# Fermi National Accelerator Laboratory

FERMILAB-PUB-88/99-T
August, 1988

NONPERTURBATIVE PHYSICS FROM
INTERPOLATING ACTIONS

Anthony Duncan
Department of Physics and Astronomy?
University of Pittsburgh, PA 15260, USA
and
Department of Physics
Technion-Israel Institute of Technology, Haifa 32000, Israel

Moshe Moshe
Department of Physics?
Technion - Israel Institute of Technology, Haifa 32000, Israel
and
Fermi National Accelerator Laboratory?
P.O. Box 500, Batavia, Illinois 60510

Abstract

We study the expansion in an artificial parameter § which interpolates
between a solvable theory at § = 0 and the desired theory at § =1 . The
interpolating actions are of the form §S + (1 — §)So; and augmented by
an optimization procedure which introduces nonperturbative features into
our results. This procedure relies on the freedom in choosing the best Sg
without affecting the convergent results at § = 1. Our linear interpolation
is similar in spirit but differs in details from the novel § expansion that
was recently formulated for scalar theories where the parameter 2(1 + §)
was the power of the field in the interaction lagrangian. Here we use

interpolating actions for the first time in fermionic and gauge theories.
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1. INTRODUCTION

One of the obstacles to extracting nonperturbative physics in quantum field theory
is the paucity of alternatives to conventional Feynman-Dyson perturbation theory,
which provides, even in the best of cases, at most an asymptotic expansion. Large
N methods(!) have yielded much insight but have various limitations; primarily, the
difficulty of computing higher order corrections, and the fact that in cases of direct
physical interest, N is not particularly large. Since the 1/N expansion is itself only
asymptotic, we are led back in the case of small N to much the same situation that
is obtained in a weak coupling perturbation theory when the effective coupling is
strong. Recently,(?) there has been some interest in exploring expansions based on
an artificial parameter (called generically “6” below), which interpolates between a
solvable theory at § = 0 and the desired theory at § = 1. In some cases the parameter
§ is basically the power of a scalar field in the action. In others the interpolation is

linear, corresponding to an action 85 + (1 — §)So.

In this paper we discuss the application of the linear interpolation technique,
augmented by an optimization procedure, to theories containing fermionic and gauge
degrees of freedom. The optimization used relies on the obvious fact that we are free
to introduce arbitrary parameters in Sy which cannot affect results at § = 1, provided
the delta expansion is convergent. However, these parameters can strongly affect the
radius of convergence of this expansion. By maximizing the radius of convergence
we can minimize the error incurred by working only to finite order in delta, at the
same time minimizing the dependence of the final results on the arbitrary parameters
in So. In fact, the optimization also introduces directly important nonperturbative

dependencies on the coupling constants in the theory (cf Section 2).

In Section 2 we show that the above ideas can be applied to the Gross-Neveu
model,® and a convergent series of approximants obtained for the effective potential
for the auxiliary o field, even for N (= no. of fermion species) as small as 2. In this
case the delta expansion is not merely asymptotic, but convergent. In Section 3 lattice
gauge theories (Z; and U(1)) in 3 spacetime dimensions are studied. We find that in
the case of U(1) an appropriate choice of Sy leads to considerable improvement over
strong-coupling Padé extrapolations(*) for plaquette energies at large values of 3. We

also find good agreement with published Monte-Carlo data(®) for these systems.
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2. OPTIMIZED INTERPOLATION FOR THE GROSS-NEVEU MODEL

In this section we shall concentrate on the problem of extracting nonperturbative
behavior from a model with at least one limit where explicit analytic results are avail-
able. In the limit of large number of fermion species (N), the (1%)? model in 1 space
- 1 time dimension is solvable and provides a beautiful example of nonperturbative
chiral symmetry breaking.(}) The procedure described below will in fact allow us to

calculate nonperturbative effects even for finite N.

The basic idea of the interpolation is that the § = 0 theory should (a) be solvable,
and (b) reflect, at least crudely, the physics of the true (6§ = 1) theory. In the case of
the Gross-Neveu model the chiral breaking gives a mass to the fundamental fermions

in the theory, which suggests that the following interpolation might be useful:

Lo = B + 50 + g6 + guA(1 ~ )P ey

Here o is the usual auxiliary field, A an ultraviolet cutoff (we shall see below that it
is essential to work in the cutoff theory) and p an arbitrary parameter which we can
choose to optimize the convergence of the expansion in §. It is precisely at this last

step that nonperturbative features enter the calculation.

In the large N limit, one may easily obtain the effective potential for the o-field

following from Eq. 1, for arbitrary values of the parameters y, . Namely, one finds

1, N_, A? A? X?
V= 57 47rX (ln(1+ X2)+F1n(1+—1\—2 (:2)
where

X =g(ob + pA(l - §)) (.3)

The obstruction to a convergent expansion of (2) in § arises from the branch points

of the logarithms at

A i

(/‘7# + _) . (4)

5=
pA — o g

The radius of convergence of the expansion is therefore maximized by choosing p = §

for any given preassigned value of the auxiliary field o at which one is expanding the
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effective potential. The interesting physics in this model occurs for o close to the
minimum of V(o) so we shall get rapid convergence in this region by choosing p to
coincide with £, where 8 |o=s = 0. This will mean that the parameter s becomes
implicitly a function of g, and depends also on the order to which we work in the
delta expansion. This procedure will be seen below to give good convergence of the
effective potential for large as well as finite N. The convergence is very good, of course,
especially in the vicinity of ¢ = 7.

It is straightforward to calculate the expansion of V for general N by ordinary
perturbation theory starting from Eq.1. If we denote V(?) the coefficient of 6™, the

first four orders in 4 yield

vO(g) = ¢ (5)
VO(g) = —Auln(l+ g,lpz)(qs—p)
VO(4) = —iM——as — In(1 + —5))(# — )’ (6)
- 27V + gzﬂz gzuz H .
2,2
vOg) = ol (e uy
A2 1 2 1
vii(g) = _.11_2.,\‘%(1 +6g°u% — 3g*u*)(1 + ¢°p%) (¢ — p)* (:8)
A2 2 1 )\? .
* i (e B0 ) @)
AZ 92”2 _ 1 1
+ mmln(l + gzpz)(fﬁ —p)? (.9)

We have introduced the following dimensionless quantities

_g*N
o
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As explained previously, the condition for fixing u is
v
—lp=u =0 A2
a¢ I¢-—M ( )

To first order in &, at § = 1 (i.e. setting V = V(®) + V(1)) this condition implies

Aln(1 + 92”2) =1
or
1 1
2/ 2
7 P —— (13)
glezp ;—N) -1

A glance at Eq. 6 shows that this condition does not change at order §%, as V(2)(¢)
is quadratic in (¢ — p). However, at order 63, Eq. 13 is corrected in consequence of
‘the (subdominant in N) linear term in (¢ — p). This pattern persists in higher order:
at every second order in §, we must change u(g). It is apparent from (13) that the
‘optimization condition (12) has resulted in a completely nonperturbative expression-
for V as a function of g: in particular, the characteristic essential singularity at g=0
is now present, even though the calculation is perturbative in §. Moreover, the first
order result (13) for the location of the minimum of the effective potential agrees

completely with the large N result.

In Figure (1) we show the convergence of the § expansion of the exact large N
effective potential (2). The convergence in the region of the minimum is excellent for
values of bare coupling g essentially at the continuum limit (g = 1.9 x 1072 in units
of the cutoff). As we reduce N to finite values, the convergence is found to worsen at
smaller values of A. Figure (2) shows the situation of A = 0.3, N = 2 up to fourth
order in 8. In the region of the minimum we have good convergence: the 3rd and 4th
order curves agree to within a few percent for 0.54 < ¢ < 1.5u. Outside this region
the convergence is worse. In particular, a convincing demonstration of chiral breaking
for N = 2 would require us to go to higher order in é to make absolutely sure that the
central value (at ¢ = 0) does not decrease continually until the symmetry is restored.

This seems highly unlikely on the basis of the ”visual evidence” presented in Figure -
(2).
The method described above also allows the calculation of a nonperturbative 8-

function of the theory. Although we are prevented from renormalizing the entire
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effective potential order by order in § by the failure of the convergence of the expansion
once the bare coupling is forced to zero, we can extract a sensible convergent sequence
approximants to the 3 function by staying at the point where the expansion (at least
for large N) is optimal, i.e. at 0 = 7, % |o=s= 0. At this point, the renormalization
group equation for V reads simply

a 0

(Aor+8

51+ B35,V =0 (.14)

as the 70';7 term is absent at the minimum of V. To order, §, we have simply (at
§ = 1) in virtue of (12).
1

V= 50'2 — u(g®)oA (.15)

SO

AW = _ (31’”‘)—1 (.16)

Using (13) one finds

g9
6(1)(-9) = T 3% s 17
Tl —ean(- 57 1 (1)
This behaves correctly (—’;TN) in the weak coupling limit but there are also nonper-
turbative corrections. One may easily compute the corrections to (17) in higher order

in 4.

3. OPTIMIZED INTERPOLATION FOR LATTICE GAUGE THE-
ORY

As a second example of the procedure of optimized interpolation, we describe in
this section an approach to the computation of observables in lattice gauge theory
with more rapid convergence properties in the crossover region from strong to weak

coupling than the usual extrapolations from strong coupling expansion.

Consider the lattice action

S=P63 5, +8(1-63 s (.18)

p
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where s, denotes [[yp 3 and s; = =+1 for each link in plaquette p for Z, gauge
theory, cos(Y 4y 0¢) for U(1) theory, and the usual ¢r(IlspU;) for SU(N) theory. This
is evidently the conventional action at § = 1. The Y, in the second term runs over
a maximal tree of plaquettes.®) This is simply a subset of plaquettes with the
property that the addition of any single plaquette to the set gives rise to a closed
surface in the lattice tiled by plaquettes in the (new) set. A moment’s thought shows
that a maximal tree of plaquettes also has the property that, forcing the plaquette
actions to their maximal values for all plaquettes on the tree also forces the nontree
plaquettes to maximal action. For simplicity, consder the case of U(1). Any nontree
plaquette p’ forms a closed surface with a set of tree plaquettes p;. Thus we have a
kinematic constraint 8,7 = — 3, 0,, for the plaquette angles. If all the 6,, are forced
to zero, as in the weak-coupling regime 8’ — oo, so is 0. So the behavior of the
6 =0 and § = 1 actions in (18) are crudely similar in the weak-coupling (large 3, 3')
regime. The other motivation for choosing a maximal tree in the § = 0 action is the
possibility of evaluating the resulting graphs in terms of explicit analytic expressions.
The insertion of nontree plaquettes as one expands in é results in closed surfaces of
finite volume embedded in an (infinite volume) tree; the latter may be integrated
out trivially, much as one does in 1 + 1 dimensional lattice gauge theory, leaving a
finite cluster of plaquettes which can be evaluated straightforwardly in terms of the
usual modified Bessel functions. Finally, we see from (18) that 4’ like  in the case
of Gross-Neveu, is an arbitrary parameter (irrelevant at § = 1) so we may choose it

freely to optimize the convergence of the expansion.

It will be convenient to rewrite (18) in the equivalent form
S=B53"sp+ (8 +56) L s (19)
P »

where 37 runs over all nontree plaquette, §; = § — 8. The expansion will be made
with respect to the first term. Later, the Bessel functions of argument 8’ + §8; can
be further expanded in § to give the final series. For U(1) theory, the “zeroth” order
contribution to the partition function then (no nontree plaquettes) is just (N, =

number of tree plaquette, N, = number of plaquettes)

Zy = Iy(B' + 6B,)™ (.20)
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and the free energy per plaquette is

1 N,
Wo = —ﬁ;anO = F:Z’n]o(ﬂ’ + 5,3,5) (.21)

At this point, it is convenient to specify more precisely the structure of the maximal
tree that we have used. There is of course a great deal of freedom here and it may
be the case that different choices give different rates of convergence. We have found
it convenient to use a maximal tree in which (in 3 space time dimensions) all (zz)
and (yz) plaquettes are included, as well as all (zy) plaquettes for z = 0, say. The
results presented below for Z, and U(1) theory in 3 dimensions all refer to this choice

of tree. Evidently, %: = % in the infinite volume limit.

At zeroth order in 6, we have
2 ! 2 ] !
Wo = '3'57110(,3 )ﬁ,:’w gﬂ + O(£n(8")) (-22)
whereas the correct large 3 behavior for the exact W is

w(p) . B +0(np) (-23)

The match is best at large 8 by choosing §' = %ﬁ. We shall see below that the

3

5 as higher order in the § expansion are included.

optimal %' decreases from

Insertions of one or more nontree plaquettes can be computed by standard cluster
expansion methods. Odd numbers of nontree plaquettes give rise to connected parts
with factors (%Eg:—g%%)"' where n, is the z coordinate of the furthest plaquette from
the z = 0 level of the tree. Since I; < Iy, such contributions vanish expenentially fast

as n, — oo and cannot give a volume contribution to W.

The contribution arising from two nontree plaquettes corresponds to graphs of the
type shown in Fig. (3). Again, in order to get a volume term, the plaquettes must
lie at the same (zy) location, with arbitrary values for 2y, z;. The value of the graph
is %cilz‘-zzl, where ¢, = B +8)  Thys, the contribution to W from such graphs is

= L(B'+6B:)"
D RN R
W = Do X g
2123 =
B2621 + ¢t

T 121-4 | (:24)
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Of course, when ¢, is expanded out, W, contains contributions of order §2, 62, etc. One
feature of the expansion which is apparent in (24) is the appearance of an infinite
sum over graphs at a finite order in § (rather as one has to sum an infinite number
of Feynman graphs to obtain the full contribution at a given order of a large N
expansion). The resulting geometric sum in (24) exhibits a turnover of behavior from
B* (B << 1) to #% (B > 1) and we may hope that this resumation will allow us to
approach more rapidly the correct behavior (e.g. for specific heats) near transition

regions where conventional strong-coupling Padé’s begin to fail.

The fourth order contribution (in nontree plaquettes) arises from the graphs shown
in Fig. (4). The calculations analogous to (24) are straightforward and will not be
repeated here. The graph in Fig. (4a), for example, is found to contribute

ﬂ46‘4

W4a 3

1 1
(5raletschr ) = 3ulcts D) (:25)
where

= L(B+ 56:) 561) and
? = To(B" + 8Bs)

TYz 1 yz

flev2) = G an—pa=s) T 2A 9=
+ l Tz +l zy +l y
2(l—o)l-2) 2(-a)1<y) 41—y
+ —(lgliz-}-%lfz-,r% (°26)

After expanding (22), (24), (25) to fourth order in §, one may obtain diagonal
(1,1) and (2,2) Padés, in delta, for the plaquette energy %‘g—. This has been done
by setting /' = af, and searching for a regoin where the dependence on « is flat or
extremal. For the (1,1) Padé the optimal choice of « is still close to the value 1.5
which we saw previously gives the best large § behavior at the zeroth order level. For
0 < 8 < 0.6 Padé gives a broad maximum in a with the maximum value about 15%
below the Monte Carlo results(®), while for 8 > 0.8 the broad maximum disappears
and thus the optimization procedure fails. There is a dramatic improvement as we go
to fourth order in § and use the (2,2) Padé. Now the optiinal value for a is found to
be about 0.8 and an extremum is found all the way out to @ = 2. The a dependence

is flat for a wide range of values around the optimal a. The resulting values lie very
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close (see Fig. (5)) to the Monte Carlo measurements for 0 < 8 < 2.0 The results are

a clear improvement over the strong-coupling Padés, also shown in Fig. (5).

Fig. (6) shows the results obtained by the same procedure for Z, gauge theory.
Here there is an actual phase transition and a much sharper turnover from strong to
weak coupling. Again, the (2,2) Padé, after optimizing «, seems to do a good job
up to 8 = 0.8, which is past the critical point at § = 0.76 . In contrast to the
U(1) case, here the (3,4) Padé of the strong coupling expansion is as good as the §
expansion. Note however, that different levels of calculations are compared when we
are comparing the (3,4) Padé of the strong coupling expansion with the (2,2) Padé

of the § expansion which is only at the second nontrivial level in this expansion.

4, CONCLUSION

We employed an expansion in a parameter § which interpolates between different
actions. Other arbitrary parameters that appear in these actions ( g in the Gross-
Neveu model in Eq. (1) and A’ in the gauge theory action in Eq. (18) ) were chosen
by the optimization procedure described above. Our results in Figs. 1,2 and Figs.
5,6 show the very good convergance of the § expansion. The good quality of the
expansion and its extension into the transition regime in the case of the gauge theory
shows that the subtle nonperturbative features of the theory are very well reproduced
by our optimization procedure already at low order of the expansion. Clearly, the
extension of these calculations to four dimensional gauge theories and other physical

problems is now very desirable and promissing.
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FIGURE CAPTIONS

Convergence of the § expansion of the exact large N
effective pote.ntial. (Here gp = 1.9 x 1073 in
units of A ). '

§ expansion for the effective potential up

to order §* (Here A = 0.3 ,N =2).

The y axis is: In(Vegs + %)

Contribution to order §? from non-tree
plaquettes.

Contributions to order §* from non-tree
plaquettes.

U(1) gauge theory in 3 dimensions : Plaquette
energy in § expansion - (1,1) and (2,2) Padé.
The (3,4) Padé extrapolation of the strong

coupling expansion is from results of ref. 4.

Monte Carlo data and the conventions for definning the plaquette

energy are from ref. 5 .

Z, gauge theory in 3 dimensions : Plaquette
energy in § expansion - (1,1) and (2,2) Padé.
The (3,4) Padé extrapolation of the strong

coupling expansion is from results of ref. 4.

Monte Carlo data and the conventions for definning the plaquette

energy are from ref. 5 .
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