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Abstract

Selfconsistent beam-beam interactions of colliding
bunches changes their transverse sizes due to the flip-flop
instability. Calculating the so-called dynamic β-functions
at the interaction point, we study the flip-flop instability
of colliding bunches with variations of the beam aspect
ratios. Even for symmetrical unperturbed lattice conditions
of colliding bunches the flip-flop instabilities conserving
and changing the aspect ratios of colliding bunches occur
within different and non-intersecting stopbands in the
working plane of betatron tunes. In particular, this effect
can limit the beam-beam performance of the colliding
bunches with round cross sections.

1 INTRODUCTION

According to observations [1], under certain conditions
transverse sizes of colliding bunches can spontaneously be-
come very different, so that the size of one bunch may sub-
stantially exceed that of its partner thus, limiting the col-
lider luminosity. This situation is not stable and after some
time the bunches exchange their sizes. As was reported
in Ref.[1], the variations in the transverse bunch sizes are
not accompanied by the observations of the (dipole) bunch
coherent signals. Such a phenomenon was called as the
flip-flop effect. A comprehensive description of the flip-
flop effect is embarrassed by a necessity to take into ac-
count the self-consistent nature of the beam-beam forces
and by the fact that very frequently non-linear dependen-
cies of the beam-beam force on the particle offsets are of
the primary importance. The self-consistent behavior of the
colliding bunches should essentially operate with simulta-
neous and correlative variations of sizes of both colliding
bunches. For that reason, it cannot be studied using a single
particle tracking only.

Generally, the difficulties in descriptions of the self-
consistent behavior of colliding bunches make attractive
the studies of simplified models predicting the flip-flop be-
havior. In Ref.[2] the flip-flop instability was found calcu-
lating self-consistent variations the bunch rms sizes at the
interaction point. The equilibrium bunch sizes ware ob-
tained as the period-one solutions to the envelope equations
describing the transport of the bunch rms sizes in the phase
space through the ring and taking into account nonlinear
beam-beam kicks. The instability appears when the enve-
lope equations for colliding bunches have multiple roots. It
may occur since these equations are intrinsically nonlinear.
To simplify calculations the beam-beam kick in Ref.[2] was
calculated assuming the round cross sections of bunches
and Gaussian distributions in bunches in transverse coordi-
nates. The synchrotron radiation damping and the heating

of bunches due to the fluctuations of particle synchrotron
radiation was taken into account to provide stationary un-
perturbed bunch sizes. In Ref.[3] these calculations were
generalized for the case of colliding bunches having flat
cross sections at the interaction point (IP). As far as the
calculations in Refs.[2, 3] are focused on the descriptions
of nonlinear phenomena, their performances demand nu-
merous artificial assumptions.

It was mentioned already in Ref.[2] and then in Ref.[4]
that a reasonable though simplified description of the
flip-flop instability can be obtained calculating in a self-
consistent way the so-called dynamic β-functions of collid-
ing bunches at IP. Within the framework of this model the
instability is though a self-consistent, but essentially inco-
herent effect. The calculations of β-functions can be done
using the linear approximation for the beam-beam kick in
the particle offsets. If we assume short bunches (σs � β),
the linear part of the beam-beam kick depends on the trans-
verse sizes of colliding bunches only. The periodicity con-
ditions for β-functions enable the calculations of their self-
consistent values. Emittances of colliding bunches are not
affected by the linear part of the beam-beam kick. For this
reason, the calculated variations of the β–functions result
in the self-consistent variations of transverse bunch sizes.
Generally, spontaneous variations of β-functions at the in-
teraction region change the lattice betatron functions along
the ring. That may result in the variations of the diffusion
coefficients and in relevant variations of the beam emit-
tances. We neglect such variations assuming that these
variations of the bunch emittances occur during the time in-
tervals essentially longer than the instability growth rates.
An obvious disadvantage of the model is that due to linear
dependence of the beam-beam force on the particle offsets
the model predicts the instabilities near the parametric res-
onances only.

In the papers [2, 3, 4] the calculations were done assum-
ing that the beam-beam interaction does not change the as-
pect ratios of the colliding bunches. That is a very strong
assumption. We report the main results of more general
study (see, e.g. in Ref.[5]), when such an assumption is not
used a priory.

2 ENVELOPE EQUATIONS

We assume head-on collisions, Gaussian distributions in
colliding bunches, a short bunch length (σs) as compared
to the value of β-function at the interaction point (IP) and
zero dispersion function at IP. Then, for small betatron par-
ticle offsets from the closed orbit (|x| � σx and |z| � σz)



the beam-beam kicks read

δz′± = −kz,±z±, kz,± =
2N∓re

γ±σz∓(σz∓ + σx∓)
, (1)

and

δx′
± = −kx,±x±, kx,± =

2N∓re

γ±σx∓(σz∓ + σx∓)
. (2)

Here, suffixes ± mark the values referring to the electron
(mark −) and the positron bunches, σx,z are the rms bunch
width and height, N± are the numbers of particles in the
bunches, γ± = E±/mc2 � 1 are the relativistic factors of
particles, re = e2/mc2 is the classical radius of the elec-
tron; an independent variable is the path along the closed
orbit (s), so that x′ = dx/ds. For simplicity, we neglect the
coupling of betatron oscillations in the ring arcs. Assum-
ing also zero dispersion and the β-function slopes at IP as
well as a linear map in the arcs without with equal betatron
tunes (µ0 = 2πν0) and betatron functions at IP for both col-
liding bunches we map the betatron oscillations though IP
and through the arcs. Then, simple matrix multiplications
result in the following expressions for the self-consistent
tune shifts and β-functions:

cosµz± = cosµ0 − kz±βz0

2
sin µ0, (3)

βz± sin µz± = βz0 sin µ0, (4)

cosµx+ = cosµ0 − kx,±βx0

2
sin µ0, (5)

βx± sin µx± = βx0 sin µ0, (6)

We assume that parameters for all bunches are chosen in
the way that the beam-beam parameters are equal for the
unperturbed bunch sizes:

B = 2πξ0 =
(kz,±βz)0

2
=

(kx,±βx)0
2

. (7)

Defining r = σx/σz and

z± =
βz0

βz±
, x± =

βx0

βx±
, q± =

1 + r0

1 + r±
,

we rewrite e.g. Eqs.(3) and (4) like follows

cosµz± = cosµ0 − Bz∓q∓ sin µ0, (8)

and
z2
+ = 1 + 2B cotµ0z−q− − B2z2

−q2
−. (9)

Similarly, we find

x2
± = 1 + 2B cotµ0

z∓q∓r0

r∓
− B2

(
z∓q∓r0

r∓

)2

, (10)

The oscillations are stable (| cosµ| ≤ 1) provided that

Bz±q± ≤ cot
(µ0

2

)
, Bz±q±

(
r0

r+

)
≤ cot

(µ0

2

)
.

(11)

For colliding bunches with round unperturbed cross sec-
tions at IP (r0 = 1) and using r =

√
z/x, we rewrite

Eqs.(9) and (10) in the following form

z2
± = 1 + 2B cotµ0w∓ − B2w2

∓, (12)

(
z±
r2±

)2

= 1 + 2B cotµ0
w∓
r∓

− B2

(
w∓
r∓

)2

, (13)

where w± = 2z±/(1+r±). Among others, these envelope
equations have the roots corresponding to r+ = r− = 1,
when the beam-beam interaction does not change the bunch
aspect ratios. In this case, the blowup in, say, vertical di-
rection results in a proportional increase in the horizontal
bunch size keeping the aspect ratio unaltered.

3 NON-SYMMETRICAL ASPECT
RATIOS

More general cases were studied solving Eqs.(12) and (13)
numerically. Typical results of these calculations are shown
in Figs.1 and 2. These graphs contain only the points cor-
responding to stable betatron oscillations. As is seen from
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Figure 1: Dependence of the β–functions at the interaction
point on the betatron tune. The cross sections of the un-
perturbed bunches are round (r0 = 1); ξ = 0.05; open
dots – roots from numerical solution, solid line – flip-flop
β–functions assuming unaltered bunch aspect ratios.

these figures, with an increase in the unperturbed betatron
tunes the flip-flop instability occurs in two regions. In the
first, the instability does not change the aspect ratios of the
bunches. So that after the blowup the initially round cross
section of the bunch remains to be round. However, for
higher betatron tunes appears a different flip-flop region,
where the self-consistent beam-beam interaction apart from
separation of β–functions of colliding bunches may result
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Figure 2: Dependence of the bunch aspect ratios on beta-
tron tune. The cross sections of the unperturbed bunches
are round (r0 = 1); ξ = 0.05.

in the spontaneous separation of their aspect ratios. Be-
cause of this new instability, if one of the bunches becomes
more flat in, say, the horizontal direction, then its partner
becomes flat in the vertical direction and vice versa. In our
model and for ordinary values of the beam-beam parameter
(ξ = 0.05) such an instability occurs below the parametric
resonances. We may expect that in more realistic cases,
when the beam-beam force is a non-linear function of the
particle offsets, similar splitting of beta-functions and as-
pect parameters will take place within the stopbands of
non-linear beam-beam resonances. Note, that the region
where the flip-flop instability changes the bunch aspect ra-
tios has a different orientation in the tune diagram than that,
where the bunch aspect ratios remain unaltered. In the case,
when aspect ratios are altered, the differences in the bunch
β–functions and of aspect ratios increase, when tune ap-
proaches the upper edge of the stopband. A decrease in the
beam-beam parameter (ξ) decreases the widths of the insta-
bility stopbands, but does not eliminate these instabilities.

4 CONCLUSION

The self-consistent beam-beam interaction may result in
a spontaneous breaking of the symmetry of the collid-
ing bunches. Within the framework of used here sim-
plified model we have found that self-consistent envelope
equations may have multiple roots. These roots can de-
scribe both the symmetrical self-consistent variations in
the betatron functions of the colliding bunches and the
non-symmetrical ones. Symmetrical solutions exist for all
tunes. The non-symmetrical solutions exist within defi-
nite stopbands of betatron tunes. For usual values of the
beam-beam parameter and for our simplified model, these

stopbands occur below parametric resonances. The non-
symmetrical solutions may correspond to separation of the
β–functions either with the conservation of the bunch as-
pect ratios, or the separation in the β–functions can be ac-
companied by the variations in the bunch aspect ratios of
the colliding bunches. The stopbands for these instabilities
are separated in the betatron tunes. Solutions with non-
symmetrical aspect ratios occur closer to the upper edge of
the parametric beam-beam resonance stopband. This cir-
cumstance can be used to control the self-consistent aspect
ratios of the colliding bunches. In the case of the flip-flop
instability with the variation of the bunch aspect ratios, one
of the colliding bunches becomes flat in the horizontal di-
rection, while its partner becomes flat in the vertical direc-
tion.

For more realistic cases, we may expect similar phenom-
ena within the stopbands of the non-linear beam-beam res-
onances.
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