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Abstract

We evaluate the finite temperature partition sum and correlation functions of the Sachdev–Ye–Kitaev 
(SYK) model. Starting from a recently proposed mapping of the SYK model onto Liouville quantum 
mechanics, we obtain our results by exact integration over conformal Goldstone modes reparameterizing 
physical time. Perhaps, the least expected result of our analysis is that at time scales proportional to the 
number of particles the out of time order correlation function crosses over from a regime of exponential 
decay to a universal t−6 power-law behavior.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Sachdev–Ye–Kitaev (SYK) model [1,2] is a system of N (Majorana) fermions, χi with 
i = 1, . . . , N , subject to a four-fermion interaction

Ĥ =
N∑

ijkl

Jijkl χiχjχkχl, (1)
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with Gaussian distributed random matrix elements Jijkl with zero mean and a variance given 
by 〈|Jijkl |2〉 = 6J 2/N3. The seeming simplicity of this model is deceptive. At low excitation 
energies it exhibits an asymptotically exact conformal symmetry [2–5] which manifests itself in 
the infinite-dimensional freedom to re-parameterize time, t → f (t), in the description of long 
time correlations. This ‘nearly conformal symmetry’ (NCFT) [4,6] makes the model a candidate 
holographic shadow of some two-dimensional bulk. The potential realization of a holographic 
principle of lowest possible dimension has triggered a surge of research activity on the SYK 
model and its quantum dynamics [7–20].

At the same time, the existence of a large N parameter within an ‘infinite range’ interaction 
framework make the system amenable to mean-field approaches. It turns out that at the mean-
field level the infinite dimensional conformal symmetry gets broken by the interaction self-energy 
down to the conformal group SL(2, R) of rational transformations, t → at+b

ct+d
, ad − bc = 1. This 

leads to a classic symmetry breaking scenario and the emergence of Goldstone modes whose 
fluctuations become unhampered in the long time limit where the explicit symmetry breaking 
(represented by the time derivative ∂t present in the system’s action) becomes negligible. The 
situation bears similarity to that in a magnet, with the important difference that the dimension 
of the Goldstone mode manifold is infinite, while the spatial dimension is zero. This means that 
Goldstone mode fluctuations are enhanced by the Mermin–Wagner principle and expected to 
become virulent in the long time limit where the explicit symmetry breaking vanishes.

In Ref. [21] we introduced a method to isolate these fluctuations and perform a full integration 
over the Goldstone mode manifold. The idea is to introduce an exponential reparameterization 
f ′(t) = exp(φ(t)) whereupon the Goldstone mode integral assumes the form of a path integral 
over φ, with an (approximately) time local action coinciding with that of so-called Liouville 
quantum mechanics [22]. Standard methods of quantum mechanics are then applicable to per-
form the integration, including the regime where the φ-fluctuations become large (but those of a 
canonically conjugate ‘momentum’, k, are small in exchange). We demonstrated emergence of a 
new time scale

M ≡ N ln(N)

64
√

πJ
. (2)

At long times t 	 M , Goldstone mode fluctuations are strong and act to restore the broken 
symmetry (much like in a low dimensional magnet at weak external field rotational symmetry 
is restored by unbounded fluctuations in the magnetization). For example, while the mean-field 
Green function [1,2,4], G(ε) ∼ |ε|−1/2 has a divergent amplitude at low energies, the inclusion 
of Goldstone mode fluctuations shows [21] that G(ε) ∼ |ε|1/2 for energies |ε| � M−1, i.e. sym-
metry restoration suppresses the mean-field propagator (the latter playing the role of an average 
magnetization in the magnetic metaphor).

In Ref. [21] we analyzed the effect of Goldstone modes within a zero temperature framework. 
However, the majority of observables describing the dynamical behavior of the SYK-model – 
four point functions in general, and out-of-time-order (OTO) correlation functions in particular 
[6,23,24] variants of the partition sum [3,24,25], etc. – are formulated as quantum thermal aver-
ages and require a finite temperature formalism. That this generalization is not entirely innocent 
is indicated by the observation that in the exponential degradation [24,6], ∼ exp(2πT t), of OTO 
correlations at small times, temperature, T , itself features as the relevant rate.

Below we show that finite temperatures affect the effective quantum mechanics describing the 
Goldstone mode fluctuations via the appearance of an exponential potential adding to the native 
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potential of Liouvillian quantum mechanics. This contribution strongly affects the Goldstone 
mode integral. To be specific, we consider the OTO correlation function

F(t) ≡ 1

ZN2

N∑
ij

〈
tr

(
e
−β

4 Ĥ
χi(0) e

−β
4 Ĥ

χj (t) e
−β

4 Ĥ
χi(0) e

−β
4 Ĥ

χj (t)

)〉
, (3)

where Z =
〈
tr
(

e−βĤ
)〉

is the partition sum. This expression, which differs from the standard 
definition of a thermal correlation function by the symmetrization of thermal weights [24,6], has 
become an established tool for the diagnostics of correlations in the model.

While previous work identified regimes of exponential decay of OTO correlations functions, 
here we show that Goldstone mode fluctuations are responsible for the formation of power laws
at large times and/or low temperatures. Our main findings are summarized as follows. For high 
temperatures, T 	 M−1, we need to discriminate between short and large times, t � M and 
t 	 M , respectively. In the short time regime, Goldstone mode fluctuations are weak, and one 
identifies [6,24] two different regimes characterized by the exponential loss of correlations, de-
pending on whether t < tE , or t > tE , where

tE ≡ ln(MT )

2πT
(4)

plays the role of an Ehrenfest time [23] in the problem. However, at large times, t 	 M , fluctu-
ations are strong and generate universal power law scaling, F(t) ∼ t−6. For small temperatures, 
T � M−1, Goldstone mode fluctuations affect the picture throughout the entire domain, no ex-
ponential regimes are found, and the power law, F(t) ∼ t−6, holds for all times t 	 T −1. The 
quantitative summary of these statements reads as (cf. Fig. 1 where the four distinctive regimes 
are indicated as 1, 2, 3, 4, respectively).

T 	 M−1 : F(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − 1
64π

e+2πT (t−tE); t < tE

ln(MT )e−πT (t−tE); tE < t < 2πM

(MT )−3/2e−2π2MT
(

M
t

)6 ; 2πM < t

,

T � M−1 : F(t) = (MT )1/2

(1 + (16tT )2)3
, (5)

where the algebraic profiles extend previously obtained results with exponential behavior [4] to 
the regime of long times/low temperatures. These correlations appear as a robust consequence of 
the Liouville quantum mechanics which effectively governs the long time behavior of the system. 
Though we used 4-fermion model, Eq. (1), as an example – the qualitative features, including 
t−6 law, hold for an arbitrary number q ≥ 4 of fermions in the interaction term. This universality 
is based on the 3/2 power-law decay of two-time-points functions in the Liouville model [26,21].

The derivation of the above correlation laws also implies independent validation of various re-
sults that have been obtained before on more phenomenological grounds (including by reference 
to principles of holography), or by different analytic methods. Notably, we find that the partition 
sum at small temperatures T � J scales as

Z(β) ∼ (M/β)3/2 exp(2π2M/β), β = 1

T
(6)
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Fig. 1. Results for the OTO correlation function. Top: At high temperatures, T > M−1 and large times, t > 2πM , 
the function crosses over from exponential to power-law decay with an exponent t−6. Bottom: at low temperatures, 
T < M−1 the function is nowhere exponential. At large times t > T −1 > M−1 it again shows t−6 power-law behavior. 
The inset shows the parametric extension of the four regimes in a t–T plane.

in agreement with the results of Ref. [10]. This formula is directly related to the many-body 
density of states (DoS), which we find for energies E � J behaves as

ρ(E) ∝ θ(E) sinh
[
2π

√
2ME

]
, (7)

where the energy is counted from the ground state. This result was obtained previously in the limit 
of large number of interacting fermions, q ∼ √

N , [10] and by statistical analysis of moments of 
the random interaction operator [13]. In our present analysis, the DoS reflects the energy stored 
in Goldstone mode fluctuations. We also note that at high temperatures, T 	 1/M , or energies, 
E 	 1/M , the constant M in Eqs. (6) and (7) acquires a week logarithmic dependence on either 
T or E, respectively (see more comments on this in section 3).

Interestingly, the result (6) for the partition sum entails a heuristic explanation for the power-
law formation in the OTO correlation function (5) at long times/low temperatures, t, T −1 < M . 
To see this, let us insert four spectral resolutions of (realization specific) many body eigenstates 
|m〉 in (3) to obtain the ‘Lehmann representation’

F(t) = 1

ZN2

∑
ij,mi

〈
〈m1|χi |m2〉〈m2|χj |m3〉〈m3|χi |m4〉〈m4|χj |m1〉

× e
−
(

β
4 +it

)
εm1 −

(
β
4 −it

)
εm2 −

(
β
4 +it

)
εm3−

(
β
4 −it

)
εm4

〉
. (8)

Now, let us assume that the Majorana matrix elements 〈m|χi,j |n〉 and the eigenenergies, εn, are 
statistically independent. This assumption is of course grossly ad-hoc. However, statistical wave 
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function/eigenvalue independence is a hallmark of random matrix models, and in view of the 
evidence for ergodic chaotic behavior shown by the SYK model at low energies [20,13] may 
contain some truth. If so, and if at the characteristic energy differences |εm − εm| ∼ t−1 ∼ M−1

much larger than the many-body level spacing ∼ e−N/2 statistical correlations between the levels 
of different spectral sums can be neglected, the correlation function simplifies to

F(t) ∼ |Z(β/4 + it)|4, (9)

where Z(s) = 〈∑
n e−sεn

〉 = ∫
dE ρ(E) e−sE with Re(s) > 0 is the Laplace transform of the 

average many-body DoS, Eq. (7), which at s = β is also identical to the physical partition sum. 
The large time behavior of such Laplace transform is dominated by branching points of the DoS 
function. Since at energies E < M−1 DoS exhibits non-analytic behavior as ρ(E) ∼ E1/2, it 
leads to Z(s) ∼ s−3/2 at |s| 	 M . This is exactly the 3/2 law, observed in the long-time behavior 
of two-point functions [21]. It in turn implies F(t) ∼ t−6 as announced in Eq. (5).

Of course, the construction above contains several ad-hoc assumptions and isn’t trustworthy 
in its own right. The rest of the paper is devoted to a first principle validation of Eq. (5) from 
the low energy theory of SYK Goldstone mode fluctuations. We will start in section 2 where we 
review the path integral description of the model and the emergence of conformal soft modes. In 
section 3 we construct the finite temperature Liouvillian soft mode action. In section 4 the short 
time fluctuation behavior of this effective theory will be studied by stationary phase methods on 
the example of the partition sum. Continuing with this quantity the analytical machinery required 
for studying strong Goldstone mode fluctuations are introduced in section 5. The following four 
sections then define the core of the paper in which the OTO correlation function is addressed. 
We start by setting up a path integral representation of this quantity in section 6. Its short, inter-
mediate, and long time behavior are then addressed in sections 7, 8, and 9, respectively, before 
we conclude in section 10. Several Appendices provide details on technical calculations.

2. Preliminaries

Our starting point is the effective action describing the system [3,4] after the averaging 
over disorder and integration over Grassmann-fermion degrees of freedom have been performed 
(see Appendix A)

−S[
,G] = N

2
Tr log(∂τ δ

ab + 
ab
τ,τ ′) + N

2

∫ β/2∫
−β/2

dτdτ ′
[
J 2

4

(
Gab

τ,τ ′
)4 + 
ba

τ ′,τG
ab
τ,τ ′

]
.

(10)

Here, Gab
τ,τ ′ and 
ab

τ,τ ′ are matrix fields carrying an index structure, a, b = 1, . . . , n in a space of n
replicas. The first term of the action resembles the free energy of a fermion system and identifies 

 as a dynamical self energy. The second term reflects that the average over disorder, 〈Ĥ 2〉 is 
of eighth order in Majorana operators. This is amounts to four Green functions, which here play 
a role of dynamical matrix fields, too. The third term expresses the conjugacy of the two fields 

, G.

The action (10) exhibits an exceptionally high level of symmetry, provided ∂τ term is ne-
glected: it is then invariant under reparameterizations of time, τ → f (τ), where f (τ) may be 
any invertible and differentiable function. (Invertibility requires globally monotonicity and with-
out loss of generality we assume f ′(τ ) > 0 throughout. The condition of differentiability may 
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be sacrificed at isolated points if necessary.) This means that S possesses an infinite dimensional 
symmetry group whose generators are the Virasoro generators of infinitesimal reparameterization 
transformations, f .

The interpretations of the fields G and 
 become more tangible at the mean-field level, where 
the stationary phase equations [3] assume the form of the self-consistent Dyson equation

−(∂τ + 
) · G = 1; 
 = J 2[G]3
. (11)

The first equation here is a matrix equation while in the second the cube operation acts on each 
matrix element separately, i.e. [G]3 ≡ [

Gab
τ,τ ′

]3. These equations can be solved in the long time 
limit τ − τ ′ 	 1/J , where ∂τ may be neglected. A configuration, G∞, 
∞ solving the equations 
at zero temperature, β → ∞, reads as

Gab∞(τ − τ ′) = − b

J 1/2

δab sgn(τ − τ ′)
|τ − τ ′|1/2

; 
ab∞ (τ − τ ′) = −b3J 1/2 δab sgn(τ − τ ′)
|τ − τ ′|3/2

,

(12)

where b = (4π)−1/4. However, this solution is not unique [2,5,4]. Under the action of the sym-
metry operation it transforms as

G∞([f ], τ, τ ′) = f ′(τ )1/4G∞
(
f (τ) − f (τ ′)

)
f ′(τ ′)1/4

= − b

J 1/2
sgn(τ − τ ′) f ′(τ )1/4f ′(τ ′)1/4

|f (τ) − f (τ ′)|1/2
,


∞([f ], τ, τ ′) = f ′(τ )3/4
∞
(
f (τ) − f (τ ′)

)
f ′(τ ′)3/4

= −b3J 1/2sgn(τ − τ ′) f ′(τ )3/4f ′(τ ′)3/4

|f (τ) − f (τ ′)|3/2
, (13)

i.e. we encounter the classic scenario where a symmetry is broken at the mean field level, and 
a Goldstone mode manifold emerges. One may verify that the sole transformations leaving the 
saddle points invariant are the conformal reparameterizations, τ → aτ+b

cτ+d
, ad − bc = 1, i.e. the 

Goldstone mode manifold is identified as the group of time-reparameterizations modulo the un-
broken SL(2, R)-transformations.

The transformation (13) provides a way to generalize the saddle-point solution from one de-
fined on the entire real axis to a finite-temperature solution with support on [−β/2, β/2] [27]: 
the reparameterization

τ → g(τ) := tan
(
πτ/β

)
, (14)

provides an invertible map from the open imaginary time interval [−β/2, β/2] onto the entire 
axis. According to Eq. (13) the corresponding Green function reads

Gβ(τ − τ ′) = G∞([g], τ − τ ′) = − b

J 1/2
sgn(τ − τ ′)

[
π

β sin(π |τ − τ ′|/β)

]
1/2 (15)

and similarly for 
β(τ1 − τ2). This defines a periodic and time translationally invariant solution 
of the finite temperature saddle-point equation (11). The group property of the symmetry implies 
that reparameterization of compactified time τ → f (τ), mapping the interval [−β/2, β/2] onto 
itself and obeying the periodicity constraint

f (τ + β) − f (τ) = β; f ′(τ + β) = f ′(τ ) ≥ 0 (16)
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Fig. 2. Top: an invertible map f (τ) from the interval [−β/2, β/2] onto itself (left) and h(τ) ≡ g(f (τ)) from the interval 
[−β/2, β/2] onto the reals (right). In the latter case a singularity at some τ∗ is necessarily present. Bottom left: reparam-
eterization of h′ = exp(φ). For later reference, the imaginary time arguments τ1, . . . , τ4 of the OTO correlation function 
are indicated. Bottom right: a shift s∗ → β/2 is applied to move the singularity to the boundaries of the time interval.

generate a family of finite temperature solutions Gβ([f ], τ, τ ′), periodic on the time interval but 
lacking translational invariance (i.e. the functions Gβ[f ] depend two time arguments separately 
and not just the difference).

3. Soft mode integration

The low energy properties of the model are described by a functional integral over the soft-
mode manifold parameterized by the functions f identified in the previous section. In Ref. [21]
we showed that at zero temperature the emerging integrals can be understood as path integrals 
of Liouville quantum mechanics. In the following, we discuss the non-trivial generalization to 
finite temperatures to then apply it to the computation of observables.

Rather than integrating over functions f : [−β/2, β/2] → [−β/2, β/2] mapping the finite 
imaginary time interval onto itself (cf. Eq. (16)), we find it convenient to work with func-
tions h : [−β/2, β/2] → R which have the full real numbers as their image. (Within the 
[−β/2, β/2] → [−β/2, β/2] framework, the weak symmetry breaking part of the effective ac-
tion picks up potential contributions under re-transformations which are unpleasant to work 
with.) The passage to this description is defined by h(τ) ≡ g(f (τ)), where g is the tan-function, 
Eq. (14). The function h then necessarily has a singularity at some τ ∗ ∈ [−β/2, β/2], where 
f (τ ∗) = ±β/2 (cf. Fig. 2.) A shift of the time axis, which is part of the SL(2, R) invari-
ance manifold, can be applied to shift the singularity to the boundaries of the interval τ∗ =
±β/2.
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Recalling that Gβ = G∞([g]), we have Gβ[f ]) = G∞([g ◦ f ]) = G∞[h], or

Gβ([f ], τ, τ ′) = h′(τ )1/4G∞
(
h(τ) − h(τ ′)

)
h′(τ ′)1/4, (17)

in a more explicit representation. Notice that, although we effectively returned to the zero 
temperature Green function, the time arguments lie in the finite temperature interval τ, τ ′ ∈
[−β/2, β/2].

Likewise, any finite-temperature observable, Oβ[f ], formulated in terms of reparameteri-
zations, f , of the finite temperature soft mode manifold may be transformed into the zero 
temperature observable O∞[h], parameterized by h = g ◦ f . Expectation values of such ob-
servables are obtained by integration over reparameterizations,

〈Oβ〉 ∝
∫

μ[f ]Df Oβ [f ] e−Sβ [f ] f =g−1◦h=
∫

μ[h]DhO[h] e−S[h], (18)

where we omitted the subscript ′∞′ for brevity. Here, μ[h] ∝ ∏
τ [h′(τ )]−1 [21] is the group 

measure whose reparameterization invariance implies μ[f ]Df = μ[h]Dh. The action S[h] in 
Eq. (18) describes the cost of h-fluctuations due to the presence of the derivative ∂τ in Eq. (10). 
Requiring invariance under the SL(2, R)-reparameterization group and assuming locality in time, 
one may argue [4] that this action must be the integrated Schwarzian derivative

S[h] = −M

β/2∫
−β/2

dτ {h(τ), τ }, (19)

where {h, τ } ≡ (h′′
h′ )′ − 1

2 (h′′
h′ )2 and M is a coupling constant of dimensionality [time].1 On 

dimensional grounds, this constant determines the time scale, t∗ ∼ M , above which the repa-
rameterization fluctuations become strong. The value of this constant can be fixed by a more 
explicit construction [21] which first translates the starting action (10) into a non-local f -action 
and then notes that the collapse to an effectively local action takes place below a certain energy 
scale which has to be determined by a self consistency-analysis [21].

In more concrete terms, one defines M as the running coupling constant of the Schwarzian 
theory, M(E), which has a weak logarithmic dependence on a typical energy involved when the 
latter is sufficiently high, E > M(E), namely

M(E) = N ln(J/E)

64
√

πJ
, E > 1/M(E). (20)

This logarithmic renormalization stops at the scale 
 defined self-consistently via 
 = 1/M(
), 
which with log accuracy is resolved as 
 = 64

√
πJ/(N lnN). At smaller energies, E < 
, the 

Goldstone mode fluctuations proliferate and M(E) saturates to the constant value M ≡ 1/
 as 
stated in equation (2). Note, that a logarithmic dependence of M(E) is the price to pay to reduce 
the intrinsically non-local action for reparametrizations to the local Schwarzian form. In practical 
calculations one should take M at the scale E = min(T , 1/t), where t is a time variable in the 
correlation function.

1 The action Sβ [f ] is obtained from here as Sβ [f ] ≡ S[g ◦ f ] = S[f ] − 2π2M

β2

β/2∫
dτ f ′ 2, cf. Ref. [4].
−β/2
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Before turning to the actual integration procedure in Eq. (18), we impose one more change of 
variables and introduce the degree of freedom, φ(τ), of Liouville quantum mechanics as

h′(τ ) ≡ eφ(τ), φ(τ + β) = φ(τ), (21)

where the positivity h′(τ ) > 0 guarantees that φ(τ) is real. The key advantage of this parameter-
ization is the flatness of its integration measure, μ[h] Dh =Dφ [21]. However, attention must be 
payed to the singularity of all admissible h-functions at τ = ±β/2. It translates into a diverging 
integral 

∫ β/2
−β/2 dτ h′(τ ) = ∫ β/2

−β/2 dτ eφ(τ) = ∞. We find it convenient to regularize this divergence 
by introducing a finite but long time tH such that

β/2∫
−β/2

eφ(τ)dτ = tH , (22)

and take a limit tH → ∞ at the end of the calculation. Trajectories φ(τ) satisfying this condition 
thus become regularized at the boundaries of the time interval, φ(±β/2) = φ0 with φ0 → +∞
as tH → ∞.

In the φ-language the soft mode action reads as

S[h] → S[φ] = M

2

β/2∫
−β/2

dτ
[
(φ′)2 − 2φ′′] , (23)

and expectation values of observables Oβ assume the form

〈Oβ〉 ∝ Zβ
−1

φ(β/2)=φ0∫
φ(−β/2)=φ0

DφO[φ] e−S[φ],

S[φ] =
β/2∫

−β/2

dτ

{
M

2

[
(φ′)2 − 2φ′′]+ γ eφ(τ)

}
− γ tH , (24)

where γ is a Lagrange multiplier enforcing the condition (22), and Zβ = ∫
Dφ exp(−S[φ]) is 

the partition sum. Notice that the full derivative φ′′ cannot be ignored since, due to singular-
ity discussed above, φ′(±β/2) → ±∞. It is this term which neutralizes the formally infinite 
constant γ tH . The same singularity also shows in the boundary conditions φ(±β/2) = φ0. Our 
treatment below establishes a balance between the parameters tH , φ0, and γ such that the final 
answers do not depend on regularization specifics.

4. Saddle point calculation

At sufficiently high temperature, and/or sufficiently short time intervals τ–τ ′ the functional 
integral (24) may be evaluated in a saddle point approximation. This saddle point approach is 
stabilized by the largeness of M compared to all other time scales in the problem. To expose this 
parameter in the best possible way we introduce a rescaled variable as

φ ≡ ln

(
2M

γ

)
+ ϕ, (25)
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where we are simplifying the notation by temporarily setting β ≡ π . In the final results the 
β-dependence can then be re-introduced by scaling all quantities with dimension of time as 
τ → τπ/β . Expressed in the new language, the action assumes the form

S[ϕ] = M

π/2∫
−π/2

dτ

(
1

2
[ϕ′(τ )]2 + 2eϕ(τ)

)
, (26)

the constraint becomes
π/2∫

−π/2

eϕ(τ)dτ = tH γ

2M
, (27)

and the equation of motion reads as ϕ′′(τ ) = 2eϕ(τ). In the limit tH → +∞ this is solved 
by ϕ̄∞(τ ) = − ln

(
cos2 τ

)
. (The dependence on tH is implicit through Eq. (27), which for 

tH → ∞ implies diverging boundary conditions ϕ̄∞(τ → ±π/2) → ∞.) The meaning of 
this solution becomes apparent when we formulate it in the language of the h-representation, 
h̄0(τ ) = 2M

γ

∫
dτeϕ̄∞(τ ) = 2M

γ
g(τ), where g is the tan-function of Eq. (14). It is straightforward 

to check that for this function G∞([h̄0], τ, τ ′) = Gβ(τ − τ ′) reduces to the familiar [27] transla-
tionally invariant finite temperature solution of the Dyson equation (15).

Finite values of tH regularize the infinity in the boundary conditions of ϕ̄∞. This regulariza-
tion can be achieved by shifting the argument of the cos in the solution as,

ϕ̄(τ ) ≡ ln
(1 − λ)2

cos2
(
τ(1 − λ)

) , λ � 1. (28)

For small λ we find that the integral in (27) evaluates to 4/(πλ), and this fixes the shift parameter 
as

λ = 8M

πγ tH
. (29)

For this configuration, we find a boundary value, exp(ϕ̄(±π/2)) ≡ exp(ϕ0) = (2/πλ)2.
Now is a good time to discuss the status of the Lagrange multiplier, γ . This parameter was 

introduced to enforce the constraint, Eq. (27). In conventional variational calculus, the value 
of a Lagrange multiplier is fixed by requiring that the constraint is satisfied on the variational 
configuration (ϕ̄). Presently, however, we have one more free variable in the picture, viz. the 
diverging boundary values ϕ0. We may use this freedom to make sure that for any given value of 
γ the constraint is satisfied (we saw above that this is achieved by the value exp(ϕ0) = (2/πλ)2 =
(γ tH /4M)2). This gives us the freedom to fix γ at will, and the best choice is γ = J , i.e. the 
largest possible value of a variable with dimension [energy] in the problem. A large value of 
the Lagrange multiplier is favored because it minimizes fluctuation-violations of the constraint 
(much like particle number fluctuations in statistical mechanics are minimized by large chemical 
potentials. For a few more remarks substantiating this point, see Appendix B). Our rationale, thus, 
is to impose a fixation γ = J throughout. This determines the boundary values of the Liouville 
quantum mechanics which in the language of the original variable, φ read

exp(φ0) = exp(φ(±π/2)) = γ t2
H

8M
. (30)
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Finally, a straightforward calculation shows that the stationary phase action is given by

S[ϕ̄] = M

π/2∫
−π/2

dτ

{
1

2
(ϕ̄′)2 − ϕ̄′′ + 2 eϕ̄(τ)

}
− γ tH = −2πM, (31)

independent of the regularization.
Gaussian fluctuations around ϕ̄ lead to a fluctuation determinant whose calculation is detailed 

in Appendix C. Multiplying this factor with the exponentiated saddle point action (31), leads to 
the result (6) scaled by the regularization-dependent prefactor (γ tH )−1. The latter may be con-
sidered as an artifact of the path integral normalization and drops out in all physical observables 
normalized by the partition sum.

5. Partition function from Liouville quantum mechanics

We next discuss different approach to computing observables which is tailored to handle 
regimes of large fluctuations. The idea is to map the Liouville path integral to an equivalent 
Schrödinger equation and solve the latter. Where the partition function is concerned, this pro-
cedure leads to results identical to those of the stationary phase approach. The exactness of the 
latter in connection with Z has indeed been stated before [10], although we are not aware of a 
proof and the partition sum does not appear to satisfy standard criteria [28] for the semiclassical 
exactness of path integrals in an obvious ways. At any rate, pronounced deviations between the 
two approaches will be observed when other quantities are considered.

The functional integral in Eq. (24) lends itself to a straightforward quantum mechanical inter-
pretation. To this end, consider the Liouville Hamiltonian operator

Ĥ = − ∂2
φ

2M
+ γ eφ, (32)

and the corresponding imaginary time propagator:

�(φ1, φ2, τ ) = 〈φ1|e−τĤ |φ2〉 =
φ(τ/2)=φ2∫

φ(−τ/2)=φ1

Dφ e
−

τ/2∫
−τ/2

ds
{

M
2 [φ′(s)]2+γ eφ(s)

}
. (33)

Comparison with Eq. (24) shows that the regularized Schwarzian partition function can be iden-
tified with the quantum propagator

Z(β) = e2γ tH �(φ0, φ0, β) , (34)

provided we have the identification

M

β/2∫
−β/2

ds φ′′(s) = Mφ′(s) != Mφ̄′(s)
∣∣∣β/2

−β/2
= γ tH . (35)

We here require that at the integration boundaries, φ(±β/2) � φ̄(±β/2) the semiclassical ap-
proximation remains valid, including in regimes where fluctuations are otherwise large. The 
justification for this assertion is that in the limit tH → ∞ the boundary field amplitudes assume 
large values and fluctuations are relatively less pronounced than in the interior of the integration 



738 D. Bagrets et al. / Nuclear Physics B 921 (2017) 727–752
interval. Under these conditions, the semiclassical expressions (28), (29) yield Eq. (35), which 
in turn leads to the equivalence � ∼ Z.

The Hamiltonian Ĥ , Eq. (32), has a continuous spectrum labeled by a quantum number k
which may be interpreted as the momentum conjugate to φ. Its energy eigenvalues are given by 
Ek = k2/2M , and are independent of γ . The dependence on this parameter is in the normalized 
wave functions which take the form

〈φ|k〉 = �k(φ) =NkK2ik

(
2
√

2Mγ eφ/2
)

, Nk = 2

�(2ik)
, (36)

where Kα are modified Bessel functions, and � is the Gamma function. With these functions the 
spectral representation of the propagator (33) reads as

�(φ1, φ2, τ ) =
+∞∫
0

dk

2π
�k(φ1)�

∗
k (φ2) e−k2τ/2M. (37)

Into this expression we substitute φ1 = φ2 = φ0, which means that we have to consider the (real) 
wave function amplitudes

�k(φ0) = NkK2ik

(
2
√

2Mγ eφ0/2
)

(30)= NkK2ik(γ tH ) ∼Nke
−γ tH /

√
γ tH , (38)

where the large argument asymptotic of the Bessel functions was used. Noting that
(�(2ik)�(−2ik))−1 = 2k sinh(2πk)/π the partition function (34) assumes the form

Z(β) ∼ 1

γ tH

+∞∫
0

dkk sinh(2πk) e−βk2/2M = M

γ tH

∞∫
0

dE sinh
[
2π

√
2ME

]
e−βE. (39)

The last expression implies that the average many-body DoS, ρ(E), of the SYK model is 
given by (7). Here, E measures the positive energy of reparameterization fluctuations and 
ρ(E) is the corresponding density of states relative to the ground state energy. This remark-
ably simple expression was obtained in Ref. [10] in the limit of a large number of interacting 
fermions and more recently in Ref. [13] by the combinatorial analysis of averaged moments 
of the Hamiltonian operator. We here show how it follows from the Liouville partition func-
tion.

The square-root singularity of the DoS at low energies resembles the behavior of effective 
random matrix models close to their mean field spectral band gaps. In the case of SYK the 
corresponding square root behavior is observed at the energy scale ∼ 1/M ∼ J/N logN , where 
the reparameterization fluctuations become strong. As we explain in the Introduction it is this 
branch cut singularity of the many-body DoS which is responsible for the universal power-law 
behavior of the correlation functions at long times.

Finally, performing integration over k in Eq. (39), we obtain the partition sum (6) in exact 
agreement with the Gaussian approximation.

6. Out of time correlation function I: path integral representation

In this and the following sections we discuss the dynamics of the OTO correlation function. 
Unlike with the partition sum, it will turn out that now the proper treatment of fluctuations beyond 
the Gaussian level becomes essential. Let us consider the general four point function
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Fig. 3. Time arguments entering our analysis of the OTO correlation function in the complex plane. Discussion, see 
text. The red line can be understood as a general path ordering prescription underlying the definition of path integral 
representations in the theory. The right panel shows the corresponding quenches of the Liouville potential as a function 
of the imaginary time. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

G4(τ1, τ2, τ3, τ4) ≡ 1

N2

∑
i,j

〈Tτχi(τ1)χi(τ2)χj (τ3)χj (τ4)〉, (40)

where the angular brackets denote both, disorder averaging, and the quantum thermal average 
tr(exp(−βĤ )(. . . )), and Tτ is imaginary time ordering. From this function, the OTO correlation 
function (3) is obtained by the specific choice of complex time arguments (see Fig. 3)

τ1 = β

4
+ s − it

2
, τ3 = s + it

2
, τ2 = −β

4
+ s − it

2
, τ4 = −β

2
+ s + it

2
, (41)

at s = 0, and the time ordering is along the contour [29] shown in Fig. 3. Here we used the fact 
that the correlation function depends only on differences between neighboring times to switch to 
a symmetric arrangements of the arguments ±it/2 relative to the real axis. (This configuration 
turns out to be more convenient in the subsequent integration over fluctuations.) Throughout, 
we will largely work with real time arguments, τi ∈ [−β/2, β/2] and perform the analytic con-
tinuation to finite imaginary increments ±it/2 only at the final stages of the calculations. The 
shift parameter, s, in Eq. (41) enters the stage when the position of the reparameterization sin-
gularity at τ∗, Fig. 2, relative to the observation times becomes of importance. In such cases, 
we shift τ∗ → −β/2 (which is always possible on account of the periodicity of the imagi-
nary time theory) and offset the observation times by a parameter, s, which then is integrated 
over.

We will work under the assumption that only soft reparameterization fluctuations are essential 
to the behavior of this function. The four point function then assumes the form of a product of 
two point functions,

G4(τ1, τ2, τ3, τ4) = 〈Gβ([f ], τ1, τ2)Gβ([f ], τ3, τ4)〉, (42)

where Gβ([f ]) is the reparameterized Green function (17) and the functional average defined by 
Eq. (24) leads to correlations between them. To bring the Green functions into a form suitable 
for functional integration, we substitute (21) into (17) and use (12) to obtain
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Gβ([f ], τ1, τ2) = − b

J 1/2
sgn(τ1 − τ2)

e
1
4 (φ(τ1)+φ(τ2))(

h(τ1) − h(τ2) + δ
)1/2

= − b√
πJ 1/2

sgn(τ1 − τ2) e
1
4 (φ(τ1)+φ(τ2))

∞∫
0

dα√
α

e
−α

∫ τ2
τ1

ds eφ(s)−αδ
. (43)

This representation will be an important building block in all subsequent calculations. For later 
reference we note that the integration over the auxiliary variable comes with a convergence gen-
erating factor, ∼ exp(−αδ), where δ ∼ J−1 is of the order of the inverse UV cutoff. The reason 
is that we are operating within the framework of an effective low energy theory and times of the 
order ∼ J−1 cannot be effectively resolved. This translates to a smearing of the same order in 
the arguments of the Green functions, h(τ1) − h(τ2) + δ, which after exponentiation acts as a 
convergence generator.

In this form, the Green functions can now be substituted into Eq. (24) and we obtain the 
representation

G4(τ1, τ2, τ3, τ4)

= b2

πJZ

∞∫
0

dα1dα2√
α1α2

∫
φ(± β

2 )=φ0

Dφ e
1
4 (φ(τ1)+φ(τ2)+φ(τ3)+φ(τ4))e−S[φ]−Sα1 [φ]−Sα2 [φ], (44)

where

Sα1[φ] ≡ α1

τ1∫
τ2

dτ eφ(τ), Sα2[φ] ≡ α2

τ3∫
τ4

dτ eφ(τ), (45)

and S[φ] is given in Eq. (33).
Eqs. (44) and (26) define the path integral we need to compute. Its exponent suggests an 

interpretation in terms of an effective quench dynamics2: between the times τ4, τ2, τ3 and τ1, re-
spectively, the strength of the Liouville potential effectively jumps as γ, γ +α2, γ +α1 +α2, γ +
α1, γ (cf. the right panel in Fig. 3). In the following sections we analyze this kink dynamics by 
stationary phase methods (short times/high temperatures) and via the corresponding Schrödinger 
equation (long times/low temperatures), respectively.

7. OTO correlation function II: short times/high temperatures

The computation of the OTO path integral by stationary phase methods parallels that em-
ployed in section 4 for the partition sum. To simplify the subsequent calculations we again set 
β ≡ π . We also re-introduce the scaled integration variable (25) and in addition scale the auxil-
iary integration variables as

αi → αi

γ

2M
. (46)

This leaves the integral invariant except that the action now assumes the form (26).

2 Quantum quench is a protocol implying that parameters of a system are suddenly changed, thus at times t < 0 a 
unitary evolution of the systems proceeds according to the Hamiltonian Ĥ0 while at times t > 0 it is governed by the 
perturbed Hamiltonian Ĥ �= Ĥ0. In general, such sudden change of Ĥ0 is not supposed to be weak. See e.g. Ref. [30] for 
the recent review.
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Our later analysis will self-consistently show that the characteristic values of the integration 
variables, αi = O(1) � MT . This means that ‘quench potentials’ αie

ϕ are weak as compared 
to the unperturbed Liouville potential eϕ , and that it makes sense to expand around a stationary 
phase solution δϕS[ϕ] = M(−ϕ′′ + 2eϕ) = 0 ignoring the former. The solution to this equation 
is given by ϕ̄ = − ln(cos2(ϕ)), i.e. by Eq. (28) neglecting the shift parameter λ which is inessen-
tial except for an infinitesimal neighborhood of the integration boundaries. If we evaluate the 
functional integral on this configuration, the integration over the auxiliary variables yields,

G
(0)
4 (τ1, τ2, τ3, τ4) = Z−1

∞∫
0

dα1dα2√
α1α2

G(τ1, τ2|α1)G(τ3, τ4|α2) = Gβ(τ1, τ2)Gβ(τ3, τ4),

(47)

where we defined

G(τ, τ ′|α) ≡ −
(

b2

πJ cos τ cos τ ′

)1/2

e−α(tan τ−tan τ ′) (48)

and in the final expression encounter the uncorrelated product of two mean-field Green func-
tions (15). This suggests that fluctuations around the mean field will have two distinct effects: 
they will modify the form of the individual Green functions and, more importantly, generate 
correlations between them. To disentangle these influences, we introduce the ratio

f (τ1, τ2, τ3, τ4) ≡ G(τ1, τ2, τ3, τ4)

G(τ1, τ2)G(τ3, τ4)
, (49)

where G(τ, τ ′) are the mean field Green functions corrected by fluctuations.
The leading (in M−1) contribution to the fluctuation action comes from the quadratic expan-

sion of the action, S[ϕ̄ + δϕ] in δϕ,

S[δϕ] = M

2

π/2∫
−π/2

dτ δϕ

(
−∂2

τ + 2

cos2 ϕ

)
δϕ. (50)

In addition, the fluctuation offset δϕ appears in the pre-exponential factors, and in the quench 
potentials αie

ϕ . These multiple appearances make the full integration over fluctuations techni-
cally cumbersome. It turns out, however, that for large M fluctuations of the pre-exponential 
factors exp(δϕ(τi)/4) contribute only negligibly to the both the renormalization of the Green 
functions and to correlations, and may be neglected. The expansion of the quench actions 
Sαi

[ϕ̄ + δϕ] = Sαi
[ϕ̄] + ∑

n=1,2 S
(n)
αi

[ϕ̄, δϕ], where terms with superscript (n) are of nth or-

der in δϕ, produces two contributions, 〈S(2)
αi

〉 − 1
2 〈(S(1)

αi
)2〉, where the angular brackets denote 

functional averaging over the fluctuation action (50). These lead to a weak renormalization of 
the ith Green function Gβ which drops out when the ratio f is built. The term of interest which 
does generate non-vanishing correlations is the functional average of the cross ratio〈

S(1)
α1

[ϕ̄, δϕ]S(1)
α2

[ϕ̄, δϕ]
〉
= α1α2I (τ1, τ2, τ3, τ4)

≡ α1α2

τ1∫
τ2

dτ

τ3∫
τ4

dτ ′eϕ̄(τ)+ϕ̄(τ ′)〈δϕ(τ)δϕ(τ ′)〉. (51)
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The straightforward but lengthy computation of the functional expectation value is detailed 
in Appendix D and yields

I (τ2, τ4) � − sin(4τ2) cos(2τ4) cos2 τ4

2M sin2(2τ2) sin2(2τ4)
+ (τ2 ↔ τ4), (52)

where we used that (including during the analytic continuation) we may impose the constraint 
τ3 = τ4 + π/2 and τ1 = τ2 + π/2, and the � sign indicates the omission of terms exponentially 
vanishing under the continuation to large imaginary times it 	 iβ . Using this result, we find that 
the leading contribution in M−1 to the correlation ratio Eq. (49) is given by

f (τ2, τ4) = 1 + I (τ2, τ4)

[Gβ(π/2)]2

∞∫
0

dα1dα2√
α1α2

α1α2G(τ1, τ2|α1)G(τ3, τ4|α2). (53)

Substituting Eq. (48), the α-integrals appearing in this expression become

1

Gβ(τ1, τ2)

∞∫
0

dα1√
α1

α1G(τ1, τ2|α1) = 1

2(tan τ1 − tan τ2)

∣∣∣∣
τ1=τ2+π/2

= sin 2τ2

4
, (54)

and analogously for the second integral. We substitute them in Eq. (52) to obtain

f (τ2, τ4) = 1 −
(
sin(4τ2) cos(2τ4) cos2 τ4 + (τ2 ↔ τ4)

)
32M sin(2τ2) sin(2τ4)

−→ 1 − e2t

64M
+O(et /M), (55)

where in the final step we have performed the analytic continuation to the time arguments (cf. 
Eq. (41)) τ2 → −π/4 − it/2, τ4 → −π/2 + it/2. Expressed in the original language of correla-
tion functions, and re-introducing the temperature parameter, this result assumes the form

F(t) = Gβ(β/2)2
(

1 − βe2πt/β

64πM
+O(eπt/β/M)

)
. (56)

This agrees, including pre-factors, with Eq. (6.59) of Ref. [6], where it was obtained from the 
Schwarzian action, without recourse to its Liouvillian reformulation. This expression may be 
trusted up until the second term in the brackets becomes comparable with unity, which happens 
at the Ehrenfest time tE , given by Eq. (4).

8. OTO correlation function III 4: intermediate times/high temperatures

In this section we briefly discuss what happens for times larger than the Ehrenfest time tE , 
Eq. (4), at which the correction discussed previously overpowers the leading order result (56). 
Yet we restrict ourselves to times smaller than ∼ M , where the strong Goldstone mode fluctua-
tion regime is entered. This intermediate regime is still amenable to stationary phase methods. 
However, the technicalities get a little complicated because the quench potentials αie

ϕ can no 
longer be neglected in the solution of the stationary phase equations. Referring to Appendix F
for details, the stationary phase procedure leads to the intermediate result for OTO correlation 
with fixed α1,2:
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F(t |α1, α2) = 8Mb2 e− iπ
4

πJ

ω2 e−ωt+2πM(ω2−1)

((1 + α1)(1 + α2)(1 + α1 + α2))1/4
,

ω = 1 − i

π
ln

1 + α1 + α2

(1 + α1)(1 + α2)
. (57)

This formula already contains the essence of the result: exponential decay of the correlation 
function with an exponent whose real part scales as ∼ exp(−t) → exp(−tπ/β). However, if we 
aim to fix the result including pre-exponential factors, the integration over auxiliary variables

F(t) =
∞∫

0

dα1dα2√
α1α2

e−α1−α2F(t |α1, α2) (58)

needs to be performed. Here, we recalled that the α-integrations come with a convergence gen-
erating factor δ ∼ J−1 (cf. discussion after Eq. (43)) which under the rescaling by γ ∼ J gets 
promoted to a factor of O(1). This factor acts to regularize an otherwise logarithmically divergent 
integral. The integration is not entirely trivial. One observes that the integrand does not couple to 
physical parameters, except through the variable combination ω(α1, α2). This suggests to intro-
duce a new variable, λ = λ(α1, α2) ≡ ln((1 +α1)(1 +α2)/(1 +α1 +α2)). Expressed in terms of λ, 
the exponent becomes Gaussian, and the rest of the integral, 

∫
dα1dα2(. . . )δ(λ(α1, α2) − λ) ≡

ρ(λ) turns into an effective ‘spectral density’. Using that for large M only small deviations of λ
off zero are relevant, one may verify that ρ(λ) � ln(λ−1/2)/

√
λ, and the integral becomes

F(t) ∼ M

πJ
e−t−iπ/4

∞∫
0

dλρ(λ)e4iMλ ∼ M

πJ

√
M ln(M)e−t . (59)

Finally, re-introducing β and recalling the value of the finite temperature Green functions 
Gβ(β/2) ∼ (βJ )−1/2, we obtain

F(t) ∼ G2
β(β/2) ln

(
M

β

)
e−π(t−tE)/β, (60)

where the definition of the Ehrenfest time, exp(πtE/β) = √
M/β was used. To exponential ac-

curacy this agrees with the black hole shock wave analysis of Ref. [6] which predicted a decay 
∼ t exp(−πt/β).

For completeness we mention that the above discussion assumed a fixation of the real parts 
Re(τi) of the time arguments relative to that, τ ∗ = β/2, of the singularity which is necessar-
ily present in a bijective transformation [−β/2, β/2] → R (cf. discussion in the beginning of 
section 3). This fixation may be abandoned by introducing a shift parameter τi → τi + s and in-
tegrating over the latter (cf. Fig. 3). On top of that, one may place the singularity in-between any 
of the arguments τi , and sum over all four choices. While the relative ordering of the singularity 
and the observation times turns out to be irrelevant, the continuous shift parameter begins to play 
a role when we turn to the complementary regime of large observation times.

9. OTO correlation function IV: long times/low temperatures

The previous sections served benchmarking purposes where we reproduced known results 
within the framework of the finite temperature extension of Liouville theory. We now turn to 
uncharted territory and address the theory at low temperatures, where quantum fluctuations are 
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large and different methodology is required. As in section 5, the strategy is to turn a foe into a 
friend and use that largeness of the φ-fluctuations implies confinement of the fluctuations of its 
conjugate momentum, k.

Once more the calculation simplifies if a convenient set of complex time arguments is chosen. 
Presently, we find it advantageous to start from the configuration (41) at it = τ ∈ R. Here, τ
serves as a real time parameter which will eventually be continued into the complex plane, and 
s ∈ [0, β/4] is the parameter controlling the relative position of the observation times and the 
time, τ ∗, of the reparameterization singularity (cf. discussion at the end of the previous section). 
The correlation function is then obtained as

F(t) ≡ Re(F (τ)
∣∣
τ→it

) ≡ Re
1

β

β/4+τ∫
0

ds G4(τ1, τ2, τ3, τ4)
∣∣
τ→it

+ . . . , (61)

where G4 is given by Eq. (44), and the integral implements an average over the shift parameter, s. 
The ellipses stand for the three contribution of different ordering of the singularity relative to the 
observation times. One can explicitly verify that all four orderings give identical result for the 
real part while a pairwise cancellation of imaginary parts occurs. Therefore we will focus on the 
one explicitly displayed throughout an account for the remaining ones by a multiplicative factor 
of 4.

It will be convenient to scale the integration variable in the path integral as φ → φ + lnγ , and 
the auxiliary variables as αi → αi/γ . This operation leaves the form of the path integral invariant 
but changes the strength of the potentials in the Liouville action as γ → 1, and αi → αi/γ . As 
in section 5, we re-interpret the path integral in a Schrödinger picture where it describes time 
evolution under the Hamiltonian Eq. (32). However, the presence of the quench potentials α1,2e

ϕ

implies that the strength of the Liouville potential jumps from 1 to 1 + α1/γ and 1 + α2/γ in 
the time intervals [τ2, τ1] and [τ4, τ3], respectively (cf. Eq. (45)). This requires the insertion of 
different sets of eigenfunctions labeled as |k〉, |k(α)〉, depending on whether the quench potentials 
are absent or present with value α, respectively.

Specifically, the presence of four observation times and one singularity requires the insertion 
of five resolutions of unity. The spectral representation of the correlation function then assumes 
the form

F(τ) = b2

πJZ(β)

4

β

β/4+τ∫
0

ds

∞∫
0

dα1dα2√
α1α2

∑
k

e−Ek1 (τ4+ β
2 )−Ek2 τ24−Ek3 τ32−Ek4 τ13−Ek5 (

β
2 −τ1)

× 〈φ0|k1〉 〈k1|e φ
4 |k(α2)

2 〉 〈k(α2)
2 |e φ

4 |k(α1+α2)
3 〉 〈k(α1+α2)

3 |e φ
4 |k(α1)

4 〉 〈k(α1)
4 |e φ

4 |k5〉
× 〈k5|φ0〉, (62)

where τij = τi − τj are the time differences

τ24 = τ13 = β

4
− τ, τ32 = β

4
+ τ. (63)

Central to the expression above are the matrix elements, 〈k(α)|e φ
4 |k′(α′)〉 between eigenstates of 

different Liouville potential. In Appendix E we show that for the small momenta k relevant to the 
correlation function at large times they show a high degree of universality. The matrix elements 
factorize into products of the α-independent normalization factors Nk = 2 (cf. Eq. (36)) 
�(2ik)
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and M−1/4 times a term which depends only on α. The integral over these variables can thus be 
performed to yield a numerical factor C =O(1). This leads to the intermediate result

F(τ) = Cb2

πMJZ(β)

4

β

β/4+τ∫
0

ds

×
5∏

i=1

∫
dki

2π
|N (ki)|2e−Ek1 (τ4+ β

2 )−Ek2 τ24−Ek3 τ32−Ek4 τ13−Ek5 (
β
2 −τ1). (64)

Here, we used that for the diverging boundary conditions, φ0 → ∞, the boundary wave functions, 
〈φ0|k〉 = N (k)K2ik(2

√
2Meφ0) → N (k) × const., converge to a product of the normalization 

factor and a k-independent term. The latter cancels against the corresponding factor appearing in 
the partition sum (see below) and is ignored.

Using the expansion |N (k)|2 = |�(2ik)|−2 � 4k2, and the auxiliary relation 
∫

dk
2π

k2 ×
exp(−Ekτ) = 1√

2π
(M/τ)3/2, we obtain the proportionality,

F(τ) ∼ M13/2

Z(β)J

1

(τ13τ32τ24)3/2

4

β

β/4+τ−M∫
M

ds
1

s3/2
(

β
4 − s + τ

)3/2
+ . . .

∼ M6

Z(β)J

1

(τ13τ32τ24)3/2

1

β

1(
β
4 + τ

)3/2
. (65)

Here, the ellipses · · · ∼ ∫M

0 ds(. . . ) refer to the contribution to the integral where the observation 
points are close to the boundary. The short time distance Green functions appearing in this regime 
can no longer be described within the low momentum approximation used above. However, 
referring to Ref. [21] for details we note that they behave as ∼ 1/Ms1/2, matching the above 
s−3/2 law at s ∼ M . In this way the boundary contributions effectively regularize the s−3/2

singularity of the integral. We also note that the accumulated appearance of τ−3/2 scaling in 
this relation is a hallmark of Liouville quantum mechanics. As mentioned in the Introduction, 
cf. Eq. (8), it may be qualitatively understood assuming statistical independence of many-body 
energies and matrix elements and utilizing square root singularity in the many-body DoS.

Finally, noting the scaling of the partition sum Z(β) ∼ ∫
dk|〈φ0|k〉|2 exp(−βk2/2M) ∼

(M/β)3/2, substituting the time arguments, Eq. (63), and continuing to real times, τ → it , we 
obtain

F(t) ∼ M9/2β1/2

J

1((
β
4

)2 + t2

)3

t	β∼ t−6. (66)

Incidentally, the t−6 power law scaling coincides with that found for non-interacting spinless 
fermions [31].

The application of the same spectral decomposition procedure to the Greens function, G(τ), 
yields the result

G(τ) ∼ − M2β1/2

√ sgn(τ )

3/2 3/2
, τ 	 M. (67)
J τ (β − τ)
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Using this formula to normalize the OTO function, F(t) → F(t)/[G(β/2)]2, we obtain the result 
describing regime 4 in Eq. (5).

The results derived above can readily be extended to the regime of long times but high tem-
peratures, β � M � t . To this end we substitute into Eq. (65) the high temperature expression 
for the partition sum (6), and use the scaling G(β/2) ∼ (Jβ)−1/2 of the 2-point Greens function 
to normalize. As a result, Eq. (66) changes to

F(t)/[G(β/2)]2 ∼ e−2π2M/β

(
β

M

)3/2 (
M

t

)6

∝ t−6, β � M � t, (68)

which now describes the OTO function in the regime 3 of Eq. (5).

10. Discussion

In this paper we explored the role played by large conformal Goldstone mode fluctuations 
of the SYK model within a finite temperature framework suitable for the study of out of time 
order correlations. Our theory is constructed by exploiting the extensive time-reparameterization 
freedom of the SYK model. This allows to describe Goldstone mode fluctuations in terms of 
a real valued field defined on the periodic imaginary time interval which, however, necessarily 
contains a point of singularity. The handling of this singularity required some care and we tested 
the theoretical framework by comparison to various known, or conjectured results, including 
the temperature dependence of the many-body partition sum, the exponential buildup of OTO 
de-correlations at short times, and their exponential decay at times larger than the Ehrenfest 
time.

The truly novel content of the theory unfolds at times larger than a scale M ∼ N ln(N)J−1, 
where N is the number of particles in the system or, equivalently, a logarithmic measure for the 
dimension ∼ 2N/2 of the many-body Hilbert space. This regime is inaccessible to theoretical ap-
proaches taking thermodynamic limits N → ∞ at a fixed time, but arguably may play a key role 
in the description of the regularizing effects of quantum mechanics (via finite N ) on long time 
fluctuations. Our main finding is that in such regimes, and equally in regimes of low tempera-
tures, T < M−1 at generic times t > T −1, four-point OTO correlations decay with the universal 
power law ∼ t−6.

While the calculations required to nail this behavior are technical in parts (mainly due to 
the required careful handling of the singularity), the 6 = 4 × 3/2 power law has its origin in 
the celebrated t−3/2 universality of the Liouville quantum mechanics [26]. It is a robust feature 
of this system that temporal correlations of local operators decay as 〈Ô(0)Ô(t)〉 ∼ t−3/2. This 
power-law may also be interpreted in terms of the 

√
E scaling of the average low-energy many-

body DoS, Eq. (7), as discussed in the Introduction. The quadrupling of the 3/2 exponent has to 
do with the definition of the OTO correlation function whose particular time ordering of oper-
ators requires the introduction of four temporal contours, Fig. 3. This time arrangement makes 
all four time arguments of the correlation function (40), (41) to be separated by long intervals 
∼ |t ± iβ/4|. One may generalize this observation and claim that any multipoint OTO correlation 
is given by the product of 3/2 powers of all long (	 M) time intervals involved.

Note added: Recent preprint [32] discusses one-loop (semiclassical) exactness of the partition 
sum of the Schwarzian theory (6) using the Duistermaat–Heckman formula [33]. It remains to 
be seen if this technique is also helpful in evaluation of correlations functions.
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Appendix A. Derivation of Eq. (10)

In this appendix, we briefly review how the action (10) emerges as an effective description of 
the system described by the Hamiltonian (1). To this end, consider a Grassmann coherent state 
functional integral representation of the replicated partition sum Zn ≡ (tr(exp(−βĤ ))n,

Zn =
∫

D(χ)e−∑n
a

∫ β
0 dτ (χa

i ∂τ χa
i +Ĥ (χa)),

where χa
i are Nn independent Grassmann variables, a = 1, . . . , n is a replica index, and the 

replication is introduced to get rid of the partition sum after observables have been computed, 
limn→0 Zn = 1. Averaging over disorder, we obtain

〈
Zn

〉= ∫
D(χ)e

−
n∑
a

∫ β
0 dτ χa

i ∂τ χa
i + J2

8N3

n∑
a,b

∫
dτdτ ′ N∑

ijkl

χa
i (τ )χa

j (τ )χa
k (τ )χa

l (τ )×χb
i (τ ′)χb

j (τ ′)χb
k (τ ′)χb

l (τ ′)

=
∫

D(χ)e
−

n∑
a

∫ β
0 dτ χa

i ∂τ χa
i +N J2

8

n∑
a,b

∫
dτdτ ′[G̃ab

τ,τ ′
]4

, (A.1)

where G̃ab
τ,τ ′ = −N−1

N∑
i

χa
i (τ )χb

i (τ ′). To pass from the abbreviation, G̃, for a Grassmann bilin-

ear to an integration variable, G, we introduce

1 =
∫

DG δ
(
NGab

τ,τ ′ +
N∑
i

χa
i (τ )χb

i (τ ′)
)

=
∫

DGD
 e

1
2

n∑
a,b

∫
dτdτ ′
ba

τ ′,τ
(
NGab

τ,τ ′+
N∑
i

χa
i (τ )χb

i (τ ′)
)

(A.2)

in the functional integral, which entitles us to replace G̃ → G in the quartic term. As a result, 
the action has become quadratic in Grassmann variables, and the Gaussian integration over these 

produces the Pfaffian 
∣∣∣∂τ δ

ab + 
ab
τ,τ ′

∣∣∣N
2

. We re-exponentiate the latter to obtain the representation

〈
Zn

〉= ∫
DGD
 e−S[
,G],

where the effective action is given by Eq. (10).

Appendix B. Remarks on the Lagrange multiplier

The job of the Lagrange multiplier is to establish, in the best possible way, the constraint (22). 
It can be understood in analogy γ ↔ μ to the chemical potential fixing the particle number 
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∫
eφ ↔ N to a premeditated value tH ↔ N0 in statistical mechanics. Furthering this analogy, 

fluctuations away from the intended value 
tH [φ] ≡ ∫
eφ − tH are obtained as expectation values 

〈
tH [φ]〉φ = −∂γ lnZ(γ ), where Z(γ ) ↔ Z(μ) is the functional partition sum depending on the 
chosen value of γ , and fluctuations as

var(
tH [φ]) = ∂2
γ lnZ(γ ). (B.1)

The evaluation of these formulas on the partition sum (C.5) yields 〈
tH [φ]〉φ = γ −1 and 
var(
tH [φ]) = γ −2, respectively. This shows that large values of γ increase the accuracy of 
the formalism. Our logics is to implement the constraint through freely adjustable parameters 
(notably the values φ0 of the field at the boundaries of the temporal domain) and choose for γ
the largest value consistent with the low energy nature of the theory, γ ∼ J . For these values, 
fluctuations in the constraint variables, which have dimensionality [time] are of O(J−1) which 
is the smallest time scale resolvable in the theory.

Appendix C. Gaussian fluctuations

The straightforward Gaussian expansion of the action (26) in ϕ̄ + δϕ leads to

SG[δφ] = M

2

π/2∫
−π/2

dτ δϕ(τ)

[
−∂2

τ + 2(1 − λ)2

cos2 (τ (1 − λ))

]
δϕ(τ). (C.1)

The resulting fluctuation determinant is obtained by standard recipes [34]: consider any two 
independent solutions z1,2 of the differential equation

[
−∂2

τ + 2(1 − λ)2

cos2 (τ (1 − λ))

]
z1,2(τ ) = 0. (C.2)

For later convenience, we choose

z1(τ ) = 1 +
(π

2
+ τ(1 − λ)

)
tan(τ (1 − λ)),

z2(τ ) = 1 −
(π

2
− τ(1 − λ)

)
tan(τ (1 − λ)). (C.3)

The fluctuation determinant is then given by [34]

D = 1

M W

[
z1(π/2)z2(−π/2) − z1(−π/2)z2(π/2)

]
� 4

Mλ2
, (C.4)

where W = z′
1z2 − z1z

′
2 = π(1 − λ) is the time-independent Wronskian and M features as the 

effective inverse ‘Planck-constant’ [34]. Multiplying the exponentiated saddle point action with 
the factor D−1/2 and re-introducing β we obtain

Z(β) ∼ 1

γ tH

(
M

β

)3/2

exp

(
2π2M

β

)
(C.5)

which is Eq. (6) up to the normalization prefactor.
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Appendix D. Computation of the cross correlation Eq. (51)

The central object in Eq. (51) is the expectation value of the fluctuation field, which assumes 
the form〈

δϕ(τ)δϕ(τ ′)
〉≡ P(τ, τ ′) = 1

MW

(
z1(τ )z2(τ

′)�(τ ′ − τ) + z2(τ )z1(τ
′)�(τ − τ ′)

)
,

(D.1)

where z1,2 are independent solutions of the differential Eq. (C.2) satisfying the boundary con-
ditions z1(−π/2) = 0, z2(π/2) = 0 and W is their Wronskian. For times τ in the bulk of the 
interval, the boundary regulators λ can be neglected and the functions z’s entering the fluctuation 
correlator become

z1(τ ) = 1 +
(π

2
+ τ

)
tan τ, z2(τ ) = 1 −

(π

2
− τ

)
tan τ, (D.2)

with W = π . These expressions need to be substituted into Eq. (51) and integrated as

I (τ1, τ2, τ3, τ4) ≡
τ1∫

τ2

dτ

τ3∫
τ4

dτ ′ P(τ, τ ′)
cos2(τ ) cos2(τ ′)

, (D.3)

where ϕ̄ = ln(cos−2 τ) was used. Although this is straightforward in principle, the evaluation is 
cumbersome in practice. Calculation becomes simpler if we note that (cf. Eq. (41)) we may set 
τ3 = τ4 + π/2 and τ1 = τ2 + π/2. Prior to analytic continuation the time arguments lie on the 
real axis and are ordered as τ4 < τ2 < τ3 < τ1 according to the values of the readout times (41). 
This structure suggests to define integrals over simplified ‘quadratic’ integration domains,

J (τa, τb) ≡ 1

2

τb∫
τa

dτ

τb∫
τa

dτ ′ P(τ, τ ′)
cos2(τ ) cos2(τ ′)

= 1

πM

τb∫
τa

dτ
z2(τ )

cos2(τ )

τ∫
τa

dτ ′ z1(τ
′)

cos2(τ ′)
, (D.4)

and apply elementary geometric reasoning to show that Eq. (D.3) reduces to

I (τ2, τ4) =
(
J (τ4, τ1) + J (τ2, τ3) − J (τ4, τ2) − J (τ3, τ1)

)∣∣
τ1=τ2+π/2
τ3=τ4+π/2

. (D.5)

The situation simplifies further if we observe that eventually an analytic continuation to large 
imaginary values it will be carried out. This implies that in the integration over trigonometric 
functions only those contributions need to be kept that will not vanish exponentially. Under this 
condition the straightforward but tedious calculation of the auxiliary integral simplifies to the 
result (52).

Appendix E. Computation of the matrix elements 〈k(α)|e φ
4 |k′(α′)〉

After the scaling, γ → 1, α → α/γ the Liouville eigenfunctions in the φ-representation are 
given by Eq. (36) with the replacement γ → 1 + α. As a consequence, these matrix elements of 
the operator exp(φ/4) assume the form

W(k, k′|α,α′)

≡ 〈k(α)|e φ
4 |k′(α′)〉
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= NkNk′
∫

dφ K2ik

(
2
√

2M(1 + α)eφ/2
)

eφ/4 K2ik′
(

2
√

2M(1 + α′)eφ/2
)

= NkNk′

(M/2)1/4

∫
dz√

z
K2ik

(
z
√

1 + α
)

K2ik′
(
z
√

1 + α′
)

. (E.1)

For generic values of k, k′ the integral evaluates to a complicated configuration of hypergeometric 
functions. However, at large times only small momenta matter, and to zeroth order in k the result 
simplifies to

W(k, k′|α,α′) � NkNk′

M1/4
W(α,α′),

W(α,α′) = �2( 1
4 )

25/4

1

(1 + α)1/2

∑
±

K

(
1
2 ± 1

2

√
α − α′
1 + α

)
, (E.2)

where K is the complete elliptic integral of the first kind. For small values of α the functions 
K are regular, and for large arguments weakly decay as α−1/4. This translates to a logarithmic 
singularity of the α-double integral. What comes to rescue is the convergence generating factor 
(cf. discussion below Eq. (43)). In the scaled framework, γ → 1, this factor is upgraded as 
δ ∼ J−1 to δγ ∼ 1 and to the integral we need to perform reads

∞∫
0

dα1dα2√
α1α2

W(0, α2)W(α2, α1 + α2)W(α1 + α2, α1)W(α1,0)e−α1−α2 ≡ C, (E.3)

where C is a constant of order unity.

Appendix F. Stationary phase at intermediate times

At intermediate time scales the quench potentials can no longer be neglected and we need to 
expand around the extrema of the action S[ϕ] +Sα1[ϕ] +Sα2[ϕ], where S[ϕ] is given by Eq. (26)
and Sαi

[ϕ] by Eqs. (45) with the replacement φ → ϕ. Presently, we find it convenient to scale 
the auxiliary variables as αi → 2Mαi . The entire action then is multiplied by a factor M , and 
that the functional integral picks up the same multiplicative factor. The scaling of variables also 
implies that the functional integral for the four point function picks up global multiplicative factor 
2M . Due to the piecewise constancy of the potential strength, the solutions to the stationary phase 
equations ϕ̄′′ −2γi exp(ϕ̄) = 0, γ0 = 1, γ1 = 1 +α1, γ2 = 1 +α1 +α2, γ3 = 1 +α2, γ4 = 1 for the 
five temporal regimes defined by the time arguments −β/2, τ4, τ2, τ3, τ1, β/2 assume the form 
ϕ̄ = ln(ω2γ −1

i cos−2(ωτ + δ)), where ω and δ are free parameters. Requiring the usual boundary 
singularity φ̄(±π/2) → +∞ and continuity of the solution in the bulk a straightforward fixation 
procedure yields for these parameters

δ0 = −δ4 = i

2
ln

1 + α1 + α2

(1 + α1)(1 + α2)
,

δ1 = i

2
ln

1 + α1 + α2

1 + α1
, δ2 = i

2
ln

1 + α2

1 + α1
, δ3 = i

2
ln

1 + α2

1 + α1 + α2
, (F.1)

where ω is specified in Eq. (57). (As a technical remark we note that the evaluation of the match-
ing conditions is facilitated by using that after analytic continuation, the matching points have 
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large imaginary parts, |Im(τi)| = t/2, and an approximation ϕ = ln(ω2γ −1
i ) ±2i(ωτ − δ) is pos-

sible, where the sign is positive/negative for τ4,3/τ1,2.) The substitution of these configurations 
into the pre-exponential factor yields

4∏
i=1

e
1
4 ϕ̄(τi ) = 4ω2

0 e− iπ
4 −ω0t

((1 + α1)(1 + α2)(1 + α1 + α2))1/4
, (F.2)

where Eq. (41) was used. Similarly, the substitution of the stationary solution into the action 
yields S[ϕ̄] = −2Mπω2

0. (To derive this result, the regularization of the solution near the bound-
ary by the parameter λ of Eq. (28) needs to be taken into account. As before it leads to a 
cancellation of the formally divergent factor γ tH in the action.) Finally, we note that the in-
tegration of fluctuations around the optimal configuration leads to a fluctuation determinant 
independent of the observation times. This factor cancels against the identical pre-exponential 
factor multiplying the partition sum (6) and may be ignored. Combining terms, we arrive at 
Eq. (57).
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