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The presence of a horizon is the principal marker for black holes as they appear in the classical theory 
of gravity. In General Relativity (GR), horizons have several defining properties. First, there exists a 
static spherically symmetric solution to vacuum Einstein equations which possesses a horizon defined 
as a null-surface on which the time-like Killing vector becomes null. Second, in GR, a co-dimension 
two sphere of minimal area is necessarily a horizon. On a quantum level, the classical gravitational 
action is supplemented by the quantum effective action obtained by integrating out the quantum fields 
propagating on a classical background. In this note we consider the case when the quantum fields are 
conformal and perform a certain non-perturbative analysis of the semiclassical equations obtained by 
varying the complete gravitational action. We show that, for these equations, both of the above aspects 
do not hold. More precisely, we prove that i) a static spherically symmetric metric that would describe a 
horizon with a finite Hawking temperature is, generically, not a solution; ii) a minimal 2-sphere is not a 
horizon but a tiny throat of a wormhole. We find certain bounds on the norm of the Killing vector at the 
throat and show that it is, while non-zero, an exponentially small function of the Bekenstein–Hawking 
(BH) entropy of the classical black hole. We also find that the possible temperature of the semiclassical 
geometry is exponentially small for large black holes. These findings suggest that a black hole in the 
classical theory can be viewed as a certain (singular) limit of the semiclassical wormhole geometry. We 
discuss the possible implications of our results.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Existence of black holes is one of the most fascinating predic-
tions of Einstein’s theory of gravity. There is accumulating astro-
physical evidence that black holes, or compact objects that look 
pretty much like black holes, are not rare in the Universe. The cata-
log [1] of stellar-mass black holes contains hundreds of candidates. 
Supermassive black holes are believed to be in the center of any 
galaxy including the Milky Way. Yet another evidence comes from 
the recent detection of a gravitational wave signal which originates 
from a coalescence of two massive black holes [2]. However, the 
direct detection of a black hole event horizon remains the princi-
pal experimental challenge.

On the other hand, there have been suggestions [3], [4], [5], 
[6], [7] that wormholes may mimic very closely the behavior of 
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black holes, including the geodesics and the characteristic quasi-
normal modes, although not having the defining property of black 
holes – the existence of a horizon. The latter is replaced by a tiny 
throat, the longitudinal size of which is such that it may serve as 
a storage for the information ever fallen into the “black hole”. For 
sufficiently small deviation parameter, the wormhole geometry is 
very difficult, if ever possible, to distinguish experimentally from 
the black hole geometry. In particular, as was discussed in [8], the 
gravitational ringdown encoded in the shape of the recently ob-
served gravitational wave signal is not sufficient to actually probe 
the horizon and, thus, distinguish the two geometries.

The goal of this note is to provide more evidence for the worm-
hole picture and to demonstrate that, on the theoretical side, the 
existence of black holes, as we know them in General Relativity, 
is far from evident as soon as the quantum modifications of GR 
are taken into account. Indeed, the quantum fields generate a cer-
tain, generally non-local, modification (see for instance [9]) of the 
gravitational action and a respective modification of the gravita-
tional equations. In a semiclassical description, in which the grav-
itational field (metric) is not quantized and all other matter fields 
are considered to be quantum, the modified Einstein equations de-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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fine the so-called semiclassical gravity. These modified equations, 
being fundamentally non-local, are extremely complicated so that 
the exact solutions can be found only in some very special, sym-
metric, cases [10], [11]. Previous works on semiclassical black holes 
include [12].

There are two aspects of classical horizons as they appear in 
GR. First of all, a horizon is simply a special surface in a static 
spherically symmetric metric on which the time-like Killing vec-
tor becomes null. The non-vanishing gradient of the norm of the 
Killing vector at the horizon defines the Hawking temperature. To 
leading order, near the horizon, the Einstein equations are satisfied 
for any temperature. The latter is fixed to be related to the mass by 
considering the solution globally, everywhere between the horizon 
and spatial infinity.

The second aspect relates horizons to surfaces of minimal area. 
Indeed, in GR if a co-dimension two sphere � is minimally em-
bedded in a four-dimensional static spacetime then this sphere is 
a horizon (or, mathematically more rigorously, a bifurcation sphere 
of the event horizon). This second aspect is less known so that we 
will review it below.

Our main goal in this note is to analyze both these aspects in 
the framework of a semiclassical theory of gravity. To simplify the 
analysis we shall consider the quantum modification of the gravi-
tational action produced by quantum conformal fields. In this case 
the scaling properties of the quantum action are uniquely fixed 
by the conformal charges of the CFT. This helps to make a rather 
general analysis for an arbitrary unitary CFT. Yet, our analysis is 
essentially local: we expand the metric in a small vicinity of the 
would be horizon and analyze the local solution to the modified 
gravitational equations. Thus, we do not have access to the global 
behavior of the solutions. However, this local analysis happens to 
be extremely informative as it allows us to rule out solutions with 
horizons, and, in fact, detect the drastic deviations from the classi-
cal behavior. More precisely, we have found that

i) a static spherically symmetric metric with a horizon character-
ized by a finite (non-vanishing) temperature is, generically, not
a solution to the semiclassical gravitational equations1;

ii) in semiclassical gravity, a 2-sphere of minimal area embedded 
in a static spacetime is not a horizon. Rather, it is a throat 
of a wormhole. We find a bound on the norm of the Killing 
vector at the throat and show that it is an exponentially small 
function of the Bekenstein–Hawking entropy of the classical 
black hole.

Thus, the static solutions to the semiclassical gravity are hori-
zonless and the classical horizons are replaced by wormholes! This 
is as anticipated in [3]. Our result ii) shows that for the astrophys-
ical black holes, the parameter (the smallest value of the norm of 
the Killing vector) that characterizes the deviation of the wormhole 
geometry from that of a black hole, although non-vanishing, is ex-
tremely small. That is why it might be extremely difficult to detect 
the deviation experimentally. Below we discuss this and other im-
plications of our findings. We stress that our results concern only 
the static configurations. Although we anticipate that they can be 
extended to a stationary, rotating case, we can not exclude that 
there may exist some dynamical, time dependent solutions with 
an evolving horizon.

1 This statement is not to be confused with the smooth horizon structure of the 
well-understood Hartle–Hawking state for Rindler spacetime or similar set-ups. As 
we comment in remarks (d) of section 7, we are exclusively looking at states (such 
as Boulware), where the stress-tensor does diverge near the horizon and as a result 
modifies the geometry there.
2. Two aspects of horizons in GR

We consider a static spherically symmetric metric of the gen-
eral form (we prefer to work in the Euclidean signature)

ds2 = �2(z)gμνdxμdxν

= �2(z)
(

dt2 + N2(z)dz2 + R2(z)(dθ2 + sin2 θ dφ2)
)

. (1)

The geometrical radius of a 2-sphere is r(z) = R(z)�(z). Upon 
varying the gravitational action with respect to �(z), N(z) and r(z)
one gets three equations, one of which by Bianchi identities fol-
lows from the other two. The norm of the time-like Killing vector 
ξ = ∂t is ξ2 = �2(z). Vanishing of this norm signals the existence 
of a horizon. Clearly, this is a point (or in fact a 2-sphere) where 
the function �(z) vanishes. A particular choice for the function 
N(z) is a matter of convenience and a choice of the coordinate 
system.

I. Universality near horizon. Consider the gauge N(z) = 1. Assum-
ing that there exists a horizon at r = rh with a finite temperature 
T = 1/β , one finds the near horizon behavior

�(z) = e−2π z/β + . . . , R(z) = rhe2π z/β + . . . , (2)

where . . . stand for subleading terms. The regularity of the metric 
requires the Euclidean time to be periodic with period β . Notice 
that in these coordinates the horizon is located at z → ∞. In this 
regime, the optical metric gμν in (1) universally approaches [13] a 
product space of one-dimensional circle Sβ

1 with a 3-dimensional 
hyperbolic space H3 of radius β/(2π).

Horizon in classical theory (aspect A): There exists an exact solution 
to the classical Einstein equations (with or without cosmological con-
stant) such that the static spherically symmetric metric locally behaves 
as in (2). To leading order, the equations are satisfied for any β . The 
latter is related to the mass by studying the solution globally.

II. Horizon as a minimal surface. Consider now the gauge N(z) =
1/�(z). In this case the radial coordinate ρ = z measures the 
geodesic distance in the radial direction. The two independent Ein-
stein equations then take the form (written in terms of geometrical 
radius r(ρ))

2rr′′ + r′ 2 − 1 = 0 ,

�(r′ 2 − 1) + 2rr′�′ = 0 . (3)

Horizon in classical theory (aspect B): Suppose that the 2-sphere at 
ρ = ρh is a minimal area surface, i.e. r′ = 0 at ρ = ρh. Then it fol-
lows from the second equation in (3) that the function �(ρh) = 0 and, 
hence, ρ = ρh is a horizon. Notice that �′(ρh) is not determined 
from (3), it is a constant of integration. Fixing the temperature as 
the periodicity in the Euclidean time t , we can determine �′(ρh)

by the condition of absence of a conical singularity in the metric 
(1). Of course, globally, equations (3) describe nothing else but the 
Schwarzschild solution.

Below we shall examine the validity of the analogous aspects in 
the semiclassical gravity.

3. Semiclassical gravitational equations

The semiclassical gravitational action is composed by adding 
to the classical Einstein–Hilbert action W E H [G] a quantum effec-
tive action �[G] obtained by integrating out the quantum mat-
ter fields. For simplicity we shall consider conformal fields. In 
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this case the difference between the effective actions for confor-
mally related metrics, �[e2σ g] − �[g], is completely determined 
by the conformal anomaly [14]. Then, writing the metric in the 
form Gμν = e2σ gμν we find for the complete gravitational action, 
W grav = W E H [G] + �[G],

W grav = − 1

2κ

∫
d4x

√
G R(G) − a

(4π)2

∫
d4x

√
g σ C2

+ b

(4π)2

∫
d4x

√
g σ E

− 2b

(4π)2

∫
d4x

√
g
(

2Eμν∇μσ∇νσ + 2�σ∇μσ∇μσ

+ (∇μσ∇μσ)2
)

+ �0[gμν ] . (4)

Here κ = 8πG N is the classical gravitational coupling, Eμν is the 
Einstein tensor corresponding to the metric g , i.e. Eμν = Rμν −
1
2 Rgμν and a and b are the well known conformal charges,

a = n0

120
+ n1/2

20
+ n1

10
,

b = n0

360
+ 11n1/2

360
+ 31n1

180
, (5)

where ns is number of fields of spin s. We define

C2 = Rαβμν Rαβμν − 2Rαβ Rαβ + 1
3 R2 ,

E = Rαβμν Rαβμν − 4Rαβ Rαβ + R2 , (6)

where E is the Euler density and C is the Weyl tensor. We shall 
consider the gravitational action (4) on the static metric (1) so that 
�2 = e2σ and �0[gμν ] is the quantum effective action computed 
on the optical metric gμν . It is interesting that the Euler den-
sity vanishes for the optical metric (1), E(g) = 0. After integrating 
over θ , φ and taking the periodicity in the Euclidean time to be β
we obtain the gravitational action for metric (1) in the form

(4πβ)−1W grav (7)

= 1

κ

∫
dz

e2σ

N2

(
R ′ 2N + 6R R ′Nσ ′ + 3R2N(σ ′ 2 + σ ′′)

+ 2R R ′′N − N3 − 2R R ′N ′ − 3R2N ′σ ′)
− 4a

3(4π)2

∫
dz

σ

R2N5

(
N3 + R R ′′N − R R ′N ′ − R ′ 2N

)2

− 4b

(4π)2

∫
dz

[
1

N

(
R ′ 2

N2
− 1

)
σ ′ 2

+ R2σ ′ 2

N3

(
σ ′′ + 2

R ′

R
σ ′ − N ′

N
σ ′

)
+ R2σ ′ 4

2N3

]
+ (4πβ)−1�0[gμν ] ,

where σ ′ ≡ dσ

dz
. The variations with respect to σ(z) and N(z) give 

us the equations of motion (the third equation obtained by varia-
tion with respect to R(z), is supposed to follow from these two by 
the Bianchi identities):

0 = 2e2σ

κ

[
2R R ′′

N
+ 6R R ′σ ′

N
− 2R R ′N ′

N2
+ R ′ 2

N
(8)

+ 3R2σ ′′

N
− 3R2σ ′N ′

N2
+ 3R2σ ′ 2

N
− N

]

+ a
2

[
− R ′′

− R ′′ 2

3
− R ′ 3N ′

4
− R ′ 2N ′ 2

5 + R ′N ′
2

0

Th

4.

in
tic

ds

ds

w
th
on
va
ex
ta

�

w

R

is 
(z
as
ea
is 
rio
th
re
nu
riv
6π RN 2N RN 2N RN
− R ′ 4

2R2N3
+ R ′ 2

R2N
+ R ′R ′′N ′

N4
+ R ′ 2 R ′′

RN3
− N

2R2

]

+ b

π2N4

[
RN R ′′σ ′ 2 + 1

2
N R ′ 2σ ′′ − 3R R ′σ ′ 2N ′ − 3

2
R ′ 2σ ′N ′

+ RN R ′σ ′ 3 + N R ′ 2σ ′ 2 + 2RN R ′σ ′σ ′′ + N R ′R ′′σ ′

− 3

2
R2σ ′ 3N ′ + 3

2
R2Nσ ′ 2σ ′′ − 1

2
N3σ ′′ + 1

2
N2σ ′N ′

]

= e2σ

κN2

[(
R ′ + Rσ ′) (

R ′ + 3Rσ ′) − N2
]

(9)

+ bσ ′ 2

8π2N4

[
−2N2 + 8R R ′σ ′ + 6R ′ 2 + 3R2σ ′ 2

]

+ a

12π2 R2

[
R2σ R ′′ 2

N4
+ 2R2 R ′ 2σ ′N ′

N5 + 2R R ′ 3σ ′

N4
− 2R R ′σ ′

N2

+ 2R2σ R ′ 2N ′′

N5 − 5R2σ R ′ 2N ′ 2

N6
+ σ R ′ 4

N4
− 2R2 R ′′′σ R ′

N4

− 2R2 R ′R ′′σ ′

N4
+ 4R2σ R ′R ′′N ′

N5 − σ

]
+ 1

4πβ
δN�0

ese are the equations which we shall further analyze.

 Effective action �0 on optical space Sβ
1 × M3

Before we do this analysis, we have to discuss �0 that appears 
 (9). �0[g] is the quantum effective action computed on the op-
al metric gμν ,

2(g) = dt2 + ds2(γ ) ,

2(γ ) = N2(z)dz2 + R2(z)(dθ2 + sin2 θdφ2) , (10)

here the t-coordinate is compact with periodicity β = 1/T . Thus, 
e optical spacetime is a product Sβ

1 × M3. The effective action 
 this spacetime can be decomposed in a series in terms of cur-
ture of 3-space M3 [15]. Restricting to the leading terms in this 
pansion and combining results of [15] with those of [16] we ob-
in

0[Sβ
1 × M3] = − π2

90β3

(
n0 + 7

2
n1/2 + 2n1

)

×
∫

M3

1 + 1

144β

(
n1/2 + 4n1

) ∫
M3

RM , (11)

here

M = − 2

R2N3

(
2RN R ′′ − 2R R ′N ′ − N3 + N R ′ 2

)
the Ricci scalar of M3. Notice that in the near horizon limit 
→ ∞) (2), in the gauge N(z) = 1, the 3-space M3 approaches 
ymptotically the hyperbolic Euclidean space H3, as was noticed 
rlier in [13]. The radius of the hyperbolic space H3, a = β/(2π), 
related to the inverse temperature, or equivalently, to the pe-
dicity β of the circle S1. In the case, where M3 = H3, (11) is 

e complete result for the effective action. The higher order cor-
ctions to (11) thus vanish if M3 has constant curvature. After a 
mber of integrations by parts in the second term in (11) we ar-
e at
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�0[S1 × H3] = −2π3

45

cH

β3

∫
dzN(z)R2(z)

+ π

18

λH

β

∫
dz(N(z) + R ′ 2N−1) , (12)

where we introduced cH = n0 + 7
2 n1/2 + 2n1 and λH = n1/2 + 4n1. 

So that one finds2

(4πβ)−1δN�0 = −π2

90

cH

β4
R2(z) − 1

72

λH

β2
(R ′ 2N−2 − 1) (13)

that should be used in (9).

5. No static black hole solutions of semiclassical equations

We are now in a position to analyze the semiclassical equa-
tions (8)–(9). First we analyze the aspect A. Here we use the gauge 
N(z) = 1. We are looking at a solution which describes a static 
spherically symmetric geometry (1) with a horizon characterized 
by a finite radius rh and a finite Hawking temperature T = 1/β . So 
that the functions σ(z) and R(z) behave to leading order (z → ∞) 
as

σ(z) = −2π z

β
+ . . . , R(z) = rhe2π z/β + . . . (14)

and one has asymptotically that R ′ 	 (2π/β)R . Then, to leading 
order, equations (8) and (9) respectively give

δσ W grav : 0 = O
(

e−4π z/β
)

, (15)

δN W grav : 0 = (360b − 2cH − 10λH )
π2

180β4
R2(z)

= − (
n0 + 6n1/2 − 18n1

) π2

180β4
R2(z) .

First equation in (15) is automatically satisfied to leading order. Al-
though the divergent term in the second equation may vanish for 
a particular set of fields, it is not vanishing in general, for arbitrary 
n0, n1/2 and n1. Obviously, since the leading divergent term is not 
canceled, equation (15) can not be satisfied and, hence, a static 
solution with a finite temperature horizon can not exist in the 
semiclassical gravity theory. This is our first important observation.

6. Minimal sphere is a wormhole throat

Now, as the classical aspect A has, in general, failed in the semi-
classical theory we want to check the second aspect (B) of the 
classical black hole horizons. Namely, we want to check whether 
a minimal sphere is necessarily a black hole, now for the semi-
classical gravity described by equations (8) and (9). It is natural in 
this case to choose in these general equations the gauge, where 
N(z) = 1/�(z), so that coordinate ρ = z would correspond to the 
geodesic distance in the radial direction. One possibility is to look 
at the solutions with r′ = 0, � = 0, �′ = 2π/β . Those solutions do 
not in general exist by same reasons as above (uncanceled 1/�2

2 It is worth noting that a priori the thermal action �0 is not supposed to be 
determined by only the conformal properties of the theory. Therefore, it is quite 
interesting that there exists a certain relation between charges a and b and the 
parameters appearing in �0: 180b + 60a + 90c − cH − 5λH = 0, where c = −n1/6. In 
certain regularizations combination (2/3a + c) appears in front of �R in conformal 
anomaly. This term originates from a local term in the effective action, depends on 
the regularization scheme and the gauge fixing condition and does not affect our 
analysis below in the paper. We thank the anonymous referee for pointing out the 
above relation to us.
divergent terms). Under same conditions as non-vanishing of (15), 
this excludes the possibility that the minimal surface is a hori-
zon. Therefore, we generalize the minimality condition and look 
for solutions in which both r(ρ) and �(ρ) (or, equivalently, Gtt ) 
have minimum at ρ = ρh . Thus, we impose two conditions at the 
turning point ρ = ρh , r′(ρh) = 0 and �′(ρh) = 0. In the present 
case it is natural to analyze the equations in terms of the geo-
metrical radius of the sphere r(ρ) = R(ρ)�(ρ) and the function 
�(ρ) = eσ(ρ) . Then, equations (8) and (9) at the turning point take 
the form

2�

κ

(
1 − 2rr′′ − r2 �′′

�

)
+ ā

r2�

(
� + �rr′′ − r2�′′)2+ b̄�′′ = 0 ,

(16)

−�2

κ
− ā

r2
ln�−1

[
(�rr′′ − r2�′′)2 − �2

]
− γ r2

β4�2
+ λ

β2
= 0 ,

(17)

where ā = a/12π2, b̄ = b/2π2, γ = cHπ2/90 and λ = λH/72, and 
we note � ≡ �(ρ = ρh), r ≡ r(ρ = ρh). Notice, that in the classical 
limit r is the geometrical radius of the black hole.

The turning point is assumed to be a minimum both for func-
tions r(ρ) and �(ρ) so that their second derivatives r′′ > 0 and 
�′′ > 0 at ρ = ρh . Additionally, we require that 0 < � < 1 since 
it is expected to be a small modification of the classical value 
�(ρh) = 0. Let us introduce a new variable y such that the equa-
tion (17) can be rewritten as follows(

�rr′′ − r2�′′)2 = y2�2 ,

y2 = 1 − r2

κā ln�−1

(
γ κr2

β4�4
− λκ

β2�2
+ 1

)
. (18)

The positivity condition y2 ≥ 0 imposes important constraints on 
possible values of � and β .

First, we consider the case when λ = 0. Then since a > 0, b > 0, 
γ > 0, and 0 < � < 1 one has that y2 < 1. On the other hand, 
the positivity condition y2 > 0 can be rewritten in the form of an 
inequality

�4 ln
�0

�
>

γ r4

āβ4
, (19)

where we introduced �0 = e− r2
āκ . This condition is very informa-

tive. First of all it says that provided the temperature is finite, 
1/β �= 0, the norm of the Killing vector �2 at the turning point 
does not vanish. Then, eq. (19) implies that

� < �0 = e− r2
āκ . (20)

This relation indicates that the value of � at the turning point 
is bounded by the exponential of minus the classical Bekenstein–
Hawking entropy S B H = 8π2r2/κ .

On the other hand, (19) can be viewed as a bound on the pos-
sible temperature,

T 4 = 1

β4
<

ā

γ r4
�4 ln

�0

�
<

1

4

ā

γ r4
�4

0 , (21)

where in the last inequality we used that �4 ln �0/� ≤ �4
0/(4e) ≤

�4
0/4. This relation indicates that the temperature of the semiclas-

sical geometry that replaces the classical black hole is much less 
than the Hawking temperature.
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Now we consider the case of non-vanishing λ > 0. The positivity 
condition y2 ≥ 0 in this case implies the inequality

�4 ln
�0

�
≥ γ r4

āβ4

(
1 − λ

γ

β2

r2
�2

)
. (22)

There are different sub-cases that one should consider.
Case A. Suppose that the right hand side of (22) is positive, i.e. 
�2 <

γ
λ

r2

β2 . Then it follows that one again has the bound (20), 

� < �0. Using that �4 ln �0
�

≤ 1
4 �4

0 one arrives at the inequality

β4 1

4
�4

0 + λ

ā
r2�2

0β
2 − γ

ā
r4 ≥ 0 (23)

that should be considered as a restriction on the possible values 
of β . Solving the quadratic equation one finds two roots,

β2
1,2 = 2λ

ā

r2

�2
0

(
±

√
1 + γ ā

λ2
− 1

)
, β2

1 < β2
2 .

We see that β2
1 < 0 while β2

2 > 0. Therefore, (23) implies that 
β2 > β2

2 , or equivalently,

T 2 = 1

β2
<

ā�2
0

2r2

1√
λ2 + γ ā − λ

. (24)

When λ = 0 this bound becomes (21).
Case B. The other possibility is when the right hand side of (22)
is negative, i.e. �2 >

γ
λ

r2

β2 . In this case the ratio �0/� can either 
be larger or smaller than 1. If we assume that � ≤ �0, then the 
analysis above is still valid and one has an upper bound (24) on 
the temperature T . However, this time we have 1

β2 < λ
γ

�2

r2 and 
since � < �0 we obtain a stronger bound than (24)3

T 2 = 1

β2
<

λ

γ

�2
0

r2
. (25)

On the other hand, if � > �0 then (22) can be rewritten in the 
form

β4�4 ln
�

�0
− λ

ā
r2�2β2 + γ

ā
r4 < 0 (26)

that again should be considered as a restriction on possible values 
of β . Solving the quadratic equation one finds for the roots

β2
3,4 = λr2

2ā�2 ln �
�0

⎛
⎝1 ±

√
1 − 4γ ā

λ2
ln

�

�0

⎞
⎠ .

The necessary condition for the inequality (26) to have a non-
trivial domain of validity is that 4γ ā

λ2 ln �
�0

≤ 1 or, equivalently,

�0 < � < �0e
λ2

4γ ā . (27)

We see that in this case there is not only a lower but also an upper 
bound on the possible value of � at the throat, which are expo-
nentially small functions of the classical BH entropy. One also finds 
that both the roots are real and positive β2

3 < β2
4 , β2

3,4 > 0. The do-

main where the condition (26) is satisfied is then β2
3 < β2 < β2

4 , 
which imposes both upper and lower limits on the temperature. 

3 That the bound (25) is stronger than (24) follows from the fact that the function 
x√ > 1, x = γ ā/λ2.
2( 1+x−1)
A somewhat simpler upper bound on the temperature can be de-
rived by using the condition �2 >

γ
λ

r2

β2 . Indeed one finds that

T 2 = 1

β2
<

λ

γ
e

λ2
2γ ā

�2
0

r2
. (28)

The minimality conditions: Equations (16) and (17) can be used 
to express r′′ and �′′ in terms of variable y,

�′′ = �

r2
(

3 − b̄κ
2r2

) (
1 − 2y + āκ

2r2
(1 + y)2

)
, (29)

rr′′ = 1(
3 − b̄κ

2r2

)[(
1 + āκ

2r2

)
+

(
1 −

(
−ā + b̄

2

)
κ

r2

)
y + āκ

2r2
y2

]
.

(30)

We look at large black holes, κ/r2 
 1, so that 
(

3 − b̄κ
2r2

)
> 0. The 

condition �′′ > 0 then imposes a condition on the possible values 
of y:

y < y1 or y > y2 , y1 = 1

2
+ 9

16

āκ

r2
, y2 = 4

r2

āκ
, (31)

where we skip the subleading in κ/r2 terms. On the other hand, 
the condition r′′ > 0 gives us the conditions

y < y3 or y > y4 , y3 = −
(

1 + b̄κ

2r2

)
, y4 = −2r2

āκ
. (32)

There are three intersections of regions (31) and (32)

(I) : y < y3 , (I I) : y3 < y < y1 , (I I I) : y > y2 . (33)

When λ = 0 and in the case A when λ > 0 one has that y2 < 1 so 
that the regions I and III are not admissible while region II reduces 
to a somewhat smaller, −1 < y < y1. On the other hand, in the 
case B when λ > 0 one has that y2 > 1 and the only admissible 
regions are I and III and a part of region II, y3 < y < −1.

The relations (20) and (27) imply that at the turning point the 
norm ξ2 = �2 of the time-like Killing vector ξ = ∂t is an expo-
nentially small function of the Bekenstein–Hawking entropy of the 
classical black hole. The minimal 2-sphere is then not a horizon as 
it was in the classical case but a wormhole. This is our second im-
portant observation. It answers the question of what replaces the 
classical horizon in the semiclassical theory. Additionally, we have 
found restrictions (21), (24), (25), (28) on the possible values of 
the temperature. In all these cases, the temperature happens to be 
exponentially small and, thus, differs radically from the Hawking 
temperature.

7. Remarks

(a). The analysis of the present paper is done in the approxima-
tion when the gravity is not quantized. For quantum conformal 
matter, the effective action we consider is a one-loop result. If 
the conformal fields are non-interacting, this is in fact the en-
tire answer for the effective action. If the fields are interacting, 
then there are higher loop corrections. One effect of interac-
tions is that the conformal charges a and b, may RG flow, i.e. 
depend on the scale. It would be interesting to explore the 
consequences of this flow in the situation at hand. Another 
way to generalize our analysis is to consider massive fields.
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(b). The other essential approximation we used in this paper is the 
approximation of the effective action �0 on the optical metric 
by expression (11) that ignores the possible higher curvature 
terms. One can estimate the order of the possible correction 
terms to (11). The optical geometry (10) is characterized by 
two dimensionfull quantities: β and R(z). The possible correc-
tion terms will then go as a ratio β/R(z) ∼ �(z). This ratio 
vanishes at the true horizon, which explains why (11) is the 
complete result for the near-horizon geometry S1 × H3. On 
the other hand, this ratio is exponentially small at the worm-
hole throat. The corrections thus are expected not to affect 
the horizon analysis leading to eq. (15) and to be small in the 
analysis of the wormhole.

(c). Modulo the situation discussed in the above points, our con-
sideration is essentially non-perturbative and does not rely on 
any perturbative analysis of the semiclassical equations. This is 
an important difference between our approach and other pre-
vious attempts to understand what happens to classical black 
holes in a quantum theory.

(d). Our results differ from the known considerations of black 
holes in local theories of gravity. No local curvature invariant, 
considered on a static metric of the type (1), in the gravi-
tational action will produce a divergent term like (15). It is 
the fundamental non-locality of the quantum effective action, 
even though it is manifested via a local form of the conformal 
anomaly, that lies at the root of (15).
In order to illustrate this point we consider a local R2 term 
which always can be added to the effective action. After con-
formal transformation Gμν = e2σ gμν it produces∫ √

G R2(G) = 12
∫ √

g

[
1

12
R2 − R�σ − R(∇σ)2

+ 3(�σ)2 + 6�σ(∇σ)2 + 3(∇σ)4
]
. (34)

In fact, as is well known, this term produces an extra contri-
bution to the conformal anomaly, proportional to �R (as one 
can see from (34) after few integrations by parts are made). 
Now, the term (34) should be considered for the class of met-
rics (1) (note that � = eσ ) so that it becomes a functional of 3 
functions: σ(z), N(z), R(z). Variations of (34) w.r.t. σ(z) and 
N(z) represent the modifications of the semiclassical equations 
discussed in this paper. We have however checked that the 
modifications originated from (34) and considered on the class 
of functions satisfying the asymptotic conditions (14) do not 
produce any divergent terms of the type that appear in (15). In 
fact these modifications asymptotically vanish as O (e−4π z/β ). 
This is so even though each individual term in (34) may have 
a divergence proportional to R2(z) ∼ e4π z/β , simply these di-
vergences are mutually canceled in the entire expression (34). 
We expect this cancellation to happen for any local invariant 
constructed from metric and its derivatives. In fact, as is well 
known [17], these local terms associated with �R contribu-
tions are non-universal and regularization scheme dependent. 
Moreover, the coefficients with which the Maxwell field con-
tributes to the trace anomaly, also depends on the choice of 
gauge. Thus, even though one can not exclude a suitably cho-
sen combination of local terms which might cancel out our 
divergence structures that we discussed in (15), we should ex-
clude such terms for all physical purposes.

(e). It is well known [18] that in the Boulware vacuum, which cor-
responds to a static asymptotically flat spacetime, the expecta-
tion value of stress-energy tensor is divergent on the horizon. 
Therefore, it is rather natural to expect that in this state, pro-
vided the back-reaction is consistently taken into account, the 
horizon would not exist and would be replaced by something 
else. Although we did not specify explicitly the quantum state, 
the choice appears to be made as soon as we use the ‘hy-
perbolic’ boundary conditions while computing �0. Our anal-
ysis provides a self-consistent treatment of the back-reaction 
problem and one of our principal results rigorously and quan-
titatively shows that in the complete theory, the horizon is 
replaced by the wormhole throat. To the best of our knowl-
edge the divergence in (15) for fields of various spins was not 
reported before in the literature.

(f). In the classical limit, the charges a and b are taken to zero. 
In this limit, �(ρh) vanishes and the wormhole solutions, we 
have found, become black holes. The temperature, however, 
does not go analytically to the “classical” Hawking temperature 
because the latter is fixed by regularity in the near-horizon ge-
ometry and since the topology of the wormhole and black hole 
geometries are different, the regularity requirement does not 
arise for the wormholes.

(g). As our analysis shows, for a generic set of fields, the presence 
of the divergent term in equation (15) eliminates the solutions 
with black hole horizons. However, for certain sets of fields 
this divergent term can be canceled, e.g. if there are n0 = 6
scalar fields, n1/2 = 2 Dirac fermions and n1 = 1 vector field. 
Quite surprisingly, this is precisely the multiplet of N = 4
super-Yang–Mills theory in 4 dimensions. It may mean that in 
this case a black hole solution exists, demonstration of which 
may require the analysis of the next to leading order terms in 
the gravitational equations. A signal of a similar phenomenon 
has been observed earlier within the AdS/CFT correspondence, 
[19]. As is transparent from our analysis the possible can-
cellation should be attributed to the particular field content 
rather than to the strength of interactions. One should also 
note that the cancellation condition of the divergence (15) is 
not in general equivalent to the condition a = b for the con-
formal charges that is typical for the holographic theories in 4
dimensions.

(h). In GR with matter satisfying a positive energy condition (PEC), 
the metric component gtt = �2 is a monotonic function of the 
radial coordinate, see for instance [20], so that there is only 
one local minimum. In semiclassical gravity, the PEC effectively 
does not hold and one can not exclude the existence of mul-
tiple minima. Our analysis shows that the value of � at each 
minimum is less than �0. We are interested in a wormhole so-
lution which is asymptotically flat, i.e. � = 1 at infinity. In this 
solution, as soon as the barrier set by �0 is passed, no new 
minimum will appear and the function � will grow monoton-
ically to 1 in the radial direction.

(i). An interesting question is whether the wormhole solution 
which corresponds to a given classical black hole metric with 
the horizon radius r is unique. The wormhole solutions are 
parametrized by the variable y which may take its value in 
one of the regions defined in (33). Thus, for a given value of 
r and upon condition of approaching Minkowski spacetime at 
infinity, there may be a family of the corresponding worm-
holes. A more precise specification of this family requires a 
more detailed analysis of the global structure of the wormhole 
solutions.

(j). On the observational side, the question whether the numerous 
observable astrophysical candidates for black holes are actual 
black holes and not something else which only look like black 
holes, becomes more and more of a practical nature. In this 
respect we repeat here the point made in [4]. The charac-
teristic observation time needed to distinguish the wormhole 
mimicker from an actual black hole of mass M is of the or-
der t ∼ G N M ln(1/�0), where �2 is the value of Gtt in the 
0
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throat. For �0 exponentially small function of the BH entropy 
this time t ∼ G2

N M3 is of order of the evaporation time of a 
black hole. Clearly, this time is too long to be of any relevance 
to any actual observations. Unless there is a way to compress 
this time to something much shorter, no experiment or obser-
vation would be able to conclusively prove the (non)-existence 
of a black hole horizon. For now it seems that the only deci-
sive manifestation of the actual black holes would be a direct 
detection of the Hawking radiation with the predicted Hawk-
ing temperature. For astrophysical objects this is of course not 
a feasible option.

(k). Since we predict that the possible temperature of the worm-
holes that mimic the black holes is much smaller than the 
Hawking temperature, they should live much longer than the 
actual black holes. Thus, any small “black holes” that were 
formed at the early stages of the Universe should not com-
pletely evaporate by now, but survive till the present epoch. 
Their observation would indirectly confirm our predictions.

(l). In this note we are mostly interested in large black holes, the 
area of which is much larger than the Planck area r2/κ � 1. 
However, our basic formulas are valid for any radius r and, 
hence, it would be interesting to analyze the implications of 
our approach to the Planckian size black holes, when r2 ∼ κ2. 
This work is in progress.

(m). Obviously, the existence of wormholes instead of black holes 
suggests a new way to resolve the old problem (puzzle) of the 
information loss [21], [3], [7]. This, however, goes beyond the 
scope of the present paper.
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