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1. INTRODUCTION

In these lectures I would like to talk on bound states and resonances
in quantum field theory [1]. I will assume that you are familiar with this
problem in potential scattering and will investigate similar problems in field
theory. The difficulty is that the only systematic method of calculation in
field theory is the perturbation theory. If you look at the analytical properties
of single graphs the poles and singularities which correspond to bound states
and resonances do not appear. -Therefore one has to do something better and
I will consider a particular model,: the so-called ZACHARIASEN model [2]}
which is essentially the summing up of the chain-diagrams (Fig. 1a and 1b).

a) b . )
Fig. la, 1b’ ) - Fig.1e
Typical chain diagrams Typical ladder diagrams

In principle one could think also of the summlng up of ladder diagrams (Fig. 2).
They are, however, much more complicated and we will at first consider
the chain,

The summing up of the chain leads’ to a umtary S- matmx which is by no
means trivial, since one has taken out only special types of diagrams from
the whole perturbation expansion. It also satisfies analytically, but not
crossing-symmetry.

The model can either be considered as a prescription to select a certain
type of diagram in ordinary perturbation theory, or in the framework of
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dispersion theory, as a restriction on certain intermediate states, or as

the exact solution of a Lagrangian field theory, in which the pairs of particles
forming the bubble in Fig. la occur as a field with continuous mass spectrum
{3]. The scattering amplitude T depends in this model only on one variable
or, in other words, we are deahng only with the interaction of particles in

a special angular momentum state the moment of which we take to be 0, The
only possible justification of the approximation, which this model represents,
comes from the field theoretic treatment of the many-body problem, where
the bubble-summation leads to physically significant results (plasma oscil-
lations of an electron gas). We shall discuss it in some detail since it re-
flects several features which are conjectured for a full-fledged field theory.

2. THE SCATTERING AMPLITUDE - v .

In the model we have two particles, one represented by y (solid line)
with mass %, the other represented by ¢ (broken line} with mass ug, both
with spin 0 (the generalization to spin 4 for ¢ will be considered later).

In the language of a Lagrangian formalism we have to consider the inter-
action term: '

= - xo¥t +god y?t a (1)

¥

(note that a negative Ay means attraction, a positive one repulsion) and have
to sum up the diagrams shown in Fig, 2:

D G D
Fig. ..2

2

2 2
T(s) = X + g‘;‘ + 2o A(s) Ao +- A(s)xo +2g A(s) °pg + Sg_°u2 Asg_"p%
§ 2 .

A (s) is an abbreviation for the divergent bubble; which is in co-ordinate
space the product of two scalar Feynman propagators with the same argument.
This product can be written as a weighted integral over single propagators
[4]. In momentum-space this means:

o -
Wds'
s'-g+ie

s’ - 8
S/

Afs) = - with W = Te'ls? : .'(3)', {4)’

which is logarithmically divergent, We extract the singular part by making
one subtraction as s = 0:
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A(s) = A(0)+ A(5) - A(0) = A(0) f _Wdst (5)
1

A(0) = -B is an infinite constant and the remaining integral is convergant

{note that B is positive).
It can be seen immediately that (2) is a geometrical series which can be

summed up to yield: ‘
T(s) = Do+ g3 /(s - a9 { 1- [ +gd/(s - 6201 &) | 7% (8)

Introducing (5) this can be written in the form:

0 .

T(s)= X/ [1+Xs gs (2?'_WS) + s m | =2 /D ) (7)
1 3

where:

X=T(0) = Xy /(1 +BAo+ g2 /(g p-g2)] "
Ro=-Xgy /2G5 u =k -gp [ X

The form (7) shows explicitly that T— Xp as s > .

3. POLES OF T(s)

We now want to investigate the explicii form of T(s), specially its poles,
which will give us information on bound states and resonances. We there-
fore evaluate the integral occurring in D(s):

[ ]
ds’'v'1-1/g s -1 1+/s/(s - 1)
A=ss Il =2- in (9)
si(s! - 8) s 1-Vs/(s-1)
1
for s —~ - A~ '2:1n2ls|
s 0 A—'gs(s+1}
s ~1 A—~ 2.-ir s-1—2(s-1)
8§ ™~ +w A —

2-1In2s -ir -

It should be noticed, that for s > 1, A becomes complex, since the denomina-
tors have to be taken with small imagindry parts in order to exhibit the
"properties of Feynman propagators. The real part has a cusp for s = 1,

We now discuss the zeros of D and take for granted, that a zero for
s < 0 means a ghost, for 0< s < 1 means a bound state and for s > 1 means
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ReA

Fig. 3
‘Re A(s) from Eq. (9)

a resonance. We shall call reSonance everything where the phase shift goes
through 90°. This will, however, be discussed in more detail later on. We
first consider the case where there is no ¢ -field and hence gg=R=0.1
can be seen from the first part of Eq. (8) that, if X is to be finite, Ao must
approach 0 from negative values, i.e. for B — » we have to start with weak
attractive interaction.

The situation for negative X is plottedin Fig. 4 for two typical cases. Since
Re D has a cusp at s = 1 there can be either no bound-state and no resonance
(X1) or one bound state and one resonance ;). This situation is familiar

ReD

a)

A\

[P °~<
>:;:.;
>|
~N
wn

b)

Fig.4

a) Re D for go = 0 for two typical negative values of A
b) Phase-shift for the same cases

from s-wave attractive potential scattering {for p-waves the situation is
different. There one can have two resonances and one bound state). If X is
bigger than zero, we will get a ghost and a resonance, as is seen from Fig. 5.
We will therefore not consider this case.

The situationis similar to potential scattering with weak attractive potential,
where the phase shift starts negative, unless a bound state has already been
formed, in which case it changes its sign.
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_ Fig.5

Re D for 2o = 0 and positive :(occurrence of a ghost)

‘Another possibility is R # 0, in which case we alsorestrict A<0, (other-
wise we have again a ghost), which implies also R > 0 (compare (8)}). Because
of the additional term in D{s) the real part of D has to change sign, since
it eventually goes to - o at s =4 ~, We have again plotted two typical cases
(Fig.6a). One gets either one resonance (X;) or one bound state (X ) alone,

Re D

a)

b)

Fig. 6a Fig.6b

Re D for g, = 0 for two typical negative values of X Phase-shift for the same cases
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{(or with two resonances), depending on the magnitude of X. (A <X,< 0),
Finally we investigate the connection with the phase shift

tg & (s) = (16/X) ./ s(s - 1) Re D (s). {10)

The corresponding plots are (4b) and (6b). The first case again resembles
potential scattering. In the second case, we get a slight generalization of
the Levinsontheorem: in its usual form, it connects the number of bound.
states to phase shift diffei'ence, while here we have [5]

6(0) - 6(0)=m, (Number of bare particles - .
number of physical particles) (11)

where physical particle means a discrete point in the mass spectrum, irres-
pective of whether there is a bare particle associated with this quantum num-
ber or not, 1i.e. all bound states are counted as physical particles. This
can easily be seen from (4b) and (6b).

4, RENORMALIZATION AND DEFINITION OF.COUPLING CONSTANTS

At first we will discuss the coupling constants attached to the bound
states. We will use the usual definition, which states that the coupling con-
stant is the residue of the corresponding pole of the T-matrix.

We rewrite T in the original unsubtracted form

T(s) = Xo(s -B)/ [s -uy - BXo(s - )] =29 (s -u2)/D(s). (12)

(A is the origirial expression (3)).
Since we are dealing with bound states only,” we suppose

D(uz) =0 for 0< i<l (13)

(this has to be considered as the definition of the physical massu).
It is then better to do the subtraction at the point #? so that we now have
the infinite constant

B=-AW?) —+w (14)
(13) reads then

w2 - uf+ B (u? -B2) =0, (15)

We now subtract (15) from the denominator of (12) and obtain

ds'W s! -u?

Dis) - D(+*) = Dls) = (s - #%) [1+ % § (T2 - o7 gy |

8

(16)

Q0

- (q . y? ' 272 2 ds'W (s - u?)
(s =01+ 2o (B+ (0° -u")I]+Ag.(s - u )S - E (s o8-
1
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where "

_dA(u?) Wds’ _ 1 ( arc tg uz/(l -u?)
1= d'uZ _S (S, _u‘z—; - 16”2 ”2 \/.LFZ(] _7“2—) — -1 (17)

1

The limiting cases are
I = (2/3) (1/16 7®) for u—0

and

I— 1/(327 vV 1-4%) for u — 1.

Defining now a new renormalized

xo= g/ {1+ [B(uz-ﬁz)] Ao}.' (18)

We can write T in a form which exhihits explicitly the singularity as well
as the residue:

T(s) =M (s -B2)/(s -#%) [ 1+ 2 (s -u?)]. . (19)

The renormalized couplmg consta.nt for the bound state is, as already men-
‘tioned, defined by

T=g/(s -u?) if s—sul

Hence

2 = A (u? -%?) (2

and one sees that 2 can be expressed in the same manner by the un-
renormalized and renormalized quantities

R LY o

From this one can infer several interesting points. The first provides
us with limits for g. We have

2

Vet =1+ (/) @ -ud)/@? -u?)] > 1. @

In the case of a pure bound state the equality sign is valid, (case will be
shown below), so that in general g? is not arbitrary but restricted, its
maximum value being 11- , and is attained for a bound particle, Furthermore
) is again restricted to be negative otherwise T(s) has a role for s <p? From
(21) it then follows that K2 > u2. After noticing these restrictions on the re-
normalized quantities, we ask whether the whole procedure is consistent.



458 W. THIRRING

Imposing the condition that all renormalized quantities (g, #,A) are finite
and only B tends to infinity, we end up with a positive g§ tending to zero

g =g (1-1g)/(1-1B-Id)— o*
and in addition we have
w =ut - @ M)+ /N1 - 1)/ (1-AB - 1g%) = 4
(23)
Ao=X/(1-XB-1q?% —0-.
5. SPECIAL CASES
Let us consider some special limiting cases of the above: where either

Ay or gg = 0. In both cases %2 tends to infinity and the T matrix (19) in terms
of the proper renormalized quantities then reads as follows:

T(s) = g/{(s- | )1+ 6 w2 gS‘ _:‘f'w_s)]}. (24)

A. Xy =0 (andp? = ®), that is L' = go8¢'2 and the renormalized mass
value #? will hence be that of an elementary particle of this field. One finds:

1/g = 1(u) + 1/g}

HE = +gi B

and (25)

4]

so that 43 tends to infinity as B tends to infinity. Thus we have to start with
an infinite mass Il(z) and use an infinitec mass renormalization to obtain the
physical mass u?

B. go =0or L'=-2Xg¢y*, sothat we have no ¢ field but have the possibility
of bound states of the ¥ field due to the point interaction. Now there is no
question of mass renormalization; one finds:

g? = 1/1(m). (26)

Formally this has some of the features of the previous case with go — %,
This paradox need not be surprising because if we consider the ¢ propagator:

g /(s - ud)

and let #¢ tend to infinity with g§, we can forget about the s dependence and
g3 /(s - u2) tends to Xy a constant and the propagator shrinks to a pomt which
is the present case.

Now from (26) and (17):
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67 for w — 0F

_&_2 = 1 = (27)
%4
gy 1-p% for wu — 1.

The first case is that of strong binding; in this limit a strong coupling
(g2/47 = 67) is obtained irrespective of the coupling constant X, to start
with, This may suggest that strong interactions arise because the participa-~
ting mesons are compound particles.

The latter case corresponds to the weak binding limit. This limit was
also studied in Landau's consideration of elementary quantum field theory
[6]. From the consideration of the coupling constant in relation to the a-
symptotic behaviour of the wave functions Landau deduced:

g?/4m =8y 2¢ (M, + My) (28)

where € represents the binding energy and My, 2 are the masses. In our case
M; = Mg = -15 € = 1 - so that we get exactly the Landau formula.

If we go to values of 2 > 1 the particle becomes unstable; formally,
however, the formulae apply also in this case. D(s) now develops an imagin-
ary part and does not vanish in the physical sheet. (Compare (7)).

The condition for a resonance at s = 42 now has to be defined as:

Re D (u2) = 0, (29)
and consequently one only subtracts ReD (#2), (compare (16) for the bound

state). Hence the definition (14) for the infinite constant B has to be changed
to:

<] 0
ds' W _ ds' W
B = Re S‘m-B PTRNTE I (30)
1 1
and similarly for I(s):
ds’ W
S\ (s! -u2 + 16) . (31)

where the £ ie shall indicate that one has to take the integration path once

above and once below the singularity and then average. (Which is a sort of

generalization of the principal value for higher powers of the denominator).
The coupling constant can now most conveniently be found by means of*

Re 1/T — (s -u2)/g2 for s — u2, (s2)
It has the following significance in terms of the resonance width I (compare
also (10))
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Re(l/T) (1/167) -/ (s - 1)/s « cot6 = (1/167)- \/ (s - 1)/s - (s -u2)/T

(33)

which is a relativistic Breit - ngner formula,
Here
= (g2 /167) «+\/ (W2 - 1)/u2, (34)

6. ANALYTICAL PROPERTIES AND RIEMANNIAN SHEETS

Now we investigate the analytical properties of T(s) and observe (one
sees easily that Im T-1 (x + iy) # 0 unless y = 0) that it has not poles in the
complex s-plane unless one continues through thebranch-lines = 1 to ©, Even
this branch-line is only a consequence of the choice of the variable s and one
can get rid of it by considering T as a function of g =V's - 1 which is half
the momentum in the centre-of-mass system.

o0
1672 =16‘712+SS'ds ¢1-1/s' s-R
T A s'(s’ - s) *s -p2
’ 1 .
. ‘
=c. 9 _q,atvlte R(q +1) (35)
vI+q2 q-vI+q q2+1-u2
where
C=2+1612 /X . (36)

is a convenient abbreviation for subsequent discussions and

R - 164 g /iAo .

The integral over s' in (35) behaves like V s - 1 for s ™1 as can be seen
from (9) whereas no such root is present in the second, g-dependent, part.
The mapping of the complex s-plane into the complex g-plane is shown in
Fig. 7. The crosses are two complex conjugate points in the s-plane which
are thus mapped into two points symmetrical with respect to the imaginary
q-axis.

From (35) one can further obtain the relations

T (s*) = T* (s)

g o o 37)
T(-q¥ = T*(q). (
,The fact that T(s) has no singularities in the physical s-plane means that
there are no singularities in the upper q-plane; except for possible bound-
states which correspond to poles on the positive imaginary g-axis between
O and i.
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s-PLANE q-PLANE
s=0
X X
'\ X /l'/ szt
1. s-SHEET

I s-SHEET

Fig.7

Mapping of the complex s-plane in the complex q-plane

In the second s-sheet (the lower half of the g-plane) we have

(T1(s))! + 27iy/(s- 1)/s (38)

(TH (s))?

or

T (-q)1 = T(q)-! + 2mig/V1+ q’ .

This means an additional cut from-cto 0 in the second s-sheet, cor-
responding to a branch-line extending from q = -i to -i% in the lower half
g-plane. These singularities are shown in Figs. 8 and 9.

sI-PLANE

sE-PLANE

LALLIIILSII IS EI NI L s LI IIIIIE
LI ITIIIILRIIIIII VI TIIL Y i

Fig.8

Singularities in the s-plane

" Because of the logarithmic character of T -1 there are an infinite number
of additional Rieman~ian sheets and the problem thus arises how to continue
to the various sheets. If, in the second s-sheet, one does not cross the a_d-

ditional cut from -« to 0, one does not touch any cut in the g-plane and there-
fore reaches the first sheet again by crossing the main cut from 1to ®©, A
possible path of this type is shown in Fig. 10a. On the other hand, by crossing
the -« -0 cut in g, one crosses the g-cut and hence steps down to the third
s-sheet when one crosses the main cut. (See Fig, 10b).
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q-PLANE

Li
L/ POSSIBLE BOUND-STATE

WEAK WEAK
POLE

POLE

STRONG [ STRONG

Fig.9

Singularities in the q-plane

s=-PLANE q—PLANE

b 1
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' Fig. 10a

Particular singularities in the s, q-planes

s- PLANE q-PLANE

Fig. 10b

Particular singularities in the s, y-planes

7. SPECIAL CASES

As before we now consider the two typical cases in the g-plane.
A. go = 0 and hence R = 0. (no ¢ -field).
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To find the poles of T(q) corresponding to bound states, and therefore
lying on the imaginary axis, put:

N

q = ik.

As can be seen from (35), the condition for such a pole turns out to be

=2 for k=1
Tk 2k

. k
C_/l-kz_\/l-k?arCtan T (39)

2rk
-i—_—k—zfor' k—-1.
These two limits 2 and -» for C correspond respectively to X —-% and 07,
as the cases of very strong and weak binding. Therefore as we turn on the
interaction, the pole moves from q = -i to +i, along the imaginary axis.
As q — 0 the S-matrix assumes the simple form:

S = (q+1iC/m)/(- q +iC/m)

where C now determines the scattering length,

For q outside the domain -i to +i on the imaginary axis the pole would
correspond to a ghost, which could occur if X were not negative.
B. 2¢ =0, R> 0 (presence of an elementary particle corresponding to ¢),
Here one pole moves as before but just somewhat displaced. We have now,
however, two other poles dueto the last term in (35) which equals R(q2 + 1)
when 12 tends to infinity. It turns out that the signs of the imaginary parts
of the logarithm and this latter term are opposite only in the lower half
plane and thus the additional poles have to be located there. They move as
indicated in Fig. 9, corresponding to the ¢ -particle which becomes less and
less stable when one turns on the interaction.

8. DISPERSION RELATION

Because of its analytic properties one has the simple dispersion relation
for T(s) which has no left hand cut because our model has no crossing sym-
metry: '

o0

2
T(s) = sg_ A S S,S'_V: IT(sn|? . (40)
1

It has been mentioned in the introduction that the dispersion relation togecher
with elastic unitarity provides us with a different starting point for ourmodel,

9. PROPAGATOR IN THE ZACHARIASEN MODEL

In the previous sections we investigated the S-matrix in the Zachariasen
model, Now, I would like to investigate some other field theoretical quanti-
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ties like the propagator and form-factor in the same model. Now, one can
make a complete field theory out of the Zachariasen model, ”Ther"efore, one
would expect that those features of the propagator and form-factors which
one could deduce from general principles of field theory should also hold
in the Zachariasen model. However, there is one feature in the Zachariascn
model which violates the general principles of field theory: there is no
crossing symmetry in the S-matrix, This can be traced back to a failure of
satisfying the asymptotic condition. However, this does not disturb our find-
ing of the propagator and form-factors; and for these quantities the model
provides an interesting illustration of various general conjectures and general
theorems about the propagator and form factors. Before going to these
quantities, let us make a short digression on the failure of the asymptotlc
condition,

One can formulate the Zachariasen model in the following way: one takes
as the basic diagrams of the model shown in Fig. 11.

>< > ______

Fig.11

Basic diagrams

The pairs of particles canbe represented by afield witha continuous mass
distribution. This corresponds to a quadratic Hamiltonian which can be dia-
gonalized exactly. Now the question is why this field theory does not satisfy
the asymptotic condition, The reason is that the particles always occur in
pairs. Therefore, a single particle cannot be projected out. This means
that the single-particle states are not coupled in the Zachariasen model, Yet
what we are interested in is the scattering of these particles and there is’
no crossing symmetry in the S-matrix because of the lack of the asymptotic
condition. If the asymptotic condition were true one would have automatically
the crossing symmetry as it is obvious from the definition of the S-matrix
in terms of the asymptotic fields in the L.S. Z. formalism.

Because of this also we cannot trace Regge polé trajectories, We do
not have any momentum-transfer dependence in the S-matrix and therefore
there is only one angular momentum involved.

To calculate the propagator, let us start as in the old-fashioned way
by summing diagrams. These are shown in Fig, 12,

Fig, 12
Diagram for the propagator calculations

Actually, a partial summation of these ha. been done a long time ago by
Dyson who showed that the complete unrenormalized propagator has the form:
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Ays1/(s-ud+m). (41)

T is the proper self-energy part and is the sum of the diagrams, represented
in Fig, 13.

Fig. 13

Diagrams related to the proper self energy part

i.e., the diagrams which cannot be separated in two parts by cutting a dash«n
line. This is again a geometrical series and we can sum up the whol= series.
We get:

T=gAJ(1-xA), (42)
and

Ay =1/[s -#§ + A /(1 - A8)] = (1-2048)/[(s - #§)(1 - )+ g" A].
(43)
Let us now study the poles and various other properties of this propagator.
To do this we first write Ay in the following form:

[1/(s-B2)1[1- XA+ (s - u2) /(s -B2) - (s - u2)/(s -B%)] [l (s42)/(s-2)
-24]

1/(s -B2) + (2 - %) /(s - B Mo (s - #§) /1o (s - H2) - &)

Ay

"

(s -B2) + (2 -1%)/(s -B%) T (s)2. (44)

We see therefore that this contains T(s) and other known factors; so we know
essentially the poles of the propagator. They are identical with those of the
T-matrix. If we introduce the function D, introduced before, formula (15),
we get:

Ay = 1/(s -BE) + (M3 -BE2) X /(s - B2 )(s - #2) 0 D(s),
(45)
D) = 1.

This expression is valid provided there is a stable particle u2< 1, There-
fore, Ay has apoleats = u?. One might think that there is also one pole

at s =, but this is only apparent because T(42) = 0. There is only one pole
corresponding to one stable particle and we can renormalize the expression
according to the usual prescription:

— 7 /(s - 42). (46)

us—)pz
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This gives:
Zy = (A ho)[(ug -B%)(u? -B%)] = 1-1g% = D@?) (a7)

where I is given by (17),
As we have seen before, one has always

g <1/1,

except in the case of a compound particle {(gg = 0). Therefore, we see that,
in general;

0< Z3< 1,

which means that the theory is a good field theory. The renormalized pro-
pagator defined by:

A= Dy/Zs (48)
is given by:
A g =[1/(s -FON/D @ + WP -B) /(s -F*)(s-u%), (49
or, in a better form: -
Aq=[1/(s -u*)] [1/D(s)] +[1/(s - #*)] [ 1/D(F?) - YD(s)]. (50)
As we shall see later, this last form of fhe renormalized propagator is ap-
propriate for the introduction of the spectral representation.

The value g2 = 1/1 is obtained in the case of a compound particle. In
this case Z3z = 0.

If one starts with Ay = 0 and g% # 0, one gets:
1= /g . (51)

A bound particle can also be considered as the limit where one has only g%
and 43 — % which means g% /(s - uZy—x,.

DX

Fig. 13a

Diagrams related to g%/(s -uzo PR B

In this limit Z3 = 0 and this is clear if we remember the physical significance
of Z3. Let us assume that there is a vacuum in the theory and apply to it
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the Heisenberg operator ¢ (0). This generates a state which we represent by
1):

$(0)| 0> = | 1)

up to a normalization factor., This state is neither a physical one-particle
state nor a bare one-particle state, Let us call it the undressed one-particle
state. Then Zjz is just the probability on finding a physical one-particle state
in the undressed one-particle state. Now, this undressed particle is not an
eigenstate of the energy but has a mass distribution and one can show that
this mass distribution is centred around the bare mass . In fact, the bare
mass is just the average of this mass distribution. However, the physical
mass is u. If we keep u? fixed and let # — o, the probability of finding the
state l 1>in the state ] 1) becomes smaller and smaller and therefore Zz ~ 0.

As far as the bound particle is concerned, one can also argue in the
following way. If we start with go = 0, the field ¢ is no longer coupled to the
field ¢ and therefore does not come into the game. However, we can consider
¥? (pairs of particles) instead of-¢. In this way we can also define a propa-
gator of 2 rather than of ¢ and see if it is possible to define a reasonable
renormalization constant in this way. This means that we consider only the
diagrams shown in Fig, 14,

O+ X0+ TXKXO +

Fig. 14

Diagrams related to'the case g4 = 0

In this case we find:
A =A/(1-2,4) (52)

and again one can look for the poles and define Z 3. We get:

Zs= g (53)

which is no longer less than unity. This fact is not in contradiction with any
fundamental principle of the Q.F.T. because the bound unity for Z; was
derived from the canonical commutation relations for the field ¢. Now, Y2
does not satisfy similar canonical commutation relations and therefore Z3
is no longer bounded by one.

10, SPECTRAL REPRESENTATION OF THE PROPAGATOR

After this digression about Zg, letusseewhat the spectral represen-
tation of the propagator looks like. First, because of the analytic properties
of D(s), D-1(s) can be written in the form:
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ds' _ (s-42)(s'2)
5 -5 (s -#| D(s'p"

Di(s)=1-g°
1

(54)

By inserting this we get the spectral representation of Az(s). This is of inter-
est if we want to see what happens if there is no stable particle but only a
resonance, The question is what happens to the pole. In fact, one would con-
jecture the following: in the case of one stable particle the spectral function
looks like the curves shown in Fig,15.

§ (s—)xz)
/\ /\ |
)‘2
Fig. 15

Spectral function

If the particle becomes unstable, then the continuum moves down, goes below
#? and the 6-function disappears. However, a bump will be left on the contin-
uum and the width of it will be related to the lifetime of the unstable particle.
That this actually happens in our theory can be seen if we go back to T(s) and

By = 1Y(s -B%) + (8] -B%) T(s)/(s - B2 ) ho.

In this form we see that what happens to the pole in the propagator is
exactly the same that happens to the pole in T(s): the pole moves to the
second sheet of the Riemann surface (the unphysical sheet) and its effects
show up by a strong peak in the spectral function.

11, FORM-FACTORS IN THE ZACHARIASEN MODEL
The form factor of the pion is defined by
F(s) = <2r [3]0> = g<ar|¢? [0>; (55)

As shown in the diagram one has

F(s) I\ + /:\ o = T(S)

This is very closely related to the S-matrix, In fact, if we stick to F(s),the
following pieces
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F(s) | N+ A =16,
we reproduce the T-matrix, In other words, we have
F(s)[ o+ gd /(s -1§)l = gT(s). (56)
Therefore
F(s) = gT(s)/ X (s - #]) = gT(s)(s - uf)/(s4*). (57)

Remembering that T(#) = 0, the last equation shows that the poles of F(s)
are just those of T(s). From this fact immediately one draws the conclusion
that, if there is a resonance, it manifests also in the form-factor; i.e. a
bump on the spectral representation of F(s).

12, MORE REALISTIC MODELS

Till now we have worked only with scalar particles. This means that
we can get only an S-wave resonance, Indeed this summing of the bubbles
gives just the S-wave dominant solution of Chew and Mandelstam, But we
know that such a resonance has not been found in nature, To get a p-wave
resonance one can try to generalize the theory. For instance, one can pro-
duce a p-wave resonance by introducing a vector particle.

Another generalization is to assume that ¢ corresponds to nucleons-and
see whether one can produce a bound-state of nucleon-antinucleonby summing
up the chain diagrams shown in Fig. 16,

Fig. 16

Chain diagtams to be summed when ¥ corresponds to nucleons

In both cases, one meets with divergences. In fact, the degree of
divergency is increased by one compared to the simple case we had before,
Whereas we had before one infinite constant, here everything diverges by
one power more and therefore everything is more ambiguous in the model.

In fact, if y is a spinor, the calculations go more or less in the same way
as before, For instance, if we have a v;s interaction we have to take the trace
around the bubbles. In this case the square root we had before goes to

W—(1/47%)\ 1= s (s + 1/4) ~ (58)
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Therefore, the expression I diverges logarithmically, If we use a cut-off A,
then

I ~log A.
This has been done by Nambu who gets

g2=2r/2/ logA.

If we identify the bound object with the pion, we obtain the pion nucleon
coupling constant. Actually, it turns out that the same kind of formula also
holds if we sum up not the bubbles but the ladder diagrams shown in Fig. 17,

Fig.17

Ladder diagrams

However, this is a more difficult problem and what one can do is to sum
this up in the extreme relativistic limit where the masses involved are neg-
lected compared with moments which are involved. In fact, one uses the
Bethe-Salpeter equation which has a very simple spectral representation in
the relativistic limit.

The problem of finding whether or not the pion is composed of nucleon-
antinucleon can be solved in the following way. As we have seen before, there
is a distinction in our theory between the case where there is an elementary
particle behind it and the case where there is no elementary particle behind
it, This just goes via the Levinson theorem, In particular, if we have no '

- bare particle, then we can have for RgT "1 a behaviour like Fig. 4.

If there is a bare particle, ReT-! has a behaviour similar to Fig. 6.

If there is an additional resonance then the phase shift goes back to 90° as
shown in Fig. 4b.

So, what one can do is to calculate the phase-shift supposing the pion
is a composite particle. Then one looks where the phase-shift goes to 90°
and sees whether one can find it experimentally. This sounds nice theoretical-
ly, but in practice it does not seem feasible.

' If we sum the chain diagrams, after obtaining the renormalization con-
‘stant and the mass of the pion the rest is then cut off independent and finite.
So one can calculate the place where the phase-shift goes to 90° and the width
of it if we call it a resonance. Numerically, it turns out that the mass is:

M = 2 My + 940 MeV.

Mp, is the mass of the proton and the width is 450 MeV. This means a very
broad S-wave nucleon-antinucleon resonance, This is physically very hard
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to observe because in this energy region the S-wave cross-section is very
small and also there are inelastic channels and they will obscure the picture
further,

Let us now make some remarks about the influence of the inelastic
channels on the whole structure of the theory. For simplicity, let us assume
first that go = 0 and keep only the direct coupling. We assume that there are
two kinds of particles:

A-particle : —— mass 3
B-particle ¢ ---- massm

The interactions are of the type shown in Fig. 18,

7z N, 7
s N, 4
ya Nf
\ 7N
\\ 1/ \\
Fig, 18

Types of interactions

and the basic diagrams are those shown in Fig, 19,
and similarly for the exchange scattering T,y and for Tgg. Now, we are

Taa = X + >X + XK

Fig.19

Basic diagrams

dealing once again with geometrical series which can be summed up rather
easily. If we use matrix notations (2 X 2 matrices) then the coupling could
be written in the form:

)\z(kAA A,u;) (60)
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in the form:

A, 0
A= ( ) (61)
0 Ay
Then, the T-matrix is given by:
T=2+XAT, (62)

A is diagonal, but A has non-diagonal elements, so that T is non-diagonal,
We can easily solve this equation and the solution is:

T-1 =a-1-A, (63)

Again, we have a rather simple expression for the T-matrix and the analysis
goes as before,
: This model in itself is interesting to study, for instance, the cusps in
one cross-section at the threshold of a second channel.
Let me make a last remark as to what happens to the Levinson theorem
if we have a two-channel reaction. For instance, let us suppose that the

diagram shown in Fig, 20

Fig. 20

Diagram corresponding to nucleon-antinucleon annihilation into two pions

corresponds to the annihilation of nucleon-antinucleon into two pions and let
us assume that we have also these kinds of inelastic contributions. How does
this change our conclusion that the phase-shift goes back at 90° at certain
energy? It turns out that in this model the Levinson theorem still holds in

an analogous form to the case we had before. Here, however, the phase-
shifts are complex but the real part goes back to 30°. So what one has to do
is to lock at Red and see if it goes back to 90°. Practically, this is very
difficult because the elastic cross-section is a small part of 0 4y, . If there
were a small bump in 0 gpaic it Will be overshadowed by 0 jpejastic-

One can say that, in principle, in the framework of field theory there
may be an exact criterion to distinguish whether a particle is elementary
or composite. However, in practice, it will take quite a long time until one
can really make this test experimentally.

13. GENERALIZATION TO MORE REALISTIC CASES

Up to now we have been confined to the Zachariasen model which neglects
the crossing symmetry as well as the contribution from the inelastic channels,
To incorporate crossing symmetry also we have to include the left hand out



COMPOUND PARTICLE MODELS 473

so that the general dispersion relation for the partial wave scattering
amplitude T(s) reads as

_ - Im T(s' +i€)
T(s) = g 5 (s -8)
-0 4u2

where +i€ indicates that we are integrating above the real axis. The lower
limit of integration 4u? indicates the physical threshold (as we had in the
Zachariasen model). However, superimposed on it we will have inelastic
thresholds corresponding to branch cuts starting at s . The unitarity con-
dition in the form we had so far holds only in the elastic region, i.e. s; <
<s< 4uz,

Im T(s +i€) = p (s +ie) |T |? (65)

where p, the phase space factior is given by

p(s)= V (s - 4ud/s (66)

Above the inelastic threshold the situation becomes more complicated and
has been dealt with by B. Lee (see his lecture notes). We therefore confine
ourselves to the region below production threshold, Cf. also [9]. In writing
the dispersion relation (64), we have assumed certain analyticity properties
which we have not proved. But this follows in particular from the Mandelstam
representation, and we shall not bother about it here. Again T is considered
only as a function of s which holds for any partial wave amplitude. However
the unitarity relation (65) holds only for S waves but the generalization can
easily be done. The relations (37) follow from the dispersion relation (64),
The analytical continuation through the branch cut in the S plane extensively
dealt with in lecture II can be done only between 4u2? and s; . p (s) has two
branch points at s = 4y%and s = 0, and as before we locate the branch cut
from - to 0 and 442 to +» ., It then follows p (s) = - {p(s)] * since in this
region p (s) is purely imaginary.

From (65) we obtain

ImT-1 (s + i€) = -ImT(s + i€)/|T|? = -p(s +i€) = p (s - i€) (67)

and therefore get the analytic continuation to the second sheet of the inverse
amplitude.

Tyl (s +i€) = T{!(s - ie) + 2ip (s - i€) = Tﬁl (s - ie€) (68)
or if we invert this relation (68) we obtain

T, =T, /(1+ 2ip T;). (69)

I

Again we see there may be poles in the second sheet due to the vanishing of
the denominator in (69)
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(i.e.) 1+2ipT =0

and these poles correspond to resonances., The location of the branch cuts
in the s and q plane are given in Fig, 21,

LEFT HAND CUuT

AAnSTRARY
ASSSIRTRNNR

INELASTIC
THRESHOLD

s-PLANE q-PLANE
Fig. 21
Location of branch cuts in the s and g-plane

Concluding this section, welist a few formulae decomposing T into dispersive
and absorptive parts [10]:

T=d+ipa
(70)
Ty=d-ipa
and inverting we get
a=TT,
(11)

d=Ty; (1+ipT).

The advantage of this decomposition is that even in the s plane the elastic
branch cut is absorbed into the phase space factor p (s). :
In particular in the elastic region

(i.e.) 4ut <g < S

we have
a= ‘%Im T (72)
d= ReT.

The partial wave S matrix now takes the simple form
S=1+2ipT; =T, /TII= T(q)/T(-q). (73)

Comparing (69) with (73) we see that the resonances correspond to the zeros
of the S matrix (See also [11})
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14, FORM FACTORS

We will now investigate whether the same resonances show up in the
form factors also. We will distinguish the two cases with and without anoma-
lous threshold.

A, No anomalous threshold

The graphical representation for the form factor is shown in Fig. 22
where the solid line represents the particle whose scattering we have con-

Fig, 22

Graphical representation of the form factor

sidered before. The connection between the scattering amplitude and the
form factor can be seen from Fig, 23

Fig. 23

Decomposition of the form factor

where we have decomposed the bubble taking out the lowest intermediate
state. This immediately implies that there is a branch cut starting at 4u2 .
Hence we obtain
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o0
- s , Im F (s’ + i¢)
F(s) = 140 Jds' —or oy

\4“2

This formula again implies the analyticity and boundedness properties of
F(s) which is also normalized to unity at s = 0. ‘

To apply the dispersion relation (74) we require some explicit statements
about the imaginary part of F(s). In the Zachariasen model we saw that it
is directly related to the scattering amplitude. We will now show that a
similar relation holds also here, By the general Lehmann - Symanzik- Zim-
mermann technique [12],

F(s) is related to <7 [j|#> or to <0|j|27y>. Applying the time
reversal operation (assuming the current j has definite properties under
this operation) we obtain

F(s)~< 0j]2m,> = [<0]j|2m> 1% (75)

Since the in- and out- states are related by the S-matrix and since <0 Ij*

is a state of definite angular momentum (implying a diagonalized S-matrix)
we obtain

F(s) = F*(s)e2ié . (76)
which leads to

ImF = sin e F=pT*F, (77)

Because of the simple diagonalization of the S-matrix this holds only in the
elastic region. All quantities in (77) have to be taken on the upper lip of
the branch cut and because of (68) and (69) we have

ImF = pFT/(1+ 2ipT). (78)

Since we now know the imaginary part of F, we can continue F analytically
into the second sheet by

F, = F, - 2ilm F, = F(1-2ip T%) (79)

and because of {(78) and the unitarity of the S-matrix we end up with
Fyp=Fy /(1 + 2ipT). (80)
Therefore in the second sheet F has the same poles as T, corresponding

to the same resonances.
Similar considerations can be made in the g-plane.
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B. ANOMALOUS THRESHOLDS [13]

In this more complicated case we have to consider a special contribution
to the graph of Fig,.22 which leads to the anomalous branch point (Fig. 24).
This is the form factor of the particle m and as a physical example we con-
sider the form factor of the L; ile, ue—> 7, Me— A and me— L,

Fig.24

Graph, leading to anomalous branch point

The anomalous thresholds appear only for special relations among the
masses M, m and y and to investigate this problem we first consider the
diagram in Fig. 25,

" Fig, 35

Scarttering diagram, leading to anomalous threshold

where the four vectors p;j and qj are related by energy-momentum conser-
vation,
We choose the usual three invariant variables

s=1(q;+q9?
t = (p; +q;)2 (81)
t =(p; +qg)2
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In the centre-of-mass system the energy-momentum vectors are given by

_ q12 +“2 q12 +“2
ws () ws (o)
_ql ql

(82)

P

T s
( q—>1 ) e ( -q )
-q

and the following relations hold:

s=4(q"” +p?®) = 4(q*+m?
t=-¢ - ¢ +2qq! cos® (83}
1 -q? -2q; cosH

where 8 is the scattering angle. _
In the usual way, the poles correspondtotort = M2, However, if we
project out a partial wave in the s-channel, that is

1
Tyls) = _gan,(n)T(s,n) nzcos (84)
-1

the pole is converted into a branch-line with the end points corresponding
to cos 8 = £ 1, From (83) we thus get the branch points at

(@% q')? = -M. . (85)

Solving (83) and (85) we get

m? + M -l

q', = £i M (86)

or

S=“1v17{m2-(M+u)2} {m? - (M-p)}=g(m?) (87)

where g is, of course, a function of M and u also. If we plot it, however,

as a function of m2, we obtain the location of the branch-points as shown

in Fig. 26,

The points (M +u)2 and (M - u)2 correspond to Land A respectively, becoming
instable with the decay processes L — A+7 and A —I+7 . Between these
two points all particles are stable., We can now draw the branch-cuts in the
q'-plane for two typicalcases (Fig. 27).

where the two branch-lines approach each other when m? = M2+ uz . Itis
clear how this looks in the s-plane for m? = M? +u? the left branch cut of the
first and second sheet meet each other at the threshold of the right-hand
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g
4)12
M- p)? M2 2
m
Mze );2
Fig. 26
gm? - Eq.(8T~ as a function of m?.
y m? <M2 4 2 m2 >M2 412
2
o
1 q-PLanE q-PLANE
U
1
-q; ai -4 9%
9

Fig. 27

Branch-cuts in ¢'-plane for two. typical cases

cut, For m?> M +u? the lower branch point moves out into the physical
sheet, leading to an anomalous threshold, The situation is indicated inFig. 28,

s-PLANE

ANOMAL OUS THRESHOLD

wrrrsrrres s TSI/ I IIS I
LA

Fig, 28

Anomalous threshold in the s-plane
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For the form factor the situation is entirely similar except there is no
left-hand cut in the physical sheet.

We therefore have to modify the lower limit of the integral in equation
(74) from 4u? to g(m?).

It is well-known that in the configuration space a dispersion relation
corresponds just to the superposition of Yukawa potentials. (In the centre-
of-mass system).

0
-|3l%
f(x) = | ds Im—zr(s[%T— . (88)
g .

Hence g(m?) provides us with the Yukawa potential of longest range, given by
oIy
ar Tx]
where Ix, Yg can be calculated from (87) to be
|%l/g = ||+ 2 (M+u)/MV2ZeMu[(M+u) = 21 2eM
where € is the binding energy, defined by
m=M+pu-c¢€

and re is the relative co-ordinate, say of the A r system forming the €, M,
is the reduced mass, We therefore conclude, that physically an anomalous
threshold corresponds to a spreading of the compound system which is
greater then the Compton wave-length of the particles into which it can decay
virtually.

15. CONCLUSION

We have been considering only a particular model and a slight extension,
where one removes some of the restrictions. It is, of course, to be hoped
that all this can one day directly be deduced from axiomatic field theory,
but up to now it was not possible, and one has to be content to illustrate the
situation by simple examples. Nevertheless, these examples show that the
situation in field theory ties on directly to the situation one has in potential
scattering.

-
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