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1. INTRODUCTION

In these lectu res  I would like to talk on bound states and" resonances 
in quantum fie ld  theory  [1 ] . I w ill assum e that you are fam iliar with this 
prob lem  in potential scattering and w ill investigate s im ila r  prob lem s in field  
theory . The d ifficu lty  is  that the only system atic method o f calculation in 
fie ld  theory  is  the perturbation theory . If you look  at the analytical properties 
o f  single graphs the po les  and singu larities which correspon d  to bound states 
and reson an ces do not appear. T h ere fore  one has to do something better and 
I w ill con sid er a particu lar m odel,: the s o -ca lle d  ZACHARIASEN m odel [2] 
which is  essen tia lly  the sum m ing up o f the chain -d iagram s (Fig. la  and lb).

a) b) ,;i c)

Fig. la. lb - Fig. lc

Typical chain diagrams Typical ladder diagrams

In princip le  one could  think a lso  o f the sum m ing up o f ladder diagram s (Fig. 2). 
They are , how ever, m uch m ore  com plica ted  and we w ill at first consider 
the chain.

The sum m ing up o f the chain leads to a unitary S -m atrix  which is  by no 
m eans triv ia l, sin ce one has taken out only specia l types o f diagram s from  
the whole perturbation expansion. It a lso  sa tisfies  analytically, but not 
c  r o s  sing - sym m et r y .

The m odel can either be con sidered  as a p rescrip tion  to se lect a certain 
type o f diagram  in ord inary  perturbation theory, or in the fram ew ork of
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d isp ersion  theory, as a restr iction  on certa in  interm ediate states, o r  as 
the exact solution o f a Lagrangian fie ld  theory, in which the pairs o f particles 
form ing the bubble in F ig. la  o ccu r  as a fie ld  with continuous m ass spectrum  
[3 ] . The scattering amplitude T depends in this m odel only on one variable 
or , in other w ords, we are dealing only with the interaction  o f particles in 
a sp ecia l angular mom entum  state the mom ent o f which we take to be 0. The 
only possib le  ju stifica tion  o f the approxim ation, which this m odel represents, 
com es  from  the fie ld  th eoretic treatm ent o f  the m any-body problem , where 
the bubble-sum m ation  leads to physically  significant resu lts (plasma o s c il ­
lations o f an e lectron  gas). We shall d iscu ss  it in som e detail since it r e ­
fle c ts  severa l features which are con jectured  fo r  a fu ll-fledged  field theory.

2. THE SCATTERING AM PLITUDE . . '

In the m odel we have two particles, one represented by ip (solid line)
with m ass the other represented  by <j> (broken line) with m ass Mo, both 
with spin 0 (the generalization  to spin fo r  <p w ill be considered  later).
In the language o f a Lagrangian form alism  we have to con sider the in ter­
action  term :

L ' = -X 0 ^ 4 + go <i> <P2 (1)

(note that a negative X 0 m eans attraction, a positive one repulsion) and have
to sum up the d iagram s shown in F ig. 2:

= X + >--< + + >-<x + X>~< + >~o~<

Hg. 2

T(s) -  X„ + XSA W X0 + + X, AW  A ,  . A j i A ;

A (s) is  an abbreviation  fo r  the divergent bubble; which is in co-ord inate 
sp a ce  the product of two sca la r  Feynm an propagators with the sam e argument. 
This product can be written as a weighted integral over single propagators 
[4 ]. In m om entum -space  this m eans:

00
. . .  f  W ds'

1

w hich is  logarith m ica lly  divergent. We extract the singular part by making 
one subtraction  as s = 0:

with s ' - s
16* (3), (4)
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00
C Wri  9 'A (s )  = A (0 ) + A ( s )  - A (0 ) = A (0 ) - s j  - r ^ 7 - T ) . (5)

1

A (0 ) = -B  is  an infinite constant and the rem aining integral is  convergant 
(note that B is pos itive ).

It can be seen im m ediately  that (2) is a geom etrica l s e r ie s  which can be 
sum m ed up to y ield :

T(s)  = [ X 0+ g<! / ( s  - / *2) ]  {  l - [ * 0 + g g / ( s  - / i j  )] A <6)

Introducing (5) this can  be written in the form :

T ( . )  = 1  /  [ 1 + i s  j  ] = X /  D ( . ) (7)

w here:

(8)

X= T(0)  = X0 / [ l  + B X 0 +g 2  / (XoM2o - g^) ]

R = '  Xg2o /Xo J #** = **? - So / V

The form  (7) shows exp licitly  that T —> X0 as s —> oo .

3. POLES OF T (s)

We now want to investigate the exp licit form  of T (s ), specia lly  its poles, 
which w ill g ive us in form ation  on bound states and reson a n ces . We th ere­
fo r e  evaluate the in tegral occu rr in g  in U (s):

a  =  B f  < w i -  i / Bj  = 2 _ r r n  ^  i . +  / b / (b  -_ i )  

j  s (s - s) y s i . y s/(s - 1) (9)

fo r  s -oo A  2 -  In 2 |s|
s — 0 A  — | s(s  + 1[
s -*  1 A — 2 -iJT  y  s -  1 -  2(s -  1)
s — +oo A  — 2 -  In 2s -  iff .

It should be noticed , that fo r  s > 1, A  becom es com plex, since the denomina­
to rs  have to be taken with sm a ll im aginary parts in order to exhibit"the
p rop erties  o f Feynm an propagators. The re a l part has a cusp fo r  s = 1.

We now d iscu ss the ze ro s  o f D and take fo r  granted, that a zero  fo r  
s < 0 m eans a ghost, fo r  0 < s < 1 m eans a bound state and fo r  s > 1 means
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ReA

Re A(s) ftom Eq. (9)

a reson an ce . We shall ca ll resonance everything where the phase shift goes 
through 90°. This w ill, how ever, be d iscu ssed  in m ore  detail later on. We 
f ir s t  con sid er  the ca se  w here there is no $ - f ie ld  and hence go = R = 0. It 
can be seen  from  the fir s t  part of Eq. (8) that, i f ^  is  to be finite, X0 must 
approach 0 from  negative values, i. e. fo r  B -^ o o w e  have to start with weak 
attractive interaction.

The situation fo r  negative X is  plotted in F ig . 4 fo r  two typical ca ses . Since 
R e D has a cusp at s = 1 there can be either no bound-state and no resonance 
(^■l) or one bound state and one resonance [̂ -2 )• This situation is fam iliar

Re 0

Fig. 4

a) Re D for go = 0 for two typical negative values of X. 
b) Phase-shift for the same cases

from  s-w ave  attractive potential scattering (for p -w aves the situation is 
d ifferent. T here one can have two resonances and one bound state). If X is 
b igger than ze ro , we w ill get a ghost and a resonance, as is seen from  F ig. 5. 
We w ill th ere fore  not con sid er this case .

The situation is  s im ila r  to potential scattering with weak attractive potential, 
w here the phase shift starts negative, unless a bound state has already been 
form ed , in which case  it changes its sign.
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Re D

Fig. 5

Re D for g0 =0 and positive Xfoccurrence of a ghost)

Another p oss ib ility  is R f  0, in which case  we a lso  restr ict "X< 0, (other­
w ise we have again a ghost), which im plies a lso  R > 0 (com pare (8 )).Because 
o f the additional term  in D(s) the rea l part o f D has to change sign, since 
it eventually goes to - oo at s = m”2 . We have again plotted two typical cases 
(F ig . 6a). One gets either one resonance (^ i )  or  one bound state (^2 ) alone.

Re 0

Fig. 6a Fig. 6b

Re D for g0 = 0 for two typical negative values of X. Phase-shift for the same cases
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(or with two reson an ces), depending on the magnitude of £ .  (A i < X2 < 0 ). 
F inally  we investigate the connection with the phase shift

tg 6 (s) = (16 /X  ) . /  s (s  - 1) Re D (s). (10)

The correspon d in g  p lots are (4b) and (6b). The firs t  case  again resem bles 
potential scattering. In the second  case , we get a slight generalization  of 
the Levirisontheorem : in its usual form , it connects the number of bound 
states to phase shift d ifference, w hile 'here we have [5]

6(oo ) - 6 (0) = ff. (Number of bare pa rtic les  -
number of physica l p artic les ) (11)

w here ph ysica l p article  m eans a d iscrete  point in the m ass spectrum , ir r e s ­
p ective  o f whether there is a bare p a rtic le  a ssocia ted  with this quantum num­
b er  o r  not, i. e. a ll bound states are counted as physica l p artic les . This 
can easily  be seen  from  (4b) and (6b).

4. RENORM ALIZATION AND DEFINITION OF COUPLING CONSTANTS

At fir s t  we w ill d iscu ss the coupling constants attached to the bound 
states. We w ill use the usual definition, which states that the coupling con ­
stant is the residu e of the corresponding pole of the T -m atrix .

We rew rite  T in the orig inal unsubtracted form

T (s) = X0 (s - M2 ) /  [s - Mo - A X0 (s - m2 ) ] = X0 (s - m2 ) /  D ( s ) . (12)

(A is the orig ina l exp ression  (3)).
Since we are  dealing with bound states o n ly / we suppose

D ( m2 ) = 0 foe 0 < M2 < 1 (13)

(this has to be con sidered  as the definition o f the physica l m assM ).
It is then better to do the subtraction at the point M2 so that we now have 

the infinite constant

B = - A (m2 ) —• + 00 (14)
(13) reads then

M2 - Mo + BA0 (ß 2 - Ji2 ) = o. (15)

We now subtract (15) from  the denom inator of (12) and obtain

00

D ( . ) - p (1, V D ( s > . ( s V | - j

(16)
00

= (s -M 2 )[ 1 + Aq (B +  (M2 -M 2 )I ]  + A 0 .(s - M2 ) ( fev~T^\J (s - s ) '
1
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where

T -  dA ^ 2 
d ß 2

= C W ds'
J (s'  -  M2 16^2 M2

arc t g v /V / ( l  - ß 2 )
~~7Wir r ^ - (17)

The lim iting  ca ses  are

I -  (2 /3 ) (1 /16  j 2 ) fo r  /j -*0

and

I -  1 /(3 2 * \/ 1 - M2 ) fo r  ju -  1.

Defining now a new ren orm alized

X = X 0 /  | l  + [ b (m2 -M 2 )]  X 0 }  . ' (18)

We can w rite  T in a fo rm  which exhibits exp licitly  the singularity as w ell 
as the res id u e :

T (s ) = X (s -  ß2 ) / ( s - ß2) [ 1 + X (s -  ß2 )] . (19)

The ren orm a lized  coupling constant fo r  the bound state is , as already m en­
tioned, defined by

H ence

T = g / ( s  - ß 2 ) if s —* ß 2.

g2 = X(m2 -~ß2) (21)

and one sees  that ß 2 can be exp ressed  in the sam e manner by the un­
ren orm a lized  and ren orm alized  quantities

M2 - g o /^ o  =M2 -  g2 /X .

F rom  th is one can in fer sev era l in teresting  points. The firs t  provides 
us with lim its  fo r  g. We have

1 / g 2 = 1 +  ( 1 / g o )  [ & 2 - ^ o ) / ( M 2 - H 2 ) ]  > 1 .  . ( 2 2 )

In the case  o f a pure bound state the equality sign  is valid, (case w ill be 
shown below ), so  that in gen era l g2 is  not arb itrary  but restricted , its 
m axim um  value being f  , and is  attained fo r  a bound partic le . Furtherm ore 
X is  again re s tr ic te d  to be negative otherw ise T (s ) has a ro le  fo r  s < V 2 ^From 
(21) it then fo llow s that j32 > ß 2. A fter noticing these restriction s  on the r e ­
n orm alized  quantities, we ask  whether the whole p rocedu re  is consistent.
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Im posing the condition  that a ll renorm alized  quantities (g, M, A) are finite 
and only B tends to infinity, we end up with a positive go tending to zero

go = g (1 - Ig  ) / ( l  - X B - Iqz )- 

and in addition we have

O'

Mo =M2 -  (g2 / X )+  (g2 / ^ 1 - Ig 2 ) /  (1 - * B - Ig 2 ,7 2

X 0 = A / ( l  - X B  - I q 2) —0 '
(23)

5. SPECIAL CASES

Let us con sid er som e sp ecia l lim iting ca ses  of the above: where either 
X-o o r  go = 0 . In both casesM 2 tends to infinity and the T m atrix  (19) in term s 
o f the p rop er  ren orm alized  quantities then reads as fo llow s:

T (s ) = g2 / (s - m" 1 + (s - M' 2 P d s 1W 1 1
J (s'  - M2 ) (s'  -  s)J j ■ (24)

A . Xq = 0 (andM2 = °°), that is L ' = gotitp2 and the renorm alized  m ass 
v a lu e d 2 w ill hence be that of an elem entary particle  of this fie ld . One finds:

1 /g2 = I (# 0 +  1/eS
and <25)

Mo ~ M2 + go B

so  that Mo tends to infinity as B tends to infinity. Thus we have to start with 
an infinite m ass Mo and use an infinite m ass renorm alization  to obtain the 
ph ysica l m a ss  M2 .

B. go = 0 or L ' = - X 0 ip 4 , so that we have no 0 fie ld  but have the possib ility  
o f bound states of the ^ fie ld  due to the point interaction. Now there is  no 
question o f m ass ren orm alization ; one finds:

g2 = l / I ( M ) .  (26)

F orm a lly  this has som e of the features of the previous case  with go —
This paradox need not be surprising  because if we consider the <j> propagator:

go /  (s - mo )

and let Mo tend to infinity with go , we can forget about the s dependence and 
go / ( s  - Mo) tends to X0 a constant and the propagator shrinks to a point which 
is  the presen t ca se . .

Now from  (26) and (17):
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jL2 ___ L_
4 n 4 irl (s)

' 6 ff fo r  M —' 0 +
(27)

7  1 -  M2 for

The f ir s t  ca se  is  that o f strong binding; in this lim it a strong coupling 
(g 2/ 4 ir = 6ff) is  obtained irre sp e ct iv e  of the coupling constant X 0 to start 
with. This m ay suggest that strong interactions a rise  because the participa­
ting m eson s are com pound p a rtic le s .

The latter case  corresp on d s to the weak binding lim it. This lim it was 
a lso  studied in Landau’ s consideration  of elem entary quantum fie ld  theory
[ 6]. F rom  the consideration  of the coupling constant in relation to the a- 
sym ptotic behaviour o f the wave functions Landau deduced:

g2 / 4tt = 8 \/ 2e  (M j + M 2 ) (28)

where e represen ts  the binding energy and Mi, 2 are  the m asses. In our case 
M i = M 2 = I , e = 1 -M  so that we get exactly  the Landau form ula.

If we go to values of ß 2 > 1 the p a rtic le  becom es unstable; form ally , 
how ever, the form ulae apply a lso  in this case . D (s ) now develops an im agin­
ary part and does not vanish in the ph ysica l sheet. (Com pare (7)).

The condition  fo r  a reson an ce at s = ß 2 now has to be defined as:

Re D (ß2 ) = 0, (29)

and consequently one only subtracts R e D (n 2 ), (com pare (16) for  the bound 
state). Hence the definition (14) fo r  the infinite constant B has to be changed 
to:

00 00

„  „  f  d s ' W n f  d s 'WB = Re \ —;------- s----- — = B —— —3-, (30)J s ' - ß 2 + le J s ' - ß 2 ’

and s im ila r ly  fo r  I(s ):

1 1

1(81 ■ I  131)
1 '

w here the ± ie shall indicate that one has to take the integration path once 
above and once below  the singularity and then average. (Which is a sort of 
generalization  o f the prin cipa l value fo r  higher pow ers of the denominator).

The coupling constant can now m ost conveniently be found by means o f 1

Re 1 /T  — (s - ß 2 )/g2 fo r  s — ß 2. [S2)

It has the follow ing sign ifican ce  in term s of the resonance width r  (com pare 
a lso  ( 10 )):
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Re (1 /T ) = (1 /16  Tr) V  (s - l ) / s  • cot ö = (1 /16  Tr) • /  (s - l ) / s  • (s - ß 2 )/T
(33)

which is a re la tiv istic  B reit -  W igner form ula.
Here

T = (g2 /16 TT) • /  (ß» - l ) / ß3. (34)

6. AN ALYTICAL PROPERTIES AND RIEMANNIAN SHEETS

Now we investigate the analytical p rop erties  o f T (s) and observe (one 
sees  easily  that Im T _1 (x + iy) f  0 unless y  = 0) that it has not poles in the 
com plex  s-p lan e  unless one continues through the branch-line s = 1 to « .E v e n  
this b ran ch -line  is  only a consequence o f the ch o ice  o f the v ariable s and one 
can get r id  o f it by con siderin g  T as a function o f g = / s - 1 which is half 
the mom entum  in the ce n tre -o f-m a ss  system .

00
16v2 _ 16tt2 _ r  d s 'v /l -  I / s '  s - R

T " A + S J . s ’ ( s ' - s )  + s -£ 2
1

= C - In -q- + q2- + , {35)
VI + q2 q - \/ 1 + q 2  q 2  + 1 -^2

where

C = 2 + 16ir2 /X (36)

is  a convenient abbreviation fo r  subsequent d iscussions and

R = - 167T2 g2 /Ji2X 0 .

The in tegral over s ' in (35) behaves like >/ s - 1 fo r  s~* 1 as can be seen 
from  (9) w hereas no such root is present in the second, q-dependent, part. 
The mapping o f the com plex  s-p lane into the com plex  q-plane is shown in 
F ig . 7. The c r o s s e s  are two com plex  conjugate points in the s-plane which 
are thus mapped into two points sym m etrica l with resp ect to the im aginary 
q -a x is .

F rom  (35) one can further obtain the relations'

T (s * )  = T * ( s ) ,  ’
T ( -q * )  = T * (q ) .  ^

/The fact that T (s) has no singu larities in the ph ysica l s-p lane means that 
there are no singu larities in the upper q -p lane; except fo r  possib le  bound- 
states which corresp on d  to poles  on the positive  im aginary q -ax is  between 
O and i.
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Fig*'7

Mapping of the complex s-plane in the complex q-plane

In the second  s -sh e e t (the low er half o f the q-plane) we have

(T n (S))-1 = ( T 1 (s))"1 + 2 » i / ( s -  l ) / s  (38)

or
T ( - q ) - l  = T (q )-1  + 2 J r iq / / l  +  q 2.

This m eans an additional cut from -ooto  0 in the second s -sh eet, c o r ­
responding to a branch-line extending from  q = - i  to - i 00 in the low er half 
q -p lane. These singularities are shown in F ig s . 8 and 9.

s : -P L A N E s ^ -P L A N E

0 1 0 1

Fig. 8

Singularities in the s-plane

B ecause o f the logarithm ic ch aracter o f T _1 there are an infinite number 
o f additional R iem an"ian  sheets and the prob lem  thus a rises  how to continue 
to the variou s sheets. If, in the second s -sh eet, one does not c ro ss  the ad­
ditional cut from  -oo to 0, one does not touch any cut in the q-plane and th ere­
fo re  reach es the fir s t  sheet again by cross in g  the main cut from  1 to A 
p oss ib le  path of this type is  shown in F ig . 10a. On the other hand, by crossing  
the -°° -0  cut in s, one c r o s s e s  the q -cu t and hence steps down to the third 
s -sh ee t when one c r o s s e s  the main cut. (See F ig . 10b).
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q -P L A N E
i

____^ P O S S IB L E  BO U N D -STATE

W EAK

^ V P O L E
- i  / P O L E

STRONG i STRONG

Fig. 9

Singularities in the q-plane 

s-PLANE

m

Fig. 10a

Particular singularities in the s, q-planes 

s-PLANE

Fig. 10b

Particular singularities in the s, y-planes

7. SPECIAL CASES

As b e fore  we now con sider the two typical cases in the q-plane.
A. go = 0 and hence R = 0. (no $ -fie ld ).
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To find the po les  o f T(q) correspond ing  to bound states, and therefore 
lying on the im aginary axis, put:

q = ik .

A s can be seen from  (35), the condition fo r  such a pole  turns out to be

(  = 2 fo r  k = 1 
n  I k  2k  A k )
c = TrrW ' TT^W  arc tan TTTp  < <39>

/  2 ,rk  * i i 
(  T T k T ^ X - ^ -

Thes e two lim its  2 and -oo fo r  C corresp on d  resp ective ly  to X~* - 00 and 0", 
as the ca ses  o f very  strong and weak binding. T herefore  as we turn on the 
interaction , the pole  m oves from  q = - i  to +i, along the im aginary axis.

A s q 0 the S -m atrix  assum es the sim ple form :

S = (q + iC /t t ) / ( -  q + iC/n)

w here C now determ ines the scattering length.
F o r  q outside the domain - i  to  +i on the im aginary axis the pole would 

corresp on d  to a ghost, which could  occu r if X w ere not negative.
B. Xo = 0, R > 0 (p resence o f an elem entary partic le  corresponding to <j>). 
H ere one pole  m oves as b e fore  but just som ewhat displaced. We have now, 
how ever, two other po les  due to the last term  in (35) which equals R ( q 2  + 1) 

when ~ß2 tends to infinity. It turns out that the signs o f the im aginary parts 
o f the logarithm  and this latter term  are opposite only in the low er half 
plane and thus the additional poles  have to be located  there. They m ove as 
indicated in F ig . 9, correspond ing  to the <t> -p a rtic le  which becom es less  and 
le ss  stable when one turns on the interaction.

8. DISPERSION RELATION

B ecause of its analytic p rop erties  one has the sim ple d ispersion  relation 
fo r  T (s ) which has no left hand cut because our m odel has no cross in g  sym ­
m etry:

I « )
1

It has been m entioned in the introduction that the d ispersion  relation  together 
with e la stic  unitarity p rov ides us with a different starting point fo r  our m odel.

9. PRO PAGATOR IN THE ZACHARIASEN MODEL

In the p rev iou s sections we investigated the S -m atrix  in the Zachariasen 
m odel. Now, I would like to investigate som e other fie ld  theoretica l quanti­
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ties  like  the propagator and fo rm -fa c to r  in the sam e m odel. Now, one can 
m ake a com plete  fie ld  theory out o f the Zachariasen  m odel. T herefore, one 
w ould expect that those features of the propagator and fo rm -fa cto rs  which 
one cou ld  deduce from  general prin cip les o f fie ld  theory should also hold 
in the Z achariasen  m odel. H ow ever, there is  one feature in the Zachariasen 
m odel which v io la tes  the general prin cip les of fie ld  theory : there is  no 
cro ss in g  sym m etry  in the S -m atrix . This can be traced  back to a fa ilure of 
satisfy ing  the asym ptotic condition. H owever, this does not disturb our find­
ing of the propagator and fo rm -fa c to rs ; and fo r  these quantities the m odel 
p rov id es  an interesting illustration  of various genera l con jectures and general 
th eorem s about the propagator and form  fa cto rs . B efore going to these 
quantities, let us make a short d igression  on the fa ilu re of the asym ptotic 
condition.

One can form ulate the Zachariasen  m odel in the follow ing way: one takes 
as the b a sic  diagram s o f the m odel shown in F ig. 11.

Fig-11

Basic diagrams

The p a irs  of p a rtic le s  can be represented  by a fie ld  with a continuous m ass 
d istribution . This corresp on d s to a quadratic Hamiltonian which can be dia­
gon a lized  exactly . Now the question is why this fie ld  theory does not satisfy 
the asym ptotic condition. The reason  is that the p articles  always occu r in 
p a irs . T h ere fo re , a single partic le  cannot be p ro jected  out. This means 
that the s in g le -p a rtic le  states are  not coupled in the Zachariasen  m odel. Yet 
what we are  in terested  in is the scattering of these p articles  and there is 
no cross in g  sym m etry  in the S -m atrix  because of the lack  of the asym ptotic 
condition . If the asym ptotic condition w ere true one would have autom atically 
the c ro ss in g  sym m etry  as it is  obvious from  the definition of the S -m atrix  
in te rm s o f the asym ptotic fie ld s  in the L. S. Z . form alism .

B ecause of this a lso  we cannot trace  Regge pole tra je cto r ie s . We do 
not have any m om entum -transfer dependence in the S -m atrix  and therefore 
there is  only one angular mom entum involved.

To calcu late the propagator, let us start as in the old -fash ioned  way 
by sum m ing d iagram s. These are shown in F ig . 12.

— i— — i— o - O — i—

Fig. 12

Diagram for the propagator calculations

A ctually , a partia l sum m ation o f these ha~ been done a long tim e ago by 
Dyson who showed that the com plete unrenorm alized  propagator has the form :
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A u = 1 / (s - Mo + *)• (41)

ir is the p rop er  se lf-e n e rg y  part and is the sum  o f the d iagram s, represented 
in F ig . 13.

— O —  +  — •o o — +  - o o o -  +  -----

Fig. 13

Diagrams related to the proper self energy part

i. e . , the d iagram s which cannot be separated in two parts by cutting a dashc n 
line. This is  again a g eom etr ica l s e r ie s  and we can sum up the w hol3 ser ies  
We get:

r = g2 A / ( I  -\ A ),  (42)

and

A u = l / [ s  -ß l  + g2 A /  (1 -\A)1  = (1 - A oA )/[ (s -M ? ) ( l  - Ao A ) + g2 A ).
(43)

Let us now study the poles  and various other p rop erties  o f this propagator.
To do this we f ir s t  w rite  A u in the follow ing fo rm :

Au = [ l / ( s - M 2) ] [ l -  AoA+ (s - ß 2)/(s-ß2) - (s -  M2 ) / { s  -M2 )] / [ (s-M2 )/(s -M 2)

-  Ao A]

= l / ( s  - M2 ) + (M2 - M2 ) / ( s  -M 2 )A0 [(s -M o ) /A o (s  -ß Z) - A]

= l / ( s  -M 2 ) + (Mo - M2 ) / ( s  - V2)2 T ' 1 (s)A o. (44)

We see  th ere fore  that th is contains T (s ) and other known fa cto rs ; so  we know 
essen tia lly  the po les  of the propagator. They are identical with those of the 
T -m a tr ix . If we introduce the function D, introduced before , form ula II5), 
we get:

A u = l / ( s  -M 2 ) + (Mo - ß2 ) A /( s  -  M2 )(s -M 2 )A 0 D(s),
(45)

D(M2) = 1 .

This exp ress ion  is  va lid  prov ided  there is a stable particle  M2 < 1. There­
fo r e , A u has a p ole  at s = ß2. One might think that there is a lso  one pole 
at s = ß, but this is  only apparent because T(m2) = 0. There is only one pole 
correspon d in g  to one stable p a rtic le  and we can ren orm alize  the expression  
accord in g  to the usual p rescr ip tion :

Au— ,Z3/(s - M2). (46)
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This g iv es :

Z3 = (X/X0) [(Mo - )/(M2 - ß2 )] = 1 - lg2 = DfT2 ) (47)

w here I is  given by (17).
A s we have seen  b e fore , one has always

g2 < 1 / 1 .

except in the ca se  of a com pound p a rtic le  (go = 0). T herefore , we see that, 
in gen era l:

0 < Z 3 < 1,

which m eans that the theory  is a good fie ld  theory. The renorm alized  p r o ­
pagator defined by:

A ^ Z a  (48)

is  given  by:

A ,  = U / ( s  - P 2 ) ] [ l / D ( ? ) l  + (m2 - M2 ) / { s  -M 2 )(s -M 2 ), (49)

or , in a better fo rm :

A f f= [1 /fs  -M 2 )] [1/DCs)] + [ l / ( s  -M 2 )] [ 1/D(M2) - 1/D(s) ] . (50)

As we shall see la ter, this last fo rm  of the renorm alized  propagator is ap­
propria te  fo r  the introduction of the spectra l representation.

The value g2 = 1/1 is  obtained in the case  of a compound particle . In 
this ca se  Z 3 = 0-.

If one starts with Xo = 0 and go f 0, one gets:

I = g2 / g o -  (51)

A bound p a rtic le  can a lso  be con sidered  as the lim it where one has only go 
and Mo which m eans go / ( s  - Mo ) Xo .

Fig.13a

Diagrams related to j$/(s ) —* X0

In this lim it Z 3 = 0 and this is c lea r  if we rem em ber the physical significance 
o f Z 3. Let us assum e that there is a vacuum in the theory and apply to it
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the H eisenberg operator $ (0). This generates a state which we represent by 
1):

* (0 )|0> *  | 1 )

up to a norm alization  fa cto r . This state is  neither a physica l one-particle  
state nor a bare  on e -p a rtic le  state. Let us ca ll  it the undressed on e-particle  
state. Then Z3 is just the probability  on finding a ph ysica l on e-p artic le  state 
in the undressed  on e -p a rtic le  state. Now, this undressed  particle  is not an 
eigenstate o f the energy but has a m ass distribution and one can show that 
this m ass distribution is cen tred  around the bare m ass Mo • In fact, the bare 
m ass is  just the average o f this m ass distribution. H ow ever, the physical 
m a ss  is  M. If we keep M2 fixed  and let Mo 00, the probability  of finding the 
state ] I/ 1 in the state 1 1 ) b ecom es sm aller and sm aller and th erefore  Z3 —' 0 .

A s fa r  as the bound p a rtic le  is  concerned, one can a lso  argue in the 
follow ing way. If we start with go = 0, the fie ld  <t> is no longer coupled to the 
fie ld  ip and th ere fore  does not com e into the gam e. H ow ever, we can consider 
ip2 (pairs of p a rtic les ) instead o f '$ . In this way we can a lso  define a propa­
gator of ip2 rather than o f <j> and see if it is p oss ib le  to define a reasonable 
ren orm alization  constant in this way. This m eans that we consider only the 
diagram s shown in F ig . 14.

O  +  O O  +  O C O  +

Fig. 14

Diagrams related to the case g 0 = 0

In this ca se  we find:

A U = A / (1 - X 0A) (52)

and again one can look  fo r  the po les  and define Z 3. We get:

Z 3 = g2 (53)

which is  no longer le s s  than unity. This fact is not in contradiction  with any 
fundamental p rin cip le  o f the Q .F . T . because the bound unity fo r  Z3 was 
derived  from  the canonical com m utation relations fo r  the fie ld  <j>. Now, ip2 
does not satisfy  s im ila r  canonica l com m utation relations and th erefore Z3 
is  no longer bounded by one.

10. SPE C TR A L REPRESENTATION OF THE PROPAGATOR

A fter this d igression  about Z 3, let us see what the spectra l rep resen ­
tation of the propagator looks like. F irs t , because o f the analytic properties 
o f D (s), D ' 1 (s) can be w ritten in the form :
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D -l(s ) = 1 - g; d s ' (s-M2 )(s ' -M2)
s ' - s (s ' -M 2)2 ! D (s ’ )P ‘ (54)

By inserting this we get the sp ectra l representation  o f A ^ s ). This is of inter­
est if  we want to see  what happens if  there is  no stable partic le  but only a 
reson an ce . The question is what happens to the p o le . In fact, one would con ­
jectu re  the fo llow in g : in the ca se  o f one stable p a rtic le  the sp ectra l function 
looks like the cu rves  shown in F ig . 15.

Fig. 15 

Spectral function

If the p a rtic le  b ecom es unstable, then the continuum m oves down, goes below 
ß2 and the 6 -function  d isappears. H ow ever, a bump w ill be left on the contin­
uum and the width of it w ill be related  to the lifetim e o f the unstable particle . 
That th is actually happens in our theory can be seen if we go back to T (s) and

A u = 1/(8-ß 2) + (ßi - ß2 ) T (s ) / (s  -ß 2)\0.

In th is fo rm  we see that what happens to the pole  in the propagator is 
exactly  the sam e that happens to  the pole  in T ( s ) ; the pole  m oves to the 
secon d  sheet o f the Riem ann su rface  (the unphysical sheet) and its effects 
show up by a strong peak in the sp ectra l function.

11. FO R M -FA C TO R S IN THE ZACHARIASEN MODEL 

The form  fa ctor  o f the pion is  defined by

F (s ) = <2ir \'i |o> = g<2ff | \[/2 |o>; 

A s shown in the d iagram  one has

(55)

+ A + = Tcs)

This is v e ry  c lo se ly  related  to the S -m atrix . In fact, if we stick  to F (s),the 
follow ing p ie ces
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F (s ) | A  + Ä  = T (s). 

we reprodu ce  the T -m a tr ix . In other w ords, we have

F (s ) [  Ao + go /( s  - Mo )] = g T  (s). (56)

T h ere fore

F (s ) = g T (s ) /X 0 (s - n l ) = g T (s)(s  - A  )/(s-M 2 ). (57)

R em em bering that T(p2 ) = 0, the last equation shows that the poles  of F (s) 
are just those o f T (s ). F rom  this fact im m ediately one draws the conclusion  
that, if there is  a resonance, it m anifests a lso  in the fo rm -fa c to r ; i . e .  a 
bump on the sp ectra l representation  o f F (s ).

12. MORE REALISTIC MODELS

T ill now we have w orked only with sca lar p a rtic les . This means that 
we can get only an S-w ave resonance. Indeed this summing of the bubbles 
g ives  just the S-w ave dominant solution o f Chew and M andelstam . But we 
know that such a resonance has not been found in nature. To get a p-w ave 
resonance one can try  to gen era lize  the theory. F or  instance, one can p r o ­
duce a p -w ave  resonance by introducing a vector  p article .

Another generalization  is to assum e that 0 correspon ds to nucleons and 
see  whether one can produce a bound-state o f nucleon-antinucleonby summing 
up the chain diagram s shown in F ig . 16.

Fig. 16

Chain diagrams to be summed when ♦ corresponds to nucleons

In both cases* one m eets with d ivergences. In fact, the degree of 
d ivergency is  in crea sed  by one com pared  to the sim ple case  we had before. 
W hereas we had b e fo re  one infinite constant, here everything diverges by 
one pow er m ore  and th ere fore  everything is m ore  ambiguous in the m odel.
In fact, if is  a sp inor, the calcu lations go m ore  or le ss  in the same way 
as b e fo re . F o r  instance, if  we have a 75 interaction  we have to take the trace  
around the bubbles. In this ca se  the square root we had before goes to

W— > (1 /4  Tr2) \ f  1 -  1/s (s + 1/4) (58)
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T h ere fore , the expression  I d iverges logarithm ica lly . If we use a cu t-o ff A, 
then

I ~  log A .

This has been done by Nambu who gets

g 2 = 2* / F / v ' “ log  A .

If we identify the bound ob ject with the pion, we obtain the pion nucleon 
coupling constant. A ctually, it turns out that the sam e kind of form ula also 
holds if  we sum up not the bubbles but the ladder diagram s shown in F ig. 17.

Fig. 17 

Ladder diagrams

H ow ever, this is a m ore  difficu lt prob lem  and what one can do is to sum 
this up in the extrem e re la tiv istic  lim it where the m asses involved are neg­
lected  com pared  with m om ents which are involved. In fact, one uses the 
B ethe-Salpeter equation which has a very  sim ple sp ectra l representation in 
the re la tiv is t ic  lim it.

The p rob lem  o f finding whether or not the pion is com posed  o f nucleon- 
antinucleon can be so lved  in the follow ing way. As we have seen before , there 
is  a distinction  in our theory  between the case  where there is an elem entary 
p a rtic le  behind it and the ca se  where there is  no elem entary particle  behind 
it. This just goes via the Levinson theorem . In particu lar, if we have no 
bare  p a rtic le , then we can have fo r  R eT _1 a behaviour like F ig . 4.

If there is a bare p a rtic le , R e T ' 1 has a behaviour s im ilar to F ig . 6 .
If there is  an additional reson an ce then the phase shift goes back to 90° as 
shown in Fig. 4b.

So, what one can do is to ca lcu late the phase-sh ift supposing the pion 
is  a com posite  p a rtic le . Then one looks w here the phase-sh ift goes to 90° 
and sees  whether one can find it experim entally. This sounds nice theoretica l­
ly , but in p ra ctice  it does not seem  feasib le .

If we sum the chain d iagram s, after obtaining the renorm alization  con ­
stant and the m ass o f the pion the rest is  then cut o ff independent and finite.
So one can calcu late the p lace  where the ph ase-sh ift goes to 90° and the width 
o f it if  we ca ll it a resonance. N um erically, it turns out that the m ass is :

M = 2 Mp + 940 MeV.

Mp is the m ass o f the proton  and the width is  450 MeV. This means a very 
broad S-w ave nucleon-antinucleon  resonance. This is physically  very  hard
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to observe  because in th is energy reg ion  the S-w ave c ro s s -s e c t io n  is very 
sm all and a lso  there are inelastic channels and they w ill obscure the picture 
further.

Let us now m ake som e rem arks about the influence o f the inelastic 
channels on the whole structure of the theory. F or  sim plicity , let us assume 
fir s t  that go = 0 and keep only the d irect coupling. We assum e that there are 
two kinds o f p a rtic le s :

A -p a rtic le  : -------  m ass \
B -p a rtic le  : ------  m ass m

The in teractions are of the type shown in F ig . 18,

X X
Fig. 18 

Types of interactions

and the b asic  diagram s are those shown in F ig . 19,
and s im ila r ly  fo r  the exchange scattering T AB and fo r  T 8b. N ow , we are

Taa = X + XX + XX
Fig. 19 

Basic diagrams

dealing once again with g eom etr ica l s e r ie s  which can be summed up rather 
easily . If we use m atrix  notations (2 X 2  m a trices) then the coupling could 
be w ritten in the form :

/  AA

xX A BA

and A , the sum of the bubbles:

A a  =  O  +  O O  +  O O O  +

a b =  o  +  O O  +  O O O  +*

AB

LBB

(60)

fe,- v + ( X
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in the fo rm :

0 A

0

) (61)
B

Then, the T -m a tr ix  is  given  by:

T = X + X A T. (62)

A is  diagonal, but X has non-diagonal elem ents, so  that T is non-diagonal. 
We can ea sily  so lve  this equation and the solution is :

Again, we have a rather s im ple expression  fo r  the T -m a tr ix  and the analysis 
goes as b e fore .

This m odel in itse lf is interesting to study, fo r  instance, the cusps in 
one c r o s s -s e c t io n  at the threshold  o f a secon d  channel.

Let m e make a last rem ark  as to wftat happens to the Levinson theorem  
if  we have a tw o-chännel reaction . F or  instance, let us suppose that the 
diagram  shown in F ig . 20

corresp on d s  to the annihilation o f nucleon-antinucleon into two pions and let 
us assum e that we have a lso  these kinds o f inelastic contributions. How does 
this change our conclusion  that the phase-sh ift goes back at 90" at certain 
energy? It turns out that in this m odel the Levinson theorem  still holds in 
an analogous fo rm  to the ca se  we had b e fore . H ere, however, the phase- 
shifts are  com plex  but the re a l part goes back to 90°. So what one has to do 
is  to look  at R e6 and see if it goes back to 90°. P ractica lly , this is very  
difficu lt because the elastic  c r o s s -s e c t io n  is a sm all part o f ff total • If there 
w ere a sm all bump in o 'elastic it w ill be overshadow ed by o inelastic •

One can say that, in p rin cip le , in the fram ew ork  of fie ld  theory there 
m ay be an exact c r ite r io n  to distinguish whether a partic le  is elem entary 
o r  com posite . H ow ever, in p ra ctice , it w ill take quite a long tim e until one 
can rea lly  make this test experim entally.

13. GENERALIZATION TO MORE REALISTIC CASES

T - l  = X -l -A . (63)

Fig. 20

Diagram corresponding to nucleon-antinucleon annihilation into two pions

Up to now we have been confined to the Zachariasen m odel which neglects 
the cross in g  sym m etry  as w ell as the contribution from  the inelastic channels. 
T o in corporate cross in g  sym m etry  a lso  we have to include the left hand out



COMPOUND PARTICLE MODELS 473

so that the gen era l d ispersion  relation fo r  the partia l wave scattering 
amplitude T (s) reads as

I -oo 4 m 2 J

w here + ie indicates that we are  integrating above the rea l axis. The low er 
lim it o f  integration 4ß2 indicates the physical threshold (as we had in the 
Zachariasen  m odel). However, superim posed  on it we w ill have inelastic 
thresholds corresponding  to branch cuts starting at s . The unitarity con ­
dition in the fo rm  we had so  far holds only in the e lastic region , i. e. s-, <
< s < 4M2 ,

Im T (s  + ie) = p (s + ie) |T |2 (65)

w here p, the phase space fa cto r  is  given by

P (s) = \/ (s - 4/u2) /s  (66)

Above the inelastic threshold  the situation becom es m ore  com plicated  and
has been dealt with by B. L ee (see his lecture  notes). We th erefore  confine
ou rselves to the reg ion  below  production  threshold . C f. a lso  [9 ] . In writing 
the d ispersion  relation  (64), we have assum ed certain  analyticity properties 
which we have not proved . But this fo llow s in particu lar from  the Mandelstam 
representation , and we shall not bother about it here. Again T is considered  
only as a function of s which holds fo r  any partia l wave amplitude. However 
the unitarity relation  (65) holds only fo r  S waves but the generalization  can 
easily  be done. The relations (37) fo llow  from  the d ispersion  relation (64). 
The analytical continuation through the branch cut in the S plane extensively 
dealt with in lectu re  II can be done only between 4n2 and s; . p (s) has two 
branch points at s = 4yu2and s = 0, and as before  we locate the branch cut 
fr o m -o o  to 0 and 4ju 2 to  + m . It then fo llow s p (s) = -  [p(s)] * since in this 
reg ion  p (s) is purely  im aginary.

F rom  (65) we obtain

I m T -1  (s + ie) = -Im  T (s + i e ) / | t |2 = -p (s  + ie) = p (s - ie) (67)

and th ere fore  get the analytic continuation to the second sheet o f the inverse 
amplitude.

T f 1 (s + ie) = T j1 (s - ie) + 2 ip  (s - ie) = TjJ1 (s - ie) (68)

or if we invert this relation  (68 ) we obtain

Tj, = T , / ( I  + 2ip T , ). (69)

Again we see  there m ay be poles  in the second sheet due to the vanishing of
the denom inator in (69)
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(i. e . ) 1 + 2 i p  T  = 0

and these poles  corresp on d  to resonances. The location of the branch cuts 
in the s and q plane are given in F ig . 21.

'i LEFT HAND C

INELASTIC
THRESHOLD

q-PLANEs-P LA N E

Fig. 21

Location of branch cuts in the s and q-plane

Concluding this section , we list a few form ulae decom posing T into d ispersive 
and absorptive parts [ 10 ] :

and inverting we get

T = d + ip  a 

T jj = d - ip a

a T T n

d = T j j  ( 1  + i p T ) .

(70)

(71)

The advantage o f this decom position  is that even in the s plane the elastic 
branch cut is absorbed  into the phase space factor p (s).

In p articu lar in the e lastic  region

(i. e. ) 
we have

4 /j2 < s < Sj

a = ± I m  T (72)

d = R eT .

The partia l wave S m atrix  now takes the sim ple form

S = l + 2 i p T j  = T j / T jj= T (q)/T (-q). (73)

C om paring (69) with (73) we see that the resonances correspond  to the zeros 
o f the S m atrix  (See a lso  [11])
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We w ill now investigate whether the sam e resonances show up in the 
fo rm  fa cto rs  a lso . We w ill distinguish the two ca ses  with and without anoma­
lous threshold .

A. No anom alous threshold

The g raph ica l representation  fo r  the form  factor is  shown in F ig . 22 
w here the so lid  line represen ts  the p article  whose scattering we have con -

i s

14. FORM FACTORS

Graphical representation of the form factor

sid ered  b e fore . The connection  between the scattering amplitude and the 
form  fa cto r  can be seen from  F ig . 23

I
i
i

Fig. 23

Decomposition of the form factor

w here we have decom posed  the bubble taking out the low est interm ediate 
state. This im m ediately  im plies that there is  a branch cut starting at 4/^2 . 
Hence we obtain
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F (s )  = 1 + Im F (s ' + i p  
s ' ( s '  - s)

4ß2

This form ula  again im plies the analyticity and boundedness properties of 
F (s ) which is  a lso  norm alized  to unity at s = 0.

T o apply the d ispersion  relation  (74) we requ ire  som e explicit statements 
about the im aginary part o f F (s ). In the Zachariasen  m odel we saw that it 
is  d irectly  related  to the scattering amplitude. We w ill now show that a 
s im ilar  relation  holds a lso  h ere . By the general Lehmann - Symanzik- Z im - 
m erm ann technique [ 1 2 ] .

F (s ) is  related  to <ir j j  | ir> o r  to < 0 |j 12?r fn > .  Applying the tim e 
re v e rsa l operation  (assum ing the current j has definite properties  under 
th is operation) we obtain

F (s )~ < 0 | j| 2 * in> = [ < 0 | j | 2 j ^ ] * .  (75)

Since the in - and out- states are related  by the S -m atrix  and since < 0 | j*  
is  a state o f definite angular mom entum  (im plying a diagonalized S-m atrix) 
we obtain

F (s ) = F * (s) e 215 (76)

which leads to

Im F = sin  6 e ' id F =  pT*F. (77)

B ecause o f the sim ple diagonalization o f the S -m atrix  this holds only in the 
e lastic  reg ion . A ll quantities in (77) have to be taken on the upper lip of 
the branch cut and because of (68 ) and (69) we have

Im F = pFT  /  (1 + 2ipT). (78)

Since we now know the im aginary part of F , we can continue F analytically 
into the second  sheet by

F u = F j  -  2ilm  F j  = F ( l - 2 i p T * )  (79)

and becau se o f (78) and the unitarity of the S -m atrix  we end up with

Fjj = F j / ( I  + 2ipT). (80)

T h ere fore  in the secon d  sheet F has the sam e poles  as T, corresponding 
to the sam e reson an ces.

S im ilar considerations can be made in the q-plane.
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B. ANOMALOUS THRESHOLDS [13]

In this m ore  com plicated  case  we have to con sider a specia l contribution 
to the graph of F ig . 22 which leads to the anom alous branch point (F ig. 24). 
This is  the fo rm  fa cto r  of the p a rtic le  m and as a physica l exam ple we con ­
sid er  the fo rm  fa ctor  of the £ ;  il e. m— > it, M<— >A andm <— > £ .

Fig. 24

Graph, leading to anomalous branch point

The anom alous thresholds appear only fo r  sp ecia l relations among the 
m a sses  M, m and ß and to investigate this prob lem  we firs t  con sider the 
diagram  in F ig . 25,

Fig. 35

Scattering diagram, leading to anomalous threshold

where the four v e cto rs  p i and qi are  related  by energy-m om entum  co n se r ­
vation.

We ch oose  the usual three invariant variab les

s = (qi + q 2)2 
1  = (p i + q j 2 
t = (Pl + Q2 )2

(81)
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In the c e n tre -o f -m a s s  system  the energy-m om entum  v ecto rs  are given by

qi =

pi

(  -  )  « ■  (  -  )V - a l  '  V a l  '
(82)

- v/q2 + ß2 /'R “  \
(  ^  )  P 2 '  (  - r  }q

and the follow ing relations hold:

s = 4 (q 12 + juZ ) = 4 (q 2 + m 2)
t = -q 2 -  q12 + 2qqJ cos  6 (83)
T = -q 2 -  q12 -  2 q j c o s 0

w here 0 is the scattering angle. _
In the usual way, the p o les  corresp on d  to t or t = M 2. However, if we 

p ro je c t  out a partia l wave in the s-channel, that is

l
T f (s) = j "  dr)Pje(r? )T (sJi7) r j = c o s 6  (84)

-l

the pole  is converted  into a bran ch -line  with the end points corresponding 
to cos  0 = ± 1. F rom  (83) we thus get the branch points at

( q ± q ' ) 2 = - M 2 . (85)

Solving (83) and (85) we get

. m 2 + M2 - m2 ,nn
q ' a ~ ± 1 --------2M --------- (86)

or

S = - (M  + m)2}  {r n 2 -  (M -M )2}  = g(m 2 ) (87)

w here g is , of cou rse , a function of M and/n a lso . If we plot it, however, 
as a function o f m 2, we obtain the location  o f the branch-points as shown 
in F ig . 26.
The points (M + ß)2 and (M - ß)2 corresp on d  to £and A respectively ,becom ing 
instable with the decay p r o ce s s e s  £ — A + ?r and A -*-E+jr . Between these
two points a ll p a rtic les  a re  stable. We can now draw the branch-cuts in the 
q '-p la n e  fo r  two typ ica l ca ses  (F ig. 27).
w h e r e  th e  tw o  b r a n c h - l in e s  a p p r o a c h  e a c h  o th e r  w hen  m 2 = M2~+n2 . It is  
c l e a r  h ow  th is  lo o k s  in  th e  s -p la n e  f o r  m 2 = M2 + ß2 th e  le f t  b r a n c h  cu t o f  the 
f i r s t  and  s e c o n d  s h e e t  m e e t  e a c h  o th e r  at th e  th r e s h o ld  o f  th e r ig h t-h a n d
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Fig. 26

g(m2) -  Eq.( 87)- as a function of m2.

Fig. 27

Branch-cuts in q' -plane for two typical cases

cut. F o r  m 2 > M +ju2 the low er branch point m oves out into the physical 
sheet, leading to an anom alous threshold . The situation is indicated in F ig. 28.

s-P LA N E

ANOMALOUS THRESHOLO 

........ „

c

' / / / / / / / / / / / / / /  
t , y r  s;

Fig. 28

Anomalous threshold in the s-plane
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F o r  the form  fa ctor  the situation is entirely  s im ilar except there is no 
left-hand cut in the physica l sheet.

We th ere fore  have to m odify the low er lim it o f the integral in equation 
(74) from  4/n2 to g(m 2 ).

It is  w ell-know n that in the configuration space a d ispersion  relation  
corresp on d s just to the superposition  of Yukawa potentials. (In the cen tre- 
o f-m a ss  system ).

g
Hence g(m 2 ) p rov ides us with the Yukawa potential o f longest range, given by

e'W^g
4?r | x |

w here |x| -fg can be ca lcu lated  from  (87) to be

|x|/g = |x] • 2 (M +ß)/M \ /2 eM (j/(M  + /j) = 2 r 2eM 

w here e is the binding energy, defined by

m = M + ß -  e

and r e is the rela tive  co -ord in a te , say o f the A  ir system  form ing the e. M r 
is the reduced  m ass. We th ere fore  conclude, that physically  an anomalous 
threshold  corresp on d s to a spreading of the compound system  which is 
greater then the Compton w ave-length  o f the partic les  into which it can decay 
virtually .

15. CONCLUSION

We have been considering  only a particu lar m odel and a slight extension, 
where one rem oves  som e o f the restr ic tion s . It is , o f cou rse , to be hoped 
that a ll this can one day d irectly  be deduced from  axiom atic fie ld  theory, 
but up to now it was not p oss ib le , and one has to be content to illustrate the 
situation by sim ple exam ples. N evertheless, these exam ples show that the 
situation in fie ld  theory ties  on d irectly  to the situation one has in potential 
scattering.
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