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Abstract. The puzzles of direct dark matter searches can find solution in the model of
dark atoms, called O-helium, containing stable -2 charged lepton-like heavy particle O−−

bound by ordinary Coulomb interaction with primordial helium 4 nuclei. Specific properties
of this nuclear interacting dark matter can explain positive results of DAMA/NaI and
DAMA/LIBRA experiments and negative results in cryogenic and heavy nuclei (like xenon)
detectors. Astrophysical and collider probes for dark atom models as well as open questions of
O-helium nuclear interaction with matter are discussed.

1. Introduction
The existence of nonbaryonic dark matter is strongly supported by the data of precision
cosmology, but the experimental direct search for dark matter particles in underground detectors
gives controversial results. The continuous increase of confidence level of positive results of
DAMA/NaI and DAMA/LIBRA dark matter searches [1, 2, 3, 4, 5] seems to be in apparently
growing tension with the negative results of other groups like CDMS [6, 7, 8] , XENON100 [9]
and LUX[10]. A possible explanation for this apparent contradiction may be related with the
difference in strategy, methods and chemical content of detectors in these experiments. With the
account for such difference even interpretation of DAMA result in terms of Weakly Interacting
Massive Particles (WIMPs) may not be completely ruled out [5]. However, such interpretation
seems highly unprobable and the co-existence of positive result of DAMA and negative results
of other groups can appeal to non-WIMP dark matter effect, detected by DAMA.

WIMPs are the simplest miracluous solution for cosmoloical dark matter. This solution
found strong theoretical motivation in supersymmetric models, predicting a few hundred GeV
Lightest Suersymmetric Particle as a natural WIMP dark matter candidate. However, the lack
of supersymmetric particles at the LHC as well as negative results of WIMP searches by most of
experimental groups may be a hint to a non-WIMP nature of dark matter, which is detected by
DAMA but missed in the strategy of other searches, aimed specifically to detection of WIMPs.

Here we draw attention to a possibility to explain these puzzles of direct dark matter searches
in the model of dark atoms [11, 12, 13, 14, 15]. The model assumes that, similar to ordinary
matter, dark matter consisits of neutral atoms called O-helium (OHe), in which hypothetical
stable -2 charged massive particles are bound by ordinary Coulomb force with primordial helium
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nucleus. This model is a simplest extension of the Standard model, since it involves only one
parameter of new physics (the mass of double charged particle O−−) and reduces effects of
dark atoms to the nuclear interaction of their helium shells that can be based on known laws
of nuclear and atomic physics. The complication of the problem of OHe nuclear interaction
still leaves open its complete quantum mechanical solution, but the qualitative features of OHe
dark matter scenario and the possibility of its explanation for the puzzles of direct dark matter
searches and some astrophysical anomalies appeal to development of this interesting approach.

After brief description of physical models predicting stable double charged particles as well as
of structure of OHe atoms, specifying the open problems of OHe nuclear interaction (Section 2)
we review main features of OHe cosmological scenario in Section 3. We also show in the Section
3 that dark atom model can explain the observed excess of low and high energy cosmic positrons
and specify the upper limit on the mass of double charged particles for such explanation. We
consider in Section 4 specifics of dark atom interaction in the underground detectors and the
possibility to explain the puzzles of direct dark matter searches. Searches for stable double
charged particles particles at the LHC provide complete experimental test for explanation of
low and high energy positron anomalies by effects of dark atoms ( Section 5). We stipulate the
advantages and problems of dark atom model in the final Section 6.

2. Dark atoms with stable double charged constituents
The idea on atoms of dark matter, in which electrically charged constituents are bound by
ordinary Coulomb interaction was proposed by S.Glashow [16], but this possibility is severely
constrained by the upper limits on anomalous hydrogen and helium, thus excluding existence
of stable single charged particles [17]. Indeed, +1 charged species form anomalous hydrogen,
bound with ordinary electrons, while primordial -1 charged species are bound after Big Bang
Nucleosynthesis with nuclei of primordial helium, forming +1 charged ion, which also produces
anomalous hydrogen after binding with electron. Therefore to save the idea of dark atoms the
model should predict stable -2 charged particles O−− that form with primordial helium neutral
O-helium atom, while single charged particles should be either absent or unstable.

2.1. Models of stable double charged particles
The simplest example of stable double charged particles gives a model of stable U -quark of
sequential 4th generation [11]. If asymmetry in the 4th generation has opposite sign relative to
baryon asymmetry in three known generations, Ū Ū Ū is a stable species with charge -2. Such
definite relationship between the excess of -2 charged species over their +2 charge partners and
baryon asymmetry finds quantitative description in the Walking Technicolor (WTC) model,
predicting two types of stable doublecharged species - technibaryons UU and technileptons ζ
[13, 18]. Electroweak sphaleron transitions relate techniparticle excess to baryon asymmetry
and reasonable choice of the scale of freezing out of sphaleron transition gives the ratio of
techniparticle to baryon densities that can explain the observed dark matter by techni-O-helium
atoms.

The discovery and precise measurements of Higgs boson (125 GeV) parameters that appear
to be very close to the predictions of the Standard model put severe constraints on the model
of sequential 4th quark-lepton generation and imply strong suppression of the coupling of these
particles to 125 GeV Higgs boson [19]. These constraints also imply modification of the WTC
model [20].

Strong QCD interaction is either strongly suppressed or absent for all the examples of
stable double charged particles. Therefore O−− are either leptons or lepton-like particles
[11, 12, 13, 14, 15].
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2.2. O-helium dark atoms
The structure of an OHe atom can be described following a general analysis of the bound states
of massive negatively charged lepton-like particle with nuclei [21, 22, 23]. This analysis shows
that bound states with light nuclei look like Bohr atoms with negatively charged particle in the
core and nucleus moving along the Bohr orbit, while bound states with heavy nuclei look like
Thomson atoms, in which the body of nucleus oscillates around the heavy negatively charged
particle. The solution depends on the value of parameter a = ZZoαAmpR, where Z, R and A are
charge, radius and atomic number of the nucleus, Zo is the charge of negatively charged particle,
α is the fine structure constant and mp is the mass of proton. For 0 < a < 1 the Coulomb model
gives a good approximation, while at 2 < a < ∞ the harmonic oscillator approximation is
appropriate (see [24] for review and references).

In the case of OHe a = ZZoαAmpR ≤ 1, which proves its Bohr-atom-like structure
[11, 13, 24]. The radius of Bohr orbit in these “atoms” [11, 13, 24] is

ro =
1

ZoZHeα4mp
= 2 · 10−13 cm, (1)

being of the order of and even a bit smaller than the size of He nucleus. Therefore non-point-like
charge distribution in He leads to a significant correction to the OHe binding energy.

In contrast to the ordinary atoms, having electroweakly interacting shell and the core much
smaller, than the atomic size, OHe has strongly interacting helium shell and the size of the
orbiting He is of the order of radius of orbit. Therefore, in the lack of these usual approximations
of atomic physics proper description of OHe interaction with nuclei remains an open problem.
The most complicated is the self consistent treatment of simultaneous action of nuclear attraction
to the He shell of approaching nucleus and its Coulomb repulsion.

In the approximation of rectangular wells and walls the simplified approach of [24, 25] assumed
the form of OHe-nucleus interaction shown on Fig. 1. Its crucial point is the existence of a
potential barrier due to polarization of OHe atom by nuclear attraction of approaching mucleus.
It leads to a shallow well outside the nucleus, in which a low lying bound state can exist for
intermediate mass nuclei [24, 25].

Figure 1. Potential of OHe nucleus
interaction in the square walls and wells
approximation
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Figure 2. Polarization < z > (fm) of OHe
as a function of the distance R (fm) of an
external sodium nucleus

The calculations with the use of perturbation theory [26] gave some evidence in favor of this
picture. They showed that OHe polarization changes sign, as the nucleus approaches OHe (Fig.
2), but the perturbation approach was not valid for the description at smaller distances.

The existence of dipole potential barrier is crucial for dominance of elastic processes in
OHe-nucleus interaction. Such dominance supports the qualitative picture of OHe cosmological
evolution, which avoids the problem of anomalous element overproduction.
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3. Dark atoms cosmology
OHe cosmological evolution [11, 12, 13, 24, 25] starts by creation of OHe as soon as primordial
helium is produced in Big Bang Nucleosynthesis. Since the mass of O−− is in TeV range, the
number density of these particles is by two orders of magnitude smaller, than He abundance,
and the frozen out concentration of free O−− is exponentially suppressed. In principle,
OHe interaction with nuclei can catalize formation of primordial heavy elements, but the
corresponding analysis implies further developement of OHe nuclear physics.

3.1. Large scale structure formation
Due to elastic nuclear interactions of helium shell with nuclei (dominantly protons) OHe gas is
in thermal equilibrium with plasma and radiation, while energy and momentum transfer from
plasma is effective. In this period radiation pressure is transferred to OHe density fluctuations,
transforming them in acoustic waves at scales up to the size of the cosmological horizon.

The energy and momentum transfer from baryonic plasma to OHe cannot support thermal

equilibrium at temperature T < Tod ≈ 1S
2/3
3 keV [11, 13] since

nB 〈σv〉 (mp/mo)t < 1, (2)

where mo is the mass of O−−, which determines the mass of OHe atom and S3 = mo/(1 TeV).
Here nB is the baryon number density, the cross section is given by

σ ≈ σo ∼ πr2o ≈ 10−25 cm2, (3)

and v =
√

2T/mp is the baryon thermal velocity. Then OHe gas decouples from plasma and

starts to dominate in the Universe after t ∼ 1012 s at T ≤ TRM ≈ 1 eV.
Decoupled from plasma and radiation OHe atoms play the role of dark matter in the

development of gravitational instability, triggering large scale structure formation. Nuclear
interacting nature of OHe determines specifics of its spectrum of density fluctuations. Conversion
in sound waves leads to suppression on the corresponding scales and the spectrum acquires
the features of Warmer than Cold Dark Matter scenario [11, 12, 13, 24, 25]. Decoupled from
baryonic matter OHe gas doesn’t follow formation of baryonic objects, forming dark matter
halos of galaxies.

3.2. Indirect effects of OHe dark matter
In spite of strong (hadronic) cross section OHe gas is collisionless on the scale of galaxies, since
its collision timescale is much larger than the age of the Universe. Baryonic matter in the Galaxy
is also tranparent in the average, so that OHe can be captured only by sufficiently dense matter
proto-object clouds and objects, like planets and stars.

Being asymmetric dark matter, OHe collisions cannot lead to indirect effects like WIMP
annihilation (first considered in [27]) contributing by its products to gamma background and
cosmic rays. However, OHe excitations in such collisions can result in pair production in the
course of de-excitation and the estimated emission in positron annihilation line can explain the
excess, observed by INTEGRAL in the galactic bulge [28]. For realistic estimation of the dark
matter density in the center of Galaxy such explanation is possible for a narrow range of O−−

mass near 1.25 TeV [29].
In the two-component dark atom model, based on the Walking Technicolor, together with

the dominant component of OHe a subdominant WIMP-like component UUζ is present, with
metastable technibaryon UU , having charge +2. Decays of this technibaryon to the same sign
(positive) lepton pairs can explain excess of high energy cosmic positrons observed by PAMELA
and AMS02 [30]. However, any source of positrons inevitably is also the source of gamma
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radiation. Therefore the observed level of gamma background puts upper limit on the mass of
UU , not exceeding 1 TeV [29].

These upper limits on the mass of stable double charged particles challenges their search at
the LHC (see section 5 and [29] for recent review and references)

4. Dark atoms in underground detectors
Owing to their nuclear interacting nature OHe particles are captured by Earth and slowed down
in the terrestrial matter (see e.g. [15]).

At a depth L below the Earth’s surface, the drift timescale is tdr ∼ L/V , where V ∼
400S3 cm/ s is the drift velocity and mo = S3 TeV is the mass of O-helium. It means that the
change of the incoming flux, caused by the motion of the Earth along its orbit, should lead at the
depth L ∼ 105 cm to the corresponding change in the equilibrium underground concentration of
OHe on the timescale tdr ≈ 2.5 · 102S−1

3 s.
The equilibrium concentration is given by

noE = n
(1)
oE + n

(2)
oE · sin(ω(t− t0)) (4)

with ω = 2π/T , T = 1yr and t0 the phase. So, there is a averaged concentration given by

n
(1)
oE =

no

320S3A
1/2
med

Vh (5)

and the annual modulation of concentration characterized by the amplitude

n
(2)
oE =

no

640S3A
1/2
med

VE . (6)

Here Vh-speed of Solar System (220 km/s), VE-speed of Earth (29.5 km/s) and n0 = 3 ·
10−4S−1

3 cm−3 is the local density of O-helium dark matter.
The idea of explanation of positive result of DAMA experiment is the annual modulation of

the rate of radiative capture of OHe by sodium nuclei to the low-energy level with energy about
3 keV.

The existence of such level for OHe-sodium system was found in [25] in square wall and well
approximation, corresponding to potential Fig. 1. Similar low-energy levels were found in [25]
for intermediate mass nuclei, while for nuclei lighter than carbon and heavier than gernmanium
such levels are absent.

If such level exist for OHe radiative capture by sodium the analogy with the radiative capture
of neutron by proton can be used [15]. Taking into account

• absence of M1 transition that follows from conservation of orbital momentum

• suppression of E1 transition in the case of OHe. Since OHe is isoscalar, isovector
E1 transition can take place in OHe-nucleus system only due to effect of isospin
nonconservation, which can be measured by the factor f = (mn −mp)/mN ≈ 1.4 · 10−3,
corresponding to the difference of mass of neutron, mn, and proton, mp, relative to the
mass of nucleon, mN ,

the rate of OHe radiative capture by nucleus with atomic number A and charge Z to the energy
level E in the medium with temperature T is given by[15]

σv =
fπα

m2
p

3√
2

(
Z

A
)2

T√
AmpE

. (7)



9th International Symposium on Large TPCs for Low-Energy Rare Event Detection

IOP Conf. Series: Journal of Physics: Conf. Series 1312 (2019) 012011

IOP Publishing

doi:10.1088/1742-6596/1312/1/012011

6

Under these conditions the signal, measured in DAMA/NaI and DAMA/LIBRA experiments,
is reproduced [25].

This approach also explains the negative result of other experiments - there are no such
levels in heavy nuclei, like Xe, while the rate of radiative capture of OHe in cryogenic detectors
is suppressed.

5. Accelerator test for indirect effects of dark atoms
The widely accepted approach to collider search for dark matter particles is related to search
for effects of missing energy and momentum in particle collisions. This approach links freezing
out of dark matter partilces in early Universe, indirect effects of their annihilation in the Galaxy
and direct underground searches for dark matter particles.

Such relationships are strongly modified in the case of dark atoms. In particular, in the
context of dark atom model, accelerator probe for dark matter is reduced to search for stable
double charged constituents of composite dark matter that acquires the significance of direct
experimental test for dark atom model. Upper limits on the mass of double charged particles,
at which the detected anomalies in positron annihlation line radiation from the center of Galaxy
and the excess of cosmic high energy positrons find explanation in the framework of dark atom
model provide a possibility of experimentum crucis for such explanation [31].

Experimental lower limits on the mass of stable double charged particles, deduced in CMS
and ATLAS experiments from the data of 8 TeV Run, are currently around 700 GeV. However
the expected range, which can be reached in the analysis of the data of Run2, can cover all the
range of masses that provide explanation for indirect effects of dark atoms. [31].

6. Conclusion
Dark atom hypothesis offers a nontrivial solution for the puzzles of direct and indirect dark
matter searches. This approach involves minimal extension of the particle content of the
Standard model and relates most of the signatures of dark atoms to the processes of known
atomic and nuclear physics. However it doesn’t simplify the predictibility of dark atom model
in the lack of simplifying approximations of ordinary atomic physics.
OHe interaction with matter loses usual approximations related with the small parameters

of ordinary atoms:

• the helium shell is nuclear interacting with its strong coupling instead of fine structure
constant that characterizes interaction of electronic shells;

• radius of Bohr orbit in OHe is of the order of the size of He nucleus, so that there is no
usual smallness of the ratio of nuclear core and the size of electronic shell in the ordinary
atom;

• at the most important stage of OHe interaction with approaching nucleus all the distances
are comparable with the size of nuclei;

• nuclear attraction of the nucleus by the helium shell leads to polarization of OHe, at
which dipole barrier is created. The significance and effect of this barrier is crucial for
the selfconsistent OHe dark atom scenario.

These complications hinder proper quantum mechanical description of OHe interaction with the
matter that is needed for detailed analysis of cosmological, astrophysical and physical signatures
of dark atoms. However, qualitative advantages of this approach, presented here, appeal to its
further development that will find solution to overcome these complicated problems.
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