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ABSTRACT 

The results of trinucleon bound state calculations using with the recent version (Graz II) 

of Graz separable N - IV potentials are presented. Graz II potentials frt not only the latest 

phenomonological phases rather accurately in the energy range 0 - 6OOAfeV(Z&), but. also 

provide a correct description of the deuteron data (l&,pd, Q, q). Their of&shell behavior is 

similar to that of the Paris potential, The results of calculations reported here are discussed 

and compared with those obtained for Graz I separable potentials and Yamaguchi forces used 

by Doleschall, and Site&o and Karchenko. The results show that Graz II potentials provide no 

improvement when compared with aforementioned forces used in a trinucleon system. The ‘Sr 

Graz 11 force seems to be unreasonably weak. 
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Recently a new version (Graz II) ‘-’ of the Graz separable potentials (GPX I)s-4 for the N- 

N system was proposed. The construction of Graz II forces arose from the need to overcome the 

shortcomings of extant separable force models, which provide a technically convenient descripticn 

of the N - N forces when used in a Faddeev-type calculation of a few-body system. The 

advantages of the Graz II forces over the Graz I, Doleshall,” and Piepere separable forces arc 

discussed in detail in Refs. 1 and 2. The o&shell behavior was studied by means of Noyes 

-Kowalski’ half-off-shell function and compared with Reid-soft-core’ and Paris” potential. A 

reasonable agreement between the separable and local forces was found only for the case of Graz 

II potentials. 

It is known that separable forces which reproduce low energy two-nucleon observables t,end 

to overbind the trinucleon system (triton for example by 3 - 4MeV).” 

The investigation of the problem of three nucleons serves as a source of additional information 

on the interactions between nucleons. In contrast to the problem of two nucleons at low energies 

the three-nucleon motion problem proves to be very sensitive to the form (off-shell behavior) 

of the two-particle potential. Therefore it is quite important to find a potential representing 

-the interaction between nucleons which, besides explaining the known experimental data of the 

deuteron bound state and two nucleon scattering will describe correctly the motion of three- 

nucleons. 

Since the Graz II separable potentials achieved significant improvement in fitting the on-shell 

two-nucleon data according to the recent N-N phase shift analysisr2-” and also care has been 

taken in constructing a reasonable off-shell behavior, it became interesting to use these forces 

within a trinucleon system. In this paper we report on several trinucleon bound state calculations 

with different separable forces, The forces used are listed in Table I. 

Below analytic formulae for these forces are given (numerical values for the corresponding 

parameters can be found in references as indicated in Table I). The forces TNPSK, SNPSK, 

SNPDO and SNNDO are rank one separable forces of Yamagucbi type: 

VP, P’) = !7(PMP’) 

with 
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S(P) = (P2 + B2)--l * 

All other forces are rank two separable potentials: 

V(P,P’) = Sl(Ph71(#) + S2(P)X2S2(P’) 

with 

LdP) = (P2 + IQ-’ 

and 

92(P) = P2(P2 + a;)-” 

for TNPGl, SNPGl and SPPGl, 

91 (P) = (p2 + a:,)-’ + 71p2(p2 + a;,)-” 

and - 

dp) = P2(P2 + 8;1)-~ + % ‘p4(p2 + a;,)-” 

for SNPGP and SNNG2, and 

Sl(P) = 41 + 7oP2)(P2 + s:,-’ + Ap2(p2 + /9;,-2 

(1.1) 

(1.2) 

!72(P) = -A (1 + 7oP2)(P2 + a;)-” + cqp2(p2 + /I;,-2 

for TNPG2. In the case of TNPGl and TNPGP we use only an s-wave projection of the original 

forces. 

We are solving a Faddeev equations of the following type” for the amplitudes A: 

(14 

a 



where 

/ 

+l 
Jtj(K; ~9 P’) = 

!JI(Jpz + :P” + PP’Y )gi( l//fP” + ti2 + PP’Y ) dY 

-1 K2+p2+p+pp’Y 
04 

The summation in &. (1) runs over the spin constants 

!I -3 -1 

p=V=%) = ( -.$ -3 

1 -9 3 0 1 
in the case of charge-dependence of N - N forces, 

p=t) = 3 -9 
( 1 -9 3 

in the case of charge-independence, and x = 2 for.three identical zero-spin particles. Here S 

denotes total spin, I total isospin, K2/M is the binding energy of the system of three particles, - 
and M is the mass of the particle. The matrices x have different multiplicities according to the 

rank- index of the used separable potentials. 

In Table II we give results for the binding energy for three identical zero-spin particles 

interacting via the forces as listed in Table I. The binding energy of the three-nucleon system in 

case of TNPGl (s-wave projection) would be larger if the parameter would fit the n - p triplet 

effective range parameter as in the case of TNPSK, for example. Thus we can conclude that 

Graz I triplet force gives too strong attraction in the three nucleon system, and the overbinding 

is comparable with that obtained by Yamaguchi force (TNPSK). In the case of Graz II triplet 

force we find surprisingly that for this force the trinucleon system does not bind. It is probable 

that the force including D-wave interaction would bind the trinucleon system. However this 

binding will be very small. We conclude that the sSr Graz II force is too weak and therefore not 

reasonable. 

In the case of ‘So Graz I forces we find that the binding energy agrees within the first two 

digits following the decimal point for the full potential Eq. (2) and for the same potential in 

which the second repulsive term is neglected. The repulsion of the second term is strong but 

is active at higher momenta than the action of the attractive first term. This finding indicates 
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that the three-nucleon wave function takes full advantage of the attractive part while avoiding 

the repulsive part at higher momenta. Thus the apparent modification of the two-nucleon wave 

function at short distances (off-shell behavior) due to the repulsive part of the potential has almost 

no impact on thethree-nucleon binding energy. This is t,he reason why the binding energy of the 

trinucleon system for the ‘Se Graz forces is larger than in the case of the simple parametrizations 

by Sitenko-Karchenko and Doleshall. We thus conclude that the introduction of a repulsive part 

of the potential at higher momenta does not cure the off-shell behavior of two-nucleon wave 

functions in a proper way. 

In Table III we present the results for the triton binding energy for a calculation with charge- 

independent forces. As already mentioned before, Graz I and Yamaguchi forces gives similar 

results. It can be expected that with a correct fit of the triplet effective range for the s-wave 

projection the binding of the triton (charge independence) would give even larger overbinding 

than the Sitenko-Karchenko parametrization. We find again that the repulsive part of the Graz 

I forces almost does not affect the triton binding energy. 

In Table IV we give the results for the triton binding energy for charge-dependent nucleon- 

nucleon forces. The combination of Graz I and Doleshall forces seems to be very close to the 

. experimental value (Ett;ton = 8.48). One has however to bear in mind that sS1 force (s-wave 

projection) would be stronger if it would fit the deuteron binding pole exactly. 

Our results show that the two-nucleon off-shell ambiguity is still an open problem. Since the 

Graz II potentials incorporate an off-shell behavior suggested by relativistic models of the nuclear 

force, this finding is quite disappointing. Three alternatives can be considered: 

1. The appropriate off-shell behavior has still to be found, which would provide an adequate 

description of a three-nucleon system. 

2. There is appreciable effect of a genuine three-body force. 

3. The off-shell ambiguity cannot be resolved within the present quantum mechanical models. 

The third alternative gave rise to the zero-range approach by Noyes.” In- this approach 

the two-body empirical on-shell information only is used to calculate the three-body observables. 

Calculations in this approximation for the three-nucleon problem will be presented in a paper to 

come.le 

The author is indebted to Professor H. Pierre Noyes for helpful and valuable suggestions. 
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Table Captions 

I. List of N - N separabie forces used in this paper. 

II. Calculated binding energy of a system of three identical zero-spin particles for different 

forces. 

III. Triton binding energy, assuming charge-independent N - N forces. 

IV. Triton binding energy, assuming charge-dependent N-N forces. 
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TABLE I 

Partial Wave Force Notation used in the text 

3 
sl. Graz IIls2) TNPG2 

Graz I 233) TNPGl 

Sitenko-Karchenko 14) TNPSK 
1 

so (n-P) Graz IIla2' 

'So (n-p> Graz I 2,X) 

SNPG2 

SN-PGl 
1 

s() b-P> Sitenko-Karchenko i4) SN-PSK 
1- 

So (n-p> Doleshall 235) SNPDO 
1 

s* (P-P> Graz 11112) SPPG2 

Iso (P-P) Graz I2'3) SPPGl 
1 

So (n-n> Doleshal12'5) SNNDO 

,. 



TABLE II 

Partial Wave Force Binding energy (MeV) 

3 
s1 

TNPG2 

TNPGl 

TNPSK 

no binding 

19.42 

25.40 

SNPG2 5.40 

SPPG2 8.52 
1 

- sO SNPGl 3.94 

SPPGl 5.04 

SNPSK 2.49 

SNPDO 2.23 

SNNDO 1.23 
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TABLE III 

Forces Binding Energy 
WV) 

3 
s1 lsO 

TNPSK' SNPSK 

TN-PGl SNPGl 

ll.. 98 

10.51 

c 
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TABLE IV 

Forces Binding Energy 

TNPKS SNYE'KS SNNDO 10.80 

SNPDO SNNDO 8.4 
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