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Abstract The relation between two-dimensional conformal quantum field theo-
ries with and without a timelike boundary is explored.

1 Introduction

In (18), the authors have formulated boundary conformal field theory (BCFT) in
real time (Lorentzian signature) in the algebraic framework of quantum field the-
ory. BCFT is a local Möbius covariant QFT B+ on the two-dimensional Minkowski
halfspace M+ (given by x > 0), which contains a (given) local chiral subtheory A,
e.g., the stress-energy tensor. The reward of this approach was the surprisingly
simple formula (1.2) below, expressing the von Neumann algebras of local ob-
servables B+(O) in a double cone O ⊂ M+ in terms of an (in general nonlocal)
chiral conformal net B of localized algebras associated with intervals along the
boundary (the time axis x = 0). The net B is Möbius covariant and contains the
local chiral observables A:

A(I)⊂ B(I) (1.1)

for each interval I ⊂ R.
The reduction to a single chiral net is responsible for a kinematical simplifica-

tion, explaining, e.g., Cardy’s observation (3) that in BCFT, bulk n-point correla-
tion functions are linear combinations of chiral 2n-point conformal blocks.

The algebra B+(O) is a relative commutant of B(K) within B(L),

B+(O) = B(K)′∩B(L), (1.2)
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Fig. 1 Intervals on the boundary and double cones in the halfspace

where K ⊂ L are a pair of open intervals on the boundary R such that the discon-
nected complement L \K = I ∪ J is the set of advanced and retarded times t ± x
associated with points in (t,x) ∈ O (see Fig. 1). Although the chiral net B is not
necessarily local, the intersections (1.2) do commute with each other when two
double cones are spacelike separated.

The main result in (18) is that every BCFT is contained in a maximal (Haag
dual) BCFT of the form (1.2).

This leads to a somewhat paradoxical conclusion: on the one hand, each lo-
cal bulk observable is defined as a (special) observable from a chiral CFT. Thus,
superficially, the “degrees of freedom” of a BCFT are not more than those of a
chiral CFT, containing only a single chiral component of the stress-energy tensor
(Virasoro algebra). One might argue that such a “reduction of degrees of freedom”
is a characteristic feature of QFT with a boundary. But this point of view cannot
be maintained, because on the other hand, it was shown in (18) that the resulting
BCFT B+ is locally equivalent to another CFT B2D on the full two-dimensional
(2D) Minkowski spacetime, which has all the degrees of freedom of a 2D QFT,
and in particular contains a full 2D stress-energy tensor (two commuting copies
of the Virasoro algebra). Even in the simplest case, when the chiral net B on the
boundary coincides with A (sometimes known as “the Cardy case”), the associated
bulk QFT contains apart from the full 2D stress-energy tensor more (“non-chiral”)
local fields that factorize into chiral fields with braid group statistics. Locally, also
the BCFT contains the same fields.

This paradoxical situation is not a contradiction; it rather shows that “count-
ing degrees of freedom” of a QFT is an elusive task. Trivially, there is no ob-
struction against a proper inclusion of the form B(H )⊗B(H ) ⊂ B(H ) if
H is an infinite-dimensional Hilbert space. But “counting degrees of freedoms”,
e.g. by entropy arguments, requires the specification of the Hamiltonian. The
BCFT shares the Hamiltonian and ground state (vacuum) of the chiral CFT, while
the associated 2D CFT has a different Hamiltonian and a different ground state.
Thus, with respect to different Hamiltonians, the spacetime dimension (measured
through some power law behaviour of the entropy) may assume different values
(1 or 2, in the present case).

Looking at the issue from a different perspective, we may start from a vacuum
representation of the Virasoro algebra. The latter integrates to a unitary projective
representation of the diffeomorphism group of the circle Diff (S1), which contains
the diffeomorphism group of an interval Diff (I) as a subgroup. For two open inter-
vals with disjoint closures, there is a canonical identification between Diff (I∪ J)
and Diff (I)×Diff (J). In terms of the stress-energy tensor T , this amounts to an
isomorphism between exp iT ( f +g) and exp iT ( f )⊗exp iT (g), when f and g have
disjoint support. It would be hard to see this local isomorphism directly in terms
of the Virasoro algebra.

The mathematical theorem underlying these facts is the well-known Split Prop-
erty (6), which can be derived in local QFT in any dimension under a suitable
phase space assumption. In chiral local CFT, a sufficient assumption is the exis-
tence of the conformal character Tr exp−βL0.
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In the algebraic framework, the chiral observables of a BCFT (e.g., the stress-
energy tensor) localized in a double cone O are operators belonging to the von
Neumann algebra A+(O) = A(I)∨ A(J), where I and J are two open intervals
of the time axis (“advanced and retarded times”) such that t + x ∈ I, t − x ∈ J
for (t,x) ∈O (this justifies the notation O = I×J), and A(I) are the von Neumann
algebras generated by the unitary exponentials of chiral fields smeared within I. In
contrast, the chiral observables in a 2D CFT are operators in the algebra A2D(O) =
AL(I)⊗AR(J) where I and J are regarded as two open intervals of the lightcone
axes, and AR(I) and AL(J) are generated by left and right chiral fields. Our present
association between BCFT and 2D CFT applies to the case when AL(I) = AR(I) =
A(I), i.e., the left chiral observables AL(I)⊗1 are isomorphic with the right chiral
observables 1⊗AR(I), and both are isomorphic with the chiral observables A(I)
of the BCFT.

Let H0 denote the vacuum Hilbert space for the chiral CFT described by the
algebras A(I). The split property states that if I and J are two intervals with dis-
joint closures, there is a canonical unitary V : H0 →H0⊗H0 implementing an
isomorphism

V (A(I)∨A(J))V ∗ = A(I)⊗A(J). (1.3)

The split isomorphism does not preserve the vacuum vector, i.e., the canonical
“split vector” Ξ = V ∗(Ω ⊗Ω) is an excited state in H0. By construction, the
split state (Ξ , ·Ξ) on A(I)∨A(J) has the property that its expectation values for
either subalgebra A(I) or A(J) coincide with those in the vacuum state, but the
correlations between observables a1 ∈ A(I) and a2 ∈ A(J) are suppressed:

(Ξ , a1a2 Ξ) = (Ξ , a1 Ξ) (Ξ , a2 Ξ) = (Ω , a1 Ω) (Ω , a2 Ω). (1.4)

The split isomorphism depends on the pair of intervals I and J. It trivially re-
stricts to algebras associated with subintervals, but it does not, in general, extend
to larger intervals. When the intervals touch or overlap, a split state and the split
isomorphism cease to exist.

While the split isomorphism is well known, we discuss in this paper its exten-
sion to “non-chiral” local observables, which do not belong to A(I)∨A(J) in the
BCFT, and to A(I)⊗A(J) in the 2D CFT.

As a concrete demonstration for the resolution of the above “paradox”, we
present two simple but nontrivial models where the algebraic relations outlined
can be easily translated into the field-theoretic setting, i.e., we characterize the
local algebras of the various QFTs in terms of generating local Wightman fields.

Let us translate (1.2) into the field-theoretic language. The intervals I and J
shrink to the points t±x when O = I×J shrinks to a point (t,x). Thus, we have to
approximate a field Φ(t,x) of the BCFT by observables in A(L) (where the interval
L approximates (t− x, t + x) from the outside), that commute with all fields local-
ized in the interval K (which approximates (t−x, t +x) from the inside). This will
be done in Sect. 2. A crucial point here is that generating the local algebra A(L)
involves “non-pointwise” operations, e.g., typical observables may be exponen-
tials of smeared field operators, so that an element of the relative commutant is
not necessarily localized in the disconnected set L\K = I∪ J.

A second, somewhat puzzling feature of the algebraic treatment of BCFT is
the fact that the description of the local algebras B+(O) in terms of the chiral
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boundary net (Eq. (1.2)) is much simpler than that of the local algebras B2D(O)
of the associated 2D conformal QFT without a boundary. The latter are (rather
clumsily) defined as Jones extensions of the tensor products A(I)⊗A(J) in terms
of a Q-system constructed from the chiral extension A ⊂ B with the help of α-
induction (20).

One purpose of this work is to present a more direct construction of the 2D
CFT without boundary from the BCFT. The obvious idea is to take a limit as the
boundary is “shifted to infinity”. But we shall do more, and establish the covariant
local isomorphism between the subnets O 7→ B+(O) and O 7→ B2D(O) as O⊂O0,
i.e., the restriction of the AQFTs to any fixed double cone O0 within the halfspace
x > 0, at finite distance from the boundary.

The main problem here is, of course, the enhancement of the conformal sym-
metry, i.e., the reconstruction of the unitary positive-energy representation of the
two-dimensional conformal group Möb×Möb from that of the chiral conformal
group Möb. This is done by a “lift” of the chiral Möbius covariance of the local
chiral net A, using the split property which allows to “embed” the 2D chiral alge-
bra A(I)⊗A(J) into a local BCFT algebra B+(O). This will be done in Sect. 3.
The point is that only a single local algebra of the BCFT is needed for this recon-
struction of the 2D conformal group and the full 2D CFT.

In Sect. 4, we show that the 2D CFT can also be obtained through a limit
where the boundary is “shifted to the left”, or equivalently, the BCFT observables
are “shifted to the right”. The translations in the spatial direction “away from the
boundary” do not belong to the chiral Möbius group of the BCFT. But they are
at our disposal by the previous lifting of the 2D Möbius group into the BCFT.
Therefore, we can study the behavior of correlation functions in the limit of “re-
moving the boundary”. As we shift the boundary, the retarded and advanced times
are shifted apart from each other. The convergence of the vacuum correlations of
the BCFT to the vacuum correlations of the 2D CFT is therefore a consequence of
the cluster behavior of vacuum correlations of the chiral CFT A.

We add three appendices containing some related observations.

2 Models

The purpose of this section is to illustrate the construction (1.2) in a field-theoretic
setting. It is convenient to assume the trivial chiral extension B = A since even in
this case the construction (1.2) is nontrivial, i.e., non-chiral local BCFT fields that
factorize into nonlocal chiral fields can be constructed from local chiral fields only.
We exhibit local BCFT fields in a region O = I×J ⊂M+ as “neutral” chiral oper-
ators, that behave like products of “charged” chiral operators localized in I and J
in the limit of large distance from the boundary. The limit of pointlike localization
is also discussed, and reproduces familiar vertex operators.

Consider the free U(1) current j with commutator [ j(x), j(y)] = 2πiδ ′(x− y)
and charge operator Q = (2π)−1 ∫

j(x)dx. The unitary Weyl operators W ( f ) =
ei j( f ) for real test functions f satisfy the Weyl relation

W ( f )W (g) = e−iπσ( f ,g) ·W ( f +g) = e−2πiσ( f ,g) ·W (g)W ( f ) (2.1)
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and have the vacuum expectation value

ω(W ( f )) = e−iπσ( f−, f+) = e−
1
2

∫
R+ k dk| f̂ (k)|2

, (2.2)

where the symplectic form is

σ( f ,g) =
1
2

∫
R

dx
(

f (x) g′(x)− f ′(x) g(x)
)

=
1

2πi

∫
R

k dk f̂ (−k) ĝ(k), (2.3)

and f+ ( f−) correspond to the restrictions to positive (negative) values of k of the
Fourier transform f̂ (k) =

∫
R dxeikx f (x). With these conventions, W ( f )Ω is a state

with charge density − f ′(x).
The vacuum correlations of Weyl operators are

ω(W ( f1) · · ·W ( fn)) = e−iπ(∑i σ( fi−, fi+)+2∑i< j σ( fi−, f j+)). (2.4)

The Weyl operators W ( f ) with supp f ⊂ I generate the local von Neumann
algebras of the chiral net I 7→ A(I). We fix a double cone O = I×J ∈M+. Let K ⊂
L be the open intervals such that L\K̄ = I∪J, as before. If f is a test function that
vanishes outside L and is constant in K, then W ( f ) belongs to A(L) and commutes
with A(K) by (2.1) and (2.3), hence

W ( f )⊂ B+(O) = A(K)′∩A(L). (2.5)

These are examples of operators that belong to B+(O) but (if f |K 6= 0) not to
A+(O) = A(I)∨A(J).

Weyl operators can also be defined for smooth functions f such that f ′ has
compact support, and the relation (2.1) holds. Then q = f (−∞)− f (∞) is called
the charge. However, iσ( f−, f+) diverges, and the vacuum expectation value (2.2)
vanishes unless q = 0 (see below). This implies that correlation functions (2.4) of
charged Weyl operators vanish whenever the total charge is non-zero (charge con-
servation), while the IR divergences in each term in the exponent of (2.4) cancel
for neutral correlations. The neutral Weyl operators (2.5) in B+(O) are (up to a
phase factor) products of charged Weyl operators with charge densities localized
in J and in I.

In the limit of sharp step functions Gu(x) = q · θ(x− u) (requiring a regular-
ization (4)), the regularized Weyl operators W (Gu) become the well-known vertex
operators of charge −q and scaling dimension 1

2 q2 (21), which are formally writ-
ten as

V−q(u) = : exp
(

iq
∫

∞

u
j(y)dy

)
:. (2.6)

Thus, as O shrinks to a point (t,x) ∈M+, and I and J shrink to the points t +x and
t− x, the (regularised) Weyl operators W (Gt−x−Gt+x) behave as

Φq(t,x) = Vq(t + x)V−q(t− x). (2.7)

The correlation functions of vertex operators are computed from (2.4), giving

〈. . . ·Vqi(ui) · . . .〉= lim
ε↘0

∏
i< j

( −i
ui−u j− iε

)−qiq j
(2.8)
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Fig. 2 A test function f such that W ( f ) belongs to B+(O), but not to A+(O). G and H are
smooth step functions, supp G′ ⊂ J, supp H ′ ⊂ I

if ∑i qi = 0, and = 0 otherwise, from which the well-known anyonic commuta-
tion relations can be read off. It is then easily seen that Φq1(t1,x1) commutes with
Φq2(t2,x2) when either t1 + x1 > t2 + x2 > t2 − x2 > t1 − x1 or when t2 + x2 >
t1 + x1 > t1− x1 > t2− x2, because in these cases the anyonic phase factors can-
cel. It also commutes with j(t2± x2) if t2± x2 6= t1± x1. These are precisely the
requirements for locality of the fields Φq(t,x) among each other, and relative to
the conserved current

j0(t,x) = j(t + x)+ j(t− x), j1(t,x) = j(t + x)− j(t− x) (2.9)

defined for x > 0, i.e., Φq and jµ are local fields on the halfspace M+. The correla-
tion functions of n fields Φqi(ti,xi) are correlations of 2n vertex operators (2n-point
conformal blocks).

After this digression to pointlike fields, let us resume the study of the cor-
relation functions (2.4) of the smooth Weyl operators W ( fi) ∈ B+(O), and their
behavior as O is shifted away from the boundary. We choose n test functions of
the form

fi = Gi−Hi, (2.10)

where Gi, Hi are smooth step functions with values 0 at −∞ and qi at +∞, such
that G′

i = gi is supported in J and H ′
i = hi is supported in I (see Fig. 2).

The neutral states W ( fi)Ω carry the charge qi in I and the charge −qi in J.
The neutrality condition for each Weyl operator W ( fi) can be written∫

R
dx gi(x)−

∫
R

dx hi(x) = 0 ⇔ ĝi(0)− ĥi(0) = 0. (2.11)

The exponent in (2.4) is a linear combination of terms of the form (using
f̂i = i(ĝi− ĥi)/k)

2πiσ( fi−, f j+) =
∫

R+

dk
k

∫
dx (gi(x)−hi(x))

∫
dy (g j(y)−h j(y)) e−ik(x−y)

(2.12)

which are IR finite because of (2.11). The separate contributions from gi and hi,
however, are IR divergent. Therefore, we first regularize at k = 0 by the subtraction
e−ik(x−y) → e−ik(x−y)− e−k/µ (µ > 0 arbitrary), which does not change the result
because of (2.11), and then compute the contributions from g and h separately.

We are interested in the behavior of the correlation function (2.4) as O is
shifted away from the boundary. This means that the functions gi are shifted by a
distance a to the left, and hi are shifted by the same distance to the right. The g-g
contributions and the h-h contributions to σ( fi−, f j+) are obviously invariant un-
der this shift, while in the mixed h-g contributions x− y is replaced by x− y+2a:

2πiσhi,g j(a) :=−
∫

I
dxhi(x)

∫
J

dyg j(y)
∫

R+

dk
k

[
e−ik(x−y+2a)− e−k/µ

]
, (2.13)



How to Remove the Boundary in CFT – An Operator Algebraic Procedure 7

and similarly for the g-h contributions. The last integrand can be split into two
parts: (

e−ik(x−y+2a)−1
)

e−k/µ + e−ik(x−y+2a)
(

1− e−k/µ

)
(2.14)

so that the first contribution to the momentum integral equals

− log(1+ iµ(x− y+2a)) (2.15)

while the second (distributional) contribution is of order O(a−1) in the limit of
large a. Because the remaining integrals have compact support, we obtain

lim
a→∞

σhi,g j(a) = qiq j · log(2iaµ)+O(a−1). (2.16)

Together with the g-h contributions qiq j · log(−2iaµ), these terms in the exponent
of (2.4) cumulate up to the factor

∏
i

(2aµ)−q2
i ∏

i< j
(2aµ)−2qiq j = (2aµ)−q2

, (2.17)

where q = ∑i qi is the total charge within I. Thus (2.4) vanishes in the limit a→∞

if q 6= 0, enforcing “chiral charge conservation” in the limit. If q = 0, the mixed
contributions give 1, and the remaining g-g and h-h contributions yield

lim
a→∞

ω (W ( f1) · · ·W ( fn))

= ω (W (G1) · · ·W (Gn)) ·ω (W (−H1) · · ·W (−Hn)) (2.18)

involving charged Weyl operators. These expressions are well-defined (and inde-
pendent of µ) because ∑i Gi and ∑i Hi are neutral precisely due to q = 0.

The factorization of the vacuum correlations in the limit a → ∞ is the desired
feature we wanted to illustrate by this example. In the limit, W ( fi) have the same
correlations as W (−Hi)⊗W (Gi), which are charged observables of the associated
2D CFT. Notice that in the limit of sharp test functions (see above), one obtains

Vq(t + x)⊗V−q(t− x), (2.19)

which are local fields in the entire two-dimensional Minkowski spacetime M2.

Remark The above construction can be generalized to the SU(2) current algebra.
The Frenkel-Kac representation of SU(2) currents at level 1 is given by j3 ≡ j and
j±(x) = j1(x)± i j2(x) = V±

√
2(x). Then Vq(x) ·V−q(y) commutes with Vq′(w) at

w 6= x,y provided qq′ ∈ Z. Hence the field

Φ 1
2
√

2(t,x) = V1
2
√

2(t + x) ·V− 1
2
√

2(t− x) (2.20)

is local (as before) and relatively local w.r.t. the conserved currents ja (a = 1,2,3)

ja
0(t,x) = ja(t + x)+ ja(t− x), ja

1(t,x) = ja(t + x)− ja(t− x). (2.21)

Φ 1
2
√

2(t,x) is a neutral combination of charged primary fields of dimension 1
4 ,

transforming in the spin- 1
2 representation of SU(2), localized at t + x and t − x.
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The description of this model in terms of smooth Weyl operators is rather straight-
forward, see e.g., (2): Weyl operators with integer multiples of the charge

√
2

belong to A(I), while operators with half-integer multiples of the charge
√

2 in I
and in J belong to A(K)′∩A(L).

The mechanism of “charge separation” described here for obtaining elements
of B+(O) that do not belong to A+(O) is very general (18), although in general
it cannot be formulated in terms of Weyl operators. In Sect. 4 we shall show that
also the factorization behavior far away from the boundary is a general feature,
which allows to recover the 2D CFT from the BCFT.

3 Reconstruction of the 2D Symmetry

We work in this section with a fixed “chiral extension” A ⊂ B. Here, A is a Haag
dual Möbius covariant local net R ⊃ I 7→ A(I) of von Neumann algebras on its
vacuum Hilbert space H0, satisfying the split property and having finitely many
irreducible DHR sectors of finite dimension (these properties together are called
“complete rationality” (14); in the case of diffeomorphism covariant nets, Haag
duality = strong additivity is a consequence of the other properties (19). The fact
that the U(1) Weyl algebra in Sect. 2 is not completely rational, indicates that the
results to be reported in this section hold also in more general situations).

B is a Möbius covariant net R ⊃ I 7→ B(I) on its vacuum Hilbert space H B
0

such that for each I the inclusion A(I)⊂ B(I) holds and is an irreducible subfactor,
which has automatically finite Jones index (13) equal to the statistical dimension
of the (reducible) representation of A on H B

0 (17). The net B may be non-local,
but is required to be relatively local w.r.t. A.

If only A is specified, the irreducible chiral extensions B of A can be classified
in terms of Q-systems of A (17). The complete classification has been computed
for A the Virasoro nets with central charge c < 1 (and implicitly also for the SU(2)
current algebras) in (15).

With A ⊂ B one can associate a boundary CFT B+ on the halfspace M+ and a
two-dimensional CFT B2D on Minkowski spacetime M2. To describe the former,
we introduce a convenient notation (see Fig. 1). For any quadruples of four real
numbers such a < b < c < d we define I = (c,d), J = (a,b), K = (b,c), L = (a,d),
and O = {(t,x) : t +x ∈ I, t−x ∈ J} ⊂M+. Every double cone O⊂M+ is of this
form and determines I,J,K,L, and similarly every pair of open intervals J < I (“I
is to the right = future of J”) determines K,L, and O = I× J.

Then the BCFT associated with A ⊂ B is the net (1.2), i.e., O 7→ B+(O) =
B(K)′ ∩B(L). We have shown in (18) that B+(O) contains A+(O) = A(I)∨A(J)
as a subfactor with finite index, B+ is local and Haag dual on M+, every Haag dual
BCFT with chiral observables A arises in this way (namely the chiral extension
B can be recovered from the BCFT), and every non-Haag-dual local BCFT net
is intermediate between A+ and B+. If B = A, B+(O) equals the four-interval
subfactor A(E)⊂ A(E ′)′ on the circle (14) (E = I∪ J).

The 2D CFT B2D associated with A⊂ B has been constructed in (20). Its local
algebras are extensions (with finite Jones index) of the tensor products A(I)⊗
A(J), specified in terms of a Q-system constructed from the chiral extension A⊂ B
with the help of α-induction.
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We know from (18) that B+ and B2D are locally isomorphic, i.e., for each
O⊂M+ there is an isomorphism ϕO : B+(O)→ B2D(O) such that

ϕ
O (B+(O1)) = B2D(O1) for all O1 ⊂ O. (3.1)

However, the Hilbert space and the vacuum state for the two theories are very
different.

In this section, we wish to understand the relation between these two nets,
by giving an alternative construction of the 2D CFT directly from the BCFT. The
crucial point is the construction of the enhanced Möbius symmetry of the 2D CFT,
and its ground state (the 2D vacuum) which is different from the BCFT vacuum.

We first construct the Hilbert space H2D for the 2D CFT. We choose a fixed
reference double cone O0 = I0×J0 ⊂M+. The subfactor A+(O0)= A(I0)∨A(J0)⊂
B+(O0) = B(K0)′ ∨B(L0) is irreducible with finite index (18), and hence has a
unique conditional expectation µ : B+(O0) → A+(O0), which is automatically
normal and faithful. Let Ξ ∈ H0 be the canonical split vector for A(I0)∨A(J0)
as in (1.4). The split state ξ = (Ξ , ·Ξ) on A+(O0) extends to the state ξ̂ = ξ ◦ µ

on B+(O0). Let Ĥ , Ξ̂ and π̂ denote the GNS Hilbert space, GNS vector and GNS
representation for (B+(O0), ξ̂ ). We also write |b〉 for π̂(b)Ξ̂ . Let us analyze the
structure of Ĥ .

The structure of B+(O0) has been described in (18). By complete rationality,
A has finitely many irreducible superselection sectors (14). Choose for each irre-
ducible sector of A a representative DHR endomorphism (7) σ localized in I0, and
a representative τ localized in J0. (For the vacuum sector, σ = τ = id. σ̄ and τ̄

are the representatives of the conjugate sector.) Then the elements of B+(O0) are
(weak limits of) sums of operators of the form ι(a1a2) ·ψ where ι is the injec-
tion A → B, a1 ∈ A(I0), a2 ∈ A(J0), and ψ ∈ B(L0) generalize the Weyl operators
W ( f ) (2.10) of Sect. 2: they are (for each pair σ ,τ) “charged” intertwiners in
Hom(ι , ισ τ̄)∩B(K0)′. We may express these intersections in a different way: Let
α±

ρ denote the endomorphisms of B extending the DHR endomorphisms ρ of A by
“α-induction” (17), where α+

ρ (α−
ρ ) acts trivially on b ∈ B localized to the right =

future (left = past) of the interval where ρ is localized. Thus α−
σ α

+
τ̄

acts trivially
on B(K0), because J0 < K0 < I0. Hence

Hom(ι , ισ τ̄)∩B(K0)′ = Hom
(
idB,α−

σ α
+
τ̄

)
. (3.2)

(For an alternative characterization of the charged intertwiners by means of an
eigenvalue condition, see App. B.) If O1 ⊂M+ is another double cone in the half-
space, the algebra B+(O1) is generated by A(I1)∨A(J1) and charged intertwiners

ψ1 = ι (u× ū) ·ψ ∈ Hom
(

idB,α−
σ1

α
+
τ̄1

)
(3.3)

with unitary charge transporters u ∈Hom(σ ,σ1) and ū ∈Hom(τ̄, τ̄1), where σ1 is
localized in I1 and τ̄1 is localized in J1.

E.g., if B = A (the “Cardy case”), the charged intertwiners (generalizing the
Weyl operators W ( f ) in (2.10) of Sect. 2) are of the form ψ ∈ Hom(id,στ̄). This
implies that τ and σ are representatives of the same sector. Thus, the charges of
BCFT fields are in 1:1 correspondence with the DHR sectors of A.
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In the general case, when ψ and ψ ′ are two charged intertwiners, µ(ψ ′ψ∗) is
an intertwiner∈Hom(σ ′τ̄ ′,στ̄)∩(A(I0)∨A(J0)). This space is zero unless σ ′ = σ

and τ ′ = τ , and Hom(στ̄,στ̄)∩ (A(I0)∨A(J0)) = C · 1 (16). Therefore, we may
choose (for each pair σ ,τ) a basis of charged intertwiners ψ which is orthonormal
w.r.t. the inner product µ(ψ ′ψ∗).

Lemma 1 The subspaces Ĥψ of Ĥ spanned by |ψ∗ · ι(A(I0)∨A(J0))〉 are mu-
tually orthogonal. Each subspace Ĥψ factorizes as a representation of A+(O0)
according to

Ĥψ
∼= Hσ ⊗Hτ̄ , (3.4)

where Hσ and Hτ̄ carry the representations σ and τ̄ of A(I0) and A(J0), respec-
tively.

Proof The computation of matrix elements in a dense set of vectors

〈ψ∗ · ι(a′′1a′′2)| π̂ (ι(a1a2)) |ψ∗ · ι(a′1a′2)〉
=

(
Ξ , a′′1

∗a′′2
∗

µ (ψ ι(a1a2)ψ
∗) a′1a′2 Ξ

)
=

(
Ξ , a′′1

∗a′′2
∗

στ̄(a1a2)a′1a′2 Ξ
)

=
(
a′′1 Ω , σ(a1)a′1 Ω

)
·
(
a′′2 Ω , τ̄(a2)a′2 Ω

)
(3.5)

proves the claim. ut

We may therefore identify the vectors |ψ∗ι(a′1a′2)〉 with a′1Ω ⊗ a′2Ω ∈Hσ ⊗
Hτ̄ in the representation σ⊗ τ̄ under the split isomorphism, such that in particular,
the GNS vector Ξ̂ = |1〉 ∈ Ĥ corresponds to the 2D vacuum vector Ω ⊗Ω ⊂
H0⊗H0. We write the extended Hilbert space Ĥ in the form

Ĥ ≡H2D ∼=
⊕

σ ,τ
Zσ ,τ Hσ ⊗Hτ̄ (3.6)

(the “2D Hilbert space”). The nonnegative integer multiplicities are

Zσ ,τ = dimHom(α+
τ ,α−

σ ) (3.7)

by the above characterization (3.2) of the spaces of charged intertwiners. The chi-
ral factorization (3.6) of the GNS construction from the extended state ξ ◦µ may
be viewed as the remnant of the original “splitting behavior” of the split vector Ξ .

As shown in (18) by comparison of the Q-system, the local subfactor π̂(A+(O0))
⊂ π̂(B+(O0)) on Ĥ is isomorphic to A(I0)⊗ A(J0) ⊂ B2D(O0) constructed in
(20). We may therefore consistently denote also the former by A2D(O0)⊂B2D(O0).

Next, we construct the action of the 2D Möbius group on H2D, by a “lift” of
the Möbius transformations of the chiral net A, using the split isomorphism and
the conditional expectation µ . The action of Möb×Möb on H2D will then be
used to define B2D(O) as the images of the reference algebra B2D(O0) under a 2D
Möbius transformation g = (g1,g2) taking O0 to O.

The 2D Möbius group Möb×Möb is unitarily represented in the vacuum
Hilbert space H0 of the chiral net A by U+U−, the preimage of U0 ⊗U0 on
H0 ⊗H0 under the split isomorphism. (See App. A, how U+ and U− can be
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obtained by modular theory directly on the boundary Hilbert space.) We need to
lift U+U− to H2D.

Let ΣI ⊂ Möb denote the connected semigroup taking the interval I into it-
self, generated by the one-parameter subgroup preserving I and two one-parameter
semigroups fixing either of its endpoints. Then Σ = ΣI0 ×ΣJ0 ⊂Möb×Möb is the
connected semigroup taking the reference double cone O0 into itself.

For g = (g1,g2) ∈ Σ , the adjoint action of U+(g1)U−(g2) on a1 ∈ A(I0),
a2 ∈ A(J0) is given by the independent (= product) action of the chiral Möbius
transformations given by geometric automorphisms αg of the chiral net A:

α
+
g1

α
−
g2

(a1 ·a2) = αg1(a1) ·αg2(a2). (3.8)

We extend these endomorphisms of A+(O0) to endomorphisms of B+(O0) by

β
+
g1

β
−
g2

(ι(a1a2) ·ψ) := ι (αg1(a1)αg2(a2)) · ι
(
zσ (g1)zτ̄(g2)

)
·ψ. (3.9)

Here zρ(g)∈Hom(ρ,αgρα−1
g ) are the unitary cocycles zρ(g) =U0(g)Uρ(g)∗ ∈ A

(10; 16), where U0 and Uρ are the representations of the Möbius group in the
vacuum representation and in the DHR representation ρ .

Proposition 1 (i) The maps β+
g1

β−
g2

defined by (3.9) for g ∈ Σ are homomor-
phisms from B+(O0) onto B+(gO0)⊂ B+(O0).

(ii) For O1 ⊂ O0 we have β+
g1

β−
g2

(B+(O1)) = B+(gO1), i.e., β+
g1

β−
g2

“act geo-
metrically inside B+(O0)”.

(iii) β+
g1

β−
g2

respect the group composition law within the semigroup Σ .
(iv) The conditional expectation µ intertwines β+

g1
β−

g2
with α+

g1
α−

g2
.

Proof (i) The homomorphism property follows from the composition and con-
jugation laws of charged intertwiners (18) and the intertwining and local-
ization properties of the operators and endomorphisms involved. The state-
ment about the range is just a special case of (ii).

(ii) It is sufficient to show that a charged intertwiner ψ1 ∈ B+(O1) is mapped
to a charged intertwiner in B+(gO1). By virtue of (3.3), we compute

β
+
g1

β
−
g2

(ψ1) = ι
(
αg1(u)zσ (g1)αg2(ū)zτ̄(g2)

)
·ψ. (3.10)

Then the claim follows, because αg1(u)zσ (g) ∈ Hom(σ ,αg1σ1α−1
g1

), and
αg1

σ1α−1
g1

is localized in g1 I1, and similarly αg2 τ̄1α−1
g2

is localized in g2 J1.
(iii) The group composition law follows from the cocycle properties (10; 16) of

zρ .
(iv) The intertwining property of µ is due to the fact that µ annihilates all

charged intertwiners except the neutral one (σ = τ̄ = id).
ut

Next, we adapt a well-known lemma about the implementation of (groups of)
automorphisms to the case of (semigroups of) endomorphisms.
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Lemma 2 Let M be a von Neumann algebra on a Hilbert space H with a cyclic
and separating vector Ψ . Let β be an endomorphism of M, preserving the state
(Ψ , ·Ψ). Then the closure of the map mΨ 7→ β (m)Ψ is an isometry Uβ . If Ψ is
cyclic also for β (M), then Uβ is unitary. For two endomorphisms β , β ′ with the
same properties, such that Ψ is cyclic for β (M), one has Uβ ′β = Uβ ′Uβ .

Proof That Uβ is an isometry is an obvious consequence of the invariance of the
state. Since β (M)Ψ is a dense subset, Uβ is surjective, hence unitary. For the last
statement it is sufficient to notice that Uβ ′ is densely defined on β (M)Ψ . ut

We apply the lemma to the endomorphisms β+
g1

β−
g2

of B+(O0). Using (iv) of
Prop. 1, we see that β+

g1
β−

g2
leave the GNS state (Ξ̂ , ·Ξ̂) invariant because the split

state (Ξ , ·Ξ) on A+(O0) is invariant under α+
g1

α−
g2

. The vector Ξ̂ is cyclic and
separating for each π̂ (B+(O1)) (O1 ⊂ O0) because µ is faithful and Ξ is cyclic
and separating for each A+(O), which in turn follows by the split isomorphism
because Ω is cyclic and separating for A(I1) and for A(J1). Thus, lemma 2 applies:

Corollary 1 The homomorphisms β+
g1

β−
g2

induce unitary operators on Ĥ = H2D,
which satisfy the group composition law within the semigroup Σ . Together with the
inverse unitary operators, they generate a covering representation Û(g1,g2) =
Û+(g1)Û−(g2) of Möb×Möb on H2D.

The last statement is due to the fact that Σ and its inverse generate Möb×Möb,
and the group law within Σ secures the commutation relations of the Lie algebra.

By construction, for g = (g1,g2) ∈ Σ , Û(g1,g2) on the subspace Hψ is equiv-
alent to Uσ (g1)⊗Uτ̄(g2) on Hσ ⊗Hτ̄ under the isomorphism (3.4). By (ii) of
Prop. 1, the adjoint action of Û(g1,g2) takes B+(O1) to B+(gO1) for O1 ⊂ O0.

By constructing U+U−, we have thus furnished the local subnet O0 ⊃ O1 7→
B+(O1) of the BCFT with a covariant “two-dimensional re-interpretation”. In the
representation π̂ on Ĥ = H2D, this is precisely the local isomorphism ϕO0 re-
ferred to in (3.1). The present discussion shows that ϕO0 intertwines the global
2D Möbius covariance with a “hidden” symmetry of the BCFT, which is induced
by the extended split state ξ̂ and acts locally geometric.

We now define for arbitrary double cones O⊂M2 the associated local algebras
of the 2D conformal net on H2D by varying g = (g1,g2) ∈ Möb×Möb in the
connected neighborhood of unity for which gO0 ⊂M2, and putting

B2D(O) := Û(g1,g2) B2D(O0) Û(g1,g2)∗ if O = gO0 ⊂M2. (3.11)

For O⊂O0, this coincides with π̂
(
β+

g1
β−

g2
(B+(O0))

)
= π̂ (B+(O)) by virtue of (ii)

of Prop. 1. Notice that B2D(gO0) is uniquely defined as long as O = gO0 ⊂ M2

because in this case any two g with the same image gO0 differ by an element
of Σ , while it requires the passage to a covering space when M2 is conformally
completed.

Theorem 1 The net of von Neumann algebras O 7→ B2D(O) defined by (3.11) is
covariant, isotonous, and local.
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Proof The covariance is by construction. Isotony and locality of the 2D net follow
from the geometric action inside O0, (ii) of Prop. 1, and the fact that every pair of
double cones in M2 such that either O1 ⊂ O2 are O1 ⊂ O′

2 can be moved inside
O0 by a Möbius transformation, where we know (from the boundary CFT) that
isotony and locality hold. ut

Corollary 2 The extension A2D ⊂ B2D is isomorphic to the extension constructed
in (20).

Proof Since the local subfactor A2D(O0)⊂B2D(O0) constructed in (20) is isomor-
phic to A+(O0) ⊂ B+(O0), and the isomorphism intertwines the representations
of the 2D Möbius group, the global isomorphism follows. ut

We have associated with the BCFT a 2D local CFT, that is locally isomorphic.
The association is intrinsic in the sense that it requires only the subnet O0 ⊃O1 7→
B+(O1) together with the covariance of the DHR sectors of the underlying chiral
CFT A.

It should be noticed that the construction is up to unitary equivalence indepen-
dent of the choice of the reference double cone O0 ⊂M+. The reason is essentially
that the charge structure of B(K)′ ∩B(L) exhibited by the multiplicities Zσ ,τ in
(3.6) is independent of the pair K ⊂ L.

We conclude this section with an observation concerning diffeomorphism co-
variance:

Proposition 2 If A⊂ B is a chiral extension of a diffeomorphism covariant chiral
net A, then the (possibly non-local) chiral net B, the BCFT net B+ defined by
(1.2), and the 2D net B2D associated with B+ by Thm. 1 are also diffeomorphism
covariant.

Proof The chiral net A is diffeomorphism covariant if for a diffeomorphism γ

of S1 there is a unitary operator wγ on H0 such that uγ A(I)u∗γ = A(γ I). Haag
duality of A implies that if γ is localized in an interval I (i.e., acts trivially on the
complement), then wγ is an observable in A(I).

For a chiral extension A ⊂ B we claim that if γ is localized in I0, then for
I1 ⊂ I0 one has ι(wγ)B(I1)ι(w∗

γ) = B(γI1), i.e., ι(wγ) implement the local dif-
feomorphisms. Namely, B(I1) is generated by ι (A(I1)) and v1 = ι(u) · v, where
v ∈ B(I0) is the canonical charged intertwiner v ∈ Hom(ι , ιθ) for the canonical
DHR endomorphism θ localized in I0 (17) (see also App. B), and θ1 is an equiva-
lent DHR endomorphism localized in I1. We find

ι(wγ) v1 ι(w∗
γ) = ι(wγ uθ(w∗

γ)) · v. (3.12)

Now, wγ uθ(w∗
γ) ∈ Hom(θ ,γθ1γ−1), and γθ1γ−1 is localized in γ I1. This proves

the claim. The diffeomorphism covariance of the chiral net B follows because
the diffeomorphisms localized in I0 together with the Möbius group generate the
diffeomorphism group of S1.

The argument for the boundary CFT and for the 2D CFT are very similar:
we first show that for diffeomorphisms γ = γ1γ2 where γ1 is localized in I0 and
γ2 localized in J0, the adjoint action with ι(wγ1wγ2) takes B+(O1) to B+(γ O1) if
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O1 ⊂ O0. Again, it is sufficient to verify the action on the charged intertwiners
(3.3) of B+(O1):

ι(wγ1wγ2) ·ψ1 · ι(wγ1wγ2)
∗ = ι

(
(wγ1uσ(w∗

γ1
))(wγ2 ūτ̄(w∗

γ2
))

)
·ψ, (3.13)

where wγ1uσ(w∗
γ1

) ∈ Hom(σ ,γ1σ1γ
−1
1 ) and wγ2 ūτ̄(w∗

γ2
) ∈ Hom(τ̄,γ2τ̄1γ

−1
2 ), and

γ1σ1γ
−1
1 is localized in γ1 I1 and γ2τ̄1γ

−1
2 is localized in γ2 J1. Hence (3.13) is a

charged intertwiner of B+(γO1). This proves the claim. Then the diffeomorphism
covariance of B+ and B2D follow because the diffeomorphisms localized in O0
together with the Möbius group generate all diffeomorphisms. ut

4 Cluster Limit

Let b1, . . . ,bn ∈ B+(O) be BCFT observables localized within any fixed double
cone O = I× J ⊂M+. We wish to consider the behavior of a vacuum correlation

(Ω , βx(b1 · · ·bn)Ω) , (4.1)

where βx = β+
x β

−
−x is the one-parameter semigroup of “right shifts” (x > 0, away

from the boundary), that take I to I + x and J to J− x, represented as homomor-
phisms from B+(O) to B+(I + x× J + x), see (3.9).

In Sect. 3 (with O as the fixed reference double cone) we have given the
re-interpretation of bi in the GNS representation π̂ of the state ξ ◦µ as observables
of the associated 2D CFT, with the 2D vacuum Ω2D given by the GNS vector. We
shall show

Theorem 2 Let each bi ∈ B+(O) (i = 1, . . . ,n) be of the form ι(a(i)
1 a(i)

2 ) ·ψ(i) with

charged intertwiners ψ(i) and a(i)
1 ∈ A(I) and a(i)

2 ∈ A(J). As x goes to +∞, the
BCFT vacuum correlations (4.1) converge to the 2D vacuum correlations

(Ω2D , π̂(b1 · · ·bn)Ω2D) = ξ ◦µ(b1 · · ·bn). (4.2)

Proof We compute the limit and the 2D vacuum expectation value separately.
Using the decomposition of products ψ1ψ2 into finite sums of operators of the

form ι(T1T2) ·ψ (18), where Ti are intertwiners between DHR endomorphisms of
A, we see that the product b1 · · ·bn is a finite sum of operators of the same form
ι(a1a2) ·ψ .

For the present purpose, it is more convenient to write the charged inter-
twiners as ψ = t · ι(r̄), where r ∈ Hom(id,ττ̄) ⊂ A(J) and t ∈ Hom(α+

τ ,α−
σ ) ⊂

Hom(ιτ, ισ) (Frobenius reciprocity). Then, because a2 = σ(a2), we get ι(a2) ·
ψ = t · ι(τ(a2)r̄). Hence, the product b1 . . .bn is a finite sum of operators of the
form

ι(a1) · t · ι(a2). (4.3)

Thus, the above vacuum correlation function is a finite sum of expectation values

F(x) = (Ω , βx (ι(a1) · t · ι(a2)) Ω)
= (Ω , ι(αx(a1)zσ (x)) · t · ι(zτ(−x)∗α−x(a2))Ω) (4.4)
= (Ω , αx(a1)zσ (x) · ε(t) · zτ(−x)∗α−x(a2)Ω) .
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Here, ε is the global conditional expectation B → A, which preserves the vac-
uum state (17). In particular, ε(t)∈Hom(τ,σ). Therefore, the expression vanishes
identically unless σ and τ belong to the same sector.

In the latter case, we express the cocycles as zρ(g) = U0(g)Uρ(g)∗, and
αg = AdU0(g), giving

F(x) = (Ω , a1Uσ (x)∗ · ε(t) ·Uτ(x)∗a2 Ω) = (Ω , a1 ·Uσ (−2x) · ε(t)a2 Ω) , (4.5)

because the intertwiners between DHR endomorphisms also intertwine the rep-
resentations of the Möbius group (10). By the spectrum condition, F(x) has a
bounded analytic continuation to the lower complex halfplane. Uσ (−z) weakly
converges in every direction z = reiϕ (−π < ϕ < 0, r → ∞) to the projection onto
the zero eigenspace of the generator, and the latter projection is nonzero only if
σ = id is the vacuum representation; in this case t = ε(t) = 1. Thus, F(z) con-
verges in these directions to the vacuum expectation value

δσ ,0δτ,0 (Ω ,a1Ω) · (Ω ,a2Ω). (4.6)

Next, we consider

F(x) = (Ω , βx (ι(a∗2) · t∗ · ι(a∗1)) Ω) . (4.7)

Let rσ ∈ Hom(id, σ̄σ) ⊂ A(I) and rτ ∈ Hom(id, τ̄τ) ⊂ A(J). Then we can write
t∗ = ι(r∗σ ) · t̄ · ι(rτ), where t̄ ∈ Hom(α+

τ̄
,α−

σ̄
) ⊂ Hom(ι τ̄, ισ̄). Using the locality

properties of a1 ∈ A(I), a2 ∈ A(J), we can rewrite

F(x) = (Ω , βx (ι(r∗σ σ̄(a∗1)) · t̄ · ι(τ̄(a∗2)rτ)) Ω) . (4.8)

This expression can be computed in the same way as F(x) before, giving

F(x) = (Ω , r∗σ σ̄(a∗1)) ·Uσ̄ (−2x) · ε(t̄)τ̄(a∗2)rτ Ω) . (4.9)

Thus F(x) also has a bounded analytic continuation to the upper complex half-
plane, and converges to the same limit (4.6) also in the directions z = reiϕ (0 <
ϕ < π , r → ∞). From this, we may conclude the cluster limit

lim
x→∞

(Ω , βx (ι(a1) · t · ι(a2)) Ω) = δσ ,0δτ,0 (Ω ,a1Ω) · (Ω ,a2Ω). (4.10)

On the other hand, we now compute (4.2) and show that it coincides with the
factorizing cluster limit of (4.1). For each contribution of the form (4.3), we have

(Ω2D , π̂ (ι(a1) · t · ι(a2)) , Ω2D) = ξ ◦µ (ι(a1) · t · ι(a2)) = ξ (a1 ·µ(t) ·a2) .
(4.11)

But µ(t) ∈ A(I)∨A(J) is an intertwiner in Hom(σ ,τ) which vanishes unless σ =
id and τ = id both belong to the vacuum sector. In the latter case, t = µ(t) = 1.
Thus,

〈Ξ̂ |π̂ (ι(a1) · t · ι(a2)) |Ξ̂〉= δσ ,0δτ,0 ξ (a1a2) = δσ ,0δτ,0 (Ω ,a1Ω) · (Ω ,a2Ω).
(4.12)

This coincides with the cluster limit (4.10) “far away from the boundary”. ut
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Recall that a1 and a2 in (4.3) were obtained by multiplying b1 · · ·bn and suc-
cessively decomposing the products of the charged intertwiners. Thus, the vacuum
expectation values (Ω ,aiΩ) in (4.12) are precisely the chiral conformal blocks of
the corresponding 2D correlation functions.

A variant of the conformal cluster theorem (8) should also give a quantitative
estimate for the rate of the convergence, depending on the charges of the operators
involved through the corresponding spectrum of L0.

5 Conclusion

We have studied the passage from a local conformal quantum field theory de-
fined on the halfspace x > 0 of two-dimensional Minkowski spacetime (boundary
CFT, BCFT) to an associated local conformal quantum field defined on the full
Minkowski spacetime (2D CFT). There are essentially two ways: the first is to
consider BCFT vacuum correlations of observables localized far away from the
boundary. In the limit of infinite distance, these correlations factorize into chiral
correlations (conformal blocks) of charged fields. We have traced this effect back
to the cluster property of the underlying local chiral subtheory.

The second method exploits the split property, i.e., the existence of states of
the underlying local chiral CFT in which correlations between observables in two
fixed intervals at a finite distance are suppressed. With the help of the split property
one can algebraically identify a fixed local algebra of the BCFT with a fixed local
algebra of the 2D CFT, and one can generate a unitary representation of the 2D
Möbius group in the GNS Hilbert space of a suitable “extended split state” of this
algebra. Its ground state, the 2D vacuum, is different from the BCFT vacuum.
Then, by acting with the 2D Möbius group, one can obtain all local algebras of
the 2D CFT in the same Hilbert space.

The converse question: can one consistently “add” a boundary in any 2D CFT
(without affecting the algebraic structure away from the boundary), is not ad-
dressed here. However, there arises a necessary condition from the discussion in
App. C: the 2D partition function should be either modular invariant, or at least
it should be intermediate between the vacuum partition function and some modu-
lar invariant partition function. We hope to return to this problem, and find also a
sufficient condition.

Acknowledgements KHR thanks the Dipartimento di Matematica of the Università di Roma
“Tor Vergata” for hospitality and financial support, and M. Weiner and I. Runkel for discussions
related to the subject.

A Modular Construction of Möb×Möb in the Split State

In (12) it was shown that a unitary representation of the Möbius group Möb is generated by the
modular groups of a “halfsided modular triple”, i.e., three von Neumann algebras Ai (i = 0,1,2)
with a joint cyclic and separating vector Ψ such that if σ i

t is the modular group for (Ai,Ψ), then
σ i

t (Ai+1) ⊂ Ai+1 for t 6 0. (Here, i + 1 is understood
mod 3.) Specifically, when I is an open interval and I1, I2 are the subintervals obtained by re-
moving an interior point from I, the three algebras A1 = A(I1), A2 = A(I2), A3 = A(I)′ in a local
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chiral CFT together with the vacuum vector Ω define a halfsided modular triple. This means
that the entire local net can be recovered from these data.

We want to show here how this construction can be applied to construct a unitary repre-
sentation of the 2D Möbius group Möb×Möb from six suitable algebras in the split state Ξ

associated with a pair of intervals I and J, see (1.4).
Let I1, I2 arise from I by removing a point, and similarly J1,J2 from J. Tensoring by 1, the

two halfsided modular triples (
A(I)′⊗1 , A(I1)⊗1 , A(I2)⊗1

)
,(

1⊗A(J)′ , 1⊗A(J1) , 1⊗A(J2)
)

(A.1)

in the state Ω ⊗Ω generate U0⊗U0. Under the split isomorphism, these triples turn into(
A(I)′∩N,A(I1),A(I2)

)
,(

A(J)′∩N′,A(J1),A(J2)
)

(A.2)

in the split state Ξ , where N is the canonical intermediate type I factor between A(I) and A(J)′.
Ξ is cyclic and separating for these algebras in the subspaces NΞ and N′Ξ , respectively. The
latter halfsided modular triples thus generate the two commuting representations U+,U− of Möb
directly in H0.

B Charged Intertwiners in BCFT

The charged intertwiners ψ for a given chiral extension A⊂B, that together with A+(O) generate
B+(O), are elements of the finite-dimensional spaces Hom(ι , ισ τ̄) ∩B(K)′. In (18, Eq. (5.12))
a linear condition on ϕ = ῑ(ψ) ∈ Hom(θ ,θστ̄) was given which guarantees that ϕ commutes
with ῑ(B(K)). Here ῑ : B→ A is a homomorphism conjugate to the injection ι : A→ B, such that
γ = ι ῑ on B(K) is a canonical endomorphism for A(K)⊂ B(K) and θ = ῑ ι is the dual canonical
endomorphism, which is a DHR endomorphism of A localized in K (17).

Unfortunately, the condition displayed in (18) does not take into account that ϕ belongs to
ῑ(B(L)) (i.e., is in the range of ῑ). We want to reformulate this condition so that it is equivalent
to ψ belonging to B+(O) = B(K)′∩B(L).

We first notice that every element of B(K) is of the form ψ = ι(y)v, where
v ∈ Hom(idB,γ) ⊂ B(K) is the canonical isometry intertwining γ . Then ψ ∈ Hom(ι , ισ τ̄) if
and only if y ∈ Hom(θ ,στ̄) ⊂ A(L). This already secures that ψ ∈ B(L), and since θ is local-
ized in K, ψ commutes with ι(A(K)). Hence it commutes with B(K) iff it also commutes with
v ∈ Hom(idB,γ). This is equivalent to the relation

yx != θ(y)x ≡ σ(εθ ,τ̄ )ε
∗
σ ,θ θ(y)x, (B.1)

where x = ῑ(v)∈Hom(θ ,θ 2). The statistics operators ε are trivial (9) due to the localizations of
σ in I, τ̄ in J, and θ in K, but we have displayed them in order to make the condition covariant
under unitary deformations of ῑ and v ∈ Hom(idB, ι ῑ), possibly changing the localization of θ

and leading to nontrivial statistics operators.
The condition (B.1) can be equivalently written as the eigenvalue equation

Π(y) := λ
1
2 · (1σ × r∗×1τ̄ )◦

(
ε
∗
σ ,θ × ε

∗
θ ,τ̄

)
◦ (1θ × y×1θ )◦ x2

!= y. (B.2)

Here r = x◦w ∈ Hom(idA,θ 2), where w ∈ Hom(idA,θ)⊂ A(K) is the dual canonical isometry
(such that (γ,v, ι(w)) form a Q-system); x2 = (1θ × x) ◦ x = (x × 1θ ) ◦
x ∈Hom(θ ,θ 3), and λ > 1 is the index [B : A]. ◦ and × are the concatenation and the monoidal
product in the tensor category of DHR endomorphisms of A. The map Π defined by (B.2) is
a linear map Π : Hom(θ ,στ̄)→ Hom(θ ,στ̄). Equation (B.2) obviously follows from (B.1) by
left multiplication with σ(r∗) and right multiplication with x. To see that (B.2) implies (B.1), one
may insert (B.2) into both sides of (B.1) and repeatedly use the relations of the dual Q-system
(θ ,w,x) to get equality.

We thank I. Runkel who has pointed out to us that Π is in fact a projection. Hence the
charged intertwiners ψ are precisely given by ι(y) · v, where y is in the range of Π . The multi-
plicities Zσ ,τ in (3.7) equal the dimension of the range of these projections (for each pair σ ,τ).
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C Haag Duality and Modular Invariance

If A is completely rational, the C* tensor category defined by its DHR superselection sectors is
modular (14), i.e., the unitary S and T matrices defined by the statistics (10) generate a repre-
sentation of the group SL(2,Z). By the Verlinde formula (22), these matrices also describe the
modular transformation behavior of chiral partition functions (“characters”).

By (1), the matrix Z given by (3.7) is a modular invariant (it commutes with S and T ), hence
the partition function of the 2D CFT B2D on H2D is invariant under modular transformations.
We want to point out an interesting relation of this fact to Haag duality of the associated BCFT.

As mentioned before, every BCFT defined by (1.2) is automatically Haag dual, and any non
Haag dual BCFT B̃+ with the same chiral observables is intermediate between A+ and B+ (18).
Therefore, the charged intertwiners ψ ∈ B̃+ constitute linear subspaces of the spaces of charged
intertwiners in B+. Let the dimensions of these spaces be Z̃σ ,τ 6 Zσ ,τ , and at least one of them
< Zσ ,τ (i.e., B̃+ is strictly contained in B+). Then the matrix Z̃ cannot be a modular invariant by
the following simple argument: consider the 00 component of S∗Z̃S. Because each Si0 is positive,(

S∗Z̃S
)

00
= ∑

i j
S0iS0 jZ̃i j (C.1)

is strictly smaller than (S∗ZS)00 = Z00 = 1. If Z̃ were modular invariant, we would conclude
Z̃00 < 1, which is impossible.

We notice that the construction of a 2D CFT associated to a BCFT described in Sect. 3 takes
an intermediate BCFT A+ ⊂ B̃+ ⊂ B+ to an intermediate 2D CFT A2D ⊂ B̃2D ⊂ B2D. Its Hilbert
space is of the form (3.6) with Z replaced by Z̃. Hence, we conclude that the partition function
of the associated 2D CFT is modular invariant if and only if the BCFT is Haag dual.
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