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We determine the charm and strange quark masses in the MS scheme, using nf ¼ 2þ 1þ 1 lattice QCD
calculations with highly improved staggered quarks and the regularization-independent symmetric
momentum-subtraction intermediate scheme to connect the bare lattice quark masses to continuum
renormalization schemes. Our study covers the analysis of systematic uncertainties from this method,
including nonperturbative artifacts and the impact of the nonzero physical sea quark masses. We find

mMS
c ð3 GeVÞ ¼ 0.9896ð61Þ GeV and mMS

s ð3 GeVÞ ¼ 0.08536ð85Þ GeV, where the uncertainties are
dominated by the tuning of the bare lattice quark masses. These results are consistent with, and of similar
accuracy to, those using the current-current correlator approach coupled to high-order continuum QCD
perturbation theory, implemented in the same quark formalism and on the same gauge field configurations.
This provides a strong test of the consistency of methods for determining the quark masses to high
precision from lattice QCD. We also give updated lattice QCD world averages for c and s quark masses.
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I. INTRODUCTION

Quark masses are fundamental parameters of the
Standard Model which must be connected via theory to
experimentally measured quantities. They arise in the
Standard Model from interactions with the Higgs field,
and precise knowledge of quark masses will be needed
to stringently test the Standard Model picture of mass
generation [1].
In lattice QCD simulations the bare quark masses of the

theory are input parameters, and these are tuned to
reproduce a set number of physical observables, typically
meson masses (one for each quark mass in the simulation).
These parameters are however defined at the cutoff scale of
the theory and are nonuniversal, because they depend on
the specific lattice regularization of QCD used. To be

useful, these values must then be converted to a chosen
quark mass definition in a continuum regularization of
QCD at a fixed physical scale. The conversion, or mass
renormalization, factor adjusts for the different treatment
of ultraviolet modes on the lattice and in the continuum and
so in principle can be calculated straightforwardly by a
“matching” calculation in lattice QCD and continuumQCD
perturbation theory. Lattice QCD perturbation theory [2] is
very hard beyond the first order in the strong coupling
constant, αs, and so this method is limited to an accuracy of
several percent [3]. Higher accuracy can be achieved by
methods that make use of nonperturbative calculations in
lattice QCD combined with continuum QCD perturbation
theory and we will compare results from two such methods
here. One issue with these methods is the control of infrared
nonperturbative artifacts from the lattice QCD calculation
that are a source of systematic uncertainty.
The conventional continuum scheme to which lattice

masses are converted is the MS scheme and we will denote
masses in the MS scheme by m̄. A scale for the mass must
also be chosen and we will use 3 GeV. Having a fixed
convention for quoting quark masses allows a comparison
between different determinations.
One way to make the lattice QCD to continuum

QCD quark mass connection is to calculate short-distance
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physical quantities in lattice QCD that are both sensitive to
the quark mass and for which continuum QCD perturba-
tion theory (in the MS scheme) has been done to a high
order. The appropriate energy scale for αs should also be
large. A successful method of this type is the “current-
current correlator method” [4] that uses time moments of
heavyonium correlators, extrapolated to the continuum
from lattice QCD and then matched to QCD perturbation
theory accurate through Oðα3sÞ [5–10]. The advantage of
this method (which we call the JJ method) is that non-
perturbative effects (condensate contributions), that would
otherwise obscure the match to perturbation theory, are
suppressed by four powers of Λ=ð2mhÞ, where mh is the
heavy quark mass [11,12]. The suppression is very
effective, to the point where these effects have negligible
impact, because Λ is small at around 0.3 GeV, mh is large
(and can be varied to test the contribution), and 4 is a high
power. Here ðΛÞ4 represents the expected size of the gluon
condensate h0jαsG2=πj0i constructed from the gluon
field-strength tensor.
Uncertainties in the JJ method arise from missing

higher orders in QCD perturbation theory, but these can
be tested by implementing the perturbation theory at
different scales [12]. This method has given 1% accurate
results for charm and bottom quark masses in the MS
scheme [4,12–16]. The results for m̄c and m̄b can then be
leveraged into an accurate result for lighter quark masses,
such as the strange quark mass m̄s. This is done by
determining fully nonperturbatively in lattice QCD the
ratio of two quark masses, such as mc=ms, using the same
quark formalism for both quarks [12,17–21]. This ratio (in
the continuum limit) is independent of the lattice quark
formalism or continuum scheme and so also holds for the
MS scheme at a fixed scale μ. Combining the value of the
ratiomc=ms (which can now be obtained to an accuracy of
better than 1% [12,21,22]) with the value for m̄c then
yields a 1% accurate result for m̄s. Further ratios between
strange and up/down quark masses (see, e.g., Ref. [21])
can be used to cascade this accuracy down to even lighter
quarks.
Since the JJ method enables the value of the quark mass

in the MS scheme to be obtained for an input tuned lattice
quark mass, it is equivalent to (indirectly) determining the

mass renormalization factor, ZMS
m ðμÞ, that connects the two

masses [12].
Another completely different method for making the

connection between lattice and MS masses is to determine
ratios of appropriate matrix elements between external
quark states of large virtuality, μ2, that can be calculated
both in lattice QCD and in the MS scheme in continuum
QCD perturbation theory [23]. Such calculations must be
done in a fixed gauge, usually Landau gauge. The method
proceeds by imposing “momentum-subtraction” renormal-
ization conditions [24] on matrix elements in the lattice
QCD calculation, e.g.,

ZΓhp1jOΓjp2ijp2
1
¼p2

2
¼q2¼−μ2 ¼ hp1jOΓjp2i0 ð1Þ

defines ZΓ for the operator OΓ ¼ ψ̄Γψ, where hpjOΓjpi0
is the tree-level matrix element and hp1j and jp2i are
external quark states. The symmetric kinematic con-
figuration specified here (with q ¼ p1 − p2) corresponds
to the symmetric momentum-subtraction (SMOM)
scheme. The importance of this configuration will be
discussed further below. Applying the condition of Eq. (1)
to a scalar operator (along with a determination of the
wave-function renormalization factor) gives directly a
mass renormalization factor, ZSMOM

m ðμÞ, that converts
the lattice quark mass to that in the SMOM scheme.
Because the SMOM scheme can be implemented in the
continuum it can itself then be matched to the MS scheme
using continuum QCD perturbation theory (in the same
gauge) [25,26]. Multiplying the lattice bare quark mass

by the final ZMS
m ðμÞ ¼ ZMS=SMOM

m ðμÞ × ZSMOM
m ðμÞ gives

the required m̄ðμÞ. This method has been widely applied
to operator renormalization in general and not just
the determination of Zm, going under the name of
the regularization-independent symmetric momentum-
subtraction (RI-SMOM) scheme [24]. For a review of
this and the earlier RI-MOM scheme, see Ref. [27].
The RI-SMOM scheme is expected to work in a window

in which

ΛQCD ≪ μ ≪
π

a
: ð2Þ

Here the upper limit aμ ≪ 1 keeps control of lattice
discretization effects and the lower limit guards against
being dominated by potentially large nonperturbative
effects [28] that behave as condensates multiplied by
inverse powers of μ. Nonperturbative effects were a major
issue with the original RI-MOM scheme [23] which set up
the kinematics for Eq. (1) so that p2

1 ¼ p2
2 ¼ −μ2, but

p1 ¼ p2 so that q2 ¼ 0. This “exceptional” configuration
gave rise to differences, inversely proportional to μ2,
between renormalization factors that should be the same
from chiral symmetry (such as those of the pseudoscalar
and scalar operators). This was coupled in some cases to
strong nonperturbative dependence of the renormalization
factors on the quark mass; see e.g., Refs. [29–32].
In contrast, since none of the momenta are light-like in

the RI-SMOM scheme, the operators associated with it can
be analyzed within the operator product expansion (OPE)
and sensitivity to nonperturbative effects is under better
control. Those associated with spontaneous chiral sym-
metry breaking, e.g., are more benign, with behavior as
1=μ6 following expectations from the OPE [32,33]. The
SMOM vertex functions show only small quark mass
dependence. An added bonus is that the RI-SMOM to
MS matching factors [25,26] for Zm are much closer to
unity [through Oðα2sÞ] than their RI-MOM counterparts
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[34,35]. This means that the RI-SMOM mass renormaliza-
tion factor can be obtained with smaller systematic
uncertainty.
Nonperturbative condensate effects are still present in the

RI-SMOM scheme, however, and their effects must be
included in any accurate determination of the quark mass.
The leading condensate contribution to Zm is chirally
symmetric and is only suppressed by 1=μ2. Since the
associated condensate is the Landau gauge gluon conden-
sate (also known as the gluon mass condensate) [36],
h0jA2j0i, which is thought to be Oð1Þ GeV2 [37,38], this
contribution could have a significant effect up to very high
values of μ2. Such a contribution must be included in the
analysis and constrained with results at multiple μ values.
Here we provide a thorough analysis of systematic uncer-
tainties in the determination of the quark mass with this
method, including that of nonperturbative effects.
Using the RI-SMOM intermediate scheme we are then

able to determine values for m̄c and m̄s with comparable
accuracy, around 1%, to that obtained using the current-
current correlator method, and using the same lattice quark
formalism [highly improved staggered quarks (HISQ)].
The RI-SMOM approach has completely different system-
atic uncertainties, however, so that a comparison of results
from the two methods is then a strong test of our under-
standing of systematic uncertainties, because the lattice
bare quark masses are tuned to the same values in both
cases.
The paper is laid out as follows. Section II describes

briefly the RI-SMOM approach and Sec. III gives some
details needed to implement it for staggered quarks.
Section IV then gives results for the lattice determination
of Zm in the SMOM scheme. Section Vuses these results to
determine the quark masses in the MS scheme. Finally
Sec. VI compares to earlier values, giving new world
averages, and concludes with prospects for future
improvements.

II. THE RI-SMOM METHOD

As outlined in Sec. I the lattice QCD RI-SMOM
approach mimics what would be done in continuum
QCD in a momentum-subtraction scheme. A key part of
the argument is that the calculation should be set up in a
way that is regularization independent. Thus within the
lattice QCD calculation the same answer for the quark mass
in the SMOM scheme should be obtained in any quark
formalism up to discretization effects. Then the continuum
limit of the lattice result also holds in the equivalent
continuum SMOM scheme. The continuum SMOM to
MS matching completes the conversion to the MS scheme.
Within the lattice QCD calculation we must then also
ensure that the tuning of quark masses and the determi-
nation of the lattice spacing are done in a regularization-
independent way. This is of course the standard practice

when we determine the lattice spacing and tune lattice
quark masses using physical quantities (such as hadron
masses) calculated at the lattice QCD physical point (i.e.,
including sea quarks with physical masses) and take the
value from experiment. We will return to this point below.
To determine the renormalization factor for an operator

OΓ in this framework we then need to apply renormaliza-
tion conditions to the inverse propagator (to obtain a wave-
function renormalization factor) and to an amputated vertex
function containing OΓ.
For free quarks in the continuum the inverse of the quark

propagator, SðpÞ, is

S−10 ðpÞ ¼ m − p: ð3Þ

The wave-function renormalization factor, Zq, in this
scheme can be defined by [23,24]

1

12p2
Tr½S−1ðpÞp � ¼ −Zq ð4Þ

so that Zq ¼ 1 in the free theory.
Vertex functions GΓ of the operator OΓ (¼ψ̄Γψ) can be

calculated between two external, off-shell quark lines and
“amputated” as

ΛΓ ¼ S−1ðp2ÞGΓS−1ðp1Þ: ð5Þ

The renormalization condition [Eq. (1)] on ΛΓ yields
ZΓ=Zq given lattice values for ΛΓ. From this we can
determine ZΓ if we have Zq. Here we are interested in
the mass renormalization factor, Zm ¼ 1=ZS obtained from
the scalar quark bilinear:

1

12

ZS

Zq
Tr½ΛSðp1; p2Þ�jsym ¼ 1: ð6Þ

Again the tree-level value of ZS is 1. Here jsym indicates that
p1 and p2 satisfy p2

1 ¼ p2
2 ¼ ðp1 − p2Þ2 ¼ −μ2 (the RI-

SMOM condition), so that there is a single momentum
scale. We will also be interested in the pseudoscalar
operator with the renormalization condition

1

12i
ZP

Zq
Tr½ΛPðp1; p2Þγ5�jsym ¼ 1: ð7Þ

This method is straightforward to implement in lattice
QCD. The inverse propagators and vertex functions are
calculated from ensemble averages over a set of gluon
fields. Note that this means that Eq. (5) gives ΛΓ as the
product of three ensemble averages. ZP and ZS in Eqs. (6)
and (7) are then defined as a ratio of ensemble averages,
with uncertainties determined via a bootstrap procedure.
In practice, a relatively small number of gluon field
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configurations are needed for good numerical precision in
the renormalization factors ZS and ZP.
Calculations can readily be done for a range of different

masses for the “valence” quarks for which propagators are
calculated. We will use the same quark mass for the two
sides of the vertex function but note that only quark-line-
connected Wick contractions appear in this calculation. It is
conventional to define the RI-SMOM renormalization
constants in the limit of zero valence quark mass, and
we do that here. One reason for doing this is consistency,
since the perturbative calculations that match RI-SMOM to
MS have been done for massless quarks.1 This is discussed
further below.
In practice a more important issue is that of nonpertur-

bative quark mass dependence associated with condensate
contributions. An OPE approach to the RI-SMOM scheme
(where it can be rigorously applied) shows that there are
contributions to the quark propagators and vertex functions
used to define Zm that appear as inverse powers of μ2

multiplied by powers of quark masses, or quark or gluon
condensates or combinations of all of these [32,36]. It is
important to remember that, because we are dealing with
gauge-noninvariant quantities here, gauge-noninvariant
condensates can also appear. These nonperturbative con-
tributions are not part of the perturbative mass renormal-
ization factor, but they cannot be trivially separated from it
in a lattice QCD calculation. Although the nonperturbative
terms seen in the RI-SMOM scheme are well behaved, they
are not entirely negligible at the values of μ2 that we use
here, as we will discuss in Sec. IV. It therefore makes sense
to remove them, where possible, by extrapolating in the
valence quark mass to zero. This only works, of course, for
cases where the effect is proportional to a power of the
quark mass (and we will study these in Sec. IV B). The
leading contribution to Zm in terms of inverse powers of μ
comes from the Landau gauge gluon condensate with no
powers of quark masses multiplying it and so it cannot be
removed by extrapolating to zero quark mass. There are
also higher-order contributions of this form. This means
that we have to allow for contributions of this kind in our
fit ansatz for Zm and test for them by varying μ. This
enables us to remove them from our determination of the
MS quark mass and to allow an appropriate uncertainty in
our error budget from our incomplete knowledge of these
contributions.
Note that the sea quark masses are not extrapolated to

zero. We use calculations at physical values of the masses
of the u, d, s and c quarks in the sea (with mu ¼ md) to
determine the lattice spacing and tune the valence masses
[12]. We also calculate Zm on multiple gluon configurations
with different unphysical values of the masses of the sea

quarks (for a given bare coupling) to test the dependence on
these parameters. As we show in Sec. IVA the dependence
of Zm on the sea quark masses is much smaller than that on
the valence quark mass and barely visible. Nonperturbative
contributions arising from the sea quarks, some of which
depend on the sea quark masses, will be present and we
have to estimate a systematic error from that effect.
We return now to the issue of the perturbative matching

to MS. The renormalization factor between the RI-SMOM
scheme and the MS scheme has been worked out
through Oðα2sÞ in continuum QCD perturbation theory in
Refs. [24–26]. Writing this renormalization factor as

ZMS=SMOM
m ðμÞ ¼ 1þ c1αMS

s ðμÞ þ c2½αMS
s ðμÞ�2 þ… ð8Þ

we tabulate the results for c1 and c2 in Table I. These are
calculated at zero (valence and sea) quark mass.
We must also account for systematic errors in the

perturbative matching in the continuum from our RI-
SMOM scheme with nonzero sea quark mass to the MS
scheme. Sea quarks appear first at Oðα2sÞ in the matching
and the largest effect present in our calculation will be for
the sea c quark. We estimate the size of this effect in
Appendix A. This gives an adjustment to c2 that we will

include when evaluating ZMS=SMOM
m in Sec. V.

III. RI-SMOM WITH STAGGERED QUARKS

There are minor complications on the lattice QCD side if
a staggered quark formalism is used, as here, because of the
fermion doubling issue. The staggered quark action is
derived from a naive transcription of the Dirac action onto
the lattice in which a rotation is made to diagonalize the
action in spin space. The spin degree of freedom can then
be dropped and the 16 “doublers” or tastes of the naive
action become four tastes in the staggered action. To
reconstruct the four-taste, four-spin Dirac field then
requires combining staggered quark fields, χ, over a 24

hypercube [40]. This has implications for the momentum-
space quark field that enters into the momentum-
subtraction renormalization formalism. The full lattice
Brillouin zone, in lattice units

TABLE I. Coefficients c1 multiplying αs [24] and c2 multi-
plying α2s [25,26] in the matching from the RI-SMOM scheme to
the MS scheme. Results are given for both nf ¼ 3 and nf ¼ 4

with all quark masses set to zero. Note how small these
coefficients are. The equivalent of c1 for the earlier RI-MOM
scheme is −0.424 and for c2 with nf ¼ 3, −0.769 [34,35].

Scheme c1 c2

RI-SMOM (nf ¼ 3) −0.0514 −0.0669
RI-SMOM (nf ¼ 4) −0.0514 −0.0415

1Note that it is perfectly possible to define a RI-SMOM
scheme for nonzero quark mass and match this perturbatively to
MS [39].
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−π ≤ ap ≤ π ð9Þ

contains, for staggered quarks, both momentum and taste
information [41]. To separate them we must work in a
reduced Brillouin zone

−π=2 ≤ ap0 ≤ π=2 ð10Þ

with an additional four-dimensional label for each subzone.
Then

apμ ¼ ap0
μ þ πBμ ð11Þ

where Bμ is a four-dimensional vector of 0’s and 1’s. We
use the method for staggered quarks developed in Ref. [42],
and here simply give an overview of that procedure.
For a given momentum (in lattice units) ap0 in the

reduced Brillouin zone, we invert the staggered Dirac
operator on 16 momentum sources of the form eipx with
ap ¼ ap0 þ πA, where A is a 4-vector composed of 0’s
and 1’s. Each of the resulting propagators, Sðy; pÞ where
y runs over the lattice volume, is Fourier transformed 16
times with momenta −ap0 þ πB, where B is a 4-vector of
the same type as A. The results are assembled into a
propagator

Sðap0Þ≡ SABðap0Þ ¼ Sðap0 þ πA;−ap0 þ πBÞ: ð12Þ

This is a 48 × 48matrix, but we have kept the color indices
implicit; the matrix is diagonal in color space on forming
the ensemble average over lattice gluon fields. The propa-
gator is also a taste singlet [42] and so has the same
properties for the purposes of the SMOM approach to those
for other quark formalisms. After averaging over gluon
fields the matrix is inverted for each value of p0 to obtain
the inverse propagator.
To apply the condition in Eq. (4) to determine Zq we

must multiply by a representation of the matrix p 0 in AB
space. Using the notation of Ref. [42] this is the matrix

p̂0
μðγμ ⊗ IÞ that is the Fourier transform of the (taste-

singlet) derivative term in the free inverse propagator. Since
this derivative is improved to remove a2 discretization
effects for our improved staggered quark action, we take
ap̂0

μ ¼ sinðap0
μÞ þ sin3ðap0

μÞ=6 so that Zq is equal to 1 in

the free case. ðγμ ⊗ IÞ is a matrix of 0, 1 and −1 obtained
by tracing over products of gamma matrices as described in
Appendix A of Ref. [42]. Then

Zqðp0Þ ¼ −
i
48

X
μ

p̂0
μ

ðp̂0Þ2 Tr½ðγμ ⊗ IÞS−1ðp0Þ�: ð13Þ

The trace is over spin, taste and color.
The scalar operator that we use to determine the mass

renormalization factor is the local taste-singlet operator

χ̄ðxÞχðxÞ. The vertex function for this operator is then
constructed as

GS;ABðp1; p2Þ

¼ hχðp0
1 þ πAÞ

�X
x

χ̄ðxÞχðxÞeiðp0
1
−p0

2
Þx
�
χ̄ðp0

2 þ πBÞi

¼ 1

ncfg

X
x;cfg

Sðp0
1 þ πA; xÞeiðp0

1
−p0

2
Þxð−1ÞxS†ðp0

2 þ πB̃; xÞ:

ð14Þ

Here ð−1Þx is the alternating phase factor over the lattice,
ð−1Þx1þx2þx3þx4 . S† is the Hermitian conjugate in color
space and has a permuted B index according to B̃ ¼
Bþ ð1; 1; 1; 1Þ (mod 2). To apply Eq. (6) we must multiply
GS;AB on both sides by the inverse propagator to give ΛS;AB

and again take the trace over spin, taste and color. For the
local taste-singlet scalar this gives the simple expression

Zq

ZS
¼ 1

48
TrΛSðp0Þ: ð15Þ

For the local pseudoscalar operator the procedure is
identical except that there is no ð−1Þx in the equivalent
of Eq. (14) and in the equivalent of Eq. (15) multiplication

by the matrix γ5 ⊗ γ5 is needed before taking the trace.
This can be written simply as a 16 × 16 matrix with a skew
diagonal of 1’s. 1=ZS ¼ Zm is then obtained by dividing
by Zq.

IV. LATTICE QCD CALCULATION

For this calculation we use ensembles of gluon field
configurations generated by the MILC Collaboration
[43,44]. These include u, d, s and c quarks in the quark sea,
with mu ¼ md ¼ ml. The gluon action is fully improved to
remove discretization errors throughOðαsa2Þ [45]. The sea
quarks are implemented through the HISQ formalism
[46,47] which was designed, and demonstrated, to have
very small discretization effects, at α2sa2 and a4. We also
use the HISQ formalism for our propagator and vertex
function calculations. The simulation parameters for the
sets (ensembles) of gluon field configurations used are
given in Table II. We have sets at three different values of
the bare QCD coupling, β, with finer lattice spacing as β
increases. For β ¼ 6.0, referred to here as “coarse” lattices,
we have seven different values of the sea quark masses,
varying over a wide range. This enables us to test the
dependence on the sea quark masses of our results. We also
have three different values of the lattice spatial volume to
test for volume dependence. On “coarse” and “fine” lattices
we include ensembles with physical sea u=d (as well as
s and c) quark masses.
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We fix the gauge field configurations to lattice Landau
gauge by maximizing the average trace over color of the
gluon field link. Note that this differs from the continuum
Landau gauge by discretization errors [48]. On each
ensemble we then calculate quark propagators for a range
of quark masses and momentum values and assemble
vertex functions as described in Sec. II. We use the
bootstrap method to determine the uncertainty in ZSMOM

m
from combining ZS and Zq, as well as the correlations
between results obtained on a given ensemble. High
precision is possible with these calculations with only a
moderate number of samples of gluon field configurations.
We use 20 from each set, well spaced in Monte Carlo
generation time for statistical errors below 0.1%. We have
tested that the statistical errors are Gaussian by comparing
the mean and median from a bootstrap distribution. We
have also checked that the tolerance we use for the Dirac
matrix inversion is such that tightening the tolerance has no
significant effect on the results. The impact of the gauge-
fixing tolerance will be discussed below.
For the RI-SMOM calculations reported here, the

momenta that we use in the two propagators combined
in the vertex function are given in lattice units by

ap0
1 ¼

2π

Ls

�
xþ θ

2
; 0; xþ θ

2
; 0
�
;

ap0
2 ¼

2π

Ls

�
xþ θ

2
;−x −

θ

2
; 0; 0

�
ð16Þ

for integer x. Adding the additional θ=2 term through a
“momentum twist” using phased boundary conditions

[49,50] allows us to tune the value of the momenta used
precisely. This means, e.g., that we can tune the momenta
to be the same on ensembles with different values of Ls.
With the definitions of Eq. (16) aðp0

1 − p0
2Þ has the same

magnitude as each of ap0
1 and ap

0
2 which is the appropriate

kinematics for the RI-SMOM scheme. We will call this
magnitude aμ:

aμ ¼ ajp0
1j ¼ ajp0

2j ¼ ajp0
1 − p0

2j: ð17Þ

We use momenta only in the spatial directions for sim-
plicity because our lattices have a different extent in the
time direction. We use a variety of x and θ values and have
tested that results do not change under a change of x and θ
to achieve the same ap. Note that, in keeping with Eq. (10),
we do not want any momentum component in lattice units
to exceed π=2. This limits how high a value of μ we can
reach; e.g., we cannot exceed a μ value of 3 GeV on the
coarse lattices.
The results enable us to extract a renormalization factor

for the scalar current, ZSMOM
m , in the RI-SMOM scheme for

each ensemble for a variety of aμ values and HISQ quark
masses used in the propagators, am. Insofar as Zm is a
renormalization factor from one QCD regularization
scheme to another, taking account of the differences in
the two schemes at the cutoff, we expect Zm to behave
as a power series in αs with coefficients that depend
logarithmically on the ratio of the two cutoffs, i.e., on
lnðaμÞ. Since Zm here is being determined nonperturba-
tively in lattice QCD, differences from this expectation
arise both for small aμ and large aμ values and we will
address both of these here.
For large aμ values, systematic discretization effects can

appear from the granularity of the lattice. In Zm such effects
would cause systematic errors of the form ðaμÞn where n is
a positive power whose value depends on the quark action,
with a higher power corresponding to a more highly
improved action. With the HISQ action we have removed
tree-level a2 terms and so we expect discretization effects at
ðaμÞ2 to be suppressed by powers of αs and therefore to be
relatively small [46]. The lowest order at which tree-level
discretization errors can appear is at ðaμÞ4. In fact the
discretization errors, as long as they are not too large, are
benign. In the end, in order to determine a quark mass
relevant to the physical world, we will perform an extrapo-
lation in a to the continuum limit a ¼ 0, at fixed μ, and
remove discretization errors.
Of more concern are nonperturbative effects that can

have an impact at small values of μ. An OPE tells us that the
vertex functions can be expanded in inverse powers of μ
with coefficients that depend on condensates, and vacuum
expectation values of local quark and gluon operators. In
the current-current correlator method, this effect was
studied in Ref. [12]. There the heavy quark mass, mh,
replaces μ and nonperturbative terms of the form

TABLE II. Simulation parameters for the MILC gluon field
ensembles that we use, labeled by set number in the first column.
β ¼ 10=g2 is the bare QCD coupling and Ls and Lt give the
lattice dimensions. amsea

l , amsea
s and amsea

c give the sea quark
masses in lattice units. Sets 1–9 will be referred to in the text as
“coarse,” sets 10 and 11 as “fine” and set 12 as “superfine.”Most
of the sets we show here are used to test dependence on sea quark
masses or spatial volume; our final analysis will be done using
results from sets 2, 4, 9, 10, 11 and 12 (marked in bold in the table
below).

Set β Ls Lt amsea
l amsea

s amsea
c

1 6.0 20 64 0.008 0.040 0.480
2 6.0 24 64 0.0102 0.0509 0.635
3 6.0 24 64 0.00507 0.0507 0.628
4 6.0 32 64 0.00507 0.0507 0.628
5 6.0 40 64 0.00507 0.0507 0.628
6 6.0 32 64 0.00507 0.00507 0.628
7 6.0 32 64 0.00507 0.012675 0.628
8 6.0 32 64 0.00507 0.022815 0.628
9 6.0 48 64 0.00184 0.0507 0.628
10 6.30 48 96 0.00363 0.0363 0.430
11 6.30 64 96 0.00120 0.0363 0.432
12 6.72 48 144 0.0048 0.024 0.286
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d1
mhψ̄ψi
ð2mhÞ4

þ d2
hαsG2=πi
ð2mhÞ4

þ… ð18Þ

can appear in the correlator moments. The first term
contains the light quark chiral condensate ψ̄ψ and the
second, the gluon condensate constructed from the gluon
field-strength tensor (the heavy quark condensate being
absorbed into this). Since the current-current correlator
method uses gauge-invariant correlation functions only
gauge-invariant condensates can appear. To mass dimen-
sion four these are the only possibilities. The size of such
condensates is typically ½Oð300 MeVÞ�n where n is their
mass dimension.
Here we use gauge-noninvariant vertex functions and

propagators and so gauge-noninvariant condensates can
appear. Such condensates can be larger in magnitude than
the gauge-invariant ones because powers of the Landau
gauge gluon field, Aμ, can appear (see, e.g., Ref. [37] for
the gluon case) and this can be associated with inverse
powers of μ as small as μ−2. In Sec. V and Appendix B we
discuss how we expect such a condensate to affect Zm.
Studying the impact of the gauge-fixing tolerance

provides some evidence of sensitivity to these gauge-
noninvariant nonperturbative effects. For the Landau gauge
fixing, we use a tolerance of 10−7 on the magnitude of the
gradient of the gauge field on gluon configuration sets 1
through 11. This fixes the average trace of the link in
Landau gauge to a few parts in 10 000. The residual effect
on Zm from this gauge-fixing tolerance is at the same level
as we now demonstrate. Figure 1 shows a scatter plot of
bootstrap samples for ZSMOM

m on coarse set 4 at μ ¼ 2 GeV
for a gauge-fixing tolerance of 10−7 and then successive
tightening of this tolerance by factors of 10 down to 10−10.
The tighter tolerance gives a shift in the mean value of
ZSMOM
m by around 0.0004. Results at higher μ values show

much smaller effects in a way that demonstrates their origin
in nonperturbative effects. This is illustrated in Fig. 2 which

shows the change in ZSMOM
m for a factor of 10 change in

gauge-fixing tolerance as a function of μ. To cover the
residual gauge-fixing effects we take an additional uncor-
related uncertainty on our ZSMOM

m results of 0.0004 for
μ ¼ 2 GeV, 0.0001 for μ ¼ 3 GeV and 0.00002 at μ ¼
4 GeV on sets 1 through 11. This is typically at the level of
our statistical uncertainties. On set 12 we fix to Landau
gauge with a tolerance of 10−14 and do not take any
additional uncertainty from residual gauge-fixing effects.
We do not consider any possible effects from Gribov copies
(for studies of this in the RI-MOM scheme see, e.g.,
Refs. [51,52]).
Another way to assess the size of nonperturbative effects

is to look at differences of Z factors for operators which
should have the same perturbative expansion. Since we are
concentrating here on ZS it makes sense to look at the
difference between ZS and ZP. This difference showed
significant problems with ZP in the RI-MOM scheme
because it exposed nonperturbative contributions that
behaved as 1=μ2 [31]. This behavior can be traced to the
fact that the inserted operator is carrying no momentum
(q ¼ 0) in that scheme [23]. This causes particular prob-
lems for the pseudoscalar operator and was deemed to
make this vertex function of only very limited use. A
related issue arises with the scalar operator in the RI-MOM
scheme, however, and that is one of very strong dependence
on the quark mass. These features were illustrated for the
HISQ action in Ref. [53] where the vertex functions ΛP and
ΛS were compared for the RI-MOM and RI-SMOM
schemes as a function of momentum and quark mass,
and the superior behavior of the RI-SMOM scheme was
very clear.
In the RI-SMOM scheme, as Fig. 3 shows, the non-

perturbative behavior of TrðΛP − ΛSÞ=48 [proportional to
ð1=ZP − 1=ZSÞ] is quite benign, falling as 1=μ6 with little
dependence on the lattice spacing. This indicates that
either ZP or ZS could be used to determine the mass
renormalization factor; we will however concentrate here

FIG. 1. Scatter plots from bootstrap samples of ZSMOM
m at μ ¼

2 GeV and Landau gauge trace link values on coarse set 4, for a
quark mass value in lattice units of 0.0153. On the left results are
for a gauge-fixing tolerance on 10−7 (the tolerance we use); on the
right the tolerance is successively tightened to 10−10. Mean values
for ZSMOM

m are indicated by dashed lines of matching color.

FIG. 2. The impact of the gauge fixing tolerance on ZSMOM
m ðμÞ

as a function of μ. Results are for coarse set 2, for a quark mass in
lattice units of 0.0204, and show a steep fall with a value of μ
consistent with sensitivity to gauge-noninvariant condensates.
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on ZS. As we will see in Sec. IV B, the quark mass
dependence of Zm derived from ZS in the RI-SMOM
scheme is also much less of an issue than it was in the
RI-MOM scheme.
The slope with 1=μ6 of TrðΛP − ΛSÞ=48 in Fig. 3 is

Oð1Þ GeV6 when translated into its effect on ZP − ZS, in
approximate agreement with what is seen with domain-wall
quarks [33]. This sets an appropriate scale to use when
assessing systematic effects from nonperturbative contri-
butions in Sec. V. These systematic effects will show up
when results evaluated at different μ are run perturbatively
in the continuum to a common scale. We will use multiple
values of μ (2, 2.5, 3, 4 and 5 GeV) in our analysis and
compare results for the MS mass at a reference scale
of 3 GeV.
ZSMOM
m is dimensionless but the appropriate scale for it,

μ, must be obtained in GeV by multiplying aμ by the
inverse of the lattice spacing. The value of the lattice
spacing is obtained from determining a dimensionful
quantity that can be matched in the continuum limit at
physical quark masses to an experimental value. We use the

Wilson flow parameter, w0 [54], itself fixed at the value
0.1715(9) fm using the decay constant of the π [55].
The physical quark mass limit can be approached in a

number of different ways. When calculating quantities such
as hadron masses, which are sensitive to low momentum
scales, it is convenient to keep the bare coupling constant,
αlat ¼ g2=ð4πÞ, and w0 fixed. This means that the value of a
varies slightly with the sea quark masses but the variation of
hadron masses is small, since they behave in a similar way
to w0. An alternative, which is more suitable for the
determination of bare parameters such as quark masses
for reasons discussed in Appendix A of Ref. [12], is to fix
αlat and the lattice spacing. This latter method is the one that
we will implement here.
We use results from Ref. [12] where the sea quark mass

dependence of w0=a in terms of the result at the tuned
physical point was determined for different αlat. A universal
linear dependence on δmsea

uds (the deviation of the sum of the
u=d and s sea masses from their physical values) is seen,
for values of δmsea

uds in units of the tuned s quark mass less
than 0.5 (see Fig. 10 in Appendix A). An analysis of the
dependence on the sea c quark mass away from the
physical point is also given. We use the fits of Ref. [12]
to interpolate results for w0=a for sets of ensembles at a
given value of β to the physical quark mass point. The
values that we obtain for w0=a in this way are given for
“coarse” (β ¼ 6.0), “fine” (β ¼ 6.30) and “superfine”
(β ¼ 6.72) sets in Table III. We will use the w0=a result
(and the value it implies for a−1 in GeV) for all the
ensembles with that value of β.
As we will see in Sec. IVA this approach means that

ZSMOM
m has little discernible sea quark mass dependence.

This is expected insofar as ZSMOM
m represents physics at the

cutoff scale that is a function of αlat, with the light sea quark
masses having only a very small effect on its perturbative

FIG. 3. The difference of vertex functions ΛP and ΛS (propor-
tional to ZP − ZS) as a function of valence quark mass and as a
function of μ. Upper plot: TrðΛP − ΛSÞ=48 at μ ¼ 3 GeV plotted
against the square of the valence quark mass in units of the
tuned s quark mass. Results are shown for coarse and fine lattices
(sets 3 and 10). Lower plot: TrðΛP − ΛSÞ=48 extrapolated to zero
valence quark mass, following the upper plot, now plotted against
μ on a log-log scale. For comparison, the line shows a constant
divided by μ6. This plot shows that, in the RI-SMOM scheme, the
nonperturbative contributions toΛP − Λs are much more strongly
suppressed than in the RI-MOM scheme, falling as μ−6.

TABLE III. Lattice spacing values in units of the Wilson flow
parameter [54], w0, and tuned quark masses for the coarse, fine
and superfine sets of ensembles as determined in Ref. [12]. These
are obtained by fitting the sea quark mass dependence of these
parameters and interpolating/extrapolating to physical sea quark
masses. The lattice spacing is obtained from w0=a by using the
value for w0 of 0.1715(9) fm determined from the pion decay
constant in Ref. [55]. For the quark masses the uncertainty is split
into two pieces. The first uncertainty is uncorrelated between
lattice spacing values and comes from statistical/fitting errors and
uncertainties in the value of w0=a. The second uncertainty is
correlated between lattice spacing values because it comes from
the uncertainty in w0 and from the uncertainty in the ηc or ηs
meson mass as appropriate.

w0=a mtuned
c (GeV) mtuned

s (GeV)

Coarse 1.4075(18) 1.049(1)(3) 0.0859(1)(7)
Fine 1.9500(21) 0.973(1)(3) 0.0818(1)(7)
Superfine 2.994(10) 0.901(2)(3) 0.0768(2)(7)
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expansion. We will test the impact of the c sea mass in the
next section and in Appendix A.
We take a similar approach for the tuned bare quark

masses for s and c, as will be discussed further in Sec. V.

A. Sea mass dependence

Table II shows the variety of ensembles on which we
have calculated ZSMOM

m . Note particularly how many differ-
ent combinations of sea quark masses we have studied for
β ¼ 6.0 (“coarse”). This allows us to test for dependence on
the sea quark masses, given the method described in
Sec. IV for fixing the lattice spacing. No significant sea
quark mass dependence is seen for the μ values that we will
use for our analysis. Some of the ensembles have very
different combinations of sea quark masses from those that
would be considered suitable for a comparison to the real
world. For example, set 6 has u=d and s quark masses equal
at a value around 1=10th that of the physical s mass.
Nevertheless even this ensemble has a ZSMOM

m that agrees
(for a given μ) with that from set 4 where ms is 10 times
larger and therefore more realistic. Note that the compo-
nents of Zm, i.e., Zq and the vertex function, typically show

somewhat larger changes with sea mass but the effects
cancel in Zm.
Figure 4 shows a comparison of ZSMOM

m for sets 4, 6, 7
and 8 in which amsea

s varies over a wide range with no
discernible difference, at a level below 0.1%, in ZSMOM

m , for
μ values of 1.8 GeV and above. The lowest value of amsea

s
shown in Fig. 4 corresponds to the u=d quark mass in the
sea. This figure therefore also indicates how little variation
we can expect as the u=d quark mass in the sea is varied. In
our final analysis we will include results from different
values of the sea quark masses to allow for small variations
to be taken into account, but these results indicate that such
variations are below the level of our statistical uncertainties.
A similar picture is seen for variation with the c sea

mass, even though the c sea mass is much larger and 2mc is
close to μ in our range of μ values, so that one could worry
that an effect might be discernible. We can gauge the
possible size of such an effect from the perturbative
analysis of the impact of massive c quarks in the sea given
in Appendix A. That shows a shift of size 0.1% for a change
in mc from zero to mc at μ ¼ 2 GeV. Figure 5 shows a
comparison of results for ZSMOM

m as a function of μ for sets

FIG. 4. Results for ZSMOM
m for coarse ensembles with different

values of the sea s quark mass, with u=d and c sea quark masses
fixed in lattice units at 0.00507 and 0.628 respectively (sets 4, 6, 7
and 8; see Table II). The upper plot shows results for ZSMOM

m as a
function of μ in GeV for the four sets. Dashed lines join the
points. In all cases the valence quark mass is set to 0.0051 in
lattice units. The lower plot gives more detail for results at
μ ¼ 2.24 GeV, showing no visible variation (using the horizontal
dotted lines as guides) in ZSMOM

m even at a level below 0.1%.

FIG. 5. Results for ZSMOM
m for coarse ensembles with different

values of the sea c quark mass from sets 1, 2 and 3 (see Table II).
These sets have slightly different u=d and s sea quark masses, but
by an amount which is much smaller than the change in the c sea
mass from set 1 to sets 2 and 3. The upper plot shows results for
ZSMOM
m as a function of μ in GeV for the two sets. The results

shown here are obtained for a valence quark mass in lattice units
of 0.0051. The lower plot shows more detail for results at
μ ¼ 2.4 GeV, showing Oð0.1%Þ variation for a very substantial
change in amc;sea. Dashed lines simply join the points.
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1 and 2 which have a substantially (30%) different c sea
quark mass, along with slightly different u=d and s sea
quark masses (which Fig. 4 has already demonstrated have
no effect) and different spatial volumes (again for which we
see no effect in Sec. IV C). We also include results for set 3
which has a value of amc differing from that on set 2 by
1%, a size of variation which is closer to that of typical mc
mistuning on our ensembles [12]. The lower plot of Fig. 5
gives more detail at μ ¼ 2 GeV and shows, as expected, no
variation of ZSMOM

m at the level of 0.1% for a change in amc
of 30%. It also shows that there is no impact on our results
at the level of our statistical errors from the slight (5%)
mistuning of the c sea mass that we have on some
ensembles.
Finally, in Fig. 6 we compare results for two fine lattices

with different sea-mass values (sets 10 and 11). This plot
covers three μ values we will use in our final analysis, 2, 3
and 4 GeV. Good agreement is seen between the results
on sets 10 and 11 (with the largest discrepancy being 0.1%
for μ ¼ 2 GeV), testing sea-mass dependence as well as
dependence on the spatial volume, to be discussed in more
detail in Sec. IV C.

B. Valence mass dependence and extrapolation

In Sec. IVA the ZSMOM
m renormalization factors were

determined for small and fixed but nonzero valence quark
masses and we showed that the dependence on sea quark
masses is almost negligible. Here we will show that there
is a small but visible dependence for ZSMOM

m on the valence
quark mass. This dependence comes from the vertex
function since the wave-function renormalization is almost
independent of the valence quark mass. Since the impact in
perturbation theory of the small valence quarkmasses we use
should be negligible, the most likely source of valence quark
mass dependence is nonperturbative, i.e., that of quark
masses multiplying a condensate appearing in conjunction
with inverse powers of μ as expected from the OPE.

Figure 7 shows the dependence of ZSMOM
m on valence

mass in lattice units, ma, for a coarse, fine and superfine
ensemble (sets 2, 10 and 12) at a fixed value of μ (3 GeV).
For each case we determine ZSMOM

m for three valence
masses; that of the u=d quark mass in the sea and 2 and
3 times that value. Figure 7 shows very little visible
dependence on ma but it is, however, significant (see
the lower plot of Fig. 7 for more detail in the superfine
case). Note that the results at different values of am are
correlated and we include this correlation in our fits through
a covariance matrix determined by the bootstrap procedure.
As discussed in Sec. IV it is convenient to extrapolate in

the valence quark mass to zero, so that we can convert from
the SMOM scheme to the MS scheme using perturbation
theory at zero valence quark mass. The extrapolation also
has the advantage of removing some of the nonperturbative
condensate contributions that are not part of ZSMOM

m .
To extrapolate to zero valence quark mass for each

ensemble we fit ZSMOM
m to a simple polynomial form in

amval given below. Including only a linear term does not
give a good fit over the range of am values that we use
when correlations are included. We therefore add in both a
quadratic and cubic term:

FIG. 6. Results for ZSMOM
m for fine ensembles with different

values of the sea u=d quark mass from sets 10 and 11 (see
Table II). These sets also have slightly different s and c sea quark
masses and spatial volume. The plot shows results for ZSMOM

m as a
function of μ in GeV for the two sets, for a valence mass in lattice
units of 0.0074.

FIG. 7. The upper plot shows the dependence of ZSMOM
m on

valence quark mass in lattice units for coarse, fine and superfine
lattices (sets 2, 10 and 12) at μ ¼ 3 GeV. The dashed line gives
the simple fit described in the text. The lower plot is a zoomed-in
version of the superfine (set 12) results for which fit parameters
are shown in Fig. 8. The lighter rightmost point corresponds to a
quark mass equal to that of the strange quark. This point was not
included in the valence quark mass fit, but lies on top of the
fitted line.
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ZSMOM
m ðamval; μÞ ¼ ZSMOM

m ðμÞ þ d1ðμÞ
amval

ams

þ d2ðμÞ
�
amval

ams

�
2

þ d3ðμÞ
�
amval

ams

�
3

:

ð19Þ

We use a prior on ZSMOM
m [the value of ZSMOM

m ðamÞ in the
massless limit] of 1.0� 0.5. The coefficients di represent
condensates contributing with different powers of mval. For
the di we take priors of f0� 0.1; 0� 0.01; 0� 0.001g for
μ ¼ 2 GeV, with the prior widths being decreased by
factors of 2 and 4, respectively for μ ¼ 3 and 4 GeV to
allow for an approximate μ−2 suppression, the smallest
inverse power of μ that we expect to appear. We divide
the lattice valence masses by the tuned s quark mass at
that lattice spacing so that the di are dimensionless and
physical.
Note that, if the linear term were set by the gauge-

invariant condensate mhψ̄ψi=μ4, then d1 would take the
value mshψ̄ψi=μ4. Here hψ̄ψi is the quark condensate in
the chiral limit; any dependence of the quark condensate
on mval will appear as a contribution, along with higher-
dimension condensates, to terms with coefficients d2
and d3. This would mean that d1 was Oð2 × 10−4Þ for
μ ¼ 2 GeV. Instead our priors allow for possibly larger
gauge-noninvariant condensates to appear. The linear slope
shows significant lattice spacing dependence and d1 is
consistent with a very small value on the superfine lattices,
as shown in Fig. 8. The coefficient of the quadratic mass
dependence, d2, has larger magnitude and is also shown
for the superfine lattices in Fig. 8. We include the results
of a simple fit to the form from a condensate contribution
C=μ4 (C=μ2 does not give a good fit, although C=μ6 is
also acceptable) with C ¼ −0.10ð3Þ GeV4, equivalent
to −ð0.56ð4Þ GeVÞ4.
We can use this size for C (as well as earlier results

in Sec. IV) to give an indication of the possible size of
other condensates appearing in this calculation, such as the

mass-independent ones that are not removed by the valence
mass extrapolation. We conclude that in our fits in Sec. V,
comparing quark masses determined using ZSMOM

m values at
different values of μ, we should allow for condensate
contributions remaining in ZSMOM

m that could be as large as
ð1 GeVÞn=μn coming from gauge-noninvariant conden-
sates. This will allow us to include an uncertainty from
such nonperturbative contributions in our determination of
the mass.

C. Volume dependence

Since ZSMOM
m is a matching factor between two different

regularizations of QCD we expect it to be dominated by
ultraviolet physics and not to be sensitive to the volume of
the lattice. However, we have observed some infrared
sensitivity in the form of nonperturbative condensate
contributions. In aiming for a precise determination of
ZSMOM
m finite-volume effects need to be tested. This is

straightforward to do on lattices that have the same β and
sea quark masses and differ only by the number of lattice
points in each spatial direction. Figure 9 shows such results
for sets 3, 4 and 5 that have 24, 32 and 40 lattice points in
each spatial direction but exactly the same parameters in the
lattice QCD Lagrangian (see Table II). No significant
dependence on the lattice size is seen except for very
small μ (below 2.0 GeV, which is our smallest value for
analysis) and for small lattices (of size Ls ¼ 24 which is
smaller in terms ofMπLs than any of the lattices that we use

FIG. 8. The linear and quadratic slopes [d1 and d2 of Eq. (19)]
of ZSMOM

m with valence quark mass on superfine lattices (set 12),
plotted against μ in GeV. The curve with the error band is a fit to
the form C=μ4 through the d2 points.

FIG. 9. Dependence of ZSMOM
m on the spatial volume of the

lattice (sets 3, 4 and 5) as a function of μ. The valence quark mass
in lattice units is fixed to 0.0051.

DETERMINATION OF QUARK MASSES FROM nf ¼ 4 … PHYS. REV. D 98, 014513 (2018)

014513-11



for analysis). We conclude from this that finite-volume
effects are negligible.

V. DETERMINATION OF MASSES
IN THE MS SCHEME

Our procedure here for determining the quark mass in the
MS scheme has three ingredients:
(1) A quark mass in our lattice QCD scheme tuned

nonperturbatively to reproduce the mass of a given
hadron from experiment.

(2) A nonperturbative determination from lattice QCD
of the mass renormalization factor ZSMOM

m that
converts this mass at each value of the lattice spacing
to a mass in our SMOM scheme at a given value of
the scale, μ.

(3) A perturbative calculation of the mass renormaliza-

tion factor ZMS=SMOM
m (through α2s) that further

converts the SMOM mass at scale μ to the mass
in the MS scheme at scale μ. From there we can run
the mass to different scales using four-loop running
in the MS scheme [56,57].

Then

m̄ðμ; aÞ ¼ ZMS=SMOM
m ðαsðμÞÞZSMOM

m ðμ; aÞmðaÞ: ð20Þ
Here mðaÞ is the bare lattice quark mass, in physical units,
at a specific value of the lattice spacing (the first item from
the list above). ZSMOM

m is the mass renormalization factor
calculated nonperturbatively on lattice QCD configurations
at a specific lattice spacing, allowing us to convert the
lattice mass to the SMOM scheme at a scale μ. How this is
calculated has been discussed in earlier sections; here we
will give the results. The intermediate quark mass we
obtain in the SMOM scheme, although nominally now in a
continuum scheme at a physical scale, will still carry
remnants of its lattice origins through discretization errors.
These must be removed by calculation at multiple values of
the lattice spacing, so that an extrapolation to the con-
tinuum limit, a ¼ 0, can be made. This could be done with
the SMOMmasses, but we choose to first convert to the MS
scheme at scale μ by multiplying by the final factor

ZMS=SMOM
m . We denote the MS mass obtained this way

as m̄ðμ; aÞ to show that it has yet to be extrapolated to the
continuum limit. We will describe how we do this below;
first we give the results that we will use for each of the
ingredients of Eq. (20).

A. mðaÞ
The bare lattice quark masses that we use are for s and c

quarks and are given in Ref. [12] for the ensembles and
lattice spacing values that we use here. The c quark mass,
mcðaÞ, was tuned by adjusting the lattice mass to give the
physical value for the ηc meson mass. The physical value
for the ηc mass was defined from the experimental value

with a shift upwards by 2.7 MeV (less than 0.1%) to
remove electromagnetic effects and to account for cc̄
annihilation, since both of these effects are missing in
our lattice QCD calculation [58,59]. The uncertainty on the
physical ηc mass to which we match is then increased (to
2.7 MeV) to allow for uncertainty in these corrections. The
s quark mass is similarly tuned based on the physical mass
of the ss̄ pseudoscalar particle known as the ηs. It is an
unphysical particle since its valence quarks are artificially
not allowed to annihilate, but its properties can be well
determined in lattice QCD [55,60]. Its mass can be
determined in terms of K and π meson masses as [55]

Mphys
ηs ¼ 0.6885ð22Þ GeV; ð21Þ

where the uncertainty includes a systematic error
from the neglect of electromagnetism in the lattice QCD
calculations.
The tuned lattice bare c and s quark masses are given in

GeV in Table II of Ref. [12]. These are the values that give
the physical ηc or ηs mass on each ensemble given a fixed
value for w0. Since here (as explained in Sec. IV) we are
approaching the physical mass point using a fixed lattice
spacing value (since that removes sea quark mass depend-
ence from our results, as shown in Sec. IVA) then we also
need the fixed tuned quark mass for sets of ensembles at a
fixed value of β. The fits to the dependence on sea quark
mass discussed in Appendix A of Ref. [12] enable us to
determine the tuned c and s quark masses for physical sea
quark masses at each value of β. These are the values that
we will use here and they are given in Table III.
The uncertainties in the tuned masses include the uncer-

tainty from the lattice spacing. This gives a 3 times smaller
relative uncertainty for the c quark mass than for the s quark
mass because the lattice spacing uncertainty appears with
the “binding energy” of the meson rather than its mass. For
the ηc the binding energy is much smaller than the mass, but
for the ηs it is of the same size. Table III divides the
uncertainty on the tuned masses into two components: a
correlated uncertainty from the value of w0 and the value of
the meson masses used to tune the quark mass that is the
same for all lattice spacing values, and an uncertainty that is
uncorrelated between lattice spacing values since it comes,
e.g., from statistics/fitting or the values of w0=a determined
separately for each ensemble.

B. ZSMOM
m

Working from right to left in Eq. (20) the next set of
results that we need are for ZSMOM

m for each ensemble
that we will use in determining our continuum and
chiral limit for the quark masses. We have chosen to
work with multiple values of μ in order to assess the impact
of nonperturbative terms on the mass renormalization.
These are μ ¼ 2, 2.5, 3, 4 and 5 GeV. At each value of
μ we determine ZSMOM

m at three values of the valence quark
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mass, as described in Sec. IV B, and extrapolate to zero
valence mass. Results are given in Table IV for the
ensembles that we will use. The results for different μ
values on a given ensemble are correlated and sowe include
in the table the correlation matrix for the Z values. The
correlation matrix, ρij, for variables xi and xj is defined by

ρij ¼
hxixji − hxiihxji

σiσj
ð22Þ

with hi indicating the expectation value, and σ the standard
deviation.
Results are given for sets 2, 4, 9, 10, 11 and 12 that we

will use in our final analysis which will determine a
continuum limit for the mass and allow for small residual
sea quark mass effects. Note the very slight mistunings of μ
from the nominal values on sets 2–11. These are allowed
for in our fits.

C. ZMS=SMOM
m

The third ingredient for Eq. (20) is the matching
coefficient from SMOM to MS. For this we use the
perturbative expansion of Eq. (8) with c1 and c2 values

from Table I for the RI-SMOM case and for nf ¼ 4. Values
for αs in the MS scheme at the different values of μ are
given in Table VII. We use the results of Appendix A to
adjust c2 to allow for having a massive c quark in the sea.
This has a very small effect for μ ¼ 2 GeV, and an even
smaller one for μ ¼ 2.5 GeV and is otherwise negligible.

The resulting values for ZMS=SMOM
m are given in Table V.

The uncertainty in the Z values quoted there comes from the
uncertainty in αs and so is 100% correlated between the
values. There is also a systematic uncertainty from missing
higher orders in the perturbative expansion and we will
allow for that in our final fits below.

D. Fitting m̄ðμ;aÞ to determine m̄ð3 GeVÞ
By multiplying all three ingredients together as in

Eq. (20) we obtain values for the c or s quark mass in
the MS scheme at a (nominal) scale of μ ¼ 2, 2.5, 3, 4 or
5 GeV from each lattice ensemble. These results still
contain discretization effects from the lattice QCD com-
ponent of the calculation. To remove these effects we must
extrapolate to the continuum limit. At the same time we
want to assess other systematic effects such as the

TABLE IV. Results for ZSMOM
m for μ ¼ 2, 2.5, 3, 4 and 5 GeV on a subset of ensembles from Table II covering coarse to superfine

lattice spacings. The values are obtained by extrapolating to zero valence quark mass as discussed in the text. For each set of results we
also give, in column 5, the correlation matrix between the values for different μ. Note that there is very slight mistuning of some μ values
on the coarse and fine lattices (sets 2–11) and the actual μ values are given in the column headings. Statistical errors only are given here.
We include a further uncorrelated uncertainty on Zm values for sets 2–11 as described in Sec. IV to account for residual gauge-fixing
effects (�0.0004 at μ ¼ 2 GeV, �0.0001 at 3 GeV and �0.00002 at 4 GeV).

ZSMOM
m ðμÞ, μ in GeV:

Set 2.004 2.500 3.005 4.007 Correlation

2 1.12967(40) 1.07935(20) 1.045628(90) � � � � � �  
1 0.41 0.12

0.41 1 0.45
0.12 0.45 1

!

4 1.12990(42) � � � 1.045434(61) � � � � � � �
1 −0.17

−0.17 1

�
9 1.13061(22) � � � 1.045518(53) � � � � � � �

1 0.33
0.33 1

�
10 1.17726(45) 1.11954(15) 1.083082(77) 1.040445(25) � � � 0

B@
1 −0.19 0.41 0.52

−0.19 1 −0.21 −0.13
0.41 −0.21 1 0.42
0.52 −0.13 0.42 1

1
CA

11 1.17748(35) � � � 1.082955(55) 1.040350(23) � � �  
1 0.16 0.36

0.16 1 0.72
0.36 0.72 1

!

Set 2.000 2.500 3.000 4.000 5.000 Correlation

12 1.24884(93) 1.18100(31) 1.13662(12) 1.083481(54) 1.053782(32) 0
BBB@

1 0.35 0.26 0.19 0.22
0.35 1 0.32 0.45 0.22
0.26 0.32 1 0.26 0.10
0.19 0.45 0.26 1 0.59
0.22 0.22 0.10 0.59 1

1
CCCA
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nonperturbative contributions to the lattice QCD determi-
nation of ZSMOM

m that have not been removed by our
extrapolation to zero valence quark mass, and missing

higher-order perturbative contributions to ZMS=SMOM
m . This

can be done by comparing results at different μ but, the
simplest way to pick out these effects is to run all the results
to a common scale, μref . We take μref ¼ 3 GeV, so that we
run up from 2 and 2.5 GeV and down from 4 and 5 GeV.
The running is done by integrating the evolution equations
numerically in the MS scheme using four-loop expressions
[56,57,61,62]. The result of this is a multiplicative factor
Rðμref ; μÞ such that

m̄ðμrefÞ ¼ Rðμref ; μÞm̄ðμÞ: ð23Þ

Values of Rð3 GeV; μÞ are given in Table V. Note that,
because the uncertainty comes from the uncertainty in αs
the uncertainty is 100% (anti)correlated between the differ-

ent μ values. The uncertainties in R and ZMS=SMOM
m are also

100% (anti)correlated for the same reason.
At this point we also need to include an uncertainty

coming from the relative determination of the lattice
spacing on coarse, fine and superfine lattices. The uncer-
tainty in w0=a, given in Table III, means that the μ values on
each set may not match and this gives an additional

uncertainty in the running of the mass to the 3 GeV
reference point, including in the values obtained at
μ ¼ 3 GeV. This gives an additional (correlated) uncer-
tainty of 0.0003 on the coarse lattices, 0.0002 on fine
lattices and 0.0008 on superfine lattices. There is an
additional correlated 0.1% uncertainty on all points coming
from the effect on μ of the uncertainty in the value of w0.
We then have results for m̄sðμrefÞ and m̄cðμrefÞ that come

from lattice calculations with different values of the lattice
spacing and different values of μ. We fit these to a function
that allows for discretization effects that depend on a and
other systematic effects that depend on μ. It is important to
include the correlations between the points: our results at
different values of a are correlated through their depend-
ence on the value of w0 which is used to determine the
lattice spacing and our results at different μ for a given
ensemble are correlated through the statistical uncertainties

in the values of ZMS=SMOM
m (see Table IV).

Our results are plotted in Fig. 10. Discretization effects
are clearly evident with the slope in a2 becoming larger
with larger μ, not surprisingly. Results at different μ come
together on the finer lattices.
A key point, as we have emphasized, is to provide

constraints on nonperturbative μ dependence (from con-
densate terms) that would survive the continuum limit from
our lattice QCD calculation but is not part of Zm. To
understand how big these terms might be, we turn to the
OPE (for more details, see Appendix B). The analysis of
the quark propagator is given in Refs. [36,63,64]. To lowest
order in inverse powers of the momentum (p≡ μ) and αs
this gives [rather than Eq. (4)]

1

12p2
Tr½S−1ðpÞp� ¼ −Zq þ

παsðpÞ
3

hA2i
p2

þOðX=p4Þ:

ð24Þ

Here Zq is the perturbative contribution from the leading
(unit) operator, A2 is the square of the Landau gauge
gluon field and X denotes vacuum expectation values of
dimension-four operators such as mψ̄ψ (which vanishes at
zero quark mass), ψ̄Aψ and G2. The coefficients of the
higher-dimension operators in the OPE are obtained by
matching scattering amplitudes for both sides of the OPE
from, e.g., low-momentum gluons. Repeating this pro-
cedure for the scalar vertex function for the symmetric
kinematic point that we use in this calculation (and which
allows an OPE treatment), yields

1

12
Tr½ΛSðp1; p2Þ�jsym ¼ Zq

ZS
−
παsðμÞ

3

hA2i
μ2

þOðX=μ4Þ

ð25Þ

rather than Eq. (6). From Eqs. (24) and (25) we see that the
leading nonperturbative contribution to our determination

TABLE V. Results for ZMS=SMOM
m for μ ¼ 2, 2.5, 3, 4 and 5 GeV

using Eq. (8) and values from Tables I and VII. The uncertainty
in Z quoted here comes from the uncertainty in the value of αs
(and so is 100% correlated between the values). We use
αMSðnf ¼ 4; 5.0 GeVÞ ¼ 0.2128ð25Þ [12]. Column 3 gives the
multiplicative factor Rð3 GeV; μÞ that converts the MS mass at
scale μ to the mass at the reference scale of 3 GeV. This is
obtained from four-loop running in perturbative QCD. The
uncertainty is dominated by that in αs; the uncertainty from
missing higher-order terms in the running is negligible in
comparison. The error in R is then 100% correlated or anti-
correlated between the values, depending on whether R is
greater than or less than 1. There is also a 100% correlation

(or anticorrelation, as appropriate) with the errors in ZMS=SMOM
m .

Note that the values in the table are for the μ values in column 1.
We calculate R and Z inside our fit function and hence allow for
the fact there that the μ values are slightly mistuned on coarse and
fine lattices (see Table IV). We include an additional uncertainty,
as described in the text, to allow for w0=a errors feeding into the
determination of μ. This gives a (correlated) uncertainty of 0.0003
on the coarse lattices, 0.0002 on the fine lattices and 0.0008 on
the superfine lattices.

μ (GeV) ZMS=SMOM
m ðμÞ Rð3 GeV; μÞ

2.0 0.9792(5) 0.9034(20)
2.5 0.9821(3) 0.9582(8)
3.0 0.9838(3) � � �
4.0 0.9859(2) 1.0616(11)
5.0 0.9871(2) 1.1063(19)
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of Zm is −ð2π=3ÞαsðμÞhA2i=μ2. The value of hA2i is not
well known [37,38] and so we simply allow it to be of size
Oð1 GeVÞ2 in our fits to obtain the continuum limit of the
MS quark mass. We must also allow for the higher-
dimension condensates denoted by X above, about which
even less is known. To do this we include terms at 1=μ4 and
1=μ6 in our fits, again allowing the operator vacuum
expectation values (summed over all the operators that
could appear) to be Oð1 GeVÞ2n.
In fitting our results to obtain physical values for the quark

masses we must then allow for lattice spacing artifacts,
nonperturbative effects, sea quark mass effects and missing
terms in the perturbative matching to MS. To allow for all of
these, we fit our results to the following form:

m̄ðμref ; μ; aÞ ¼ m̄ðμrefÞ ×
�
1þ

X4
n¼1

cðnÞΛ2a2
ðΛa=πÞ2n

�

×

�
1þ

X10
n¼1

cðnÞ
μ2a2

ðμa=πÞ2n þ cαα3MS
ðμÞ

þ hseal
δseal

mtuned
s

þ hseac
δseac

mtuned
c

þ
�
1þ kseal

δseal

mtuned
s

þ kseac
δseac

mtuned
c

�

×
X3
n¼1

cðnÞcondαMSðμÞ
ð1 GeVÞ2n

μ2n

× ½1þ cðnÞ
cond;a2

ðΛ̃a=πÞ2�
�
: ð26Þ

Here m̄ðμrefÞ is the physical result. The coefficients cμ2a2
allow for discretization effects set by the scale μ (coming
from Zm) and the cΛ2a2 allow for those set by the scale Λ in
the tuning of the bare quark masses, independent of μ. We
take Λ to be 500 MeV in the case of the s quark mass, but
1 GeV in the c quark mass case, since it could be set by mc
itself. We take the prior on all the ca2 coefficients to be
0.0� 1.0. cα allows for systematic uncertainties in the
continuum limit from missing α3s terms in the matching
of SMOM to MS. We take the prior on cα to be 0.0� 0.2,
allowing for a size 4 times larger than c1 or c2. The
coefficients ccond allow for nonperturbative condensate
effects that have not been removed by extrapolating the
valence quark masses to zero. We include three such terms
with inverse powers of μ of 2, 4 and 6 since we expect these
to be the most significant. The results that we gave in
Secs. IV and IVB show that we need to allow for gauge-
noninvariant condensates as large as ð1 GeVÞ2n. We take
this to be the generic size of the condensate and give each
one a coefficient with prior 0� 2 [consistent with the
combination of Eqs. (24) and (25)]. We also allow for a
dependence in each condensate with Λ̃ ¼ 500 MeV and a
prior on ccond;a2 of 0.0� 1.0. All hsea and ksea coefficients
allow for any small remaining dependence on the sea quark
masses, either explicitly in condensate terms or elsewhere
with

δseal ¼
X

q¼u;d;s

ðmq −mtuned
q Þ;

δseac ¼ mc −mtuned
c : ð27Þ

We take the priors on these coefficients to be 0.0� 0.2
(consistent with results in Sec. IVA).
The fit is strongly constrained by the number of different

correlations included between results from different μ
values and different a values. We obtain a χ2=d:o:f. of
0.8 for both the fits for mc and for ms. We can also do both

FIG. 10. (Upper) m̄cð3 GeVÞ and (lower) m̄sð3 GeVÞ obtained
from nonperturbative lattice QCD calculations of ZSMOM

m at three
different values of μ, followed by perturbative matching to the
MS scheme and running to 3 GeV. The results are plotted for
μ ¼ 2, 2.5, 3, 4 and 5 GeV against the square of the lattice
spacing. Extrapolations to the continuum limit for each value of
μ, as discussed in the text, are shown as dashed lines (these give
the fit result at δseal ¼ δseac ¼ 0). The error bars on the data points
show only the uncorrelated uncertainties. The point plotted as a
dark grey filled circle, offset to the left, is the final physical result,
m̄ð3 GeVÞ, from the fit described in the text. The inner error bar
for this point is the uncorrelated uncertainty and the outer error
bar is the full uncertainty. The point plotted as a white circle,
further offset to the left, is from the current-current correlator
method [12] (along with a nonperturbative determination of
mc=ms in the ms case).
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fits simultaneously, requiring all coefficients to be the same
except those for the ðaΛÞn terms and then we obtain a
χ2=d:o:f. of 0.7. If we drop the condensate terms from
the separate fits the χ2=d:o:f. increases to 2, indicating
that these are important. The χ2=d:o:f. for the simultaneous
fit without condensates increases to 6. We find the
total condensate contribution at a ¼ 0 and δsea ¼ 0 to be
relatively small, at −1.0ð5Þ% at μ ¼ 2 GeV and −0.3ð1Þ%
at μ ¼ 5 GeV for the separate fits. The simultaneous fit has
somewhat more significance, at −1.4ð4Þ% for the con-
densate contribution at μ ¼ 2 GeV. The condensate con-
tribution is a combination of a negative term at 1=μ2 (as
expected from above), a positive term at 1=μ4 and a
relatively unconstrained term at 1=μ6.
Figure 11 demonstrates the robustness of our fit, by

showing the impact on the final value of numerous
modifications. These include leaving out sets of results,
doubling prior widths on various fit coefficients and
changing the numbers of terms used to describe discretiza-
tion effects, condensate contributions or missing pieces of
the perturbative matching. Effects are relatively minor and
generally well within our uncertainties.
The values we obtain for the physical result, m̄ðμrefÞ at

the reference scale of 3 GeV (using separate fits to each
mass) are

m̄cð3 GeV; nf ¼ 4Þ ¼ 0.9896ð61Þ GeV:
m̄sð3 GeV; nf ¼ 4Þ ¼ 0.08536ð85Þ GeV: ð28Þ

The error budget for the two numbers, evaluated from the
fit, is given in Table VI. The uncertainties are dominated by
those from the tuned bare quark masses (especially for ms)
but with sizable contributions from the continuum extrapo-
lation, possible missing α3s terms in the SMOM to MS
matching and condensate effects.

VI. CONCLUSIONS

Lattice QCD is the method of choice for determining
quark masses because it gives direct access to those
parameters in the QCD Lagrangian and allows them to
be tuned very cleanly against hadron masses measured in
experiment. As emphasized in Sec. I, the key complication
in determining quark masses is in providing the matching
factor from the quark mass in a particular lattice QCD
regularization scheme to the preferred MS continuum
regularization scheme. Here we compared two accurate
methods for providing this matching factor directly for the c
quark mass: one is to take the continuum limit of time
moments in the current-current correlator method and the
second is to use an intermediate momentum-subtraction
scheme whose definition on the lattice translates directly to
the continuum. Both methods then use continuum QCD
perturbation theory for the final matching step. The two
methods are very different: one uses gauge-invariant meson
correlators (two-point functions) in position space that are
extrapolated to the continuum limit before matching to
perturbation theory, while the other uses gauge-noninvariant
two-point and three-point functions in momentum
space, obtaining a renormalization factor at each value of
the lattice spacing. Both methods have mechanisms for
testing and estimating systematic uncertainties within them
and so both are capable of yielding a complete error budget
for the final result. A comparison of the two methods is
important to make sure that the uncertainties are being fully
controlled. The best comparison in this respect is a direct
one between the two different methods for the same lattice
QCD quark formalism on the same gauge field configura-
tions. This is the comparison that we provided here, for the
first time.

TABLE VI. Error budget, giving a breakdown of the uncer-
tainties in the c and s quark masses in the MS scheme at a scale of
3 GeV obtained from the fits described in the text. All the
uncertainties are given as a percentage of the final answer. The
condensate uncertainties include all the uncertainties from that
term in the fit function, which also allows for discretization and
msea effects.

m̄cð3 GeVÞ m̄sð3 GeVÞ
a2 → 0 0.28 0.28
Missing α3s term 0.22 0.22
Condensate 0.23 0.23
msea effects 0.00 0.00

ZMS=SMOM
m and R 0.04 0.04

ZSMOM
m 0.13 0.13

Uncorrelated mtuned 0.20 0.23
Correlated mtuned 0.30 0.82
Gauge fixing 0.11 0.11
μ error from w0 0.12 0.12

Total: 0.62% 0.99%

FIG. 11. A graphical representation of the different tests that we
have done to check the robustness of our fits to obtain the
physical results for m̄s and m̄c. The different rows give variations
on the fit described in the text [Eq. (26)].
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Both the current-current correlator method and the
intermediate momentum-subtraction scheme approaches
have variants that allow for improved control of systematic
errors. Our comparison used the best variant to date of each
method. We compared earlier results from the improved
current-current correlator method (method c) from
Ref. [12] to those obtained here using the RI-SMOM
intermediate scheme [24], which improved on earlier
momentum-subtraction schemes in having smaller non-
perturbative and perturbative uncertainties.2

The lattice QCD results that we gave here are for the
matching factor, ZSMOM

m , determined nonperturbatively on
the lattice between the HISQ quark mass and that in the
symmetric MOM (RI-SMOM) scheme at multiple different
scales between 2 and 5 GeV. We obtained results at
different valence (Sec. IV B) and sea (Sec. IVA) quark
masses and different spatial volumes (Sec. IV C) to under-
stand in detail what the sources of lattice systematic
uncertainty are. We found that variations with sea mass
and volume are barely discernible over a large range and
valence mass effects are small (in contrast to those seen in
the RI-MOM intermediate scheme). We combined results
for the matching factor at three different values of the lattice
spacing with the tuned c and sHISQ masses at that value of
the lattice spacing obtained from the HPQCD current-
current correlator calculation [12]. We were then able, by
including an SMOM to MS matching factor (where we
included the impact of having a nonzero c mass in the sea),
to extrapolate the resulting masses in the MS scheme to the
a ¼ 0 continuum limit (see Sec. V). By having results over
a range of values of the scale, μ, we were able to include a
systematic uncertainty for remaining nonperturbative (con-
densate) contributions that depend on inverse powers of μ.
These were expected to be much smaller than in the RI-
MOM case, but we demonstrated their existence at several
points in our calculation and they cannot be ignored. We
found a residual effect of 0.2% in our error budget from
these nonperturbative contributions (see Table VI).
The values we obtained at the reference scale of 3 GeV

for the c and s quark masses are

m̄cð3 GeV; nf ¼ 4Þ ¼ 0.9896ð61Þ GeV;
m̄sð3 GeV; nf ¼ 4Þ ¼ 0.08536ð85Þ GeV: ð29Þ

These results are to be compared to those from the
current-current correlator method [12] using the same
formalism on the same gluon field configurations. The
m̄c value of 0.9851(63) GeV was obtained directly in the
current-current correlator method; the value of ms of
0.0845(7) GeV (adjusting the value quoted in Ref. [12]

from nf ¼ 3 to 4) used in addition a fully nonperturbative
determination of the mass ratio mc=ms [12]. There is good
agreement between the two sets of results, within the
uncertainties quoted.3 The uncertainties are small (∼1%) in
both approaches and they are not strongly correlated
between them. This is because the dominant sources of
uncertainty are very different in the two cases: for the
RI-SMOM calculation a key source of error is that from the
determination of the tuned lattice quark masses, whereas
the current-current correlator method is less sensitive to
those and a larger source of uncertainty is that from missing
higher-order terms in the continuum QCD perturbation
theory for that quantity. Note that, when using the current-
current correlator approach, αs and m̄c can be determined in
the same calculation and the correlation between them can
be obtained [12]. For this RI-SMOM calculation we must
take a value of αs from elsewhere when we need one for the
SMOM toMS conversion. Both the JJ and RI-SMOMmass
determinations have uncertainties from lattice discretiza-
tion effects but they appear in different ways: in the
RI-SMOM method it is the quark mass itself that is
extrapolated to the continuum limit; in the current-current
correlator method it is the time moments of the correlator
that are extrapolated. The agreement between the two
methods is then a strong additional indication that the
separate sources of systematic error are well controlled.
We can run our new RI-SMOM values for m̄c and m̄s

given in Eq. (29) to other scales for comparison with other
results. The scale used for the m̄c is often that of m̄c itself
and for m̄s, 2 GeV [66]. We give these values below using
four-loop perturbative QCD running in the MS scheme to
run down from the higher scales at which the masses were
determined:

m̄cðm̄c; nf ¼ 4Þ ¼ 1.2757ð84Þ GeV;
m̄sð2 GeV; nf ¼ 4Þ ¼ 0.09449ð96Þ GeV: ð30Þ

The uncertainty on the values of both m̄c and m̄s increase
because of the uncertainty in αs at these low scales. Quoting
m̄c at its own scale reduces the resulting error a little
because the mass runs down as its scale goes up. The
comparable results from the current-current correlator
method are 1.2715(95) GeV for m̄c and 0.0936(8) GeV
for m̄s [12].

4

The fact that the JJ and RI-SMOMmethods agree means
that an average of the two results should have a reduced
uncertainty. We must take care in the averaging to allow for
the correlations between the two methods and we do this by
dividing the uncertainty in each case into correlated and

2Both the JJ and RI-SMOM methods go beyond quark mass
determination and can be used more generally for current
renormalization [24,65], widening the importance of providing
a comparison of the two approaches.

3Note that the Zm values quoted in Ref. [12] cannot be directly
compared to those given here because they are defined to
incorporate lattice spacing artifacts in a different way.

4Note that there is a typographical error in that work so that the
value quoted at 2 GeV is for nf ¼ 4 and not nf ¼ 3 as stated.
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uncorrelated pieces and then fitting the two results to a
constant. The correlated portion comes from the tuning of
the quark mass and the determination of the lattice spacing
(as given in the error budget) and is taken to be 100%
correlated between the two methods. The breakdown in the
uncertainty is then

m̄cð3 GeVÞ∶ JJ∶ 0.9851ð22Þð59Þ GeV;
SMOM∶ 0.9896ð32Þð52Þ GeV;

m̄sð3 GeVÞ∶ JJ∶ 0.0845ð4Þð6Þ GeV;
SMOM∶ 0.08536ð71Þð47Þ GeV ð31Þ

with the first uncertainty being correlated and the second
uncorrelated. This corresponds to a correlation coefficient
between the two results for mc of 0.18 and for ms of 0.47.
The resulting averages are given below. The Q values for
the fits were 0.6 for m̄c and 0.3 for m̄s:

hm̄cð3 GeVÞiJJ;SMOM ¼ 0.9874ð48Þ GeV;
hm̄sð3 GeVÞiJJ;SMOM ¼ 0.08478ð65Þ GeV: ð32Þ

The uncertainties are reduced by a small amount over those
of the two separate values, giving a 0.8% uncertainty in m̄s
and a 0.5% uncertainty in m̄c
We can also run these averages down to the lower scales

discussed above to give

hm̄cðm̄c; nf ¼ 4ÞiJJ;SMOM ¼ 1.2737ð77Þ GeV;
hm̄sð2 GeV; nf ¼ 4ÞiJJ;SMOM ¼ 0.09385ð75Þ GeV: ð33Þ

A. World average for m̄cðm̄cÞ
In Fig. 12 we compare our results for m̄cðm̄c; nf ¼ 4Þ

to previous lattice QCD results. This graphically shows
the agreement between the RI-SMOM results here and the
directly comparable current-current correlator results (the
top and third from top values in the figure). We also
include a result (second from the top in the figure)
obtained recently by the Fermilab Lattice, MILC and
TUMQCD collaborations from a new method they have
developed using the minimal renormalon-subtracted
(MRS) scheme [22,67]. This uses heavy quark effective
theory to map out the heavy quark mass dependence of
pseudoscalar heavy-light meson masses calculated in
lattice QCD. Awell-defined quark mass for this expansion
is obtained by identifying and removing the leading
renormalon from the perturbative expansion for the pole
mass in terms of the MS mass. This MRS mass then has
available a high-order continuum QCD perturbative
matching to the MS scheme. The application of this
method also yields 1% accuracy and agrees, well within
its uncertainty, with our JJ and RI-SMOM results.

Although the majority of results in Fig. 12 have been
obtained using the HISQ formalism there are results using
other formalisms that demonstrate good agreement, e.g.,
the results from JLQCD using domain-wall quarks [15].
The results are divided into those obtained on gluon field
configurations that include u, d, s and c quarks in the sea
(as here) and those that include u, d and s quarks in the sea.
Results obtained on gluon field configurations that include
only u and d quarks in the sea are not shown, because it is
not clear how to connect them in perturbative QCD (adding
an s sea quark) to the values shown here. We see good
agreement between almost all the results. The majority of
accurate previous results used the current-current correlator
method; the RI-MOM intermediate scheme has larger
sources of systematic error for the reasons discussed in

FIG. 12. Comparison of lattice QCD results for
m̄cðm̄c; nf ¼ 4Þ. Note that results are determined at a higher
energy scale and then run down to m̄c using perturbation theory.
Calculations are listed chronologically and divided into those
obtained on gluon configurations that include three (blue symbol)
or four (red symbol) flavors of quarks in the sea. Results obtained
on three-flavor configurations have in all cases been adjusted to
nf ¼ 4 using perturbation theory (see the references for details of
how this is done in each case). Different symbols denote different
methods: open triangles use the current-current correlator (JJ)
method (“a,” “b” and “c” variants; see text), open diamonds use
the RI-MOM intermediate scheme, open circles use the RI-
SMOM intermediate scheme and open squares use the MRS
scheme. Labels on the right indicate collaboration name, quark
formalism and method. The result denoted “HPQCD HISQ RI-
SMOM” is this work, “FNAL/MILC/TUM HISQ MRS” is from
Ref. [22], “HPQCD HISQ JJ” (red) is from Ref. [12], “ETMC RI-
MOM” is from Ref. [20], “JLQCD DW JJ” is from Ref. [15],
“MP(hotQCD) HISQ JJ” is from Ref. [16], “χQCD overlap RI-
MOM” is from Ref. [68], ‘HPQCD HISQ JJ” (blue) is from
Ref. [13] and “HPQCDþ HISQ JJ” is from Ref. [4]. The grey
shaded band indicates the world average (taking correlations into
account) of the nf ¼ 4 results and the lighter shaded band shows
the evaluation of 1.28(3) GeV from the Particle Data Group [66].
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Sec. I. The current-current correlator results are tagged with
“a,” “b” or “c” to denote different implementations of the
method; this will be discussed further below.
We can provide a new world average for m̄cðm̄cÞ

allowing for correlations between the two HPQCD results
by using the average given in Eq. (33) and then combining
in a weighted average with the ETMC result [20] and the
Fermilab Lattice/MILC/TUMQCD result [22]. The ETMC
result (using the RI-MOM approach in the twisted mass
formalism), 1.348(42) GeV, is nearly 2σ from the HPQCD
results and uncorrelated with it. The Fermilab Lattice/
MILC/TUMQCD result is 1.273(10) GeVand is correlated
with the HPQCD JJ result because it uses the HPQCD
determination of αs obtained concurrently with mc in
Ref. [12]. The correlation coefficient between αs and mc
is given there as 0.16. Since the uncertainty in the Fermilab
Lattice/MILC/TUMQCD result is strongly dominated by
that from αs we apply a correlation coefficient of 0.16
between that result and the HPQCD average. The HPQCD
average will be slightly less correlated with it than the JJ
result alone. This allows, however, for some further
correlation through the fact that all of these calculations
use some of the same sets of gluon field configurations and
are done with the same quark formalism, although different
lattice QCD quantities are calculated and the lattice spacing
was fixed and quark masses tuned in a different way.
The weighted average of lattice QCD results including

four flavors of sea quarks is then

m̄cðm̄c; nf ¼ 4Þ2þ1þ1 av: ¼ 1.2753ð65Þ GeV; ð34Þ

shown as the dark shaded band on Fig. 12. The average
has a poor χ2=d:o:f. of 3 because of the tension between
the ETMC result, which has almost no impact on the
average, and the other three values. Our dark shaded band
is a somewhat narrower band than the evaluation given in
the Particle Data Tables [66], shown as the lighter
shaded band.

B. World average for m̄sð2 GeVÞ
Figure 13 provides a comparison of lattice QCD results

for the s quark mass in the MS scheme at a scale of 2 GeV.
Results are given for calculations with four flavors in the
sea (as here) and also three flavors in the sea. There is very
little difference (0.2 MeV, with nf ¼ 3 larger) between
these from perturbative QCD. Again results for two flavors
in the sea are not shown since they cannot be connected
perturbatively to the more realistic three- and four-flavor
results. There is reasonably good overall agreement
between results using current-current correlator methods
or the MRS scheme and mc=ms ratios and those using
RI-MOM and RI-SMOM intermediate schemes directly
for ms, as well as between results using a variety of
quark formalisms. Our new RI-SMOM result, however,
shows a 2.7σ tension with the earlier RI-SMOM result from

RBC/UKQCD [69] using domain-wall quarks. In Ref. [69]
the RI-SMOM implementation was slightly different, using
the vector current vertex to fix Zq. Two values of the lattice
spacing were used but only one value of μ (3 GeV) and
possible nonperturbative effects were not included in the
analysis or allowed for as a systematic uncertainty.
We can determine a new world average for the

results from four-flavor calculations allowing for corre-
lations between the two different HPQCD results and the
Fermilab/MILC/TUMQCD MRS result. We combine
them at 3 GeV where we have correlated the breakdown
of errors in the HPQCD results in Eq. (31). There we take
the uncertainties associated with fitting/scale setting from
the Fermilab/MILC/TUMQCD result to be 100% corre-
lated with the HPQCD results (an overestimate given the

FIG. 13. Comparison of lattice QCD results for
m̄sð2.0 GeV; nfÞ. Results are listed chronologically and divided
into those obtained on gluon configurations that include nf ¼ 3

(blue symbol) or nf ¼ 4 (red symbol) flavors of quarks in the sea.
The nf ¼ 4 results should be 0.2 MeV smaller than nf ¼ 3 from
QCD perturbation theory matching for adding/removing a c sea
quark. Different symbols denote different methods: open trian-
gles use the current-current correlator (JJ) method combined with
a nonperturbative determination of mc=ms, open diamonds use
the RI-MOM intermediate scheme, open circles use the
RI-SMOM intermediate scheme and open squares use the
MRS scheme combined with a nonperturbative determination
of a mass ratio between heavy and s quarks. Labels on the right
indicate collaboration name, quark formalism and method. The
result denoted “HPQCD HISQ RI-SMOM” is this work, “FNAL/
MILC/TUM HISQ MRS þ mh=ms” is from Ref. [22], “HPQCD
HISQ JJ þ mc=ms” (red) is from Ref. [12], ‘ETMC RI-MOM” is
from Ref. [20], “MP(hotQCD) HISQ JJ þ mc=ms” is from
Ref. [16], “RBC/UKQCD DW RI-SMOM” is from Ref. [69]
(note that this uses a different method to fix Zq than is used here),
“BMW clover RI-MOM” is from Refs. [70,71], and “HPQCD
HISQ JJ þ mc=ms” (blue) is from Refs. [13,17]. The light grey
shaded band shows the evaluation of 96ðþ8;−4Þ GeV from the
Particle Data Group [66]. The dark grey shaded band gives the
weighted average (allowing for correlations) of the nf ¼2þ1þ1

results as described in the text.
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different methods used) but take αs and statistical uncer-
tainties to be uncorrelated, ignoring the relatively small
correlations between the uncertainty coming from αs
(which does not dominate in this case) and a part of
the HPQCD JJ errors coming from mc. We combine this
with the uncorrelated ETMC result run to 3 GeV. This
average gives 0.08393(43) GeV with a χ2=d:o:f. of 2.5.
Inflating the uncertainty by

ffiffiffiffiffiffiffi
2.5

p
to take account of this

more general tension, and running down to 2 GeV gives

m̄sð2 GeV; nf ¼ 4Þ2þ1þ1 av: ¼ 0.09291ð78Þ GeV: ð35Þ

This is given as the dark shaded band in Fig. 13 to be
compared to the light shaded band of the evaluation in the
Particle Data Tables [66]. The Particle Data Tables result
seems unduly pessimistic about our level of knowledge of
the s quark mass and has a high central value, given the
accuracy of lattice QCD results now available.

C. Future

Although these results are accurate, it is worth asking
what the prospects are for reducing uncertainties further in
the future. The original current-current correlator method
(method a) [4] used lattice QCD results for quarks tuned to
the c mass only and so one of the largest sources of
uncertainty was from missing higher-order terms in the
perturbative series for time moments because the scale of αs
was related to mc. Subsequently (in method b) [13] heavier
quark masses were included, giving access to mb but also
reducing the perturbative uncertainty because the combined
fit now included αs terms evaluated at higher scales. The
newest variant, method c [12] also includes results for
quarks with heavier masses than c. By making use of quark
mass ratios, mc is then determined through a perturbative
series for the time moments in which the scale of αs is set
by the heavier quark masses. This method then offers the
potential to reduce the perturbative uncertainty by working
on yet finer lattices where a given value of quark mass in
lattice units corresponds to a higher quark mass. This will
also reduce the sizable uncertainty from the a → 0 extra-
polation.
For the RI-SMOM intermediate scheme method used

here, the largest sources of uncertainty are those from the
bare tuned lattice quark masses which in turn depend on the
determination of the lattice spacing. Working on finer
lattices could cut this uncertainty significantly since the
lattice spacing is fixed from fπ in the continuum and the
physical u=d mass limit [55]. The impact of missing
higher-order terms in the SMOM to MS matching would
be reduced by going to higher μ values and this is also
possible on finer lattices. At the same time this would also
reduce the impact of nonperturbative contributions since
they fall rapidly with μ.
In conclusion, lattice QCD now has three very different

methods for determining quark masses at an accuracy of

1% or better. They yield consistent results for m̄cðm̄cÞ and
m̄sð2 GeVÞ. We have given here a particularly strong test of
the consistency of the current-current correlator and RI-
SMOM methods. Lattice QCD calculations are then well
on the way to providing the accuracy needed for stringent
future tests of the Standard Model.
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APPENDIX A: PERTURBATIVE MATCHING
FROM SMOM TO MS FOR NONZERO

SEA QUARK MASS

We have defined our SMOM scheme to have massive
sea quarks so that we can work at physical sea quark
masses. We then need a perturbative matching from
SMOM to the MS scheme that allows for massive sea
quarks. Sea quarks do not appear in the matching
calculation until Oðα2sÞ and even then they contribute
only a very small part to that coefficient. Given the very
small changes that we expect, we need only to consider
the case of the most massive sea quark that we have,
i.e., the c quark. We work close to the physical mass for c
and this in turn (in the MS scheme) is a sizable fraction of
μ for the μ values that we use. We might therefore expect
the α2s coefficient from the c quark in the sea to be
significantly different from that for a massless c quark.
Our results show that indeed this is true for μ close to our
lower value of 2 GeV but even so this has very little

impact on ZMS=SMOM
m .

The two-loop coefficient c2 of Eq. (8) can be decom-
posed into two terms: a contribution which is free of
internal sea quarks, Cnf¼0, and a contribution which
depends on them, CnfðmÞ. It can be written as

c2 ¼
1

ð4πÞ2 ½Cnf¼0 þ CFTFnfCnfðmÞ�; ðA1Þ

where CF ¼ 4=3 and TF ¼ 1=2 are the usual color factors.

The two-loop coefficient Cnf¼0 of Z
MS=SMOM
m as well as the

piece Cnfðm ¼ 0Þ which is proportional to the number of
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massless sea quarks has been determined in Refs. [25,26].
The result for Cnfðm ¼ 0Þ reads

Cnfðm ¼ 0Þ ¼
�
83

6
þ 40

27
π2 −

20

9
Ψ0
�
1

3

��
¼ 6.020…;

ðA2Þ

where Ψ0 is the derivative of the digamma function. For a
massive internal quark the result for Cnfðm ≠ 0Þ depends
on the ratio μ2=m2. For very heavy quarksm ≫ μ the result
for Cnfðm ≠ 0Þ can be obtained in terms of an expansion in

μ2=m2 where the leading term reads

CnfðmÞ ¼ −
89

18
þ log

�
μ2

m2

��
26

3
þ 8

9
π2 −

4

3
Ψ0
�
1

3

��

− 2log2
�
μ2

m2

�
þO

�
μ2

m2

�
for m → ∞: ðA3Þ

It can be derived with the help of the QCD decoupling
functions. In order to access the complete mass depend-
ence, we also have calculated the exact result, which is
valid in any mass region. It is plotted in Fig. 14. We have
checked by computing power corrections in μ2=m2 to
Eq. (A3) that the expansion coincides as expected with
the exact result for large values of m.
If we take m̄cð3 GeVÞ from Ref. [12], then the values of

the ratio μ2=m̄2ðμÞ for μ ¼ 2, 2.5, 3, 4 and 5 GeV read
μ2=m̄2ðμÞ ¼ 3.4, 5.9, 9.3, 18.6 and 31.5. Table VII gives
the resulting shifts ΔCm in Cnf from them ¼ 0 result to the
result that we need, which includes a massive c quark, at
these five values of μ.

We also give the resulting shiftΔc2 in c2 of Eq. (A1). We
can see from Table VII that the only significant effect is for
μ ¼ 2 GeV where the shift is about 40% of the α2s
coefficient. This coefficient is very small, however, and

so the impact of this shift on ZMS=SMOM
m is also very small

(less than about −0.2%). We use the results in Table VII to

shift the values of ZMS=SMOM
m used in order to convert our

SMOM results to the MS scheme in Sec. V.

APPENDIX B: OPE FOR THE SCALAR
VERTEX OPERATOR

The operator

Λ̂S ≡ −
Z

d4xd4yeip
0·y−ip·x

× T

�
ψ̄bð0Þψbð0Þ

1

12
TrðS−1ðp0ÞψaðyÞψ̄aðxÞS−1ðpÞÞ

�
ðB1Þ

has the vacuum expectation value TrΛSðp; p0Þ=12 that we
use to define ZS in Eq. (6). Here a and b are color indices
(summed over). For the symmetric kinematic configuration
that we use, p2 ¼ ðp0Þ2 ¼ ðp − p0Þ2 ¼ −μ2 with μ large,
the operator is truly short distance and has an OPE
expansion in terms of local operators of increasing dimen-
sion multiplying inverse powers of μ:

Λ̂S ¼ c1ðμÞ1þ cΛS

A2 ðμÞA
2

μ2
þ… ðB2Þ

On taking the vacuum expectation, the first term yields the
perturbative expansion and the second and higher terms
give power-suppressed nonperturbative contributions. To
determine the coefficients of these latter terms, matrix

2/m2µ
0 5 10 15 20 25 30 35 40

(m
)

 fn
C

2−

0

2

4

6

8

10

3.4 5.9 9.3 18.6 31.5

(m=0)
 fnC

FIG. 14. The coefficient Cnf which enters the ZM̄S=SMOM
m factor

at Oðα2sÞ as a function of μ2=m2 for a massive sea quark of mass
m. The dashed, blue line shows the m ¼ 0 result. The solid, red
line shows the exact result of a numerical evaluation of the
contribution which is valid across the full range of m values. The
vertical lines denote the location of the different μ2=m2 values,
which are used in this section.

TABLE VII. Changes to the α2s coefficient of the perturbative

matching factor ZMS=SMOM
m as a result of having a massive c quark

in the sea. The second column gives the change in Cnf , i.e.,
ΔCm ¼ Cnf ðmÞ − Cnf ðm ¼ 0Þ (for nf ¼ 1); the third column

gives the change in the α2s coefficient c2 [Eq. (8) and Table I] for
five different values of the scale parameter, μ, which is given in
the first column. In the fourth column we give values for αs in the
MS scheme at each value of μ. These are obtained by four-loop
running in the MS scheme from a value of 0.2128(25) at a scale of
5 GeV with nf ¼ 4 [12].

μ (GeV) ΔCm Δc2 αMSðμ; nf ¼ 4Þ
2 −3.6 −0.015 0.3030(54)
2.5 −2.3 −0.010 0.2741(43)
3 −1.6 −0.007 0.2545(37)
4 −0.9 −0.004 0.2291(29)
5 −0.5 −0.002 0.2128(25)
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elements of Λ̂S can be taken between states for which the 1
operator gives zero. For example, the scattering amplitude
between low-momentum gluon fields with k2 → 0 and
k · ε ¼ 0 can be evaluated for both sides of the OPE.
The left-hand side gives

hΛ̂Si ¼ −παsCF

Z
k
Tr

�
γρ

i
p0 − =k −m

i
p − =k −m

γσ

�
ερ1ε

σ
2

¼ παsCF

μ4
Tr½=ε1p0p=ε2�

¼ −
2παsCF

μ2
ε1 · ε2 ðB3Þ

on averaging over directions of the external momenta. The
right-hand side gives

hOPEi ¼ 8cΛS

A2

μ2
ε1 · ε2: ðB4Þ

Hence

cΛS

A2 ¼ −
παsCF

4
: ðB5Þ

Note that it is clear from this that the pseudoscalar vertex
would have the same coefficient for the leading condensate
contribution and hence this will vanish from the difference
ΛS − ΛP, as we illustrate in Fig. 3.

A parallel analysis can be done for the operator

Σ̂≡ −i
p2

Z
d4xeip·x

× T

�
1

12
TrðpS−1ðpÞψaðxÞψ̄að0ÞS−1ðpÞÞ

�
ðB6Þ

whose vacuum expectation value is TrðpS−1ðpÞÞ=ð12p2Þ.
We use this to define Zq in Eq. (4). Scattering from low-
momentum gluons gives

hΣ̂i ¼ −
iπαsCF

p2

Z
k
Tr

�
pγρ

i
p − =k −m

γσ

�
ερ1ε

σ
2

¼ 2παsCF

μ2
ε1 · ε2: ðB7Þ

Equating this to the result from the matrix element of the
OPE, ð8cΣA2=μ2Þε1 · ε2, gives

cΣA2 ¼ παsCF

4
ðB8Þ

in agreement with results (for the expansion of the quark
propagator) in Refs. [36,63,64].
We use the ratio of vacuum matrix elements of Λ̂S

and Σ̂ to define Zm [Eq. (6)]. Hence the leading condensate
contribution in Zm has a coefficient at OðαsÞ of cΛS

A2 − cΣA2 ,
i.e., 2παs=3.
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