Lagrange anchor [24]. It was demonstrated 
that (27) follows from the variational problem only if αk = (−1)k+1. Otherwise, this equation 
can be viewed as a non-variational deformation of the original PU oscillator. We thus conclude 
that the model in [17] can be treated as the unique generalization of the PU oscillator which is 
compatible with the Poisson structure (13).

3 About deformations of the PU oscillator see also [22,23] and references therein.
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The existence of the class of functions (26) allows one to construct new interacting nonvaria-
tional systems which admit canonical formulation with positive-definite Hamiltonian. It suffices 
to choose all αk to be positive. Then the Hamiltonian

H̃int = 1

2

n−1∑
k=0

(pk
i p

k
i + ω2

kx
k
i xk

i ) + 1

2
pipi + U1

(
n−1∑
k=0

√
αkρkx

k
i

)
U2(yi) (28)

together with the Poisson structure which results from (13) and the relations

{yi,pj } = δij , pi = ẏi ,

correspond to the PU oscillator and nonrelativistic particle which interact with each other. The 
dynamics of this model obeys the following system of equations

n∑
k=0

σn
k x

(2k)
i − U2{x(2n−1)

i ,U1} = 0, ÿi − U1
∂U2

∂yi

= 0. (29)

If the function U = U1U2 is positive-definite, then the Hamiltonian (28) also has the same prop-
erty.

In a similar fashion one can realize the coupling of the PU oscillator with the harmonic oscil-
lator, with another PU oscillator, etc. Many particle generalization is straightforward as well.

3. N = 2 supersymmetric PU oscillator

3.1. An alternative Hamiltonian formalism

Let us generalize the results obtained in the previous section to the case of N = 2 supersym-
metric PU oscillator [20,21]. Apart from xi this model is described by extra bosonic coordinates 
zi and by fermionic coordinates ψi , ψ̄i which are complex conjugate to each other. The evolution 
of xi is governed by (2) while the dynamics of other variables is described by

n−1∏
m=1−n

(
d

dt
− iωm

)
ψi = 0,

n−1∏
m=1

(
d2

dt2
+ ω2

m

)
zi = 0,

n−1∏
m=1−n

(
d

dt
+ iωm

)
ψ̄i = 0, (30)

where we denoted ω−k = −ωk .
The equations (2), (30) can be derived from the action functional [21]

S = 1

2

∫
dt

⎛
⎝xi

n−1∏
k=0

(
d2

dt2
+ ω2

k

)
xi − iψi

n−1∏
k=1−n

(
d

dt
+ iωk

)
ψ̄i−

−iψ̄i

n−1∏
k=1−n

(
d

dt
− iωk

)
ψi − zi

n−1∏
k=1

(
d2

dt2
+ ω2

k

)
zi

⎞
⎠ .

(31)

This action is invariant under time translations. The corresponding Noether integral of motion 
can be presented in the form [21]

H =
n−1∑

(−1)k+1Jk +
n−1∑

(−1)k+1Fk +
n−1∑

(−1)k+1J−k, (32)

k=0 k=−n+1 k=1
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where Jk with k = 0, 1, .., n − 1 are defined in (5), while4

Fk = ωkβk

n−1∏
m=−n+1

m �=k

(
d

dt
− iωm

)
ψi

n−1∏
m=−n+1

m �=k

(
d

dt
+ iωm

)
ψ̄i ,

βk = (−1)k+n−1

n−1∏
i=−n+1

i �=k

(ωi − ωk)

,

J−k = μk

2

⎛
⎜⎜⎝

n−1∏
m=1
m �=k

(
d2

dt2
+ ω2

m

)
dzi

dt

⎞
⎟⎟⎠

2

+ μkω
2
k

2

⎛
⎜⎜⎝

n−1∏
m=1
m �=k

(
d2

dt2
+ ω2

m

)
zi

⎞
⎟⎟⎠

2

,

μk = (−1)k+1

n−1∏
i=1
i �=k

(ω2
i − ω2

k)

. (33)

The quantities Fk and J−k are integrals of motion which correspond to the following symme-
try transformations

δψi = −βk

n−1∏
m=−n+1

m �=k

(
d

dt
− iωm

)
dψi

dt
εk, δψ̄i = −βk

n−1∏
m=−n+1

m �=k

(
d

dt
+ iωm

)
dψ̄i

dt
εk,

δzi = μk

n−1∏
m=1
m �=k

(
d2

dt2
+ ω2

m

)
dzi

dt
ε−k,

where εk and ε−k are infinitesimal parameters of the transformations corresponding to Fk and 
J−k , respectively.

If we deform the Hamiltonian (32) as follows5

H =
n−1∑

k=−n+1

(αkJk + γkFk) (34)

and require that the equations (12) and their analogues for the variables ψi , ψ̄i , zi are satisfied, 
then the following graded Poisson bracket is found

{A,B} =
2n−1∑
s,m=0

wsm

∂A

∂x
(s)
i

∂B

∂x
(m)
i

+
2n−3∑
s,m=0

w̃sm

∂A

∂z
(s)
i

∂B

∂z
(m)
i

+

4 For the fourth-order N = 2 supersymmetric PU oscillator the integral of motion J−1 = 1
2

(
dzi
dt

)2 + 1
2 ω2

1z2
i

corre-

sponds to the symmetry transformations δzi = − dzi
dt

ε−1, {zi , ̇zj } = δij .
5 As usual, all coefficients are arbitrary nonzero constants.
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+
2n−2∑
s,m=0

fsm

( ←−
∂ A

∂ψ
(s)
i

−→
∂ B

∂ψ̄
(m)
i

+
←−
∂ A

∂ψ̄
(s)
i

−→
∂ B

∂ψ
(m)
i

)
, (35)

where the coefficients fsm and w̃sm are defined by

fsm = is−m−1
n−1∑

k=−n+1

ωs+m
k βk

γk

, w̃sm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, s + m – even;

(−1)
s+m−(−1)s

2

n−1∑
k=1

ωs+m−1
k μk

α−k

, s + m – odd,

(36)

and wsm was introduced in (13). The fact that this bracket produces the Hamiltonian equations 
for all the variables of the configuration space of an N = 2 supersymmetric PU oscillator can be 
verified in the same way as it has been done for the Poisson structure (13) in the previous section 
(some helpful formulae are given in Appendix).

Let us introduce the oscillator coordinates [4,21]

x−k
i = √|α−k|ρ̃k

n−1∏
m=1
m �=k

(
d2

dt2
+ ω2

m

)
zi, p−k

i = sign(α−k)
dx−k

i

dt
, k = 1,2, .., n − 1,

ψk
i = √|γk|βk

n−1∏
m=−n+1

m �=k

(
d

dt
− iωm

)
ψi, ψ̄k

i = (ψk
i )∗, k = −n + 1, .., n − 1,

(37)

where (·)∗ stands for the complex conjugation. These coordinates obey the structure relations

{x−k
i , x−m

j } = δij δkm, {ψk
i , ψ̄m

j } = −i sign(γk)δij δkm. (38)

In terms of coordinates (16), (37) the Hamiltonian (34) takes the form

H = 1

2

n−1∑
k=−n+1

(
sign(αk)(p

k
i p

k
i + ω2

kx
k
i xk

i ) + 2sign(γk)ωkψ
k
i ψ̄k

i

)
.

As in the bosonic case, one has a Hamiltonian which is more suitable for quantization only if 
all coefficients αk are positive. On the other hand, the presence of the negative coefficients γk

leads to the structure relations {ψk
i , ψ̄m

j } = iδij δkm (see (38)). As was demonstrated in [21], on 
quantization these relations immediately bring about the negative norm states. So, one has to set 
all the coefficients γk to be positive as well. The corresponding Hamiltonian reads

H = 1

2

n−1∑
k=−n+1

(pk
i p

k
i + ω2

kx
k
i xk

i + 2ωkψ
k
i ψ̄k

i ). (39)

Along with the Hamiltonian, the full formulation of an N = 2 supersymmetric PU oscillator 
involves supercharges. We obtain these in the next subsection.

3.2. Supercharges and other integrals of motion

The form of the Hamiltonian (39) allows one to use the action functional
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S = 1

2

∫
dt

n−1∑
k=−n+1

(
ẋk
i ẋk

i − ω2
kx

k
i xk

i + iψk
i

˙̄ψk
i + iψ̄k

i ψ̇k
i − 2ωkψ

k
i ψ̄k

i

)
(40)

so as to obtain integrals of motion for the original N = 2 supersymmetric PU oscillator. In partic-
ular, the Hamiltonian (39) is the Noether integral of motion which corresponds to the invariance 
under time translations. Moreover, a conventional Hamiltonian formulation for the model (40)
leads to the structure relations (10), (38) (for technical details see, e.g. [21]). The supersymmetry 
transformations

δxk
i = ψk

i α + ψ̄k
i ᾱ, δψk

i = −(iẋk
i − ωkx

k
i )ᾱ, δψ̄k

i = −(iẋk
i + ωkx

k
i )α, (41)

lead to the desirable supercharges

Q =
n−1∑

k=−n+1

ψk
i

(
pk

i − iωkx
k
i

)
, Q̄ =

n−1∑
k=−n+1

ψ̄k
i

(
pk

i + iωkx
k
i

)
. (42)

The action functional (40) is also invariant under the bosonic and fermionic translations

δxk
i = cos (ωkt)a

k
i + 1

ωk

sin (ωkt)b
k
i , δψk

i = eitωkαk
i , δψ̄k

i = e−itωk ᾱk
i ,

as well as under rotations

δxk
i = ωijx

k
j , δψk

i = ωijψ
k
j , δψ̄k

i = ωij ψ̄
k
j , where ωij = −ωji,

and the U(1) R-symmetry transformations

δψk
i = iνψk

i , δψ̄k
i = −iνψ̄k

i .

The Noether theorem yields the integrals of motion

P k
i = cos (ωkt)p

k
i + ωk sin (ωkt)x

k
i , �k

i = e−iωktψk
i ,

Mij =
n−1∑

k=−n+1

−xk[ipk
j ] + iψk[i ψ̄k

j ],

Xk
i = 1

ωk

sin (ωkt)p
k
i − cos (ωkt)x

k
i , �̄k

i = eitωk ψ̄k
i , J =

n−1∑
k=−n+1

ψk
i ψ̄k

i , (43)

which obey
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{Q,Q̄} = −2iH, {Mij ,A
k
s } = As

i δjk − As
j δik, Ak

i = P k
i ,Xk

i ,�
k
i , �̄k

i

{H,�̄k
i } = iωk�̄

k
i , {H,�k

i } = −iωk�
k
i , {H,P k

i } = −ω2
kX

k
i ,

{H,Xk
i } = P k

i ,

{J,Q} = −iQ, {Q,�̄k
i } = −iP k

i + ωkX
k
i , {Q,P k

i } = −iωk�
k
i ,

{Q,Xk
i } = �k

i ,

{J, Q̄} = iQ̄, {Q̄,�k
i } = −iP k

i − ωkX
k
i , {Q̄,P k

i } = iωk�̄
k
i ,

{Q̄,Xk
i } = �̄k

i ,

{�k
i , �̄m

j } = −iδij δkm, {P k
i ,Xm

j } = δkmδij , {J,�k
i } = −i�k

i ,

{J, �̄k
i } = i�̄k

i .

Despite the fact that our alternative Hamiltonian formulation has been obtained beyond the 
conventional technique, we are still able to use the Noether theorem to construct integrals of 
motion of an N = 2 supersymmetric PU oscillator by using of the action functional (40).

To conclude this section, let us clarify some details regarding quantization of an N = 2 super-
symmetric PU oscillator with the Hamiltonian (39). In order to construct a quantum counterpart 

of this model, we introduce the hermitian operators x̂k
i , p̂k

i and the operators ψ̂k
i , ˆ̄ψk

i which are 
hermitian conjugates of each other. In accord with (10), (38), one finds the following nonvanish-
ing (anti)commutation relations

[x̂k
i , p̂m

j ] = ih̄δkmδij , {ψ̂k
i , ˆ̄ψm

j } = h̄δkmδij .

Let us also introduce the creation āk
i , c̄k

i and annihilation ak
i = (

āk
i

)†
, ck

i = (
c̄k
i

)†
operators

ak
i =

√
ω|k|
2h̄

x̂k
i + i√

2ω|k|h̄
p̂k

i , āk
i =

√
ω|k|
2h̄

x̂k
i − i√

2ω|k|h̄
p̂k

i , k = −n + 1, .., n − 1,

ck
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
h̄

ˆ̄ψk
i ,

1√
h̄

ψ̂k
i ,

c̄k
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
h̄

ψ̂k
i , k = 0,1, .., n − 1,

1√
h̄

ˆ̄ψk
i , k = −n + 1, ..,−1,

which obey the structure relations

[ak
i , ā

m
j ] = δkmδij , {ck

i , c̄
m
j } = δkmδij .

The quantum Hamiltonian can be written in the form6

Ĥ =
n−1∑

k=−n+1

h̄ω|k|
(
āk
i a

k
i + c̄k

i c
k
i

)
. (44)

6 We choose the Weyl ordering for the fermions ψkψ̄k → 1
(
ψ̂k ˆ̄ψk − ˆ̄ψkψ̂k

)
.

i i 2 i i i i
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Evidently, this variant of the quantum N = 2 supersymmetric PU oscillator has a stable ground 
state as well as a bounded from below energy spectrum. The Hilbert space does not contain 
negative norm states.

4. Conclusion

In this paper we have constructed an alternative canonical formulation for the PU oscillator 
of order 2n with positive-definite Hamiltonian following the method originally proposed in [7]. 
The corresponding Poisson structure has been used in order to find possible generalizations of 
the PU oscillator which are compatible with the alternative Hamiltonian formulation. A proce-
dure to construct interacting many-body mechanics whose dynamics is governed by a system 
of nonvariational equations has been proposed. An alternative Hamiltonian formulation for an 
N = 2 supersymmetric PU oscillator has been constructed as well.

In Refs. [25,26] (see also [27–30]) it was shown that the PU oscillator is conformal invariant 
when frequencies of oscillation form the arithmetic sequence ωk = (2k+1)ω0. It is interesting to 
investigate how the conformal invariance can be realized within the framework of the alternative 
Hamiltonian formulation. Possible generalizations of an N = 2 supersymmetric PU oscillator 
which are compatible with the graded Poisson structure are worth studying as well. This requires 
more a sophisticated construction because one has to deform both the Hamiltonian and the su-
percharges in such a way that these deformations preserve both the Hamiltonian structure of the 
equations of motions and the algebra.

In Refs. [16,17] the stability of the PU oscillator has been investigated with the aid of the 
concept of the Lagrange anchor [24]. The latter can be applied to study higher-derivative field 
theories as well [16]. It is of interest to see how this method works for an N = 2 supersymmetric 
PU oscillator.
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Appendix A. The proof of identities (15)

a) Let us prove that

n−1∑
m=0

(−1)mω2m
p σn

m,k = (−1)k

ρk

δkp. (A.1)

First take into account that σn can be represented in the form [31]
s,k
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σn
s,k = 1

Vρk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ω2
0 ... ω2s−2

0 ω2s+2
0 ... ω2n−2

0

1 ω2
1 ... ω2s−2

1 ω2s+2
1 ... ω2n−2

1

... ... ... ... ... ... ...

1 ω2
k−1 ... ω2s−2

k−1 ω2s+2
k−1 ... ω2n−2

k−1

1 ω2
k+1 ... ω2s−2

k+1 ω2s+2
k+1 ... ω2n−2

k+1

... ... ... ... ... ... ...

1 ω2
n−1 ... ω2s−2

n−1 ω2s+2
n−1 ... ω2n−2

n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where V =
n−1∏

i1<i2=0
(ω2

i2
− ω2

i1
) is the Vandermonde determinant. Then the identity (A.1) can be 

written in the form

n−1∑
s=0

(−1)sω2s
p σ n

s,k = 1

Vρk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ω2
p ω4

p ... ω2n−4
p ω2n−2

p

1 ω2
0 ω4

0 ... ω2n−4
0 ω2n−2

0

... ... ... ... ... ...

1 ω2
k−1 ω4

k−1 .. ω2n−4
k−1 ω2n−2

k−1

1 ω2
k+1 ω4

k+1 .. ω2n−4
k+1 ω2n−2

k+1

... ... ... ... ... ...

1 ω2
n−1 ω4

n−1 ... ω2n−4
n−1 ω2n−2

n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

If p = k the determinant is equal to (−1)kV . Otherwise, it is zero. So, one has

n−1∑
s=0

(−1)sω2s
p σ n

s,k = 1

Vρk

(−1)kV δkp = (−1)k

ρk

δkp.

b) Let us prove another identity from (15)

n−1∑
k=0

(−1)k(−ω2
k)

sσ n
p,kρk = δsp, where s = 0,1, .., n − 1. (A.2)

At the first step, let us show that it holds for p = 0. Taking into account that σn
0,k =

n−1∏
i=0
i �=k

ω2
i , one 

obtains

n−1∑
k=0

(−1)k(−ω2
k)

sσ n
0,kρk = (−1)s

n−1∏
i=0

ω2
i

n−1∑
k=0

(−1)kω
2(s−1)
k ρk =

= (−1)s

V

n−1∏
i=0

ω2
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω
2(s−1)
0 ω

2(s−1)
1 ... ω

2(s−1)
n−1

1 1 ... 1

ω2
0 ω2

1 ... ω2
n−1

... ... ... ...

ω
2(n−2)
0 ω

2(n−2)
1 ... ω

2(n−2)
n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which implies that
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n−1∑
k=0

(−1)k(−ω2
k)

sσ n
0,kρk ∼ δs,0

for 0 ≤ s ≤ n − 1. Let us consider the case p = s = 0 and prove by induction that

n−1∑
k=0

(−1)kσ n
0,kρk = 1.

Indeed, it is straightforward to verify that this identity holds for n = 2. Then the chain of identical 
transformations

n∑
k=0

(−1)kσ n+1
0,k ρk = (−1)nσn+1

0,n ρn +
n−1∑
k=0

(−1)kσ n+1
0,k ρk =

= (−1)nρn

n−1∏
i=0

ω2
i +

n−1∑
k=0

(−1)kω2
nσ

n
0,kρk =

=

n−1∏
i=0

ω2
i

n−1∏
m=0

(ω2
m − ω2

n)

+
n−1∑
k=0

ω2
nσ

n
0,k

n∏
m=0
m�=k

(ω2
m − ω2

k)

=

=

n−1∏
i=0

ω2
i

n−1∏
m=0

(ω2
m − ω2

n)

+
n−1∑
k=0

(ω2
n − ω2

k + ω2
k)σ

n
0,k

n−1∏
m=0
m�=k

(ω2
m − ω2

k)(ω
2
n − ω2

k)

=

=

n−1∏
i=0

ω2
i

n−1∏
m=0

(ω2
m − ω2

n)

+
n−1∑
k=0

σn
0,k

n−1∏
m=0
m�=k

(ω2
m − ω2

k)

+
n−1∑
k=0

ω2
kσ

n
0,k

n∏
m=0
m�=k

(ω2
m − ω2

k)

=

=
n−1∑
k=0

(−1)kσ n
0,kρk +

n−1∏
i=0

ω2
i

n−1∏
m=0

(ω2
m − ω2

n)

+ 1

ω2
n

n−1∑
k=0

ω2
kσ

n+1
0,k

n∏
m=0
m�=k

(ω2
m − ω2

k)

=

=
n−1∑
k=0

(−1)kσ n
0,kρk +

n−1∏
i=0

ω2
i

n−1∏
(ω2

m − ω2
n)

+

m=0
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+ 1

ω2
n

⎛
⎜⎜⎜⎜⎜⎝

n∑
k=0

ω2
kσ

n+1
0,k

n∏
m=0
m�=k

(ω2
m − ω2

k)

−

n∏
i=0

ω2
i

n−1∏
m=0

(ω2
m − ω2

n)

⎞
⎟⎟⎟⎟⎟⎠ =

=
n−1∑
k=0

(−1)kσ n
0,kρk + 1

ω2
n

n∑
k=0

(−1)kω2
kσ

n+1
0,k ρk =

n−1∑
k=0

(−1)kσ n
0,kρk = 1

results in

n−1∑
k=0

(−1)k(−ω2
k)

sσ n
0,kρk = δs,0. (A.3)

At the next step, let us prove that the identity (A.2) holds for s ≥ p. To this end, we use the 
following relation

σn
p,k = �n

p,kσ
n
0,k, where �n

p,k =
n−1∑

i1<i2<..<ip=0
i1,i2,..,ip �=k

1

ω2
i1
ω2

i2
..ω2

ip

, �n
0,k = 1.

Let us also define

�n
p =

n−1∑
i1<i2<..<ip=0

1

ω2
i1
ω2

i2
..ω2

ip

.

Then it is easy to show that

�n
p,k = �n

p − 1

ω2
k

�n
p−1 → �n

p,k =
p∑

m=0

(−1)m

ω2m
k

�n
p−m,

where, by definition, we have set �n
0 = 1. At this stage one finds

n−1∑
k=0

(−1)k(−ω2
k)

sσ n
p,kρk =

n−1∑
k=0

(−1)k(−ω2
k)

sρk

p∑
m=0

(−1)m

ω2m
k

�n
p−mσn

0,k =

=
p∑

m=0

�n
p−m

n−1∑
k=0

(−1)k(−ω2
k)

s−mσn
0,kρk.

According to (A.3) the latter expression is equal to zero if s > p. If s = p, one has

p∑
m=0

�n
p−m

n−1∑
k=0

(−1)k(−ω2
k)

p−mσn
0,kρk =

p∑
m=0

�n
p−mδpm = �n

0 = 1.

So, we have shown that the identity (A.2) holds for n − 1 ≥ s ≥ p. In order to finish the proof, 
one needs to use the relation

σn
p,k = σn

p+1 − ω2
kσ

n
p+1,k → σn

p,k =
n−p−1∑

(−1)rω2r
k σ n

p+r+1,
r=0
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where we have taken into account that σn
n−1,k = σn

n = 1. Then one finds

n−1∑
k=0

(−1)k(−ω2
k)

sσ n
p,kρk =

n−1∑
k=0

(−1)k(−ω2
k)

sρk

n−p−1∑
r=0

(−1)rω2r
k σ n

p+r+1 =

=
n−p−1∑

r=0

σn
p+r+1

n−1∑
k=0

(−1)k(−ω2
k)

r+sρk =

=
n−p−1∑

r=0

(−1)r+s
σ n

p+r+1

V

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω
2(r+s)
0 ω

2(r+s)
1 ... ω

2(r+s)
n−1

1 1 ... 1

ω2
0 ω2

1 ... ω2
n−1

... ... ... ...

ω
2(n−2)
0 ω

2(n−2)
1 ... ω

2(n−2)
n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

So, if the inequalities 0 ≤ r + s ≤ n − 2 are satisfied, this expression is equal to zero. This is true 
for s < p. Thus, the identity (A.2) is proved.

c) In order to show that the identity

n−1∑
k=0

(−1)k(−ω2
k)

nσn
p,kρk = −σn

p (A.4)

holds, let us make the following identical transformations

n−1∑
k=0

(−1)k(−ω2
k)

nσn
p,kρk = (−1)n

n−1∑
k=0

(−1)kω2n
k �n

p,kσ
n
0,kρk =

= (−1)n
n−1∑
k=0

(−1)kω2n
k σn

0,kρk

p∑
m=0

(−1)m

ω2m
k

�n
p−m =

= (−1)n
p∑

m=0

(−1)m�n
p−m

n−1∏
r=0

ω2
r

n−1∑
k=0

(−1)kω
2(n−m−1)
k ρk =

= (−1)n
p∑

m=0

(−1)m�n
p−mσn

0
1

V

n−1∑
k=0

(−1)kω
2(n−m−1)
k

n−1∏
i1<i2=0
i1,i2 �=k

(ω2
i2

− ω2
i1
) =

= (−1)n
p∑

m=0

(−1)m�n
p−mσn

0
1

V

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω
2(n−m−1)
0 ω

2(n−m−1)
1 ... ω

2(n−m−1)
n−1

1 1 ... 1

ω2
0 ω2

1 ... ω2
n−1

... ... ... ...

ω
2(n−2)

ω
2(n−2)

... ω
2(n−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

0 1 n−1
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= (−1)n
p∑

m=0

(−1)mσn
p−m

1

V
(−1)n−1V δm,0 = −σn

p ,

which establishes (A.4).

d) When verifying the fact that the graded Poisson bracket (35) produces the Hamiltonian equa-
tions of motion for all the variables of the configuration space of an N = 2 supersymmetric PU 
oscillator, the following analogues of the identities (15)

2n−2∑
r=0

(−1)rωr
q σ̃ n

r,k = (−1)n+k−1

βk

δqk,

n−2∑
r=0

(−1)rω2r
q σ n

r,k = (−1)k+1

μk

δqk,

n−1∑
k=−n+1

(−1)n+k−1(−ωk)
s σ̃ n

p,kβk =
⎧⎨
⎩

δsp, s = 0,1, ..,2n − 2;
−σ̃ n

p , s = 2n − 1

n−1∑
k=1

(−1)k+1(−ω2
k)

sσ n
p,kμk =

⎧⎨
⎩

δsp, s = 0,1, .., n − 2;
−σn

p, s = n − 1

prove to be helpful. Here we denoted

σ̃ n
p,k =

n−1∑
i1<i2<..<i2n−p−2=−n+1

i1,i2,..,i2n−p−2 �=k

ωi1ωi2 ..ωi2n−p−2 ,

σ̃ n
p =

n−1∑
i1<i2<..<i2n−p−1=−n+1

ωi1ωi2 ..ωi2n−p−1 ,

σ n
p,k =

n−1∑
i1<i2<..<in−p−2=1

i1,i2,..,in−p−2 �=k

ω2
i1
ω2

i2
..ω2

in−p−2
, σ n

p =
n−1∑

i1<i2<..<in−p−1=1

ω2
i1
ω2

i2
..ω2

in−p−1
.

By definition, σ̃ n
2n−2,k = σ̃ n

2n−1 = σn
n−2,k = σn

n−1 = 1.
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