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Abstract

Using Synergia accelerator modeling package and Dy-

namic Mode Decomposition technique, the properties of

the first transverse dipole mode in Gaussian bunches with

space charge are compared at transverse coupling resonance

and off-resonance. The Landau damping at coupling reso-

nance and in the strong space charge regime is a factor of

two larger, while the mode’s tune and shape are nearly the

same. While the damping mechanism in the off-resonance

case fits well with the classical Landau damping paradigm,

the enhancement at coupling resonance is due to a higher

order mode-particle coupling term which is modulated by

the amplitude oscillation of the resonance trapped particles.

INTRODUCTION

Landau damping (LD) mechanism [1] is an important re-

search topic in plasma and accelerator physics. The damping

is caused by the energy exchange between a coherent mode

and the particles in resonance with the mode. In the typical

picture, LD requires the coherent resonance line to lie within

the incoherent spectrum. Our numerical investigation of the

transverse space charge (SC) modes in bunched beams re-

veals a novel damping mechanism at the coupling resonance

(CR), i.e., when the horizontal and the vertical tunes are

close. In contrast with the usual LD mechanism, the tunes of

the LD-responsible particles, i.e., the particles which absorb

the mode energy, have a wide spread. This happens due to

the oscillatory behavior of the amplitudes of the CR trapped

particles, which modulates the mode-particle coupling.

The transverse SC modes in bunched beams away from

the CR were calculated in Refs [2–4]. Their intrinsic LD in

the strong SC regime was suggested in Ref [2, 3]. Predicted

damping rates were confirmed by numerical simulations [5–

7]. The linear CR influence on LD was addressed in Ref [8].

In our study there is no linear coupling term between the

transverse planes since the SC force introduces only higher-

order coupling terms. The main resonance is the fourth-order

Montague resonance [9] resulting from the term proportional

to x2
y

2 in the SC potential. The particles trapped in the

resonance islands are characterized by an oscillatory energy

exchange between the transverse planes. Their transverse

amplitudes are oscillating with typical trapping frequencies.

The mode-particle coupling is therefore modulated by the

trapping frequency since it is dependent on the particle’s

amplitudes. Because the trapping frequencies are particle

dependent, the tunes of the LD-responsible particles are

particle dependent also.
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We compare the properties of the first SC mode both on

and off the CR. We find that the LD is larger in the former

case. By investigating the properties of the particles exchang-

ing energy with the mode, we conclude that the off-resonance

case well fits the conventional LD scenario characterized by

LD-responsible particles with an incoherent tune spectrum

at the coherent tune. At CR the damping enhancement is

caused by the presence of the modulated coupling between

the mode and the trapped particles. Our approach does not

assume any analytical model; it is solely based on numerical

simulations of a bunch propagating through a lattice.

FORMALISM

The mode-particle interaction equation can be written [10]

Üx + ω2
0 (Q0x − δQ)2 x = −2ω2

0Q0xδQx̄ (1)

The SC mode enters in Eqs. 1 and 2 as x̄(t) = e−iω0νt x̄[z(t)],

where ν is the mode tune. For the first mode, x̄[z] ≈

sin[πz/4σz] [2, 3]. Taking into account the synchrotron

oscillations of z(t), the Bessel function expansion of x̄(t)

yields the mode-particle main resonant exchange tune at

ν − Qs, where Qs is the synchrotron tune. The tune shift

δQ(z, Jx, Jy) is proportional to the line charge density and

is dependent on the particle transverse actions. To a good

approximation, Jx and Jy are constants of motion. The res-

onant energy exchange between the mode and the particle

occurs when the particle tune is close to ν − Qs .

The situation is different at the CR. In the proximity of

the resonance, the sum Js = Jx + Jy is a constant of motion,

while the difference Jd = Jx − Jy oscillates around the stable

point. Using the Jd expansion of the mode-particle coupling

term, 2ω2
0
Q0xδQ = A + BJd , Eq. 1 can be written as

Üx + ω2
0Qx(z, Js, Jd)

2x = −A(z, Js)x̄ − B(z, Js)Jd x̄. (2)

The trapping frequencyω0Qt , i.e., the frequency of the Jd
oscillations at CR, is particle dependent [9]. The oscillations

of Jd contribute to the damping in two ways. First, the

dependence of Qx(z, Js, Jd) on Jd yields satellites spaced by

harmonics of Qt in the incoherent spectrum. These satellites

are resonant with the particle-mode coupling term Ax̄ when

their tune is at ν −Qs . Second, the Jd oscillations modulate

the particle-mode coupling term BJd x̄, yielding a novel

damping mechanism. If in the conventional picture, the LD

requires particles with an incoherent spectrum covering the

mode frequency, i.e., Q̄x ≈ ν−Qs , where Q̄x is the particle’s

main tune, the BJd x̄ term implies mode-resonant particles

when Q̄x ≈ ν − Qs − Qt . Because Qt is particle dependent,

Q̄x of the particles participating to the parametric LD is

particle dependent, too, and may spread over a large range.
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The simulations are done by employing the particle track-

ing code Synergia [11, 12]. The SC effects are implemented

using the second order split-operator method [13]. The elec-

tric field is calculated by numerically solving the 3D Poisson

equation with open boundary conditions [14]. The bunch

is initially excited in the horizontal plane with the first SC

harmonic function. The transverse displacement density,

X(z, δp/p, t) is calculated at every turn. The modes’ shape,

tune and damping are extracted from X(z, δp/p, t) using

the DMD technique [15–21]. Application of Synergia and

DMD to beam dynamics is described in detail in [7].

A lattice made by 10 identical OFORODO (drift - focusing

quad - drift - rf cavity - drift - defocusing quad - drift) cells

is chosen. 108 macroparticles per bunch are used for the

simulations. For the off-resonance case we take the bare

betatron tune difference Q0x − Q0y > δQsc max while at

the CR Q0x = Q0y . δQsc max is the SC tune shift at the

center of the bunch. The chromaticity is zero. The beam

distribution is longitudinally and transversely Gaussian with

equal vertical and horizontal emittances. The SC parameter

is defined as q =
δQsc max

Qs
.

RESULTS
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Figure 1: Landau damping rate (λ) vs. space charge param-

eter (q) on and off the CR. LD is a factor of 2 larger at CR

when SC is large.

The damping rate of the first SC mode off-resonance and

at CR is compared in Fig. 1. For intermediate and large SC,

q & 4, the damping at CR is larger. In the strong SC regime,

10 . q . 20, the damping at CR is larger by approximately

a factor of 2. One the other hand, the mode’s tune and shape

are nearly the same in both cases (not shown).

The off-resonance LD mechanism can be understood

within the typical paradigm. The beam 2D tune footprint,

ρ(Qx,Qy), is plotted in Fig. 2-a. ρ(Qx,Qy) is defined as

ρ(Qx,Qy) =
∑

i

| x̃i(Qx)|
2 | ỹi(Qy)|

2, (3)

where x̃i(Q) (ỹi(Q)) is the Fourier transform of the particle i

horizontal (vertical) displacement xi(t) (yi(t)) normalized to

one. The SC force shifts the particles’ tunes to lower values.

The satellite lines separated by 2Qs are a consequence of the

modulation of the tune shift with the particle’s longitudinal

position. The particles directly responsible for the LD are the

ones which resonantly exchange energy with the mode. To

select the LD-responsible particles we look for those having
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Figure 2: a) Bunch tune footprint at off-resonance, q =

7.94. The white dot corresponds to the bare betatron

tunes. b)
∑

i ∆Jx =
∑

i (Jxi − Jxi initial) and
∑

i ∆Jyi =
∑

i

(

Jyi − Jyi initial
)

of the 0.05% and 0.2% largest increas-

ing energy particles versus turn number, normalized by the

product of emittance and the number of the particles in the

sum. c) The same as b) but for the largest decreasing energy

particles. d) Tune footprint for the 0.5% largest changing

energy (increase and decrease) particles. The tunes are in

the proximity of the coherent tune Qx = ν − Qs .

the largest change in their energy during the simulation. In

Fig. 2-b (-c) we plot the sum of ∆Jx = Jx − Jx initial and

the sum of ∆Jy = Jy − Jy initial for the 0.05% and the

0.2% largest energy increase (decrease) particles. 0.05%

and 0.2% are arbitrary chosen values for the purpose of

illustrating the properties of the LD-responsible particles.

Note that the chosen particles increase or decrease their

action only in the horizontal plane, i.e., the plane where

the mode is present. The 2D footprint of the 0.5% largest-

energy-changing particles is shown in Fig. 2-d. As expected,

since these particles are mode-resonant, their horizontal tune

is in the vicinity of ν − Qs .

The spectral properties of the LD-responsible particles at

the CR do not fit the typical LD paradigm. The beam 2D

tune footprint in Fig. 3-a displays enhanced spectral weight

along the coupling resonance line 2Qx − 2Qy = 0, conse-

quence of resonance trapping. 2Qs-spaced satellite lines

can be observed. We use the same largest energy change

criterion to select the LD-responsible particles. Unlike the

off-resonance case, the horizontal and vertical actions exhibit

non-monotonic change with turn number, since in the prox-

imity of CR their magnitude oscillates between the planes.

However, the transverse action sum Js of the LD-responsible

particles displays a monotonic increase (decrease), as shown

in Fig 3-b(-c). The interesting fact which points to an un-

conventional damping mechanism is that the tune of most

of these large energy changing particles is not in the vicinity

of ν − Qs as one would expect for LD-responsible particles.

As shown in Fig 3-d, there is a large spectral weight on the

CR line which extends well below Qx = ν − Qs .

WEA4CO03 Proceedings of NAPAC2016, Chicago, IL, USA ISBN 978-3-95450-180-9

864Co
py

rig
ht

©
20

16
CC

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

5: Beam Dynamics and EM Fields
D07 - High Intensity Circular Machines - Space Charge, Halos



0 200 400 600
turn

0

0.1

0.2

0.3

(Σ
 ∆

J
)/

(N
ε
) Σ∆(J

x
+J

y
), 0.05% particles

Σ∆(J
x
+J

y
), 0.2% particles

0 200 400 600
turn

-0.3

-0.2

-0.1

0b)
c)

Figure 3: a) Bunch tune footprint at CR, q = 7.94. The white

dot corresponds to the bare betatron tunes. b)
∑

i ∆Jsi =
∑

i (Jsi − Jsi initial) of the 0.05% and 0.2% largest increas-

ing energy particles versus turn number, normalized by the

product of emittance and the number of the particles in the

sum. c) The same as b) but for the largest decreasing energy

particles. d) Tune footprint for the 0.5% largest changing

energy (increase and decrease) particles. Large part of the

spectral weight is along the resonance line 2Qx − 2Qy = 0,

with the horizontal tune well below ν − Qs .
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Figure 4: Coupling resonance, q = 7.94. The horizon-

tal tune density ρ(Qx) (black), the Qt shifted tune den-

sity h(Qx) (blue) and the one-tune-per-particle tune density

ρ1(Qx) (green) with the corresponding Qt shifted tune den-

sity h1(Qx) for the 0.5% largest changing energy particles.

h(Qx) and h1(Qx) are strongly peaked at the resonant mode

tune Qx = ν −Qs , showing mode-particle resonance via the

BJd x̄ term.

Most of the large changing energy particles are trapped

in resonance islands. The Qt satellites in the particles’ tune

spectra contribute to the spectral weight at the mode co-

herent tune by ≈ 20% ∼ 25%. To estimate the satellites’

spectral weight we compare the horizontal tune density

ρx(Q) =
∑

i ρxi(Q) and the one-tune-per-particle density

ρ1x(Q) =
∑

i ρ1xi(Q). The sum here is restricted only to

the number of the selected particles with the largest energy

change. ρxi(Q) = | x̃i(Q)|2 and ρ1xi(Q) = δ(Q−Q̄xi). Q̄xi is

the tune of the largest spectral peak in the Fourier spectrum

| x̃i(Q)|. Unlike ρx , where all spectral features are present,

ρ1x assumes that every particle is characterized only by its

main tune. The spectral weight difference between ρx and

ρ1x at ν − Qs measures the satellites contribution to the Ax̄

damping mechanism. ρx and ρ1x for the 0.5% largest chang-

ing energy particles are shown in Fig. 4. Besides the peak at

ν−Qs , in both ρx and ρ1x a broad spectral feature at smaller

frequency, unfavorable to the Ax̄ damping mechanism, is

observed.

The other contribution of the Jd oscillations to the damp-

ing is via the BJd x̄ term. The resonance condition is

Qx + Qt ≈ ν − Qs. We define h(Q) as the tune density

obtained by shifting each particle’s horizontal tune by Qt ,

h(Q) =
∑

i hi(Q) =
∑

i

∫

ρJd i(Q
′)ρxi(Q − Q′)dQ′ (4)

≈
∑

i ρxi(Q − Qti).

ρJdi(Q) = | J̃di(Q)|2 is the particle’s i Jd Fourier spectrum.

h1(Q) is defined by replacing ρxi with ρ1xi in Eq. 4. As

shown in Fig. 4, both h(Q) and h1(Q) are strongly peaked at

the coherent frequency ν − Qs and do not display the broad

spectral feature seen in ρx(Q) and ρ1x(Q) below ν−Qs . The

particles with the tune forming the broad spectral feature of

ρ1x(Q) have the main tune Q̄x ≈ ν − Qs − Qt , i.e., the tune

required for resonance with the BJd x̄ coupling.

CONCLUSIONS

Using Synergia with the DMD method the properties of

the first SC mode are calculated for a Gaussian bunch prop-

agating through an OFORODO lattice. The off-resonance

and the CR cases are compared. While the SC mode’s tune

and shape are nearly the same, the LD is approximately a

factor of 2 larger at CR in the strong SC regime. In the off-

resonance case the damping mechanism can be understood

within the conventional paradigm. The damping is caused

by the resonant energy exchange between the mode and the

particles with an incoherent tune spectra equal to the mode’s

tune shifted by Qs. At CR a large number of particles are

trapped around the stable points. Their transverse actions are

oscillating with a particle dependent trapping frequency Qt .

The spectral properties of the trapped particles with large

energy exchange reveal that their tune is additionally shifted

from the mode’s coherent tune by Qt . This supports an

unconventional LD mechanism in which the mode-particle

coupling is modulated by the oscillation of the particles’

amplitudes.
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