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Introduction

Several phenomena happening in the universe show that there’s a lot of
variability in the universe itself, and that this evolution happens not only in
the global scale, but also locally. Examples of this feature are X-ray transients
and GRBs [1], [2]. These phenomena can be, at present, all explained by the
General Relativity theory, and the important fact for our purpose in this
work is that General Relativity predicts the propagation of gravitational
waves (G.W.). Now we want to focus on the problem of gravitational wave
emission from some selected objects, and in particular we want to find a
possible class of promising, well known, gravitational wave emitters, and to
characterize them. In order to do this, it is important to remember that
General Relativity prevents emission from evolved and isolated objects, such
old neutron stars (N.S.) which are not for example in a binary system. This is
a result of the Birkoff theorem [3], which we will talk about in more detail in
chapter 1, which in fact can be seen as the fundamental difference between
the case of gravitational waves and the one of electromagnetic waves. So,
with the aim of focusing on promising objects, we have to move our interest
onto systems in which the space-time is not stationary. So we will take as
promising sources systems composed by two bodies, i. e. binary systems in
which at least one of the objects is a compact object, namely neutron star.
Moreover, it is well known from Taylor’s measures about the binary pulsar
PSR 1913+16 [4] that the ”quadrupole formula” for the power radiated in
gravitational waves is valid and really describes the dynamic of such a system,
in the weak-gravity limit, namely when the perturbations in the elements of
the metric tensor are small with respect to the background. This means that
if we are not close to the extreme case of a black hole, we can successfully
use the linearized equations of relativity to perform our estimations about
radiated energy, waveforms and expected signal amplitudes. Our choice of
focusing on this kind of objects is also ”practical”, because, at present, the
exact description of the dynamics occurring in strong-relativity situations
requires some further efforts, and we would have to deal with numerical
relativity, which is not yet a widespread and easy methodology. So, we
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will take into considerations also, and especially, isolated pulsars, but only
binary pulsars. The problem we are going to deal with is to give an exact
description of how the signal phase evolves as time goes by. In fact, if a
neutron star emits some intrinsically periodic gravitational waves for some
reasons (that we are going to discuss), the phase doesn’t evolve linearly,
especially due to effects of the relative motion of the two objects in the binary
system, due to the Doppler effect [5]. Fortunately some of these objects
show also an electromagnetic emission, for example in the radio field, and so
they have been well studied by radioastronomers, whith phase measurements
characterized by a very good precision. Between the catalogs of binary radio
pulsars, we have found 5 objects which are promising as gravitational wave
emitters, and, for 4 of these 5 objects, radioastronomers can provide all the
orbital parameters which are needed to accurately predict the time evolution
of the gravitational wve phase, as seen by an Earth-based detector. We will
focus on these 4 objects, describe the astrophysical mechanisms that can lead
to gravitational wave emission, calculate the expected signal amplitudes and
compare them with the sensitivity of the AURIGA detector, in operation at
the INFN National Laboratories of Legnaro, and other detectors, by means
of their present or predicted sensitivity. We will find interesting upper limits
on the amount of the radiated gravitational energy, and discuss how these
upper limits can be used to upgrade a little bit the astrophysical knowledge
of these systems. What follows is just a frame of how this work is organized.

In chapter one, we will discuss gravitational wave sources, introduce the
quadrupole formula that we will use to calculate pulsar luminosity in gravi-
tational waves, in terms of the geometrical parameters of the source. We will
see why accretion is important, and discuss how accretion can occour and
behave. Finally, we will discuss how, from the measured electromagnetical
luminosity, one can infer the gravitational one.

In chapter two there is a complete description of the kinematic of the bi-
nary, namely the NS orbits and their effects on the gravitational signal phase.
We will discuss the Solar System Barycenter frame of reference (SSB), and
show that the so far achieved precisions on orbital parameters measurements
is good enough to successfully perform our study. We will illustrate the ob-
jects of interest, and our selection criteria through the databases. Finally,
we will discuss the detector motion in the SSB and how we can compose the
relative motion of the neutron star respect to the barycenter of the binary
systems, with the one of the detector, finally finding the phase evolution of
the binary at the detector input.

In chapter three, we will focus on data analysis, giving the basic proper-
ties of the AURIGA data, together with a brief description of the AURIGA
detector. In particular, we will see what the h-reconstructed data are, its
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transfer function and its noise features which are relevant to our study: the
detector will be characterized as the product of a sequence of filters, that
finally lead to the transfer function, as the instrument to use in order to
deconvolve the output. As experimental data of detectors are obtained by
sampling their analog outputs we will present our analysis in the discrete
time domain. We will give an example of how a signal would be seen, if
present, as added to the detector’s noise. We will discuss the problem of the
instabilities which can eventually arise in phase evolution of data, and see
how these instabilities can be monitored if they really occur. We will apply
to the data the etherodyne detection technique, that leads to the extraction
of amplitude and phase of the signal. Then, the statistical interpretation of
the results will be given.

In chapter four we will give our final results.
In chapter five we draw our conclusions. Here we can anticipate that we

are not be able to reject the null hypothesis, i. e. the hypothesis that a signal
is not present in the noise, and so we must give our upper limit on signal
amplitudes. However, we will discuss in detail which are the astrophysical
implications of these upper limits, giving the interesting astrophysical state-
ments that can be inferred from our measure. Finally, we will discuss future
perspectives in this field. In fact, it’s worth noticing that the same method
we implement and use in this work (analysis approach and numerical codes)
can be applied to the case of interferometric Earth-based detectors, still ex-
isting (LIGO, VIRGO, GEO, TAMA) or upcoming in the future (Advanced
LIGO, Advanced VIRGO). In this case, our calculations about expected am-
plitudes, compared with sensitivities that will be achieved in the future, lead
to the conclusion that a detection of a real gravitational signal is possible,
and that further efforts in this field do make sense. In particular, a good
idea would be to apply the same method to the very recent measurements
about X-transients in pulsars, which can be performed with no additional
effort, searching for unexpected and interesting results; another possible ap-
plication, which doesn’t require a too large additional effort, is to apply this
method to another class of stellar systems, known as Low-Mass X-ray Bina-
ries.
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Chapter 1

Pulsars as gravitational wave

sources

1.1 Radiation from an isolated source: the

Birchoff theorem

The limit at which the linear theory results can be applied and can be con-
sidered reliable is not well known. The non-linearity of the gravitational field
is one of its fundamental properties, and so, in general, the non-linearities in
the field equations are important. For our purposes, it is important to study
the possibility of the emission of gravitational waves from space isolated and
limited sources, and so to introduce the concept of energy transfer, carried
out by a gravitational wave. To make the calculations feasible, one needs to
impose some geometrical conditions about the shape of the source. So, the
simpler hypothesis is that the source has a spherical symmetry, which is in
fact, with a good approximation, the case of old, isolated pulsars, that are
not accreting, and there are no perturbations of any kind coming from the
outer space outside the source. In this case, we can demostrate the validity of
a general result, by means of the Birchoff theorem, which in practice avoids
emission of gravitational wave from such a star. So, we have to look at dif-
ferent kind of sources, i.e. accreting pulsars in binary systems. The Birchoff
theorem states that, if a source is limited, isolated and spherically symme-
tric, the gravitational field, in the vacuum space, is necessarily static, and so
there is no emission of gravitational waves. To demonstrate the Birchoff the-
orem, we need to remember the result, coming from General Relativity, that,
for a isolated and spherically symmetric distribution of mass, it is always
possible to find a coordinate frame in which the general solution of the Ein-
stein’s equations in the vacuum space outside the source is the Schwarzschild
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6 CHAPTER 1. PULSARS AS GRAVITATIONAL WAVE SOURCES

solution:

ds2 = (1 − 2m

r
)dt2 − (1 − 2m

r
)dr2 − r2(dθ2 + sin2θdφ2) . (1.1)

The first consequence of equation 1.1 is that gab,0 = 0, and so the solution is
stationary. Moreover [3], the coordinates adapt to the Killing vectorial field
are

Xa = δa
0 . (1.2)

Given the fact that

Xa = gabX
b = gabδ

b
0 = g0aδ

0
a = (1 − 2m

r
, 0, 0, 0) , (1.3)

we immediately see that the field Xa admits the orthogonality hypersurfaces
expressed by the relation

Xa = λf,a , (1.4)

where

λ = X2 = g00 (1.5)

and

f,a = t = constant . (1.6)

So the (time- type) Killing vectorial field admits as orthogonality hypersur-
faces all the hypersurfaces of the family given by the condition t = constant,
and so the solution must be static. This result can also be thought in another
way: the solution of 1.1 is symmetric respect to time, because it is invariant
respect to the time reflexion t→ −t, and invariant respect to a generic time
shift, because it is invariant respect to the transformation t→ t+ constant.
So we have demonstrated that, in the vacuum, a spherically symmetric so-
lution is necessarily static (Birkhoff theorem). This is maybe an unexpected
result, because in newtonian theory the spherical symmetry is not related to
the time independence, and this result shows the particular character of the
nonlinear differential equations at partial derivatives of General Relativity
and how their solutions behave. In particular, the Birkhoff theorem implies
that, if a spherically symmetric source changes its shape, but still remaining
in a sperically symmetric shape, it can not diffuse any perturbations in the
outer space. This means that a pulsating but spherically simmetric star, even
if it is rotating, cannot emit gravitational waves. If such a source is confined
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in a limited region of the space r < a for some value a, so the solution of
the Einstein equation in the outer space must be the external Schwarzschild
solution. However, the opposite is not in general true: a source that leads to
an external Schwarzschild solution is not necessarily spherically symmetric,
so, in general, a source doesn’t inherit the symmetry of its own external field.
If we consider the limit of the metric 1.1 for r → ∞, we obtain the flat metric
of special relativity written in spherical cohordinates, i. e.

ds2 = dt2 − dr2 − r2(dθ2 + sin2θdφ2) , (1.7)

and so a spherically symmetric solution in the vacuum is, necessarily, asymp-
totically flat. So, in order to have emission of gravitational waves, one needs
to break the symmetry that is the hypothesis of the Birchoff theorem, namely
the spherical symmetry. But the only break of the spherical symmetry is not
enough to have a non-sationary field: for example, in the case of the Kerr met-
ric, the field is still stationary. We need to have a time-varying quadrupole
moment. One way to do this is for the body to have a non-zero quadrupole
moment and rotation. Under these conditions, gravitational waves can be
generated, as we show in section 1.2.

1.2 Quadrupole formula and radiated energy

We are going to see, given the Einstein’s equations of general relativity, the
relation between the emission of gravitational waves and a rotating star,
namely, how to get, with some approximations which can be applied in our
case, the quadrupole formula. The starting point are the Einstein equations
of General Relativity:

Rik −
1

2
gikR =

8πG

c2
Tik , (1.8)

where Rik is the Ricci tensor, which carries informations about the metric
coefficients gik, holding them and their second derivatives in a non-linear way,
R is the curvature scalar, build from the Ricci tensor by contracting indexes,
and Tik is the tensor holding the mass-energy distribution. If we are not in
the case of strong gravity, which is our case, because our problem is not the
one of a black hole, the metric can be written as the Minkovski’s one g

(0)
ik ,

plus little terms:

gik = g
(0)
ik − hik , hik << g

(0)
ik . (1.9)

In the vacuum space (Tik = 0), and in the linear approximation, it’s possible
to demonstrate that equations 1.8 can be all reduced to [6]

h;l
ik;l + 2Rlimkh

lm = 0 , (1.10)
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where ; is the co-variant derivative [7] and Rlimk is the background Riemann
tensor; here equations 1.10 are written chosing (using the gauge freedom) the
transverse-traceless gauge given by

δmnhmn = 0 and δmn∂mhni = 0 . (1.11)

In order to relate the propagation of the wave to the source which generated
the wave itself, it’s useful to introduce the energy-impulse pseudotensor as
done in [7]. In fact, if we introduce for synthesis the quantities

ψik = hik −
1

2
δikh , (1.12)

equations 1.10 become

1

2
2ψik =

8πG

c4
τik , (1.13)

where 2 is the D’Alembert operator 2 = −gik
( 0) ∂2

∂xi∂xk
or also 2 = 4− 1

c2
1
c2

∂2

∂t2

if we want to write it using the Laplace symbol 4 and τik is the energy-
impulse pseudo-tensor introduced by [7]. It is important to notice that this
object is not a tensor, meaning that its components don’t transform as the
ones of a tensor, and it contains in practice only the terms of Tik that only
refer to the field and not to the matter. From equation 1.13 one can write each
component of the wave tensor as an integral over a volume of the space. In
fact, using the concept of retarded time t′ = t−R

c
where R is the distance from

the source, and using the well known theorems of the differential calculus,
one can write

ψk
i = − 4k

c4R0

∫

(τ k
i )t−R/cdV . (1.14)

Now we want to calculate these integrals. We must use the relation

∂τ k
i

∂xk
= 0 , (1.15)

which is true because the same condition is true for the tensor of the wave.
Lowering the index, one finds

∂ταγ

∂xγ
− ∂τα0

∂x0
= 0 =

∂τ0γ

∂xγ
− ∂τ00
∂x0

. (1.16)

If we multiply equation 1.16 by xβ and integrate over all the volume, we find

∂

∂x0

∫

τα0x
βdV =

∫

∂ταγ

∂xγ
xβdV =

∫

∂(ταγx
β)

∂xγ
dV −

∫

ταβdV . (1.17)
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Given the fact that, at the infinity, it is τik = 0, the first integral in the
second member of the previous equation is 0 because of the Gauss theorem.
Then we have

∫

ταβdV = −1

2

∂

∂x0

∫

(τα0x
β + τβ0x

α)dV . (1.18)

Then, let’s multiply the second part of 1.17 by xαxβ and integrate over the
space: we find

∂

∂x0

∫

τ00x
αxβdV = −

∫

(τα0x
β + τβ0x

α)dV . (1.19)

If we compare 1.18 with 1.19, we have that

∫

ταβdV =
1

2
(
∂

∂x0
)2

∫

τ00x
αxβdV . (1.20)

Now, we have to recall that, when there is no electric charge and angular
momentum, it is always true that τ00 = µc2, where µ is the mass density. In
fact, if ui is the 4-velocity, it is T k

i = µc2uiu
k, i. e. T 0

0 = µc2, and the energy-
impulse pseudo-tensor has, by its definition, the property that τ00 = T00. So,
equation 1.14 can be re-written as

ψαβ = − 2k

c4r

∂2

∂t2

∫

µxαxβdV . (1.21)

If the distance r from the observer to the emitting body is large respect to
the dimensions of the star emitting the wave, we can approximate the wave
to a plane wave. So, if we introduce the tensor quadrupole moment of the
emitting body as

Dαβ =

∫

µ(3xαxβ − r2δαβ)dV , (1.22)

the density of the energy flux which is radiated in the direction, for example,
of the x1 axis is

k

36πc5r2

[

(
···

D22 −
···

D33 2)2+
···

D2
23

]

. (1.23)

It’s worth noticing that µxαxβ is the inertia matrix of the source, and that
eq. 1.23 is directly the quadrupole formula 1.24.
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1.3 G. W. emission from a rotating pulsar

In this section, to indicate derivatives we use the notation introduced in
Weinberg [8], and the same signature (-1, 1, 1, 1) of the metric in the space-
time. Let’s consider a non-axisymmetric neutron star, which is rotating
with an angular velocity ω, and an observator placed at a fixed distance r
from the rotating star. The amplitude of the gravitational wave emitted by
the rotating star, as observed at the time t′, assuming that the quadrupole
approximation described in [7] holds, is given by

hjk(t, r) =
2G

c4r
Ijk,00(t

′), (1.24)

where Ijk is the matrix of inertia of the pulsar, t′ is the delayed time t′ =
t− r/c, G is the gravitational constant and c is the speed of light. It is very
important to notice that the formula (1.24) has been experimentally verified
with a very good precision by Taylor’s measurements about the binary pulsar
PSR 1913+16 [4]. In what follows we indicate the tensor I in a reference
frame having its origin in the center of mass of the star and fixed respect to
the star itself, and with its êz axis lying along the direction of the angular
momentum of the star. In this frame, we can write the matrix I as

I =





I1 + I2 + (I1 − I2) cos(2ωt) −(I1 − I2) sin(2ωt) 0
−(I1 − I2) sin(2ωt) I1 + I2 − (I1 − I2) cos(2ωt) 0
0 0 I3



 (1.25)

At this point, it’s useful to define the ellipticity of the star, as ε ≡ I1−I2
I3

.
With this definition, and substituting the equation (1.25) in (1.24), one finds

h(t, r
∧
ez) =

4G

c4r
εI3ω

2





− cos
[

2ω
(

t− r
c

)]

sin
[

2ω
(

t− r
c

)]

0
sin
[

2ω
(

t− r
c

)]

cos
[

2ω
(

t− r
c

)]

0
0 0 0



 (1.26)

So, following this simple model, the frequency at which the gravitational
wave is emitted is 2ω.

Our purpose, now, is to characterize the behaviour of the wave as seen
from an observer located at the Earth surface. To this end, let’s introduce a
second reference frame, also with its origin in the center of mass of the star,
but which is rigidly rotated with respect to the previous one by an angle γ,
so that the new axis êz′ is aligned with the direction of the vector joining
the pulsar to the Earth. In this new reference system, let’s indicate the
gravitational wave tensor in the transverse traceless gauge, so that its only
non zero components are the ones orthogonal to the direction of propagation.
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This can be realized by using an operator which projects the wave tensor

in the plane which is orthogonal to the direction of propagation
→
n of the

wave itself. This operator Pjk is expressed by the following relationship:

Pjk = δjk − njnk, where nj are the components of
→
n in our reference frame.

Applying this projector to the wave tensor, we have

hTT
jk = PjlPmkh

lm − 1

2
PjkPmlh

lm . (1.27)

Substituting equation (1.27) in (1.26) we finally have

h TT (t, rêz′) =

=
2G

c4r
εI3ω

2





− (1 + cos2 γ) cos
(

2ωt
′
)

2 cos γ sin
(

2ωt
′
)

0
2 cos γ sin

(

2ωt
′
)

(1 + cos2 γ) cos
(

2ωt
′
)

0
0 0 0





For sake of simplicity, in what follows, we call h0 ≡ 2GεI3ω
2/(c4 r) the

amplitude of the wave. We can now define two polarization states:

h+ (t) ≡ h0

(

1 + cos2 γ
)

cos
(

2ωt
′

)

(1.28)

h× (t) ≡ h0 (2 cos γ) sin
(

2ωt
′

)

. (1.29)

These are the final equations that connect the amplitudes of the gravitational
wave as seen by the observer, with the geometrical properties of the rotating
star, and these equations can be used to infer the typical values of h one
can expect for a pulsar in a binary system. However, before that, we need
good estimations of the possible values of ε. These values are provided by
the models that we describe now.

As can be seen from the definition of h0, the wave amplitude depends lin-
early on the ellipticity. The maximum values that this parameter can assume
depend on the structural model assumed for the pulsar. Models do generally
agree in predicting that there is a solid crust outside the fluid which the star
is basically made of. This crust is formed during the early evolutional states
of the star, when its temperature drops below some threshold. Later, the
pulsar keeps on cooling and slowing its rotation (due to magnetic braking),
and so decreasing its angular rotation [9], while the solid crust cannot adapt
to the new shape of the star core and keeps its own original configuration.
This causes the internal stresses into the crust. An estimation of εmax can be
done if we think that, when ellipticity has a particular value ε0, there are no
internal stress into the crust. The potential energy of the star can be written
as

E (ε) = Esf + Aε2 +B (ε− ε0)
2 , (1.30)
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where Esf is the energy that the stars would have if it was spherical, Aε2

is an addictive term due to the non-sphericity of the mass distribution, and
B (ε− ε0)

2 is the potential energy trapped into the crust. The structure
obviously tends to assume the minimum energy configuration, namely

ε =
B

A +B
ε0 . (1.31)

The orders of magnitude for A and B can be found in literature [10]:
we can assume B ' 1047erg and A ' 1052erg. Substituting these values in
equation (1.31) we have ε ' 10−5 ε0. Then, the value of εmax is determined
by the breaking strength fmax of the crust

εmax =
B

A+B
fmax ; (1.32)

unfortunately the value of fmax[11] is known with an uncertainty of two orders
of magnitude. The final result we get is

10−7 ≤ εmax ≤ 10−9 . (1.33)

At this point we need an estimate of the order of magnitude for h0. In
the expression of h0, we substitute the value of the constant G/c4 = 8 ·
10−45s2kg−1m−1 and assume a typical value for the moment of inertia of a
neutron star I3 ' 1038kg · m2; for what concerns the distance r from the
star to the Earth we can assume r = 5 kpc; let’s also fix ω/2π ' 1 kHz. If
we take for ε the upper limit of the interval (1.33) we find a dimensionless
wave amplitude at the Earth of the order of hmax

0 ' 10−25. These order of
magnitude are interesting because they are close enough to sensitivities of the
existing gravitational wave detectors, so that an experimental result, both a
detection of a true signal or an upper limit, can bring informations.

A second mechanism we can invoke as a cause of a crust deformation is the
presence of a magnetic field. In order to estimate its importance, we compare
the magnetostatic energy of the field B, which is trapped into the pulsar with
radius R, with the gravitational potential energy. In the approximations of
spherical star and uniform field B we have

ε ' B2R3

GM2/R
, (1.34)

and for a typical neutron star (M ' 1, 4M�, R ' 10km)

ε ' 10−12

(

B

1012 Gauss

)2

. (1.35)
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In order to have an effect on ε by means of B of the same order of the one
found in (1.33) it’s necessary that B ' 1014 Gauss [12]. When the stellar
fluid is a type-I superconductor this could be possible. In this case the field
lines are confined into the crustal region, and the resulting magnetic field
would be very strong. As discussed in [13], some studies about X-ray pulsars
indicate that most neutron stars are born with magnetic fields between 1014

and 1015 Gauss. In this case, by substituting these values in Eq. 1.35, we
can expect for ellipticity εmax ' 10−6. Following [12], we can introduce an
adimensional coefficient β which describes the efficiency of how the magnetic
configuration distorts the star, by means of the relation ε ' βM2, where M
is the magnetic dipole moment. Numerical studies [12] show that, expressing
M in units of 2.6 · 1032A ·m2 one has β ' 1 for a non-superconducting star,
and β ' 100 for a type-I superconductor.

Another model which has been proposed to distort a neutron star [10] is
the following: if the star core is a superfluid, while it rotates it generates some
vortices, and the amount of these vortex is proportional to the rotational
frequency. These vortex are attached to the neutron star crust and therefore
they tend to rotate at the same frequency at which the crust rotates: vortex
slide respect to the fluid, as it happens for Magnus effect, when an object
moves through the air. The force acting on the crust is given by [11]

→

F= 2
→
ω ×

(→

Ω × →
r
)

ρ , (1.36)

where
→

Ω is the angular velocity of the pulsar,
→
ω is the difference between the

angular velocity of the superfluid and the one of the crust, and ρ is the density
of the superfluid. The stellar deformation produced by this mechanism has
the same order of magnitude of the ratio between the expression 1.36 and
the gravitational force GM 2/R2 at the surface, and so

ε ' 2ωΩR3∆M

GM2
, (1.37)

where ∆M è is the mass contained in the volume ∆V of the crust. Parame-
trizing (1.37) we have

ε ' 5 · 10−7
( ω

1Hz

)

(

Ω

1kHz

)(

R

10km

)3(
∆M

10−2M�

)2

. (1.38)

As we can see, the presence of a very massive crust and a big value of ω
would make the star to have very interesting ellipticity values. So, for some
pulsars, this third mechanism could be the most relevant. However, ve must
always remember that, as we have seen talking about the consequences of
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the Birchoff theorem in section 1.1, the only possibility for an isolated pulsar
to emit gravitational waves is if the star is not spherically symmetric. The
most simple configuration to describe, for a non spherically symmetric star,
is if the star is axially symmetric. Also an axially symmetric body will not
emit gravitational waves, if its angular momentum lies along the symmetry
axis. The only case in which we can have an emission of gravitational waves
from such an object is if the so called ”wobble angle”, i.e. the one between
the direction of the angular momentum and the symmetry axis is not equal
to zero. In this configuration, the body can precess. It is important to notice
that there are some observational evidences in the radio field that precession
can occur [14] and that these evidences also concern the pulsar formed from
the explosion of SN1987A. The phenomenon of precession is widely observed
in rigid bodies like planets, and it can arise in neutron stars because, as
we have already seen, they probably have a solid crust. The most simple
case to deal with is the one of a spheroid. Let

→
e3 be the symmetry axis,

and let’s suppose that the principal moments of inertia are defined so that

I1 = I2 > I3. Let
→
ω be the angular velocity of the star and let’s suppose

that the system is isolated, meaning that
→

J is a constant. Let’s call ϑ the
”wobble angle” and let be γ the angle between ω and

→
e3. From the classical

eqations of the motion of a rigid body without any external force, if ω1, ω2

and ω3 are the projections of the angular velocity over the symmetry axes,
we have

(I1 − I3)ω2ω3 − I1
·
ω1 = 0 (1.39)

(I3 − I1)ω3ω1 − I1
·
ω2 = 0

I3
·
ω3 = 0 .

From the third equation we have that ω3 is constant; the first and the second
ones give

·
ω1 = −(I3 − I1)ω3

I1
ω2 (1.40)

·
ω2 =

(I3 − I1)ω3

I1
ω1 .

Introducing the constant quantity

Ω =
I3 − I1
I1

ω3 (1.41)

and defining A =
√

ω2
1 + ω2

2 we finally get the solution

ω1 (t) = A cos Ωt (1.42)

ω2 (t) = A sin Ωt .
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This shows that the projection of
→
ω on the plane containing

→
e1 and

→
e2 descibes

a circle, and this is what a precession is. The ellipticity is defined by ε =
(I1 − I3)/I3, and it’s possible to show that ε = γ − ϑ. One could also
demonstrate that, if Ω is the angular frequency of precession, it is

Ω = ε · ω · cos ϑ . (1.43)

The expressions for the amplitude of the emitted gravitational wave (respec-
tively, for the two polarizations) are [15]

h+ =
G

c4
2I1ω

2ε sinϑ

r

[(

1 + cos2 is
)

sin ϑ cos 2ωt+ cos is sin is cos ϑ cosωt
]

(1.44)

and

h× =
G

c4
2I1ω

2ε sinϑ

r
[2 cos is sinϑ sin 2ωt+ sin is cosϑ sinωt] (1.45)

where r is the distance between the source and the observer, is is the angle

between
→

J and the sight line.

1.4 Accreting N.S.: models and expected am-

plitudes

We would like to obtain an estimate of the GW amplitude an accreting
neutron star can generate. We begin, for simplicity, by describing the case
of a non magnetized star. Although this is not the case with the sources we
are interested in, we will apply these results later when we will consider the
effect of the magnetosphere.

The keplerian velocity at the NS surface is [16]

ΩK (RNS) =

(

GMNS

R3
NS

)1/2

' 13.6 × 103 s−1, (1.46)

where MNS and RNS are respectively the mass and radius of the NS. This
corresponds to a period of P∗ ' 0.461 ms. This is the value at which a non-
magnetized NS cannot be spun up anymore by accretion. If P < P∗, and
the star is not magnetized, accretion will occur exactly at the surface, so the
angular momentum transferred to the star by accretion will be

τ = ṀΩ2
KRNS, (1.47)
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since matter is accreted at the rate Ṁ to the NS surface will have angular
velocity exactly equal to ΩK. If the star is a rigid body and the accretion
disk strongly couples with the NS crust, then the angular acceleration will
be α = τ/I where I is the NS moment of inertia. Substituting the numerical
values, we get α ' 2× 10−12 s−2, using the typical value I = 1038 kg ·m2 for
a standard NS. Given the angular acceleration α, the corresponding period
derivative is

Ṗ =
2πα

ω2
. (1.48)

For a rapidly rotating star, i.e. assuming ν = 500 Hz, we find Ṗ ' 10−18.
The energy derivative, still assuming the NS is a rigid body, will classically
be

Ė = 4π2 I

P 3
Ṗ = 2 × 1030 J/s. (1.49)

If we assume that the NS doesn’t spin up because the whole energy is radiated
in gravitational waves, the corresponding strain amplitude at a distance r
from the source to the Earth is

h =

[

G
Ė

c3ω2
GW

]1/2

· 1

r
' 2 × 10−26

(

ωGW

(2π)1kHz

)−1(
10kpc

R

)

, (1.50)

with ωGW = 2π · 1 kHz and r = 10 kpc. This model, even with some
modifications, has been considered viable in the literature, see e.g. [17] and
it has been improved, although the general idea remains the same, in ref.
[18]. In fact, in ref. [17] the authors perform the calculations neglecting the
possible presence of an elastic response of the crust, treating it as perfectly
rigid. However, what is shown in [18] is that, for resonable models of the
crust, the general results are still robust.

Now, we consider the case of a magnetized star. Following [19], we will
assume the magnetic field B to be that of a dipole: B (r) = (R0/r)

3 · B0,
where B0 is the field at the surface R0 of the NS. We will also assume the
accretion to be spherically symmetric. First, we have to calculate the distance
from the NS where matter will be accreted. A simple way to calculate an
order of magnitude for the magnetosphere radius is to calculate the distance
from the NS at which the pressure due to the magnetic field on the infalling
accreted charged particles is equal to the internal pressure of the infalling
gas [19]. The magnetic pressure can be written as [16]

PB =
[B(r)]2

8π
=
B2

0 ·R6
0

8π
r−6, (1.51)
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while for the internal pressure of the gas we can write, if the gas falls from
rest at infinity,

Pg = ρv2 = ρGMNSr
−1, (1.52)

where ρ is the gas density and v its velocity, here approximated with the free-
fall velocity. The density can be easily written in terms of the mass transfer,

in fact ρ = Ṁ/ (4πr2v), and so Pg =
(

Ṁv
)

/ (4πr2). The value of r at which

the equilbrium is reached is an approximation of the magnetosphere radius
R∗:

R∗ = G−1/7B
4/7
0 R

12/7
0 M

−1/7
NS Ṁ−2/7, (1.53)

Substituting the values B0 = 108 Gauss, R0 ' 10 km, Ṁ = 10−9 M�yr−1, we
finally get R∗ ' 2R0: the magnetosphere radius, in these old, recycled NS, is
only a factor of two the star’s radius. This means that the angular momentum
transferred to the star by accretion, and the amount of gravitational waves,
will be similar to the non-magnetized case. In fact, equations 1.47,1.48,1.49
and 1.50 show that there will be only a factor of

√
2 increase in h, and so we

finally get

h ' 3 × 10−26. (1.54)

For some years in the literature [20], the r-mode instability has been stud-
ied as an alternative mechanism to remove angular momentum from the NS.
In principle, this instability can grow in all rapidly rotating NS. However,
various dissipation mechanisms could damp the mode on a much shorter
timescale, preventing their growth and thus eliminating them as a substan-
tial source of gravitational waves. It seems clear now that steady r-modes
are not likely to play an important role [17]. Because, as argued in [21], the
equilibrium between spin-up due to accretion and spin-down due to gravi-
tational radiation is unstable, an interesting situation occurs in which the
star is characterized by a limit cycle: the star charges itself for several mil-
lion years until the instability grows, and then the star slows down due to
a GW emission. The relative duration of these charging and emission cy-
cles strongly depends on the amplitude at which the mode saturates. For
our “observational” point of view, it is important to have an idea of this
relative duration. Unfortunately, this aspect is not well understood. The
first estimation of these r-mode cycles can be found in [22]. Here the discus-
sion takes into account that, due to different viscosities in the NS fluid, the
instability can arise only in a narrow window of the NS core temperature,
which is expected in the range 1 ÷ 4 · 108K in LMXBs. They find that the
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r-mode is active only for a small fraction of the lifetime of the system, lasting
about 1 month while the time required to turn the emission on is about 107

years. However, given the fact that the total energy which is radiated at
each cycle is constant, the smaller is the duration of emission, the greater
is the GW amplitude. Calculations show that these signals could be seen
from the distances of the galaxies in Virgo cluster, so r-modes are still in-
teresting when one performs a blind search for unknown sources. In 2000
Lindblom et al. [23] showed that r-modes cannot become unstable (and thus
emit GWs) if the crust is completely rigid because of the viscous dissipation
in the boundary layer between the outer fluid and the inner crust. However,
about this point, Levin showed that if the crust is not completely rigid and
can “adapt” itself to the motion of the undergoing fluid [21], the relative ve-
locity between the outer fluid and the crust can be lower, and so r-modes can
grow before they are damped by viscosity. It’s important to note that, in the
case of neutron stars in binary systems where accretion rates are probably
sufficiently stable, it is sufficient to use the linearized equations of fluid dy-
namics, and so the frequency at which most of the signal is emitted is exactly
Ωr−mode = 4/3ΩNS. Current estimates show that GW emission probably lasts
about 103 to 104 years every 108 years. If this is the case, we will have no
more than about one emitting source every 104, and so for our propose of a
targeted search the probability of finding one of them in the emitting phase
is too low, given the size of our source database to look at. We can conclude
that, for few galactic pulsars, this second emission mechanism is not a likely
source of measurable GWs. It has been observed (see for example [24]), that
spins of NS in accreted systems tend to be clustered at high frequencies. In
support of this, there are both simulations of the dynamics of such systems
and observations. Among the observations, a good evidence has been found
in globular clusters, in particular 47 Tuc [24]. For example, the spin of some
galactic LMXBs has been indirectly measured, using phenomena such KHz
QPOs or burst oscillations. Other demonstrations of this clustering, which
is a very promising feature for nowadays gravitational wave detectors, come
from Monte-Carlo simulations of accretion in LMXBs. We refer in particular
to a simulation of [25] where a population of old NS rotating at very low fre-
quency begin to accrete matter. Under some assumptions about the average
value of the magnetic field and the amount of transferred mass (values that
are sufficiently well-known from X-ray observations), and depending on the
Equation of State (EoS) of the superdense neutron fluid, the authors found
that, in the case of a ”soft EoS”, final rotation periods are clustered onto
very small values, as low as 0.7 ms. By considering the frequency of the
fastest discovered radio pulsar, this allows us to conclude that the frequancy
range at which resonant detectors are operating is probably a good choice.
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In the case of ”stiff EoS”, final periods are found to be uniformly distributed
between ∼ 1 ÷ 10 ms, and so the number of objects emitting in the band
could be lower, but nonetheless interesting.

1.5 Phenomenology of accreting pulsars

In accreting pulsars, very interesting variability phenomena can arise: these
features are now quite well known theoretically and supported by a lot of
observations facts. Here, we want to focus on these features, and see how
both theoretical and observational indications can be useful to infer some
properties of the gravitational waves emitted by these objects. There are
substantially three classes of phenomena: i)millisecond pulsations in X-ray
spectra; ii)bursts oscillations, due to nuclear burning on the matter falling
from the accretion disk onto the surface of the neutron star; and iii)the
kHz quasi-periodic oscillations (QPOs), due to orbital motions in the inner
accretion flow [27].

i) Millisecond pulsations in the X-ray spectrum: the first one was discov-
ered in 1998 in the soft X-ray transient SAX J1808.4-3658. In this object,
the pulse frequency is 401 Hz, and the orbital period of the pulsar around
the center of mass of the binary system is 2 hours. Following the models
that have been proposed, the presence of these phenomena provides an ex-
planation of why a fast rotating and accreting neutron star must have a weak
magnetic field. In fact, if this statement was not true, the radius of the mag-
netosphere would exceed the keplerian radius, i. e. the radius of the last
stable orbit around the star, and so matter corotating in the magnetosphere
would not be able to overcome the centrifugal barrier. Estimations of the
magnetosphere radius, and so of the magnetic field, based on this model,
indicate a viable value to be B ' 2 − 6 · 108 Gauss.

ii) Burst oscillations: they are interpreted as thermonuclear runaways in
the accreted matter on a neutron star surface. A typical spectral shape is the
one shown in figure 1.1. When density and temperature in the accumulated
nuclear fluid approach the ignition point, the matter ignites at one particular
spot, from which a nuclear burning front spreads then it propagates around
the star. This leads to a burst of X-ray emission with a rise time typically
< 1 s, and a 10− 100 s exponential decay due to cooling of the neutron star
atmosphere. The total amount of emitted energy is about 1039−1040 erg. In
the initial phase, when the burning point is spreading, the energy generation
is inherently very anisotropic. The occasional occurrence of multiple bursts
closely spaced in time indicates that not all available fuel is burned up in
each bursts, suggesting that, in some bursts, only part of the surface partic-



20 CHAPTER 1. PULSARS AS GRAVITATIONAL WAVE SOURCES

Figure 1.1: Energy (in the X-ray spectrum) emitted during a burst oscilla-
tion, and its power spectrum (inset) from the source 4U 1728-24 in 1996.
The time is espressed in seconds, with a time resolution of 31.25 ms.

ipates. Anisotropic emission from a spinning neutron star leads to periodic
or quasi-periodic observable phenomena, because, due to stellar rotation, the
viewing geometry of brighter regions periodically varies (unless the pattern
is symmetric around the rotation axis). The first burst oscillation was dis-
covered by RXTE in 1996, in the object 4U 1728-34: an oscillation with a
slightly drifting frequency near 363 Hz was evident in a power spectrum of
32 s of data, and the oscillation frequency increased from 362.5 to 363.9 Hz
in about 10 seconds, as shown in figure 1.1. Burst oscillations have so far
been detected in several different sources [27]. It’s important to notice that,
usually, the frequency increases by 1 or 2 Hz during the burst tail, converging
to an asymptotic frequency which is stable. In a widely accepted scenario,
the burst oscillations arise from a hot spot in an atmospheric layer of the
neutron star rotating slightly slower than the star itself because it expanded
by 5−50 m because the spot is like a mountain on the neutron stars’ surface,
and while this happens the angular momentum is conserved. The frequency
drift towards a slightly higher limit frequency is caused by spin-up of the
atmosphere, and is closest to the spin frequency of the neutron star. So,
if the oscillations are due to a stable pattern in the spinning layer, then it
should be possible to describe them as a frequency-modulated and coherent
signal, and in this description, the coherence Q-values of oscillations are very
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Figure 1.2: Power spectrum of a twin-peak QPO in Sco-X1.

high, in the order of Q ' 4000.

iii) Quasi-Periodic Oscillations: they are due to orbital motions in the in-
ner accretion flow. Two simultaneous quasi-periodic oscillation peaks in the
300 − 1300 Hz region and roughly 300 Hz apart one from each other occur
in the power-spectra of low-mass X-ray binaries with widely different X-ray
luminosity, as shown in figure 1.2. An accepted interpretation of this feature
is provided by the so-called ”sonic-point beat-frequency model”. In this sce-
nario, if we indicate with ν1 and ν2 the frequencies of the lower-frequency and
higher frequency peaks, ν2 can be interpreted as the rotation frequency of an
orbit at a particular radius in the inner accretion disk; often, objects show-
ing kHz QPOs have also burst oscillations (even if at different epochs), the
frequency of these oscillations arising after the burst peak νburst is probably,
as we have already shown, close to the neutron star spin frequency νs, the
beat-frequency model forecasts that is ν1 ' ν2−νburst ' ν2−νs, and so, if the
”beat-frequency” model is correct, the frequency distance between the two
peaks is equal to the frequency of the burst oscillation. A consequence of this
model is that, analyzing QPOs, we can infer which is the rotation frequency
of the neutron star (although this measure will not be very accurate) even if
it cannot be directly observed. Up to now, tens of sources have shown kHz
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Figure 1.3: Typical shapes for the behaviour of an atoll (left) and a Z (right)
source. The y axis substantially indicates the frequency at which most of
X-rays are emitted, the x axis contains the integral of the spectral density
(total energy at a fixed time). Sources cover the diagrams as time goes by.

QPOs, even if sometimes only one peak is present, in general there are two
peaks. There are basically two types of sources showing QPOs, namely the
so-called ”z-sources” and ”atoll sources”, given the different kind of shapes
of the plots shown in picture 1.3. Each plot refers to a single QPO event
from a particular source, and shows how the spectral integral of the energy
emitted during the burst changes, related to the frequency of the peak of the
X-ray emission. QPOs pulsations, when pulsations are intense and regular
enough, can be used for the search of gravitational waves [26].



Chapter 2

Binary pulsars: kinematic of

pulsar and detector

2.1 Binary pulsars: description of orbits

It is useful to describe the relative motions of the source and the detector
placed at a point of the Earth surface in the ”SSB reference frame”. This
frame is centered in the center of mass of the Solar System; its x axis is along
the direction of the Aries γ point, namely, the point of the celestial sphere
where the celestial equator crosses the ecliptic; its z axis is orthogonal to
the plane containing the orbit of the Earth, and the third co-ordinate axis
is defined as orthogonal to the others. The Solar System Barycenter frame
(SSB) is the best approximation available for an inertial reference frame. The
SSB was introduced in these kind of studies by radioastronomers. In fact, to
get precise observations of their sources, they have the problem of combining
data sets coming from different telescopes, located at different points on the
Earth surface. In fact, a system fixed with respect to the center of mass of
the Earth would not be inertial, due to all the motions of the Earth around
the Sun, like rotation, revolution, precessions. When radio astronomers use
SSB then they are able to have, from different radiotelescopes, homogenous
time arrivals τ of pulsar wavefronts. It has been demonstrated [28] that, if
two sources emit a delta signal seen from the first radiotelescope at a time 0,
the same signal will reach the second radiotelescope with a delay ∆τ given
by equation 2.1:

∆τ =
∆τg −

→

s
→

B
c

[

1 − (1 + γ)U − 1
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→
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)

1 +
→

s
“

→

E+
→

r2

”

c

, (2.1)
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and 2.2:

∆τg = (1 + γ)
GM�

c3
ln

(

→
s ·

→

R1� +|
→

R1� |
→
s ·

→

R2� +|
→

R2� |

)

, (2.2)

where
→
s is the unit vector of the direction of the source from the SSB,

→

B is the
baseline between the two radiotelescopes, γ is a parametrized post-newtonian
(PPN) parameter γ is 1 in general relativity, U is the total gravitational

potential at the geocenter,
→

E is the velocity of the geocenter with respect
to the SSB, r1 and r2 are the vector positions of the first and the second
radiotelescope. ∆τg is the Einstein gravitational effect, due to the passage of
the two light paths from the source to the two radiotelescope more or less close

to the sun:
→

R1� and
→

R2� are the position vectors of the two radiotelescopes
respect to the sun. In the following considerations, all the quantities about
orbits, such angles, vectors and so are defined in this reference frame. The
transformations which are needed in order to translate the coordinates of a
point on the Earth surfaced in terms of the SSB coordinates are provided by
some software routines, which are universally used by both radioastronomers
and gravitational wave physicists. These routines reed some ephemeris files,
in fact these files hold all needed informations about the positions of the
bodies in the Solar System and other astronomical quantities, given at a
certain fixed time of origin. The routines we adopt are in the NOVAS package
(Naval Observatory Vector and Astrometry Subroutines) and the ephemeris
files is the ”DE 405” by ”JPL Planetary and Lunar Ephemerides”, all this
material is available on the web [29]. In figure 2.1, we show the orbital
plane of a binary pulsar as seen from the SSB [30]. However A is the real
major semiaxis of the orbit, what we need in our calculations is ”A1”, which
is its projection along the vector radius which identifies the center of mass
of the system from the Solar System Barycenter. The point D represents
a generic detector on the surface of the Earth. Figure 2.2 shows how the
longitude of periastron OM is defined: it is the angle, in the pulsars’ orbital
plane, between the directions of the line of sight and the periastron P. It is
important to notice that, for some objects, this angle is not constant in time,
namely the orbit precesses, and sometimes very precise measures allow to
calculate the rate of this precession. In figure 2.3, other important quantities
we are going to use are defined. xma is the eccentric mean anomaly, i. e. the
angle between the position of periastron and the ”ficticious pulsar” at any
time. ”Ficticious” means that, in this case, we are not considering the real
pulsar, but we consideri instead a fake object that covers a circular orbit with
the same A, obviously with a constant angular velocity. xma is measured at
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the center of the ficticious circular orbit. On the other hand, ea is the true
anomaly, namely respect to the true orbit of the pulsar, which is in general
not exactly circular but elliptic, with some measured value of the eccentricity
parameter ECC. Given the orbital parameters, the problem of calculating
the velocity of the pulsar respect to the SSB is completely solved if we are
able to calculate ea(t) at any time. The routines we wrote to do this start
calculating xma(t) and then find ea(t) by means of the Kepler equation 2.3:

ea = xma + ECC · sin ea . (2.3)

Formula 2.3 is a transcendent equation and doesn’t have an exact analytical
solution, and so needs to be solved numerically. The calculation is performed
by a routine called Kepler, that here we have rewritten and integrated into
our C++ code starting a previously existing one written in Fortran. The
routine works as follows: as first guess, we put xma as the argument of the
trigonometric function and equation 2.3 gives a rough first approximation
of ea, say ea1. This value is substituted as argument of the sin to get the
second approximation and so by iteration:

ean+1 = xma + ECC · sin ean . (2.4)

The succession of these approximations converges to the true value, so we
impose the degree of precision we need: when the difference between the last
estimation and the previous goes below a fixed value, the program outputs
the final result. For the pulsars of our interest, the binary model, that belongs
to the ones included in the TEMPO package [31], is called ELL1, i.e. we deal
with non relativistic binaries, with an elliptic orbit characterized by a low
eccentricity. For these binaries, the radial velocity of the pulsar with respect
to the center of mass of the binary is

v =
2π

PB

A1√
1 − ECC2

[cos (ea +OM) + ECC · cosOM ] , (2.5)

where PB is the orbital period, A1 is the projection of the major semiaxis
along the line of sight, ECC is the eccentricity and OM is the periastron
longitude.

Parameters PB, A1, ECC, OM are what we need to fully describe the
orbit, together with the epoch of a periastron passage T0. All these quantities
are provided by radioastronomical observations.

In practice, instead of OM, ECC and T0, we get the quantities that
describe orbits in the Laplace-Lagrange model, i.e. the parameters that ra-
dioastronomers call EPS1, EPS2 and TASC. Starting from Lagrange-Laplace



26CHAPTER 2. BINARY PULSARS: KINEMATIC OF PULSAR AND DETECTOR

Figure 2.1: description of relative motions in the SSB reference frame

parameters we can calculate the keplerian ones by means of the following re-
lations:

ECC =
√
EPS12 + EPS22 , (2.6)

T0 = TASC +
PB

2π
arctan

EPS1

EPS2
, (2.7)

OM = arctan
EPS1

EPS2
. (2.8)

Figure 2.4 shows the two component of the velocity of a generic detector
in the SSB: the total velocity is the sum of the two vectors vrot and vriv,
the first referring to the rotation of the Earth around its polar axis, the
second to the revolution around the Sun. What is shown in figure 2.4 is
basically correct, but there are also other smaller effects to compute, namely
the precession and nutation movements, which we also take fully into account
in the routines.
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CM

PSR orbital plane

OM

SSB
Figure 2.2: definition of the longitude of periastron
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Fake circular 
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Figure 2.3: true anomaly and eccentric anomaly

Figure 2.4: speed vectors of a Earth-based detector in the SSB
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Name R.A. (h:m:s) δ (◦ :′:′′)

PSR J0024-7204J 00:23:59.40738156 -72:03:58.7914455
PSR J0024-7204W 00:24:06.03246948 -72:04:48.8829686
PSR J0218+4232 02:18:06.3556854 +42:32:17.40027
PSR J1939+2134 19:39:38.558720 +21:34:59.13745

Table 2.1: Positions in the sky of target pulsars

2.2 Target sources and their properties

Here we focus on the target sources of our search for gravitational wave sig-
nals. We anticipate that the useful band for the search with the gravitational
wave detector AURIGA is 840÷ 960 Hz and this is our main selection crite-
rion. The frequency of the pulsar is measured by radiotelescopes. The other
relevant source characteristics measured by radiotelescopes are sky coordi-
nates and orbital parameters. All our target pulsars are binaries, eccept PSR
J1939+2134. We give their names and coordinates in the sky, along with all
known quantities which are crucial in our analysis and which have been mea-
sured by radioastronomers: frequency of radio signals (and so the intrinsic
frequency of the gravitational waves, if they are present) and orbital parame-
ters. We will also review whatelse about what astronomers know about these
sources, namely the environments around the sources, and which phenomena
they have shown so far: glithces, QPOs, bursts. This information has been
retrieved from the ATNF pulsar database catalogue [32], or from special ob-
servations which have been done by radioastronomers for our study. The
informations about the positions in the sky are given in table 2.1. Follo-
wing the usual astronomical co-ordinate equatorial system, R.A. is the right
ascension and δ is the declination of the source. Table 2.2 holds the infor-
mation about the frequency of the radio pulsar and its derivative, and the
intrinsic frequency of the gravitational signal we want to search for. In table
2.2, F0 is the frequency of the pulse arrivals , F1 is its derivative, and Fgrav

is the frequency of the gravitational signal we want to look at. Following
the models discussed in chapter 2, for the firsts 4 objects, this frequency is
twice the electromagnetic one, because in these cases we are looking at the
signal, if present, which is emitted because of a deformation of the star from
sphericity; only for the last object, Fgrav = (4/3)F0, because we are sear-
ching a signal from r-mode instability (the only possible emission frequency
which falls into the AURIGA sensitivity band. Table 2.3 gives all known
informations about their orbits (orbital parameters). Notice that there was
originally another promising source in the band we wanted to look at, namely
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Name F0[Hz] F1[s
−2] Fgrav[Hz]

PSR J0024-7204J 476.0468584406 2.2199 * 10−15 952.0937168812
PSR J0024-7204W 425.1077984117 7.5130 * 10−15 850.2155968349
PSR J0218+4232 430.4610663457 -1.4340 * 10−14 860.9221326914
PSR J1939+2134 641.9282611068 -4.3317 * 10−14 855.9043481424

Table 2.2: Frequencies of electromagnetic and gravitational wave signals from
target pulsars

Name PSR PEPOCH [MJD] PB [days] A1 [lt s] OM [◦] ECC

J0024-7204J 51600.00 0.120664937725 0.040402329 1.2744 3.85 *10−5

J0024-7204W 51600.00 0.132944430397 0.243456050 169.0721 6.28 * 10−6

J0218+4232 50864.00 2.028846083963 1.9844345 32.4150 6.68 * 10−6

Table 2.3: Orbital parameters of the 3 target binary pulsars

PSR J1701-3006F. Unfortunately, it was impossible to perform the measure
for this object. In fact, this object is very weak in the radio emission, and so
at present radioastronomers did not manage to build a good timing solution
for this pulsar. In table 2.3, PEPOCH is the date at which the parameters
are referred, expressed in units of ”modified julian days” (MJD). The Modi-
fied Julian Day (MJD) is an abbreviated version of the old Julian Day (JD)
dating method which has been in use for centuries by astronomers. Start of
the JD count is from 0 at 12 noon 1 JAN -4712 (4713 BC). The Modified
Julian Day, on the other hand, was introduced by space scientists in the late
1950’s. It is defined as MJD = JD - 2400000.5. PB is the orbital period;
A1 is the projected major semi-axis of the orbit, i. e. not the length of the
real semi-axis in the space, but its projection in the direction which is radial
respect to the celestial sphere. It is given in units of light seconds. OM is the
longitude of the periastron, namely the angle between the line of sight of the
orbit as seen from the Earth, and the vector lying on the orbital plane which
fixes the position of the periastron. ECC is the eccentricity, and obviously
it’s a dimensionless parameter. All the required parameters have been pro-
vided by radioastronomers and are the results of fitting the data coming from
different radio-telescopes and combining them at the SSB reference frame.
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2.3 Computation of all Doppler effects in the

SSB

To relate the intrinsic frequency at which the signal is emitted by the pulsar,
with the observed instantaneus frequency (meaning the frequency measured
by the detector) we have to take into account all the effects that affect the
observed frequency. The most important are the doppler shifts, due to the
relative motions of the star in its orbital plane, and the detector with respect
to the SSB. In radioastronomers’ language, what we call a ”frequency drift”
are described as a delay (or an advance) in the time of arrivals of the wave-
fronts. They call it ”Roemer delay”, from the name of the Danish astronomer
who first noticed that. This ”time domain” description, is completely equi-
valent to our ”frequency domain” point of view. In fact, [33], let’s consider
a periodic signal with frequency f0 from an object in a binary. Define R to
be the radius of the orbit of the object about the barycentre of the binary
and let Ω be the orbital frequency. For simplicity, we will assume that the
angle of inclination is i = π/2 so the the line of sight lies in the orbital plane
of the binary. Then the received signal h(t) at the barycenter of the Earth’s
orbit is given by

h(t) = A sin(2π

∫ t

0

f(τ)dτ) . (2.9)

If the frequency is Doppler shifted due to the motion of the object in its orbit
(and the speeds are not relativistic), then

f(τ) = f0(1 +
v

c
) , (2.10)

where v = v0 sin(Ωt) = ΩR sin(Ωt). Thus

f(t) = f0(1 +
ΩR

c
sin(Ωt)) . (2.11)

Consequently, the integral of the frequency gives:

∫ t

0

f(τ)dτ = ft+
ΩR

c

∫ t

0

sin(Ωτ)dτ = ft− R

c
cos(Ωt) . (2.12)

Inserting 2.12 back into equation 2.9 gives

h(t) = A sin(2πft− 2π[
R

c
cos(Ωt)]) . (2.13)
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We can interpret

φ = 2π[
R

c
cos(Ωt)] (2.14)

to be the phase shift due to time delay caused by the light travelling the
addition distance R cos(Ωt). Therefore, if we can assume that the orbital
speeds are not relativistic and that R is much less than the distance to the
binary, which is the case, then the Doppler interpretation is equivalent to the
Roemer interpretation.

In general, there is another kind of Doppler effect, the so-called Shapiro
time delay. It is a relativistic effect, and this has also been implemented in
our routines. This results in a delay in the arrival times of the wavefronts
given by

∆t = −2M2 ln

[

1 − sin i · sin (OM + ea)

1 + ECC · cos ea

]

, (2.15)

where i is the inclination of the orbital plane with respect to the line of sight
is the sine of the inclination of the orbital plane, and M2 is a quantity which
is proportional to the mass of the companion star.

In our binaries, that are not relativistic, these parameters are not present;
however, in order to set up a more general routines package, this additional
effect, that can arise in some cases, is already implemented.

2.4 A possible dangerous disturbance: pulsar

glitches

The phenomenon of glitches consists of unforeseeable deviations of the pul-
sar phase evolution from its usual behaviour. At some random time, the
frequency of the radio pulses from some pulsars grows up, by a quantity
that, in most important glitches, can reach values of

∆Ω

Ω
= 10−6 . (2.16)

After this period, the phase re-starts growing in time with the usual be-
haviour. The phenomenon can be explained in a quite convincing way with
a simple model, which assumes the neutron star as composed by two phases:
a superconducting fluid composed of neutrons (with moment of inertia In),
weakly coupled with a crust of moment of inertia Ic, that can be modelled
by a crystalline structure, whose reticular centers are nuclei rich in neutrons,
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and in which free electrons are present. Let’s assume that the crust rotates
at the angular velocity of the electromagnetic signal Ωc, and let’s indicate
with Ωn the frequency at which the central superconductor rotates (notice
that in general a fluid has a differential rotation, and so for Ωn one takes a
mean pulsation). Let’s introduce a constant parameter T which indicates the
timescale of the interactions between the two components, and so quantifies
the coupling between the two phases. In this model, each glitch is due to a
break and to the consequent readjustment of the crust (this crust failure is
called a ”starquake”), as shown below. The basic idea is that, when the crust
spinup occurs, the angular momentum transferred to the superconductor de-
pends on T . The interaction between the two components after a starquake
is given by the differential equations system [34]

IcΩ̇c = −α − Ic (Ωc − Ωn)

T
(2.17)

InΩ̇n =
Ic (Ωc − Ωn)

T
, (2.18)

where α is an external breaking due, for example, to the magnetic dipole
moment; here we take α to be a constant. The solution of the previous
system is

Ωc (t) = −α
I
t+

In
I

Ω1e
−t/T ∗

+ Ω2 (2.19)

Ωn (t) = Ω (t) − Ω1e
−t/T ∗

+
αT ∗

Ic
, (2.20)

where Ω1 and Ω2 are two integration constants, which depend on the chosen
initial conditions, I is the total moment of inertia of the star and T ∗ is defined
as

T ∗ =
In
I
T . (2.21)

We may wonder what happens when the interaction between the crust and
the internal region is very efficient, namely in the limit for t/T → ∞ . In
this case the solution becomes

Ωn − Ωc =
αT ∗

Ic
=
In
Ic

T

T
Ωc , (2.22)

where we introduced the spindown age of the pulsar T = P/Ṗ . Let’s suppose
that In ' Ic. For the typical values of mass and moment of inertia of a
standard neutron star, we find, by means of Equation (2.22):

Ωn − Ωc

Ωc
' 10−5 , (2.23)
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Figure 2.5: Evolution of the angular frequency of a pulsar after a glitch.

which provides the order of magnitude of the difference between the pulsa-
tions of the two components. Let’s suppose now that at the time t a glitch
is observed, i. e. that Ωc changes, let’s suppose for sake of simplicity that
this happens instantaneously, from Ωc (t) to Ωc (t) + ∆Ωc: introducing a pa-
rameter Q which describes how rapidly the effect of the increment due to the
glitch decays, the solution for the motion of the crust reads

Ω (t) = Ω0 (t) + ∆Ωc

[

Qe−t/T + 1 −Q
]

. (2.24)

The qualitative behaviour of the pulsation of the crust after the glitch is
shown in Figure (2.5). Once we have described the evolution of the pulsation
after a glitch, let’s describe in more details the mechanism that drives the
crustal break which generates the starquake. The crust is deformed from
sphericity because of rotation. When the star slows down, the internal fluid
changes its proper configuration, and this generates a stress acting on the
crust, which breaks, when this stress reaches a typical value. In a newtonian
description, the total energy of the star is

E = Eint + U + T + Ecrust , (2.25)
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where U and T are the potential and cinetic energy respectively, Eint is the
internal energy of the fluid and Ecrust is the one trapped into the crust because
of the stress. If we assume for the equation of state the usual polytropic form,
with polytropic index that we parametrize as

Γ =
d log p

d log ρ
= 1 +

1

n
, (2.26)

we can write that

Eint = C · ρ1/n ·M , (2.27)

where M is the mass of the fluid, ρ is its density and C is a constant. Using
the same arguments we introduced in section 1.3, U can be re-written as the
sum of the potential energy that the star would have if it would be exactly
spherical U0 and an additive term, which is proportional to the square of the
ellipticity ε, depending on a proportionality constant A:

U = U0 + A

(

1

ε
− 1

)2

(2.28)

The kinetic energy can be written as a function of the angular momentum J
as

T = J2 · 1

2εI0
. (2.29)

Presumably, the energy trapped into the crust is an elastic energy [34]: we
can assume that the star has an initial deformation ε0 that corresponds to
the absence of stress on the crust; when the rotation motion slows down, ε
decreases and an elastic stress arises, which turns out to be proportional to
(ε− ε0)

2:

Ecrust = N

(

1

2
K (ε− ε0)

2

)

, (2.30)

where N is the density of nuclei on the crust: introducing the ionic density
of the crust n, the stellar radius R and the separation R0 between the ions,
one has

Ecrust =
Z2e2

R0
nR3 (ε− ε0)

2 = C (ε− ε0)
2 , (2.31)

where we have collected in the factor C all the constants. We can associate
to this energy an average elastic force

σ =| 1

Vcrust

∂Ecrust

∂ε
|= µ (ε− ε0) , (2.32)
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where Vcrust is the volume of the crust and the constant µ is equal to

µ =
2C

Vcrust
. (2.33)

Finally, the total energy can be written as

E = cρ1/nM + U0 + A

(

1

ε
− 1

)2

+ J2 1

2εI0
+ C (ε− ε0)

2 . (2.34)

The equilibrium ellipticity can be obtained by minimizing this expression.
The calculations give

ε =
I0Ω

2

4 (A+ C)
+

Cε0

A+ C
. (2.35)

For standard pulsars A >> C, and therefore Equation 2.35 can be further
simplified:

ε ' I0Ω
2

4A
. (2.36)

When the stress reaches a critical value σc the crust breaks and ellipticity
decreases by an amount ∆ε which, following Equation (2.36) can be related
to the pulsation. We find that

∆ε = − (1 −Q)
∆Ω

Ω
. (2.37)

The amount of the glitch, in terms of ∆Ω/Ω can give an indication about
∆ε: we have very low values, of the order of ∆ε ∼ 10−6. The occurrence of
a glitch on a particular target object can be monitored on the ATNF pulsar
database. Glitches are very dangerous for our analysis in principle, because
they can make impossible a continuous reconstruction of the phase evolution
from time separated measurements by radiotelescopes. We anticipate that,
for objects in table 2.1, and in the period of observation, no glitches occurred.

2.5 Amplitude modulation: the antenna pat-

tern

The interaction between a periodic gravitational wave and the detector de-
pends on several parameters. First of all, let’s consider the effect of the
relative orientation of the detector axis and the source. The maximum in-
teraction between the wave and the detector occurs when the wave vector is
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orthogonal to the bar’s axis, and the bar senses only the polarzation com-
ponent of the wave along its axis. Let’s call ϑ the angle of incidence of the
wave on the bar, and ϕ the angle between the bar’s axis and the direction
of the ”+” polarization. It’s only the component of the gravitational wave
tensor lying along the direction of the bar hb that effectively interacts with
the bar. The force acting on the bar can be written as

F (t) =
1

2
µLḧb (t) . (2.38)

The two parameters µ and L are respectively the ”effective” mass and length
of the first (fundamental) longitudinal oscillation mode of the bar which can
be found by solving the elastic equations of the cylinder. In order to get
··

hb (t) it is useful to define a new reference frame
(

ê
′′

x, ê
′′

y , ê
′′

z

)

having its origin

on the detector, ê
′′

z axis lying along the detector’s zenith, and ê
′′

x along the
bar’s axis. With these notations, projecting the vectors, one has

hb = sin2 ϑ cos 2ϕ h+ (t) + sin2 ϑ sin 2ϕ h× (t) . (2.39)

where sin2 ϑ cos 2ϕ and sin2 ϑ sin 2ϕ are the antenna patterns [35]. Now,
let’s try to characterize how the time dependence of the two angles ϑ and ϕ
translates onto the shape of the signal extracted by the antenna. These angles
are two periodic functions of time, and the period of their variations is 1 day.
Qualitatively, for what concerns the signal amplitude at the detector, this
means that it is modulated with a 1 day period. In order to do quantitative
considerations, let’s refer to the equatorial reference frame: let αP and δP
respectively the right ascension and the declination of the pulsar. Let’s also
call ψ the angle between ê

′′

x and the projection on the plane
(

ê
′′

x, ê
′′

y

)

of the
polarization vector. The equatorial reference frame and the one centered on
the bar are related each one to the other by a rigid time-dependent rotation,
which is described by this matrix:





cosψsinδPcosαP +sinψ sinαP cosψsinδPsinαP − sinψcosαP cosψ cosδP

sinψ sin δP cosαP − sinψ sinαP sinψ sin δP sinαP − cosψ cosαP sinψ cos δP
− cos δP cosαP − cos δP sinαP sin δP





If T is the local sidereal time, and α and δ are respectively the longitude
and latitude of the detector, we can calculate [36] that the functions ϑ (t)
and ϕ (t) are so that

cosϑ = ê
′′

x · ê
′′

z = cosα sin δ cos δP cos(ω⊕T − αP ) (2.40)

− sinα cos δP sin(ω⊕T − αP )

− cosα cos δ sin δP (2.41)
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cosϕ = ê
′′

x · ê
′′

x = − cosψ[cosα sin δ sin δP cos(ω⊕T − αP ) (2.42)

− sinα sin δP sin(ω⊕T − αP )

+ cosα cos δ cos δP ] + sinψ[cosα sin δ sin(ω⊕T − αP )

+ sinα cos(ω⊕T − αP )] (2.43)

sinϕ = ê
′′

x · ê
′′

y = − sinψ[cosα sin δ sin δP cos(ω⊕T − αP )

− sinα sin δP sin(ω⊕T − αP ) + cosα cos δ cos δP ]

− cosψ[cosα sin δ sin(ω⊕T − αP ) + sinα cos(ω⊕T − αP )] ,(2.44)

where ω⊕ = 2π/1 day. Taking the square of these relations we have

cos (2ϕ) =
(

ê
′′

x · ê
′′

x

)2

−
(

ê
′′

x · ê
′′

y

)2

(2.45)

sin (2ϕ) = 2
(

ê
′′

x · ê
′′

x

)(

ê
′′

x · ê
′′

y

)

(2.46)

At this point, it’s useful to define two functions of time A (t) and B (t),
that are completely determined by the co-ordinates of the source and of the
detector and by the sidereal time t: let be

A (t) = cosα sin δ sin δP cos (ω⊕T − αP )−sinα sin δP sin (ω⊕T − αP ) (2.47)

B (t) = cosα sin δ sin (ω⊕T − αP ) + sinα cos (ω⊕T − αP ) (2.48)

With these definitions one gets

cos (2ϕ) =
[

A2 (t) − B2 (t)
]

cos (2ψ) − 2A (t)B (t) sin (2ψ) (2.49)

sin (2ϕ) = 2A (t)B (t) cos (2ψ) +
[

A2 (t) −B2 (t)
]

sin (2ψ) (2.50)

Now we can substitute these relations in equation (2.39). Finally, formula
(2.39) takes the following form:

hb =
[

sin2 ϑ
(

A2 −B2
)

cos (2ψ) − 2AB sin2 ϑ sin (2ψ)
]

h+ (t)

+
[

2 sin2 ϑAB cos (2ψ) + sin2 ϑ
(

A2 − B2
)

sin (2ψ)
]

h× (t) (2.51)

This final relation shows how amplitudes are modulated in time, which gives
rise to an amplitude modulation of the signal seen at the bar.

The daily modulations for our 4 target pulsars are shown in figures 2.6
and 2.7. Table 2.5 shows, on the other hand, for each pulsar, the mean value
of the antenna pattern. The complement to unity of the values shown in
the table give an idea of the fraction of signal that we can consider as lost
because of the antenna pattern. Finally, picture 2.8 shows the positions in
the sky of the 4 pulsars of interest.
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Figure 2.6: PSR J0024-7204J and PSR J0024-7204W, behaviour of the an-
tenna pattern, average over all polarizations.
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Figure 2.7: PSR J0218+4232 and PSR J1939+2134, behaviour of the antenna
pattern, average over all polarizations.

N. Nome Antenna Pattern

1 PSR J0024-7204J 0.519
2 PSR J0024-7204W 0.519
3 PSR J0218+4232 0.482
4 PSR J1939+2134 0.455

Table 2.4: Mean values of the antenna pattern for the 4 objects in table 2.1
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Figure 2.8: Positions in the sky of our target pulsars. The yellow stars are
our 4 target pulsars, the red dots are isolated pulsars, the blue triangles are
binary pulsars.



Chapter 3

Data analysis pipeline

3.1 AURIGA: transfer function of the detec-

tor

As we have seen, gravitational waves are perturbations of the space-time
geometry (i.e. perturbations of the Riemann tensor) that propagate at the
speed of light. Their interaction with free falling particles results in a varia-
tion in their relative distances, with a frequency which is equal to the wave
frequency and an amplitude which is the product of the distance of the
particles and the wave amplitude (when the distance is lower than the wave-
length). So, in principle, the fundamental idea to set up a gravitational wave
detector is very simple: we need a system of two masses, elastically coupled
one to each other, and a device which measures the displacements of the
masses with respect to their equilibrium positions. The AURIGA antenna is
a resonant detector, meaning that the role of the two masses is played by a
solid elastic body, in our case a cylinder. It’s worth noticing that resonant
detectors take advantage of the phenomenon of resonance, and so their sen-
sitivity curves have peaked maxima in correspondence to their fundamental
mechanical resonance. Around this frequency, the energy captured by the
bar is maximum. To model this, let’s remember that, if two bodies of equal
mass m are coupled by a spring of elastic constant k and rest length l and
they are in the presence of a viscous force −2βmv, where v is the relative
velocity between the masses, a polarized gravitational wave with an ampli-
tude h(t) that hits the bar orthogonally to the direction of the vector that
joins the two masses generates a variation of their distance; so, in the system
of the center of mass each body moves from its equilibrium position by a

41
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Figure 3.1: Mechanical model of the two nested systems antenna + trans-
ducer.

quantity ξ(t) given by equation

ξ̈ + 2βξ̇ + ω2
0ξ =

l

2
ḧ, (3.1)

where ω0 =
√

k/m is the characteristic angular frequency of the system. The
transfer function is defined as

T (ω) ≡ X(ω)

Fg(ω)
, (3.2)

where X(ω) is the Fourier transform of ξ(t), Fg(ω) = −m(l/2)ω2H(ω) and
H(ω) is the Fourier transform of h(t). Calculating the Fourier transform one
gets

T (ω) = − 1

m

[

1

(ω2 − ω2
0) − 2iβω

]

. (3.3)

It is straightford to verify that this curve presents a resonance peak at the
angular frequency ω0. However, in reality, the system is not a simple two
point masses system, but a continuous mass distribution. The result we
found can be extended to the real case, by using the Hooke law generalized
to continuous systems: it’s possible to demonstrate that the bar faces oscillate
obeying a transfer function that is equal in form to the (3.3): the bar of length
L and mass M , in a close spectral region around the fundamental longitudinal
frequency, is equivalent to the two point masses system, located at a distance
l = 4L/π2 and with a characteristic angular frequency ω0 = πvs/L, where
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vs is the propagation speed of sound in the material (usually an Aluminium
alloy) which the bar is made of. It’s also possible to demonstrate that the
energy that the bar absorbs from the gravitational wave is equal to the one of
the two point mass system, if relationm = M/2 is satisfied. We are interested
in examinating how the solution of (3.1) behaves when the Q-factor is large,
so we will consider only the case in which Q� 1; then, for sake of simplicity,
let’s take an impulsive gravitational wave, i.e. H(ω) = H0 where H0 is a
constant: substituting in (3.3), ed antitransforming, we find that

ξ(t) ' 2L

π2
e−βtH0 ω0 sin(ωot). (3.4)

This is a damped oscillation at the resonance frequency of the bar, which
damping time τ ≡ 1/β = 2Q/ω0 is proportional to the Q-factor. The bar is
a cilynder having a mass of 2.3 · 103 kg, 3m length and 60 cm radius, it is
made of a metallic alloy of aluminium and magnesium called Al5056. This
material, if it is cooled to cryogenic temperatures, guarantees a Q-factor of
the order of Q ' 106÷7. This property is very important, because it has been
demonstrated that the minimum of the power spectral density is determined
by the thermal noise and satisfies Sh ∝ T/(QM), where T is the temperature
and M the mass of the bar. Such a cylinder has lots of oscillation modes
and resonances, but the one that interests is the fundamental longitudinal
one, because this is the one with the maximum cross section to gravitational
waves.

The bar is coupled to a resonant transducer, that is a second mass which
is mechanically coupled to a face of the bar. This mass is devised to have its
resonance frequency equal to the bar’s one. In this way, the vibration of the
transducer is amplified respect to the bar’s one, and the amplification factor,
as we will see soon, is equal to square root of the ratio between the masses.
Then, the mechanical resonant transducer represents a face of a capacitor
(capacitive transducer), which is charged at a very high voltage. In this
way, mechanical oscillations are translated into capacity variations and then
into an electrical signal. Finally, this signal is amplified by an amplification
stage (SQUID, Superconducting QUantum Interference Device) [37]. The
electric signal is transformed into a magnetic flux by means of an inductance.
The magnetic signal is then read by the SQUID. Between the SQUID and
the transducer, there is a superconductive transformer, which works as an
impedance matching device. The use of the SQUID is possible because the
experiment works at the temperature of the liquid helium, and its advantage
is that it offers a very low noise and very high sensitivity, better than any
other traditional device at frequencies around 1 kHz.

After the first scientific runs (1997-1999), AURIGA has been re-designed
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Figure 3.2: Electromagnetical scheme of the AURIGA detector

to improve the detector performances. Figure 3.2 shows a simplified scheme
of the AURIGA detector with the resonant capacitive transducer read by a
double stage SQUID amplifier. The bar and the resonant frequency of the
transducer were optimized for the best AURIGA sensitivity and bandwidth.
The system composed by the bar, the resonant transducer and the electric os-
cillator is a three-mode oscillator. It’s so easy to understand that its transfer
function will be written as

T (ω) = (iω)3A
∏

k=1,2,3

1

(pk − iω)(p∗k − iω)
, (3.5)

where A is the calibration constant in force, and the pk are the poles of the
transfer function, defined as

pk = − ωk

2Qk
+ iωk . (3.6)

where k = 1, 2, 3, ωk is the angular frequency of the k-th mode and Qk is its
quality factor. Using a capacitive calibrator, which is a device that directly
acts on the bar in order to calculate experimentally the calibration constants,
it is possible to ”hit” the bar with a force whose spectrum is

Fbar(ω) = EbiasCcal
ω2V (ω)

(ω2
cal − ω2)

, (3.7)

where Ebias is the electric field applied at the calibrator, Ccal its capacity
and V (ω) is the electric tension applied to the calibrator and ωcal � ω.
Measuring the current that is inducted by the force 3.7 at the SQUID input,
one can verify if the theoretical formula 3.5 is correct or not. Unfortunately,
the experimental results show that formula 3.5 doesn’t really accurately fit
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pole νk[Hz] Qk

sp1 828.909 1.40 × 105

sp2 843.552 1.28 × 105

1 865.715 7016
2 914.421 551
3 955.963 373

sp3 1056.32 1.4 × 104

sp4 1062.43 2.6 × 104

sp5 1067.73 3.0 × 104

Table 3.1: Poles of the real transfer function and their Q-factors.

the experimental points. In fact, the real model seems to hold more than
three poles,and data can be well fitted in the frequency range 800-1050 Hz
with an experimental transfer function with 8 poles pk and 4 zeroes zk:

Texp(ω) = (iω)4A

∏4
k=1(zk − iω)(z∗k − iω)

∏8
k=1(pk − iω)(p∗k − iω)

. (3.8)

The constructive parameters of the various parts of the detector, the fre-
quencies and the Q-values are [38] listed in table 3.1. At this point, to find
the power spectral density of the noise Shh(ω) we need to know the value
of the constant of calibration in force A that appears in equation 3.5 which
has to be experimentally measured, since the model is not fully determined
a priori. We know that additional mechanical resonant modes of the trans-
ducer system are playing a role in the empirical transfer function given by eq
3.8. However, we do not have a detaiiled model to explain it and therefore
the calibration constant A has to be measured empirically with the following
procedure. If the bar is excited by an impulsive force, i. e. that can be
written as F (t) = F0δ(t), the energy absorbed by the system is

Eabs =
F 2

0

2Meff

, (3.9)

where Meff is the ”effective mass” of the bar, that we will assume to be
Meff = Mbar/2. The calibration constant A can be experimentally measured
measuring the Eabs related to impulsive excitations of the bar produced by
the calibrator.
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3.2 Homodyne detection method for periodic

signals

As first, we focus on the properties of a lock-in at a fixed frequency, which
is what people commonly refer to as a lock-in; as we have already shown,
our procedure of multiplying the signal by its own true phase is in practice
a modified lock-in with not-constant reference frequency, and the peculiarity
of our analysis will be discussed afterwards, but the results are still the same.
A lock-in at a fixed frequency ω0 is a device [39], at which input one puts the
detector’s output s(t) (namely, containing both noise and signal), and whose
two outputs are expressed by the following relations:

x(t) =
1

τ

∫ t

−∞

s(t′)e−
(t−t′)

τ sign(cosω0t
′)dt′ and (3.10)

y(t) =
1

τ

∫ t

−∞

s(t′)e−
(t−t′)

τ sign(sinω0t
′)dt′. (3.11)

In practice, they are the two parts (real and immaginary) of the Fourier com-
ponent of angular frequency ω0, integrated over the time. The outputs carry
the function sign because, in origin, the first lockin were hardware imple-
mented by means of an electric circuit, and conceptually it’s simpler to set
up a device which perform a square wave instead of a trigonometric function.
The parameter τ depends on how the lockin is implemented and represents
its time constant. Let be v(t) = s(t)sign[cos(ω0t))]. The factors sign(cosω0t

′)
and sign(sinω0t

′), which represent square waves, can be expressed with their
Fourier expansion. One has

v(t) =
4

π
s(t)[cos(ω0t +

1

3
cos(3ω0t) + ...)] . (3.12)

To understand the advantages of the lockin, we need to calculate the power
spectral density of its output, defined as the Fourier transform of its self-
correlation. We write the self-correlation of the function v(t), defined as
R(τ) = 〈v(t)v(t+ τ)〉t where 〈〉t is a mean value over the time t� 1/ω0. It’s
important to remember that, from its definition, the self-correlation function
is in practice something that identifies, in a noisy string, regular structures
as the ones of a signal which repeats or that have, in general, a regular
behaviour of some kind. It is

R(τ) =
16

π2
〈s(t+ τ) cos(ω0(t+ τ))s(t) cos(ω0t)〉t

+
16

π2
· 1

9
〈s(t+ τ) cos(3ω0(t + τ))s(t) cos(3ω0t)〉t + ... . (3.13)
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The power spectral density Sv of v(t) is the Fourier transform of the self-
correlation R. Doing the calculations, we have that Sv is related to the
power spectral density of the stocastic process s(t) by the following relation:

Sv(ω) =
4

π2
[S(ω − ω0) + S(ω + ω0) +

1

9
[S(ω − 3ω0) + S(ω + 3ω0)] + ... .

(3.14)

This is an always positive, oscillating function and if a signal at ω0 is present
it reaches an abslute maximum at ω = 0 and has local maxima at each
frequency 2nω0, where n scans on all relative integers. The function tends to
0 for large values of ω. Following definition 3.10, we finally have to calculate
the integral over the time in 3.10. The result is that the power spectral
density at the lock-in output is

Sx(ω) =
1

1 + ω2/τ 2
Sv(ω) . (3.15)

An analogous relation can be written for Sy. In Sx, the only peak of Sv

that survives is the one at ω = 0. For this reason, we can say that the
lock-in brings the frequencies from ω0 to 0. So, the Fourier component of the
signal at the fixed frequency ω0 down-converts the signal frequency into the
continuous component of the spectrum.

The same method can be used if the phase doesn’t grow linearly with
time, but can be conveniently written as φ0 + ω0t + φ̂(t), where φ0 is the
unknown initial phase, ω0 is the intrinsic frequency and φ̂(t) represents the
phase shift due to the Doppler effects. The signals we want to extract from
the detector’s data are in the form

s(t) = M(t) cos[φ0 + φ(t)] , (3.16)

where we called φ(t) the known part of the phase, φ(t) = ω0t + φ̂(t). The
timescale in which φ(t) varies must be very larger than the period 1/ω0,
and M(t) is an amplitude modulation, in our case the one given by the
antenna pattern factor for the source. Also the evolution of M(t) must satisfy
dM
dt

� ω0 in order to make formula 3.16 make sense, but this is definetely our
case, because the antenna pattern factor varies with a period of 1 sidereal
day. In what follows, we simply call M(t) the amplitude modulation, and dφ

dt

the frequency modulation of the signal. Obviously, s(t) can be also expressed
as

s(t) = A(t) cosφ(t) − B(t) sinφ(t) , (3.17)
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where we have introduced the two time-dependent functions

A(t) = M(t) cos φ0 (3.18)

and

B(t) = M(t) sin φ0 . (3.19)

Now the question is substantially to set up a lockin at the variable frequency
dφ
dt

. Written in this way, A(t) and B(t) are the two components in quadrature
with each other of the signal. In our real case, the signal can be present in
both components. In fact, we don’t know what could be the initial phase of
the signal, because the gravitational wave is not in general in phase with the
radioastronomical modulation. Taking the Fourier transform of the signal
expressed in this way, we have that the spectrum of s(t) is the convolution
of the spectrum of A(t) with the one of the funcion cos(ω0t), minus the
convolution of the spectrum of B(t) with the one of the function sinφ(t): in
the frequency domain, if

d ˆφ(t)/dt� ω0 , (3.20)

it is

s(ω) ' 1

2
[A(ω− ω0) +A(ω+ ω0)]−

1

2i
[B(ω− ω0)−B(ω + ω0)] . (3.21)

Introducing the so-called complex signal as

F (t) = M(t)eiφ(t) , (3.22)

so that

s(t) = F (t)eiφ(t) (3.23)

we have that

s(ω) ' 1

2
[F (ω − ω0) + F ∗(ω + ω0)] . (3.24)

Now, let’s describe the simple software operations we have to do in order
to extract the signal from the detector’s output. What we do is to give the
signal s(t) as input to a program which in practice does what was once done
by an hardware device called mixer. In practice, the program doubles the
time series holding the signal into two channels: the first one holds the signal
multiplied by cosφ(t), the second holds the signal multiplied by sin φ(t).
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Let’s show what happens for the first channel, meaning that, obviously, the
result is analogous for the second one. The first channel s1 will so hold the
following time series:

s1(t) = A(t) cos2 φ(t) −B(t) sin φ(t) cosφ(t)

=
1

2
A(t)[1 + cos 2φ(t)] − 1

2
B(t) sin 2φ(t) (3.25)

and its Fourier transform is

s1(ω) ' 1

2
A(ω)+

1

4
[A(ω−2ω0)+A(ω+2ω0)]−

1

4
[B(ω−2ω0)−B(ω+2ω0)]

(3.26)

Equation 3.26 shows that, now, it’s possible to extract the signal: in fact,
remembering that A and B are functions that slowly vary with time, the
only components of their Fourier transform A(ω) and B(ω) are the one char-
acterized by the condition ω � ω0. For these frequencies, |ω ± 2ω0| � ω
. So, if we apply a numerical low-pass filter close enough, in the sense that
we will discuss in the following paragraph, which means that the filter must
have a time constant

τ � 1

2ω0
, (3.27)

the product of the 3.26 and the transfer function of the lowpass, done in the
frequency domain, is, for the case of a single pole low-pass filter

sf
1(ω) =

A(ω)

2(1 + iωτ)
, (3.28)

which in practice, if the filter is chosen to have a rapid decay (i. e. the filter
is almost a square box with a certain amplitude around the 0 bin), leads to

sf
1(0) ' A(0)

2
. (3.29)

As we have already said, an analogous result is true for the second channel
s2: the same calculations would lead to

sf
2(0) ' B(0)

2
. (3.30)

Finally, taking the estimation of the amplitude of the signal simply is

H =

√

sf
1(0)2 + sf

2(0)2 . (3.31)

The outline of the method we have now discussed is represented in figure 3.3.
Our complete data analysis pipeline is the one shown in figure 3.4.
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Figure 3.3: Analysis method outline
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Figure 3.4: Complete pipeline of the data analysis
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3.3 Band-pass filtering: characterization of

filters

Now, let’s show in detail how the band-pass filtering stage is implemented
in our analysis. The most suitable band-pass filters for our case are the
Butterworth filters, which are well studied in literature [40]. The filter which
is used as a progenitor of all categories of filters is the low-pass filter, so we
describe now how the low-pass is thought and implemented, and then we will
show how, starting from a low-pass, it’s possible to set up a band-pass. The
low-pass Butterworth filters are are characterized by a transfer function that
doesn’t have zeroes but only poles H(Ω) = 1/[1+ i(Ω/Ωc)

N ], and the square
of their magnitude response in the frequency domain is in general given by
the following relation:

|H(Ω)|2 =
1

1 + ( Ω
Ωc

)2N
=

1

1 + ε2( Ω
Ωp

)2N
, (3.32)

where N is the order of the filter, Ωc is its cutoff frequency, namely the
frequency at which the response decreases at some fraction of the maximum
peak, Ωp is the passband edge frequency, and 1/(1 + ε2) is the band-edge
value of |H(Ω)|. In order to choose the poles of the transfer function 3.32,
we use the fact that, if s = iΩ, it is H(s)H(−s) = H(Ω)2 and so

H(s)H(−s) =
1

1 + (−s2

Ω2
c
)N

, (3.33)

and so one immediately has that the poles are located at

sk = Ωce
iπ/2ei(2k+1)π/2N , k=0,1,..., N-1. (3.34)

The frequency response characteristics of the class of Butterworth filters are
monotonic, and the rapidity at which the cutoff occurs is obviously propor-
tional to the order of the filter. Here we focus on the following problem: we
want to find the order N which is needed, given a precise requirement about
how much attenuation δ we want to have at a fixed frequency Ω∗. We can do
this by simply using the relation 3.32. In fact, our requirement is to impose
that

1

1 + ε2(Ω∗/Ωp)2N
= δ2 , (3.35)

and so one has that the requested order is given by

N =
log (1/δ2) − 1

2 log Ω∗/Ωc
=

log δ/ε

log Ω∗/Ωp
, (3.36)
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which solves the problem, given the fact that the filter is completely defined if
one knows its parameters N , Ωp and ε. The low-pass filter is the prototype we
used to set up the band-pass filter, by means of the frequency transformation

Ω → Ωp
Ω2 + ΩlΩu

Ω(Ωu − Ωl)
, (3.37)

where Ωu and Ωl are the upper and lower cutoff frequencies of the band-pass
filter respectively.

The above Butterworth filters are defined in the continuous time domain;
however, in our case, the analysis is performed in the discrete time domain
and these filters can be implemented in this domain by means of a recursive
technique (ARMA, Auto Regressing Moving Average) [41]. Here we show an
example of the characteristic quantities for a Butterworth filter, as the ones
we want to use. The plots refer to the band-pass filter used for the band
which the search for PSR J0218+4232 refers to. The order of the filter is 2,
the sampling rate is 406 Hz (the one of the AURIGA h-reconstructed data),
the bandwidth is about 3 Hz. We use this example to show what are the
important features such a filter is characterized by. The order of the filter
must be chosen keeping in mind that, the higher the order of the filters, the
more unstable the filter is, this is due to the approximations of the ARMA
algorythm. In this example, the filter with N = 4 was not stable, in the
sense that its impulsive response doesn’t tend to 0 for t → ∞, and so we
decreased the order to N = 2. Another important requirement is that the
phase of the transfer function of the filter has to be linear in the sensitivity
region, as can be seen in figure 3.5. It’s not important if the phase covers
more than one period through the sensitivity region, what is important is
its linearity. Generally, this linearity is better reached when the order of the
filter is low. Then we show the impulsive response of our filter in figure 3.6.
The impulsive response is important because it shows if the filter’s transfer
function is stable or not. This impulsive response must tend to 0 as the time
increases. This fact is guaranteed as a sub-result if the step response (see
picture 3.7) has the same behaviour, in fact a converging step response is a
more restrictive condition than a converging impulsive response. All these
behaviours are shown in the pictures.

3.4 Coherent analysis and spectra averaging

Considering that the stability of the detector transfer function is not guaran-
teed over very long timescales, we divided the observation time (10 days) in
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Figure 3.5: Amplitude (red line) and phase (blue line) of one of our But-
terworth bandpass filters. The plot refers to the band relative to PSR
J0218+4232. The x axis is in terms of the fraction of the sample frequency.

Figure 3.6: Impulse transfer of our example Butterworth bandpass filter.
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Figure 3.7: Step response of our example Butterworth bandpass filter.

sub-periods. The duration of each sub-period is 1 day. So, once we have de-
modulated for all frequency effects, for each sub-period we perform a Fourier
Transform of the data. Each Fourier transform has the property that all the
signal power is now completely helded by the first bin (which we will refer
to as the ”0 bin”) if each Fourier-transformed vector.

So we finally deal with M = 10 independent spectra. The first bin of
each spectra holds the quantity h2Tc, in addition to the noise (which has the
same properties of the noise of the contiguous bins and so fluctuate with the
same variance), where Tc is the coherence time, Tc = 1 day.

As the last step of the analysis, the question is how to combine, for each
source, the informations held by in each spectrum. The natural way to do
this is to simply averaging the spectra sample by sample. To do this, we
can observe that, although the signal held by the first bin is expected to be
constant through the spectra, the noise variance in the bins holding only the
noise goes down proportionnally to M 1/2, where M is the number of averaged
spectra, M = 10. This lowers the final variance of the noise, as we will see
in more detail in section 3.5
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3.5 Estimation of noise, and choice of the

false alarm probability

To estimate the noise level for a single FFT, it’s worth noticing that the 0 bin
is the only one which holds the signal power, if present. So, we must esclude
it from the description of the noise statistics. The other bins are in principle
all available to be used to describe how the noise is distributed. However,
the detector spectrum is not flat. Even if we are looking to a band whose
bandwidth is narrow respect to the total spectrum extension, the band (about
3 Hz) is not so narrow to make possible to neglect the spectral structures
inside it. The noise has thus not the same properties through all the bins
of the band, and only the bins which are closer to the 0 bin can be used to
infer how the noise is distributed. This is not a problem, because the number
of samples we deal with is still large enough to make possible to model the
distribution: even if we take 1% of the total bins, we are still dealing with
about 10000 counts. Moreover, at high frequencies inside the band, it is also
present the copy of the signal at twice its original frequency minus the band
begin corner (this is an artefact due to the fact that we have multiplied the
signal by a function which is oscillating with the same law of the signal itself,
and so this is simply a consequence of the prostapheresis formulas). This is
another motivation to exclude from the further steps of the analysis the bins
at higher frequencies.

The distribution we expect from the theory follows an exponential law,
whose variance is the estimation of the noise level.

Then, averaging the spectra, the variance of the noise computed on the
final averaged spectrum is M 1/2 times smaller than the one of a single spec-
trum. In this way, averaging over M spectra, the threshold on the statistics
for the requested false alarm probability will reduce of a factorM 1/2, and thus
the upper limit on the signal amplitude h will reduce of a factor M 1/4. If we
were in the detection region, for the same considerations, the signal-to-noise
ratio would increase by a factor M 1/2. Also the distribution of the noisy bins
changes onto a centered χ2 with M degrees of freedom. For what concerns
the 0 bin, the distribution we theoretically expect for it is a non-centered
χ2, with non-centrality parameter θ proportional to the signal amplitude, as
shown in figure 3.8.

3.6 Setting confidence levels

Now we focus on the final spectrum, namely the average of the 10 1-day
FFTs. A lot of the bins of these objects can be used in order to test the
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Figure 3.8: statistics of bin 0 counts when the signal is not present (solid
curve, χ2 PDF with 10 degrees of freedom without non-centrality parameter)
or it is present (dashed curve, χ2 PDF with 10 degrees of freedom and non-
centrality parameter θ = 2.)

null hypothesis ”h0” that the signal is not present in the data. Because of
the operation of spectra averaging, the distribution we can assume (once we
have verified this fitting the data, as we will see in chapter 4.2) for the 0 bin
is, as discussed in section 3.5, a non-centered χ2, with some non-centrality
parameter θ holding the information about the signal. So, θ is the parameter
we want to estimate.

The first part of the hypothesis test consists of arbitrarily setting a false
alarm probability, in our case, to be confident, we choose a false alarm prob-
ability of 10−2. This says that once in 100 times we say that the signal is
present when it is not. For the whole search, meaning for the 3 targeted pul-
sars togheter, this brings to a 3 per-cent total false alarm rate. The histogram
directly gives, in terms of h2

0T , where T is the integration time of each coher-
ent sub-search, a false alarm threshold that we will use in the forthcoming
step. Considering that σ assumes a different value for each pulsar, because
each pulsar belongs to a different band in the spectrum and each band has
its own specific variance, we end up with a different value of the threshold for
each pulsar. Let’s call xFA this calculated threshold on x. Finally, we have
to define a procedure in order to set a confidence interval, either uper limit
or two-sided, on the measured on the gravitational wave amplitude hmin. We
know from section 3.5 that, if the signal is not present, the 0 bin statistics
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is a centered chi-square with M degrees of freedom; as the signal amplitude
grows, the statistics change onto the non-centered chi-square and, when the
signal-to-noise ratio is large, tends to be gaussian. The way we choose, to
measure h and to exactly know the statistical meaning of our conclusions, is
to build, in the plane (x, θ), where x is a generic result of the experiment and
θ is the parameter that we want to estimate, the so-called ”confidence belt”.
There are several ways to construct a confidence belt. Here, we decided to
follow, and to implement, the recipe given by Feldman and Cousins in 1998
[42]. We require our confidence belt to have the property to guarantee a se-
lected coverage over all the parameters region. The coverage of a confidence
interval is defined as follows: it is the probability interpreted as the mean
value of the fraction of times that, if one repeats the experiment under the
same conditions, the two limits of the interval cover the true value of the
parameter to estimate. This selected coverage we want to obtain is, for us,
C = 0.9. In reality, our method is a little different from Feldman and Cousins’
one [42], because we also choose to fix a small false alarm probability of 0.01.
This choice, in fact, causes the coverage to be more than the goal-coverage
in the upper-limit region, namely for x < xFA. This over-coverage that is
present in a region of the parameter space is the price we need to pay in order
to have a small false-alarm probability. The construction of our confidence
belt proceeds as follows. For each fixed x̄, let’s define θbest the value of θ
that maximizes the likelihood f(x, θ), requiring the physical constrain that
θbest ≥ 0. In particular, if the measured x is less that its average value x̄,
we impose θbest = 0, because if the result of the measurement is less than
the mean value, the best estimator of the signal is 0. Now, for each possible
value θ̄, we calculate the likelihood ratio given by

R(x̄, θ̄) =
f(x̄, θ̄)

f(x̄, θbest)
. (3.38)

This ratio of likelihoods is the function of x̄ that we use to choose the confi-
dence intervals. In fact, for each choice of θ̄, the confidence interval (x1, x2)
is uniquely defined by the requirements 3.39 end 3.40:

∫ x2

x1

f(x, θ̄) = C . (3.39)

R(x1) = R(x2) . (3.40)

If the condition 3.39 cannot be satisfied withih the condition 3.40, we consider
as good the confidence interval also if R(x2) < R(x1).
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The choice of this ordering principle for the choice of the confidence in-
tervals, will result in a more regular behaviour of the confidence belt in the
regions of the parameters space where x is very low. The couples of values
(x1, x2) are taken starting from the value xmax which maximizes R(x, θ̄) for
a given θ̄. Taking all the different values of θ, we cover all the parameter
space and so we can trace the confidence belt. We have implemented all
this procedure using MATHEMATICA. We start selecting a grid of values
in the parameters’ space (x, θ) and to calculate the value of the likelihood
ratio R over all the points of the grid. It’s important to notice that, unfortu-
nately, the problem of finding θbest can be solved only numerically, because
in our case the probability density function f is very complicated: it is in
fact expressed in terms of the regularized hypergeometric 0F1 functions, and
the problem of finding an always viable relationship θbest = θbest(f, x) is not
analytically solvable. Then, the program takes a value θ̄ and, for the section
of the parameter grid at θ = θ̄, searches for xmax. Then, we move from xmax

to larger values of x, and the program shows all the couples of values (x1, x2)
that best satisfy equation 3.40. For each couple, the program integrates the
probability density function to find the coverage. Finally, between all the
coverage values, the program extracts the couple for which the coverage is
the most similar to C and not less that it, thus computing the confidencebelt
at θ̄. See section 4.3 for the result.

The confidence belt must be read in this way: given a result x̄ of the ex-
periment, we trace a vertical line, which intercepts the edges of the confidence
belt, thus giving the extreme values θ1 and θ2 of the confidence interval.

3.7 Tests on the doppler demodulation pro-

cedure

In order to verify that our doppler demodulation procedure is correct, we
have performed a data exchange with radioastronomers. In fact, we have
taken two ideal sources that we called respectively ”test1” and ”test 2”, the
first one lying on the ecliptical line, the second one quite far from that line.
We simulated a gravitational wave signal from these sources, manually fixing
the positions in the sky and the orbital parameters of our fake sources, as it
is seen from the SSB reference frame, and then we provided these simulated
waves to radioastronomers, in order to see if they could fit the waveform with
their procedure, which is independent from ours. Radioastronomers required
the fake sources to be two, one in the ecliptic and the second one far from
it, in order to check if all the motions of the detectors and the source in
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paramater source ”test1” source ”test2”

RA 0 0
DEC 0 45◦

frequency [Hz] 900 900
F1 0 0

PEPOCH [MJD] 54100 54100
A1 0.1 0.1

ECC 0.01 0.01
PB 1.0 1.0

Table 3.2: Parameters of the simulated sources

the SSB reference are exactly taken into account. Given the fact that the
frequency of the simulated gravitational wave signal is about 1 KHz, and that
the sampling time ot these simulated data is required by radioastronomers
to be at least 1/100 of the period time or smaller, the files we produced for
this check are very large. We chose to simulate the signal for 10 minutes. We
anticipate that the duration we will chose for the coherent searches will be
1 day, i.e. about 102 times the one of the simulations. With these settings,
the precision required in the test is sufficient to be sure that the errors are
within the required demodulation precision for a time of 1-day. This results
in a 60 Mbyte ASCII file for each test source. The waveform of the signal is
not important at all, because all the information for the check is held by the
phase. So, we chose a square waveform, namely the value of the simulated
signal is 1 when the phase is contained in the interval between 0 and π, and
0 othwerwise. The parameters of our simulated sources are the ones in table
3.2.

3.8 Behaviour of AURIGA in the observation

period

We chose a period called run 852, containing AURIGA data during the period
between December 4, 2006 and December 22, 2006, namely 18 days. In this
period, we chose 10 contiguous days between December 8 and December 17.
This period has been chosen because the behaviour of the detector during
these days was satisfactory, namely the detector noise was low and stable.
The noise spectral density of the detector during the run 852 is shown in
figure 3.9, along with the position in the spectrum of the expected signal
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from each source. The plot represents the quantity
√

|Fourier(A(t))|2

|T (ω)|2
, where

A(t) is the time series of the output data of the detector. The plotted quantity
is the one that can directly compared with the dimensionless amplitude of a
gravitational wave applied to the bar input. In fact, for example, for a signal
with amplitude h0, constant over a bandwidth ∆ν, the signal-to-noise ratio
is

SNR = h0S
−1/2
h ∆ν−1 . (3.41)

Unfortunately, in the case of PSR J0024-7204W, the frequency of the ex-
pected gravitational signal is in a region of the spectrum where a spurious
line due to an electromagnetic interfernce is present. This line is an harmonic
of the 50 Hz frequency of the power line. If the only problem was a higher
value of the noise here, the analysis could be done despite this. However, it
was not possible to exactly model this line, because its frequency jitters as
time goes by, and the amplitude is also non stationary. So, during the pro-
duction of the h-reconstructed data, all the band holding this line has been
vetoed, making impossible to perform the further steps of the analysis for
PSR J0024-7204W. In figure 4.1 we show a randomly chosen set of samples
od the antenna decimated data. This gives an idea of the dispersion of the
plots and the order of magnitude we have to deal with.

3.9 Evaluation of frequency shifts

For our 10 days of interest, we have calculated the frequency correction due
to all motions of the detector and the source in the SSB reference frame. We
show the behaviours for the source PSR J0218+4232 in some plots. Figure
3.10 shows the velocity of the detector respect to the center of mass of the
binary; in figure 3.11 we show the velocity of the pulsar with respect to the
center of mass of the binary system; and finally in figure 3.14 shows how this
relative motion brings to the variations to the intrinseic signal frequency.

In order to perform the real analysis, we choose to divide the observational
time into short sub-periods. This is primarly due to the fact that, as we have
seen before, the instability of the transfer function of the detector brings
us to the fact that a 10-days coherent search is problematic, and also to
the fact that, if we have some independent coherent sub-searches, we can
better address the problem of how is the statistics of the frequency bins we
have to finally analize to find a robust upper limit for the gravitational wave
amplitude. In table 3.3 we show the time of beginning of all the sub-searches
we have so far performed, both showing the data and the corresponding value
of the Co-ordinate Universal Time, which is the one used in the codes.
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Figure 3.9: Detector noise spectral density during the run 852. The plotted
quantity is Sh1/2.

sub-search number time begin UTC

1 dec 8, 2006, h 0 849571214
2 dec 9, 2006, h 0 849657614
3 dec 10, 2006, h 0 849744014
4 dec 11, 2006, h 0 849830414
5 dec 12, 2006, h 0 849916814
6 dec 13, 2006, h 0 850003214
7 dec 14, 2006, h 0 850089614
8 dec 15, 2006, h 0 850176014
9 dec 16, 2006, h 0 850262414

10 dec 17, 2006, h 0 850348814

Table 3.3: Time of beginning of the coherent sub-searches.
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Figure 3.10: detector’s velocity respect to the binary’s center of mass, PSR
J0218+4232
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Figure 3.11: pulsar’s velocity respect to the binary’s center of mass, PSR
J0218+4232
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Figure 3.12: the frequency of the signal as observed in the SSB, PSR
J0218+4232
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Figure 3.13: the frequency of the signal as observed in the SSB, PSR J0024-
7204J
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Figure 3.14: the frequency of the signal as observed in the SSB, PSR J0024-
7204W



Chapter 4

Analysis results

4.1 From the h-reconstructed data to the de-

modulate vectors

Here, we show examples of all the features of the real analysis through AU-
RIGA run 852 data. Examples of the behaviour of the demodulated vectors,
extracted from the real analysis for PSR J0218+4232, are shown in figure
4.1. This is just to give an idea of the number of the orders of magnitude we
deal with when we use the h-reconstructed data. In figure 4.2 there is the
effect of the sine modulation on the vector in 4.1.

4.2 Noise distribution and result for the noise

level

Once we have done all the corrections due to the Doppler shiftes, which is
done by several routines we have written in C, we choosen to process the
demodulated vectors using MATLAB.

In plot 4.3 we show how the typical fft of our coherent sub-searches ap-
pear. As we saw in section 3.5, the spectrum is not flat through the band
and only the first bins, where the spectrum can be considered locally flat
within a good approximation, can be used for the forthcoming steps.

Figure 4.4 shows how the counts of a single FFT are distributed. The
stetistics is well fitted by an exponential curve 4.5.

In figure 4.6, we whow how the noisy bins of the averaged spectrum is
distributed. The histogram is well fitted by a χ2 with M degrees of freedom.

67
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Figure 4.1: a typical noise string as seen by the detector
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Figure 4.2: the effect of the sine modulation on the previous string
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Figure 4.3: one of the short ffts
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Figure 4.4: an histogram of fft bin counts
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Figure 4.5: fit of the istogram of the noisy bins of the first 1-day fft, PSR
J0218+4232. The fitting function is f(x) = 42970.7 · e−0.700449x, and the
normalized χ2 of the fit is χ2 = 1.077
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Figure 4.6: histogram of the noisy bins of the final averaged spectrum, for
PSR J0218+4232.



4.3. UPPER LIMITS AND CONFIDENCE INTERVALS 71

PSR x0[Hz
−2] std[Hz−2] x0/std[] θu.l./std[] θu.l.[Hz−2]

J0024-7204J 5.43 · 10−36 3.12 · 10−36 1.74 8.8 2.74 · 10−35

J0128+4232 1.34 · 10−36 1.00 · 10−36 1.33 8.0 2.50 · 10−35

J1939+2134 1.58 · 10−36 9.62 · 10−37 1.64 8.6 2.68 · 10−35

Table 4.1: Values of the statistical quantities for 3 target pulsars. x0 is the
value of the 0 bin of the averaged spectrum; std is the standard deviation of
the noisy bins of the same spectrum; θu.l. is the upper limit on the parameter
θ to estimate.

PSR upper limit (hu.l.)

J0024-7204J 6.00 · 10−23

J0218+4232 3.27 · 10−23

J1939+2134 3.33 · 10−23

Table 4.2: Measured upper limits for 3 targeted pulsars. Here the goal
coverage is fixed to C = 0.9.

4.3 Upper limits and confidence intervals

The computed confidence belt for C = 0.9 is shown in picture 4.7

The measured quantities needed to reach the estimation of θ are sum-
marised in table 4.1.

We finally give the results for the upper limit of the gravitational wave
emission for our 3 target pulsars, see table 4.2.

We plotted several confidence belts for different values of the coverage one
may want to choose. In figure 4.8 we plot three confidence belts, referring
to three different coverage values. For each coverage, we calculate the upper
limit for the parameter θ to estimate, the results are shown in table 4.3

Finally, in table 4.4, we show what are the corresponding values we find
for our final upper limits on h.

PSR θu.l.
68%/std[] θu.l.

90%/std[] θu.l.
95%/std[]

J0024-7204J 5.4 8.8 10.8
J0218+4232 4.3 8.0 9.7
J1939+2134 5.1 8.6 10.5

Table 4.3: Values of θu.l. for different coverages.



72 CHAPTER 4. ANALYSIS RESULTS

x/std [ ]

θ θ θ θ 
/ s

td
 [ 

] 

0 10 15 20 255

5

10

15

20 Detection region

Upper Limit
region

xFA

O
ver-Coverage

Figure 4.7: setting confidence intervals: the confidence belt. The red dashed
line indicates the most likely value of θ for each x. The parameter θ we want
to estimate bring the information about h, in fact θ = h2

0 ·T 2, where T is the
coherent integration time. The plotted quantities are then re-scaled by means
of the standard deviation of the noise std, in order to have unit variance, so
we finally deal with dimensionless quantities. The dimensionless confidence
belt so described is good for each analysis; it is sufficient to substitute for
each sub-band its proper noise level.

PSR hu.l.
68% hu.l.

90% hu.l.
95%

J0024-7204J 4.75 · 10−23 6.00 · 10−23 6.71 · 10−23

J0218+4232 2.40 · 10−23 3.27 · 10−23 3.60 · 10−23

J1939+2134 2.56 · 10−23 3.33 · 10−23 3.68 · 10−23

Table 4.4: Calculated upper limits for 3 different coverages
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Figure 4.8: three confidence belts for three coverages: C = 0.68(blue curve),
C = 0.9(red curve), C = 0.95(yellow curve) .
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4.4 Comments about the measured upper li-

mits

The final values 4.4 fit with the spectrum of the detector during run 852, see
figure 3.9. In fact, the worst upper limit is the one for PSR J0024-7204J, that
is in a spectral zone (952 Hz) where a noisy line is present. For the other 2
sources the upper limits are very similar, and this respects the fact that the
two sources are very close one to each other in the spectrum (they are only
5 Hz far away one from each other) and so the properties of the noise in the
3 Hz bands containing the signal are almost the same.



Chapter 5

Conclusions

5.1 Future perspective: applying our method

to other experiments

Even if our results didn’t lead to a detection of gravitational waves from the
targeted binary pulsars, but to upper limits, and these upper limits are not
so restrictive to set important constraints on astrophysical models of these
sources, we have to focus on the following fact, which is very important.
Our method can be applied, without in fact any differencies or corrections,
to any other gravitational wave experiment, such as the new generation of
Earth based detectors Advanced LIGO [43] and Advanced VIRGO [52]. The
selections of the sub-bands holding each signal, and the whole data analysis
will be done exactly in the same way, but with two important improvements,
that can be seen directly by simply looking at figure 5.1 and 5.2.

These detector promise to reach much better sensitivities that the ones
we have used in this work. Moreover, the bandwidth of these interferometric
detectors are much larger than the ones available for resonant-mass detectors
like AURIGA and this band is optimally located respect to the possible
sources of interest, thus resulting in a lot of possible sources to look at with
Advanced LIGO and Advanced VIRGO. So, the science that one could do
with such detectors can be much more interesting, and the complete analysis
pipeline and implementations are the ones that have been implemented and
tested in this work, so this could be the natural future development of this
work.

Before the advanced LIGO detector, a preliminary step is planned, i.e.
Enhanced LIGO, which will be available in 2010. The design curve reaches
its maximum sensitivity around 200 ' 300 Hz, with S

1/2
h ' 10−23Hz−1/2.

Performing a fully coherent analysis using 1 year of data, the minimum mea-
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Figure 5.1: Sensitivity curve of the LIGO advanced detector.
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Figure 5.2: Sensitivity curve of the planned advanced VIRGO detector [52].
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surable amplitude is about hmin ' 3 · 10−27, corresponding to values of the
ellipticity of ε ' 3 · 10−7, which are very interesting from an astrophysical
point of view.

Comparing these values with the one shown in the chapter about astro-
physical models, we see that these orders of magnitude are likely to lead to a
detection, or to very strict upper limits about the astrophysical parameters
of these sources, and so make possible to really do interesting science. In
fact, even if it is difficult to think it’s possible to reach a detection of a real
signal, the upper limits are close enough to the expected values of the am-
plitude which is expected by astrophysical models, and so some close enough
constraints can be set on some unknown astrophysical properties of rapidly
rotating neutron stars.

It is moreover important to see that, if a new detector as the Advanced
LIGO will be available in a few years, the probability of a detection is good,
in fact, using the sensitivity curve of the projected Advanced LIGO, in the
spectral region in which our targeted sources are clustered the hmin that could
be revelated is in the order of hmin ' 3 · 10−28 (for 1 year of fully coherent
integration). Continuing in this kind of searches is so very promising for the
future.

5.2 SNR formula and its consequences

The low that describes how the sensitivities of our search increases with the
time of coherency Tc and with the number of averaged spectra M is

hmin = S
1/2
h (T 1/2

c )M1/4 . (5.1)

This relation has two important consequences, the first one referring to the
robustness of our method, the second one referring to the sensitivities that
would be possible to reach with advanced interferometric detectors. The fact
that, if a real signal is present in the data, it has to be the exact signature
of the template we used to extract it from the noise, dramatically reduces
the possible of false detections. In fact, every signal or structure in the
noise with another shape and not the exact one used in our filters would be
automatically destroyed by the extreme accuracy of the filter itself.

Then, if a signal is present, equation 5.1 shows that its SNR has to grow
as the analyzed time increases following this exact law. So, another strong
evidence of a detection would be the one of repeating the analysis through
shorter or larger observation time, also in different epochs, calculate the SNR
and see if the relation 5.1 holds.
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The present AURIGA design guarantees a very good duty cicle, so one
could think to keep coherently the phase information for a very long time.
With 1 year of fully coherent observation, and for PSR J1939+2134 (the one
characterized by a lower noise in its spectral band), we could be able to reach
an upper limit of hmin = 10−24.

5.3 Comparison of our results with other si-

milar works in literature

Now, let’s see which are the searches that have so far been done and reported
in the literature, about the attempt to measure gravitational waves from
neutron stars. We want to understand how our work fits with the other
studies in this field. Historically, the first study concerned the data taken
in 1991 by the Explorer detector [44]. This is a search focusing only in the
Galactic Center direction, and restricted to the very narrow frequency band
921.32 ÷ 921.38 Hz around the sensitivity peak of the antenna. They used
3 months of effective data (because of the low detector duty cicle), and the
analysis method applied the optimal filtering strategy to the simple case of
isolated neutron stars without any spindown. It provided to reach an upper
limit of hu.l. = 2.9 · 10−24. It was a very preliminary and limited approach:
the chosen direction to observe was certainly privileged and very interesting;
however, as we have discussed in chapter 2, isolated neutron stars, even
if they are the most simple case to deal with, are the less promising as
gravitational wave sources. Then the ROG group presented the first study
with an approach of ”all-sky” kind, but still only looking at isolated sources,
using the data taken by Explorer in the period between September 2001 and
November 2002 [45]. The search is limited to the frequency band 921.00 ÷
921.76 Hz around the antenna peak sensitivity, and takes for the first time
in account the neutron star spindown. Using a maximum likelihood method,
they reached an upper limit of hu.l. = 2 · 10−23, namely about 1 order of
magnitude worse than the one presented in the paper [44] about the galactic
center, but now, for the first time, scientists looked to all the positions in
the sky. With the beginning of the interferometers era, for the first time
scientists started searching (as we do here) for signals from existing pulsars,
known from observations in the radio field. The first attempt is a work that
uses the data taken by the LIGO detectors in their first scientific run, called
S1 [46], providing an upper limit hu.l. = 1.4 · 10−22 for one of the targeted
pulsars of our work, PSR J1939+2134. With the interferometers second
scientific run (S2), two other important works have been published. The
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first one, whose approach is the most similar to our one, concerns 28 isolated
pulsars [47]. The stricter upper limit is the one about PSR J1910-5959D and
it is equal to hu.l. = 1.7 ·10−24. The orders of magnitude of all these 28 upper
limits are similar to the values that we found here. However, we are still only
dealing with isolated objects. On the other and, the paper about all-sky
[48], still about isolated sourcces, uses the Hough transform method for the
pattern recognition, and reaches a best upper limit of hu.l. = 4.43 · 10−23 in
the spectral region 200 ÷ 400 Hz. An analogous study (all-sky for isolated
neutron stars), using the data taken by Explorer in 2005 [49], placed a similar
upper limit (hu.l. = 3 ·10−23) in the band 885÷925 Hz. The last one that has
been published, in chronological order, is the one that can better be compared
with our study, and it’s the one realized by the LIGO Scientific Collaboration
using the data of the two scientific runs S3 and S4 [50]. For the first time,
scientists realized a search targeted also to binary pulsars, the most promising
ones (they are more that half the total of 78 considered objects). The stricter
upper limit they give is hu.l. = 2.6 · 10−25, about PSR J1603-7202. In the
paper, they look also to the 3 sources we measure here. In particular, the
upper limits are: hu.l. = 7.41 · 10−25 for PSR J0024-7204J; hu.l. = 1.14 · 10−24

for PSR J0218+4232; hu.l. = 1.65 · 10−24 for PSR J1939+2134. Comparing
these values with the ones of table 4.1, we see that for PSR J0218+4232 and
PSR J1939+2134 the improved sensitivity of interferometers allowed to reach
upper limits about 10 times better that what we could do. To conclude, the
experimental and analysis efforts that have been so far done in this field are
several, and they begin now to give their results. In fact, even if a detection
has not so far been achieved, the upper limit estimation begin to be very
close to the expected amplitudes (see the results we found in Equations 1.50
and 1.54): at present, measurements can play the important task of placing
limits on several important and not well known astrophysical parameters of
these objects, as the magnetic field, the ellipticity, and the nature of the
equation of state of the hyperdense matter which neutron stars are made of.

5.4 Another application: transients in X-ray

pulsars

Finally, it is very important to notice that, very recently, X-ray observatories
have done a new kind of observations, which bring to another, both very
promising and very simple, application of our work. In some transients in
X-ray pulsars, they managed to exactly track the phase of the signal at the
SSB for the duration of the emission [51]. Now, these X-ray emission are very
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interesting from an energetic point of view, and they arise because of matter
falling onto the star from the accretion disk, so during these transients the
ellipticity of the star probably changes, and also emitting mechanisms such
the r-modes are likely to become instable and so available as gravitational-
wave emission channels. So, using the method presented in this work to see
if a signal is present during these phenomena is in principle very interesting.
It’s also worth noticing that, recently, the scientists of tge LIGO Scientific
Collaboration published a paper of this kind [53]: they searched through
the data a possible gravitational wave associated with the gamma-ray burst
070201. This is to show that this kind of approaches is currently used and
considered promising by the scientific community.
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