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ABSTRACT: Recently an action based on Lie 3-algebras was proposed to describe M2-
branes. We study the case of infinite dimensional Lie 3-algebras based on the Nambu-
Poisson structure of three dimensional manifolds. We show that the model contains self-
dual 2-form gauge fields in 6 dimensions, and the result may be interpreted as the M5-brane
world-volume action.
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1. Introduction

Recently, Bagger and Lambert [l - fJ] and Gustavsson [, ] proposed a model for describing
multiple M2-branes using a Lie 3-algebra [f]] as the internal symmetry. The Lagrangian

is [

1 - -
£ = —5(D"X" DuX") + (0. TMD W) + S (0. Dpy (X7, X7, 0)) = V(X) + Los, (L)
where D), is the covariant derivative
(DMXI(:E))CL = a,uXi - debaAucd(:E)Xl{v (1'2)
V(X) is the potential term defined by
1
V(X):E([leXjaXK]v[XI,XJ,XKDv (13)

and the Chern-Simons action for the gauge potential is

1 2
£CS _ §EMV)\ (fadeAuabal/A)\cd + ngdagfefgbAuabAuch)\ef> . (14)



The indices I, J, K runin 1,--- ,8, and they specify the transverse directions of M 2-brane;
w,v run in 0, 1,2, describing the longitudinal directions. The indices a, b, ¢ take values in
1,---,D where D is the number of generators of the Lie 3-algebra specified by a set of
structure constants f¢;.

The fermionic field ¥ is a Majorana spinor in 10+1 dimensions satisfying the chirality
condition I'g1o¥ = —W. (The SUSY parameter € satisfies I'gj¢ = €.) As a result ¥ has
16 real fermionic components, equivalent to 8 bosonic degrees of freedom. The bosonic
fields include 8 X'’s and 3 A,’s. In 2+1 dimensions, ordinarily a gauge potential has one
propagating degree of freedom. However, here the gauge potential A has no canonical
kinetic term, but only a Chern-Simons term, and hence it has no propagating degree of
freedom.

The action has N = 8 maximal SUSY in d = 3, and the SUSY transformations are

6X! = jer'v,, (1.5)
1

80, = D, X TrT e - EXg X XK phed PIIK (1.6)

6A,b, = iel, L1 X W, fett,. (1.7)

The gauge symmetry for the bosonic fields are written as,
5XT = Moo X1 6Ab, = Ry — RVA + A,0AC, (1.8)

For the consistency of these symmetries, we need to require a generalized Jacobi identity
(or the fundamental identity) to the structure constants,

Z fcdegfabgh = Z (fabcgfgdeh + fabdgfcgeh + fabegfcdgh> . (19)
g

g

When D is finite and the metric h* = (T'*, T?) for the basis of generators 7% (a = 1,--- , D)
is positive definite, the only known examples are (1) trivial algebra f%¢; = 0, (2) the so-
called A4 [[f], with D = 4 and the structure constant %, = iegped, and (3) their direct
sums. Many attempts have been made to search for further nontrivial examples of 3-
algebras [§-[]. It was conjectured in [[I(] that there exists no other example of finite
dimension with a positive definite metric. This was finally proved in [[(], [[Z] very recently.

When the constraints (1) D is finite and/or (2) h® is positive definite are replaced by
milder constraints, there are many varieties of 3-algebras which satisfy the fundamental
identity (see for example [[[3, [[(]). In particular in [[L(], we commented that for any
manifolds with Nambu-Poisson structure [[4-[{], one can define D = oo positive-definite
Lie 3-algebra. The use of Nambu-Poisson algebras as the large N limit of Lie 3-algebras
was also suggested in [f].

The BLG theory has gained a lot of attention very recently (in addition to [§-[],
see [E]) In this paper, we examine the BLG theory with D = oo Lie 3-algebras based on
3 manifolds AV with Nambu-Poisson structures. We will show that the field theory on the
membrane world volume M can be rewritten as field theory on a 6 dimensional manifold
M x N whose bosonic components consist of the self-dual gauge field on M x AN and



scalar fields which define the embedding. As this is the field content of an M5 brane [R(]
we interpret it as a model of M5-brane constructed out of infinitely many M2-branes.

We note that this problem was considered in Basu and Harvey [R1] in the context of
the generalized Nahm equation. Our result will provide a new prospective to this problem.

2. Nambu-Poisson manifold and Lie 3-algebra

We consider 3 dimensional manifolds A equipped with the Nambu-Poisson brackets. The
Nambu-Poisson bracket is a multi-linear map from C(N)®3 to C(N) defined as

{f1,f2, f3} = Z Py 5 (403 f105 f205 f3, (2.1)
17,
where Pp,f/,}\ is an anti-symmetric tensor. We use the coordinate y* (4 = 1,2,3) to

parametrize A/. The Nambu-Poisson bracket needs to satisfy the fundamental identity,
{97 h7 {f17 f27 f3}} = {{97 h7 fl}7 f27 f3} + {fla {97 h7 f2}7 f3} + {f17 f27 {97 h7 f3}} (22)

which gives severe constraints on P, 5(y) (see for example [L§]).

The simplest possible Nambu-Poisson bracket is the Jacobian determinant for 3 vari-

ables (/= 1,2,3)
{f1, fa, f3} = Z €03 0nf105 f205 f3. (2.3)
[,
This is the classical Nambu bracket. In general, it is known that a consistent Nambu
bracket reduces to this Jacobian form locally by the change of local coordinates [[7. So
we will use it in the following for simplicity.

Nambu-Poisson bracket may be regarded as the definition of Lie 3-algebra in the infinite
dimensional space C(N'). We write the basis of C(N) as x*(y) (a = 1,2,--- ,00). We define
the Lie 3-algebra structure constant by Nambu-Poisson bracket

[l b =D uadin oo, = > F e (y). (24)
LDA d

We write the inner product as integration

(0, 8) = /N Py ()X m)6). (2.5)

The measure factor p is chosen such that the inner product is invariant under the Nambu-
Poisson bracket, namely

({f1, fasx}, @) + (X, {f1, f2,6}) = 0. (2.6)

The inner product between the basis elements h% = (¢, x?) is called metric. We choose
the dual set of basis x,(Y) in C(N) such that (x,,x?) = 6¢. We write (Xa, Xs) = hap and
>y h®hy. = 6%, The indices of the structure constant can be changed by contraction of
the metric. In particular, >, h% fbed, = fbeda defines a totally anti-symmetric 4-tensor.
In order to have finite metric, we need to restrict ' to a compact manifold. One may, of
course, discuss noncompact manifolds by appropriate limits of the compact spaces.



2.1 Examples

Since we will analyze only the quadratic terms of the Lagrangian, the detail the 3-algebra
will not be so relevant. However, since it is of some interest to see the algebra itself
explicitly, we present a few examples where explicit computation is possible. It will be
useful to proceed to analyze the higher order terms in the future.

2.1.1 73 and R?

The simplest example of infinite dimensional 3-algebra is given by 7% with radius R. The
basis of functions are parametrized by 7 € Z* as (if we take u = (27 R)™3)

X"(¥) = exp(2mini - §/R),  x7(¥) = exp(—2mifi - §/R). (2.7)
The metric and the structure constants are given by

piif2 5(ﬁ1 +ﬁ2),
franeis L — (217 R)?7iy - (g X fig)d(7y + fig + fig — 74)

FmRs L — (97 | RY3iE, - (fy X i13)8 (1) + Tig + T3 + 1) - (2.10)

If we take R — 0o, we obtain the Lie 3-algebra associated with R3. The label for the
basis becomes continuous and the metric becomes the delta function.

2.1.2 3

We introduce four variables 31, - - ,y4 and the Nambu-Poisson bracket defined by
P=—y105 NO3 N Os+y201 NO3 AN Oy — y301 A D2 A Oy + y401 N\ O3 A O3. (2.11)

If we restrict C'(N) to the linear functions of y;, it agrees with A4. We impose a constraint
B(y) == y2 +v3+y3+y3—1 = 0in R* which defines S3. This restriction is compatible with
the Nambu-Poisson bracket in a sense {¢(y)f1(y), f2(¥), f3(¥)} lg@y)=0 = 0 for any f;(y).

Square integrable functions on S* are given by combinations of y'y5?y5?y; . By the

constraint, whenever powers of 34 higher than 2 appears, we can reduce it to zero and one.
Therefore the basis of functions are given as

Ti =y ys?ys® . Sa=y'ys?ys*ya,  (ng >0). (2.12)



The 3-algebra becomes

{Tﬁ,Tm,Tz} =1- (T_fL X _BS 7=

Al
3
{T3, T, Sz} = 7t (1 x £) Lyt — ZTﬁ+nﬁ+Z—ﬁ+2a
i=1

=1
3
{T5, S, Spt = 71+ (M x {) (Sﬁ+m+*—p*_ Z Sﬁ+m+Z—ﬁ+2€i)
i=1
— D @i x (m— ))Sﬁ+m+i—ﬁ+27 ,
=1
3
{Sﬁv Sy SZ} = 7i- (m x () Tﬁ+7ﬁ+“—ﬁ —2 Tﬁ+7ﬁ+i—ﬁ+2a + Z Tﬁ+ﬁ1+Z—ﬁ+2é’i+2é’j
=1 ,J

B Z €(7i X 11t + 171 X £+ £ ﬁ>(Tﬁ+7ﬁ+Z—ﬁ+2é} - Tﬁ+ﬁ1+[—ﬁ+4é’i)

+ 3 (@ + &) X i X L+ X )T, o 2o o (2.13)

where §'= €1 + & + é3.

3. M2 to M5

In this section we will show that the BLG model with a Nambu-Poisson structure on a 3
dimensional manifold contains the low energy degrees of freedom on an Mb5-brane. Before
going on, let us count the number of degrees of freedom in the bosonic and fermionic sectors
in our model. The fermion ¥ is a Majorana spinor in 10+1 dimensions with a chirality
condition, and thus it has 16 real fermionic components, equivalent to 8 bosonic degrees
of freedom. For a 5-brane there are 5 transverse directions corresponding to 5 scalars X,
For an ordinary 2-form gauge field in 6D, there are 6 propagating modes. But since we
do not have the usual kinetic term for A, but rather a Chern-Simons term, there are only
3 propagating modes. The low energy effective theory of an M5-brane contains the same
number of bosonic and fermionic degrees of freedom. But a salient feature of the M5-brane
is that the 2-form gauge field is self-dual. Hence our major challenge is to show that the
gauge field of the BLG model is equivalent to a self-dual 2-form gauge field.

A comment on the notation: we will use I.J, K to label the transverse directions to
the membrane worldvolume M. We decompose this eight dimensional space as a direct
product of A/ and remaining 5 dimensional space. We use [i, I/, A to label A" and 1,7,k to
label the transverse directions of the M5-brane.



3.1 Rewriting fields and covariant derivative

We expand the fields in BL action in terms of a basis {x®(y)} of C(N) as

X (w,y) =Y XL @)X (), (3.1)
U(z,y) = Y Talx)x*(y), (3:2)
Aub(x¢y) = ZAuab(:E)Xa(y)’ (33)

which show that the original 3 dimensional fields on M2-branes are promoted to 6 dimen-
sional ones. We note that the gauge potential A, still contains the index b which labels
the basis of C'(N).

The covariant derivative is

DX (w,y) = 9,X" (@) = {xX* XA} Apeal) K]
= 9,X"(2,y) = { Auala, y) X" (), X (,9) } (3.4)

3.2 Action

In the following, we will rewrite the M2 action in terms of the six dimensional fields defined
in (B.I)-(B-3). For this purpose, we decompose the summation in 7, J, K to the summation
in /1,7, A and i, j, k. Without loss of generality, we will take'

PR = i (3.5)

and

(f.9) = /d3y fg. (3.6)

3.2.1 Potential term

1
LV = _EQXI?XJaXK]a [XlanaXKD
1

= (1, X7, X 4 800 X, X8I X XX, X, X)), (3.7)
As in matrix models [23-P4], the first trick to reorganize the 6 dimensional fields is to
rewrite
X (z,y) =y + Az, y). (3.8)
Thus

(X7 X7 XM2) = (M2 4+ 12(0% A7) + 12(07 AR)? — 6(0" A”9” AlY) + O(A?)
=6+ 66’11»\8;1141»\ + 3(6‘2'»\8/1141»\)2 - ge”‘we”’%éaﬂAM@Aﬁé

+0(A%), (3.9)

LOf course, this is possible only locally on each coordinate patch for generic N.



where _
Aﬂ,) = EQD}\AA' (310)
The gauge transformation of the gauge field A* is given by
5"4”(33) y) = Z[fla(xa y)v f2a(33, y)v yﬂ + AN] = 6[“»\ Z al'/flaa)'\f2a + O(A) (311)

67

The linear part of the transformation of A;,; becomes
1 D
JA=dA+O(4), A= Audydy’, A= > fiadfoa (3.12)

as that of a standard 2-form gauge field. Thus at the quadratic level of the action, we
define the field strength of A as

F/-ﬂ»‘\ = 8,1AI.A + 8,)14)'\,-/ + (9)'\14,1,). (3.13)
Since [L,l),/.\ =1,2,3, we have

1 e
Foos = A€ Y€0i Ape. (3.14)
Now we try to rewrite the quadratic part of the potential in terms of the field strength
F. The first term in (B.9) is a constant. The 2nd term is a total derivative, unless F is a
constant. The 3rd term is _
1A 2 2

(M0 A" = 2F,,5"- (3.15)
After integration by parts, the 4th term becomes

3

—S (@ A,5)? = = Fs®. (3.16)

Thus, altogether, we find up to total derivatives?
<[X’1,X”,Xj‘]2> = /dgy (Fjj\f/ + constant + O(A?)). (3.18)

We also have the 2nd term in (B.7) given by
—i[xﬂ,xﬂ,xiﬁ _ —%(aﬂxif + O(AX?). (3.19)

The 3rd and 4th terms in (B.7) have no quadratic terms.

3.2.2 Fermion kinetic term
The kinetic term for the fermion is easy to compute:
i

4

i

_ - . . - _ ;
<\IJ7FIJ[X17XJ7 \Ij]> ~ Z(‘If,rﬂl)[yu’yV’\IID = ZEMV}\<\P7FADa}\\I’> = <\II7F)\8)\\IJ> (320)

[\

2Keeping all the total derivatives, it is

(X", X7, X ?) = /dSy (1 + %eﬂ”*Fm) + 9 (AP, A" — A0, AM) + O(A?)] . (3.17)




3.2.3 Chern-Simons term

The Chern-Simons term in the BL action is

1 2
Les = 56”” (fadeAuabauAAcd + ngdagfefgbAuabAuch)\ef> : (3.21)
It can be rewritten as
1
Lcs = 56“”\ (({Xa,xb,xc} XD Apab Oy Ared (3.22)
2
+§<{ C? Xd7 Xa} ) Xg><{xeu Xf7 Xg} ) Xb>A/JabAI/CdA)\ef>

1 2

= 56!“/)\ (({Aubv Xb7 8VA)\d} 7Xd> + §<{Al/d7 de Aub} 7Xg><{A>\f7 Xf7 Xg} ) Xb>> .
Let us now focus on the quadratic term. Here we need to introduce the second trick.

In the choice of the basis x%, we pick the first three as

X (y) =y (3.23)

The rest of the basis x® correspond to higher oscillations modes.? They are ignored for
the purpose of this paper, which is to identify the physical degrees of freedom of the low
energy effective M5-brane theory.

For these modes, we change the label a to the label fi of the coordinates of N'. We
pick up the corresponding mode in A,, (rewritten as A,;) in the quadratic terms in Lcg
and find ] .

L%léad =-3 /d?’y e“”Ae’l’)AﬁuAyﬂ(x,y)@,-,A»\(:n,y) +--- (3.24)

The dots --- represent the terms which involve A,,’s for higher oscillation modes. In the
following we will ignore them for simplicity.

3.2.4 Kinetic term for X
The kinetic terms for X1’s are
(DMXI)2 = (DuXD)z + (DuXi)z
. : . 2 .
= (94" = {A4,5.9" 07 }) + @ XD+

1 .. L 2 .
= <§Ew/\8u‘4p>& - 6”“%1%) + (O X 4

1 i
where we defined the field strength of A

FM'»\ = 8MA,)5\ — &)Au)'\ + a}\Aw). (3.26)
Here again, - -- represents those terms involving A,q (a # 1,2,3) and higher order terms

which we ignore in the analysis in the following.

3The zero mode x° = 1 has no contribution to the CS action since the Nambu-Poisson bracket vanishes
whenever it is present.



3.3 Equivalence to M5-brane low energy theory

Collecting all relevant terms, the quadratic part of the BL Lagrangian is

1 : ) - .
L = = [(0uX7)? + (0uX7)] + (¥, (10, + T70:)0)
1 o 1 2 Lo ok
B R T S G L 2OV (3.27)
The first two terms on the right hand side are the standard kinetic terms for free fields
living on a 6 dimensional space. They agree with what we expect for an M5-brane. We
will now focus our attention on the gauge fields.
The last term in the Lagrangian can be rewritten as

1 . 1 s 1 L
—56W6W0MAW@AM = —geﬂV*EWFWF N Ze“V)‘e“V)‘au(Aﬂ,;a,,A»\). (3.28)

v

where
F AN = 8VAA}\ - a)\AVj\. (329)

v

This is different from the expression of a field strength for an ordinary 2-form gauge field
because it misses the term d5A4,. Hence Ay is a 2-form gauge field, and A, is a 1-form
gauge field with an addition index fi. The gauge transformations are

0Au(z,y) = 0uhp(z,y). (3.31)

Compared with a 2-form gauge field on a 6-dimensional spacetime, we are missing the
components A, and the gauge transformation corresponding to the other 3 components
of the gauge parameter A,. We will see below how they automatically appear when we
analyze the equations of motion in more detail.

One can rewrite the gauge field relevant terms in (B.27) as

1 - 1,

d
LA™ = = Fupar (B + Fop)) = 555057 (3.32)
where F is the Hodge dual of the field strength defined by
-~ 1
Fux = EEEMBFME‘ (3.33)
Here p,v,A =0,1,---,5 are the collective indices for both p and fi. In particular,
r 1 2
Fuu = NZS Fy . (3.34)
The minus sign on the right hand side of (B.34) comes from Cvirid = “Cuniph =
TEwAC A
The equations of motion derived from (B.39) are
8EFH[U'/ =0, (335)
&)Flm;l + auﬁuu;l = 0. (336)



Let us now show that this set of equations of motion (B.35), (B.36) is equivalent to the
free field theory of a self-dual 2-form gauge field in 6 dimensions. First we focus on (B.34).
Combined with the Bianchi identity (recall that Hodge dual exchanges equation of motion
with Bianchi identity)

O Fypi + 05 Fpp = 0, (3.37)
eq. (B-3G) gives
Oy (Fpjur — Fupw) = 0. (3.38)

Hence there exists a 1-form field B such that
Fujir = Fupir = €305 By (3.39)

Next we consider the equation of motion (B:3). Using (B.39), we find that (B.39)
implies

05 F

1
= —8)\F)\[“; = §6HV>\6;11))'\8)\F;W)\ — Em»'\a)\a)'\B)\ = —6/-“»'\8)'\8)\3)\. (3.40)

Since /1,7, A can only take 3 different values, we have

1

F;’u'/)'\ = geppxekérkac'rp, (3.41)
and hence it follows from (B.40) that
05 (Figp + €z6,02Bx) = 0. (3.42)
This is solved by
Fiop + €iepOrBx = f(2)€rsp, (3.43)

where f(z) is independent of y. We can set f(x) = 0 by absorbing it in B,. Then the B,’s
are shifted by functions of =, but this will not change the defining equation (B.39) of B,,.
Thus, by suitably choosing B, we have

Frop + €i6pOrBx = 0. (3.44)

Egs. (B:39) and (B.44) allow us to define a self-dual 2-form gauge field B, as

Bwj = —EHV)\B)\, Bml = Amly B[u'j = Aﬂ,). (345)
The field strength dB is denoted by H and its components are

H;u/)\ = a,uBu)\ + &JB)\M + a)\B;w = _E;w)\apoa ( )
H;w/l = 8MBW — 8,,BW — 6“1,)\8/13)\ = ijﬂ — 6“1,)\8/13)\, (347)
Hypw = 0uBjw — 0uBpuw + OpBujy = Fluuw, (3.48)

(3.49)

sz'/)'\ = 8,131.& + &)B}\ﬂ + 8AB,~“-, = Fﬂffj\'

— 10 —



For a self-dual field theory, the 3-form field strength satisfies

1 Qs 1 s

Hyy = EEWEWHM, Hpys = EEMV)\EWJAH/W)\, (3.50)
1 o 1 ok

Hywy = _§€W>\6W Hys, Hypir = §€W/\€W H,5- (3.51)

(The two equations on the same line are equivalent.) It is straightforward to check that
the self-duality conditions are guaranteed by (B.39) and (B.44). Thus we have proven
that (B.39) and (B.44) are equivalent to the free field theory of a self-dual 2-form gauge
field in 6 dimensions. The Lagrangian (B.37) can thus be understood as a Lagrangian
for a self-dual 2-form gauge field in 6D, and it is different from such Lagrangians in the

literature [25, PG

4. Remarks

One may wonder the possibility of constructing other Mp-branes (which should not exist)
in M theory from multiple M2-branes. However, even if we had considered a higher dimen-
sional manifold A/ with Nambu-Poisson structure, due to the decomposability [[7 of the
Nambu-Poisson bracket, locally one can always choose 3 coordinates {y!, %, y3} in terms
of which the bracket is simply

{£,9.h} = 0, f D;9 O5h. (4.1)

Hence the rest of the coordinates (y* for a > 3) of NV will not induce derivatives or gauge
field components. There can never be more than 3 of the X!’s turning into covariant
derivatives. The decomposability of the Nambu-Poisson bracket is thus the mathematical
basis of why there are no other Mp-branes with p # 5.

In order to understand this statement, it may be instructive to consider a straightfor-
ward extension,

P=01 N0y ANO3+ 04 NO5 N O (4.2)

which would give us a theory on M8-brane. This does not work however since this bracket
does NOT satisfy the fundamental identity! One may easily confirm this by examining

{194, 92, {y3,¥5,v6}} = 0, but
Hyrva, v2,y3}, ys, v6} + {3 {y1va, y2,us}, ve } + {3, s, {y1ya, y2,v6} ) = 1.

The fact that the fundamental identity is so restrictive is helpful here to restrict the branes
of M-theory to M2 and M5.

The Nambu-Poisson tensor P/.w 5 is reminiscent of the Poisson tensor 6, which appears
on a Dp-brane world volume when there is a constant B-field background [B7]. In both
the weak and strong B-field limit, the noncommutative structure on the D-brane world
volume can be approximated by the Poisson structure. By analogy, we suspect that the
M5-brane action presented above corresponds to a weak or strong C-field limit with sz»}

— 11 —



turned on. For a finite value of Cﬂf/j\’ we expect that the Nambu-Poisson bracket to
be replaced by a quantum version. In [2§] we proposed a quantum Nambu bracket by
examining open membrane scattering amplitudes in the large C-field background. However,
the fundamental identity is not preserved by the quantum bracket. If it is the correct
formulation, one should interpret it as the Nambu bracket after gauge fixing AW. 5 =0.
There are obviously many things to be clarified in the future. In this paper we con-
sider only the quadratic part of the Lagrangian and ignored higher terms and also the
components for A,, for a # 1,2,3. To study the precise role played by them would be
essential to understand the precise relation between M2 and Mb. It will also be possible
to study the opposite direction, to understand M2 from M5 brane action [R5, Rd]. Since
M5 action is non-polynomial DBI type action, we expect to have a similar non-polynomial
action which generalizes ([.1)). Since the higher powers of the generators of Lie 3-algebra
will be inevitable, one needs to understand global structure associated with a given Lie
3-algebra. This is related to the problem of the quantum Nambu-bracket, a notoriously
difficult problem but many attempts [, [[3, have been made. We hope that our study

here would provide a good hint to this problem.

Note added in proof. To extract the low energy field content of an M5-brane, we have
only considered a small part of the degrees of freedom of the gauge field. (See eq. (B.23).) It
is later realized that all other degrees of freedom in the gauge field are completely decoupled
from the theory [R9].
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