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Summary. I give an introduction to Euclidean quantum field theory from the
point of view of statistical physics, with emphasis both on Feynman graphs and
on the Wilson-Polchinski approach to renormalisation. In the second part I discuss
attempts to renormalise quantum field theories on noncommutative spaces.

1 From Classical Actions
to Lattice Quantum Field Theory

1.1 Introduction

Ignoring gravity, space-time is described by Minkowski space given by the
metric gµν = diag(1,−1,−1,−1). In particular, time plays a very different
rôle than space. Looking at a classical field theory modelled on Minkowski
space, the resulting field equations are hyperbolic ones. The formulation of
the associated quantum field theory requires a sophisticated mathematical
machinery. The classical reference is [1]. A comprehensive treatment can be
found in [2].

From our point of view, it is much easier for a beginner to first study
quantum field theory in Euclidean space E4 given by the metric gµν = δµν =
diag(1, 1, 1, 1). Euclidean quantum field theory is more than just a bad trick.
It has a physical interpretation as a spin system treated in the language
of statistical mechanics [3, 4]. Applications to physical models are treated
in [5]. There are rigorous theorems which under certain conditions allow to
translate quantities computed within Euclidean quantum field theory to the
Minkowskian version [6]. Eventually, from a practical point of view, computa-
tions of phenomenological relevance are almost exclusively performed in the
Euclidean situation, making use of the possibility to translate them into the
Minkowskian world. Our presentation of the subject is inspired by [7].

1.2 Classical Action Functionals

The starting point for both classical and quantum field theories are action
functionals. We ignore topological questions and regard all fields as smooth
(and integrable) functions on the Euclidean space E4. The most important
action functionals are the following ones.
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– The real scalar field φ:

S[φ] =
∫

d4x

(
1
2
∂µφ∂

µφ+
1
2
m2φ2 +

λ

4!
φ4

)

. (1)

Here, m is the mass and λ the coupling constant. We use ∂µ := ∂
∂xµ and

raise or lower indices with the metric tensor gµν = δµν or gµν = δµν , such
as in ∂µ = gµν∂ν . Summation over the same upper and lower greek index
from 1 to 4 is self-understood (Einstein’s sum convention).

– The Maxwell action for the electromagnetic field A = {Aµ}µ=1,...,4 (the
photon):

S[A] =
∫

d4x
1

4g2
FµνF

µν , Fµν := ∂µAν − ∂νAµ , (2)

where g is the electron charge. That action is invariant under a gauge
transformation Aµ �→ Aµ + ∂µf for any smooth function f .

– The Dirac action for a spinor field (electron) ψ coupled to the electromag-
netic field:

S[ψ,A] =
∫

d4x 〈ψ, iγµ(∂µ − iAµ)ψ〉 . (3)

We regard the electron pointwise as ψ(x) ∈ C4 to be multiplied by the
traceless (4 × 4)-matrices γµ which satisfy γµγν + γνγµ = 2gµν14×4. By
〈 , 〉 we understand the scalar product in C4.

– There are matrix versions iAµ(x) ∈ su(n) (gluon field) with Fµν := ∂µAν−
∂νAµ− i[Aµ, Aν ] of (2) where additionally the matrix trace must be taken.
There is also a corresponding su(n)-generalisation of (3).

The importance of action functionals in classical field theory is that they
give rise to the equations of motion: A field configuration which satisfies the
equation of motion minimases the action functional (Hamilton’s principle).
For example, to get the equation of motion for the electromagnetic field we
vary (2) with respect to A and put the variation to zero:

0 = lim
ε→0

1
ε

(
S[A+ εÃ]− S[A]

)
=
∫

d4x
1
g2
∂µÃν F

µν . (4)

If Ã vanishes at infinity we can integrate (4) by parts and obtain, because
the variation is zero for any Ã, the Euclidean version of Maxwell’s equation
in the vacuum ∂µF

µν = 0.

1.3 A Reminder of Thermodynamics

The partition function is for the action what the free energy is for a thermo-
dynamical system. Let us consider a system characterised by discrete energy
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levels Ei. Since the energy is bounded from below, there will be a ground
state E0 with Ei ≥ E0, with equality for i = 0 only (we assume the ground
state to be non-degenerate). At zero temperature T = 0 and in thermody-
namical equilibrium the system will be found with an probability p0 = 1 in
the ground state. At a temperature T > 0, however, there is due to ther-
mal fluctuations some non-vanishing probability pi to find the system in the
energy state Ei. The probability distribution is governed by the entropy1

Σ(p) := −
∑

i

pi ln pi (5)

and the requirement that the free energy

FE(p) :=
∑

i

piEi − kBTΣ(p) (6)

is minimal in the thermodynamical equilibrium. Here, kB denotes Boltz-
mann’s constant. The probability distribution pmin which minimises (6) is
used to compute expectation values in thermodynamic equilibrium, such as
the average energy U =

∑
i p

min
i Ei > E0.

1.4 The Partition Function for Discrete Actions

Whereas a thermodynamical system is described by its energy levels, a field
theory is governed by its action. There is a striking similarity between the
energy in thermodynamics and the action in field theory in the sense that
the classical configuration is given by the minimum of the energy and the
action, respectively. In the same way as the entropy term leads to thermal
fluctuations away from the classical configuration if the reference energy kBT
is different from zero, we should expect quantum fluctuations away from
the classical field configuration if a reference action � is different from zero.
Assuming for the moment that in the field theory only discrete actions Si ≥
S0 are realised, we expect the quantum state to be given by the probability
distribution {pi} which minimises the “free action”

FS(p) :=
∑

i

piSi − �Σ(p) . (7)

The entropy is given by (5). In the classical case � = 0, the principle of min-
imising FS(p) reduces to Hamilton’s principle of the minimal action, because
minp FS(p) = S0 with pi = δi0.

We are going to compute the minimising probability distribution {pi} for
� > 0. For this purpose let us consider for two probability distributions {pi}
and {πi} with

∑
i pi =
∑

i πi = 1 the relative entropy

1 We avoid the standard symbol S for the entropy because S already denotes the
action.
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Σ(p|π) := −
∑

i

pi ln
pi

πi
. (8)

One has2 Σ(p|π) ≤ 0 with equality only for pi = πi. Let us consider

πi = Z−1e−
Si
� , Z =

∑

i

e−
Si
� . (9)

We get

FS(p) =
∑

i

piSi + �
∑

i

pi ln pi = −�Σ(p|π)− � lnZ ≥ −� lnZ , (10)

with equality for pi = πi only. Thus, the probability distribution {pmin
i }

which minimises (7) is the distribution (9) and the minimum is given by
FS(pmin) = −� lnZ.

Taking more and more states with decreasing difference we achieve in the
limit a continuous probability density p(i) ≥ 0 with

∫
di p(i) = 1 for the

action S(i). In this way we get for the free action

FS(p) =
∫

di p(i)S(i)− �Σ(p) ≥ FS(pmin) = −� lnZ ,

Σ(p) = −
∫

di p(i) ln p(i) ,

pmin(i) = Z−1e−
S(i)

� , Z =
∫

di e−
S(i)

� . (11)

We first get i ∈ R+ but rearranging the indices we can also achieve i ∈ Rn.
It is tempting now to identify the index i in (11) with the field φ in

(1). Such an identification requires φ ∈ Rn, which we achieve by a lattice
approximation to (1).

1.5 Field Theory on the Lattice

The following steps bring us from Euclidean space to a finite lattice. We first
pass to the 4-torus by imposing periodic boundary conditions on the field,
φ(x1, x2, x3, x4) = φ(x1 + L, x2, x3, x4) = · · · = φ(x1, x2, x3, x4 + L).
Next we restrict the 4-torus to the sublattice with equidistant spacing a =
L/N . This lattice has N4 points. If the field varies slowly, we can approximate

2 In order to prove (8) we consider the convex function f(u) = u ln u. As such,
f(
∑

i πiui) ≤
∑

i πif(ui). [Write π1 = α1, πj =
∏j−1

i=1 (1−αi)αj for 2 ≤ j ≤ n and
πn =
∏n−1

i=1 (1−αi), with 0 ≤ αi ≤ 1, and use the definition of convexity f(αu1 +
(1−α)u2) ≤ αf(u1)+(1−α)f(u2).] Taking ui = pi/πi we get with

∑
i pi = 1 and

f(1) = 0 the desired inequality S(p|π) ≤ 0. To obtain f(
∑

i πiui) =
∑

πif(ui)
we need ui = const, i.e. pi = πi due to the normalisation

∑
i pi =
∑

i πi = 1.
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it by its values φq at these lattice points q ∈ Z4
N . The partial derivative is

approximated by the difference quotient

(∂µφ)(x) �→ 1
a
(δµφ)q :=

1
a

(
φq+eµ

− φq

)
, (12)

where q+ eµ denotes the neighboured lattice point of q in the µth coordinate
direction. Now the action (1) can be approximated by

S[φ] = a4
∑

q∈Z
4
N

(
1
2
a−2(δµφ)q(δµφ)q +

1
2
m2φ2

q +
λ

4!
φ4

q

)

. (13)

Introducing dimensionless fields and masses φ̃q := aφq and m̃ := am (the
coupling constant λ = λ̃ is already dimensionless), we obtain for the action

S[φ̃] =
∑

q∈Z
4
N

(
1
2
(δµφ̃)q(δµφ̃)q +

1
2
m̃2φ̃2

q +
λ̃

4!
φ̃4

q

)

. (14)

We thus have φ̃ ∈ RN4
with components φ̃q ∈ R, for q = 1, . . . , N4. We

can now write the free action and its minimising probability distribution as
follows:

FS [pmin] =
∫

RN4
dφ̃ pmin(φ̃)S[φ̃]− �Σ(pmin) = −� lnZ , (15)

where dφ̃ =
∏N4

q=1 dφ̃q and

Σ(pmin) = −
∫

RN4
dφ̃ pmin(φ̃) ln pmin(φ̃) , (16)

pmin(φ̃) = Z−1e−S[φ̃]/� , Z =
∫

RN4
dφ̃ e−S[φ̃]/� . (17)

The interesting quantities in quantum field theory are the expectation
values of products of fields at n points q1, . . . , qn in quantum mechanical
equilibrium:

〈φ̃q1 . . . φ̃qn
〉 :=
∫

RN4
dφ̃ pmin(φ̃) φ̃q1 · · · φ̃qn

=

∫

RN4
dφ̃ φ̃q1 · · · φ̃qn

e−S[φ̃]/�

∫

RN4
dφ̃ e−S[φ̃]/�

.

(18)

These expectation values can also be regarded as the correlation functions
between the n fields at lattice sites q1, . . . , qn. The expectation values are
most conveniently organised by the generating functional

Z[j̃] =
∫

RN4
dφ̃ e

− 1
�
(S[φ̃]−

∑
q∈Z4

N
φ̃q j̃q)

. (19)
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We thus get

〈φ̃q1 . . . φ̃qn
〉 := Z[0]−1�n ∂nZ[j̃]

∂j̃q1 . . . ∂j̃qn

∣
∣
∣
j̃q=0

. (20)

Exercise 1.1. Evaluate 〈φ̃q1 . . . φ̃qn
〉 for the classical case � = 0. Hint: Insert

the minimising probability distribution into the first equation of (18). �

At the end we are interested in a continuum field theory. This is, in
principle, achieved by a limiting process for the expectation values (20). In
the first step we pass to an infinite lattice Z4 by taking the limit N → ∞.
This process is referred to as the thermodynamic limit. In the second step we
reintroduce the lattice spacing a by inverting the steps leading from (1) to
(14). This provides the lattice (aZ)4 embedded into the Euclidean space E4.
The difficulty is then to find an a-dependence of the dimensionless mass m̃(a)
and coupling constant λ̃(a) so that the limit a→ 0 (the continuum limit) of
the expectation values (20) exists. In this process the correlation length ξ of
the two-point function, i.e. the inverse physical mass, is kept constant. We
thus arrive at well-defined expectation values 〈φ̃(x1) . . . φ̃(xn)〉 for products of
continuum fields at n positions x1, . . . , xn. Since the limit a→ 0 for constant
λ means ξ

a →∞, we can equivalently regard the continuum limit as sending
ξ →∞ on a lattice with constant spacing a. This means that the continuum
limit corresponds to a critical point (where the correlation length diverges)
of a lattice model.

This programme to produce continuum n-point function is called con-
struction of a quantum field theory. So far this was successful in two and
partly in three dimensions only [8]. Since we are particularly interested in
four dimensions, a different (and less rigorous) treatment is required: pertur-
bative renormalisation.

2 Field Theory in the Continuum

2.1 Generating Functionals

The idea is to perform the two limits N → ∞ and a → 0 formally in the
partition function, giving

〈φ(x1) . . . φ(xn)〉 =
∫
Dφ φ(x1) · · ·φ(xn) e−S[φ]/�

∫
Dφ e−S[φ]/�

. (21)

Here, the “measure” Dφ is the formal limit of the measure aN4
dφ̃ as N →∞

and a → 0. Again it is useful to introduce a generating functional for the
n-point functions (21),
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Z[j] :=
∫

Dφ e−
1
�
(S[φ]−

∫
d4x φ(x)j(x)) . (22)

This generating functional has a formal meaning only and it is no surprise
that it will produce problems. Using functional derivatives

δF [j(y)]
δj(x)

:= lim
ε→0

1
ε

(
F [j(y) + εδ(x− y)]− F [j(y)]

)
(23)

we can rewrite (21) as

〈φ(x1) . . . φ(xn)〉 = Z[0]−1�n δnZ[j]
δj(x1) . . . δj(xn)

∣
∣
∣
j(x)=0

. (24)

There are two other important generating functionals derived from Z.
The logarithm of Z generates (as we see later) connected n-point functions,

W [j] = � lnZ[j] . (25)

By Legendre transformation we obtain the generating functional Γ [φcl] of
one-particle-irreducible (1PI) n-point functions. This construction goes as
follows: We first define the classical field φcl via

φcl(x) :=
δW [j]
δj(x)

. (26)

Then Γ [φcl], which is also referred to as the effective action, is defined as

Γ [φcl] :=
∫

d4x φcl(x)j(x)−W [j] , (27)

where j(x) has to be replaced by the inverse solution of (26).

2.2 Perturbative Solution

The (perturbative) evaluation of (22) is most conveniently performed in mo-
mentum space obtained by Fourier transformation

φ(x) =
∫

d4p

(2π)4
e−ipx φ̂(p) , φ̂(p) =

∫

d4x eipx φ(x) . (28)

The action (1) reads in momentum space

S[φ̂] =
∫

d4p

(2π)4
1
2
(p2 +m2)φ̂(p)φ̂(−p) + Sint[φ̂] , (29)

Sint[φ̂] =
λ

4!

∫ ( 4∏

i=1

d4pi

(2π)4

)

(2π)4δ

(
4∑

j=1

pj

)

φ̂(p1)φ̂(p2)φ̂(p3)φ̂(p4) . (30)
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For the free scalar field defined by Sint = 0 in (29) the generating func-
tional Z[j] is easy to compute:

Zfree[ĵ] :=
∫

Dφ̂ e−
1
�

∫
d4p

(2π)4

(
1
2 (p2+m2)φ̂(p)φ̂(−p)−φ̂(p)ĵ(−p)

)

=
∫

Dφ̂ e−
1
�

∫
d4p

(2π)4

(
1
2 (p2+m2)φ̂′(p)φ̂′(−p)− 1

2 (p2+m2)−1 ĵ(p)ĵ(−p)
)

= Z[0] e
1
2�

∫
d4p

(2π)4
(p2+m2)−1 ĵ(p)ĵ(−p)

, (31)

where we have abbreviated φ̂′(p) := φ̂(p) + (p2 + m2)−1ĵ(p) and used the
invariance of the measure Dφ̂ = Dφ̂′. The generating functional of free con-
nected n-point functions becomes

Wfree[ĵ] = W [0] +
1
2

∫
d4p

(2π)4
ĵ(−p) 1

(p2 +m2)
ĵ(p) , W [0] = � lnZ[0] .

(32)

The momentum space n-point functions are obtained from

(2π)4δ

(
n∑

i=1

pi

)

〈φ(p1) . . . φ(pn)〉 =
1

Z[0]
�nδnZ[ĵ]

δĵ(−p1) . . . δĵ(−pn)

∣
∣
∣
ĵ(p)=0

, (33)

where the functional derivation in momentum space is defined by

δF [ĵ(p)]
δĵ(q)

:= lim
ε→0

1
ε

(
F [ĵ(p) + ε(2π)4δ(p−q)]− F [ĵ(p)]

)
. (34)

Exercise 2.1. Compute the effective action Γ [φ̂cl] = −
∫
d4p φ̂cl(p)ĵ(−p) +

W [ĵ] for the free scalar field in momentum space. �

Let us now consider the full interacting φ4-theory with λ �= 0 in (30). We
get formally

Z[ĵ] : =
∫

Dφ̂ e−
1
�

Sint[φ̂(q)]− 1
�

∫
d4p

(2π)4

(
1
2 (p2+m2)φ̂(p)φ̂(−p)−φ̂(p)ĵ(−p)

)

= e−
1
�

Sint

[
�

δ
δĵ(−q)

](
Z[0] e

1
2�

∫
d4p

(2π)4
(p2+m2)−1 ĵ(p)ĵ(−p)

)
. (35)

The generating functional for connected n-point function becomes

W [ĵ] = � ln
(
1 + Zfree[ĵ]−1

(
e−

1
�

Sint

[
�

δ
δĵ

]

− 1
)
Zfree[ĵ]

)
+Wfree[ĵ] . (36)

It is convenient now to introduce a graphical description for W [ĵ]. We
symbolise the integrand in (32) by
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Wfree[ĵ] =
∫ ( 2∏

i=1

d4pi

(2π)4

)

(2π)4δ(p1+p2)

(
1
2 ⊗ ⊗� �

ĵ(p1) ĵ(p2)p1 p2

)

, (37)

where the propagator � �
p1 p2 stands for (p2

1+m
2)−1. The interaction

part Sint of the action is represented by the vertex

Sint

[

�
δ

δĵ

]

=
∫ ( 4∏

i=1

d4pi

(2π)4

)

(2π)4δ

(
4∑

j=1

pj

)











� �

� �

�
��

�
��

�
��

�
��

�
��
�

��

�δ

δĵ(−p4)

�δ

δĵ(−p1)

�δ

δĵ(−p2)
�δ

δĵ(−p3)

p1

p4

p3

p2











,

(38)

where the cross �
�
�

� stands for λ
4! . The idea is to expand in (36) both

the exponential of (38) and the logarithm ln(1 + . . . ) into a Taylor series.
In this way one obtains a formal power series in the coupling constant λ
with coefficients given by Feynman graphs. To obtain a Feynman graph with
V vertices one writes V vertices (38) next to each other and evaluates the
functional derivations with respect to ĵ(p) by their action to the ĵ(q) in
the exponent given by (37). Integrating out the resulting δ-distributions one
arrives at order V = 1 in λ at

W [ĵ]V =1 =
∫ ( 4∏

i=1

d4pi

(2π)4

)

(2π)4δ(p1+p2+p3+p4)W 1,0
p1,p2,p3,p4

[ĵ]

+
∫ ( 2∏

i=1

d4pi

(2π)4

)

(2π)4δ(p1+p2)W 1,1
p1,p2

[ĵ] +W 1,2 , (39)

where

W 1,0
p1,p2,p3,p4

[ĵ] =

⊗ ⊗

⊗ ⊗

��� ���

��� ���

�
��
�

��

ĵ(p4)
ĵ(p1)

ĵ(p2) ĵ(p3)

p1
p4

p3

p2

= − λ
4!

(
4∏

i=1

ĵ(pi)
p2

i +m2

)

, (40)

W 1,1
p1,p2

[ĵ] =

⊗ ⊗��� ���
����
��

��

� �

ĵ(p1)
ĵ(p2)

p2
p1

−k k
= −λ�

4

(
2∏

i=1

ĵ(pi)
p2

i +m2

)∫
d4k

(2π)4
1

k2 +m2
,

(41)

W 1,2 =
��

��

��

���

�

�

�
−k1

k1

k2

−k2

= −λ�2

8

∫
d4k1

(2π)4
1

k2
1+m2

∫
d4k2

(2π)4
1

k2
2+m2

. (42)
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Exercise 2.2. Verify (39)–(42). �

Exercise 2.3. Perform the Legendre transformation of the sum of (39) and
(32) to Γ [φcl]V ≤1. Compare the �-independent part with (29) and (30). �

Exercise 2.4. Derive the graphical expression for W [ĵ]V =2. Convince your-
self that the resulting graphs are connected. �

Exercise 2.5. Prove that an L-loop graph contributing to W [ĵ] leads to a
factor �L. Hint: For a connected graph with L loops, I internal lines and V
vertices the Euler characteristic reads χ = L− I + V = 1. �

We thus deduce the following Feynman rules for the part W [ĵ]V of the
generating functional with V vertices in a φ4-model:

1. Draw the V vertices in a plane and connect in all possible ways the va-
lences either with each other or with external sources ĵ(pi) such that the
resulting graph is connected. The result is a sum of graphs with certain
multiplicities.

2. If the graph has n sources, represent the sources and their attached lines
by a factor

∏n
i=1(p

2
i +m2)−1ĵ(pi).

3. Represent each internal line connecting vertices by a factor (q2j +m2)−1 and
determine the momenta qj in terms of the external momenta pi originating
from the sources and L independent loop momenta kl by the requirement
that the total momentum flowing into each vertex is zero.

4. Add an integral operator
∫ ∏L

l=1
d4kl

(2π)4 for the independent loop momenta

and a factor
∫
(
∏n

i=1
d4pi

(2π)4

)

(2π)4δ(p1+ . . .+pn) for the independent mo-

menta of the sources. Multiply the result by a factor (−λ)V
�

L

4!V ! for an L-loop
graph with V vertices.

2.3 Calculation of Simple Feynman Graphs

When inserting Z[ĵ] = exp(W [ĵ]/�) into (33), the sources ĵ(pi) and the
integration operators

∫
d4pi

(2π)4 are removed. It remains the integration over
the internal momenta kl. Due to momentum conservation the integration
factorises into integrations over 1PI subgraphs. Let us thus consider an 1PI
subgraph with L loops, I internal lines and E external lines. Scaling the
independent loop momenta by a factor Λ, the integral will be scaled by a
factor Λ4L−2I for Λ � 1. Using Euler’s formula L = I − V + 1 and the
relation 4V = 2I + E (a valence of a vertex either attaches to one end of an
internal line or to an external line) we get Λ4L−2I = Λ4−E . This means that
the integral over the internal momenta of an 1PI graph with E ≤ 4 external
lines will be divergent. This divergence is due to the näıve way of performing
the N →∞ and a→ 0 limits in the partition function (22).
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In some cases (among them is the φ4-model) it is possible to eliminate the
divergences in a consistent way by expressing the perturbatively computed n-
point functions in terms of a finite number of physically observable quantities.
Such a model is called perturbatively renormalisable.

Let us describe the removal of divergences for the φ4-model. The first
step is to introduce a regulator ε which renders the integrals finite. There are
many known possibilities. A common feature of these regularisations is that
for dimensional reasons one also has to introduce a mass parameter µ. A very
convenient regularisation is dimensional regularisation where the integration
is performed in 4− 2ε dimensions, d4k �→ µ2εd4−2εk. With this change of the
integration one computes the generating functionals and one requires

(
δ2Γ [φ̂cl]

δφ̂cl(p1)δφ̂cl(p2)

∣
∣
∣
φ̂cl=0

)′

p1=p2=0

= m2
phys , (43)

(
1
2
∂2

∂p2
1

(
δ2Γ [φ̂cl]

δφ̂cl(p1)δφ̂cl(p2)

∣
∣
∣
φ̂cl=0

)′)

p1=−p2=0

= 1 , (44)

(
δ4Γ [φ̂cl]

δφ̂cl(p1)δφ̂cl(p2)δφ̂cl(p3)δφ̂cl(p4)

∣
∣
∣
φ̂cl=0

)′

pi=0

= λphys . (45)

By ( )′ we mean that the factor (2π)4δ(p1 + · · ·+ pn) is omitted.
This means that the parts of the effective action which correspond to

the mass, the amplitude of the kinetic term and the coupling constant are
normalised to their physical values. The original parameters m, g and an
additional wavefunction renormalisation factor Z are expressed in terms of
mphys, gphys, ε and µ via the normalisation conditions (43)–(45). To prove
renormalisability of the φ4-model amounts to show that after that replace-
ment the limit ε→ 0 of the n-point functions exists.

We will discuss in Sect. 3 another (more efficient) way to prove renormal-
isability. Here, we only demonstrate the method for a one-loop example. We
determine m[mphys, gphys, ε, µ] by computing the integral in (41) in dimen-
sional regularisation.

Exercise 2.6. Prove that the surface of the sphere x2
1 + . . . x2

n = 1 equals
2πn/2

Γ (n/2) . Hint: compute
∫
dnx e−x2

both in cartesian and radial coordinates. �

Using the Schwinger trick 1
An = 1

Γ (n)

∫∞
0
dααn−1e−αA we have in 4 − 2ε

dimensions
∫
d4−2εk

(2π)4
µ2ε

k2 +m2
=

2π2−εµ2ε

(2π)4Γ (2−ε)

∫ ∞

0

k3−2εdk

∫ ∞

0

dα e−α(k2+m2)

=
π2−εµ2ε

(2π)4Γ (2−ε)

∫ ∞

0

u(1−ε)du

∫ ∞

0

dα e−α(u+m2)
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=
π2−εµ2ε

(2π)4Γ (2−ε)Γ (2−ε)
∫ ∞

0

dα

α2−ε
e−αm2

=
m2

16π2

(
µ2

πm2

)ε

Γ (ε−1) = − m2

16π2ε

(
µ2

πm2

)ε
Γ (1+ε)
(1−ε)

= − m2

16π2ε
− m2

16π2

(

ln

(
µ2

πm2

)

+ 1 + ψ(1)

)

+O(ε) ,

(46)

where ψ(x) = d
dx lnΓ (x). We have exchanged the order of integrations. If

we now reinsert the coupling constant and � and pass to the 1PI function
(Exercises 2.1 and 2.3) we get from (43)

(
δ2Γ [φ̂cl]

δφ̂cl(p1)δφ̂cl(p2)

∣
∣
∣
φ̂cl=0

)′

p1=−p2=0

= m2 − m2λ�

32π2ε

(
µ2

πm2

)ε
Γ (1+ε)
(1−ε) +O(λ2)

≡ m2
phys . (47)

Solving the formal power series for m2 and using λ = λphys + O(λ2
phys) we

get

m2(ε) = m2
phys +

m2
physλphys�

32π2ε

(
µ2

πm2
phys

)ε
Γ (1+ε)
(1−ε) +O(λ2

phys) . (48)

In other words, choosing the bare mass m(ε) according to (48) removes the
divergence of the two-point function at first order in λphys. For the treatment
of subdivergences it is more convenient to perform the adjustment of m in
two steps: In the first step we choose m such that the singular 1

ε -term in (46)
is compensated. In the second step we adjust the finite part of m to satisfy
(43). Taking the limit ε→ 0 we get instead of (48)

m2 = m2
phys +

m2
physλphys�

32π2

(

ln

(
µ2

πm2
phys

)

+ 1 + ψ(1)

)

+O(λ2
phys) . (49)

More insight about this method is gained from Exercise 2.7. One sees that
the adjustment of (45) removes the divergences from the four-point function
at second order in λphys not only for zero momenta but for any momenta pi.

Exercise 2.7. Compute the integral
∫

d4k
(2π)4

1
(k2+m2)((k+p1+p2)2+m2) arising in

the Feynman graph

��� ���

��� ���

�
�

�
�

�
�

�
�

p1 p4

p3p2

��

��

�

�

k+p1+p2

k

(50)
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in dimensional regularisation. Hint: First bring the denominator using the
Feynman trick 1

AB =
∫ 1
0

dy
(Ay+B(1−y))2 into the form (k2 + 2kq + r2)2 and

then use the Schwinger trick. Next perform the k-integration and finally the
α-integration. The y-integral needs not to be computed. �

2.4 Treatment of Subdivergences

As part of the renormalisation process, the subtraction of divergences ∼ 1
εi

can only be carried out if these divergences appear in the n-point functions
(43)–(45) for which we impose normalisation conditions. This means, in par-
ticular, that the coefficient of the 1

εi -terms must not contain logarithms in
the momenta. However, if one computes näıvely the integral corresponding
to the graph

��� ���

��� ���

�
�

�
�

�
�

�
�

p1 p4

p3p2

��

��

��

��

�

�

�

�

k1+p1+p2

k1 k2+p1+p2

k2

(51)

as in Exercise 2.7, one does get logarithms of momenta in front of 1
ε . The

solution of this problem is a different subtraction of divergences in presence
of subdivergences.

The solution of this problem was found by Bogolyubov [1]. A review of
the most important renormalisation schemes can be found in [9]. Instead of
splitting the integral IG associated with a Feynman graph G into convergent
and divergent parts, there is a recursive construction of the integral to split.
For a Laurent series in ε, let

T

( ∞∑

i=−r

aiε
i

)

:=
−1∑

i=−r

aiε
i (52)

be the projection to the divergent part. Then one defines for a graph G with
disjoint subgraphs Gi the divergent part as

CG := −T










IG +
∑

{G1, . . . ,Gn}
Gi ∈ G, Gi ∩ Gj = ∅

CG1 · · · CGn
IG/(G1∪···∪Gn)










(53)

and the convergent part as

RG := (1− T )










IG +
∑

{G1, . . . ,Gn}
Gi ∈ G, Gi ∩ Gj = ∅

CG1 · · · CGn
IG/(G1∪···∪Gn)










. (54)
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Here, a graph G is understood a the set of vertices and internal lines, and the
sum runs over all sets of disjoint subgraphs. By G/(G1 ∪ · · · ∪ Gn) we mean
the graph obtained by shrinking the subgraphs G1, . . . ,Gn in G to a point.

Exercise 2.8. Using the result of Exercise 2.7, compute the integrals IG and
RG for the graph G given by (51). Hint: The only subgraphs of G are either
the left or the right one-loop subgraphs (50). �

There is an explicit solution of the recursion in terms of forests found by
Zimmermann [10]. The process of passing from IG to CG and RG might seem
quite unmotivated. However, as shown by Connes and Kreimer, there is the
structure of a Hopf algebra behind the renormalisation process. The sub-
traction (53), (54) is actually a division of divergences via the antipode of
the Hopf algebra, and the splitting (53), (54) is the Birkhoff decomposition
solving a Riemann-Hilbert problem [11, 12].

3 Renormalisation by Flow Equations

3.1 Introduction

We have mentioned that the continuum limit of a lattice field theory cor-
responds to the critical point of the lattice model. One of the main tools
to explore critical points in statistical physics are renormalisation group
methods. This subject was mainly developed by Wilson [3]. A particular
outcome was the understanding of renormalisation in terms of the scaling of
effective actions. This idea was further developed by Polchinski to a very effi-
cient proof that the φ4-model is renormalisable to all orders in perturbation
theory [13]. We refer to [14] for a textbook on this approach to renormali-
sation. Whereas renormalisability of the φ4-model can also be proven in the
previously presented Feynman graph approach, the superiority of Polchinski’s
method becomes manifest in the renormalisation problem of noncommutative
field theories. We shall therefore present the main ideas of Polchinski’s proof,
following closely the original article.

3.2 Derivation of the Polchinski Equation

The starting point is a reformulation of the generating functional Z[j] intro-
duced in (22). First one brutally removes the modes3 φ(p) with p2 > 2Λ2

in the measure Dφ of the partition function. The crucial idea is to take a
smooth cut-off distributed over the interval p2 = Λ2 . . . 2Λ2 which allows at
a later step to differentiate with respect to the cut-off scale Λ. In this way
3 In this section we work exclusively in momentum space so that we omit the hat

over a Fourier-transformed field for simplicity. We also use natural units � = 1.
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one obtains a differential equation (the Polchinski equation) which governs
the renormalisation flow of the effective action.

To be precise, we choose the cut-off function

K

(
p2

Λ2

)

=






1 for p2 ≤ Λ2 ,

1− exp



−
exp
(
− 1

2Λ2−p2

)

p2 − Λ2



 for Λ2 < p2 < 2Λ2 ,

0 for p2 ≥ 2Λ2 .

(55)

We consider the generating functional

Z[j, Λ] =
∫

Dφ exp(−S[φ, j, Λ]) ,

S[φ, j, Λ] :=
∫

d4p

(2π)4

(
1
2
(p2 +m2)K−1

(
p2

Λ2

)

φ(p)φ(−p)− φ(p)j(−p)
)

+ L[φ,Λ] + C[Λ] , (56)

with L[0, Λ] = 0. Unless φ(±p) = 0 for p2 ≥ 2Λ2, we have S[φ, j, Λ] = +∞,
which means Z[j, Λ] = 0. In other words, only modes φ(p) with momenta
p2 < 2Λ2 contribute to Z[j, Λ]. Now we compute
(

2φ(p)K−1
(

p2

Λ2

)
− (p2 +m2)−1 δS(φ, j, Λ)

δφ(−p)

)

exp(−S[φ, j, Λ])

=

(

φ(p)K−1( p2

Λ2 ) + (p2 +m2)−1j(p)− (p2 +m2)−1 δL

δφ(−p)

)

× exp(−S[φ, j, Λ]) . (57)

Functional derivation with respect to φ(p) gives

δ

δφ(p)

{(

2φ(p)K−1( p2

Λ2 )− (p2 +m2)−1 δS(φ, j, Λ)
δφ(−p)

)

exp (−S[φ, j, Λ])

}

=

{(

φ(p)K−1( p2

Λ2 ) + (p2 +m2)−1j(p)− (p2 +m2)−1 δL

δφ(−p)

)

×
(

− φ(−p)(p2 +m2)K−1
(

p2

Λ2

)
+ j(−p)− δL

δφ(p)

)

+

(

(2π)4δ(0)K−1( p2

Λ2 )− (p2 +m2)−1 δ2L

δφ(−p)δφ(p)

)}

exp(−S[φ, j, Λ]) .

(58)
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For simplicity we choose j(p) = 0 for p2 > Λ2. This condition is not necessary,
but it simplifies the following calculation considerably. We multiply (58) by

Λ
∂K(

p2

Λ2 )

∂Λ , which is non-zero for p2 > Λ2 only, and therefore annihilates j(±p).
Next, we integrate over d4p and finally apply the functional integration over
Dφ. This yields zero for the lhs of (58), because for each momentum p the
derivative δ

δφ(p) finds an integration over dφ(p) in the measure Dφ which by
Stokes’ theorem gives the value of the term in braces { } on the lhs of (58)
at the boundary φ(p) = ±∞. But exp(−S[∞, j, Λ]) = 0. We thus have

0 =
∫

Dφ
∫

d4p

(2π4)

{

φ(p)φ(−p)(p2 +m2)Λ
∂K−1( p2

Λ2 )
∂Λ

+ (2π)4δ(0)K−1( p2

Λ2 )Λ
∂K( p2

Λ2 )
∂Λ

+
1

p2 +m2
Λ
∂K( p2

Λ2 )
∂Λ

(
δL

δφ(p)
δL

δφ(−p) −
δ2L

δφ(p)δφ(−p)

)}

exp(−S[φ, j, Λ]) .

(59)

On the other hand, differentiating Z[j, Λ] in (56) with respect to Λ we
have

Λ
∂Z

∂Λ
= −
∫

D[φ]

{

Λ
∂C

∂Λ
+ Λ

∂L

∂Λ

+
∫

d4p

(2π)4

(
1
2
φ(p)φ(−p)(p2 +m2)Λ

∂

∂Λ
K−1( p2

Λ2 )

)}

exp(−S[φ, j, Λ]) .

(60)

Inserting (59) into (60) we arrive at

Λ
∂Z[j, Λ]
∂Λ

= 0 if (61)

Λ
∂C[Λ]
∂Λ

=
1
2

∫
d4p

(2π)4

(

(p2 +m2)−1Λ
∂K( p2

Λ2 )
∂Λ

δ2L

δφ(p)δφ(−p)

∣
∣
∣
φ=0

− (2π)4δ(0)K−1( p2

Λ2 )Λ
∂K( p2

Λ2 )
∂Λ

)

, (62)

Λ
∂L[φ,Λ]
∂Λ

= −1
2

∫
d4p

(2π)4
(p2 +m2)−1Λ

∂K( p2

Λ2 )
∂Λ

{
δL

δφ(p)
δL

δφ(−p)

−
[ δ2L

δφ(p)δφ(−p)
]

φ

}

, (63)

where
[
F [φ]
]
φ

:= F [φ]− F [0].
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We learn that the effect of restricting the integration modes in the parti-
tion function is undone if the effective action L[φ,Λ] and the vacuum energy
C[Λ] depend according to (63) and (62) on Λ. This means that instead of the
original generating functional Z[j] = Z[j,∞] we can equally well work with
Z[j, Λ] for finite Λ. If one computes the Feynman rules from Z[j, Λ], one finds
that the propagator is given by K( p2

Λ2 )(p2 + m2)−1 and the vertices by the
expansion coefficients of L[φ,Λ]. Since the loop integrations in these Feynman
graphs have a finite range, we obtain finite n-point functions if the effective
action L[φ,Λ] which evolves from L[φ,∞] via the flow (63) is bounded. In
other words, the problem to renormalise a quantum field theory is reduced to
the proof that the renormalisation flow described by (63) does not produce
singularities when starting from appropriate boundary conditions.

3.3 The Strategy of Renormalisation

If one näıvely integrates (63) from L[φ,∞] = Sint[φ] given by (30) down to
Λ one will encounter the same divergences as found e.g. in (46) and Exercise
2.7, which must be removed by the normalisation similar to (43)–(45). The
idea is thus to integrate in a first step the differential equation (63) between
two scales ΛR ≤ Λ ≤ Λ0 where the initial values ρ0 for L at Λ0 are adjusted
such that the distinguished functions (43)–(45) take given values at ΛR.

Let us expand L into field monomials,

L[φ,Λ,Λ0, ρ
0] =

∞∑

m=1

1
(2m)!

∫ ( 2m∏

i=1

d4pi

(2π)4

)

(2π)4δ(p1 + · · ·+ p2m)

× L2m(p1, . . . , p2m;Λ,Λ0, ρ
0)φ(p1) · · ·φ(p2m) , (64)

keeping the symmetry φ �→ −φ. The dependence on the initial conditions
ρ0

i at Λ = Λ0 is written explicitly. Thus, (63) becomes an infinite system of
coupled differential equations for the amplitudes L2m(p1, . . . , p2m;Λ,Λ0, ρ

0)
which at Λ = Λ0 are parametrised by initial conditions ρ0

i . Anticipating
renormalisability we choose the initial condition

L[φ,Λ0, Λ0, ρ
0]

=
∫

d4p

(2π)4

(
1
2
ρ0
1φ(p)φ(−p) +

1
2
p2ρ0

2φ(p)φ(−p)
)

+
1
4!

∫ ( 4∏

i=1

d4pi

(2π)4

)

(2π)4δ(p1 + · · ·+ p4) ρ0
3 φ(p1)φ(p2)φ(p3)φ(p4) .

(65)

The evolution of L[φ,Λ] according to (63) will produce more complicated
interactions than (65). Among these interactions we distinguish the same
Taylor coefficients as in (65):
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ρ1[Λ,Λ0, ρ
0] := L2(0, 0;Λ,Λ0, ρ

0) ,

ρ2[Λ,Λ0, ρ
0] :=

1
2
∂2

∂p2
L2(p,−p;Λ,Λ0, ρ

0)
∣
∣
∣
p=0

,

ρ3[Λ,Λ0, ρ
0] := L4(0, 0, 0, 0;Λ,Λ0, ρ

0) , (66)

with

ρi[Λ0, Λ0, ρ
0] = ρ0

i , i = 1, 2, 3 . (67)

At the end we are interested in the limit Λ0 → ∞. This limit re-
quires a carefully chosen Λ0-dependence of the initial data ρ0

i [Λ0] such that
ρi[ΛR, Λ0, ρ

0[Λ0]] take the given normalised values. We consider the identity

L[φ,ΛR, Λ
′
0, ρ

0[Λ′
0]]− L[φ,ΛR, Λ

′′
0 , ρ

0[Λ′′
0 ]]

≡
∫ Λ′

0

Λ′′
0

dΛ0

Λ0
Λ0

d

dΛ0

(

L[φ,ΛR, Λ0, ρ
0[Λ0]]

)

=
∫ Λ′

0

Λ′′
0

dΛ0

Λ0

(

Λ0
∂

∂Λ0
L[φ,ΛR, Λ0, ρ

0[Λ0]]

+
3∑

a=1

∂

∂ρ0
a

L[φ,ΛR, Λ0, ρ
0[Λ0]]Λ0

dρa[Λ0]
dΛ0

)

. (68)

On the other hand, we express the fact that ρa[ΛR, Λ0, ρ
0[Λ0]] is kept fixed:

0 = dρa[ΛR, Λ0, ρ
0[Λ0]] =

∂ρa[ΛR, Λ0, ρ
0[Λ0]]

∂Λ0
dΛ0

+
3∑

b=1

∂ρa[ΛR, Λ0, ρ
0[Λ0]]

∂ρ0
b

dρ0
b [Λ0] . (69)

To be precise, we choose

ρ1[ΛR, Λ0, ρ
0[Λ0]] = 0 , ρ2[ΛR, Λ0, ρ

0[Λ0]] = 0 , ρ3[ΛR, Λ0, ρ
0[Λ0]] = λ .

(70)

Assuming that we can invert the (3×3)-matrix ∂ρa

∂ρ0
b
, which is always possible

in perturbation theory, we can rewrite (69) as

dρ0
j [Λ0]
dΛ0

= −
3∑

i=1

∂ρ0
j

∂ρi[ΛR, Λ0, ρ0[Λ0]]
∂ρi[ΛR, Λ0, ρ

0[Λ0]]
∂Λ0

. (71)

Inserting this result into (68) we get

L[φ,ΛR, Λ
′
0, ρ

0[Λ′
0]]− L[φ,ΛR, Λ

′′
0 , ρ

0[Λ′′
0 ]] =
∫ Λ′

0

Λ′′
0

dΛ0

Λ0
V [φ,ΛR, Λ0, ρ

0[Λ0]] ,

(72)
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where

V [φ,Λ,Λ0, ρ
0[Λ0]] := Λ0

∂L[φ,Λ,Λ0, ρ
0]

∂Λ0

−
3∑

b=1

∂L[Λ,Λ0, ρ
0[Λ0]]

∂ρb[Λ,Λ0, ρ0[Λ0]]
Λ0
∂ρb[Λ,Λ0, ρ

0[Λ0]]
∂Λ0

, (73)

∂L[Λ,Λ0, ρ
0[Λ0]]

∂ρb[Λ,Λ0, ρ0[Λ0]]
:=

3∑

a=1

∂L[Λ,Λ0, ρ
0[Λ0]]

∂ρ0
a

∂ρ0
a

∂ρb[Λ,Λ0, ρ0[Λ0]]
. (74)

The function V is linear in L and therefore in L2m and its Taylor coefficients.
Therefore, the projection of V [φ,Λ,Λ0, ρ

0] to the initial field monomials as
in (66) vanishes identically for all Λ, which means that V filters out power-
counting divergent part of the effective action. It remains to show that the
other coefficients of V have a Λ0-dependence which lead to a convergence of
(72) in the limit Λ′

0 →∞.
For that purpose we compute the Λ-scaling of V . We define

M [V ] := −1
2

∫
d4p

(2π)4
(p2 +m2)−1Λ

∂K( p2

Λ2 )
∂Λ

{
2
δL

δφ(p)
δV

δφ(−p)

−
[ δ2V

δφ(p)δφ(−p)
]

φ

}
(75)

and expand M into field monomials,

M [V ] =
∞∑

m=1

1
(2m)!

∫ ( 2m∏

i=1

d4pi

(2π)4

)

(2π)4δ(p1 + · · ·+ p2m)

×M2m[V ](p1, . . . , p2m;Λ,Λ0, ρ
0)φ(p1) · · ·φ(p2m) . (76)

As before we distinguish the coefficients

M1[V ] := M2[V ](0, 0;Λ,Λ0, ρ
0) ,

M2[V ] :=
1
2
∂2

∂p2
M2[V ](p,−p;Λ,Λ0, ρ

0)
∣
∣
∣
p=0

,

M3[V ] := M4[V ](0, 0, 0, 0;Λ,Λ0, ρ
0) . (77)

Then one finds

Λ
∂V

∂Λ
= M [V ]−

3∑

b=1

∂L

∂ρb
Mb[V ] , (78)

Λ
∂

∂Λ

(
∂L

∂ρb

)

= M
[ ∂L

∂ρb

]
−

3∑

a=1

∂L

∂ρa
Ma

[ ∂L

∂ρb

]
, (79)

where M [ ∂L
∂ρb

] arises from M [V ] by replacing V in (75) and (77) by ∂L
∂ρb

.
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Exercise 3.1. Prove (78) and (79). Hint: First differentiate (73) with respect
to Λ, taking into account the identity (a−1)′ = −(a−1)a′(a−1) in the ρ[Λ]-
part. The Λ-derivatives act on derivatives of L or ρ with respect to Λ0 or ρ0.
Since the derivatives commute, represent the second derivatives of L by the
result of the differentiation of (63) with respect to Λ0 or ρ0 and the second
derivatives of ρ by the projection similar to (77). Using the linearity of M [?]
and the φ-independence of the ρ-coefficients everything reassembles to (78).
The proof of (79) is similar. �

By estimating V using the differential equation (78) and knowledge of the
estimations of L and ∂L

∂ρb
obtained by solving (63) and (79) before we can via

(72) control the limit limΛ0→∞ L[φ,ΛR, Λ0, ρ
0[Λ0]].

3.4 Perturbative Solution of the Flow Equations

The evolution of the functions L, ∂L
∂ρb

and V is essentially determined by the
mass dimensions. We therefore absorb the dimensionality in an appropriate
power of Λ. Expanding the functions also into a power series in the coupling
constant we define

L[φ,Λ,Λ0, ρ
0[Λ0]]

=
∞∑

m=1

1
(2m)!

∫ ( 2m∏

i=1

d4pi

(2π)4

)

(2π)4δ(p1 + · · ·+ p2m)

× Λ4−2m

( ∞∑

r=1

λrA
(r)
2m(p1, . . . , p2m;Λ,Λ0, ρ

0)

)

φ(p1) · · ·φ(p2m) , (80)

∂L

∂ρa
[φ,Λ,Λ0, ρ

0[Λ0]]

=
∞∑

m=1

1
(2m)!

∫ ( 2m∏

i=1

d4pi

(2π)4

)

(2π)4δ(p1 + · · ·+ p2m)

× Λ4−2m−2δa1

( ∞∑

r=1

λrB
a(r)
2m (p1, . . . , p2m;Λ,Λ0, ρ

0)

)

φ(p1) · · ·φ(p2m) ,

(81)

V [φ,Λ,Λ0, ρ
0[Λ0]]

=
∞∑

m=1

1
(2m)!

∫ ( 2m∏

i=1

d4pi

(2π)4

)

(2π)4δ(p1 + · · ·+ p2m)

× Λ4−2m

( ∞∑

r=1

λrV
(r)
2m (p1, . . . , p2m;Λ,Λ0, ρ

0)

)

φ(p1) · · ·φ(p2m) . (82)

The functions A(r)
2m, B

a(r)
2m , V

(r)
2m are dimensionless. Inserting these definitions

into (63), (79) and (78) one gets
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(

Λ
∂

∂Λ
+ 4− 2m

)

A
(r)
2m(p1, . . . , p2m;Λ)

=

{

− 1
2

m∑

l=1

t−1∑

s=1

Q(P,Λ,m2)A(r−s)
2l (p1, . . . , p2l−1,−P ;Λ)

×A(s)
2m−2l+2 (p2l, . . . , p2m, P ;Λ) +

((
2m

2l−1

)

− 1

)

perm.

}

+
1
2

∫
d4p

(2πΛ)4
Q(p, Λ,m2)A(r)

2m+2(p1, . . . , p2m, p,−p;Λ) , (83)

(

Λ
∂

∂Λ
+ 4− 2m− 2δa1

)(

B
a(r)
2m (p1, . . . , p2m;Λ)

)

=

{

−
m∑

l=1

r−1∑

s=0

Q(P,Λ,m2)A(r−s)
2l (p1, . . . , p2l−1,−P ;Λ)

×Ba(s)
2m−2l+2(p2l, . . . , p2m, P ;Λ) +

((
2m

2l−1

)

− 1

)

perm.

}

+
1
2

∫
d4p

(2πΛ)4
Q(p, Λ,m2)Ba(r)

2m+2(p1, . . . , p2m, p,−p;Λ)

− 1
2

r∑

s=0

B
1(r−s)
2m (p1, . . . , p2m;Λ)

∫
d4q

(2πΛ)4
Q(q, Λ,m2)Ba(s)

4 (0, 0, q,−q;Λ)

− Λ2

2

r∑

s=0

B
2(r−s)
2m (p1, . . . , p2m;Λ)

×
∫

d4q

(2πΛ)4
Q(q, Λ,m2)

∂2B
a(s)
4 (p,−p, q,−q;Λ)

∂p2

∣
∣
∣
p=0

− 1
2

r∑

s=0

B
3(r−s)
2m (p1, . . . , p2m;Λ)

×
∫

d4q

(2πΛ)4
Q(q, Λ,m2)Ba(s)

6 (0, 0, 0, 0, q,−q;Λ) , (84)
(

Λ
∂

∂Λ
+ 4− 2m

)(

V
(r)
2m (p1, . . . , p2m;Λ)

)

=

{

−
m∑

l=1

r−1∑

s=1

Q(P,Λ,m2)A(r−s)
2l (p1, . . . , p2l−1,−P ;Λ)

× V (s)
2m−2l+2(p2l, . . . , p2m, P ;Λ) +

((
2m

2l−1

)

− 1

)

perm.

}

+
1
2

∫
d4p

(2πΛ)4
Q(p, Λ,m2) V (r)

2m+2(p1, . . . , p2m, p,−p;Λ)
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− 1
2

r∑

s=1

B
1(r−s)
2m (p1, . . . , p2m;Λ)

∫
d4q

(2πΛ)4
Q(q, Λ,m2)V (s)

4 (0, 0, q,−q;Λ)

− Λ2

2

r∑

s=1

B
2(r−s)
2m (p1, . . . , p2m;Λ)

×
∫

d4q

(2πΛ)4
Q(q, Λ,m2)

∂2V
(s)
4 (p,−p, q,−q;Λ)

∂p2

∣
∣
∣
p=0

− 1
2

r∑

s=1

B
3(r−s)
2m (p1, . . . , p2m;Λ)

×
∫

d4q

(2πΛ)4
Q(q, Λ,m2)V (s)

6 (0, 0, 0, 0, q,−q;Λ) , (85)

where Q(p, Λ,m2) = 1
p2+m2Λ

3 ∂K( p2

Λ2 )

∂Λ and P := p1 + · · · + p2l−1. There are
(

2m
2l−1

)
possibilities to assign 2l−1 of the 2m momenta to the first function

and the remaining ones to the second function.

Exercise 3.2. Prove (83), (84) and (85). Hint: In the last two equations
a trilinear term in the functions disappears because at vanishing external
momenta these functions are connected by Q(0, Λ,m2) = 0. (The support of
Q(p, Λ,m2) is Λ2 < p2 < 2Λ2.) �

Due to the grading in the coupling constant, the differential equa-
tions (83), (84) and (85) allow us to recursively compute the functions
A

(r)
2m, B

a(r)
2m , V

(r)
2m starting from A

(1)
4 = 1. The concrete form is not necessary

for the renormalisation proof. All we need are the norms

‖f‖ ≡ ‖f(p1, . . . , pm;Λ)‖ := max
p2

i≤2Λ2
|f(p1, . . . , pm;Λ)| (86)

of these functions. The norms are computed in terms of A(1)
4 = 1 and the

bounds
∫

d4p

(2π)4
|Q(p, Λ,m2)| ≤ CΛ4 ,

∣
∣
∣
∂n

∂pn
Q(p, Λ,m2)

∣
∣
∣ ≤ DnΛ

−n , (87)

for the propagator Q, for some constants C,Dn. Due to momentum conserva-
tion we also need a symbol ∂µ

i,j := ∂
∂piµ

− ∂
∂pjµ

for the independent momentum
derivatives.

Exercise 3.3. Verify (87). �

Now we can derive the estimations for the functions A(r)
2m, B

a(r)
2m , V

(r)
2m .

Lemma 3.4.

‖∂µ1
i1,j1

. . . ∂µd

id,jd
A

(r)
2m(p1, . . . , p2m;Λ)‖






≤ Λ−dP 2r−m
[
ln Λ0

ΛR

]

for r+1 ≥ m ,

= 0 for r+1 < m ,

(88)

where Pn[x] stands for a polynomial in x of degree n.
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Remarks on the proof. The condition A
(r)
2m ≡ 0 for r + 1 < m is actually

an additional requirement which guarantees a graphical interpretation of the
A-functions: a connected graph with r vertices has at most 2r + 2 external
legs. The Lemma is true for m = 2 and r = 1. Integrating the differential
equation (83) either from Λ0 down to Λ or from ΛR up to Λ one obtains by
induction upward in the number r of vertices and for given r downward in
the number 2m of external legs one of the estimations

‖∂µ1
i1,j1

. . . ∂µd

id,jd
A

(r)
2m(p1, . . . , p2m;Λ)‖

≤ ‖∂µ1
i1,j1

. . . ∂µd

id,jd
A

(r)
2m(p1, . . . , p2m;Λ0)‖

+ Λ2m+d−4

∫ Λ0

Λ

dΛ′Λ′ 3−2m−dP 2r−m−1

[

ln
Λ0

ΛR

]

(89)

or

‖∂µ1
i1,j1

. . . ∂µd

id,jd
A

(r)
2m(p1, . . . , p2m;Λ)‖

≤ ‖∂µ1
i1,j1

. . . ∂µd

id,jd
A

(r)
2m(p1, . . . , p2m;ΛR)‖

+ Λ2m+d−4

∫ Λ

ΛR

dΛ′Λ′ 3−2m−dP 2r−m−1

[

ln
Λ0

ΛR

]

. (90)

For m ≥ 3 we use (89) and the initial condition A
(r)
2m(p1, . . . , p2m;Λ0) = 0

to prove (88). In the same way we prove the (88) for m = 2, d ≥ 1.
Then one uses (90) with the initial condition A

(r)
4 (0, 0, 0, 0;ΛR) = δr1

(which normalises the physical coupling constant at ΛR to λ) to obtain
‖A(r)

4 (0, 0, 0, 0;Λ)‖ ≤ P 2r−2
[
ln Λ0

ΛR

]
. The total four-point function is then

reconstructed from Taylor’s theorem

A
(2)
4 (p1, p2, p3, p4;Λ)

= A
(r)
4 (0, 0, 0, 0;Λ)

+
3∑

i,j=1

pµ,i pν,j

∫ 1

0

dξ (1−ξ) ∂′µi,4∂′νj,4A
(r)
4 (p′1, . . . , p

′
4;Λ)
∣
∣
p′

k=ξpk
. (91)

The first derivative of A(r)
4 at zero momentum vanishes. We thus get (88) for

m = 2. The extension to m = 1 is similar, taking into account the initial
conditions for ρ1 and ρ2 at Λ0. The detailed proof is left as an exercise. �

Lemma 3.5.

∥
∥∂µ1

i1,j1
. . . ∂µd

id,jd
B

b(r)
2m (p1, . . . , p2m;Λ)

∥
∥






≤ Λ−dP 2r−m+1+δb3[
ln Λ0

ΛR

]

for r+2 ≥ m ,

= 0 for r+2 < m .

(92)
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Remarks on the proof. The first step is to derive the boundary condition

B
a(r)
2m (p1, . . . , p2m;Λ0) = δr0

(

δm1δ
b1 +

p2
1

Λ2
0

δm1δ
b2 + δm2δ

b3

)

, (93)

and the starting point r = 0 in (92) of the induction by explicitly evaluating
(74) for the initial data (65) at lowest order in the coupling constant. The
further proof is similar to that of (88), with integration according to (89),
apart from the problem of terms with s = 0 and s = r in the last three
lines of (84). For m ≥ 3 there is a problem with the third to last line only,
which fortunately appears for a = 3 only. One thus proves first (92) for
a = 1, 2 and using this result one repeats to proof for a = 3. Then one
passes to m = 2, d ≥ 1 and again excludes a = 3 to be processed later. The
full function Ba(r)

4 is reconstructed from Taylor’s theorem. The treatment of
m = 1 is similar. �

Lemma 3.6.

‖∂µ1
i1,j1

. . . ∂µd

id,jd
V

(r)
2m (p1, . . . , p2m;Λ)‖






≤ Λ−d

(

Λ2

Λ2
0

)

P 2r−m
[
ln Λ0

ΛR

]

for r+1 ≥ m ,

= 0 for r+1 < m .

(94)

Remarks on the proof. At Λ = Λ0 one has

V [φ,Λ0, Λ0, ρ
0] := Λ0

∂L[φ,Λ,Λ0, ρ
0]

∂Λ0

∣
∣
∣
Λ=Λ0

−
3∑

a=1

∂L[φ,Λ0, Λ0, ρ
0]

∂ρ0
a

Λ0
∂ρa[Λ,Λ0, ρ

0]
∂Λ0

∣
∣
∣
Λ=Λ0

. (95)

The result is zero for the distinguished coefficients (66). For all other inter-
action coefficients ⊥ ρ we have L[φ,Λ0, Λ0, ρ

0]
∣
∣
⊥ρ
≡ 0 independent of Λ0 and

ρ0. This means

0 = Λ0
∂

∂Λ0
L[φ,Λ0, Λ0, ρ

0]
∣
∣
⊥ρ

= Λ0
∂

∂Λ0
L[φ,Λ,Λ0, ρ

0]
∣
∣
⊥ρ

∣
∣
∣
Λ=Λ0

+ Λ
∂

∂Λ
L[φΛ,Λ0, ρ

0]
∣
∣
⊥ρ

∣
∣
∣
Λ=Λ0

. (96)

Using (88) one gets for m ≤ r+1

‖∂µ1
i1,j1

. . . ∂µd

id,jd
V

(r)
2m (p1, . . . , p2m;Λ0)

∣
∣
⊥ρ
‖ ≤ Λ−d

0 P 2r−m

[

ln
Λ0

ΛR

]

. (97)
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Next one sees that for the first non-vanishing function V (2)
6 (p1, . . . , p6;Λ) the

rhs of (85) is zero so that Λ−2V
(2)
6 (p1, . . . , p6;Λ) = const. With the initial

condition (97) one obtains

‖∂µ1
i1,j1

. . . ∂µd

id,jd
V

(2)
6 (p1, . . . , p2m;Λ)

∣
∣‖ ≤ Λ2

Λ2
0

Λ−dP 1

[

ln
Λ0

ΛR

]

. (98)

Since (85) is a linear differential equation, the factor Λ2

Λ2
0

first appearing in

(98) survives in all V
∣
∣
⊥ρ

coefficients. �

Theorem 3.7. The limit

lim
Λ0→∞

L
(r)
2m(p1, . . . , p2m;ΛR, Λ0, ρ

0[Λ0]) := L
(r)
2m(p1, . . . , p2m;ΛR,∞)

exists (order by order in perturbation theory) and satisfies

∥
∥L

(r)
2m(p1, . . . , p2m;ΛR,∞)− L(r)

2m(p1, . . . , p2m;ΛR, Λ0, ρ
0[Λ0])
∥
∥






≤ Λ4−2m
R

(
Λ2

R

Λ2
0

)
P 2r−m

[
ln ΛR

Λ0

]
for r+1 ≥ m ,

= 0 for r+1 < m .
(99)

Remarks on the proof. We reinsert the dimensional factors L
(r)
2m[ΛR] =

Λ4−2m
R A

(r)
2m[ΛR]. The existence of the limit and its property (99) follow from

(94) inserted into (72) and Cauchy’s criterion. �

Let us summarise what we have achieved. A quantum field theory is de-
termined by an initial (classical) action S which gives rise to generating func-
tionals Z[j] for the n-point functions. Performing the integration of the gen-
erating functional gives meaningless results. Thus, one has to introduce a
regularisation parameter ε and a mass scale µ and to fine-tune the initial ac-
tion S[ε] in such a way that the limit ε→ 0 for the n-point functions exists in
perturbation theory. These renormalised n-point functions will now depend
on µ. One possible regularisation is the momentum cut-off p2 ≤ 2Λ2

0, where
Λ0 = µ/ε. Thus one would take a Λ0-dependent initial action determined
by the requirement that for n-point functions the limit Λ0 → ∞ exists in
perturbation theory.

Here, a different approach is taken. We compare the cut-off theory at Λ0

with another theory cut-off at ΛR and require that the generating functionals
of both theories coincide. This leads to a certain evolution of the initial inter-
action of the theory at Λ0 to that of the other theory at ΛR. The evolution
is described by the Polchinski equation which is integrated from Λ0 down to
ΛR. Integrating the differential equation requires the specification of initial
conditions. It seems natural to take the given classical action at Λ0 as initial
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condition. However, renormalisation requires a fine-tuning of the initial ac-
tion at Λ0, which gives certain parts of the initial condition at Λ0 in terms
of their normalised values at ΛR.

In this way we obtain an effective action L[ΛR, Λ0] for the theory at ΛR

which still depends on the initial cut-off scale Λ0. At the end we want to send
Λ0 to∞. It is then a rather long proof that the limit limΛ0→∞ L[ΛR, Λ0] exists
(in perturbation theory). However, the proof is technically very simple. All
one needs are dimensional analysis and brutal majorisations, there is no need
to evaluate Feynman graphs and to discuss overlapping divergences. One thus
obtains a generating functional for renormalised n-point functions in which
the propagator (p2 + m2)−1K( p2

Λ2
R

) cuts off momenta bigger than
√

2ΛR.
One still has to evaluate Feynman graphs in order to obtain the n-point
functions. However, the loop momenta through the propagators are bounded
so that there are no divergences any more in these n-point functions. The
vertices in these Feynman graphs are given by the expansion coefficients of
the effective action L[ΛR,∞]. In some sense, the effective action is obtained
by integrating out in the partition function the fields with momenta bigger
than

√
2ΛR, avoiding the divergences by the mixed boundary conditions for

the flow equation.

4 Quantum Field Theory
on Noncommutative Geometries

4.1 Motivation

We have learned how the entropy term leads to quantum fluctuations about
action functionals on Euclidean space E4 and how to construct renormalised
n-point functions. For suitably chosen action functionals one achieves a re-
markable agreement of up to 10−11 between theoretical predictions derived
from these n-point functions and experimental data. This shows that quan-
tum field theories are very successful.

Unfortunately, this concept is inconsistent when taking gravity into ac-
count. The problem can not be cured by just developing the quantum field
theory on a Riemannian manifold with general metric gµν . The true problem
is that combining the fundamental principles of both general relativity and
quantum mechanics one concludes that space(-time) cannot be a differen-
tiable manifold [15]. To the best of our knowledge, such a possibility was first
discussed in [16].

To make this transparent, let us ask how we explore technically the geom-
etry of space(-time). The building blocks of a manifold are the points labelled
by coordinates {xµ} in a given chart. Points enter quantum field theory via
the values of the fields at the point labelled by {xµ}. This observation pro-
vides a way to “visualise” the points: we have to prepare a distribution of
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matter which is sharply localised around {xµ}. For a perfect visualisation we
need a δ-distribution of the matter field. This is physically not possible, but
one would think that a δ-distribution could be arbitrarily well approximated.
However, that is not the case, there are limits of localisability long before the
δ-distribution is reached.

Let us assume that there is a matter distribution which is believed to
have two separated peaks within a space-time region R of diameter d. How
do we test this conjecture? We perform a scattering experiment in the hope of
finding interferences which tell us about the internal structure in the region
R. We clearly need test particles of de Broglie wave length λ = �c

E � d,
otherwise we can only resolve a single peak. For λ→ 0 the gravitational field
of the test particles becomes important. The gravitational field created by an
energy E can be measured in terms of the Schwarzschild radius

rs =
2GNE

c4
=

2GN�

λc3
� 2GN�

dc3
, (100)

where GN is Newton’s constant. If the Schwarzschild radius rs becomes larger
than the radius d

2 , the inner structure of the region R can no longer be
resolved (it is behind the horizon). Thus, d

2 ≥ rs leads to the condition

d
2

� �P :=

√
GN�

c3
, (101)

which means that the Planck length �P is the fundamental length scale below
of which length measurements become meaningless. Space-time cannot be a
manifold.

Since geometric concepts are indispensable in physics, we need a replace-
ment for the space-time manifold which still has a geometric interpretation.
Quantum physics tells us that whenever there are measurement limits we have
to describe the situation by non-commuting operators on a Hilbert space.
Fortunately for physics, mathematicians have developed a generalisation of
geometry, baptised noncommutative geometry [17], which is perfectly de-
signed for our purpose. However, in physics we need more than just a better
geometry: We need renormalisable quantum field theories modelled on such
a noncommutative geometry.

Remarkably, it turned out to be very difficult to renormalise quantum
field theories even on the simplest noncommutative spaces [18]. It would be a
wrong conclusion, however, that this problem singles out the standard com-
mutative geometry as the only one compatible with quantum field theory.
The problem tells us that we are still at the very beginning of understand-
ing quantum field theory. Thus, apart from curing the contradiction between
gravity and quantum physics, in doing quantum field theory on noncommu-
tative geometries we learn a lot about quantum field theory itself.
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4.2 The Noncommutative RD

The simplest noncommutative generalisation of Euclidean space is the so-
called noncommutative RD. Although this space arises naturally in a certain
limit of string theory [19], we should not expect it to be a good model for
nature. In particular, the noncommutative RD does not allow for gravity. For
us the main purpose of this space is to develop an understanding of quantum
field theory which has a broader range of applicability.

The noncommutative RD, D = 2, 4, 6, . . . , is defined as the algebra RD
θ

which as a vector space is given by the space S(RD) of (complex-valued)
Schwartz class functions of rapid decay, equipped with the multiplication
rule

(a � b)(x) =
∫

dDk

(2π)D

∫

dDy a(x+ 1
2θ·k) b(x+y) eik·y , (102)

(θ·k)µ = θµνkν , k·y = kµy
µ , θµν = −θνµ .

The entries θµν in (102) have the dimension of an area. The physical inter-
pretation is ‖θ‖ ≈ �2P . Much information about the noncommutative RD can
be found in [20].

Exercise 4.1. Prove associativity ((a � b) � c)(x) = (a � (b � c))(x) of (102).
Show that the product (102) is noncommutative, a � b �= b � a and that
complex conjugation is an involution, a � b = b � a. Show

∫
dDx (a � b)(x) =∫

dDx a(x)b(x). Verify that partial derivatives are derivations, ∂µ(a � b) =
(∂µa) � b + a � (∂µb). Hint: One often needs the identity

∫
dDk

(2π)D eik·(x−y) =
δ(x− y). �

Exercise 4.2. The multiplier algebra M(RD
θ ) consists of the distributions f

which satisfy f�a ∈ RD
θ and a�f ∈ RD

θ , for all a ∈ RD
θ and the same �-product

(102). Verify that for the coordinate functions yµ ∈ M(RD
θ ), yµ(x) := xµ,

one has
(
[yµ, yν ]� � a

)
(x) :=

(
yµ � (yν � a)− yν � (yµ � a)

)
(x) = iθµνa(x). �

4.3 Field Theory on Noncommutative RD

A field theory is defined by an action functional. We obtain action functionals
on RD

θ by replacing in action functionals on ED the ordinary product of
functions by the �-product. For example, the noncommutative φ4-action is
given by

S[φ] :=
∫

dDx

(
1
2
∂µφ � ∂

µφ+
1
2
m2φ � φ+

λ

4!
φ � φ � φ � φ

)

. (103)

As described in Sect. 1, the entropy term leads to quantum fluctuations away
from the minimum of (103). Expectation values are governed by the probabil-
ity distribution which minimises the free action. A convenient way to organise
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the expectation values is the generating functional Z[j] which is perturba-
tively solved by Feynman graphs. Due to

∫
dDx (a � b)(x) =

∫
dDx a(x)b(x),

see Exercise 4.1, the propagator in momentum space is unchanged. For later

purpose it is, however, convenient to write it as a double line,
p

=

(p2 + m2)−1. The novelty are phase factors in the vertices, which we also
write in double line notation,

�
��
�

�
�
�

�

�
��
�

�
��
�

p1

p4

p3

p2 =
λ

4!
e−

i
2

∑
i<j pµ

i pν
j θµν . (104)

Exercise 4.3. Derive the Feynman rule (104) by repeating the steps leading
to (38) for the interaction term in (103). �

The double line notation reflects the fact that the vertex (104) is invariant
only under cyclic permutations of the legs (using momentum conservation).
The resulting Feynman graphs are ribbon graphs which depend crucially on
how the valences of the vertices are connected. For planar graphs the total
phase factor of the integrand is independent of internal momenta, whereas
non-planar graphs have a total phase factor which involves internal momenta.
Planar graphs are integrated as usual. The resulting phase factor is precisely
of the form of the original two-point function or vertex (104) so that the
divergence can be removed via the normalisation conditions (43)–(45). Non-
planar graphs require a separate treatment.

According to [21] there is a closed formula for the integral associated
to a noncommutative Feynman graph in terms of the intersection matrices
I, J,K which encode the phase factors and the incidence matrix E . We give an
orientation to each inner line l and let kl be the momentum flowing through
the line l. For each vertex v we define4

Evl =






1 if l leaves from v ,
−1 if l arrives at v ,
0 if l is not attached to v .

(105)

We let Pv be the total external momentum flowing into the vertex v. Re-
stricting ourselves to 4 dimensions, an 1PI Feynman graph G with I internal
lines and V vertices gives rise to the integral

IG =
∫ I∏

l=1

d4kl

(k2
l +m2)

V∏

v=1

(2π)4δ

(

Pv −
l∑

l=1

Evlkl

)

× exp iθµν

(
I∑

m,n=1

Imnkµ
mk

ν
n +

I∑

m=1

V∑

v=1

Jmvkµ
mP

ν
v +

V∑

v,w=1

KvwPµ
v P

ν
w

)

.

(106)
4 We assume that tadpoles (a line starting and ending at the same vertex) are

absent.
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One can show that Imn, Jmv,Kvw ∈ {1,−1, 0} after use of momentum con-
servation [22]. In terms of Schwinger parameters, this integral is evaluated
to

IG = (2π)4δ

(
V∑

v=1

Pv

)
1

16Iπ2L
exp

(

iθµν

V∑

v,w=1

KvwPµ
v P

ν
w

)

×
∫ ∞

0

I∏

l=1

dαl
e−
∑ I

l=1 αlm
2

√
detA detB

exp

(

− 1
4
(JP̃ )TA−1(JP̃ )

+
1
4

(

ĒA−1(JP̃ ) + 2iP ′

)T

B−1

(

ĒA−1(JP̃ ) + 2iP ′

))

, (107)

where

Amn
µν := αmδ

mnδµν − iImnθµν , (JP̃ )m
µ :=

V∑

v=1

JmvθµνP
ν
v ,

Ē v̄l := Ev̄l , P ′v̄
µ := Pµ

v̄ for v̄ = 1, . . . , V−1 ,

Bv̄w̄
µν :=

I∑

m,n=1

Ē v̄m(A−1)µν
mnĒ w̄n . (108)

The formula (107) is referred to as the parametric integral representation of
a noncommutative Feynman graph.

Exercise 4.4. Verify (107). Hint: First introduce Schwinger parameters and
the identity δ(qv) =

∫
d4yv eiyvqv for each vertex in (106). Complete the

squares in k and perform the Gaußian k-integrations. Write yv̄ = yV + zv̄ for
v̄ = 1, . . . , V−1 and notice that

∑V
v=1 yvEvl =

∑V −1
v̄=1 zv̄Ē v̄l. Then perform the

yV -integration, complete the squares for zv̄ and finally evaluate the Gaußian
zv-integrations. �

Possible divergences of (107) show up in the αi → 0 behaviour. In order to
analyse them one reparametrises the integration domain in (107), similar to
the usual procedure described in [2]. For each sector

απ1 ≤ απ2 ≤ · · · ≤ απI
related to a permutation π of 1, . . . , I (109)

one defines απi
=
∏I

j=i β
2
j , with 0 ≤ βI <∞ and 0 ≤ βj ≤ 1 for j �= I. The

leading contribution for small βj has a topological interpretation.
A ribbon graph can be drawn on a genus-g Riemann surface with possibly

several holes to which the external legs are attached [21, 23]. We say more
on ribbon graphs on Riemann surfaces in Sect. 5. We explain, in particu-
lar, how a ribbon graph G defines a Riemann surface. On such a Riemann
surface one considers cycles, i.e. equivalence classes of closed paths which
cannot be contracted to a point. Actually one also factorises with respect to
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commutants, i.e. one considers the path aba−1b−1 involving two cycles a, b
as trivial. We let cG(Gi) be the number of non-trivial cycles of the ribbon
graph G wrapped by the subgraph Gi. Next, there may exist external lines
m,n such that the graph obtained by connecting m,n has to be drawn on
a Riemann surface of genus gmn > g. If this happens one declares an index
j(G) = 1, otherwise j(G) = 0. The index extends to subgraphs by defining
jG(Gi) = 1 if there are external lines m,n of G which are already attached
to Gi so that the line connecting m,n wraps a cycle of the additional genus
g → gmn of G.

Now we can formulate the relation between the parametric integral rep-
resentation and the topology of the ribbon graph. Each sector (109) of
the α-parameters defines a sequence of (possibly disconnected) subgraphs
G1 ⊂ G2 ⊂ · · · ⊂ GI = G, where Gi is made of the i double-lines π1, . . . , πi

and the vertices to which these lines are attached. If Gi forms Li loops it has
a power-counting degree of divergence ωi = 4Li − 2i. Then one has

IG = (2π)4δ

(
V∑

v=1

Pv

)
1

8Iπ2L(det θ)g
exp

(

iθµν

V∑

v,w=1

KvwPµ
v P

ν
w

)

×
∫ ∞

0

dβI e−β2
I m2

β
1+ωI−4cG(G)
I

∫ 1

0

(
I−1∏

i=1

dβi

β
1+ωi−4cG(Gi)
i

)

× exp

(

−f(π, P )
I∏

i=1

1
β2jG(Gi)

)
(
1 +O(β2)

)
, (110)

where f(π, P ) ≥ 0, with equality for exceptional momenta. The (very com-
plicated) proof of (110) was given by Chepelev and Roiban [21, 23]. In order
to obtain a finite integral IG , we obviously need

1. ωi−4cG(Gi) < 0 for all i if j(G) = 0 or j(G) = 1 but the external momenta
are exceptional,

2. ωi − 4cG(Gi) < 0 or jG(Gi) = 1 for all i if j(G) = 1 and the external
momenta are non-exceptional.

There are two types of divergences for which these conditions are violated.
First let the non-planarity be due to internal lines only, j(G) = 0. Since

the total graph G is non-planar, one has cG(G) > 0 and therefore no superfi-
cial divergence. However, there might exist subgraphs Gi related to a sector of
integration (109) where ωi−4cG(Gi) ≥ 0. The standard example is a subgraph
consisting of three or more disconnected loops wrapping the same handle of
the Riemann surface. In this case the integral (107) does not exist unless one
introduces a regulator. The problem is that such a subdivergence may appear
in graphs with an arbitrary number of external lines. In the commutative the-
ory this also happens, but there we renormalise already the subdivergence
via the procedure described in Sect. 2.4. This procedure is based on normal-
isation conditions, which can only be imposed for local divergences. Since a
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non-planar graph wrapping a handle of a Riemann surface is clearly a non-
local object (it cannot be reduced to a point, i.e. a counterterm vertex), it is
not possible in the noncommutative case to remove that subdivergence. We
are thus forced to use normalisation conditions for the total graph, but as
the problem is independent of the number of external legs of the total graph,
we finally need an infinite number of normalisation conditions. Hence, the
model is not renormalisable in the standard way. The proposal to treat this
problem is a reordering of the perturbation series [18].

The second class of problems is found in graphs where the non-planarity
is at least partly due to the external legs, j(G) = 1. This means that there
is no way to remove possible divergences in these graphs by normalisation
conditions. Fortunately, these graphs are superficially finite as long as the
external momenta are non-exceptional. Subdivergences are supposed to be
treated by a resummation. However, since the non-exceptional external mo-
menta can become arbitrarily close to exceptional ones, these graphs are
unbounded: For every δ > 0 one finds non-exceptional momenta such that∣
∣〈φ(x1) . . . φ(xn)〉

∣
∣ > δ−1. We present in Sect. 5 a different approach which

solves all these problems.

5 Renormalisation Group Approach
to Noncommutative Scalar Models

5.1 Introduction

We have seen that quantum field theories on noncommutative RD are not
renormalisable by standard Feynman graph evaluations. One may speculate
that the origin of this problem is the too näıve way one performs the contin-
uum limit. A way to treat the limit more carefully is the use of flow equations.
We can therefore hope that applying Polchinski’s method to the noncommu-
tative φ4-model we are able to prove renormalisability to all orders. There
is, however, a serious problem of the momentum space proof. We have to
guarantee that planar graphs only appear in the distinguished interaction co-
efficients for which we fix the boundary condition at ΛR. Non-planar graphs
have phase factors which involve inner momenta. Polchinski’s method con-
sists in taking norms of the interaction coefficients, and these norms ignore
possible phase factors. Thus, we would find that boundary conditions for
non-planar graphs at ΛR are required. Since there is an infinite number of
different non-planar structures, the model is not renormalisable in this way. A
more careful examination of the phase factors is also not possible because the
cut-off integrals prevent the Gaußian integration required for the parametric
integral representation (107).

Fortunately, there is a matrix representation of the noncommutative RD

where the �-product becomes a simple product of infinite matrices. The price
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for this simplification is that the propagator becomes complicated, but the
difficulties can be overcome.

5.2 Matrix Representation

For simplicity we restrict ourselves to the noncommutative R2. There exists
a matrix base {fmn(x)}m,n∈N of the noncommutative R2 which satisfies

(fmn � fkl)(x) = δnkfml(x) ,
∫

d2x fmn(x) = 2πθ1 , (111)

where θ1 := θ12 = −θ21. In terms of radial coordinates x1 = ρ cosϕ, x2 =
ρ sinϕ one has

fmn(ρ, ϕ) = 2(−1)mei(n−m)ϕ
√

m!
n!

(√
2ρ2

θ1

)n−m

Ln−m
m

(
2ρ2

θ1

)
e−

ρ2

θ1 , (112)

where Lα
n(z) are the Laguerre polynomials. The matrix representation was

also used to obtain exactly solvable noncommutative quantum field theories
[26, 27].

Exercise 5.1. Prove (111). [If you have a table of special functions you can

also prove (112)]. Hint: First define f00(x1, x2) := 2 e−
(x2

1+x2
2)

θ1 and check f00 �
f00 = f00. Define creation and annihilation operators a = 1√

2
(x1 + ix2)

and ā = 1√
2
(x1− ix2) and the corresponding derivatives ∂

∂a = 1√
2
( ∂

∂x1
− i ∂

∂x2
)

and ∂
∂ā = 1√

2
( ∂

∂x1
+i ∂

∂x2
). Derive general rules for a� f , f � a, ā � f , f � ā and

prove that fmn = 1√
m!n!θm+n

ā�m � f00 � a
�n with b�n := b � b�(n−1) satisfies

(111). In order to obtain (112) one has to resolve the �-product in favour of
an ordinary product, pass to radial coordinates and compare the result with
the definition of Laguerre polynomials. �

Now we can write down the noncommutative φ4-action in the matrix base
by expanding the field as φ(x) =

∑
m,n∈N

φmnfmn(x). It turns out, however,
that in order to prove renormalisability we have to consider a more general
action than (103) at the initial scale Λ0. This action is obtained by adding a
harmonic oscillator potential to the standard noncommutative φ4-action:

S[φ] :=
∫

d2x

(
1
2
∂µφ � ∂

µφ+
1
2
Ω2(x̃µφ) � (x̃µφ) +

1
2
µ2

0φ � φ

+
λ

4!
φ � φ � φ � φ

)

(x)

= 2πθ1
∑

m,n,k,l

(
1
2
Gmn;klφmnφkl +

λ

4!
φmnφnkφklφlm

)

, (113)
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where x̃µ := 2(θ−1)µνxν and

Gmn;kl :=
∫

d2x

2πθ1

(

∂µfmn � ∂
µfkl +Ω2(x̃µfmn) � (x̃µfkl) + µ2

0fmn � fkl

)

.

(114)

We view Ω as a regulator and refer to the action (113) as describing a regu-
larised φ4-model. One finds

Gmn;kl =

(

µ2
0+(n+m+1)µ2

)

δnkδml

− µ2
√
ω (n+1)(m+1) δn+1,kδm+1,l − µ2

√
ω nmδn−1,kδm−1,l , (115)

where µ2 = 2(1+Ω2)
θ1

and
√
ω = 1−Ω2

1+Ω2 , with −1 <
√
ω ≤ 1.

Exercise 5.2. Prove (115) using the formulae derived in Exercise 5.1. �

The kinetic matrix Gmn;kl has the important property that Gmn;kl = 0 unless
m+k = n+l. The same relation is induced for the propagator ∆nm;lk defined
by
∑∞

k,l=0Gmn;kl∆lk;sr =
∑∞

k,l=0∆nm;lkGkl;rs = δmrδns:

∆mn;kl =
δm+k,n+l

(1+
√

1−ω)µ2

min(m+l,k+n)
2∑

v=
|m−l|

2

B

(

1
2+ µ2

0
2
√

1−ω µ2 + 1
2 (m+k)−v, 1+2v

)

×
√(

n

v+n−k
2

)(
k

v+k−n
2

)(
m

v+m−l
2

)(
l

v+ l−m
2

)(
(1−

√
1−ω)2

ω

)v

× 2F1

(
1+2v , 1

2 + µ2
0

2
√

1−ω µ2− 1
2 (m+k)+v

3
2+ µ2

0
2
√

1−ω µ2 + 1
2 (m+k)+v

∣
∣
∣
∣
(1−

√
1−ω)2

ω

)

. (116)

Here, B(a, b) is the Beta-function and F (a, b
c ; z) the hypergeometric function.

The derivation of (116), which is performed in [28], involves Meixner polyno-
mials [29] in a crucial way. We recall that in the momentum space version of
the φ4-model, the interactions contain oscillating phase factors which make
a renormalisation by flow equations impossible. Here we use an adapted base
which eliminates the phase factors from the interaction. We see from (116)
that these oscillations do not reappear in the propagator. Note that all matrix
elements ∆nm;lk are non-zero for m+ k = n+ l.

5.3 The Polchinski Equation for Matrix Models

Introducing a cut-off for the matrix indices

∆K
nm;lk(Λ) = K

(
mµ2

Λ2

)
K
(

nµ2

Λ2

)
K
(

kµ2

Λ2

)
K
(

lµ2

Λ2

)
∆nm;lk , (117)
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for the same function K as in (55), one can derive in analogy to (63) the
Polchinski equation in the matrix base of R2

θ:

Λ
∂L[φ,Λ]
∂Λ

=
∑

m,n,k,l

1
2
Λ
∂∆K

nm;lk(Λ)
∂Λ

(
∂L[φ,Λ]
∂φmn

∂L[φ,Λ]
∂φkl

− 1
2πθ1

[ ∂2L[φ,Λ]
∂φmn ∂φkl

]

φ

)

. (118)

Again, the differential equation (118) ensures (together with easier differen-
tial equations for functions such as C) that the partition function Z[J,Λ] is
actually independent of the cut-off Λ. This means that we can equally well
evaluate the partition function for finite Λ, where it leads to Feynman graphs
with vertices given by the Taylor expansion coefficients A(V )

m1n1;...;mN nN in

L[φ,Λ] = λ

∞∑

V =1

(
2πθ1λ
)V −1 ∞∑

N=2

1
N !

∑

mi,ni

A(V )
m1n1;...;mN nN

[Λ]φm1n1 · · ·φmN nN
.

(119)

These vertices are connected with each other by internal lines ∆K
nm;lk(Λ) and

to sources jkl by external lines ∆K
nm;lk(Λ0). Since the summation variables

are cut-off in the propagator ∆K
nm;lk(Λ), loop summations are finite, provided

that the interaction coefficients A(V )
m1n1;...;mN nN [Λ] are finite.

Inserting the expansion (119) into (118) and restricting to the part with
N external legs we get the graphical expression

Λ
∂

∂Λ

.........
.
.
.
..
.
.
.
.. . . . . . . .

n1

m1

n2m2

mN

nN

=
1
2

∑

m,n,k,l

N−1∑

N1=1

...
.
...

...
.
...

m1
n1

nN1
mN1 mN1+1

nN1+1

nNmN

k

l

n

m

− 1
4πθ1

∑

m,n,k,l

...
.
...

...
.
...m1

n1

ni−1

mi−1

mi

ni

nN

mN

n m

k l

(120)

Combinatorial factors are not shown and symmetrisation in all indices mini

has to be performed. On the rhs of (120) the two valences mn and kl of
subgraphs are connected to the ends of a ribbon which symbolises the dif-

ferentiated propagator
n

lm

k
= Λ ∂

∂Λ∆
K
nm;lk. We see that for the simple fact

that the fields φmn carry two indices, the effective action is expanded into
ribbon graphs.
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In the expansion of L there will occur very complicated ribbon graphs
with crossings of lines which cannot be drawn any more in a plane. A general
ribbon graph can, however, be drawn on a Riemann surface of some genus g.
In fact, a ribbon graph defines the Riemann surfaces topologically through
the Euler characteristic χ. We have to regard here the external lines of the
ribbon graph as amputated (or closed), which means to directly connect the
single lines mi with ni for each external leg mini. A few examples may help
to understand this procedure:

n1

m1

m3

n3

m4

n4

m2
n2

n5
m5

n6
m6 ⇒

L̃= 2
I = 3
V = 3
g= 0
B= 2
N = 6

n1

m1

m2

n2

⇒

L̃= 1
I = 3
V = 2
g= 1
B= 1
N = 2

(121)

The genus is computed from the number L̃ of single-line loops, the number I
of internal (double) lines and the number V of vertices of the graph according
to Euler’s formula χ = 2 − 2g = L̃ − I + V . The number B of boundary
components of a ribbon graph is the number of those loops which carry
at least one external leg. There can be several possibilities to draw the graph
and its Riemann surface, but L̃, I, V,B and thus g remain unchanged. Indeed,
the Polchinski equation (118) interpreted as in (120) tells us which external
legs of the vertices are connected. It is completely irrelevant how the ribbons
are drawn between these legs. In particular, there is no distinction between
overcrossings and undercrossings.

We expect that non-planar ribbon graphs with g > 0 and/or B > 1
behave differently under the renormalisation flow than planar graphs having
B = 1 and g = 0. This suggests to introduce a further grading in g,B in the
interactions coefficients A(V,B,g)

m1n1;...;mN nN . Technically, our strategy is to apply
the summations in (120) either to the propagator or the subgraph only and to
maximise the other object over the summation indices. For that purpose one
has to introduce further characterisations of a ribbon graph which disappear
at the end, see [24].

5.4 φ4-Theory on Noncommutative R2

First one estimates the A-functions by solving (118) perturbatively:
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Lemma 5.3. The homogeneous parts A(V,B,g)
m1n1;...;mN nN of the coefficients of the

effective action describing a regularised φ4-theory on R2
θ in the matrix base

are for 2 ≤ N ≤ 2V+2 and
∑N

i=1(mi−ni) = 0 bounded by
∣
∣A(V,B,g)

m1n1;...;mN nN
[Λ,Λ0, ω, ρ0]

∣
∣

≤
(
Λ2

µ2

)2−V −B−2g(
1√
1−ω

)3V −N
2 +B+2g−2

P 2V −N
2

[
ln
Λ0

ΛR

]
. (122)

We have A(V,B,g)
m1n1;...;mN nN ≡ 0 for N > 2V+2 or

∑N
i=1(mi−ni) �= 0.

The proof of (122) for general matrix models by induction goes over 20
pages! The formula specific for the φ4-model on R2

θ follows from the as-
ymptotic behaviour of the cut-off propagator (117,116) and a certain index
summation, see [24, 25].

We see from (122) that the only divergent function is

A(1,1,0)
m1n1;m2n2

= A
(1,1,0)
00;00 δm1n2δm2n1

+

(

A(1,1,0)
m1n1;m2n2

[Λ,Λ0, ρ
0]−A(1,1,0)

00;00 δm1n2δm2n1

)

, (123)

which is split into the distinguished divergent function

ρ[Λ,Λ0, ρ
0] := A

(1,1,0)
00;00 [Λ,Λ0, ρ

0] (124)

for which we impose the boundary condition ρ[ΛR, Λ0, ρ
0] = 0 and a conver-

gent part with boundary condition at Λ0.
One remarks that the limit ω → 1 in (122) is singular. In fact the esti-

mation for ω = 1 with an optimal choice of the ρ-coefficients (different than
(124)!) would be
∑

Es

∣
∣A(V,V e,B,g,ι)

m1n1;...;mN nN
[Λ,Λ0, 1, ρ0]

∣
∣

≤
(
Λ

µ

)V −N
2 −B−2g+2(

µ

µ0

)3V −N
2 +B+2g−2

P 2V −N
2

[

ln
Λ0

ΛR

]

. (125)

Since the exponent of Λ can be arbitrarily large, there would be an infinite
number of divergent interaction coefficients, which means that the φ4-model
is not renormalisable when keeping ω = 1.

The limit Λ0 → ∞ is now governed by an identity like (72) and a ρ-
subtracted function like (73) for which one has a differential equation like
(78). It is then not difficult to see that the regularised φ4-model with ω < 1
is renormalisable. It turns out that one can even prove more [25]: On can
endow the parameter ω for the oscillator frequency with an Λ0-dependence
so that in the limit Λ0 → ∞ one obtains a standard φ4-model without the
oscillator term:
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Theorem 5.4. The φ4-model on R2
θ is (order by order in the coupling con-

stant) renormalisable in the matrix base by adjusting the bare mass Λ2
0ρ[Λ0] to

give A(1,1,0)
m1n1;m2n2 [ΛR] = 0 and by performing the limit Λ0 →∞ along the path

of regulated models characterised by ω[Λ0] = 1 − (1 + ln Λ0
ΛR

)−2. The limit

A
(V,B,g)
m1n1;...;mN nN [ΛR,∞] := limΛ0→∞A

(V,B,g)
m1n1;...;mN nN [ΛR, Λ0, ω[Λ0], ρ0[Λ0]] of

the expansion coefficients of the effective action L[φ,ΛR, Λ0, ω[Λ0], ρ0[Λ0]]
exists and satisfies

∣
∣
∣λ

(

2πθ1λ

)V −1

A(V,V e,B,g,ι)
m1n1;...;mN nN

[ΛR,∞]

−
(

2πθ1λ

)V −1

A(V,V e,B,g,ι)
m1n1;...;mN nN

[ΛR, Λ0, 1− 1

(1+ln
Λ0
ΛR

)2
, ρ0]
∣
∣
∣

≤ Λ4
R

Λ2
0

(
λ

Λ2
R

)V(
µ2(1 + ln Λ0

ΛR
)

Λ2
R

)B+2g−1

P 5V −N−1

[

ln
Λ0

ΛR

]

.

(126)

In this way we have proven that the real φ4-model on R2
θ is perturbatively

renormalisable when formulated in the matrix base. This proof was not simply
a generalisation of Polchinski’s original proof to the noncommutative case.
The näıve procedure would be to take the standard φ4-action at the initial
scale Λ0, with Λ0-dependent bare mass to be adjusted such that at ΛR it
is scaled down to the renormalised mass. Unfortunately, this does not work.
In the limit Λ0 → ∞ one obtains an unbounded power-counting degree of
divergence for the ribbon graphs. The solution is the observation that the
cut-off action at Λ0 is (due to the cut-off) not translation invariant. We are
therefore free to break the translational symmetry of the action at Λ0 even
more by adding a harmonic oscillator potential for the fields φ. There exists a
Λ0-dependence of the oscillator frequency Ω with limΛ0→∞Ω = 0 such that
the effective action at ΛR is convergent (and thus bounded) order by order
in the coupling constant in the limit Λ0 →∞. This means that the partition
function of the original (translation-invariant) φ4-model without cut-off and
with suitable divergent bare mass can equally well be solved by Feynman
graphs with propagators cut-off at ΛR and vertices given by the bounded
expansion coefficients of the effective action at ΛR. Hence, this model is
renormalisable, and in contrast to the näıve Feynman graph approach in
momentum space [23] there is no problem with exceptional configurations.
Whereas the treatment of the oscillator potential is easy in the matrix base,
a similar procedure in momentum space will face enormous difficulties. This
makes clear that the adaptation of Polchinski’s renormalisation programme
is the preferred method for noncommutative field theories.
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5.5 φ4-Theory on Noncommutative R4

The renormalisation of φ4-theory on R4
θ in the matrix base is performed

in an analogous way. We choose a coordinate system in which θ1 = θ12 =
−θ21 and θ2 = θ34 = −θ43 are the only non-vanishing components of θ.
Moreover, we assume θ1 = θ2 for simplicity. Then we expand the scalar field
according to φ(x) =

∑
m1,n1,m2,n2∈N

φm1
m2

n1
n2
fm1n1(x1, x2)fm2n2(x3, x4). The

action (113) with integration over R4 leads then to a kinetic term generalising
(115) and a propagator generalising (116). Using estimates on the asymptotic
behaviour of that propagator one proves the four-dimensional generalisation
of Lemma 5.3 on the power-counting degree of the N -point functions. For
ω < 1 one finds that all non-planar graphs (B > 1 and/or g > 0) and all
graphs with N ≥ 6 external legs are convergent.

The remaining infinitely many planar two- and four-point functions have
to be split into a divergent ρ-part and a convergent complement. Using some
sort of locality for the propagator (116) one proves that

Aplanar
m1
m2

n1
n2

; k1
k2

l1
l2

−Aplanar
0
0

0
0 ; 00

0
0
δm1l1δn1k1δm2l2δn2k2

−m1

(

Aplanar
1
0

0
0 ; 00

1
0
−Aplanar

0
0

0
0 ; 00

0
0

)

δm1l1δn1k1δm2l2δn2k2

−m2

(

Aplanar
0
1

0
0 ; 00

0
1
−Aplanar

0
0

0
0 ; 00

0
0

)

δm1l1δn1k1δm2l2δn2k2

−Aplanar
1
0

1
0 ; 00

0
0

(
√

(m1+1)(n1+1)δm1+1,l1δn1+1,k1δm2l2δn2k2

+
√
m1n1δm1−1,l1δn1−1,k1δm2l2δn2k2

)

−Aplanar
0
1

0
1 ; 00

0
0

(
√

(m2+1)(n2+1)δm2+1,l2δn2+1,k2δm1l1δn1k1

+
√
m2n2δm2−1,21δn2−1,k2δm1l1δn1k1

)

, (127)

Aplanar
m1
m′

1

n1
n′
1
;...;

m4
m′

4

n4
n′
4

−Aplanar
0
0

0
0 ;...; 00

0
0

(

1
6δn1

n1
m2
m2
δn2

n2
m3
m4
δn3

n3
m4
m4
δn4

n4
m1
m1

+ 5 perm’s

)

,

(128)

are convergent functions, thus identifying
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ρ1 := Aplanar
0
0

0
0 ; 00

0
0
,

ρ2 := Aplanar
1
0

0
0 ; 00

1
0
−Aplanar

0
0

0
0 ; 00

0
0

= Aplanar
0
1

0
0 ; 00

0
1
−Aplanar

0
0

0
0 ; 00

0
0
,

ρ0 := Aplanar
1
0

1
0 ; 00

0
0

= Aplanar
0
1

0
1 ; 00

0
0

ρ3 := Aplanar
0
0

0
0 ; 00

0
0 ; 00

0
0 ; 00

0
0

(129)

as the distinguished divergent ρ-functions. Details are given in [28].
The function ρ0 has no commutative analogue in (66). Due to (127) it

corresponds to a normalisation condition for the frequency parameter ω in
(115). This means that in contrast to the two-dimensional case we cannot
remove the oscillator potential with the limit Λ0 → ∞. In other words, the
oscillator potential in (113) is a necessary companionship to the �-product
interaction. This observation is in agreement with the UV/IR-entanglement
first observed in [18]. Whereas the UV/IR-problem prevents the renormal-
isation of φ4-theory on R4

θ in momentum space [23], we have found a self-
consistent solution of the problem by providing the unique (due to properties
of the Meixner polynomials) renormalisable extension of the action. We re-
mark that the diagonalisation of the free action via the Meixner polynomials
leads to discrete momenta as the only difference to the commutative case.
The inverse of such a momentum quantum can be interpreted as the size of
the (finite!) universe, as it is seriously discussed in cosmology [30].
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