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Abstract 

These lectures introduce the family of Hybrid Stochastic Algo- 
rithms for performing Monte Carlo calculations in Quantum Field 
Theory. After explaining the basic concepts of Monte Carlo integra- 
tion we discuss the properties of Markov processes and one particularly 
useful example of them: the Metropolis algorithm. Building upon this 
i&nework we consider the Hybrid and Lang&n algorithms from the 
viewpoint that they are appr oximate versions of the Hybrid Monte 
Carlo method; and thus we are led to consider Molecular Dynamics us- 
ing the Leapfrog algorithm. The lectures conclude by reviewing recent 
progress in these areas, explaining higher-order integration schemes, 
the asymptotic large-volume belmviour of the various algorithms, and 
some simple exact results obtained by applying them to free field the- 
ory. It is attempted throughout to give simple yet correct proofs of 
the various results encountered. 



1 Introduction 

The problem addressed in these lectures is how to evaluate a functional in- 
tegral numerically, especially in the presence of fermion fields. To be more 
specific, we want to evaluate the expectation value of some interesting op- 
erator R which depends on some fields which we shall generically denote 

by 4 

(ct) = ; /[d+w-@), (1) 

where the action is S and the measure is [d$] (which may be Lebesgue mea- 
sure for scalar fields, Haar measure for gauge fields, etc.). The partition 
function 2 is chosen such that (1) = 1. We shall assume that the functional 
i~ntegral is regularized and thus well defined - throughout we shall implictly 
work on a finite lattice and not worry about the subtleties of taking ther- 
modynamic and continuum limits. We shall also work from the outset in 
Euclidian spacetime. 

2 Monte Carlo Integration 

The basic technique for the numerical evaluation of infinite-dimensional in- 
tegrals is that of Monte Carlo integration [1,2]. We generate a sequence of 
field configurations ($I,&, . . . , &, . . . , &) each chosen from the probability 
distribution 

P(lj,)[d&] = L-s(“)[d&]. 
z (2) 

On each configuration in this sequence we measure the value of 0, and we 
form the average 

n E g&2(&). (3) 
t-1 

The law of large numbers then tells us that under some very general condi- 
tions the configuration average converges to the desired expectation value, 
(a) = limr,, Si, and the central limit theorem says that under only slightly 
more restrictive assumptions the distribution of values for 0 tends to become 
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Gaussian with a variance falling as l/T, 

(sl)=l=i+0 5 
( 1 

(T+w) (4) 

These theorems are easily established. The distribution of 51 is 

PI(W) = / hV’(~) 6b - n(4)l (5) 

(i.e., the quantity on the left is the probability density that n(4) takes the 
numerical value w when averaged over the distribution of 4 configurations). 
Let us take the Fourier transform of ~1, and consider the quantity 

WI(~) E ln/dwpl(w)t?’ = ln/[d#‘(4)e’k”(4) = ln(e’k”) (6) 

which is the generating function for the connected moments’ of R: 

W,(k) = (ik)(i2) + y ((w-li)‘)+~((fw)“>+ 

+@-g[((n-(n))‘)-3((fP)-(qy]+~~~, (7) 

where we assume that the distribution is sufficiently well behaved that this 
expansion is convergent. 

The distribution of the average n is 

m(O) = /[d~,l...[d~lP(~,)..,P(~T)6 [a - ~‘&q~] , (8) 

so we may define the connected generating function 

WT(k) E In / & pT(a)eib 

= ln~bV~1 . ..[d~~lP(~~)...P(~T)exp ($ in(&)) 

= In [/[d4]P(q3)e@(d)]T 

= Tln(eik”jT) = TW,(k/T). (9) 
‘Ah known a.9 cumul4nti. 
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Expanding in powers of k we obtain 

W*(k) = (ik)(n) + $ ((R-(R))l)+~((n-(ni)))+...i (10) 

and upon taking the inverse Fourier transform we find 

&,J) = & J &eWdk)e-‘k* 

1 
=2x J ( dk exp ik(R) + g ((~-(~,)s)+~(~))e-ik~ 

The distribution of fi thus tends to 6(fi-(a)) as T ---t oo, and to the next or- 
der in l/T it is the Gaussian distribution of Eq. (11) which has variance V/T. 

3 Fermion Fields 

Fermion fields are somewhat different entities from boson fields because they 
are Grassmann-valued. This means that e-’ is not positive definite, and 
thus if we were to try to carry out a Monte Carlo integration directly on 
the Grassmann-valued fields by keeping track of all the necessary signs large 
cancellations would occur and the result would have a huge variance. To 
avoid this problem we make use of the fact that fermion fields occur only 
quadratically in four dimensional renormalizable field theories and thus we 
can carry out the Grassmann integrations explicitly in favour of a non-local 
determinant: 

where 

s = &3(d) + w(4)+ 03) 
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and the operator R has been expressed solely in terms of the bosonic fields 

nt= n (A$;) e~~j=n=o 
One way to proceed would be to include the obnoxious fermion determi- 

nant as part of the operator being measured 

Unfortunately this approach fails, for unless the effects of the fermions are 
so small that we do not care about them anyhow this ratio of “quenched” 
expectation values will have an intolerably large variance, as det(M) is an 
extensive quantity. To put it another way, if the fermion determinant is not 
negligible then selecting configurations using the “quenched” action is not 
an adequate form of importance sampling. 

It is usual, therefore, to eliminate the fermion determinant in favour of a 
functional integral over some new bosonic “pseudofermlon” fields 

0% = -& ~k44kdWl exp [-G(4) - x*M-‘(4)x] a’(4). (16) 

For this transformation to be valid all the bosonic Gaussian integals must 
converge, so all the eigenvalues Ai of the fermion kernel M must be positive 
(that is, Re Ai > 0). If they are not, we shall replace M with MtM, thereby 
doubling the number of fermion flavours [3,4]. We shall use MtM as the 
pseudofermion kernel from here on. 

4 Markov Processes 

The general Monte Carlo method solves the problem of evaluating infinite- 
dimensional integrals in an effective manner, but it leaves open one crucial 
question -how do we generate a sequence of configurations from some messy 
distribution like [d4]e-s(+)/Z? 

Suprisingly, there is a very simple method of doing this. Start from some 
arbitrary configuration ~~ and by some stochastic procedure generate a new 
configuration 4, with probability P(di -+ 41). Such a stochastic procedure, 
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in which a new configuration depends only upon its predecessor,* is called a 
Markov process, and it is ergodic if 

inf P($i + 4,) > 0. 
bi,Of (17) 

A distribution Q(d) is a fized point if the Markov process if 

J [d4lQ(4i)f’(4i + df) = [d4flQ(+f). (18) 

The reason why Markov processes are useful is revealed by the following 
fundamental theorem: If a Markov process P is ergodic then 

a 3 a unique fixed point Q, 

l the distribution of configurations will converge to this fixed point re- 
gardless of the starting distribution, 

l the convergence rate is exponential. 

To understand why this is true we construct the following metric on the space 
of probability distribution2 

d(Ql,Qz) = j[&l IQdd) - Qa(d)l . 

We shall show that the Markov process is a contraction mapping with respect 
to this metric, 

d(PQ1,PQa) 5 Cl- NQa, 91) with a > 0, (20) 

so the sequence (Q, PQ, P’Q,. . .) is C auchy. This, together with the com- 
pleteness of the space of probability distributions, suffices to prove the claims 
made above. 

‘Tbia is not really a restriction on the nature of the stochastic process (YJ we can always 
make memory of the “past history” part of the “current state” of the system. 

‘For pedanta: this is really a metric on the quotient space of probability distributions 
mod& the equivalence relation of equality almost everywhere. 
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The basic argument for P to be a contraction mapping is trivial, 

d(PQl,PQa) = /i44 ~/WI IQdd’1) - Qa(d’l) P(4’ -+ dj 

I I b4W$‘l IQd4”) - Qdd’l P(d’ + 4) 

= I WI IQd4”) - Qa(d”)l 
= d(Ql,Qa) (21) 

since by conservation of probability J[dcj]P(@ + 4) = 1. Unfortunately, this 
is not quite good enough to establish that the sequence is Cauchy, so we have 
to be just a little more sophisticated. 

Let Sk G (dlQl(c5) 3 Qs(d)}, then the distance considered before can be 
expressed as follows 

d(PQ1, PQa) = jWllj,+P#UQ4~~) - Qdd’)IJ=(# + 4) -I 

+/sJWl{Qd#) - Qa(V)lP(Q -+ 4) 

= 
1 (J 

[dd] [d4”llQ1(4’) - Qa(&‘)lP(d’ + 4) - 

-2 3” /b, WllQd4’) - Q4d’)IJ’(# + 4,> (2-4 

where we have used the simple identity 12 - yI = z + y - 2 min(r, y) where 
z,y 2 0. Since we are working with normalized probability distributions we 

have WlQ44) = .l’[d4lQ4d) = 1, 60 

~+WllQ44) - QddIl = jg-[ddllQ4#4 - Qa(4)I 

=- ’ ~bWllQd~) - Qdd)l = ;d(Q,,Q,), 2 (23) 

and thus 

d(PQ1,PQa) 5 d(Q1, Qx) [1- $ P(4’ --t d)] . (24) 
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5 Detailed Balance and 
the Metropolis Algorithm 

All that is left is to construct an ergodic Markov process which has the desired 
distribution [dgi]Q(d) G [dd]ems(+)/Z as its fixed point. 

A sufficient (but not necessary) condition is to make it satisfy detailed 
balance 

bWQ(4P(d + 4’) = bWlQ(W(4 -+ 41, (25) 

as is easily verified by integrating both sides with respect to qS. One simple 
way of implementing detailed balance is the Metropolis Algorithm’ [s] 

Q(4') P(++ 4’) = min l,m . [ 1 (27) 

If we naively follow the Metropolis procedure we select a candidate new 
configuration 4’ at random, and we either accept c5’ with the probability of 
Eq. (27) or keep the old configuration I# as the new one. The only constraints 
are that the probability of selecting # as a candidate starting from +4 must 
be the same as the probability of selecting 4 starting from 4’; and that we 
must have some non-vanishing chance of reaching any configuration, at least 
after some fixed number of steps, in order to ensure ergodicity. 

Suppose we choose candidate configurations a characteristic “distance” 
A away from the starting point. If A is large then most likely exp[-S(g) + 
S(d)] will be tiny and the step will almost always be rejected. Successive 
configurations will thus be highly correlated: in fact they will be the same. 
If A is small then the acceptance rate will be near to unity, but the system 
will take a random walk through configuration space and the autocorrelation 
time will still be long (- l/A’). 

‘There is nothing magic about this particular form, an equally valid alternative is 

Q(Y) 
JYb - $7 = Q(4) + Q(,$‘) 1 

which has a slightly lower acceptance rate but is sometimes easier to handle analytically. 
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6 The Hybrid Algorithm 

We wish to introduce a trick which allows large steps through configura- 
tion space, thus producing more-or-less independent configurations, whilst 
maintaining a large acceptance rate. 

We enlarge the space of field configurations by adding a set of “fictitious” 
momenta x(z) (one for each dynamical variable d(z)); on this fictitious phase 
space let us generate the joint (product) distribution 

P(qS,n)[dd][dn] = $j[dqi][drr]e-a(gs”) (28) 

where 

H(d,?r) G $a + S(4). (29) 

In order to update the (4,x) variables we may use the Hybrid Algo- 
rithm [6,7,8,9], which alternates the following two steps: 

l Momentum Refreahmentz choose T from a Gaussian distribution 

l Molecular Dynamics (10,11,12,13,14]: move around a contour of con- 
stant H according to Hamilton’s equations for some period of fictitious 
time 7s 

aa a.57 + = -- = -- 
84 w 

$Lg=r 
I 

(30) 

Each of these steps has P(4,,)[d4][d K as a fixed point, and combined they ] 
are ergodic. We shall delay a proof that Molecular Dynamics has emH as a 
fixed point until we consider the Hybrid Monte Carlo algorithm. 

7 The Hybrid Monte Carlo Algorithm 

It is hard to integrate Hamilton’s equations exactly, but we can be yet more 
devious. Instead of Molecular Dynamics we can choose any mapping on 
Uphase space” which is 
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s Reversible? f : (~&ST) H (@,r’) + f : (+‘,-r’) H (4, -?r); 

l Area presenting: [dd][dx] = [d#][d?r’]. 

Following f by a Metropolis accept/reject step we have a discrete procedure 
which has e-“[d+][d?r]/Z as a fixed point, as it satisfies detailed balance: 

[dc$] [ dn] e-H(ds*) min (~,e-~~) = [d~][drr’]e-a(“~“‘)min (1,e6*) (31) 

where 661 G H(#,n’) - H(&T). Thi s is the Hybn’d Monte Carlo algo- 
rithm [15,16]. 

If f conserves energy then 6H= 0 and the acceptance rate will be unity. 
Classical mechanics is just such a reversible, area preserving (Liouville’s the- 
orem), and energy conserving mapping, so we have also just given a proof of 
the validity of the Hybrid algorithm. 

The Hybrid algorithm generates exactly the correct distribution of con- 
figurations only if we integrate Hamilton’s equations exactly, if we integrate 
them approximately using some discrete time step & then errors will be in- 
troduced, so a correct Hybrid computation must also involve extrapolating 
to the zero step size limit. 

8 Leapfrog Integration 

Somewhat miraculously there are simple discrete integration schemes for 
Hamilton’s equations which are both reversible and area preserving. The 
simplest is the leapfrog scheme: 

77(h) = ?r(O) + k(O) 67 
a.5 

= 40) - $3 6r 

4(26T) = d(O) + &67)267 = $b(O) + a(6r)26r 

1 

(32) 

74267) = s(6r) + +(26r) 6~ = a(64 - z(26,) 6r 
a4 

‘The change of sign of the momenta ia of no fundamental significance; if we consider the 
mapping produced by following j with a momentum rcveraal then we have an operation 
which is reversible in the usual aens. 
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The Jacobian is 

det [ yy6j)] = det [g;;,;;;; y;~$’ $;,;;)q 

=,et[(: Y)(i 7)(: ;)]=I (33) 

just from the structure of the leapfrog equations. 
Using the leapfrog equations in the Hybrid Monte Carlo algorithm yields 

a method with 

l no step size errors for any 6r > 0 (in this sense it is an “exact” method); 

l long trajectories through phase space (r. = N 6r x 1); 

l large acceptance rates 

611 = 

1 

O(&‘) for one leaphog step 
O(6ra) for a trajectory of length r0 = 1; (34) 

l so and 6s are independent parameters. 

The “Hamiltonians” I&c used in the Metropolis step and HMD used in the 
leapfrog equations can be different, e.g., to take advantage of the “renormal- 
ization” of the parameters in the action caused by finite step size effects. 

8.1 Gauge Fields 

So far we have assumed that it is obvious what the dynamical variables 
are, and how to write down Hamilton’s equations for them. When there 
are constraints, such as for the non-linear c-model or gauge theories things 
are a little more complicated. We can impose the constraints using Lagrange 
multipliers [ll,S], but this is awkward in practice, and it is best where possible 
to write the fictitious equations of motion explicitly. For gauge theories this 
is possible [17], and furthermore one can even construct discrete leapfrog 
equations which respect the constraints [18,12,19,20]. For instance, for an 
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SU(n) gauge theory we may use the following leapfrog equations 

a(6r) = 40) -T [g(O)U(O)] 6r 

U(26r) = er(6z)asrU(0) 

~(267) = n(Sr) -T ;(26r)U(26r) 1 ) 67, 

where the link variables U E W(n), their conjugate fictitious momenta 
K E T.SU(n), the corresponding Lie Algebra, and T projects onto the space 
of traceless antihermitian matrices. 

The form of these equations obviously guarantees reversibility and the 
Jacobian, while no longer unity, is just that required to preserve Haar mea- 
sure. 

8.2 Fermion Fields 

For the pseudofermion fields introduced in Eq. (16) we have the action (fic- 
titious potential energy) 

S = SB(C$) + x’(M+M)-‘x. (36) 

As the x field occurs quadratically we can generate it using a Gaussian 
heatbath 

P(T))[dq] = +J.“[dtl] (37) 

by letting x = M+(#)q, as then 

P(x)[dx] = {j[ddP(q) 6 (x - M’q)} [dx] = &x--‘tM)-Lx[dx]. (38) 

The equations of motion for the boson (gauge) field 4 are 

cj =iT 
a.9.q B 

+ =-a4 
- - x*&M+M)-‘X 

(39) 

= -fj$ + [(M+M)-‘x]’ $(M+M) [(M+M)-‘x] . 
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The time-consuming part of the computation is the evaluation of (MtM)-‘x, 
which entails the solution of a large set of linear equations. This is of course 
much easier than evaluating the fuIl inverse or determinant. The linear equa- 
tions are usually solved using the iterative conjugate gradient method. 

9 The Langevin Algorithm 

Consider the Hybrid Monte Carlo algorithm when we take only one leapfrog 
step. Combining the leapfrog equations (32) we obtain 

# =1#$26m-=(26,)’ 
2 8-d 

?y’ =++367. 
I 

(40) 

If 6r *: 1, and hence 6H = O(69) < 1, we may approximate this Langetin 
Monte Carlo algorithm [21,22] by dropping the Metropolis step. This means 
we do not need the w’ equation above, and we are left with precisely the 
usual Langevin equation [23,18,24,25,26,27] with Langevin time E = 4 6rr. 

The Hybrid (Monte Carlo) method is always more efficient than the 
Langevin (Monte Carlo) method if the cost per independent configuration 
is smallest for rs > 2 67 [28,9,29,30]. 

An interesting observation has been made by Mackenzie [31]. If it is 
meaningful to think of the system as having weakly coupled modes of different 
frequencies then it would not be unreasonable to take r0 to be of the order of 
the period of the slowest mode of the system in order to minimize correlations 
between successive configurations. However, for any ~0 larger than the period 
of the fastest mode there is a good chance that one Hybrid Monte Carlo 
trajectory will be very close to some multiple of the period of some mode of 
the system. We would then expect this mode to take a very large number of 
trajectories to relax, and thus we would not see any significant decrease in 
the autocorrelation time on taking rc > 1. Mackenzie suggests that suitably 
varying the trajectory length rs from trajectory to trajectory should eliminate 
this problem. 
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10 Asymptotic Behaviour 

The performance of the Hybrid Monte Carlo and related algorithms depends 
on the nature of the theory to which they are being applied, but we can learn 
something useful about the simplest case, where we take the lattice volume 
to infinity while keeping all the parameters in the action fixed [32,33,29]. 

The Hybrid Monte Carlo partition function is 

z = 
/ 

[dl$][dn]P(~*“). (41) 

We rewrite this in terms of the variables (#,w’) at the end of a Molecular 
Dynamics trajectory, and use the fact that [&A][&] = [d@][dn’]: 

z = [&‘][(qe-Wd = 
I I 

[@][&+-m”w (42) 

to prove that (eeda) = 1. 
Since e” is a convex functions Jensen’s inequality is satisfied,’ so (eesa) 2 

e-(68), which in turn implies that (6H) 2 0. In other words 6H cannot 
decrease on average; the best that can be done is to conserve energy, which 
is what classical mechanics does. 

Expanding in powers of 6H, which corresponds to a small 6r expansion, 
gives 

(6~) = i(68’) + o(6P). (43) 

This result wilI prove very useful in the sequel. 
For Langevin Monte Carlo the energy change after one step is 

2ir5a3.5 -- 
3 a@ 

69 + 0(6r’), (44) 

so Eq. (43) tells us that 

(6H) = ; ((2+$$ - =+‘) + O(697. 
3 w 

(45) 

“Any function f whose second derivative is positive on an interval, f”(z) > 0 VZ E 
(a, b), is convex on that interval f(z) 1 f(c) + f’(c)(z - c) Vz, c E (a, a). 

‘Take the average of the convexity condition with respect to any probability measure P: 
(f)@ 2 f(c) + f’(c)@ - c),, = f((z),,) since (l)r = 1 and setting e = (z),,. 
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To compute the acceptance rate we need to know the size of 68 on 
the individual configurations, rather than the average over the equilibrium 
ensemble. On a large enough volume, V > t’ where [ is the correlation 
length, the average over a single configuration behaves in a similar way to 
the ensemble average: to be definite we may expect 

(7r) - dv (2) - v (46) 

and so forth, thus the average over a single configuration m = C&6r3 + 
fC’V6r8 + . . . . Therefore in order to keep the acceptance rate fixed as we 
increase the lattice volume we must take 67 0: V-l/“. 

For 6r a 1 we require O(l/6rz) Lange& Monte Carlo trajectories to 
get uncorrelated configurations, so the cost grows as V’l’. 

The analysis for Hybrid Monte Carlo is very similar to that for Lange& 
Monte Carlo. The energy change per trajectory is larger, namely 

m = C&767’ + . . . + ;C2V6s’ + . . . , 

so 6s oc V-l/’ as V + 00 for a constant acceptance rate. If the Hybrid 
Monte Carlo trajectories are chosen to be of length rs !z I each trajectory 
may be assumed to be fairly uncorrelated with its predecessor, but we must 
take N = rs/Sr steps, so the cost grows as V’/‘. 

11 Higher-Order Integration Schemes 

In practice the coefficient in front of the V’l’ dependence of cost upon volume 
appears to be the contraining factor on currently feasible lattices, but it is 
very interesting to learn how to improve the asymptotic form as well. The 
technique for doing this is to find a higher-order analogue to the leapfrog 
equations Eq. (32) [34]. A very elegant way of doing this has been found by 
Campostrini [35], Creutz and Gocksch [36]. The leapfrog equations may be 
considered as a leading approximation to the exact solution of Hamilton’s 
equations 

h(Ar) = eEAr + RArs + 0( Ars), (48) 

where His the Hamiltonian operator acting on fictitious phase space, A is the 
operator defined by the leapfrog equations, and R is an operator which is the 
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coefficient of the next term in the expansion in powers of hr. Consider now 
a “wiggle” consisting of a leapfrog step forwards of size AT, a step backwards 
of size uAr where o is a judiciously selected constant, and then another set 
forwards of size AT. The reversibility and area-preserving properties of A 
immediately imply that the ‘wiggle” is also reversible and area-preserving; 
furthermore applying Eq. 48 to the wiggle we obtain 

A(Ar)A(---bAr)A(Ar) = eR(*-olAr + R(2 - a3)Ar3 + O(Ar”). (49) 

Clearly, the wiggle has a leading error of order AT’ if we take (r = a. 
In order to ensure that the wiggle moves the same distance throught phase 
space as the original leap we should also take (2 - a)Ar = 6~. 

This procedure can be applied recursively as many times as we like, pro- 
ducing a method which has errors of arbitrarily high order in 67, although if 
we bear in mind that a wiggle is more than three times as much work as a 
single leap we may make the naive estimate that the best asymptotic volume 
dependence is proportional to V exp m, which grows more slowly than 
any power of V greater than unity. 

12 Exact Results for Free Field Theory 

It is informative to study Hybrid Stochastic Monte Carlo algorithms for 
some simple models for which we can derive analytic form&e for their be- 
haviour [37,38]. For these models we should at least be able to make quanti- 
tative statements about the optimal choice of parameters for making specific 
measurements. Of course, the objection may be made that their behaviour 
for toy models has little bearing on what happens for non-trivial field the- 
ories but, perhaps suprisingly, a lot of interesting phenomena already show 
up even for these simple cases. 

12.1 Uncoupled Harmonic Oscillators 

We may start by considering a set of V uncoupled harmonic oscillators (in 
fictitious phase space) described by the Hamiltonian 

H = ; & + to;&. i-1 
(50) 
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The leapfrog equations (32) reduce to 

pi(br) = pi(O) - Wfqi(0)6T 

Pi(267) = %(O) + Pi(h)267 (51) 
pi(267) = p((ST) - Wjq~(26r)bT 

for this Hamiltonian; and the change in energy for this step is 

SH G H(26r) - H(0) (52) 

= T( 2W’q p 67’ + 2W,!(pT - W~qil)br’ - 4w~qipi67’ + 2wBq~6Ta iii 
> 

. 

The equilibrium acceptance probability for Langevin Monte Carlo is thus 

P *co = I 
dVq dVp ,-fihG) m;q 1, .@f) 

= $1-1 d~min(l,e-l)/dv~dvp~-a6(C - &H) 

= & I-- d( dq min(l,e-+‘“~F(7J), 
OD 

where 
F(q) E / dVq dVp e-a-i”sa = / d’q dVp e-a’. 

Because this is a free theory H’ is quadratic, hence 

H’=i(qi pi)M z 
0 I 

where h4 is the Hessian 

M = 

( 

wf - 4i?&br’(l- k$W) 2ivj+s3(1 - 2k@?) 
2i7+5T3( 1 - 2wjW) 1+ 4i?jwi’6s’ > ’ 

which leads to 

F(q) = (Zl~)~/&i-% 

= (2*)v fi {Wi [l + Bi7/(7/ + i)]}-I” 
i=l 

18 

(53) 

(54) 
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(57) 
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where B; = 4wfbP. 
We are thus lead to considering an integral of the form 

p .cc = (2n)V-’ z J - d,tdv &(I ,-t),i?t 
-1/a 

-ca 
(61) 

For & < 1 we may evaluate this integral, and we find 

(62) 

For Langevin Monte Carlo this becomes 

P... = erfc (6s3hG) , 

where we have introduced the quantity Q E + xi wf. 

(63) 

12.2 Free Field Theory 

Consider the one-dimensional free scalar field theory with action 

s = ; -$ qq-A2 + m2)& (‘34) 
z-1 

where A’ is the lattice Laplacian 

A”& = &+I + b-1 - W., (‘35) 

For Hybrid Monte Carlo we introduce the fictitious momenta x, and the 
Hamiltonian 

H = ; $ {n&v + #:(-A’ + ma)&}. (66) 
a-1 

In order to diagonalize this Hamiltonian we Fourier transform to “real” mo- 
mentum space 

(67) 

19 



and likewise for x,.s We find 

H = ; $y ($5 + +Qp} 
P-1 

where the frequency spectrum is 

1 1 w,rn +4s1n *I 7. 
( > 

The parameter IY in the acceptance rate is 

a* dji -J [ 0 G m’+4sin’ i ( >I s 

= 20+18m’+6m4+ms 

(68) 

(69) 

(70) 

(71) 

(72) 

as V --t co, with j E 2?rp/V. 
We may repeat the preceding arguments for the the higher-order integra- 

tion scheme of section 11, albeit with a lot more algebra: We find 

det M = T];wf [l + ~~“6~‘~ x 
I 

X{V(T +i)&(120 + 96fi+ 75s) + O(w@‘)}] 

= nw.’ [l + 5.9W;06T’0T/(Tj + i)] + O(br’“), (73) 
i 

which gives immediately that Bi x 5.9w~‘6r1’, and hence 

P .CI = erfc (0.85 ST’%&) (74) 

where now v E + Ci wi”. For free field theory Q = 252 + 350m’ + 200m4 + 
60719 + 10ms + m”. 

aThat is, we introduce a momentum space representation for the fictitious momenta. 
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12.3 Hybrid Monte Carlo 

It is simple to extend these Langevin Monte Carlo results to more than one 
leapfrog step. For n steps we find 

6H = 2n&ipJr3 + 2n%f(p; - wfq,?)&’ - 

--fn(4nZ - l)w;q;p;6P + 

ffd [(4nZ - l)q,l - (4nZ - 4)pf] WfbT~ + . f. ) (75) 

but substituting n = TO/ST in this expression is not a correct procedure to 
obtain the Hybrid Monte Carlo formula. 

For free field theory the leaphog step (51) is a linear map on phase space: 

(;‘,;;;) = ( l-2+: 
-2wfbr(l - wi 69) 

2sr ) (;;“o;) . (76) 
1 - 2wtw 

Iterating this map n times, setting n E ro/6r, and Taylor expanding in 6~ 
leads to the following determinant for the Hessian M of H’: 

detM = II~f[l+~~~~‘~(~+i)t(3-3~0~(4~~r,)t 

+ (3w,l - 3w,l cos(4w;ro) + 2rOwp sin(4w;ro)) 6? + 

+0(6r’))]. (77) 

Using our previous formalism we have B; = #&‘[l - cos(4win,)] + O(&r6), 
and 

P... = erfc 6raJVa/2 
> 

, (78) 

with d = & cwf{l - cos(4u~rO)}. 
Using the free field spectrum 

CT = $$[m’ + 4sin” (?)I [l --cos (4+-z(g)] 

(79) 
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as V + 03. For m = 0 the integrsJ becomes 

c = &ldz sin’z[l-cos(8rosinr)l 

1 = -- 1 J&b) + 
4 2 

showing that there are oscillations in acceptance rate with ro. This phe- 
nomenon has been observed in Hybrid Monte Carlo computations for inter- 
acting four-dimensional field theories. 

Notice the interesting property that the spectral sums o all involve pos- 
itive powers of the frequencies wi: this means that the acceptance rate is 
dominated by the highest frequency modes. This is a hint that very signifi- 
cant improvements in Hybrid Stochastic algorithms may still be found. 
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