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1 Introduction

The traditional aim of this course is to teach you how to calculate amplitudes, cross-
sections and decay rates, particularly for quantum electrodynamics, qed, but in principle
also for quantum chromodynamics, qcd. By the end of the course you should be able
to go from a Feynman diagram, such as the one for e+e− → µ+µ− in Figure 1.1(a), to a
number for the cross section.

We will restrict ourselves to calculations at tree level but, at the end of the course,
we will also look qualitatively at higher order loop effects which, amongst other things,
are responsible for the running of the qcd coupling. This running means that the qcd

coupling appears weaker when measured at higher energy scales and is the reason why
we can sometimes do perturbative qcd calculations. As you might guess, the sort of
diagrams which are important here have closed loops of particle lines in them: in Fig-
ure 1.1(b) is one example contributing to the running of the qcd coupling (the curly
lines denote gluons).

In order to do our calculations we will need a certain amount of technology. In
particular, we will need to describe particles with spin, especially the spin-1/2 leptons
and quarks. We will therefore spend some time looking at the Dirac equation. After
this we’ll work out how to go from quantum mechanical probability amplitudes to cross
sections and decay rates. Then, with these tools in hand, we will look at some examples of
tree level qed processes. Here you will get hands-on experience of calculating transition
amplitudes and getting from them to cross sections. We then move on to qcd. This will
entail a brief introduction to renormalisation in both qed and qcd. We will introduce
the idea of the running coupling and look at asymptotic freedom in qcd.

In reference [1] you will find a list of textbooks which may be useful.

1.1 Units and Conventions

I will use natural units, c = 1, h̄ = 1, so mass, energy, inverse length and inverse time all
have the same dimensions.

4-vector aµ µ = 0, 1, 2, 3 aµ = (a0, a )
scalar product a·b = a0b0 − a·b = gµνa

µbν
(1.1)

From the scalar product you see that the metric is

g = diag(1,−1,−1,−1), gµλgλν = δµ
ν =

{

1 if µ = ν
0 if µ 6= ν

(1.2)

For c = 1, gµν and gµν are numerically the same.
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γ

(a) (b)

Figure 1.1 Examples of Feynman diagrams contributing to (a) e+e− → µ+µ− and (b) the
running of the strong coupling constant.



From the above, you would think it natural to write the space components of a 4-vector as
ai for i = 1, 2, 3. However, for 3-vectors I usually write the components as ai. This ought
not to cause confusion, since for 3-vectors the metric is just the unit matrix. Generally
speaking, a little care must be taken in getting the sign right for the ‘1, 2, 3’ components
of a 4-vector.

Note that ∂µ is a covector,

∂µ =
∂

∂xµ
, ∂µx

ν = δν
µ, (1.3)

so ∇i = −∂i and ∂µ = (∂0,−∇).
My convention for the totally antisymmetric Levi-Civita tensor is

ǫµνλσ =







+1 if {µ, ν, λ, σ} an even permutation of {0, 1, 2, 3}
−1 if an odd permutation
0 otherwise

(1.4)

Note that ǫµνλσ = −ǫµνλσ, and ǫµνλσpµqνrλsσ changes sign under a parity transformation
(which is obvious because it contains an odd number of spatial components).

1.2 Relativistic Wave Equations

The starting point for this course is the Schrödinger equation which can be written quite
generally as

Hψ = i
∂ψ

∂t
(1.5)

where H is the Hamiltonian (i.e. the energy operator). In this equation ψ is the wave-
function describing the single particle probability amplitude. I shall usually reserve the
Greek symbol ψ for spin 1/2 fermions and φ for spin 0 bosons. So for pions and the like
I shall write

Hφ = i
∂φ

∂t
. (1.6)

In this course we want to extend the non-relativistic quantum mechanics, familiar to
undergraduates, into the relativistic domain. For example, in non-relativistic quantum
mechanics you are used to writing

H = T + V (1.7)

where T is the kinetic energy and V is the potential energy. A particle of mass m and
momentum p has non-relativistic kinetic energy,

T =
P2

2m
(1.8)

where capital P is the operator corresponding to momentum p. For a slow moving
particle v ≪ c (e.g. an electron in a Hydrogen atom) this is adequate, but for relativistic
systems (v ∼ c) the Hamiltonian above breaks down. For a free relativistic particle the
total energy E is given by the Einstein equation

E2 = p2 +m2. (1.9)



Thus the square of the relativistic Hamiltonian H 2 is simply given by promoting the
momentum to operator status:

H2 = P2 +m2. (1.10)

So far so good, but now the question arises of how to implement the Schrödinger equation,
which is expressed in terms of H rather than H 2. Naively the relativistic Schrödinger
equation looks like

√
P2 +m2ψ(t) = i

∂ψ(t)

∂t
(1.11)

but this is difficult to interpret because of the square root. There are two ways forward:

(1) Work with H2. By iterating the Schrödinger equation we have

H2φ(t) = −∂
2φ(t)

∂t2
. (1.12)

This is known as the Klein-Gordon (KG) equation. In this case the wavefunction
describes spinless bosons.

(2) Invent a new Hamiltonian HD which is linear in momentum, and whose square is
equal to H2 given above, H2

D = P2 +m2. In this case we have

HDψ(t) = i
∂ψ(t)

∂t
(1.13)

which is known as the Dirac equation, with HD being the Dirac Hamiltonian. In
this case the wavefunction describes spin 1/2 fermions, as we shall see.

1.3 Wavefunctions and Fields

You may be wondering why I am talking about wavefunctions while in your field theory

course Dave Dunbar is telling you about fields? Some of you may even be wondering
what is the difference between a wavefunction and a field.

The bottom line is that single particle wavefunctions work just fine if you want
to describe systems where the particle number is conserved. Problems come when you
want to allow for relativistic effects. In particular antiparticles, and hence the possibility
that particles can annihilate or be pair produced. In fact, these new concepts can be
accommodated within the wavefunction approach, but in a way which is not really very
satisfactory. We’ll take a look at the problems encountered in trying to cling to the
wavefunction way of thinking shortly.

Rather than patch things up it’s much more appealing simply to ditch the usual
interpretation of ψ as a wavefunction and to identify it as a field. This field is then
subjected to the usual laws of quantum mechanics. This means elevating the field and
its canonical momentum to the status of operators which are then deemed to satisfy the
usual commutation relations. This is what Dave has been doing in his course. In the
limit that particle number is conserved, the theory is equivalent to the single particle
wavefunction approach.

It is important to emphasise that a field is very different from a wavefunction. Think
first of a classical field. I find it easier to picture a field by first dividing space into
infinitesimally small boxes. In each box is a fictitious particle, and the amplitude of the



particle’s displacement from equilibrium is the value of the field as the point where the
small box is. If the field satisfies some wave equation then you can think of the motions
of the individual particles as being influenced by what’s going on in the neighbourhood
(e.g. consider a vibrating membrane): the particles can be thought of as little harmonic
oscillators all coupled together. The field is defined in the limit of vanishingly small
boxes, and so describes a system with an infinite number of degrees of freedom.

The Maxwell field of electromagnetism is a famous classical field. We can go ahead
an demand that it also be consistent with the laws of quantum mechanics. This means
we must quantise the motion of the infinite number of little harmonic oscillators. To do
this, we simply impose the commutation relation [x i, pi] = i, where xi is the displacement
of the ith oscillator and pi is its momentum. Note that xi is simply the value of the field
at the point where the ith box is located. After doing this we have a theory which is
consistent with both relativity and quantum mechanics. Photons emerge as the quanta of
the electromagnetic field, and so the theory naturally describes systems with any number
of particles.

Maxwell’s wave equations are not the only equations we can write down which are
consistent with relativity. We can also write down the Klein-Gordon and Dirac equations
too (there are others, but these are the most relevant ones for particle physics). Quantis-
ing the corresponding fields leads to quanta which have spin-0 and spin-1/2 respectively
(the Maxwell field leads to spin-1 quanta). Letting the spin-1/2 quanta carry electric
charge means that they can interact with the spin-1 quanta and the formalism has no
problem dealing with varying numbers of quanta. Of course, I’m skipping the details so
as to give you an overview. Dave Dunbar’s course aims to provide a fairly comprehensive
introduction to this whole area.

A final word of caution. Notation can be a little confusing. People often use the
same symbol for both the wavefunction and the field. You should always be aware of the
difference and be able to spot from the context which is meant.

1.4 The Klein-Gordon Equation

Let’s now take a more detailed look at the KG equation (1.12). In position space we
write the momentum operator as

p → −i∇, (1.14)

so that the KG equation becomes

(2 +m2)φ(x) = 0 (1.15)

where we have introduced the box notation,

2 = ∂µ∂
µ = ∂2/∂t2 −∇2 (1.16)

and x is the 4-vector (t,x).
The operator 2 is Lorentz invariant, so the Klein-Gordon equation is relativistically

covariant (that is, transforms into an equation of the same form) if φ is a scalar function.
That is to say, under a Lorentz transformation (t,x) → (t′,x′),

φ(t,x) → φ′(t′,x′) = φ(t,x)



so φ is invariant. In particular φ is then invariant under spatial rotations so it represents
a spin-zero particle (more on spin when we come to the Dirac equation); there being no
preferred direction which could carry information on a spin orientation.

The Klein-Gordon equation has plane wave solutions:

φ(x) = Ne−i(Et−p·x) (1.17)

where N is a normalisation constant and E = ±
√

p2 +m2. Thus, there are both positive
and negative energy solutions. The negative energy solutions pose a severe problem if you
try to interpret φ as a wavefunction (as indeed we are trying to do). The spectrum is no
longer bounded from below, and you can extract arbitrarily large amounts of energy from
the system by driving it into ever more negative energy states. Any external perturbation
capable of pushing a particle across the energy gap of 2m between the positive and
negative energy continuum of states can uncover this difficulty. Furthermore, we cannot
just throw away these solutions as unphysical since we need them in order to define
a complete set of states. Note that if one interprets φ as a quantum field there is no
problem, i.e. the positive and negative energy modes are just associated with operators
which create or destroy particles.

A second problem with the wavefunction interpretation arises when trying to find
a probability density. Since φ is Lorentz invariant, |φ|2 doesn’t transform like a density.
To search for a candidate we derive a continuity equation, rather as you did for the
Schrödinger equation in the pre-school problems. Defining ρ and J by

ρ ≡ i

(

φ∗
∂φ

∂t
− φ

∂φ∗

∂t

)

J ≡ −i (φ∗∇φ− φ∇φ∗)
(1.18)

you obtain (see problem) a covariant conservation equation

∂µJ
µ = 0 (1.19)

where J is the 4-vector (ρ,J). It is natural to interpret ρ as a probability density and J
as a probability current. However, for a plane wave solution (1.17), ρ = 2|N |2E, so ρ is
not positive definite since we’ve already found E can be negative.

⊲Exercise 1.1
Derive the continuity equation (1.19). Start with the Klein-Gordon equation multiplied
by φ∗ and subtract the complex conjugate of the K-G equation multiplied by φ.

Thus, ρ may well be considered as the density of a conserved quantity (such as
electric charge), but we cannot use it for a probability density. To Dirac, this and the
existence of negative energy solutions seemed so overwhelming that he was led to intro-
duce another equation, first order in time derivatives but still Lorentz covariant, hoping
that the similarity to Schrödinger’s equation would allow a probability interpretation.
Dirac’s original hopes were unfounded because his new equation turned out to admit
negative energy solutions too! Even so, he did find the equation for spin-1/2 particles
and predicted the existence of anti-particles.

Before turning to discuss what Dirac did. Let’s put things in context. We have found
that the Klein-Gordon equation, a candidate for describing the quantum mechanics of
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Figure 1.2 Feynman interpretation of a process in which a negative energy electron is absorbed.
Time increases moving upwards.

spinless particles admits unacceptable negative energy states when φ is interpreted as
the single particle wavefunction. We could solve all our problems here and now, and
restore our faith in the Klein-Gordon equation by simply re-interpreting φ as a quantum
field. However we won’t do that. There is another way forward (this is the way followed
in the textbook of Halzen & Martin) due primarily to Feynman. Causality forces us to
ensure that positive energy states propagate forwards in time. Feynman spotted that
the negative energy states cause us problems only so long as we think of them as real
physical states propagating forwards in time. If we force these negative energy states
only to propagate backwards in time then we find a theory which is consistent with the
requirements of causality and which has none of the aforementioned problems.

According to Feynman, we should interpret the emission (absorption) of a negative
energy particle with momentum pµ as the absorption (emission) of a positive energy
antiparticle with momentum −pµ. So, in Figure 1.2, for example, an electron–positron
pair is created at point A. The positron propagates to point B where it is annihilated
by another electron. Another way of describing this picture is to say that the incoming
electron interacts to produce an outgoing photon and a negative energy electron. This
electron travels back in time where it scatters off the incoming photon to produce the
outgoing electron. To someone observing in real time, the negative energy state moving
backwards in time looks to all intents and purposes like a positively charged electron
with positive energy moving forwards in time.



2 The Dirac Equation

Dirac wanted an equation first order in time derivatives and Lorentz covariant, so it had
to be first order in spatial derivatives too. His starting point was to assume a Hamiltonian
of the form,

HD = α1P1 + α2P2 + α3P3 + βm (2.1)

where Pi are the three components of the momentum operator P, and αi and β are some
unknown quantities, which as will be seen below cannot simply be commuting numbers.
When the requirement that the H2

D = P2 + m2 is imposed, this implies that α i and β
must be interpreted as 4 × 4 matrices, as we shall discuss. The first step is to write the
momentum operators explicitly in terms of their differential operators, using equation
(1.14), then the Dirac equation (1.13) becomes, using the Dirac Hamiltonian in equation
(2.1),

i
∂ψ

∂t
= (−iα·∇ + βm)ψ (2.2)

which is the position space Dirac equation. Remember that in field theory, the Dirac
equation is the equation of motion for the field operator describing spin 1/2 fermions. In
order for this equation to be Lorentz covariant, it will turn out that ψ cannot be a scalar
under Lorentz transformations. In fact this will be precisely how the equation turns out
to describe spin 1/2 particles. We will return to this below.

If ψ is to describe a free particle it is natural that it should satisfy the Klein-
Gordon equation so that it has the correct energy-momentum relation. This requirement
imposes relationships among the α and β. To see these, apply the operator on each side
of equation (2.2) twice, i.e. iterate the equation,

−∂
2ψ

∂t2
= [−αiαj∇i∇j − i (βαi + αiβ)m∇i + β2m2]ψ

with an implicit sum over i and j from 1 to 3. The Klein-Gordon equation by comparison
is

−∂
2ψ

∂t2
= [−∇i∇i +m2]ψ (2.3)

If we do not assume that the αi and β commute then the KG will clearly be satisfied if

αiαj + αjαi = 2δij
βαi + αiβ = 0

β2 = 1
(2.4)

for i, j = 1, 2, 3. It is clear that the αi and β cannot be ordinary numbers, but it is possible
to give them a realisation as matrices. In this case, ψ must be a multi-component spinor

on which these matrices act.

⊲Exercise 2.1
Prove that any matrices α and β satisfying equation (2.4) are traceless with eigenvalues
±1. Hence argue that they must be even dimensional.

In two dimensions a natural set of matrices for the α would be the Pauli matrices

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0
0 −1

)

. (2.5)



However, there is no other independent 2 × 2 matrix with the right properties for β, so
the smallest dimension for which the Dirac matrices can be realised is four. One choice
is the Dirac representation:

α =
(

0 σ

σ 0

)

, β =
(

1 0
0 −1

)

. (2.6)

Note that each entry above denotes a two-by-two block and that the 1 denotes the 2× 2
identity matrix.

There is a theorem due to Pauli which states that all sets of matrices obeying the
relations in (2.4) are equivalent. Since the Hermitian conjugates α† and β† clearly obey
the relations, you can, by a change of basis if necessary, assume that α and β are
Hermitian. All the common choices of basis have this property. Furthermore, we would
like αi and β to be Hermitian so that the Dirac Hamiltonian (2.17) is Hermitian.

⊲Exercise 2.2
Derive the continuity equation ∂µJ

µ = 0 for the Dirac equation with

ρ = J0 = ψ†ψ, J = ψ†αψ. (2.7)

We will see in section 2.6 that (ρ,J) transforms, as it must, as a four-vector.

2.1 Free Particle Solutions I: Interpretation

We look for plane wave solutions of the form

ψ =
(

χ(p)
φ(p)

)

e−i(Et−p·x) (2.8)

where φ(p) and χ(p) are two-component spinors which depend on momentum p but are
independent of x. Using the Dirac representation of the matrices, and inserting the trial
solution into the Dirac equation gives the pair of simultaneous equations

E
(

χ
φ

)

=
(

m σ·p
σ·p −m

)(

χ
φ

)

. (2.9)

There are two simple cases for which equation (2.9) can readily be solved, namely

(1) p = 0, m 6= 0 which might represent an electron in its rest frame.

(2) m = 0, p 6= 0 which might represent a massless neutrino.

For case (1), an electron in its rest frame, the equations (2.9) decouple and become
simply,

Eχ = mχ, Eφ = −mφ. (2.10)

So, in this case, we see that χ corresponds to solutions with E = m, while φ corresponds
to solutions with E = −m. In light of our earlier discussions, we no longer need to recoil
in horror at the appearance of these negative energy states.

The negative energy solutions persist for an electron with p 6= 0 for which the
solutions to equation (2.9) are readily seen to be

φ =
σ·p
E+m

χ, χ =
σ·p
E−m φ. (2.11)



Thus the general positive energy solutions with E = +|
√

p2 +m2| are

ψ(x) =
(

χ
σ·p
E+m

χ

)

e−i(Et−p·x), (2.12)

while the general negative energy solutions with E = −|
√

p2 +m2| are

ψ(x) =
( σ·p

E−m
φ

φ

)

e−i(Et−p·x), (2.13)

for arbitrary constant φ and χ. Clearly when p = 0 these solutions reduce to the positive
and negative energy solutions discussed previously. As an aside, it is interesting to see
how Dirac coped with the negative energy states.

Dirac interpreted the negative energy solutions by postulating the existence of a
“sea” of negative energy states. The vacuum or ground state has all the negative energy
states full. An additional electron must now occupy a positive energy state since the
Pauli exclusion principle forbids it from falling into one of the filled negative energy
states. On promoting one of these negative energy states to a positive energy one, by
supplying energy, an electron-hole pair is created, i.e. a positive energy electron and a
hole in the negative energy sea. The hole is seen in nature as a positive energy positron.
This was a radical new idea, and brought pair creation and antiparticles into physics.
Positrons were discovered in cosmic rays by Carl Anderson in 1932.

The problem with Dirac’s hole theory is that it doesn’t work for bosons. Such
particles have no exclusion principle to stop them falling into the negative energy states,
releasing their energy.

Recall that Feynman tells us to keep both types of free particle solution. One is to
be used for particles and the other for the accompanying antiparticles. Let’s return to
our spinor solutions and introduce some basis spinors. Take the positive energy solution
of equation (2.12) and define

√
E+m

(

χr
σ·p
E+m

χr

)

e−ip·x ≡ ur(p)e
−ip·x. (2.14)

For the negative energy solution of equation (2.13), change the sign of the energy, E →
−E, and the three-momentum, p → −p, to obtain,

√
E+m

( σ·p
E+m

χr

χr

)

eip·x ≡ vr(p)e
ip·x. (2.15)

In these two solutions E is now (and for the rest of the course) always positive and given
by E = (p2 +m2)1/2. The subscript r takes the values 1, 2, with

χ1 =
(

1
0

)

, χ2 =
(

0
1

)

. (2.16)

For the simple case p = 0 we may interpret χ1 as the spin-up state and χ2 as the
spin-down state. Thus for p = 0 the 4-component wavefunction has a very simple
interpretation: the first two components describe electrons with spin-up and spin-down,
while the second two components describe positrons with spin-up and spin-down. Thus
we understand on physical grounds why the wavefunction had to have four components.
The general case p 6= 0 is slightly more involved and is considered in the next section.

The u-spinor solutions will correspond to particles and the v-spinor solutions to
antiparticles. The role of the two χ’s will become clear in the following section, where it
will be shown that the two choices of r are spin labels. Note that each spinor solution
depends on the three-momentum p, so it is implicit that p0 = E.



2.2 Free Particle Solutions II: Spin

Now it’s time to justify the statements we have been making that the Dirac equation
describes spin-1/2 particles. The Dirac Hamiltonian in momentum space is given in
equation (2.1) as

HD = α·P + βm (2.17)

and the orbital angular momentum operator is

L = R ×P.

Normally you have to worry about operator ordering ambiguities when going from classical
objects to quantum mechanical ones. For the components of L there is no ambiguity.

Evaluating the commutator of L with HD,

[L, HD] = [R × P,α·P]
= [R,α·P] ×P
= iα × P,

(2.18)

we see that the orbital angular momentum is not conserved (otherwise the commutator
would be zero). We’d like to find a total angular momentum J which is conserved, by
adding an additional operator S to L,

J = L + S, [J, HD] = 0. (2.19)

To this end, consider the three matrices,

Σ ≡
(

σ 0
0 σ

)

= −iα1α2α3α, (2.20)

where the first equivalence is merely a definition of Σ and the last equality can read-
ily be verified. The Σ/2 have the correct commutation relations to represent angular
momentum, since the Pauli matrices do, and their commutators with α and β are,

[Σ, β] = 0, [Σi, αj] = 2iǫijkαk. (2.21)

⊲Exercise 2.3
Verify the commutation relations in equation (2.21).

From the relations in (2.21) we find that

[Σ, HD] = −2iα ×P.

Comparing this with the commutator of L with HD in equation (2.18), you readily see
that

[

L + 1
2
Σ, HD

]

= 0,

and we can identify

S =
1

2
Σ



as the additional quantity which, when added to L in equation (2.19), yields a conserved
total angular momentum J. We interpret S as an angular momentum intrinsic to the
particle. Now

S2 =
1

4

(

σ·σ 0
0 σ·σ

)

=
3

4

(

1 0
0 1

)

,

and recalling that the eigenvalue of J2 for spin j is j(j+1), we conclude that S represents
spin-1/2 and the solutions of the Dirac equation have spin-1/2 as promised.

We worked in the Dirac representation of the matrices for convenience, but the result
is necessarily independent of the representation.

Now consider the u-spinor solutions ur(p) of equation (2.14). Choose p = (0, 0, pz)
and write

u↑ = u1(p) =











√
E+m
0√
E−m
0











, u↓ = u2(p) =











0√
E+m
0

−
√
E−m











. (2.22)

It is easy to see that,

Szu↑ =
1

2
u↑, Szu↓ = −1

2
u↓.

So, these two spinors represent spin up and spin down along the z-axis respectively. For
the v-spinors, with the same choice for p, write,

v↓ = v1(p) =











√
E−m
0√
E+m
0











, v↑ = v2(p) =











0
−
√
E−m
0√
E+m











, (2.23)

where now,

Szv↓ =
1

2
v↓, Szv↑ = −1

2
v↑.

This apparently perverse choice of up and down for the v’s is actually quite sensible when
one realises that a negative energy electron carrying spin +1/2 backwards in time looks
just like a positive energy positron carrying spin −1/2 forwards in time.

2.3 Normalisation and Gamma Matrices

We have included a normalisation factor
√
E+m in our spinors. With this factor,

ur(p)
†us(p) = vr(p)

†vs(p) = 2Eδrs. (2.24)

This corresponds to the standard relativistic normalisation of 2E particles per unit vol-
ume (we shall justify this a bit later on). It also means that u †u transforms like the time
component of a 4-vector under Lorentz transformations as we will see in section 2.6.

⊲Exercise 2.4
Check the normalisation condition for the spinors in equation (2.24).

There is a much more compact way of writing the Dirac equation, which requires
that we get to grips with some more notation. Define the gamma matrices,

γ0 = β, γ = βα. (2.25)



In the Dirac representation,

γ0 =
(

1 0
0 −1

)

, γ =
(

0 σ

−σ 0

)

. (2.26)

In terms of these, the relations between the α and β in equation (2.4) can be written
compactly as,

{γµ, γν} = 2gµν . (2.27)

Combinations like aµγ
µ occur frequently and are conventionally written as,

/a = aµγ
µ = aµγµ,

pronounced “a slash.” Note that γµ is not, despite appearances, a 4-vector. It just
denotes a set of four matrices. However, the notation is deliberately suggestive, for when
combined with Dirac fields you can construct quantities which transform like vectors and
other Lorentz tensors (see the next section).

Let’s close this section by observing that using the gamma matrices the Dirac equa-
tion (2.2) becomes

(i/∂ −m)ψ = 0, (2.28)

or in momentum space,
(/p −m)ψ = 0. (2.29)

The spinors u and v satisfy
(/p −m)ur(p) = 0,
(/p +m)vr(p) = 0.

(2.30)

⊲Exercise 2.5
Derive the momentum space equations satisfied by ur(p) and vr(p).

2.4 Lorentz Covariance

We want the Dirac equation (2.28) to preserve its form under Lorentz transformations
(LT’s). Let Λµ

ν represent a LT:

xµ → x′µ = Λµ
νx

ν (2.31)

A familiar example of a LT is a boost along the z-axis, for which

Λµ
ν =









γ 0 0 −βγ
0 1 0 0
0 0 1 0

−βγ 0 0 γ









,

with as usual β = v (in units of c) and γ = (1 − β2)−1/2. LT’s can be thought of as
generalised rotations.

The requirement is

(iγµ∂µ −m)ψ(x) = 0 −→ (iγµ∂′µ −m)ψ′(x′) = 0,



where ∂µ = Λσ
µ∂
′
σ. This last equality follows because

∂µ =
∂

∂xµ
=
∂x′σ

∂xµ

∂

∂x′σ
= Λσ

µ
∂

∂x′σ

and equation (2.31) has been used in the last step.
We know that 4-vectors get their components mixed up by LT’s, so we expect that

the components of ψ might get mixed up too:

ψ(x) → ψ′(x′) = S(Λ)ψ(x) = S(Λ)ψ(Λ−1x′) (2.32)

where S(Λ) is a 4 × 4 matrix acting on the spinor index of ψ. Note that the argument
Λ−1x′ is just a fancy way of writing x, so each component of ψ(x) is transformed into a
linear combination of components of ψ(x).

It is helpful to recall that, for a vector field, the corresponding transformation is

Aµ(x) → A′µ(x′)

where x′ = Λx. This makes sense physically if one thinks of space rotations of a vector
field. For example the wind arrows on a weather map of England are an example of a
vector field: at each point on the map there is associated an arrow. Consider the wind
direction at a particular point on the map, say Abingdon. If the map of England is rotated,
then one would expect on physical grounds that the wind vector at Abingdon always point
in the same physical direction and have the same length. In order to achieve this, both
the vector itself must rotate, and the point to which it is attached (Abingdon) must be
correctly identified after the rotation. Thus the vector at the point x′ (corresponding to
Abingdon in the rotated frame) is equal to the vector at the point x (corresponding to
Abingdon in the unrotated frame), but rotated so as to keep the physical sense of the
vector the same in the rotated frame (so that the wind always blows towards Oxford, say,
in the two frames). Thus having correctly identified the same point in the two frames all
we need to do is rotate the vector:

A′µ(x′) = Λµ
νA

ν(x).

A similar thing also happens in the case of the 4-component spinor field above, except that
we do not (yet) know how the components of the wavefunction themselves must transform,
i.e. we do not know S.

We now need to figure out what S is. To determine S we rewrite the Dirac equation
in terms of the primed variables (just a mathematical substitution):

(iγµΛσ
µ∂
′
σ −m)ψ(Λ−1x′) = 0. (2.33)

The key step is to realise that matrices, Γσ ≡ γµΛσ
µ satisfy the same anticommutation

relations as the γµ’s in equation (2.27), i.e.

{Γµ,Γν} = 2gµν . (2.34)

⊲Exercise 2.6
Check relation (2.34).



This is an important result, since it means that the Γ matrices constitute an accept-
able representation of the gamma matrices. Now any two equivalent representations of
the gamma matrices are related by a transformation:

Γµ = M−1(Λ)γµM(Λ). (2.35)

This allows us to rewrite equation (2.33) as

(iγµ∂′µ −m)M(Λ)ψ(Λ−1x′) = 0.

So we see that if S(Λ) = M(Λ) then it follows that

(iγµ∂′µ −m)ψ′(x′) = 0, (2.36)

and the Dirac equation does indeed preserve its form in the primed frame.
We still haven’t solved for S explicitly (we have just shown that there is a solution).

To find S we need to solve equation (2.35), which may be written as,

γσΛµ
σ = S−1(Λ)γµS(Λ). (2.37)

For an infinitesimal LT, it can be shown that,

Λµ
ν = δµ

ν − ǫij(g
iµδj

ν − gjµδi
ν) (2.38)

where ǫij is an infinitesimal parameter and the pair (i, j) label the six types of transfor-
mation, i.e. 3 boosts and 3 rotations.

For example a boost along the z-axis corresponds to i = 0, j = 3, since in this case,

Λµ
ν = δµ

ν − ǫ03(g
0µδ3ν − g3µδ0ν)

=









1 0 0 −ǫ
0 1 0 0
0 0 1 0
−ǫ 0 0 1









,

which is the usual matrix for an infinitesimal Lorentz boost, with β = ǫ03 and γ = 1.
The combinations (i, j) = (0, 1) and (0, 2) corresponds to boosts along the x and y axes

respectively. The remaining, combinations (2, 3), (3, 1) and (1, 2), correspond to infinites-
imal anti-clockwise rotations through an angle ǫij about the x, y and z axes respectively.
It’s a nice exercise to check this out.

We are at liberty to write
S(Λ) = 1 + iǫijs

ij (2.39)

and our task is to determine the set of matrices sij. To do this, substitute the expression
for S into equation (2.35) (and remember that S−1(Λ) = 1 − iǫijs

ij). It is then not too
hard to show that the solution is

sij =
i

4
[γi, γj] ≡ 1

2
σij. (2.40)

Here, I have taken the opportunity to define the matrix σij . Thus S is given explicitly
in terms of gamma matrices for a general LT.



⊲Exercise 2.7
Verify that equation (2.35) relating Γ and γ is satisfied by sij defined through equa-
tions (2.39) and (2.40). The result

[A, [B,C]] = {{A,B}, C} − {{A,C}, B}

might prove useful.

We are aiming to find quantities which are Lorentz invariant, or transform as vectors
or tensors under LT’s. To this end, we’ll find it useful to introduce the Pauli and Dirac
adjoints. The Pauli adjoint ψ of a spinor ψ is defined by

ψ ≡ ψ†γ0 = ψ†β. (2.41)

The Dirac adjoint of a matrix A is defined by

(ψAφ)∗ = φAψ. (2.42)

For Hermitian γ0 it is easy to show that

A = γ0A† γ0. (2.43)

Some properties of the Pauli and Dirac adjoints are

(λA+ µB) = λ∗A+ µ∗B,
AB = BA,
Aψ = ψA.

With these definitions, ψ transforms as follows under LT’s:

ψ → ψ ′ = ψS−1(Λ) (2.44)

⊲Exercise 2.8

(1) Verify that γµ† = γ0γµγ0. This says that γµ = γµ.

(2) Using (2.39) and (2.40) verify that γ0S†(Λ)γ0 = S−1(Λ), i.e. S = S−1. So S is not
unitary in general, although it is unitary for rotations (when i and j are spatial
indices). This is because the rotations are in the unitary O(3) subgroup of the
nonunitary Lorentz group. Here you show the result for an infinitesimal LT, but it
is true for finite LT’s.

(3) Show that ψ satisfies the equation

ψ (−i
←

/∂ −m) = 0

where the arrow over /∂ implies the derivative acts on ψ.

(4) Hence prove that ψ transforms as in equation (2.44).

Note that result (2) of the problem above can be rewritten as S(Λ) = S−1(Λ), and
equation (2.35) for the similarity transformation of γ µ to Γµ takes the form,

SγµS = Λµ
νγ

ν . (2.45)



Combining the transformation properties of ψ and ψ in equations (2.32) and (2.44)
we see that the bilinear ψψ is Lorentz invariant. In section 2.6 we’ll consider the trans-
formation properties of general bilinears.

Let me close this section by recasting the spinor normalisation equations (2.24) in
terms of Dirac inner products. The conditions become

ur(p)us(p) = 2mδrs

ur(p)vs(p) = vr(p)us(p) = 0
vr(p)vs(p) = −2mδrs

(2.46)

⊲Exercise 2.9
Verify the normalisation properties in the above equations (2.46).

2.5 Parity

In the next section we are going to construct quantities bilinear in ψ and ψ, and classify
them according to their transformation properties under LT’s. We normally use LT’s
which are in the connected Lorentz Group, SO(3, 1), meaning they can be obtained by
a continuous deformation of the identity transformation. Indeed in the last section we
considered LT’s very close to the identity in equation (2.38). However, the full Lorentz
group consists not only of the SO(3, 1) transformations but also includes the discrete
operations of parity (space inversion), P , and time reversal, T :

ΛP =











1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1











, ΛT =











−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











.

LT’s satisfy ΛTgΛ = g (see the preschool problems), so taking determinants shows
that det Λ = ±1. LT’s in SO(3, 1) have determinant 1, since the identity does, but the
P and T operations have determinant −1.

Let’s now find the action of parity on the Dirac wavefunction and determine the
wavefunction ψP in the parity-reversed system. According to the discussion of the previ-
ous section, and using the result of equation (2.45), we need to find a matrix S satisfying

Sγ0S = γ0, SγiS = −γi.

It’s not hard to see that S = S = γ0 is an acceptable solution, from which it follows that
the wavefunction ψP is

ψP (t,x) = γ0ψ(t,−x). (2.47)

In fact you could multiply γ0 by a phase and still have an acceptable definition for the
parity transformation.

In the non-relativistic limit, the wavefunction ψ approaches an eigenstate of parity.
Since

γ0 =
(

1 0
0 −1

)

,

the u-spinors and v-spinors at rest have opposite eigenvalues, corresponding to particle
and antiparticle having opposite intrinsic parities.



2.6 Bilinear Covariants

Now, as promised, we will construct and classify the bilinears. You might like to ponder
why we are so interested in bilinears, i.e. objects which carry no spinor indices and
which involve only 2 spinor fields (recall that the starting point of any field theory is
writing down a Lagrangian density). To begin, note that by forming products of the
gamma matrices it is possible to construct 16 linearly independent 4 × 4 matrices. Any
constant 4 × 4 matrix can then be decomposed into a sum over these basis matrices. In
equation (2.40) we have defined

σµν ≡ i

2
[γµ, γν ],

and now it is convenient to define

γ5 ≡ γ5 ≡ iγ0γ1γ2γ3 =
(

0 1
1 0

)

, (2.48)

where the last equality is valid in the Dirac representation. This new matrix satisfies

γ†5 = γ5, {γ5, γ
µ} = 0.

Now, the set of 16 matrices
{1, γ5, γ

µ, γµγ5, σ
µν}

form a basis for gamma matrix products.

To see that there are 16 matrices: there is 1 unit matrix, 1 γ5 matrix, 4 γµ matrices and
4 γµγ5 matrices, and 6 σµν matrices (see equation (2.40) for the definition of σµν). Note
that σµν is anti-symmetric to avoid double counting with the unit matrix. A little thought
is needed to convince yourself that any constant 4× 4 matrix can be obtained from linear
combinations of these 16 matrices.

Using the transformations of ψ and ψ from equations (2.32) and (2.44), together with
the similarity transformation of γµ in equation (2.45), the 16 fermion bilinears and their
transformation properties can be written as follows:

ψψ → ψψ S scalar
ψγ5ψ → det(Λ)ψγ5ψ P pseudoscalar
ψγµψ → Λµ

νψγ
νψ V vector

ψγµγ5ψ → det(Λ) Λµ
νψγ

νγ5ψ A axial vector
ψσµνψ → Λµ

λΛ
ν
σψσ

λσψ T tensor

(2.49)

⊲Exercise 2.10
Verify the transformation properties of the bilinears in equation (2.49).

Observe that ψγµψ = (ρ,J) is just the current we found earlier in equation (2.7).



2.7 Charge Conjugation

There is one more discrete invariance of the Dirac equation in addition to parity. It is
charge conjugation, which takes you from particle to antiparticle and vice versa. For
scalar fields the symmetry is just complex conjugation, but in order for the charge conju-
gate Dirac field to remain a solution of the Dirac equation, you have to mix its components
as well:

ψ → ψC = Cψ T .

Here ψ T = γ0Tψ∗ and C is a matrix satisfying the condition

CγT
µC
−1 = −γµ.

In the Dirac representation,

C = iγ2γ0 =
(

0 −iσ2

−iσ2 0

)

.

I refer you to textbooks such as [1] for details.
When Dirac wrote down his equation everybody thought parity and charge conju-

gation were exact symmetries of nature, so invariance under these transformations was
essential. Now we know that neither of them, nor the combination CP , are respected by
the standard electroweak model.

2.8 Neutrinos

In the particle data book you will find only upper limits for the masses of the three
neutrinos, and in the standard model they are massless. Let’s look therefore at solutions
of the Dirac equation with m = 0. From equation (2.9) we have in this case

Eφ = σ·pχ, Eχ = σ·pφ. (2.50)

These equations can easily be decoupled by taking the linear combinations and defining
in a suggestive way the two component spinors νL and νR,

νR ≡ χ + φ, νL ≡ χ− φ (2.51)

which leads to
EνR = σ·p νR, EνL = −σ·p νL. (2.52)

Since E = |p| for massless particles, these equations may be written

σ·p
|p| νL = −νL,

σ·p
|p| νR = νR (2.53)

Now 1
2
σ·p
|p|

is known as the helicity operator (i.e. it is the spin operator projected in the

direction of motion of the momentum of the particle) we see that the νL corresponds to
solutions with negative helicity, while νR corresponds to solutions with positive helicity.
In other words νL describes a left-handed neutrino while νR describes a right-handed
neutrino, and each type of neutrino is described by a two-component spinor.

The two-component spinors describing neutrinos transform very simply under LT’s,

νL → e
i
2
σ.(θ−iφ)νL (2.54)



νR → e
i
2
σ.(θ+iφ)νR (2.55)

where θ = nθ corresponds to space rotations through an angle θ about the unit n
axis, and φ = vφ corresponds to Lorentz boosts along the unit vector v with a speed
v = tanhφ. Note that these transformations are consistent with the fact that it is not
possible to boost past a massless particle (i.e. its helicity cannot be reversed).

However, under parity transformations they become transformed into each other:

νL ↔ νR. (2.56)

So a theory which involves only νL without νR (such as the standard model) manifestly
violates parity.

Although massless neutrinos can be described very simply using two component
spinors as above, they may also be incorporated into the four-component formalism as
follows. From equation (2.2) we have, in momentum space,

|p|ψ = α·pψ.

For such a solution,

γ5ψ = γ5
α·p
|p| ψ = 2

S·p
|p| ψ,

using the spin operator S = 1
2
Σ = 1

2
γ5α, with Σ defined in equation (2.20). But S·p/|p|

is the projection of spin onto the direction of motion, i.e. the helicity, and is equal to
±1/2. Thus (1+γ5)/2 projects out the neutrino with helicity 1/2 (right handed) and
(1−γ5)/2 projects out the neutrino with helicity −1/2 (left handed):

(1+γ5)

2
ψ ≡ ψR,

(1−γ5)

2
ψ ≡ ψL, (2.57)

define the four-component spinors ψR and ψL.
To date, only left handed neutrinos have been observed, and only left handed neu-

trinos appear in the standard model. Since

γ0 1

2
(1−γ5)ψ =

1

2
(1+γ5)γ

0ψ,

any theory involving only left handed neutrinos necessarily violates parity (as we saw
before in the two-component formalism).

Finally note that in the Dirac representation which we have been using,

γ5 =
(

0 1
1 0

)

, (2.58)

and the relation between the two-component and four-component formalisms is via the
change of variables in equation (2.51). However there exists a representation in which this
change of variables is done automatically and the (massless) Dirac equation falls apart
into the two two-component equations discussed above. In this chiral representation,

γ5 =
(−1 0

0 1

)

, (2.59)



and hence,
(1+γ5)

2
ψ =

(

0
νR

)

,
(1−γ5)

2
ψ =

(

νL

0

)

. (2.60)

We have identified νR and νL as the two-component spinors discussed previously. These
results are also applicable to the electron in the approximation that its mass is neglected,
by the simple transcription νR → eR, νL → eL. In fact in the standard model the
electrons start out massless, so these results will be of use to Tim Morris in his course.

The standard model (and the minimal supersymmetric standard model) contains only left
handed massless neutrinos, and neutrino mass terms are forbidden by gauge symmetry,
at least given the limited number of fields present in the standard model. If extra fields
(e.g. right handed neutrinos) are added then neutrino masses become possible. If neutrino
oscillations are confirmed as the solution to the solar neutrino problem, or are discovered
in laboratory experiments, then such a modification would become a necessity.



(a) (b)

Figure 3.1 Scattering (a) and decay (b) processes.

3 Cross Sections and Decay Rates

Dave Dunbar has already discussed how to compute scattering amplitudes in quantum
field theory (see Section 4 of his notes), i.e. how to compute the matrix element

iMfi(2π)4δ4(Pf − Pi)
T→∞
= 〈f ; +T/2| Û(−T/2, T/2)| i ;−T/2〉, (3.1)

where Û(−T/2, T/2) is the operator which determines how the initial state i makes the
transition to the final state f , i.e.

Û(−T/2, T/2) = T exp

[

−i
∫ T/2

−T/2
ĤI dt

]

. (3.2)

As Dave has illustrated, it’s quite a lengthy procedure to derive particular scattering
amplitudes from first principles (i.e. expanding in a perturbation series, using Wicks
theorem etc.). Fortunately, there is a quicker way, which involves using Feynman rules.
Later on we’ll actually calculate some scattering amplitudes for qed, but only after Dave
has illustrated how to get at the Feynman rules.

For now let us assume that we’ve done the work and have computed Mfi. Our task
in this section is to convert this into a scattering cross section (relevant if there is more
than 1 particle in the initial state) or a decay rate (relevant if there is just 1 particle in
the initial state), see Figure 3.1.

The probability for the transition to occur is the square of the matrix element, i.e.

Probability = [iMfi(2π)4δ4(Pf − Pi)]
2. (3.3)

Attempting to take the squared modulus of the amplitude produces a meaningless square
of a delta function. This is a technical problem because our amplitude is expressed
between plane wave states. These states are states of definite momentum and so extend
throughout all of space-time. In a real experiment the incoming and outgoing states are
localised (e.g. they might leave tracks in a detector). To deal with this properly you can
construct normalised wavepacket states which do become well separated in the far past
and the far future. We won’t deal with wavepackets, instead we’ll put our system in a
box of volume V = L3. We also imagine that the interaction is restricted to act only over
a time of order T . The final answers come out independent of V and T , reproducing the
ones we would get if we worked with localised wavepackets. We are in good company



here: Nobel Laureate Steven Weinberg says in his recent book, when discussing cross
sections and decay rates, “. . . (as far as I know) no interesting open problems in physics
hinge on getting the fine points right regarding these matters.”

In infinite spacetime with plane wave states the transition amplitude from i to f is
given by (3.1). However in our box of finite size L and for our finite time T the amplitude
is given by equation (3.1) but with the Dirac delta functions replaced by well behaved
functions:

(2π)4δ4(Pf − Pi) → I(Ef − Ei, T )I3(Pf − Pi, L) (3.4)

where for example,

I(Ef − Ei, T ) =
1

(
Ef−Ei

2
)

sin

(

(Ef − Ei)T

2

)

. (3.5)

This function has the property that, as T → ∞,

I(Ef − Ei, T ) → 2πδ(Ef − Ei) (3.6)

and also
I2(Ef −Ei, T ) → 2πTδ(Ef − Ei) (3.7)

with analogous results for I(Pf − Pi, L). Thus in our space-time box we have the ap-
proximate result,

∣

∣

∣(2π)4δ4(Pf − Pi)
∣

∣

∣

2 ≃ V T (2π)4δ4(Pf − Pi). (3.8)

Now, there is a further subtle point which needs to be addressed. If we have chosen
to normalise the fields so as to correspond to 2E particles per unit volume (as we did for
the spinor fields earlier), then we need to get rid of this factor by dividing the amplitude
squared by 2EV per particle.

To see this note that the Dirac probability density, ρ = ψ†ψ, when integrated over the
volume of the box gives

∫

box
u†u = 2EV

and we have used equation (2.24).

The transition rate, i.e. the probability per unit time, is thus

1

T
|Mfi|2V T (2π)4δ4(Pf − Pi)

N
∏

f=1

[

1

2EfV

]

∏

in

[

1

2EiV

]

. (3.9)

3.0.1 The Number of Final States

For a single particle final state, the number of available states dn in some momentum
range k to k + dk is, in the box normalisation,

dn =
d3k

(2π)3
V. (3.10)

This result is proved by recalling that the allowed momenta in the box have components
which can only take on discrete values such as kx = 2πnx/L where nx is an integer. Thus
dn = dnxdnydnz and the result follows.



For a two particle final state we have

dn = dn1dn2

where

dn1 =
d3k1

(2π)3
V, dn2 =

d3k2

(2π)3
V,

where dn is the number of final states in some momentum range k1 to k1+dk1 for particle
1 and k2 to k2 + dk2 for particle 2. There is an obvious generalisation to an N particle
final state,

dn =
N
∏

f=1

d3kf V

(2π)3
. (3.11)

3.0.2 Lorentz Invariant Phase Space (LIPS)

The transition rate for transitions into a particular element of final state phase space is
thus given by, using equations (3.11) and (3.9),

dW = |Mfi|2(2π)4δ4(Pf − Pi)V
N
∏

f=1

[

1

2EfV

]

∏

in

[

1

2EiV

] N
∏

f=1

d3kf V

(2π)3
. (3.12)

This can be re-written as

dW = |Mfi|2V
∏

in

[

1

2EiV

]

× (LIPS) , (3.13)

where the lips is,

LIPS = (2π)4δ4(Pf − Pi)
N
∏

f=1

d3kf

(2π)3 2Ef
. (3.14)

Observe that everything in the transition rate is Lorentz invariant save for the initial
energy factor and the factors of V (using d3k /2E = d4k δ4(k2 − m2)θ(k0), which is
manifestly Lorentz invariant, where E = (k2 + m2)1/2). For a one particle initial state
the factor of V cancels, and we can breath a sigh of relief (after all we would not expect
physical quantities to depend on the size of our artificial box). For a two initial particle
scattering situation the factors of V will also cancel in the physical cross section as we
will show in the next section.

⊲Exercise 3.1
Show that the expression for two-body phase space in the centre of mass frame is given
by

d3k1

(2π)3 2E1

d3k2

(2π)3 2E2
(2π)4δ4(P − k1 − k2) =

1

32π2s
λ1/2(s,m2

1, m
2
2)dΩ

∗, (3.15)

where s = P 2 is the centre of mass energy squared, dΩ∗ is the solid angle element for the
angle of one of the outgoing particles with respect to some fixed direction, and

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ca. (3.16)



3.1 Cross Sections

The total cross section for a static target and a beam of incoming particles is defined as
the total transition rate for a single target particle and a unit beam flux. The differential
cross section is similarly related to the differential transition rate. We have calculated
the differential transition rate with a choice of normalisation corresponding to a single
“target” particle in the box, and a “beam” corresponding also to one particle in the box.
A beam consisting of one particle per volume V with a velocity v has a flux N0 given by

N0 =
v

V

particles per unit area per unit time. Thus the differential cross section is related to the
differential transition rate in equation (3.13) by

dσ =
dW

N0
= dW × V

v
(3.17)

where as promised the factors of V cancel in the cross section.
Now let us generalise to the case where in the frame where you make the measure-

ments. The “beam” has a velocity v1 but the “target” particles are also moving with a
velocity v2. In a colliding beam experiment for example v1 and v2 will point in opposite
directions in the laboratory. In this case the definition of the cross section is retained as
above, but now the beam flux of particles N0 is effectively increased by the fact that the
target particles are moving towards it. The effective flux in the laboratory in this case is
given by

N0 =
|~v1 − ~v2|

V
which is just the total number of particles per unit area which run past each other per
unit time. I denote the velocities with arrows to remind you that they are vector velocities
which must be added using the vector law of velocity addition not the relativistic law.
In the general case, then, the differential cross section is given by

dσ =
dW

N0
=

1

|~v1 − ~v2|
1

4E1E2
|Mfi|2 × LIPS (3.18)

where we have used equation (3.13) for the transition rate, and the box volume V has
again cancelled.1 The amplitude-squared and phase space factors are manifestly Lorentz
invariant. What about the initial velocity and energy factors? Observe that

E1E2(~v1 − ~v2) = E2p1 − E1p2.

In a frame where p1 and p2 are collinear,

|E2p1 −E1p2|2 = (p1·p2)
2 −m2

1m
2
2,

and the last expression is manifestly Lorentz invariant. Hence we can define a Lorentz
invariant differential cross section. The total cross section is obtained by integrating over
the final state phase space:

σ =
1

|~v1 − ~v2|
1

4E1E2

∑

∫

final states
|Mfi|2 × LIPS. (3.19)

1Because the result is independent of the dimensions of the box, you can think of making the box as
large as you like, i.e. big enough to fit your experiment inside. This means that there is no reason to
worry about the box.
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Figure 3.2 2 → 2 scattering.

A slight word of caution is needed in deciding on the limits of integration to get the total
cross section. If there are identical particles in the final state then the phase space should
be integrated so as not to double count.

3.1.1 Two-body Scattering

An important special case is 2 → 2 scattering (see Figure 3.2),

a(pa) + b(pb) → c(pc) + d(pd).

⊲Exercise 3.2
Show that in the centre of mass frame the differential cross section is,

dσ

dΩ∗
=

λ1/2(s,m2
c , m

2
d)

64π2s λ1/2(s,m2
a, m

2
b)
|Mfi|2. (3.20)

Invariant 2 → 2 scattering amplitudes are frequently expressed in terms of the
Mandelstam variables, defined by

s ≡ (pa + pb)
2 = (pc + pd)

2,

t ≡ (pa − pc)
2 = (pb − pd)

2,

u ≡ (pa − pd)
2 = (pb − pc)

2.

(3.21)

In fact there are only two independent Lorentz invariant combinations of the available
momenta in this case, so there must be some relation between s, t and u.

⊲Exercise 3.3
Show that

s+ t+ u = m2
a +m2

b +m2
c +m2

d.

⊲Exercise 3.4
Show that, for two body scattering of particles of equal mass m,

s ≥ 4m2, t ≤ 0, u ≤ 0.

3.2 Decay Rates

With one particle in the initial state the total transition rate is

W =
1

2E

∑

∫

final states
|Mfi|2 × LIPS.



Only the factor 1/2E is not manifestly Lorentz invariant. In the rest frame of a particle
of mass m we have

Γ ≡ 1

2m

∑

∫

final states
|Mfi|2 × LIPS. (3.22)

This is the definition of the “decay rate.” In an arbitrary frame we find, W = (m/E)Γ,
which has the expected Lorentz dilation factor. In the master formula (equation (3.13))
this is what the product of 1/2Ei factors for the initial particles does.

Actually although the result (3.22) is correct our derivation is not quite right. To get
the answer, we needed to consider an initial state at sometime in the distant past, but
this state is unstable so it would have decayed before the interaction! I refer to Peskin
& Schroeder for a nice discussion of this subtlety.



4 Quantum Electrodynamics

4.1 Quantising the Dirac Field

Dirac Field Theory is defined to be the theory whose field equations correspond to the
Dirac equation. We regard the two Dirac fields ψ(x) and ψ(x) as being dynamically
independent fields and postulate the Dirac Lagrangian density:

L = ψ(x)(iγµ∂µ −m)ψ(x). (4.1)

It’s easy to show that the Euler-Lagrange equation

∂

∂xµ

∂L
∂(∂µψ)

− ∂L
∂ψ

= 0 (4.2)

leads to the Dirac equation.
The canonical momentum is

π(x) =
∂L

∂ψ̇(x)
= iψ†(x) (4.3)

and the Hamiltonian density is

H = πψ̇ − L = ψ†i
∂ψ

∂t
. (4.4)

Rather than interpret ψ as a wavefunction (and thereby have to keep in mind notions
of negative energy states moving backwards in time), we shall follow Dave Dunbar, and
regard ψ as a quantum field. We need to quantise this field. Now, naively we would try
to impose the usual equal time commutation relations, i.e.

[ψi(x, t), πj(y, t)] = iδijδ
3(x − y), (4.5)

[ψi(x, t), ψj(y, t)] = 0, (4.6)

[πi(x, t), πj(y, t)] = 0, (4.7)

where i and j label the spinor components of ψ and π. This is a recipe for disaster. In
particular, there is no ground state, i.e. excitations of the vacuum can have negative
energies. The only way to cure the problem is to impose anti-commutation relations:

{ψi(x, t), πj(y, t)} = iδijδ
3(x − y). (4.8)

{ψi(x, t), ψj(y, t)} = 0, (4.9)

{πi(x, t), πj(y, t)} = 0. (4.10)

There is a very nice discussion in Peskin & Schroeder on this (Chapter 3). In particular,
they show how anti-commutation relations really are the only solution.

As in Dave’s course, the Heisenberg equations of motion for the field operators have
solution

ψ(x, t) =
∫

d3k

(2π)3

1

2E

∑

α=1,2

[bα(k)uα(k)e−ik.x + d†α(k)vα(k)eik.x] (4.11)



ψ(x, t) =
∫

d3k

(2π)3

1

2E

∑

α=1,2

[b†α(k)uα(k)eik.x + dα(k)vα(k)e−ik.x] (4.12)

and the anti-commutation relations imply that
{

bα(k), b†α′(k′)
}

= (2π)3 2E δ3(k − k′)δαα′ , (4.13)

{

dα(k), d†α′(k′)
}

= (2π)3 2E δ3(k − k′)δαα′ , (4.14)

{bα(k), bα′(k′)} = 0, (4.15)
{

b†α(k), b†α′(k′)
}

= 0, (4.16)

{dα(k), dα′(k′)} = 0, (4.17)
{

d†α(k), d†α′(k′)
}

= 0. (4.18)

The total Hamiltonian is
H = N

∫

d3xH (4.19)

The prefix N denotes normal ordering. This is the way we remove the ambiguity asso-
ciated with the order of operators. Normal ordering means we are to put all creation
operators to the left of all the annihilation operators. If this means moving an anticom-
muting (fermion) operator through another such operator then we need to remember to
pick up a minus sign.

After a bit of algebra we can get

H =
∫

d3k

(2π)3

1

2E
E
∑

α=1,2

[b†α(k)bα(k) + d†α(k)dα(k)]. (4.20)

If we had tried to impose commutation relations, the dd† term would have entered
with a minus sign in front, which would signal that something has gone wrong. In
particular, it would mean that d† creates particles of negative energy. This is not supposed
to happen in the quantised field theory. Note that we could not fix the problem by simply
re-labelling d ↔ d† since that would not be consistent with the commutations relations
imposed on ψ and π.

So, in order to quantise the Dirac field we are necessarily led to the introduction of
anti-commutation relations. Remarkably we find that we have automatically taken into
account the Pauli inclusion principle! For example,

{

b†α(k), b†α′(k′)
}

= 0

implies that it’s not possible to create two quanta in the same state, i.e.

b†α(k)b†α(k)|0〉 = 0.

This intimate connection between spin and statistics is a direct consequence of desiring
our theory to be consistent with the laws of relativity and quantum mechanics.

The charge operator is

Q = N
∫

d3x j0(x) =
∫

d3x ψ†ψ



which, in terms of the creation and annihilation operators, is

Q =
∫

d3k

(2π)3

1

2E
E
∑

α=1,2

[b†α(k)bα(k) − d†α(k)dα(k)] (4.21)

which shows that b† creates fermions while d† creates the associated anti-fermions of
opposite charge.

Using the techniques discussed in Dave’s field theory course, we can go ahead and
compute the propagator for a Dirac particle:

SF (x− y) = 〈0|ψ(x)ψ(y)|0〉 x0 > y0,

= −〈0|ψ(y)ψ(x)|0〉 x0 < y0. (4.22)

Skipping details (see section 4 of Dave Dunbar’s course), this is

SF (x− y) =
∫

d4p

(2π)4

i(/p +m)

p2 −m2 + iǫ
e−ip·(x−y). (4.23)

4.2 Quantising the Electromagnetic Field

Dave showed us how to derive the Maxwell equations from the Lagrangian density

L = −1

4
F µνFµν − jµA

µ (4.24)

where the field strength tensor is

Fµν ≡ ∂µAν − ∂νAµ. (4.25)

(See the pre-school problems for an introduction to this way of formulating classical
electrodynamics.) He also highlighted the gauge invariance, i.e. that Maxwell’s equations
don’t change under the transformation

Aµ(x) → Aµ(x) + ∂µΛ(x) (4.26)

where Λ(x) is some scalar field. This gauge invariance allows us to impose the Lorentz
gauge condition, i.e. without loss of generality we can fix

∂µA
µ = 0. (4.27)

Note that, even after fixing the Lorentz gauge, we can perform another gauge transfor-
mation on Aµ, i.e. Aµ(x) → Aµ(x) + ∂µχ(x) where χ(x) must satisfy the wave equation,
∂µ∂

µχ = 0.
Immediately we try to quantise the electromagnetic field we hit a problem. To see

this note that the canonically conjugate field to Aµ is

Πµ =
∂L

∂(∂0Aµ)
= F µ0 (4.28)

and from this it follows that Π0 = 0. This means we have no possibility to impose a
non-zero commutation relation between Π0 and A0, which we would need if we are to
quantise the field.



Fortunately, all is not lost. Let us incorporate the gauge condition into the La-
grangian density, i.e. write

L = −1

4
F µνFµν − jµA

µ − 1

2ξ
(∂µA

µ)2. (4.29)

The new term fixes the gauge and ξ is a dimensionless Lagrange multiplier (as such it
can take on any value we choose). At first sight it doesn’t look like we’ve done anything
useful since Πµ = F µ0 − (1/ξ)gµ0(∂νA

ν) and so Π0 = 0. This is certainly true classically
however, we need to be a bit more careful with the quantum theory. How are we supposed
to interpret the Lorentz gauge condition? If we assume it means that the operator ∂µA

µ

vanishes then we can’t quantise. However, this is too restrictive. We need only ensure
that the gauge condition holds for matrix elements of ∂µA

µ and now we can impose
non-zero commutation relations. The quantisation condition then leads to

[Aµ(x, t), ∂0A
µ(y, t)] = −igµνδ3(x − y) (4.30)

with all other commutators vanishing. The Heisenberg operator corresponding to the
photon field is (putting ξ = 1)2

Aµ(x) =
∫

d3k

(2π)3

1

2E

3
∑

λ=0

[

ǫλµ(k)aλ(k)e
−ik·x + ǫλµ(k)∗aλ(k)

†eik·x
]

(4.31)

where ǫλµ are a set of four linearly independent basis vectors (λ = 0, 1, 2, 3). For example
we might choose ǫ0 = (1, 0, 0, 0), ǫ1 = (0, 1, 0, 0), ǫ2 = (0, 0, 1, 0) and ǫ3 = (0, 0, 0, 1). If
k is along the z-axis then ǫ1 and ǫ2 are polarisation vectors for transverse polarisations
whilst ǫ0 is referred to as the timelike polarisation vector and ǫ3 is referred to as the
longitudinal polarisation vector.

The commutation relation (4.30) implies that
[

aλ(k), a
†
λ′(k′)

]

= −gλλ′ 2E (2π)3δ3(k − k′). (4.32)

At a glance this looks fine, i.e. we interpret a†λ(k) as an operator which creates quanta
of the electromagnetic field (photons) with polarisation λ and momentum k. However,
for λ = 0 we have a problem since the sign on the RHS of (4.32) is opposite to that of
the other 3 polarisations. This shows up in the fact that these timelike photons make a
negative contribution to the energy:

H =
∫ d3k

(2π)3

1

2E
E
(

a†1a1 + a†2a2 + a†3a3 − a†0a0

)

. (4.33)

Fortunately, although we might not realize it yet, we have already solved the problem!
The Lorentz gauge condition implies that, for all physical observables, the contributions
from the timelike and longitudinal photons always cancels. More explicitly, by demanding
that

〈ψ|∂µA
µ|ψ〉 = 0 (4.34)

it follows that
〈ψ|a†3a3 − a†0a0|ψ〉 = 0. (4.35)

This is nice because it is in accord with our knowledge that free photons are transversely
polarised.

2This is often referred to as the Feynman gauge.



Here is a nice proof that the classical electromagnetic field is polarised transversely. The
classical field can be expanded thus

Aµ(x) =

∫

d3
k

(2π)3
1

2E

[

aµ(k)e−ik·x + aµ(k)∗eik·x
]

(4.36)

and I have absorbed the sum over polarisation vectors into the Fourier coefficients, aµ.

The Lorentz gauge condition says that k · a = 0, i.e. a0(k) = k̂ · a(k) and hence that
the time component of aµ equals the longitudinal component. So we are already down
to 3 independent components. The next step comes on realizing that we have still the
residual freedom to shift Aµ → Aµ + ∂µχ for any χ that satisfies the wave equation. Since
χ satisfies the wave equation, we can perform a mode expansion just like we did for the
Aµ field. Thus we are free to perform the replacement aµ → aµ +λkµ. For kµ = (k, 0, 0, k)
and aµ = (a0, a1, a2, a0) the choice λ = −a0/k transforms aµ → (0, a1, a2, 0) and we have
finished.

Having convinced ourselves that we can go ahead and quantise the Maxwell field, we
can now proceed to look for the photon propagator. Again I’m going to skip the details
and refer back to Dave Dunbar’s course:

iDµν
F (x− y) = 〈0|T(Aµ(x)Aν(y))|0〉

= −igµν
∫ d4k

(2π)4

e−ik·(x−y)

k2 + iǫ
. (4.37)

This is the Feynman propagator (ξ = 1). Generalising away from ξ = 1 is a bit more
tricky, it gives

iDµν
F (x− y) = −i

∫

d4k

(2π)4

e−ik·(x−y)

k2 + iǫ

(

gµν + (ξ − 1)
kµkν

k2

)

. (4.38)

4.3 Feynman Rules of QED

We are now ready to let our fermions and photons interact with each other. The inter-
action is described by the Lagrangian

Lint = −e ψγµAµψ. (4.39)

Such an interaction may be introduced by the concept of “minimal substitution” familiar
from classical electrodynamics:

p → p − eA,

E → E − eφ.

In four vector notation:
pµ → pµ − eAµ.

Applying this classical concept of minimal substitution to the Dirac equation gives

(i /D −m)ψ = 0 (4.40)

where we have introduced the covariant derivative

Dµ ≡ ∂µ + ieAµ.



The qed Lagrangian describing electrons, photons and their interactions is then given
by

L = −1

4
FµνF

µν − 1

2
(∂µA

µ)2 + ψ(i /D −m)ψ, (4.41)

where (∂·A)2/2 is the gauge fixing term for the Feynman gauge.
The qed Lagrangian is invariant under a symmetry called gauge symmetry, which

consists of the simultaneous gauge transformations of the photon field:

Aµ → Aµ + ∂µΛ (4.42)

and a phase transformation on the electron field:

ψ → e−ieΛψ. (4.43)

I refer to Dave Dunbar’s course for more details on gauge symmetries.
For us, the important thing is that we have got our hands on the qed Lagrangian

density. From it we can figure out the Feynman rules. We have already written down the
fermion and photon propagators and can more or less write down the other Feynman rules
without further ado (I refer back to Dave Dunbar’s course, Section 4, for the detailed
discussion of how to get Feynman rules from the Lagrangian density). The Feynman
rules for qed are summarised in Table 4.1.

The rule for the vertex can be obtained directly from Lint. The external line factors
are easily derived by considering simple matrix elements in the operator formalism. They

For every . . . draw . . . write . . .

Internal photon line
ν µ −igµν

q2 + iǫ

Internal fermion line
β α

p→
i(/p +m)αβ

p2 −m2 + iǫ

Vertex

β α

µ
−ieγµ

αβ

Outgoing electron us(p)

Incoming electron us(p)

Outgoing positron vs(p)

Incoming positron vs(p)

Outgoing photon ǫ∗µ

Incoming photon ǫµ

• Attach a directed momentum to every internal line

• Conserve momentum at every vertex

Table 4.1 Feynman rules for qed. µ, ν are Lorentz indices and α, β are spinor indices.



↓ q

e−

µ−

e−

µ−

pa →

pb →

pc →

pd →

Figure 4.1 Lowest order Feynman diagram for electron–muon scattering.

are what is left behind from the expansions of fields in terms of annihilation and creation
operators, after the operators have all been (anti-)commuted until they annihilate the
vacuum.

The spinor indices in the Feynman rules are such that matrix multiplication is per-
formed in the opposite order to that defining the flow of fermion number. The arrow on
the fermion line itself denotes the fermion number flow, not the direction of the momen-
tum associated with the line: I will try always to indicate the momentum flow separately
as in Table 4.1. This will become clear in the examples which follow. We have already
met the Dirac spinors u and v. I will say more about the photon polarisation vector ǫ
when we need to use it.

4.4 Electron–Muon Scattering

To lowest order in the electromagnetic coupling, just one diagram contributes to this
process. It is shown in Figure 4.1. The amplitude obtained by applying the Feynman
rules to this diagram is

iMfi = (−ie) u(pc)γ
µu(pa)

(

−igµν

q2

)

(−ie) u(pd)γ
νu(pb). (4.44)

Note that, for clarity, I have dropped the spin label on the spinors, I’ll restore it when
I need to. In constructing this amplitude we have followed the fermion lines backwards
with respect to fermion flow when working out the order of matrix multiplication (which
makes sense if you think of an unbarred spinor as a column vector and a barred spinor
as a row vector and remember that the amplitude carries no spinor indices).

The cross section involves the squared modulus of the amplitude, which is

|Mfi|2 =
e4

q4
Lµν

(e)L(µ) µν ,

where the subscripts e and µ refer to the electron and muon respectively and

Lµν
(e) = u(pc)γ

µu(pa)u(pa)γ
νu(pc),

with a similar expression for Lµν
(µ).

⊲Exercise 4.1
Verify the expression for |Mfi|2.

Usually we have an unpolarised beam and target and do not measure the polarisation
of the outgoing particles. Thus we calculate the squared amplitudes for each possible
spin combination, then average over initial spin states and sum over final spin states.



Note that we square and then sum since the different spin configurations are in principle
distinguishable. In contrast, if several Feynman diagrams contribute to the same process,
you have to sum the amplitudes first. We will see examples of this below.

The spin sums are made easy by the following results (I temporarily restore spin
labels on spinors):

∑

r

ur(p) ur(p) = /p +m,

∑

r

vr(p) vr(p) = /p −m.
(4.45)

Don’t forget that by m I really mean m times the unit 4 × 4 matrix.

⊲Exercise 4.2
Derive the spin sum relations in equation (4.45).

Using the spin sums we find that

1

4

∑

spins

|Mfi|2 =
e4

4q4

[

γµ
ij(/pa+me)jkγ

ν
kl(/pc+me)li

][

γµ,ab(/pb+mµ)bcγν,cd(/pd+mµ)da

]

=
e4

4q4
tr
(

γµ(/pa+me)γ
ν(/pc+me)

)

tr
(

γµ(/pb+mµ)γν(/pd+mµ)
)

. (4.46)

Where in the first expression, I chose to make explicit the spinor indices in order that
you can see how the trace which appears in the second expression emerges. Since all
calculations of cross sections or decay rates in qed require the evaluation of traces of
products of gamma matrices, you will generally find a table of “trace theorems” in any
quantum field theory textbook [1]. All these theorems can be derived from the fundamen-
tal anticommutation relations of the gamma matrices in equation (2.27) together with
the invariance of the trace under a cyclic change of its arguments. For now it suffices to
use

tr(/a/b ) = 4 a·b,
tr(/a/b /c /d) = 4(a·b c·d− a·c b·d+ a·d b·c),

tr(γµ1 · · · γµn) = 0 for n odd.
(4.47)

⊲Exercise 4.3
Derive the trace results in equation (4.47).

Using these results, and expressing the answer in terms of the Mandelstam variables
of equation (3.21), we find

1

4

∑

spins

|Mfi|2 =
2e4

t2

(

s2 + u2 − 4(m2
e +m2

µ)(s+ u) + 6(m2
e +m2

µ)2
)

. (4.48)

This can now be used in the 2 → 2 cross section formula (3.20) to give, in the high energy
limit (s, |u| ≫ m2

e, m
2
µ),

dσ

dΩ∗
=

e4

32π2s

s2 + u2

t2
(4.49)

for the differential cross section in the centre of mass frame.

⊲Exercise 4.4
Derive the result for the electron–muon scattering cross section in equation (4.49).
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Figure 4.2 Lowest order Feynman diagrams for electron–electron scattering.

Other calculations of cross sections or decay rates will follow the same steps we have
used above. You draw the diagrams, write down the amplitude, square it and evaluate
the traces (if you are using spin sum/averages). There are one or two more wrinkles to
be aware of, which we will meet below.

4.5 Electron–Electron Scattering

Since the two scattered particles are now identical, you can’t just replace mµ by me in
the calculation we did above. If you look at the diagram of Figure 4.1 (with the muons
replaced by electrons) you will see that the outgoing legs can be labelled in two ways.
Hence we get the two diagrams of Figure 4.2.

The two diagrams give the amplitudes,

iM1 =
ie2

t
u(pc)γ

µu(pa)u(pd)γµu(pb),

iM2 = −ie
2

u
u(pd)γ

µu(pa)u(pc)γµu(pb).

Notice the additional minus sign in the second amplitude, which comes from the anti-
commuting nature of fermion fields. You should accept as part of the Feynman rules for
qed that when diagrams differ by an interchange of two fermion lines, a relative minus
sign must be included (you don’t need to get the absolute sign of an amplitude right,
just its sign relative to the other amplitudes). This is important because

|Mfi|2 = |M1 + M2|2,

so the interference term will have the wrong sign if you don’t include the extra sign
difference between the two diagrams.

Squaring the amplitude and doing the traces yields (in the limit of negligible fermion
masses),

1

4

∑

spins

|Mfi|2 = 2e4
(

s2 + u2

t2
+
s2 + t2

u2
+

2s2

tu

)

. (4.50)

4.6 Electron–Positron Annihilation

4.6.1 e+e− → e+e−

For this process the two diagrams are shown in Figure 4.3, with the one on the right
known as the annihilation diagram. They are just what you get from the diagrams for
electron–electron scattering in Figure 4.2 if you twist round the fermion lines. The fact
that the diagrams are related this way implies a relation between the amplitudes. The
interchange of incoming particles/antiparticles with outgoing antiparticles/particles is
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Figure 4.3 Lowest order Feynman diagrams for electron–positron scattering in qed.

called crossing. For our particular example, the squared amplitude for e+e− → e+e− is
related to that for e−e− → e−e− by performing the interchange s ↔ u. Hence, squaring
the amplitude and doing the traces yields (again neglecting fermion mass terms)

1

4

∑

spins

|Mfi|2 = 2e4
(

s2 + u2

t2
+
u2 + t2

s2
+

2u2

ts

)

. (4.51)

4.6.2 e+e− → µ+µ− and e+e− → hadrons

If electrons and positrons collide and produce muon–antimuon or quark-antiquark pairs,
then the annihilation diagram is the only one which contributes. At sufficiently high
energies that the quark masses can be neglected, this immediately gives the lowest order
qed prediction for the ratio of the annihilation cross section into hadrons to that into
µ+µ−:

R ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= 3

∑

f

Q2
f , (4.52)

where the sum is over quark flavours f and Qf is the quark’s charge in units of e. The
3 comes from the existence of three colours for each flavour of quark. Historically this
was important: you could look for a step in the value of R as your e+e− collider’s cm

energy rose through a threshold for producing a new quark flavour. If you didn’t know
about colour, the height of the step would seem too large. Incidentally, another place
the number of colours enters is in the decay of a π0 to two photons. There is a factor of
3 in the amplitude from summing over colours, without which the predicted decay rate
would be one ninth of its real size.

At the energies used at lep you have to remember the diagram with a Z replacing
the photon.

⊲Exercise 4.5
Show that the cross section for e+e− → µ+µ− is equal to 4πα2/(3s), neglecting the lepton
masses.

4.7 Compton Scattering

The diagrams which need to be evaluated to compute the Compton cross section for
γe → γe are shown in Figure 4.4. For unpolarised initial and/or final states, the cross
section calculation involves terms of the form

∑

λ

ǫ∗µ
λ (p) ǫνλ(p), (4.53)
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Figure 4.4 Feynman diagrams for Compton scattering.

where λ represents the polarisation of the photon of momentum p. Since the photon is
massless, the sum is over the two transverse polarisation states, and must vanish when
contracted with pµ or pν . Moreover, since the photon is coupled to the electromagnetic
current Jµ = ψγµψ of equation (2.7), any term in the polarisation sum (4.53) proportional
to pµ or pν does not contribute to the cross section. This is because the current is
conserved, ∂µJ

µ = 0, so in momentum space pµJ
µ = 0. The upshot is that in calculations

you can make the replacement

∑

λ

ǫ∗µ
λ (p) ǫνλ(p) → −gµν . (4.54)



5 Introduction to Renormalisation

5.1 Renormalisation of QED

Let’s start by considering how the electric charge is defined and measured. This will
bring up the question of what happens when you try to compute loop corrections. In
fact, the expansion in the number of loops is an expansion in Planck’s constant h̄, as you
can show if you put back the factors of h̄.

The electric charge ê can be defined as the coupling between an on-shell electron
and an on-shell photon: that is, as the vertex on the left hand side of Figure 5.1 with
p2

1 = p2
2 = m2, where m is the electron mass, and q2 = 0. The Lagrangian parameter e

can never be measured in an experiment, since quantum fluctuations are always present.
Experiment tells us that

ê2

4π
≈ 1

137
.

We call ê the renormalised coupling constant of qed. We can calculate ê in terms of e
in perturbation theory. To one loop, the relevant diagrams are shown on the right hand
side of Figure 5.1, and the result takes the form

ê = e+ e3
[

a1 ln
M2

m2
+ b1

]

+ · · · (5.1)

where a1 and b1 are constants obtained from the calculation. The e3 term is divergent,
so we have introduced a cutoff M to regulate it. This is called an ultraviolet divergence
since it arises from the propagation of high momentum modes in the loops. The cutoff
amounts to selecting only those modes where each component of momentum is less than
M in magnitude. Despite the divergence in (5.1), it still relates the measurable quantity
ê to the coupling e we introduced in our theory. This implies that 1/e itself must be
divergent. For a sensible theory, in any relation between physical quantities the ultraviolet
divergences must cancel leaving a relation which is independent of the method used to
regulate divergences. This seems a very sensible demand of our theory. Essentially we
expect that qed breaks down at very high energies (e.g. when gravitational effects start
to become important), i.e. before M → ∞. However, we hope that what is going on at
such ultra-short (Planck length) distances does not modify physics as we know it today,
e.g. Quantum Gravity does not destroy Coulombs Law! Demanding this of our theory
is equivalent to saying that we want our theory to be renormalisable.

As an example, consider the amplitude for electron–electron scattering, which we
considered at tree level in section 4.5. Some of the contributing diagrams are shown in
Figure 5.2, where the crossed diagrams are understood (we showed the crossed tree level
diagram explicitly in Figure 4.2). Ultraviolet divergences are again encountered when
the diagrams are evaluated, and the result is of the form

iMfi = c0e
2 + e4

[

c1 ln
M2

m2
+ d1

]

+ · · · (5.2)

where c0, c1 and d1 are constants, determined by the calculation. In order to evalu-
ate Mfi numerically, however, we must express it in terms of the known parameter ê.
Combining (5.1) and (5.2) yields,

iMfi = c0ê
2 + ê4

[

(c1 − 2a1c0) ln
M2

m2
+ d1 − 2b1c0

]

+ · · · (5.3)



µ ↓ q

p→ p′ →
= +

+ + + + · · ·

Figure 5.1 Diagrams for vertex renormalisation in qed up to one loop.

Figure 5.2 Some diagrams for electron–electron scattering in qed up to one loop.

where the ellipsis denotes terms of order ê6 and above. Since |Mfi|2 is measurable,
consistency (renormalisability) requires,

c1 = 2a1c0.

This result is indeed borne out by the actual calculations, and the relation between M fi

and ê contains no divergences:

iMfi = c0ê
2 + ê4(d1 − 2b1c0) + O(ê6). (5.4)

To understand how this cancellation of divergences happened we can study the con-
vergence properties of loop diagrams (although we shall not evaluate them). Consider
the third diagram on the right hand side in Figure 5.1 and the middle diagram in Fig-
ure 5.2. These both contain a loop with one photon propagator, behaving like 1/k2 at
large momentum k, and two electron propagators, each behaving like 1/k. To evaluate
the diagram we have to integrate over all momenta, leading to an integral,

I ∼
∫

large k

d4k

k4
, (5.5)

which diverges logarithmically, leading to the lnM 2 terms in (5.1) and (5.2). Notice,
however, that the divergent terms in these two diagrams must be the same, since the
divergence is by its nature independent of the finite external momenta (the factor of two
in equation (5.3) arises because there is a divergence associated with the coupling of each
electron in the scattering process). In this way we can understand that at least some of
the divergences are common in both (5.1) and (5.2). What about diagrams such as the
third box-like one in Figure 5.2? Now we have two photon and two electron propagators,
leading to

I ∼
∫

large k

d4k

k6
.



Figure 5.3 Primitive divergences of qed.

Figure 5.4 Diagram containing a primitive divergence.

This time the integral is convergent.
Detailed study like this reveals that, for qed, ultraviolet divergences always cancel

in relations between physically measurable quantities. We discussed above the definition
of the physical electric charge ê. A similar argument applies for the electron mass: the
Lagrangian bare mass parameter m is divergent, but we can define a finite physical mass
m̂.

In fact you find that all ultraviolet divergences in qed stem from graphs of the type
shown in Figure 5.3 and are known as the primitive divergences. Any divergent graph
will be found on inspection to contain a divergent subgraph of one of these basic types.
For example, Figure 5.4 shows a graph where the divergence comes from the primitive
divergent subgraph inside the dashed box. Furthermore, the primitive divergences are
always of a type that would be generated by a term in the initial Lagrangian with a
divergent coefficient. Hence by rescaling the fields, masses and couplings in the original
Lagrangian we can make all physical quantities finite (and independent of the exact
details of the adjustment such as how we regulate the divergent integrals). This is what
we mean by renormalisability. Put slightly differently, a renormalisable theory is one
which needs as input only the values of those observable (i.e. renormalised) parameters
which have bare (unobservable) counterparts sitting in the original Lagrangian density.
This means that a renormalisable theory has real predictive power.

This should be made clearer by an example. Consider calculating the vertex correc-
tion in qed to one loop,

րp p′ց

µ ↓q

= u(p′)
[

Aγµ +Bσµνqν + Cq2γµ + · · ·
]

u(p).

The calculation shows that A is divergent. However, we can absorb this by adding a
cancelling divergent coefficient to the ψ /Aψ term in the qed Lagrangian (4.41). The B
and C terms are finite and unambiguous. This is just as well, since an infinite part of B,
for example, would need to be cancelled by an infinite coefficient of a term of the form

ψσµνFµνψ,



which is not available in (4.41).
In fact, the B term gives the qed correction to the magnetic dipole moment, g, of

the electron or muon (see page 160 of the textbook by Itzykson and Zuber [1]). These
are predicted to be 2 at tree level. You can do the one-loop calculation (it was first done
by Schwinger between September and November 1947 [2]) with a few pages of algebra to
find

g = 2

(

1 +
α

2π

)

.

This gives g/2 = 1.001161, which is already impressive compared to the experimental
values:

(g/2)electron = 1.001159652193(10),
(g/2)muon = 1.001165923(8).

Higher order calculations show that the electron and muon magnetic moments differ at
two loops and above. Kinoshita and collaborators have devoted their careers to these
calculations and are currently at the four loop level. Theory and experiment agree for
the electron up to the 11th decimal place!

The C term gives the splitting between the 2s1/2 and 2p1/2 levels of the hydrogen
atom, known as the Lamb shift. Bethe’s calculation [3] of the Lamb shift, done during a
train ride to Schenectady in June 1947, was an early triumph for quantum field theory.
Here too, the current agreement between theory and experiment is impressive.

In discussing the vertex correction in qed, we said that the divergent part of the
A term could be absorbed by adding a cancelling divergent coefficient to the ψ /Aψ term
in the qed Lagrangian (4.41). When a theory is renormalisable, all divergences can be
removed in this way. Thus, for qed, if the original Lagrangian is (ignoring the gauge-
fixing term),

L = −1

4
FµνF

µν + iψ/∂ψ − eψ /Aψ −mψψ,

then redefine everything by:

ψ = Z
1/2
2 ψR, Aµ = Z

1/2
3 Aµ

R,

e = Zeê =
Z1

Z2Z
1/2
3

ê, m = Zmm̂,

where the subscript R stands for “renormalised”. In terms of the renormalised fields

L = −1

4
Z3FR µνF

µν
R + iZ2ψR/∂ψR − Z1êψR /ARψR − ZmZ2m̂ψRψR.

Writing each Z as Z = 1 + δZ, re-express the Lagrangian one more time as

L = −1

4
FR µνF

µν
R + iψR/∂ψR − êψR /ARψR − m̂ψRψR + (δZ terms).

Now it looks like the old Lagrangian, but written in terms of the renormalised fields, with
the addition of the δZ counterterms. Now when you calculate, the counterterms give you
new vertices to include in your diagrams. The divergences contained in the counterterms
cancel the infinities produced by the loop integrations, leaving a finite answer.

The old A and ψ are called the bare fields, and e and m are the bare coupling and
mass.



Note that to maintain the original form of L, you want Z1 = Z2, so that the /∂ and
ê /A terms combine into a covariant derivative term. This relation does hold, and is a
consequence of the electromagnetic gauge symmetry: it is known as the Ward identity.

Let me stress again that renormalisation is not about sweeping infinities under the
carpet. It is about saying that we don’t need to understand physics at the Planck scale
in order to interpret lep data.

5.2 Renormalisation of Quantum Chromodynamics

Qcd is a theory of interactions between spin-1/2 quarks and spin-1 gluons. It is a
non-Abelian gauge theory based on the group SU(3), with Lagrangian

L = −1

4
Ga

µνG
a µν +

∑

f

ψf(i /D −mf )ψf +
gauge fixing and
ghost terms

. (5.6)

Here, a is a colour label, taking values from 1 to 8 for SU(3), and f runs over the quark
flavours. The covariant derivative and field strength tensor are given by

Dµ = ∂µ − igAa
µT

a,

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν ,

(5.7)

where the fabc are the structure constants of SU(3) and the T a are a set of eight in-
dependent Hermitian traceless 3 × 3 matrix generators in the fundamental or defining
representation (see the pre school problems and the quantum field theory course).

As in qed gauge fixing terms are needed to define the propagator and ensure that
only physical degrees of freedom propagate. The gauge fixing procedure is more compli-
cated in the non-Abelian case and necessitates, for certain gauge choices, the appearance
of Faddeev–Popov ghosts to cancel the contributions from unphysical polarisation states
in gluon propagators. However, the ghosts first appear in loop diagrams, which we will
not compute in this course.

There are no Higgs bosons in pure qcd. The only relic of them is in the masses for
the fermions which are generated via the Higgs mechanism, but in the electroweak sector
of the standard model.

A fundamental difference between qcd and qed is the appearance in the non-Abelian
case of interaction terms (vertices) containing gluons alone. These arise from the nonvan-
ishing commutator term in the field strength of the non-Abelian theory in equation (5.7).
The photon is electrically neutral, but the gluons carry the colour charge of qcd (specif-
ically, they transform in the adjoint representation). Since the force carriers couple to
the corresponding charge, there are no multi photon vertices in qed but there are multi
gluon couplings in qcd. This difference is crucial: it is what underlies the decreasing
strength of the strong coupling with increasing energy scale.

In qcd, hadrons are made from quarks. Colour interactions bind the quarks, produc-
ing states with no net colour: three quarks combine to make baryons and quark–antiquark
pairs give mesons. It is generally believed that the binding energy of a quark in a hadron
is infinite. This property, called confinement, means that there is no such thing as a free
quark. Because of asymptotic freedom, however, if you hit a quark with a high energy
projectile it might behave in many ways as a free particle. For example, in deep inelastic



Figure 5.5 Schematic depiction of deep inelastic scattering. An incident lepton radiates a
photon which knocks a quark out of a proton. The struck quark is detected indirectly only
after hadronisation into observable particles.

Figure 5.6 Additional diagrams for vertex renormalisation in qcd up to one loop. The dashed
line denotes a ghost. For some gauge choices and some regularisation methods not all of these
are required.

scattering, or dis, a photon strikes a quark in a proton, say, imparting a large momentum
to it. Some strong interaction corrections to this part of the process can be calculated
perturbatively. As the quark heads off out of the proton, however, the low energy strong
interactions cut in again and “hadronise” the quark into the particles you actually detect.
This is illustrated schematically in Figure 5.5.

We now try to repeat the procedure we used for renormalising the coupling in qed,
but this time in qcd, which is also a renormalisable theory. If we define the renormalised
coupling ĝ as the strength of the quark–gluon coupling, then in addition to the diagrams
of Figure 5.1, with the photons replaced by gluons, there are more diagrams at one loop,
shown in Figure 5.6. Looking at the second of these new diagrams, it is ultraviolet
divergent (containing a lnM 2 term) and is also infrared divergent, since there is no mass
to regulate the low momentum modes. In qed all the loop diagrams contain at least
one electron propagator and the electron mass provides an infrared cutoff (you still have
to worry when the electron is on-shell, but this is not our concern here). In the second
diagram of Figure 5.6 there is no quark in the loop. Now we can choose to define the
renormalised coupling off-shell, i.e. at some non-zero q 2. The finite value of q2 provides
the infrared regulator and the diagram has a term proportional to ln(M 2/q2).

Thus in qcd we can’t define a physical coupling constant from an on-shell vertex.
This is not really a serious restriction since it’s up to us how we define the coupling.
We could equally well have defined the qed coupling off-shell, it’s just that the value
of 1/137 is easy to extract from low energy experiments which are close to the on-shell
limit. Now the renormalised coupling depends on how we define it and therefore on at



least one momentum scale (in almost all practical cases, only one momentum scale). The
renormalised strong coupling is thus written

ĝ(q2).

When physical quantities are expressed in terms of ĝ(q2) the coefficients of the pertur-
bation series are finite.

You can define counterterms for qcd in the same way as was demonstrated for
qed. Now the gauge coupling g enters in many terms where it has the potential to get
renormalised in different ways. This would be a disaster. In fact, the gauge symmetry
imposes a set of relations between the renormalisation constants, known as the Slavnov–

Taylor identities, which generalise the Ward identities of qed.
We have just seen that the renormalised coupling in qcd, ĝ(q2), depends on the

momentum at which it is defined. We say it depends on the renormalisation scale, and
commonly refer to ĝ as the “running coupling constant.” We would clearly like to know
just how ĝ depends on q2, so we calculate the diagrams in Figures 5.1 and 5.6, to get the
first terms in a perturbation theory expansion:

ĝ(µ) = g + g3
[

a1 ln
M2

µ2
+ b1

]

+ · · · (5.8)

where a1 and b1 are constants and g is the “bare” coupling from the Lagrangian (5.6).
I have switched to using µ2 in place of q2, and have written ĝ as a function of µ for
convenience. From this equation it follows that

µ
∂ĝ

∂µ
≡ β(ĝ) = −2a1 ĝ

3 + · · · (5.9)

The discovery by Politzer and by Gross and Wilczek, in 1973, that a1 > 0 led to the
possibility of using perturbation theory for strong interaction processes, since it implies
that the strong interactions get weaker at high momentum scales: ĝ(∞) = 0 is a stable
solution of the differential equation (5.9). Keeping just the ĝ 3 term, we can solve (5.9)
to find

αs(µ) ≡ ĝ2(µ)

4π
=

4π

β0 ln(µ2/Λ2)
, (5.10)

where Λ is a constant of integration and β0 = 32π2a1. Thus αs(µ) decreases logarith-
mically with the scale at which it is renormalised, as shown in Figure 5.7. If for some
process the natural renormalisation scale is large, there is a chance that perturbation
theory will be applicable. The value of β0 is,

β0 = 11 − 2

3
nf , (5.11)

where nf is the number of quark flavours. The crucial discovery was the appearance
of the “11” coming from the self-interactions of the gluons via the extra diagrams of
Figure 5.6. Quarks, and other non-gauge particles, always contribute negatively to β0.
Non-Abelian gauge theories are the only ones we know where you can have asymptotic
freedom (providing you don’t have too much “matter”, e.g. providing that the number
of flavours is less than or equal to 16 for qcd).



Λ2

αs(µ
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µ2

Figure 5.7 Running of the strong coupling constant with renormalisation scale.

What is the significance of the integration constant Λ? The original qcd La-
grangian (5.6) contained only a dimensionless bare coupling g (the quark masses don’t
matter here, since the phenomenon occurs for a pure glue theory), but now we have a
dimensionful parameter. The real answer is that the radiative corrections (in all field
theories except finite ones) break the scale invariance of the original Lagrangian. In
qed there was an implicit choice of scale in the on-shell definition of ê. Lacking such a
canonical choice for qcd, you have to say “measure αs at µ = MZ” or “find the scale
where αs = 0.2,” so that a scale is necessarily involved. The phenomenon was called
dimensional transmutation by Coleman. Λ is given by

Λ = µ exp

(

−
∫ ĝ(µ) dg

β(g)

)

, (5.12)

and is µ-independent. The explicit µ dependence is cancelled by the implicit µ depen-
dence of the coupling.

We’ve seen that the coupling depends on the scale at which it is renormalised.
Moreover, there are many ways of defining the renormalised coupling at a given scale,
depending on just how you have regulated the infinities in your calculations and which
momentum scales you set equal to µ. The value of ĝ(µ) thus depends on the renormal-

isation scheme you pick, and with it, Λ. In practice, the most popular scheme today
is called modified minimal subtraction, ms, in which integrals are evaluated in 4 − ǫ
dimensions and divergences show up as poles of the form ǫ−n for positive integer n. In
the particle data book you will find values quoted for ΛMS around 200 MeV (it also de-
pends on the number of quark flavours). Don’t buy a value of Λ unless you know which
renormalisation scheme was used to define it.

In Figure 5.7 you see that the coupling blows up at µ = Λ. This is an artifact of
using perturbation theory. We can’t trust our calculations if αs(µ) > 1. In practice, you
can perhaps use scales for µ down to about 1 GeV, but not much lower, and 2 GeV is
probably safer.

⊲Exercise 5.1
Extending the expansion of ĝ in terms of g in (5.8) to two loops gives

ĝ(µ) = g + g3
[

a1 ln
M2

µ2
+ b1

]

+ g5
[

a2 ln2 M
2

µ2
+ b2 ln

M2

µ2
+ c2

]

,

with a similar equation for ĝ(µ0) in terms of g. Renormalisability implies that ĝ(µ) can



be expanded in terms of ĝ(µ0),

ĝ(µ) =
∞
∑

n=0

ĝ2n+1(µ0)Xn,

where the Xn are finite coefficients. Show that this implies that a2 is determined once
the one loop coefficient a1 is known. In fact a1 determines all the terms (αs lnµ)n, called
the leading logarithms: from a one loop calculation, you can sum up all the leading
logarithms.

For qed there is no positive contribution to the beta function, so the electromagnetic
coupling has a logarithmic increase with renormalisation scale. However the effect is small
even going up to lep energies: α goes from 1/137 to about 1/128. The so called Landau
pole, where α blows up, is safely hidden at an enormous energy scale.

⊲Exercise 5.2
Any process sensitive to strong interactions is in principle able to measure α s at any
scale. However, in practise there is some optimal choice. Discuss this statement.
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A Pre School Problems

The main aim of this course will be to teach the techniques required for performing
simple calculations of amplitudes, cross sections and decay rates, particularly in Quan-
tum Electrodynamics but also in Quantum Chromodynamics. Some aspects of quantum
mechanics, special relativity and electrodynamics will be assumed during the lectures at
the school. The following problems should be helpful in consolidating your knowledge in
these areas. The solutions can be found in many standard textbooks.

Probability Density and Current Density

Starting from the Schrödinger equation for the wave function ψ(x, t), show that the
probability density ρ = ψ∗ψ satisfies the continuity equation

∂ρ

∂t
+ ∇ · J = 0

where

J =
h̄

2im

[

ψ∗(∇ψ) − (∇ψ∗)ψ
]

What is the interpretation of J?

Rotations and the Pauli Matrices

Show that a 3-dimensional rotation can be represented by a 3 × 3 orthogonal matrix R
with determinant +1 (Start with x′ = R x, and impose x′·x′ = x·x). Such rotations form
the special orthogonal group, SO(3).

For an infinitesimal rotation, write R = 1l + iA where 1l is the identity matrix and
A is a matrix with infinitesimal entries. Show that A is antisymmetric (the i is there to
make A hermitian).

Parameterise A as

A =







0 −ia3 ia2

ia3 0 −ia1

−ia2 ia1 0





 ≡
3
∑

i=1

aiLi

where the ai are infinitesimal and verify that the Li satisfy the angular momentum
commutation relations

[Li, Lj ] = iǫijkLk

Note that the Einstein summation convention is used here. In general, I will switch
around between different notational conventions without warning. You should be able to
tell from the context what is meant: notation should be your slave, not your master.

The Pauli matrices σi are,

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0
0 −1

)

.

Verify that 1
2
σi satisfy the same algebra as Li. If the two-component spinor

ψ =
(

ψ1

ψ2

)

transforms into (1l+ ia·σ/2)ψ under an infinitesimal rotation, check that ψ †ψ is invariant
under rotations.



Raising and Lowering Operators

From the angular momentum commutation relations,

[Li, Lj ] = iǫijkLk

show that the operators
L± = L1 ± iL2

satisfy
[L+, L−] = 2L3

[L±, L3] = ∓L±
and show that

[L2, L3] = 0

where L2 = L2
1+L

2
2+L

2
3. From the last commutator it follows that there are simultaneous

eigenstates of L2 and L3. Let ψlm be such an eigenvector of L2 and L3 with eigenvalues
l(l + 1) and m respectively. Show that each of L±ψlm either vanishes or is an eigenstate
of L2 with eigenvalue l(l + 1) and of L3 with eigenvalue m± 1.

Four Vectors

A Lorentz transformation on the coordinates xµ = (ct,x) can be represented by a 4 × 4
matrix Λ as follows:

x′µ = Λµ
νx

ν

For a boost along the x-axis to velocity v, show that

Λ =











γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1











(A.1)

where β = v/c and γ = (1 − β2)−1/2 as usual.
By imposing the condition

gµνx
′µx′ν = gµνx

µxν (A.2)

where

gµν =











1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1











show that
gµνΛ

µ
ρΛ

ν
σ = gρσ or ΛTgΛ = g

This is the analogue of the orthogonality relation for rotations. Check that it works for
the Λ given by equation (A.1) above.

Now introduce
xµ = gµνx

ν



and show, by reconsidering equation (A.2) using xµxµ, or otherwise, that

x′µ = xν(Λ
−1)ν

µ

Vectors Aµ and Bµ that transform like xµ and xµ are sometimes called contravariant

and covariant respectively. A simpler pair of names is vector and covector. A particularly
important covector is obtained by letting ∂/∂xµ act on a scalar φ:

∂φ

∂xµ
≡ ∂µφ

Show that ∂µ does transform like xµ and not xµ.

Electromagnetism

The four Maxwell equations are:

∇ ·E =
ρ

ǫ0

∇×E = −∂B
∂t

∇ · B = 0

∇× B = µ0J + µ0ǫ0
∂E

∂t

Which physical laws are represented by each of these equations? Show that

∂ρ

∂t
+ ∇ · J = 0

and explain the significance of this equation. Verify that it can be written in manifestly
covariant form

∂µJ
µ = 0

where Jµ = (cρ,J).
Introduce scalar and vector potentials φ and A by defining B = ∇ × A and E =

−∇φ−∂A/∂t, and recall the gauge invariance of electrodynamics which says that E and
B are unchanged when

A → A + ∇Λ and φ→ φ− ∂Λ

∂t

for any scalar function Λ. Using this gauge freedom we can set

∇ · A = − 1

c2
∂φ

∂t

Assuming that φ and A can be combined into a four vector Aµ = (φ/c,A), this can be
written as ∂µA

µ = 0, which is known as the Lorentz gauge condition. Defining 2 ≡ ∂µ∂
µ,

show that with this condition Maxwell’s equations are equivalent to

2Aµ = µ0J
µ

The tensor Fµν is defined by

Fµν ≡ ∂µAν − ∂νAµ



How many independent components does Fµν have? Rewrite Fµν in terms of E and B.
Show that,

FµνF
µν = −2

(

E2

c2
−B2

)

ǫµνρσFµνFρσ = −8

c
E·B

where

ǫµνρσ =







+1 if µνρσ is an even permutation of 0123
−1 if µνρσ is an odd permutation of 0123
0 otherwise

This gives the relativistic invariants which can be constructed from E and B.

Group Theory: in Particular SU(N)

Unitary matrices U satisfy U †U = 1l. Verify that they form a group by showing that
W = UV is unitary if U and V are. In general, you should also show that there is an
identity element and that every U has an inverse, but these are both obvious. U(N) is
the group of complex unitary N × N matrices and SU(N) is the subgroup of matrices
with determinant +1.

Let U be a U(N) matrix close to the identity. Write

U = 1l + iG

where G has infinitesimal entries. Show that G is hermitian. If, in addition, U has
determinant 1, so U ∈ SU(N), show that G is traceless.

Any N × N traceless hermitian matrix can be written as a linear combination of a
chosen basis set. So, for any G we can choose infinitesimal numbers ǫi such that

G =
N2−1
∑

i=1

ǫiTi

where the Ti are our basis. Explain why the summation runs from 1 to N 2 − 1.
Show that [Ti, Tj ] is antihermitian and traceless, and hence can be written

[Ti, Tj ] = ifijkTk (A.3)

for some constants fijk. The commutation relations between the different Ti define the Lie

algebra of SU(N). The Ti are called the generators and the fijk are called the structure

constants.
Find a set of 3 independent 2× 2 matrices which are generators for SU(2) and a set

of 8 independent 3 × 3 generators for SU(3).
Verify the Jacobi identity,

[

Ti, [Tj , Tk]
]

+
[

Tj, [Tk, Ti]
]

+
[

Tk, [Ti, Tj]
]

= 0

and hence show that
fjklfilm + fkilfjlm + fijlfklm = 0

Define a new set of (N2 − 1) × (N2 − 1) matrices

(T i
adj)jk = −ifijk



and show that they obey the same commutation relations as the Ti in equation (A.3). The
T i

adj define the adjoint representation. The W ’s of the weak interactions and the gluons
of the strong interactions belong to the adjoint representations of SU(2)L, left-handed
weak SU(2), and SU(3), the strong interaction colour algebra, respectively.

The generators, and hence the algebra, were found by looking at group elements
near the identity. Other group elements can be recovered by combining lots of these
infinitesimal “rotations”

U = lim
N→∞

(1l + iθiTi/N)N = eiθiTi

where the θi are finite. This construction generates what mathematicians call a simply
connected group. There is a theorem stating that every Lie algebra comes from exactly
one simply connected group: SU(N) and its algebra give us one example.

However, we have seen that both SU(2) and the rotation group SO(3) have the
same, angular momentum, algebra. What is going on? It must be that SO(3) is not
simply connected. In fact, there is a mapping, called a covering, from SU(2) to SO(3)
which preserves the group property: that is if U ∈ SU(2) is mapped to f(U) ∈ SO(3),
then f(UV ) = f(U)f(V ). In the SU(2) → SO(3) case, two elements of SU(2) are
mapped on to every element of SO(3). Whenever a group G has the same Lie algebra as
a simply connected group S there must be such a covering S → G.

The double covering of SO(3) by SU(2) underlies the behaviour of spin-1/2 and
other half-odd-integer spin particles under rotations: they really transform under SU(2),
and rotating them by 2π only gets you half way around SU(2), so you pick up a minus
sign. A second 2π rotation gets you back to where you started.


