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gsNgs = 0 N ∼ 1 gsN � 1

Higgs branch

Microscopic D-brane picture

Multicenter “Coulomb” branch

Quiver multi-particles Supergravity multi-centers

Figure 1. The description of a D-brane system in different regimes of parameters where gs is the

string coupling and N is the total number of branes.

1 Introduction

One of the greatest successes of string theory has been to reproduce microscopically the

Bekenstein-Hawking entropy of several classes of supersymmetric black holes [1]. This is

supported by the idea that D-brane states describe the physics of black holes at low string

coupling gs. Investigating these two possible viewpoints: the microscopic D-brane picture

and the macroscopic supergravity picture, and using quantities which are protected under

change of gs, such as the BPS index or the entropy, have brought a better understanding

of the quantum structure of BPS black holes (see [2, 3] for reviews).

Type II string theory on a six-dimensional Calabi-Yau manifold with D-branes wrapped

on various cycles has been an extensively rich framework for state counting [4–7]. There

are essentially three regimes in which one can work, depending on the value of gs and the

number of D-branes N (see figure 1): the Higgs branch is the one supporting the microscopic

single D-brane picture of bound states and leads to exact results at infinitesimally small gs.

By increasing gs, two scenarios are possible. The most admitted one is that the majority

of the Higgs-branch states are recovered as single center black hole solutions. The second

possible scenario is that the D-brane charges gather in several centers forming a molecule-

like BPS bound states described by quiver quantum mechanics. We denote this branch as

the multicenter “Coulomb” branch.1 One can still define two regimes inside this branch:

the supergravity regime, valid as long as gsN � 1 where BPS states are well-described

as macroscopic multicenter configurations, and the quiver regime, in which the system is

described by a quiver quantum mechanics.2

In the present paper, we are interested in BPS solutions in the multicenter Coulomb

branch of type IIA compactified3 on T6 wrapped by QD6 D6 branes and three D2 branes

1The Coulomb branch is not the same as the Coulomb branch obtained by moving the D2 and D6 branes

away from each other. We are referring to the multicenter Coulomb branch where the separations between

the centers cannot be modified freely.
2See [8] for an exhaustive description of the different regimes.
3Some related investigation for Calabi Yau compactification has been performed in [9].
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wrapping three disjoint 2-tori for QD6 = 1 or 2. In the Higgs branch, the number of states

is 12 and 56 for QD6 = 1 and QD6 = 2 respectively [6, 10, 11]. At a generic point of

moduli space, the angular momentum of the microscopic D-brane states was found to be

strictly zero. Motivated by this result obtained in the regime where gsN � 1, and by the

fact that in the regime where gsN � 1 (when the black hole description is trustable) all

microstates of a single centered supersymmetric black hole carry zero angular momentum,

it was conjectured that microstates of such black holes continue to carry zero angular

momentum at a generic point of the moduli space.4

We test the conjecture in the multicenter Coulomb branch by building all the BPS

multicenter bound states with the same D-brane charges and by investigating their possible

moduli at infinity. Strictly speaking, we are in a multicenter Coulomb branch, far from the

supergravity regime (gsN � 1) and one should construct these configurations as solutions

of quiver quantum mechanics. However, thanks to the work done in [8, 12–16], one knows

that the conditions of existence for quiver BPS multi-particle solutions are exactly the

same as the ones for BPS multicenter solutions in the supergravity picture even if the

supergravity solution is not reliable. As long as the geometry is not considered, the picture

of charge vectors located at some centers still holds true for gsN � 1. Thus, for a counting

problem, one can use the supergravity framework which is more commonly understood to

build the BPS solutions and study their general properties.

A BPS multicenter solution is constructed by choosing a set of centers in a R3 base

space which carry magnetic and electric charges corresponding to branes wrapping cycles

of the transverse space and by choosing a set of moduli at infinity. Requiring the solutions

to be supersymmetric and free of closed timelike curves restricts significantly their number.

We consider only 16-supercharge centers following the intuition that black hole microstates

are built with maximally-supersymmetric objects [17]. ForQD6 = 1, we find exactly 12 BPS

multicenter solutions. We show that they can’t carry a non-zero angular momentum. This

is in sharp contrast with the usual belief that it is easy to add momentum to multicenter

solutions by slightly changing the moduli at infinity. From a supergravity point of view, it

means that the possible asymptotics of the solutions are significantly restricted to the one

preserving the zero angular momentum. In four dimensions, these solutions necessarily have

AdS2×S2 asymptotics. Furthermore, each solution can be dualized to a six-dimensional

D1-D5-P frame where it can have an AdS3×S3 asymptotics. However, the configurations

we construct cannot give rise to asymptotically flat solutions in any frame.

The AdS2 asymptotics of these geometries make them particularly interesting for the

following reason. The near-horizon region of an extremal black hole develops an AdS2 factor

and this region decouples from the rest of the spacetime. This enables one to compute many

physical black hole quantities, such as (quantum) entropy function [3, 18, 19], solely in this

near horizon region. Thus, an asymptotically AdS2 geometry, carrying appropriate charges,

can be thought of as replacing the horizon by some structures in the “near horizon” region.

It remains to be seen whether such “near horizon” structures can be thought of as “near

horizon limit” of some full fledged fuzzball geometry, which lives in the same asymptotically

4Which includes gs.
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flat ambient spacetime as the black hole. Despite this subtlety and the fact that we are

really working in a regime where gravity can not be trusted, finding exactly eSBH number

of such microstate geometries, does inspire curiosity about the possibility that they indeed

correspond to “near-horizon limit” of some fuzzball geometries.

Moreover, it has been argued in [20] that, in string theory, the ground states of the

CFT1 dual to AdS2 must break conformal invariance. Thus, their bulk duals which are

asymptotically AdS2 geometries must break conformal invariance by having a scale in the

IR. This argument eliminates the possibility that the single-center asymptotically AdS2

solution (which has an infinite throat and preserves conformal invariance in the IR) is

dual to any ground states of a non-trivial CFT1. Our work confirms this expectation:

from a microscopic counting the number of ground states of the CFT1 corresponding to

our D-brane system is 12. And indeed we have found exactly 12 asymptotically AdS2

bulk multicenter solutions. Furthermore, all these solutions have a scale, given by the

distances between the centers, and hence break conformal invariance in the IR, exactly as

predicted by [20].

In section 2, we review the picture of BPS multicenter solutions as charge vectors Γa
localized at centers in a R3 base space and we review the constraints on the bound states

we are looking for. In section 3, we review the state counting obtained in the Higgs branch

at gsN ≪ 1 [10, 11]. In section 4, we explain the technical details of our own construction

in the multicenter Coulomb branch. Finally, in section 5, we discuss the main features of

the 12 solutions, their description within the quiver-quantum-mechanics framework and

the extension of our construction to D-brane bound states with QD6 = 2.

2 BPS multicenter solutions

We would like to construct states with four supercharges carrying D-brane charges for

gs � 1 and N ∼ 1 in type IIA string theory on a T6. In this regime of parameters,

the states are described as multi-particle quiver bound states [8, 15, 16]. As explained

in the introduction, we prefer to use supergravity tools. This does not compromise our

analysis since we are interested in counting the number of states and in the charge profiles

carried at each center. At this level, both the supergravity and quiver frames give the same

results [12, 14, 16].

2.1 BPS multicenter solutions

We work in the context of type IIA string theory on a T 6 = T 2×T 2×T 2 at the low energy

limit gs � 1. We consider multicenter BPS solutions where each center can carry D0-

D2-D4-D6 charges wrapping the tori. They are stationary but generically non-static BPS

bound states with four unbroken supersymmetries. They are specified by charge vectors

Γa at each center and an asymptotic vector Γ∞ incorporating the moduli at spatial infinity.

We denote

Γa = (QD6, Q
1
D4, Q

2
D4, Q

3
D4;Q1

D2, Q
2
D2, Q

3
D2, QD0)a,

≡
(
qa, k

1
a, k

2
a, k

3
a; l

1
a, l

2
a, l

3
a,ma

)
, (2.1)

Γ∞ ≡
(
q∞, k

1
∞, k

2
∞, k

3
∞; l1∞, l

2
∞, l

3
∞,m∞

)
.
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The solutions can also be expressed in terms of a set of 8 harmonic functions in R3 (we

refer the reader to the appendix A for a description of the field content and the resolution

of the BPS equations.)

V = q∞ +
∑
a

qa
ra
, KI = kI∞ +

∑
a

kIa
ra
, LI = lI∞ +

∑
a

lIa
ra
, M = m∞ +

∑
a

ma

ra
, (2.2)

where I = 1, 2, 3 and ra is the three-dimensional distance from the ath center. They can

be incorporated to the charge and asymptotic vectors as

Γ ≡ (V,KI , LI ,M) = Γ∞ +
∑
a

Γa
ra
. (2.3)

The ten-dimensional type IIA metric is given by

ds2
10 = −I −1/2

4 (dt + ω)2 + I 1/2
4 ds(R3)2 +

3∑
I=1

I 1/2
4√
ZIV

ds2
I , (2.4)

where ds2
I is the internal metric of the Ith 2-torus, the ZI are the warp factors giving rise

to the three charges of the solution and I4 is the quartic invariant

I4 ≡ Z1Z2Z3V − µ2V 2. (2.5)

As it has been argued previously, the geometry given by (2.4) is not reliable in a regime

where N ∼ 1. In such a regime, the solutions should be seen as low-charge multi-particles

which does not significantly backreact (2.4). However, the conditions of validity derived

from the metric in the supergravity regime are still valid in the low-charge regime. Further-

more, from a holographic point of view, it is also interesting to have access to the geomet-

rical features of the multicenter solutions when they are sent to the macroscopic regime.5

To solve the BPS equations, the warp factors ZI and the 1-form ω are constructed as

follows,

ZI = LI +
1

2
CIJK

KJKK

V
,

µ =
1

6
V −2CIJKK

IKJKK +
1

2
V −1KILI +

M

2
, (2.6)

?(3)dω = V dµ − µdV − V ZI d

(
KI

V

)
,

with CIJK = |εIJK |.
All BPS solutions need to be free of closed timelike curves and Dirac-Misner strings.

The first condition requires the positivity of the quartic invariant I4 (see appendix A),

I4 > 0 . (2.7)

5This can be achieved by simply multiplying the charge vectors by a constant Γ′ = ΛΓ with Λ� 1.
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while the second restricts the inter-center distances rab [12],∑
b 6=a

〈Γa,Γb〉
rab

= 〈Γ∞,Γa〉 . (2.8)

We have defined a symplectic product 〈 , 〉 of 8-dimensional vectors A =
(
A0, AI , AI , A0

)
as

〈A,B〉 ≡ A0B0 −A0B
0 +AIBI −AIBI , (2.9)

The equations (2.8) are known as the bubble equations and impose strong constraints on

the space of solutions. The positivity of the quartic invariant is also a constraint which

is difficult to manipulate. For our analysis, we will apply different versions which have

been used in previous works. First, a necessary condition for the positivity of the quartic

invariant is to satisfy the three inequalities

ZIV ≥ 0 , I = 1, 2, 3 , µ →
r→∞

0. (2.10)

This condition is easier to derive and to check than (2.7). Moreover, in practice, it happens

to be a sufficient condition. Second, we will apply a conjecture which reduces the condition

regarding closed timelike curves to simpler algebraic conditions on the bubble equations

(we refer the reader to the section 3 of [21] for details).

Moreover, a generic BPS multicenter solution is stationary but not static. Its angular

momentum, ~J , is given by

~J ≡ 1

2

∑
a<b

〈Γa,Γb〉 r̂ab , r̂ab ≡
~ra − ~rb
|~ra − ~rb|

. (2.11)

The value of the angular momentum is closely related to the moduli at infinity of the

solution. Indeed, using the bubble equations one can show that

~J ≡ 1

2

∑
a

〈Γ∞,Γa〉~ra. (2.12)

Finally, being interested in specific D-brane charge configurations we express the quantized

asymptotic D-brane charges according to the charges at each center [22]. They can be

derived from flux-integrals of the RR gauge field forms C(1) and C(3) and their dual gauge

fields C(5) and C(7) (see appendix A)

QD6 =
∑
a

qa, QID4 =
∑
a

kIa, QID2 =
∑
a

lIa, QD0 =
∑
a

ma. (2.13)

2.2 Types of center

Since we are looking for BPS multicenter solutions with four supercharges, the choice

of charge vectors (2.1) is restricted to the one which preserves supersymmetry. The

maximally-supersymmetric centers are the two-charge supertubes and the Gibbons-

Hawking (GH) centers. They preserve 16 supercharges and the two U(1) isometries of

the three-dimensional base space. This is not an exhaustive list of possible string theory

objects. One can also imagine objects as wiggly supertubes, four-dimensional superstra-

tum and so on. They are less supersymmetric and they may break some of the U(1)

isometries [23]. Following the Bena-Warner ansatz [17], it is more likely that a system of

low or pure D-brane charges (2.13) is fully or largely made of maximally-supersymmetric

BPS objects.

– 6 –



J
H
E
P
0
6
(
2
0
1
9
)
0
1
1

2.2.1 Two-charge supertube centers

A two-charge supertube located at the ath center carries a dipole charge ka, two electric

charges Q
(b)
a with b 6= a and a momentum charge ma [24]. In other words, a two-charge

supertube of species I has a D0 charge, a D4 charge QID4 and two D2 charges QJD2 and

QKD2 where I, J and K are all different and between 1 and 3. Consequently, there are three

possible species of two-charge supertubes depending on which of the three possible D4

charges they can carry. If there is only one species of supertube in the center configuration,

the solution can be dualized to a smooth spacetime in six dimensions. Otherwise, multi-

supertube configurations are not smooth because each supertube sources different vector

fields and one cannot render the geometry smooth using a particular vector as Kaluza-Klein

vector, see [25].

As an illustration, let us consider a two-charge supertube of species 1 located at the

ath center with the charge vector Γa

Γa = (0, ka, 0, 0 ; 0, Q(2)
a , Q(3)

a , ma). (2.14)

In the analysis performed in [26–28], where it was derived that the condition to preserve

16 supercharges and the quantization of the charges require to fix the following parameters

ma =
Q

(2)
a Q

(3)
a

ka
, ka, Q

(2)
a , Q(3)

a , ma ∈ Z. (2.15)

In anticipation of what will follow, one can have supertube centers with some of its charges

being zero. For instance, on can construct a center with

Γa = (0, 0, 0, 0 ; 0, 0, Qa, ma), (2.16)

by simply imposing the D4 charge and one of the D2 charge of the supertube to be zero.

We can similarly have

Γa = (0, ka, 0, 0 ; 0, 0, Qa, 0). (2.17)

These types of centers should not be denoted as supertube centers since they are 16-

supercharge simple D-brane centers. However, in our construction, we will abusively use

the generic term “supertube center” even for these objects.

2.2.2 Gibbons-Hawking centers

A Gibbons-Hawking center (GH) is a smooth center which carries D0-D2-D4-D6 charges.

To be maximally supersymmetric, it has to satisfy the following additional regularity

constraint

lIb = −1

2
CIJK

kJb k
K
b

qb
, ma =

1

6
CIJK

kIbk
J
b k

K
b

q2
b

, qa, k
I
a, l

I
a, ma ∈ Z. (2.18)

Thus, a GH center located at the ath center has a charge vector

Γa =

(
qa, k

1
a, k

2
a, k

3
a ; −k

2
ak

3
a

qa
, −k

1
ak

3
a

qa
, −k

1
ak

2
a

qa
,
k1
ak

2
ak

3
a

q2
a

)
. (2.19)
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The BPS multicenter solutions we are considering are bound-states of a certain number

of such centers. They are sensible configurations when there are no Dirac-Misner strings

between centers and no closed timelike curves. This is achieved imposing the bubble

equations (2.8), which fix the positions of the centers, and the global bound (2.5). Provided

those conditions are satisfied, we have a physical solution. However, experience shows that

finding a set of appropriate parameters can involve a vast exploration.

2.3 The moduli at infinity

The moduli at large distance of a multicenter BPS solution are encoded by the asymptotic

vector Γ∞. From a macroscopic point of view, the constant terms in the harmonic functions

given by Γ∞ fix the asymptotics of the solution, which can be directly seen from the

behavior of the metric at large distance (2.4). For instance, it has been showed in [20],

that having no constant terms in the eight harmonic functions (Γ∞ = 0) corresponds to

asymptotically AdS2 multicenter solutions. An asymptotically flat R4,1 multicenter solution

can be obtained by having a constant term in each LI function and a constant term in

M (Γ∞ = (0, 0, 0, 0; 1, 1, 1,m∞) where m∞ is fixed to have
∑

a〈Γ∞,Γa〉 = 0 ). Last but

not least, a multicenter solution is asymptotically AdS3 in the dual six-dimensional D1-

D5 frame when one LI has a constant term turning on (Γ∞ = (0, 0, 0, 0; 1, 0, 0,m∞) for

instance) [29].

In a regime far from the supergravity regime N ∼ 1, the moduli at infinity Γ∞ loses its

geometrical meaning. However, one can still relate the microscopic multicenter solutions

we are building to their macroscopic equivalents by sending Γ → ΛΓ with Λ � 1 where

the geometry is trustable. So we can still relate our states to a certain type of asymptotics

and then determine their holographic meaning.

The different choices of moduli at infinity affect drastically the existence of a multicen-

ter solution because of the bubble equations (2.8) [30]. Moreover, they affect significantly

the value of the angular momentum (2.12).

In this paper, we will first build multicenter solutions with zero angular momentum
~J following the results in [10, 11]. According to (2.12), one can impose 〈Γ∞,Γa〉 = 0

for all centers. This does not necessarily imply that Γ∞ = 0 and that the solutions are

asymptotically AdS2. However, taking Γ∞ = 0 is always a possibility. Consequently, one

can just consider that 〈Γ∞,Γa〉 = 0 in all our computations and build the charge vectors

afterwards. Then, nothing stops us to test what moduli at infinity are indeed compatible

with those charges. In particular, one can try to impose some moduli at infinity which give

an angular momentum to the solution. This will give a non-trivial test to the zero-angular

momentum conjecture. What we will find will confirm the conjecture: no moduli at infinity

which gives angular momentum to our states are compatible with the charges.

3 Counting Higgs-branch states with pure D2 and D6 charges

In this section, we give a brief account of the state counting performed in [10, 11]. In

these papers the authors considered a D-brane system with four unbroken supercharges

in four dimensions, in a duality frame where all charges were Ramond-Ramond charges.

– 8 –
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This theory is obtained by compactification over a T6 and has 32 supercharges. Broken

supersymmetries give rise to 32 − 4 = 28 Goldstinos and 28 partner Goldstone bosons.

The Goldstones and Goldstinos can be arranged in 7 supersymmetric multiplets, in four

dimensional terminology. Due to these Goldstino multiplets, the Witten index vanishes. In

order to get something non-vanishing yet protected, one needs to consider the 14th helicity

supertrace [31, 32]

B14 := − 1

14!
Tr
[
(−1)2J3(2J3)14

]
. (3.1)

This essentially removes the contribution from the Goldstino multiplets and computes

Witten index in the rest of the theory.

Microscopically, this D-brane system comprises 3 stacks of D2 branes, along three

disjoint 2-cycles of the T6, and 1 stack of D6 branes along T6. In order to compute the index,

it suffices to have the knowledge of only low energy dynamics of this configuration. This is

described by a quantum mechanics living on the intersection point of the branes. Fields in

this theory correspond to massless strings stretched between various branes. The spectrum

can be arranged in 4 dimensional supersymmetric multiplets, with the understanding that

they are 0 + 1 dimensional fields. For the rest of the section, we use four dimensional

terminologies, with the understanding that everything is dimensionally reduced to 0 +

1 dimension.

The Lagrangian, L, has the following schematic form

L =

4∑
i=1

L
(i)
N=4 +

4∑
i,j=1
i<j

L
(ij)
N=2 + LN=1 , (3.2)

where i denotes the brane index. The first piece, L
(i)
N=4, denotes the N = 4 super Yang-

Mills theory living on the ith brane, preserving 16 supercharges. Although for different

stacks, these supercharges are different. The second piece, L
(ij)
N=2, denotes the interaction

of ith and jth brane, which preserves 8 supercharges. These two pieces are determined

by supersymmetry alone. Altogether these terms preserve only 4 supercharges, since each

of them preserve different supersymmetries. Supersymmetry allows for, but does not de-

termine, other interactions preserving 4 supercharges, denoted as LN=1. In [10, 11], the

authors considered few terms of LN=1 and argued that higher order terms, although cer-

tainly present, do not affect the index computation.

Computing B14, is same as computing the Witten index in the theory obtained by

throwing away Goldstino multiplets, which are non-interacting. In [10], authors identified

the Goldstones, which are bosonic counterparts of the Goldstinos, using physical reasoning.

The problem now reduces to one of computing Witten index in supersymmetric quantum

mechanics, which is known to be given by Euler number of the vacuum manifold. For small

charges, this was computed in [10, 11] and was found to be in agreement with existing

computations of the same in other duality frames [6].

Typically microscopic computations of the index are performed at a special point of

moduli space, and in such cases the index receives contributions both from bosonic and

– 9 –
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fermionic states. The computations of [10, 11] however required turning on some moduli

and therefore going to a more generic point of moduli space. Consequently, all the ground

states of the D-brane quantum mechanics were found to be bosonic, in particular they

carried zero angular momentum.6 This feature also holds for the regime of moduli space,

where the brane system is better described as a single-center7 supersymmetric black hole.

Such black holes are also known to carry zero angular momentum. In view of these facts,

the authors of [11] conjectured that at a generic point of moduli space, all microstates of

a single-center BPS black hole carry zero angular momentum.

4 Counting zero-momentum multicenter states with pure D2 and D6

charges

In this section, we investigate the same D-brane configuration in a different region of

parameters. We focus only on the space of BPS multicenter bound states even if it is

possible that some or even all the Higgs-branch states shift to different kinds of solutions

as single-center solutions once gs is turned on. To start with, we do not expect that counting

of the states in the multicenter Coulomb branch gives the same number as the counting in

the Higgs branch. Our procedure is to build the BPS multicenter solutions first and then

count them. Thus, we will be able to analyze directly the features of the solutions.

We build zero-momentum multicenter solutions with the following set of asymptotic

D-branes charges:

QD6 = 1, QID4 = 0, QID2 = 1, QD0 = 0 . (4.1)

With such low charges, the supergravity regime should not be valid and the geometry

of the center depicted in the section 2 should not be trustable. However, one can use

the supergravity solutions to count states. In [8, 12, 13, 15, 16], it has been shown that

BPS multicenter solutions with low charges can still be depicted by charge vectors (2.1)

satisfying the bubble equations (2.8) and a condition equivalent to the absence of closed

timelike curves (2.7). Consequently, one can still use the supergravity framework detailed

in section 2 to build all the multicenter solutions satisfying (4.1).

Our approach consists in scanning analytically or numerically all the valid multicenter

solutions formed by either GH or supertube centers starting with the family of three-center

solutions then the family of four-center solutions and finally the five-center solutions.8 The

growing complexity of the analysis does not allow to scan solutions with more than five

centers but we have a strong intuition that adding centers increases necessarily the global

D-brane charges of the solution. Thus, if solutions exist, they should consist in few centers.

The constraints which restrict the possible solutions are:

6The connection with angular momentum is made by identifying Lefschetz SU(2) of the vacuum manifold

with the SU(2) corresponding to rotations in R3 [8].
7A single-center 1/8 BPS black holes in N = 8 theory can fragment in two half BPS black holes, if

a certain inequality is satisfied by the charges carried by the black hole. The charge vectors considered

in [10, 11] were not of that kind.
8Two-center solutions with GH centers or supertube centers have 8 remaining supercharges. Hence they

do not correspond to the system we study.
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• The global D-brane charges (4.1).

• The bubble equations (2.8).

• The absence of closed timelike curves (2.7).

• The constraints at each center depending on the nature of the center (2.18) or (2.15).

We have found exactly 12 distinct three-center solutions satisfying all those constraints.

This matches exactly the microscopic counting. Readers interested only in the main ideas

of our analysis can skip the next subsections until section 4.4.

4.1 The family of three-center solutions

One needs at least one GH center in the configuration to have a non-zero D6 charge. We

divide our analysis in three subfamilies:

- Solutions with one GH center and two supertube centers.

- Solutions with two GH centers and one supertube.

- Solutions with three GH centers.

For the first subfamily, an analytic approach is possible. All the details of this analysis are

given in appendix B.1. The main result is that there exist 12 inequivalent solutions in this

subfamily. As for the second and the third families, the number of parameters makes the

analytic approach impossible. However, we have performed an efficient numerical analysis,

fully detailed in appendix B.2. We have scanned a significant part of the parameter space

of the solutions by varying each GH charge qa, k
1
a, k

2
a, k

3
a and supertube charge ka, Q

(b)
a

from -500 to 500. We didn’t find any solution satisfying all the constraints in this domain

of values.

In [33], the authors have tackled a similar issue by analyzing the parameter space of

three-GH center solutions whose the total D6 charge is three and the three D2 charges are

one. Interestingly, they have found that the total number of such multicenter solutions is

also 12. This is half a coincidence with our computation. Even if the three-center solutions

they study have a larger QD6,9 the form of their specific solutions are governed by the

same type of permutations giving rise to the 12 states we found here.

4.2 The family of four-center solutions

A four-center solution has more degrees of freedom than the previous solutions and the

constraints are more complicated to deal with. This makes any analytic investigation very

hard to perform. However, we have done a numerical analysis of the following subfamilies:

- Solutions with one GH center and three supertube centers.

- Solutions with two GH centers and two supertube.

- Solutions with three GH centers and one supertube.

- Solutions with four GH centers.

9Total number of microscopic states with QD6 = 3, QI
D4 = 0, QI

D2 = 1, QD0 = 0 is actually 208 [6].
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For each subfamily, we have analyzed a significant part of the parameter space by varying

all the parameters from −10 to 10. The details are given in the appendix C.1. Our final

result is that there are no valid solutions with four centers.

4.3 The family of five-center solutions

For five-center solutions, even a scan of the parameter space is complicated. This is prin-

cipally due to the number of parameters available and the complexity of the constraints.

However, we have been able to pick randomly a huge number of solutions with the right

global D-brane charges and check if they can satisfy the bubble equations and the absence

of closed timelike curves at the same time. We did not find any. This gives good intuition

that no solution with five centers exists as well.

4.4 Summary

We have analyzed analytically and numerically a huge number of BPS multicenter solutions

to find only 12 solutions satisfying all the constraints. This exactly matches the exact

counting of the 12 Higgs-branch states [10]. They are all recovered as Coulomb branch

multicenter bound states. They belong to the family of three-center solutions with one GH

center and two supertubes of different species. The 12 solutions are given in full detail in

table 1. Moreover, as explained in section 2.2, for most of the solutions found, the two-

charge-supertube centers are actually simple fluxed D-brane centers.10 For instance, the

six first solutions in table 1 have a GH center and two D4-brane centers with an induced

D2 charge. The six other solutions have one GH center, one two-charge-supertube center

and one simple D2-brane center with an induced D0 charge.

We do not have indisputable arguments that having more centers will not give rise to

other valid solutions but only good intuition. Usually, adding centers increases the global

D-brane charges. Another difficulty in adding centers follows from the fact that these

centers must carry negative D-brane charges, in order to keep the total D-brane charges

intact. However usually centers with negative D-brane charges are tricky, when it comes

to the ZI V ≥ 0, i.e. absence of closed timelike curves. For these reasons, we can consider

our analysis exhaustive even if we have analyzed configuration with few centers.

5 Discussion

5.1 Features of the twelve solutions

The 12 solutions found are all BPS three-center solutions formed by one GH center and two

other 16-supercharge centers. Although we looked for all possible center configurations, it

happens that the regular solutions we found have their centers lying on a line and hence

are all axisymmetric. The fact that the index is reproduced by counting configurations

with collinear centers was also observed in [34] and, given the very complicated algebra

that required our physical solutions to be collinear, we do not believe this is a coincidence.

The center configuration has also a rescaling symmetry rab → λ rab. This is a conse-

quence of having zero angular momentum which implies that the bubble equations have

no right-hand terms (2.8) and so a scaling degree of freedom. When the solutions are

10This means that some of D-brane charges of the two-charge supertube are zero.
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N◦ Charge vectors at each center

Γa = (QD6, Q
1
D4, Q

2
D4, Q

3
D4;Q1

D2, Q
2
D2, Q

3
D2, QD0)a

Center configuration

1

Γ0 = (1, 1, −1, 0 ; 0, 0, 1, 0)

Γ1 = (0, −1, 0, 0 ; 0, 1, 0, 0)

Γ2 = (0, 0, 1, 0 ; 1, 0, 0, 0)

1 0 2

rr

2

Γ0 = (1, −1, 1, 0 ; 0, 0, 1, 0)

Γ1 = (0, 1, 0, 0 ; 0, 1, 0, 0)

Γ2 = (0, 0, −1, 0 ; 1, 0, 0, 0)

1 0 2

3

Γ0 = (1, 0, 1, −1 ; 1, 0, 0, 0)

Γ1 = (0, 0, −1, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, 1 ; 0, 1, 0, 0)

1 0 2

4

Γ0 = (1, 0, −1, 1 ; 1, 0, 0, 0)

Γ1 = (0, 0, 1, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, −1 ; 0, 1, 0, 0)

1 0 2

5

Γ0 = (1, 1, 0, −1 ; 0, 1, 0, 0)

Γ1 = (0, −1, 0, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, 1 ; 1, 0, 0, 0)

1 0 2

6

Γ0 = (1, −1, 0, 1 ; 0, 1, 0, 0)

Γ1 = (0, 1, 0, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, −1 ; 1, 0, 0, 0)

1 0 2

7

Γ0 = (1, −1, 0, 0 ; 0, 0, 0, 0)

Γ1 = (0, 1, 0, 0 ; 0, 1, 1, 1)

Γ2 = (0, 0, 0, 0 ; 1, 0, 0, −1)

0 1 2

8

Γ0 = (1, 1, 0, 0 ; 0, 0, 0, 0)

Γ1 = (0, −1, 0, 0 ; 0, 1, 1, −1)

Γ2 = (0, 0, 0, 0 ; 1, 0, 0, 1)

0 1 2

Table 1. The 12 multicenter solutions with global D-brane charges (QD6, Q
1
D4, Q

2
D4, Q

3
D4;

Q1
D2, Q

2
D2, Q

3
D2, QD0) = (1, 0, 0, 0; 1, 1, 1, 0).
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9

Γ0 = (1, 0, −1, 0 ; 0, 0, 0, 0)

Γ1 = (0, 0, 1, 0 ; 1, 0, 1, 1)

Γ2 = (0, 0, 0, 0 ; 0, 1, 0, −1)

0 1 2

10

Γ0 = (1, 0, 1, 0 ; 0, 0, 0, 0)

Γ1 = (0, 0, −1, 0 ; 1, 0, 1, −1)

Γ2 = (0, 0, 0, 0 ; 0, 1, 0, 1)

0 1 2

11

Γ0 = (1, 0, 0, −1 ; 0, 0, 0, 0)

Γ1 = (0, 0, 0, 1 ; 1, 1, 0, 1)

Γ2 = (0, 0, 0, 0 ; 0, 0, 1, −1)

0 1 2

12

Γ0 = (1, 0, 0, 1 ; 0, 0, 0, 0)

Γ1 = (0, 0, 0, −1 ; 1, 1, 0, −1)

Γ2 = (0, 0, 0, 0 ; 0, 0, 1, 1)

0 1 2

Table 1. (Continued)

asymptotically AdS2, this scaling symmetry arises from the conformal invariance of the

dual theory (the only scale in the system is the one introduced by the breaking of the

conformal symmetry in the IR). When the solutions are asymptotically AdS3, then the

solutions with different values of the inter-center distances are physically inequivalent (the

solutions have two scales, one given by the distances between the centers and one given by

the constant in the harmonic function11).

We can now investigate what kind of moduli at infinity determined by Γ∞ are com-

patible with our multicenter solutions. The fact that microstates of black holes have nec-

essarily zero angular momentum at any point of the moduli space has been conjectured

in [11, 35, 36]. A single-center black hole solution clearly has this property. This is because

when defining the near horizon AdS2 path integral, that is needed to compute quantum

entropy function, one needs to fix the charges. And angular momentum appears as a charge

in this path integral. Nevertheless, one can also argue that a single-center black hole does

not correspond to any pure state of the CFT1 dual to AdS2 [20], and the zero-angular

momentum assymptotically AdS2 solutions dual to pure states of the CFT1 will have a

non-trivial angular momentum when embedded in asymptotically AdS3 geometries. This

is what happens in the solutions constructed in [20].

We would like to understand whether our 12 multicenter solutions can also develop

a non trivial angular momentum when embedded in an asymptotically AdS3 space, or

whether they are incompatible with ~J 6= 0.

11In a macroscopic supergravity picture, the second scale is the one where the AdS2 very-near-horizon

region begins.
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• There are moduli at infinity which preserve ~J = 0. As it has been discussed in

section 2.3, this implies that 〈Γ∞,Γa〉 = 0 for all the centers. Due to the numerous

zeroes in the charge vectors, there are many possible Γ∞. However, one needs to

carefully check that these Γ∞-s do not induce closed timelike curves. We give the

list of possible moduli at infinity compatible with our solutions. Because all the 12

solutions have similar properties, it suffices to list the possibilities corresponding to

the first solution in the table 1. We list only the interesting moduli at infinity and

their holographic meaning:

- Γ∞ = 0. As depicted in section 2.3, this corresponds to asymptotically AdS2

microstate geometries. The 12 bound states are thus holographically dual to

the 12 ground states of a CFT1. In [20], it has been argued that the “eS”

ground states of a non-topological CFT1 must break conformal invariance. So,

all their bulk duals must have a scale, as it is actually the case for multicenter or

superstratum solutions.12 A single-center asymptotically AdS2 solution does not

have any scale and thus should not be dual to any ground state of a non-trivial

CFT1. Our results corroborate this conjecture.

- Γ∞ = (0, 0, 0, 0; 0, 0, 1, 0). The meaning of this choice can be seen only from a

six-dimensional point of view in the dual D1-D5-P frame. In this frame, the

solution turns out to be an asymptotically AdS3 state.

Both kinds of moduli at infinity impose ~J = ~0 and do not have any impact on the

center configuration.

• There are also moduli at infinity which do not preserve the symplectic products

〈Γ∞,Γa〉 and therefore give rise to a finite angular momentum, ~J , without affecting

the D-brane charges. This type of moduli requires to solve once again the bubble

equations (2.8). Because the inter-center distances can be as small as possible, one

might expect that a change of 〈Γ∞,Γa〉 can be absorbed by a very small change of

distances in
∑

b
〈Γa,Γb〉
rab+δrab

. This is unfortunately not guaranteed especially for axisym-

metric multicenter configuration.13 Our multicenter solutions illustrate this feature.

One can prove that any moduli at infinity which has 〈Γ∞,Γa〉 6= 0 and which does

not induce closed timelike curves is incompatible with our solutions. Thus all our

solutions are incompatible with having a non-zero angular momentum.14

This corroborates in a different regime of gS the conjecture that every microstate of a single

centered supersymmetric black hole must have zero angular momentum at any generic point

of moduli space [11, 35, 36]. However, from an holographic point of view, the solutions can

be either asymptotically AdS3,15 or asymptotically AdS2 solutions.

12For multicenter solutions, the scale is determined by the inter-center distances.
13This particular issue will be treated in general in an upcoming paper [30].
14One might expect some twist in the story in the special case when angular momentum is 1/2. This is

because upon quantization, a classical configuration with angular momentum J3, is known to have angular

momentum J3 − 1/2. This implies classical configurations with angular momentum 1/2 would quantum

mechanically carry vanishing angular momentum. We do not explore this curious case in this paper though.
15When dualized to the D1-D5-P duaity frame in type IIB.
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For the particular choice of moduli at infinity Γ∞ = (0, 0, 0, 0; 0, 0, 1, 0), only 6 of the

12 solutions survive. Those are the solutions with K3 = 0, i.e. the solutions labelled by

1, 2, 7, 8, 9 and 10 in the table 1. The six others have unsolvable bubble equations. At

this particular point on the moduli space, one can wonder where the other 6 solutions are

to make the total number of solutions to be 12. Two scenarios are possible. The first one

is that at this point of the moduli space, there are only 6 multicenter solutions and the 6

others are of a different nature. The second one is that 6 brand new multicenter solutions

appear which reversely cannot be sent to the point of moduli space where Γ∞ = 0. This

interesting issue will be treated in future works.

5.2 Quantum effects

Thus far, our analysis has been classical. However the charges considered being small, one

might expect quantum effects to significantly modify our analysis. Of particular interest is

the fate of angular momentum when quantum mechanical effects are taken into account.

A classical configuration with angular momentum J3 is known to furnish a spin J3 − 1/2

representation of SO(3), when quantum effects are taken into account [8]. This makes the

present case, which corresponds to J3 = 0, particularly puzzling. Since there is nothing

called a spin −1/2 representation, either the angular momentum does not receive quantum

correction in this particular case, or there are no supersymmetric ground states correspond-

ing to the multicenter configurations carrying classically zero angular momentum.

To settle this question, one must analyse these multicenter configurations quantum

mechanically. The framework for this has been laid down in [8], where it has been shown

that such multicenter configurations (equivalently intersecting D-branes wrapping various

cycles of a Calabi-Yau threefold) are described by N = 4 quiver quantum mechanics. For

an exhaustive discussion, we refer the interested reader to [8, 16, 37–39].

Briefly, field content of a quiver quantum mechanics is encoded in a quiver diagram,

which has as many nodes as centers and as arrows between nodes. The ath node corresponds

to a vector multiplet with U(Na) gauge symmetry, with Na being determined by the charge

vector Γa. For primitive Γa, which is the case at hand, one has Na = 1. Thus we shall

restrict to Abelian quivers. For 〈Γa,Γb〉 > 0, there are 〈Γa,Γb〉 arrows stretching from ath

node to bth node, each corresponding to a hypermultiplets in the U(1)×U(1) bifundamental.

The dynamics of the fields is captured by a quiver Lagrangian fully determined by the

charge vectors, their intersection products, Fayet-Iliopoulos parameters (henceforth referred

to as FI parameters) and superpotential (when the quiver has loops).

Each of the 12 solutions corresponds to a three node Abelian quiver. For

each quiver, we define the unique triplet of integer intersection product (a, b, c) ≡
(〈Γi,Γj〉, 〈Γj ,Γk〉, 〈Γk,Γi〉) where i, j, k are three different integers between 0 and 2 in order

to satisfy a ≥ b > 0 and c > 0. Each quiver has a closed loop and (a, b, c) satisfies the

three triangle inequalities, a + b ≥ c and permutations. Three-nodes quivers have been

extensively studied in the literature, particularly the ones with a closed loop [8, 16, 38, 39],

for non-zero FI parameters. However we have vanishing FI parameters, which makes a lot

of difference. In the following we analyze the relevant quiver.
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All 12 solutions correspond to (a, b, c) = (2, 1, 1) or some permutations thereof. Thus,

the quiver under discussion is the following

1

1 1

YX

C1, C2

. (5.1)

The D-term equations read as follows

|X|2 − |C1|2 − |C2|2 = 0

|Y |2 − |X|2 = 0 (5.2)

−|Y |2 + |C1|2 + |C2|2 = 0 .

Following [38], we assume a generic cubic superpotential

W = wiXY Ci , (5.3)

which gives the following F-term equations

wiY Ci = 0, wiXCi = 0, XY = 0 .

The last equation requires either X or Y to vanish. But the second D-term equation

implies that both X and Y vanishes. The remaining D-term equations imply Ci = 0.

Thus, the moduli space is a single point and hence furnishes a spin 0 representation of

Lefschetz SU(2). Thus we indeed have one quantum ground state with vanishing angular

momentum. It is interesting to note that the vacuum preserves U(1) ×U(1).

In order to decide whether this should be counted as pure-Higgs state or not, it is

instructive to briefly describe the similar computation carried out in [38], but with non-

zero FI parameters. After one of the three variables has been set to zero, in order to

satisfy F-term equations, the D-term equations define a product of two projective spaces

and the remaining F-term equation define a complete intersection manifold in this product

of projective spaces. The Betti numbers of the complete intersection manifold, can be read

out from those of the ambient space, except middle cohomology, where there can be extra

states called “pure-Higgs states”.

In the present case, the FI parameters are zero and then the projective space collapses

to a point. Consequently, the cohomology of the ambient space consists of a single state,

which lies in the middle cohomology. So it is not very clear whether to count this state

as pure-Higgs or not. We have however showed that each of the 12 quivers has only one

ground state which hopefully leave the total of 12 states as expected from [10, 11].

The argument for general (a, b, c) is not very different as discussed in appendix E.
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5.3 The solutions with QD6 = 2

As it has been done in [11], one can extend our construction to compute the number of

BPS states in supergravity framework with global D-brane charges:

QD6 = 2, QID4 = 0, QID2 = 1, QD0 = 0 . (5.4)

The index is known to be 56 for these charges [6, 11]. We have been able to find only

18 BPS bound states formed by three centers similar to the ones described in section 4

and 12 BPS unbound states formed by four axisymmetric centers. The special aspect of

those 12 unbound states is that one of the centers does not interact with the other centers

and can be placed anywhere on the axis of the center configuration. We did not consider

these solutions because they are similar to the “real Coulomb” branch where the centers

can move freely. Since we did not count the unbound Coulomb-branch configuration with

non-interacting D6 center and three D2 centers, we are not counting these unbound states

either. The charge vectors of the 18 three-center bound states are given in table 2 in the

appendix D.

One can also describe the 18 states as three-node quivers with a closed loop and

vanishing FI parameters. The only difference is that for QD6 = 2, 9 solutions are given by

the triplet (a, b, c)=(3,2,1) and the 9 others give (a, b, c)=(3,1,2) (see table 2). This does

not affect our general argument discussed in appendix E. Each quiver has only one ground

state which keeps the total of 18 states.

Our present construction technique does not allow easily to go beyond the multicenter

solutions with GH centers or supertube centers and to find the 38 missing states. This

will require more work in future projects. However, one can already have an idea of where

these states may come from:

• Adding extra gauge fields and preserving the U(1)×U(1) isometry of the base space.

Following [40, 41], one can add for example a fourth massless abelian gauge field to

the configuration, which corresponds to changing the fluxes on the T6. The solutions

will be slightly more complex but they will remain U(1)×U(1) invariant and one may

hope, along the line of [34], that these will contribute to the index.

• Constructing configurations which break the U(1)×U(1) isometry. Such objects may

include wiggly supertubes [42] or superstratum configurations [23, 43]. In four di-

mensions, these solutions give rise to KK modes along the two U(1) fibers of the base

space and do not correspond to supergravity solutions.

6 Conclusion

In this paper, we have investigated the space of states of the following D-brane configuration

(QD6, Q
1
D4, Q

2
D4, Q

3
D4 ; Q1

D2, Q
2
D2, Q

3
D2, QD0)

= (QD6, 0, 0, 0; 1, 1, 1, 0), with QD6 = 1 or 2. (6.1)

We have reviewed a computation in the Higgs branch where the states are depicted as

microscopic single D-brane bound states [10, 11]. The number of states is 12 and 56 for
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QD6 = 1 and QD6 = 2 respectively. These states have been argued to carry zero angular

momentum.

We have tackled the same issues in the multicenter Coulomb branch. Multicenter BPS

bound states are characterized by specifying charge vectors carried by center-like particles

in the three-dimensional base space and a moduli at infinity [8]. All the multicenter BPS

bound states can be retrieved from the microscopic D-brane bound states when gs → 0

but the opposite is not necessarily true.

For QD6 = 1, we have found exactly 12 BPS multicenter bound states. We have

confirmed the counting from a quiver description by showing that the corresponding 12

quivers have on ly one supersymmetric ground state each. Furthermore these ground states

carry zero angular momentum. This is in exception with common wisdom that quantum

mechanically the angular momentum of such configurations shifts by 1/2. The exception is

made possible by vanishing of FI parameters. In this instance, all the microscopic D-brane

states are recovered as BPS multicenter bound states and no single-center state should

exist. This conveys the idea that BPS multicenter microstates which are types of fuzzballs

in the macroscopic regime do not correspond to a peculiar part of the overall space of states

of a certain D-brane system. Furthermore, we have shown that the 12 multicenter solutions

carry necessarily zero angular momentum at this point of the moduli space giving greater

weight to the zero angular momentum conjecture. From a supergravity point of view, this

means that they are incompatible with having flat asymptotics.

For QD6 = 2, only 18 BPS multicenter bound states have been found. Using quiver

quantum mechanics, we have shown in the appendix E that they correspond to 18 su-

persymmetric ground states, each carrying zero angular momentum. We expect more

multicenter solutions to exist. Indeed, our construction essentially focuses on U(1)×U(1)

invariant centers carrying 16-supercharges. One can expect, for configurations with more

than pure D-brane charges, that less-isometric solutions exist. Such centers may be more

exotic and less supersymmetric, such as wiggly supertubes. This investigation will lead

to future projects. Nevertheless, the 18 solutions found also confirm the zero angular

momentum conjecture.
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A More about BPS multicenter solutions in type IIA string theory

The solutions we consider in the following are supersymmetric configurations carrying

various D0, D2, D4 and D6 charges in type IIA string theory. We assume a compactification
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by employing T 6 = (T 2)3 as the internal space. Our setup of D-brane charges (2.13) has

exactly 3 massless abelian vector multiplets which corresponds to the STU model.

The action of the STU model is completely determined by the constant symmetric

tensor CIJK which is equal to |εIJK | for a diagonal T 6. Wrapped D-branes are incarnated in

charged point centers in the four-dimensional base space which source the vector multiplet

electrically (D0 and D2 charges) or magnetically (D4 and D6 charges). We are interested

in solutions with two U(1) isometries. The solutions are uniquely determined by a complex

structure moduli of T 6 and by an eight-dimensional vector Γ of harmonic 3-forms (usually

we omit the 3-form feature of the vector by considering the (D0, D2, D4, D6)-basis of

3-forms and by writing Γ as a eight-dimensional scalar vector in this basis). We denote

Γ ≡ (V,KI , LI ,M) = Γ∞ +
∑
a

Γa
ra
. (A.1)

The eight harmonic functions {V,KI , LI ,M} have poles at each center labeled by a, with

charges given by the charge vectors Γa ≡
(
qa, k

1
a, k

2
a, k

3
a; l

1
a, l

2
a, l

3
a,ma

)
with integer compo-

nents and an asymptotic behavior given by the asymptotic vector Γ∞ depending on the

moduli at spacial infinity.

All the timelike supersymmetric field configurations with two U(1) isometries have

a metric

ds2
4 = −I −1/2

4 (dt + ω)2 + I 1/2
4 ds2

R3 , (A.2)

where ZI are the warp factors giving rise to the three charges of the solution and I4 is the

quartic invariant

I4 ≡ Z1Z2Z3V − µ2V 2. (A.3)

From the metric (A.2), the absence of closed timelike curves is straightforwardly guaranteed

when the quartic invariant is positive I4 > 0.

The dilaton Φ, the Neveu-Schwarz (NSNS) potential B(2), the Ramond-Ramond (RR)

potentials C(1) and C(3) are given by [22, 44]

e−2Φ =
V 3Z1Z2Z3

I 3/2
4

,

B(2) =
3∑
I=1

B
(2)
I dTI =

3∑
I=1

(
KI

V
− µ

ZI

)
dTI ,

C(1) = A− µV 2

I4
(dt+ ω) , (A.4)

C(3) =

3∑
I=1

C
(3)
I ∧ dTI =

3∑
I=1

[
−dt+ ω

ZI
+

(
KI

V
− µ

ZI

)
A+ wI

]
∧ dTI ,

where dTI is the volume form on the Ith 2-torus and A is a KK one-form satisfying ?(3)dA =

dV . One can derive from those expressions the NSNS 3-forms H(3), the RR field strengths

F (2) and F (4) and their dual gauge fields (C(5), F (6)) and (C(7), F (8)) (see section 2.2 of [44]

– 20 –



J
H
E
P
0
6
(
2
0
1
9
)
0
1
1

for more details). These field configurations become a solution when the following set of

BPS equations, defined on the three-dimensional base space, is satisfied

d ?(3) dZI =
CIJK

2
d ?(3) d

(
KJKK

V

)
, (A.5)

?(3)dwI = − dKI , (A.6)

?(3)dω = V dµ− µdV − V ZI d
(
KI

V

)
. (A.7)

The equations (A.5) and (A.7) give

ZI = LI +
1

2
CIJK

KJKK

V
,

µ =
1

6
V −2CIJKK

IKJKK +
1

2
V −1KILI +

M

2
, (A.8)

and the integrability condition of equation (A.7) yields the bubble equations∑
b 6=a

〈Γa,Γb〉
rab

= 〈Γ∞,Γa〉 , (A.9)

where the symplectic product has been defined in (2.9).

Finally, one can compute the overall D-brane charges of the solution defined as integrals

of the RR field strengths over cycles of the form S2
∞×T 2

I where S2
∞ is the asymptotic two-

sphere of the three-dimensional base space:

QD6 =

∫
S2
∞

dC(1) =
∑
a

qa,

QID4 =

∫
S2
∞×T 2

I

dC(3) =
∑
a

kIa,

QID2 = CIJK

∫
S2
∞×T 2

J×T
2
K

dC(5) =
∑
a

lIa,

QD0 =

∫
S2
∞×T 6

dC(7) =
∑
a

ma.

(A.10)

B Analysis of three-center solutions

B.1 Analytic investigation of solutions with two supertube and one GH cen-

ters

We review our method to construct zero angular momentum BPS multicenter solutions

with global D0 and D4 charges being 0 and D6 and D2 charges being 1 starting from

solutions with two supertube centers of different species and one GH center.

• We start with the full parameter space of solutions. The GH center is the 0th center

with charges q, κ1, κ2 and κ3. We consider also a two-charge supertube of species 1

located at the 1st center with charges k1, Q
(2)
1 and Q

(3)
1 and a two-charge supertube
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of species 2 located at the 2nd center with charges k2, Q
(1)
2 and Q

(3)
2 . The general

form of the eight harmonic function is:

V =
q

r0
, M =

κ1κ2κ3

q2 r0
+
Q

(2)
1 Q

(3)
1

k1 r1
+
Q

(1)
2 Q

(3)
2

k2 r2
,

K1 =
κ1

r0
+
k1

r1
, L1 = −κ2κ3

q r0
+
Q

(1)
2

r2
,

K2 =
κ2

r0
+
k2

r2
, L2 = −κ1κ3

q r0
+
Q

(2)
1

r1
, (B.1)

K3 =
κ3

r0
, L3 = −κ1κ2

q r0
+
Q

(3)
1

r1
+
Q

(3)
2

r2
.

First, we want to impose the values of the eight global D-brane charges. This reduces

the number of free parameters to two. One can express everything in terms of k1

and k2:

{q, κ1, κ2, κ3} = {1,−k1,−k2, 0}

{Q(2)
1 , Q

(3)
1 } =

{
1,
k1(1 + k1k2)

k1 − k2

}
(B.2)

{Q(1)
2 , Q

(3)
2 } =

{
1,
k2(1 + k1k2)

k2 − k1

}
.

• For zero angular momentum three-center solutions, the bubble equations take the

following simple form

Γ01

r01
+

Γ02

r02
= 0 ,

−Γ01

r01
+

Γ12

r12
= 0 ,

−Γ02

r02
− Γ12

r12
= 0 ,

(B.3)

which are easily solved by

r02 = −Γ02

Γ01
r01 , r12 =

Γ12

Γ01
r01 . (B.4)

We have used the notation ΓIJ = 〈ΓI ,ΓJ〉. We notice that the solutions are invariant

under rescaling of inter-center distances rIJ → λ rIJ . That is why, r01 remains a free

parameter all along the construction.

Furthermore, the solution corresponds to a physical center configuration if and only

if it satisfies the triangle inequality

(r01 + r02 − r12) (r01 − r02 + r12) (−r01 + r02 + r12) ≥ 0

⇐⇒
(

1− Γ02

Γ01
− Γ12

Γ01

)(
1 +

Γ02

Γ01
+

Γ12

Γ01

)(
−1− Γ02

Γ01
+

Γ12

Γ01

)
≥ 0 ,

(B.5)

which constrains the two-dimensional parameter space of k1 and k2 significantly.
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• The solution must have a positive quartic invariant (2.5) to guarantee the absence of

closed timelike curve. One can either use the conjecture in [21] or the condition (2.10).

Small number of centers makes the second option to be the simplest. We expand ZIV

around each center. We find that ZIV ≥ 0 imposes

q Q
(1)
2 ≥ 0 , q Q

(2)
1 ≥ 0 ,

q Q
(3)
1 − k1k2

r01
+
q Q

(3)
2 − k1k2

r02
≥ 0 ,

q Q
(3)
1 + k1k2

(
r01

r12
− 1

)
≥ 0 , q Q

(3)
2 + k1k2

(
r02

r12
− 1

)
≥ 0 ,

(B.6)

which further constrains the parameter space defined by k1 and k2. We remind the

reader that these conditions are not necessarily sufficient to be free of closed timelike

curves. One needs to check once those conditions satisfied that the quartic invariant

is indeed positive.

• Last but not least, one has to impose all the charges in the harmonic functions (B.1)

to be integer.

After few simplifications, the equations (B.5) and (B.6) are satisfied if k1 and k2 satisfy(
k1 > 0 and − 1

k1
≤ k2 ≤ 0

)
or

(
k1 < 0 and 0 ≤ k2 ≤ −

1

k1

)
or (k1 = 0 and |k2| ≥ 1). (B.7)

Requiring each charge of the harmonic functions to be integer restricts (B.7) to six possible

values (k1, k2) = {(0, 1), (0,−1), (1, 0), (1,−1), (−1, 0), (−1, 1)}.
We can repeat exactly the same procedure with solutions of two supertubes of species

1 and 3 and solutions of two supertubes of species 2 and 3. By carefully counting the

redundancies, we have a final count of 12 inequivalent solutions. Their charge vectors as

well as their center configuration are given in detail in table 1. Their main and common

features are that the center configurations are axisymmetric with a U(1) symmetry and all

centers carry D-brane charges of value -1, 0 or 1. Moreover, as explained in section 2.2, for

most of the solutions found, the two-charge-supertube centers are actually fluxed D-brane

centers. The six first solutions in table 1 have a GH center and two D4-brane centers with an

induced D2 charge. The six other solutions have one GH center, one two-charge-supertube

center and one simple D2-brane center with an induced D0 charge.

We have carefully checked that the quartic invariant is strictly positive for all solutions

found and that they are not related by gauge transformations.

One can also wonder why we do not consider configurations with two supertube centers

of the same species. This is straightforward to check that such configurations are strictly

incompatible with the global D-brane charges we impose (4.1).

B.2 Numerical analysis of solutions with one supertube and two GH centers

and solutions with three GH centers

We review our numerical method which shows that there exists no valid solutions satisfy-

ing (4.1) with one supertube and two GH centers or with three GH centers. The number
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of parameters of such solutions makes an analytic approach difficult. The steps of our

numerical analysis were the following:

• First, we start with the most general solutions. The solutions with one supertube

and two GH centers form a family of 11 parameters whereas the solutions with three

GH centers form a family of 12 parameters.

• We fix 8 parameters by imposing the global D-brane charges (4.1).

• We run the other free parameters from -500 to 500. Each value corresponds to

one particular solution. For each one, firstly we check if the solution has integer

charges, secondly if the solutions of the bubble equations can give physical center

configurations (B.5), and thirdly if the quartic invariant is positive. Checking the

positivity of the quartic invariant is the hardest part. We have principally used

the conjecture postulated in [21]. This conjecture drastically simplifies the loop

computations. It allows to check the positivity of the quartic invariant all over the R3

base space by checking an algebraic condition on a matrix derived from the bubble

equations. This conjecture should work for multicenter solutions with GH centers

only. However, one can mathematically consider supertube center as a limit of a GH

center. For instance, one can obtain (2.14) from (2.19) by taking the limit ε→ 0 with

qa = −ε k1 , k1
a = k1 , k2

a = εQ(3)
a , k3

a = εQ(2)
a . (B.8)

Thus, we can extend the conjecture to our solutions.

We did not find any solutions satisfying all the conditions in the huge range of param-

eters we have scanned. Furthermore, from the previous section we have a good intuition

that if a solution exists the charges should be small. Consequently, one can say that our

numerical analysis suggests that there is no solution of three GH centers or one supertube

and two GH centers satisfying (4.1).

C Analysis of four-center and five-center solutions

C.1 Analysis of four-center solutions

We perform a similar analysis as in section B.2. The main goal is to scan a significant part

of the parameter space looking for BPS four-center solutions satisfying (4.1).

• As before, we start with the most general solutions. The solutions with three su-

pertube and one GH centers form a family of 13 parameters, the solutions with two

supertube and two GH centers form a family of 14 parameters, the solutions with one

supertube and three GH centers form a family of 15 parameters and the solutions

with four GH centers form a family of 16 parameters, .

• We fix 8 parameters by imposing the global D-brane charges (4.1).
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• We run the remaining parameters from -5 to 5 (the range of values is smaller than in

section B.2 due to the higher number of free parameters). For each value, we check

if the solution is a valid BPS multicenter solution:

- First, we check if all the harmonic-function charges are integer.

- Second, we check if the solution of the bubble equation can give rise to a physical

center configuration. Because we have four centers and not three, this step is

more complex than the one in the previous section. Indeed, we have to check

four triangle inequalities as (B.5) for each face of the tetrahedron formed by the

four centers plus an angle inequality at one vertex of the tetrahedron.

- Third, we check the absence of closed timelike curves as in the previous section.

No solution have been found in the range of values. One can realistically extend this result

to all four-center BPS solutions.

C.2 Analysis of five-center solutions

The number of parameters and the complexity of the constraints for five-center configu-

rations make the numerical scan of the parameter space impossible. However, we have

randomly generated some solutions and checked if they are valid and physical. The main

idea is to fix as many parameters as possible using the equations (the global D-brane

charges, the bubble equations) and pick random values for the other parameters and check

if they satisfy all the inequations (the absence of closed timelike curves, the triangle in-

equalities etc. . . ). We have generated a significant number (∼ 103) of five-center solutions

focusing on solutions with low charges at the centers , we find no valid solutions. This

tends to argue that no five-center solutions with pure D6 and D2 charges exist.

D Configurations with QD6 = 2

In this section, we give to the interested reader the charge vectors of the 18 three-center

solutions with one GH center and two 16-supercharge centers with global D-brane charges

(QD6, Q
1
D4, Q

2
D4, Q

3
D4 ; Q1

D2, Q
2
D2, Q

3
D2, QD0) = (2, 0, 0, 0; 1, 1, 1, 0). They are given in the

table 2. The center configurations are axisymmetric and look like

2 rr

with the GH center either in the middle or on the right depending on the solution

considered.
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1

Γ0 = (2, 1, 0, −2 ; 0, 1, 0, 0)

Γ1 = (0, −1, 0, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, 2 ; 1, 0, 0, 0)

2

Γ0 = (2, 0, −1, 0 ; 0, 0, 0, 0)

Γ1 = (0, 0, 0, 0 ; 0, 1, 0, −1)

Γ2 = (0, 0, 1, 0 ; 1, 0, 1, 1)

3

Γ0 = (2, 1, −2, 0 ; 0, 0, 1, 0)

Γ1 = (0, 0, 2, 0 ; 1, 0, 0, 0)

Γ2 = (0, −1, 0, 0 ; 0, 1, 0, 0)

4

Γ0 = (2, 0, −2, 1 ; 1, 0, 0, 0)

Γ1 = (0, 0, 0, −1 ; 0, 1, 0, 0)

Γ2 = (0, 0, 2, 0 ; 0, 0, 1, 0)

5

Γ0 = (2, −2, 0, 1 ; 0, 1, 0, 0)

Γ1 = (0, 2, 0, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, −1 ; 1, 0, 0, 0)

6

Γ0 = (2, 0, 0, −1 ; 0, 0, 0, 0)

Γ1 = (0, 0, 0, 1 ; 1, 1, 0, 1)

Γ2 = (0, 0, 0, 0 ; 0, 0, 1, −1)

7

Γ0 = (2, 0, 1, −2 ; 1, 0, 0, 0)

Γ1 = (0, 0, 0, 2 ; 0, 1, 0, 0)

Γ2 = (0, 0, −1, 0 ; 0, 0, 1, 0)

8

Γ0 = (2, −1, 0, 0 ; 0, 0, 0, 0)

Γ1 = (0, 1, 0, 0 ; 0, 1, 1, 1)

Γ2 = (0, 0, 0, 0 ; 1, 0, 0, −1)

9

Γ0 = (2, −2, 1, 0 ; 0, 0, 1, 0)

Γ1 = (0, 0, −1, 0 ; 1, 0, 0, 0),

Γ2 = (0, 2, 0, 0 ; 0, 1, 0, 0)

10

Γ0 = (2, 2, −1, 0 ; 0, 0, 1, 0)

Γ1 = (0, −2, 0, 0 ; 0, 1, 0, 0)

Γ2 = (0, 0, 1, 0 ; 1, 0, 0, 0)

11

Γ0 = (2, 2, 0, −1 ; 0, 1, 0, 0)

Γ1 = (0, 0, 0, 1 ; 1, 0, 0, 0)

Γ2 = (0, −2, 0, 0 ; 0, 0, 1, 0)

12

Γ0 = (2, 0, −1, 2 ; 1, 0, 0, 0)

Γ1 = (0, 0, 0, −2 ; 0, 1, 0, 0)

Γ2 = (0, 0, 1, 0 ; 0, 0, 1, 0)

13

Γ0 = (2, 0, 2, −1 ; 1, 0, 0, 0)

Γ1 = (0, 0, −2, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, 1 ; 0, 1, 0, 0),

14

Γ0 = (2, −1, 2, 0 ; 0, 0, 1, 0)

Γ1 = (0, 0, −2, 0 ; 1, 0, 0, 0)

Γ2 = (0, 1, 0, 0 ; 0, 1, 0, 0)

15

Γ0 = (2, −1, 0, 2 ; 0, 1, 0, 0)

Γ1 = (0, 1, 0, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, −2 ; 1, 0, 0, 0)

16

Γ0 = (2, 1, 0, 0 ; 0, 0, 0, 0)

Γ1 = (0, 0, 0, 0 ; 1, 0, 0, 1)

Γ2 = (0, −1, 0, 0 ; 0, 1, 1, −1)

17

Γ0 = (2, 0, 0, 1 ; 0, 0, 0, 0)

Γ1 = (0, 0, 0, 0 ; 0, 0, 1, 1)

Γ2 = (0, 0, 0, −1 ; 1, 1, 0, −1)

18

Γ0 = (2, 0, 1, 0 ; 0, 0, 0, 0)

Γ1 = (0, 0, 0, 0 ; 0, 1, 0, 1)

Γ2 = (0, 0, −1, 0 ; 1, 0, 1, −1)

Table 2. The 18 multicenter solutions with global D-brane charges (QD6, Q
1
D4, Q

2
D4, Q

3
D4;

Q1
D2, Q

2
D2, Q

3
D2, QD0) = (2, 0, 0, 0; 1, 1, 1, 0).
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E Three-node abelian quiver with general (a,b,c)

The case of a general Abelian 3-node quiver with closed loop and with vanishing FI pa-

rameters, is quite similar to (a, b, c) = (2, 1, 1) . It is described by the following quiver

1

1 1

YβXα

Cγ

, (E.1)

with α = 1, . . . , a, β = 1, . . . , b, γ = 1, . . . , c where (a, b, c) is the unique triplet of integer

intersection product (a, b, c) ≡ (〈Γi,Γj〉, 〈Γj ,Γk〉, 〈Γk,Γi〉), i, j, k are three different integers

between 0 and 2 in order to satisfy a ≥ b > 0 and c > 0. The D-term equations are given by

a∑
α=1

|Xα|2 −
c∑

γ=1

|Cγ |2 = 0 (E.2)

b∑
β=1

|Yβ |2 −
a∑

α=1

|Xα|2 = 0 (E.3)

−
b∑

β=1

|Yβ |2 +

c∑
γ=1

|Cγ |2 = 0 . (E.4)

Again, we assume a generic cubic superpotential

W = wαβγXαYβCγ , (E.5)

which gives the following F-term equations:

wαβγYβCγ = 0, wαβγXαCγ = 0, wαβγXαYβ = 0 . (E.6)

As argued in [38], the solution space consists of 3 chambers, in each of which only one of

the three fields vanishes. However by D-term equations, this also implies vanishing of all

three fields. So there is only one chamber, consisting a single solution. Again, the solution

preserves U(1)×U(1) gauge symmetry.

We briefly make comparison with [38], which considered same quiver, but with non-zero

FI parameters, and came to rather different conclusions. For non-zero FI parameters, after

setting one of the fields to zero, D-term equations define a product of projective spaces.

On the other hand, setting a field to zero, solves two F-term equations automatically.

The remaining one defines a complete intersection manifold in the product of projective

spaces. Requiring the dimension of this manifold to be non-negative gives the condition

a+ b ≥ c+ 2 and permutations. When we set the FI parameters to zero, these projective

spaces collapse to a point and so does the intersection manifold. As a result we do not have

any condition on (a, b, c). This is rather puzzling as physically one would have expected
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to get some version of triangle inequality. In particular, we would like to understand the

Coulomb branch description of quivers with triangle inequality violating (a, b, c).

Due to the above mentioned differences, the conclusions of [38] do not apply to quivers

discussed in this paper.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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