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Abstract

The Large Hadron Collider (LHC) has recently turned on and started collecting invaluable

physics data. The particle physics community is eager to see which of the recent beyond the

Standard Model theories will be discovered at the LHC. Supersymmetry is one of the strongest

candidate for the physics beyond the Standard Model. In this thesis, first, we study the possibili-

ties of discovering supersymmetry at the LHC running at 7 TeV center of mass energy and carry

out a reach analysis within the mSUGRA parameter space. We generate nonuniversal mSUGRA

benchmark models with nonuniversilities in the gaugino sector which satisfy all the current col-

lider, non-collider, as well as dark matter constraints and at the same time are also discoverable

with as low as 1 − 2 fb−1 of integrated luminosity. In the second part of the thesis, we develop

a method to determine if the gaugino masses are unified with the help of the LHC data. As a

framework to study gaugino masses, we utilize the mirage mediation model which is a string

motivated construction that includes mixed gravity and anomaly mediation. We show that up to

a 30% non-universality is measurable after just one year of LHC data running at 14 TeV center of

mass energy. Finally, we study the collider phenomenology of another string theory motivated

model known as deflected mirage mediation. Deflected mirage mediation is an extension of mi-

rage mediation in which gauge-mediated supersymmetry breaking terms are also present and

competitive in size to the gravity-mediated and anomaly-mediated soft terms. We compare and

show the phenomenological differences between mirage and deflected mirage mediation at the

LHC and study the mass hierarchies of the lightest four sparticles within the deflected mirage

unification framework.
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Chapter 1

Introduction

After years of design and construction, the Large Hadron Collider (LHC) has finally started

collecting invaluable physics data. This biggest and one of the most expensive experiments in

the history of science will open the doors to the unknown new physics beyond the Standard

Model. The Standard Model is regarded as a triumph of particle physics although it falls short

of being a complete theory of fundamental interactions. Among many problems it has, some

of the important ones are worth emphasizing. It does not include gravity, it does not have a

dark matter candidate and it requires fine tuning in the Higgs sector (also known as the hierarchy

problem). Many theories exist that offer an explanation for the physics beyond the Standard Model,

and supersymmetry (SUSY) is one of the best motivated candidates. It provides a theoretically

attractive framework that resolves many of the long standing problems of the Standard Model. It

also predicts the unification of gauge couplings which is often considered to be a sign of a grand

unification where all three interactions are merged into one single interaction characterized by a

larger gauge symmetry group.

The Minimal Supersymmetric Standard Model (MSSM) introduces 32 new particles and 105

new parameters in addition to the Standard Model. This generality allows a very rich LHC

phenomenology but also suffers from the “LHC inverse Problem,” that is the inverse map from the

signature space to the parameter space is not one to one. The maximum number of uncorrelated

observables puts a limit on the maximum information we can collect from a collider experiment.∗

One can focus on a smaller set of 19 parameters, called as pMSSM or phenomenological MSSM,

by ignoring the ones less relevant for the LHC, but the problem still persists as shown by Arkani-

Hamed et al. in [2].
∗See [1] for an example of how to use non-collider results, specifically direct and indirect detection of dark matter in

conjunction with the collider data to reduce the degeneracies.
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This raises the importance of exploring possible mediation mechanisms for supersymmetry

breaking. Most models of supersymmetry breaking involve one of the three most popular media-

tion mechanisms; gravity mediation, gauge mediation and anomaly mediation. String motivated

scenarios of mixed mediation mechanisms also exist. One example is Kachru-Kallosh-Linde-

Trivedi (KKLT) motivated mirage mediation, where the tree-level gravity (modulus)-mediated

terms and the (loop-suppressed) anomaly-mediated terms are comparable in size, contrary to

naive expectations. Another example is the deflected mirage mediation scenario (DMM) which is

an extension of mirage mediation in which gauge-mediated supersymmetry breaking terms are

also present and competitive in size to the gravity-mediated and anomaly-mediated soft terms.

Deected mirage mediation provides a general framework in which to explore mixed supersym-

metry breaking scenarios at the LHC, where well-known single mediation mechanism models can

be recovered by judiciously adjusting dimensionless parameters in the theory. This suggests that

one can learn much more by studying the phenomenology of deflected mirage mediation instead

of its special limits. We will discuss the LHC phenomenology of deflected mirage mediation in

Chapter 6 and compare it to the pure mirage mediation. We will also study the similarities and

differences in the hierarchy of lightest four supersymmetric states in the DMM and mSUGRA

paradigms.

Evidence for gaugino unification at the supersymmetry breaking scale is one of the most

important pieces of information a string theorist would like to learn from the LHC [3]. One

common feature of both pure and deflected mirage mediations is that gaugino masses always

unify at a scale determined by the dimensionless parameters of the models. We discuss how to

determine the signs of this unification at the LHC in Chapter 5.

Obviously the first step that we must take, before exploring the details of the specific super-

symmetric theory that nature will reveal us, is to actually discover supersymmetry in the first

place. This has been studied for the center of mass energy of 14 TeV. We attack the same problem

for half the design energy and determine benchmark points that will be observable within one or

two years at the LHC as well as at the near future dark matter experiments.

The organization of this thesis is as follows. In Chapter 2, we briefly review the Standard Model.
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In Chapter 3, we discuss the properties of supersymmetry and of the Minimal supersymmetric

Standard Model. Chapter 4 analyzes the discovery potential of supersymmetry in the early runs

of the LHC at its half design center of mass energy of 7 TeV. Chapter 5 focuses on studying the

gaugino mass unification at the LHC. Chapter 6 introduces the deflected mirage mediation (DMM)

scenario and focuses on the LHC phenomenology of DMM as well as its sparticle landscape.
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Chapter 2

Standard Model

The Standard Model of particle physics is a unified field theory combining electromagnetic, weak

and strong interactions. The weakest of the four known interactions, gravity, is not included in

the theory. It is one of the greatest achievements in particle physics, and has been tested very

extensively and shown that it agrees perfectly with experiments so far.

The development of the Standard Model took place between 1960-1974. The electroweak part

of the theory was finalized by Sheldon Glashow, Steven Weinberg and Abdus Salam [4, 5, 6],

and the strong interaction part, i.e. quantum chromodynamics (QCD), was finalized by Murray

Gell-Mann, David Gross, David Politzer and Frank Wilczek [7, 8, 9, 10, 11, 12].

Particle content of the Standard Model can be grouped into 3 categories: matter particles, force

carriers, and the Higgs particle. Matter particles consist of three families of fermions that are

divided into two subgroups of quarks and leptons. Interactions are mediated by vector bosons.

The only scalar particle in the theory is the Higgs particle, which is yet to be discovered, that is

assumed to give mass to the massive particles of the theory.

qu
ar

ks u c t γ

fo
rc

e
ca

rr
ie

rs

+ H
d s b g

le
pt

on
s νe νµ ντ Z

e µ τ W

Table 2.1: Particle content of the Standard Model. Quarks: up, down, charm, strange, top, bottom.
Leptons: electron, muon, tau and their neutrinos. Force carriers: photon, gluon, Z and W bosons.
And the scalar Higgs particle.
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Figure 2.1: Nobel laureates of the electroweak theory: Sheldon Glashow, Abdus Salam and Steven
Weinberg. Courtesy of the Nobel Foundation.

2.1 Yang-Mills theory

A modern formulation of the Standard Model can be constructed in terms of Yang-Mills theory

which is a local gauge theory with non-abelian gauge group such as SU(N). The generators Ta of

the gauge group satisfy the algebra

[Ta,Tb] = i f abcTc, (2.1)

where f abc are the structure constants of the group. We define the covariant derivative, which

generates the gauge interactions, as

Dµ = ∂µ − igTaAa
µ, (2.2)

where g is the coupling constant and Aa
µ are the gauge fields (or gauge connection) that transform

under the adjoint representation of the gauge group. The covariant derivatives satisfy the following

commutation relations

[Dµ,Dν] = −gTaFa
µν, (2.3)

where Fa
µν are the the field strength tensors associated with the gauge fields, and they are given by

Fa
µν = ∂µAa

ν − ∂νA
a
µ + g f abcAb

µAc
ν. (2.4)
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We can couple the gauge fields to a fermion field and write down an interaction Lagrangian as

LYM = f (x)(i /D −m) f (x) −
1
4

Fa
µν(x)Faµν(x), (2.5)

where m is the mass of the fermion in the theory.

With this general recipe, we can easily obtain the QED and QCD Lagrangians by choosing the

appropriate gauge groups and coupling the theory to a fermion field. For QED, the gauge group is

simply U(1) with the generators being just the identity, the coupling constant becomes the electric

charge and the gauge field is the massless photon field. For QCD, the gauge group becomes SU(3)

which gives 8 massless gluon fields in the adjoint representation.

2.2 SM Lagrangian

The gauge group of the Standard Model is SU(3)C × SU(2)L × U(1)Y, where subscripts denote the

color, weak isospin and hypercharge respectively. We can use the general Yang-Mills Lagrangian

to construct the Standard Model Lagrangian. Our gauge bosons fall in the adjoint representations

of each of the 3 gauge groups of the Standard Model. Hence we have 8 SU(3)C gluon fields Ga
µ,

3 SU(2)L fields Wa
µ and 1 hypercharge field Bµ. The matter fields consist of three generation of

quarks and leptons given by

q = (uL dL)T, uR, dR ; l = (νL, eL)T, eR (2.6)

The covariant derivative is given by

Dµ = ∂µ − ig3
λa

2
Ga
µ − ig2

σa

2
Wa
µ − ig1

Y
2

Bµ, (2.7)

where λa are the Gell-Mann matrices, σa are the Pauli spin matrices and Y is the hypercharge

generator. Note that this covariant derivative acts differently on the fields. For example right

handed SU(2)L singlet fields do not feel the SU(2) interaction, SU(3)C singlet fields do not feel the

SU(3) interaction and a field with vanishing hypercharge does not feel the U(1)Y interaction. The
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electric charge is given by the weak isospin and the hypercharge as

Q = T3 +
Y
2
. (2.8)

Interactions are generated by the term ψi /Dψ in the Lagrangian but an explicit mass term is not

gauge invariant hence is not allowed. Mass is generated by Yukawa interactions and spontaneous

symmetry breaking through the Higgs mechanism which breaks the SU(2)L × U(1)Y group to

U(1)EM. The scalar Higgs field is an SU(2)L doublet which is given by

Φ = (φ+ φ0)T (2.9)

and the symmetry breaking Lagrangian is given by

LSSB = (DµΦ)†(DµΦ) − V(Φ), (2.10)

where V(Φ) is the Higgs potential given by

V(Φ) = µ2Φ†Φ + λ(Φ†Φ)2. (2.11)

Fermion masses are generated by the broken SU(2)L ×U(1)Y symmetry via the Higgs coupling to

the fermions with the Yukawa interaction given by the Lagrangian

LY = λe lLΦ eR + λu uLΦ uR + λd dLΦ dR + h.c. (2.12)

When µ2 becomes negative, the Higgs field gets a vacuum expectation value (VEV) which can be

parametrized by

〈0|Φ|0〉 =
1
√

2

 0

v

 where v =

√
µ2/λ = 246 GeV (2.13)

Before the spontaneous symmetry breaking we have 4 massless gauge bosons W1,2,3
µ and Bµ

and 4 massless scalars φ1,..,4 which are the component of the Higss doublet. After the spontaneous
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Figure 2.2: Higgs potential as a function of µ. Note that this is only a cross section and the full
shape of the potential can be obtained by rotating the curve around its symmetry axis which is
also called as the Mexican hat potential.

symmetry breaking occurs we get the physical vector gauge bosons and the scalar Higgs boson.

These physical states are given by the electroweak interaction eigenstates as

W± =
1
√

2

(
W1
µ ∓ i W2

µ

)
Zµ = cwW3

µ − swBµ

Aµ = swW3
µ + cwBµ,

(2.14)

where θW is the Weinberg angle, cW = cosθW, sW = sinθW and the masses of the gauge bosons in

terms of the Higgs VEV, SU(2)L coupling constant and the Weinberg angle are given by

MW =
g2v
2

, MZ =
MW

cosθW
. (2.15)

2.3 Challenges

The Standard Model is the best tested quantum theory of elementary particles and interactions.

Some theoretical predictions agree with the experimental measurements with better than 1 part in

a billion precision. Nevertheless there are unaccounted for observations and theoretical problems

with the Standard Model. Here, we list some those problems and give a brief explanation.

• Cold dark matter: The existence of cold dark matter has been confirmed by many indepen-
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dent observations, such as the anomaly in the galactic rotation curves or by gravitational

lensing effects. The Standard Model does not include a particle which can make up the dark

matter.

• Neutrino masses and mixings: Atmospheric and solar neutrino experiments proved that

neutrinos oscillate from one flavor to another. This implies that they have small but non

zero masses. Neutrinos are massless in the Standard Model. To account for these latest

observation, we can extend the Standard Model to include Dirac neutrino masses but then

the Yukawa couplings must be really tiny which will clearly require an explanation.

• Matter-antimatter asymmetry: The apparent imbalance of matter and antimatter in our

universe requires an explanation. Standard Model does not differentiate between matter and

antimatter, so it is very difficult to understand why the universe is matter dominated within

the Standard Model.

• Fine tuning in the Higgs sector: The quantum corrections to the square of the Higgs mass

goes like the square of the cutoff scale, i.e. m2
H(Λ) = m2

H + cΛ2. For the Higgs mass to be in

the order of 100 GeV which is required by the electroweak theory, the bare mass term m2
H

needs to cancel the correction term up to 35 digits, leaving a non zero value of desired size.

This is of course a very large fine tuning problem.

We will see in the next chapter that supersymmetry offers solutions to some of the above

problems. In particular the dark matter and the fine tuning problem are naturally solved in

supersymmetric theories.
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Chapter 3

Supersymmetry

Supersymmetry offers a link between fermions and bosons by extending the Poincaré algebra to

include spinorial generators that connect the fermionic degrees of freedom to the bosonic degrees

of freedom. Exploration of the possible symmetries of the scattering matrix showed the maximum

extension of such symmetries are obtained by introducing supersymmetry [13, 14]. The first

realization of the four dimensional supersymmetric Lagrangian [15, 16] was followed by the first

realistic supersymmetric extension of the Standard Model [17]. Local supersymmetry provided a

natural way to include gravity into the supersymmetric theories [18, 19, 20, 21, 22].

Supersymmetry is realized by introducing a spinorial generator, or a supercharge Q which is

an anticommuting spinor with the properties

Q|Boson〉 = |Fermion〉 , Q|Fermion〉 = |Boson〉. (3.1)

The generator Q satisfies the following super-Poincaré algebra

{Qα,Q†α̇} = 2σµαα̇Pµ

{Qα,Qβ} = {Q†α̇,Q
†

β̇
} = 0

[Qα,Pµ] = [Q†α̇,P
µ] = 0,

(3.2)

where σµ = (1, ~σ) are the Pauli spin matrices, α, β are the spinor indices and Pµ is the generator

of spacetime translations. Because of this algebraic structure, anticommuting supersymmetry

transformation Q can be thought as the “square root” of the spacetime translations.

In a supersymmetric theory, single particle states fall into irreducible representations of the

supersymmetry algebra that are called supermultiplets. Each supermultiplet contains fermion

17



and boson states that are superpartners of each other. One can show that, in a supermultiplet,

the fermionic degrees of freedom is equal in number to the bosonic degrees of freedom. Particles

in a supermultiplet share the same quantum numbers and have the same mass. In a renormal-

izable supersymmetric gauge theory with only one distinct copy of supersymmetry generators

Q,Q† (N = 1), and massless gauge bosons, the simplest combinations we can have in a super-

multiplet all contain two fermionic and bosonic degrees of freedom. The first combination is a

chiral/matter/scalar supermultiplet which contains a spin 1/2 Weyl fermion and a complex scalar.

The other combination is a gauge/vector supermultiplet which contains a massless spin 1 vector

boson and its superpartner, a spin 1/2 Weyl fermion. If we also include quantum gravity, then

we have the gravity supermultiplet which contains a spin 2 graviton and a spin 3/2 superpartner

called the gravitino. In a supermultiplet, spin 0 superpartners are named with an ‘s’ prefix such

as squarks and sleptons. Spin 1/2 superpartners are named with an ‘ino’ suffix such as Higgsino,

gluino, etc. One can also have extended supersymmetry with more than one distinct copy of

supersymmetry generators but these theories fail to satisfy basic phenomenological constraints

such as chiral fermions and parity violation.

As we mentioned before, supersymmetry solves the fine tuning problem of the Higgs sector.

Thanks to the cancellation of the terms due to fermionic and bosonic degrees of freedom, in

a supersymmetric theory the quantum corrections to the physical Higgs mass do not go like the

square of the cutoff scale but changes logarithmically as m2
H(Λ) = m2

H +c′ ln Λ. Another nice feature

of supersymmetry is gauge coupling unification. As opposed to the Standard Model, in MSSM

gauge couplings unify at the so called grand unified theory (GUT) scale which is approximately

1016 GeV. Figure 3.1 shows the running of the gauge couplings in both frameworks.

3.1 Minimal Supersymmetric Standard Model

The simplest (N = 1) extension of the Standard Model which contains only one distinct copy

of supersymmetry generators Q,Q† is the Mimimal Supersymmetric Standard Model (MSSM).

In Table 3.1, we display the chiral and gauge supermultiplets of the MSSM. In addition to the

superpartners of quarks and leptons, which are squarks and sleptons, the MSSM contains two

18
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Figure 3.1: One loop renormalization group evolution of the SU(3)C, SU(2)L and U(1)Y gauge
couplings in SM and MSSM.

Higgs doublets and corresponding Higgsino doublets, as well gauginos which are the partners of

the gauge bosons of the Standard Model. The reason for two Higgs doublets is two-fold: to cancel

the gauge anomalies, and to give mass to up and down type quarks.

In total, the MSSM introduces 32 new supersymmetric mass eigenstates which are

• Higgs bosons: h0, H0, A0, H±

These states are the mixture of the spin 0 gauge eigenstates H0
u, H0

d, H+
u , H−d . h0 and H0 are

CP even states, A is CP odd, and H± is the charged Higgs state.

• Neutralinos: χ̃ 0
1 , χ̃ 0

2 , χ̃ 0
3 , χ̃ 0

4

These states are the mixture of the binos, winos and Higgsinos B̃0, W̃0, H̃0
u, H̃0

d. In R-parity

conserving models χ̃ 0
1 is a dark matter candidate.

• Charginos: χ̃±1 , χ̃±2

These states are the mixtures of charged winos and Higgsinos W̃±, H̃+
u , H̃−d .

• Gluino: g̃

• Squarks: ũL,R, d̃L,R, c̃L,R, s̃L,R, t̃1,2, b̃1,2

First and second generation mass eigenstates are assumed to be same as the gauge eigenstates

due to small mixing. Third generation squarks, i.e. stop and sbottom states, are the mixtures

of the gauge eigenstates.
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Names spin 0 spin 1/2 spin 1 SU(3)C SU(2)L U(1)Y
ch

ir
al

squarks, quarks
× 3 families

Q (ũL d̃L) (uL dL) 3 2 1
6

u ũ∗R u†R 3 1 −
2
3

d d̃∗R d†R 3 1 1
3

sleptons, leptons
× 3 families

L (̃νL ẽL) (ν eL) 1 2 −
1
2

e ẽ∗R e†R 1 1 1

Higgs, higgsinos
Hu (H+

u H0
u) (H̃+

u H̃0
u) 1 2 + 1

2

Hd (H0
d H−d ) (H̃0

d H̃−d ) 1 2 −
1
2

ga
ug

e gluino, gluon g̃ g 8 1 0

winos, W bosons W̃± W̃0 W± W0 1 3 0

bino, B boson B̃0 B0 1 1 0

Table 3.1: Chiral and gauge supermultiplets in the Minimal Supersymmetric Standard Model.

• Sleptons: ẽL,R, ν̃e, µ̃L,R, ν̃µ, τ̃1,2, ν̃τ

Similar to the squarks, there is no mixing in the first and second generation gauge eigenstates.

Third generation gauge eigenstates mix to give the stau and sneutrino states.

We know that supersymmetry must be a broken symmetry because the superpartners of the

Standard Model particles have not been observed which implies they need to have higher masses

than their Standard Model partners. The question of how supersymmetry is broken does not have

a definitive answer yet. Many models have been proposed that will break the supersymmetry by

including new particles and interactions which are usually hidden from us below the symmetry

breaking scale. We can avoid the question of how supersymmetry is broken by parameterizing

the most general soft supersymmetry breaking terms [23]. In the MSSM these terms are given by

L
MSSM
so f t = −

1
2

(
M3 g̃g̃ + M2W̃W̃ + M1B̃B̃ + c.c.

)
−

(̃
uauQ̃Hu − d̃adQ̃Hd − ẽaẽLHd + c.c.

)
− Q̃†m2

QQ̃ − L̃†m2
L̃L − d̃

†

m2
dd̃ − ẽ

†

m2
ẽe

−m2
Hu

H∗uHu −m2
Hd

H∗dHd − (µHuHd + c.c.),

(3.3)
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where M1,2,3 are the bino, wino and gluino mass terms, au,d,e are related to the Yukawa couplings,

m2
Q,L,u,d,̃e

are squark and slepton mass terms, m2
Hu,Hd

are the mass terms for up and down type

Higgs and finally µ is the supersymmetric Higgs mass parameter.

3.2 Global and local supersymmetry

We start by introducing the superfields. A superfield Φ(x, θ, θ) is a function of not only the

spacetime coordinate x but also a function of Grassmann variables θ and θ satisfying the following

anticommutation relation:

{θα, θα̇} = 0, (3.4)

where α and α̇ are spinor indices. Because of their anitcommutation property, expansion of a

function of these variables is finite and given by

f (θ) = f0 + f1θ (3.5)

f (θ) = f ∗0 + f ∗1θ (3.6)

and a function of both θ and θ is given by

f (θ, θ) = f0 + f1θ + f ∗2θ + f3θθ, (3.7)

where f0, f1, f2, f3 are complex numbers.

Then by using the above properties we can write any chiral or vector superfield in the following

way

Φ(x, θ) = φ(x) + θψ(x) + θθF(x) (3.8)

Va(x, θ, θ) = −θσµθAa
µ(x) + iθθθλ

a
(x) − iθθθλa(x) +

1
2
θθθθDa(x), (3.9)

where φ are scalar fields and ψ are their fermionic superpartners. Also in the above expression, F

and D are auxilary fields which are introduced to close the supersymmetry algebra. They can be
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eliminated using the equation of motions which imply

Fi =
∂F
∂φi

= Wi (3.10)

Da = −ga(φ∗i T
aφi), (3.11)

where W(Φ) is the superpotential which is a holomorphic function of Φ. The scalar potential can

be written in terms of these F and D terms as

V =
∑

i

∣∣∣∣∣∣∂W
∂φi

∣∣∣∣∣∣ +
1
2

∑
a

g2
a

∑
i

φ†i Taφi


2

. (3.12)

By using the superfields and the Grassmann algebra, we can write a general Lagrangian in the

following form

L =

∫
d4x

{∫
d2θd2θLD +

∫
d2θLF + h.c.

}
, (3.13)

whereLF is a sum of scalar superfields andLD is a sum of vector superfields. This can be expressed

in terms of the superfields Φ,Va and the superpotential W(Φ), as

LSUSY =

∫
d4x

{∫
d2θd2θ

[
Φ†e gaTaVa

Φ + h.c.
]

+

∫
d2θ

[
1
4

WaαWa
α + W(Φ) + h.c.

] }
, (3.14)

where the field strength superfield is defined as

Wa = −iλa + θDa
− σµνθFa

µν − θθσ
µDµλ

a† (3.15)

By promoting global supersymmetry to be a local symmetry we can obtain supergravity

(SUGRA). This will introduce the gravity superfield which includes the spin 2 massless gravi-

ton and its superpartner spin 3/2 gravitino. The resulting Lagrangian depends only on 2 functions:

the Kähler potential G (mass dimension 2) and the gague kinetic function fab (dimensionless). In

SUGRA, the Kähler potential can be written as

G = κ2K + ln
[
κ6
|W|2

]
(3.16)
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where K(φi, φ†i ) is a real function (sometimes also called the Kähler potential) and κ = M−1
PL where

MPL =
√
~c5/8πG = 2.43 × 1018 GeV is the reduced Planck energy.

If the supersymmetry is broken spontaneously, the gravitino acquires mass by eating the

goldstino in a similar way to the Standard Model Higgs mechanism. In this context, it is called the

super-Higgs mechanism and the gravitino mass after the symmetry breaking becomes

m3/2 = MPL e−〈G〉/2M2
PL (3.17)

where 〈G〉 is the VEV of the Kähler potential.

3.3 mSUGRA

The simplest ansatz for the form of the Kähler metric is to make it symmetric under the permutation

of the superfields. As the result of this ansatz, soft supersymmetry breaking parameters are

universal. This leads to minimal supergravity (mSUGRA) [22].

In mSUGRA, all the sparticle spectrum and mixing angles are determined by four parameters

and a sign specified at the GUT scale which is approximately 1016 GeV. These are

m0 universal scalar mass

m1/2 universal gaugino mass

A0 universal trilinear coupling

tan β ratio of Higss VEVs

sgn µ sign of the µ parameter.

(3.18)

With tree level renormalization group running, the unified boundary conditions implies that

the gaugino masses at the electroweak scale obtain the ratios:

M1 : M2 : M3 = 1 : 2 : 6 (3.19)
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3.4 Electroweak symmetry breaking and the Higgs

In the MSSM, the classical scalar potential for the Higgs scalar field is given by

V =(|µ|2 + m2
Hu

)|H0
u|

2 + (|µ|2 + m2
Hd

)|H0
d |

2
− (bH0

uH0
d + c.c.)

+
1
8

(g2 + g′2)(|H0
u|

2
− |H0

d |
2)2,

(3.20)

where we set H+
u = 0 by using an SU(2)L gauge transformation which also implies H−d = 0 without

any loss of generality. For the scalar potential to have a minimum, we need to make sure it is

bounded from below. Quartic interactions guarantee that bound except for the D-flat directions

(|H0
u| = |H0

d |) for which we need to impose the following conditions:

2b < 2|µ|2 + m2
Hu

+ m2
Hd

b2 > (|µ|2 + m2
Hu

)(|µ|2 + m2
Hd

).
(3.21)

If these conditions are not satisfied, the origin H0
u = H0

d = 0 will be a stable minimum of the

scalar potential and electroweak symmetry breaking cannot occur. For the models with unified

boundary conditions m2
Hu

= m2
Hd

such as mSUGRA, renormalization group evolution due to

quantum corrections pushes m2
Hu

to be below m2
Hd

at the electroweak scale, and hence breaks

the electroweak symmetry. Because of these quantum corrections, this mechanism is known as

radiative electroweak symmetry breaking.

We now define the Higgs VEVs as vu,d = 〈H0
u,d〉 and the ratio of the VEVs as tan β = vu/vd where

0 < β < π/2. The Z boson mass and the electroweak gauge couplings can be written in terms of

these VEVs as

v2 = v2
u + v2

d = 2m2
Z/(g2 + g′2) ≈ (174 GeV)2. (3.22)

Since we made sure the scalar potential is bounded from below, to minimize it we simply impose
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the conditions ∂V/∂H0
u = ∂V/∂H0

d = 0 which imply

m2
Hu

+ |µ|2 − b cot β − (m2
Z/2) cos(2β) = 0

m2
Hd

+ |µ|2 − b tan β + (m2
Z/2) cos(2β) = 0.

(3.23)

We can eliminate b and |µ| by using these equations, but sign of µ remains free. In these equations

different types of parameters mix. The µ parameter is the supersymmetric Higgs mass parameter,

but b and m2
Hu,d

are supersymmetry breaking parameters. For the above system of equations to be

valid, these parameters need to be of the same order of magnitude. It is difficult to understand

this cancellation since those terms have different origins. This is know as the µ problem in

supersymmetry.

Below the electroweak symmetry breaking scale, electroweak gauge bosons Z0 and W± get

mass and the remaining degrees of freedom in the Higgs doublet form neutral and charged Higgs

states h0,H0,A0,H±. We can write these masses in terms of the Lagrangian parameters as

m2
A0 = 2|µ|2 + m2

Hu
+ m2

Hd
(3.24)

m2
h0,H0 =

1
2

(
m2

A0 + m2
Z ∓

√
(m2

A0 −m2
Z)2 + 4m2

Zm2
A0 sin2(2β)

)
(3.25)

m2
H± = m2

A0 + m2
W (3.26)

and the mixing angle between the CP-even Higgs states h0 and H0 is given by

sin 2α
sin 2β

= −
m2

H0 + m2
h0

m2
H0 −m2

h0

,
tan 2α
tan 2β

=
m2

A0 + m2
Z

m2
A0 −m2

Z

. (3.27)

3.5 Gaugino sector

We can write the mass terms of the MSSM Lagrangian for the gaugino sector as

Lgaugino = −
1
2

M3 g̃g̃ −
1
2

(ψ0)TMÑψ
0
−

1
2

(ψ±)TMC̃ψ
± + c.c., (3.28)
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where ψ’s are in the gauge-eigenstate basis and given by

ψ0 = (B̃, W̃0, H̃0
d, H̃

0
u)

ψ± = (W̃+, H̃+
u , W̃

−, H̃−d ) , ψ+ = (W̃+, H̃+
u ) , ψ− = (W̃−, H̃−u )

(3.29)

Here MÑ and MC̃ are neutralino and chargino mass matrices, respectively. At tree level, they are

given by

MÑ =



M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ

sβ sW mZ −sβ cW mZ −µ 0


, MC̃ =

 0 XT

X 0

 (3.30)

where sβ = sin β, cβ = cos β, sW = sinθW, cW = cosθW, and θW is the Weinberg angle. The chargino

mass matrix is block diagonal and X is a 2 × 2 matrix given by

X =

 M2
√

2 sβ mW
√

2 cβ mW µ

 . (3.31)

Now we can introduce a 4 × 4 unitary matrix N and two 2 × 2 unitary matrices U and V to

diagonalize the mass matrices MÑ and MC̃ and obtain mass eigenstates as follows

Ñi = Ni jψ
0
j , C̃+

i = Vi jψ
+
j , C̃−i = Ui jψ

−

j (3.32)
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such that

Mdiag

Ñ
= N∗MÑN−1 =



mÑ1
0 0 0

0 mÑ2
0 0

0 0 mÑ3
0

0 0 0 mÑ4


Mdiag

C̃
= U∗XV−1 =

 mC̃1
0

0 mC̃2

 .
(3.33)

At tree level, we can see from the Lagrangian given in Eqn. 3.28 that the gluino mass is equal to

M3. If we include one-loop corrections due to gluon exchange and quark-squark loops, we obtain

the result given in [24] as

mg̃ = M3(Q)

1 +
αs

4π

15 + 6 ln(Q/M3) +
∑

q̃

Aq̃


 , (3.34)

where

Aq̃ =

∫ 1

0
dx x ln

(
x m2

q̃ M2
3 + (1 − x)m2

q/M
2
3 − x(1 − x) − iε

)
. (3.35)

3.6 Squarks and sleptons

In the Cabibbo-Kobayashi-Maskawa (CKM) basis defined by the transformation K = V1V2 where

V1 and V2 rotate the left handed up and down quarks to the mass eigenstates, we can write the

general 6 × 6 squark mass matrices as

M2
ũ =

 M2
Q + m†umu + ∆u

L −m†u(A†u + µ∗ cot β)

−
(
Au + µ cot β

)
mu M2

U + mum†u + ∆u
R

 (3.36)

M2
d̃

=

 K†M2
QK + mdm†d + ∆u

R −m†d(A†d + µ∗ tan β)

−
(
Ad + µ tan β

)
md M2

D + mum†u + ∆u
R

 (3.37)
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and the general slepton matrices as

M2
ν̃

= M2
L + ∆

µ
L (3.38)

M2
ẽ =

 M2
L + mem†e + ∆e

L −m†e (A†e + µ∗ tan β)

−
(
Ae + µ tan β

)
me M2

E + m†e me + ∆e
R

 , (3.39)

where ∆
f
L,R is given by

∆
f
L = m2

Z cos 2β(T3 f − e f sin2 θW) (3.40)

∆
f
R = m2

Z cos 2β e f sin2 θW (3.41)

So in summary, the MSSM is the minimal extension (N = 1) of the Standard Model that

includes supersymmetry. It has extra fermionic and bosonic degrees of freedom which are the

superpartners of the Standard Model particles that will be probed at the LHC. In the following

chapters we are going to study how we can discover supersymmetry in the early runs at 7 TeV

center of mass energy at the LHC, and how to obtain information about string theory by studying

the low energy phenomenology of string theory motivated models.
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Chapter 4

SUSY Discovery Potential and Benchmarks for Early Runs at
√

s =

7 TeV at the LHC∗

As of the writing of this thesis, the LHC is running at 7 TeV center of mass energy and collecting

physics data. CERN has recently decided to continue running the LHC for a longer time period

and this increases the chances of discovering supersymmetry before an upgrade which will allow

the LHC to run at its design center of mass energy of 14 TeV. In this chapter, we focus on SUSY

discovery in this early run at the LHC, i.e., at 7 TeV center of mass energy with up to 2 fb−1 of

integrated luminosity. We also generate candidate benchmark models that can be studied further

with an emphasis on the next to lightest superpartner (NLSP) such as the chargino (χ̃±1 ), the stau

(̃τ1), the gluino (g̃), the CP odd Higgs (A0), and the stop (̃t1).

4.1 Standard Model at
√

s = 7 TeV

The determination of the relevant Standard Model backgrounds is an important part for the

discovery studies of new physics. Previous works were on early discovery at higher energies

[26, 27, 28, 29, 30]. One analysis at 7 TeV has already appeared in the literature [31] before this

work got published.

In our analysis, we use MadGraph/MadEvent 4.4 [32] for parton level processes, Pythia 6.4 [33]

for hadronization, and PGS 4 [34] for detector simulation and Parvicursor [35] for the signature

analysis. We used MLM matching [36, 37] with a kT jet clustering scheme to prevent double

counting of final states, CTEQ6L1 [38] parton distribution functions, and we required all final state

partons (except the top quarks) to have pT > 40 GeV. For a better sampling of the phase space we

∗This chapter is based on the work that has been published in Physical Review D [25].
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Figure 4.1: Left panel: A comparison of the b-tagging efficiency of ATLAS and the loose and tight
efficiencies of PGS 4 as a function of ET. Right panel: A comparison of the b-tagging efficiency of
ATLAS and the loose and tight efficiencies of PGS 4 as a function of η. Ours fits to the efficiency
of ATLAS as a function of ET, and η as parametrized by Eq. (4.1) are also exhibited. Note that the
total b-tagging efficiency is the product of the ET and η efficiency functions.

partitioned the QCD jet production into 4 bins according to the energy of the hardest jet.

MadGraph 4.4 // Pythia 6.4 // PGS 4 // Parvicursor

PDF: CTEQ6L1
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We also updated the b-tagging efficiency of PGS 4 to better represent the detector characteristics

of the LHC which was by default based off of the Tevatron b-tagging efficiency. In Fig. (4.1) we

compare the b-tagging efficiencies given in the ATLAS Expected Performance Report (EPR) [39]

with the one implemented in PGS 4. The left/right panel of Fig. (4.1) gives the b-tagging efficiencies

as a function of ET/η for ATLAS and the so called “tight” and “loose” efficiencies as defined in

PGS 4. There is a significant difference between these and those expected in the ATLAS and

CMS [40] detectors. In PGS 4, b-tagging efficiencies were assumed to approach a constant value

for ET ≥ 160 GeV. We have extended this ET value to 300 GeV following the EPRs of both
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detectors. Thus we have updated the b-tagging efficiencies as given in Eq. (4.1) where we have

kept the same degree polynomial as in PGS 4 originally. Here we make no modification to the

default PGS 4 rate for mistagging b jets. Our revised b-tagging efficiencies have the following form

where ẼT = ET/100 GeV and the total b-tagging efficiency is the product of the ET and η efficiency

functions.

bET = 0.0781391 + 2.02661 ẼT − 2.59664 Ẽ2
T + 1.5509 Ẽ3

T − 0.446698 Ẽ4
T + 0.047995 Ẽ5

T

bη = 1.00885 − 0.0497485 η + 0.693036 η2
− 0.0361142 η3

− 0.0222204 η4 + 0.00797621 η5
(4.1)

We show the Standard Model processes and their corresponding cross sections in Tab. (4.1) as

well as the number of events we have generated for each process. The reason for different numbers

of events for different processes is to better sample the more relevant part of the phase space. It is

not possible to generate at least 1 fb−1 of data for each process, so while trying to sample every part

of the phase space with sufficient precision, we focused more on the processes that might result in

a reasonable number of events after we apply our global cuts. That is also why we chose to limit

our background sample with the processes given in Tab. (4.1). For example, although the single

top production cross section is approximately half the tt production cross section, our post-trigger

cuts (/ET ≥ 200 GeV and a minimum transverse sphericity of 0.2) perform very well and eliminate

most of that background. Our analysis compares well with the analysis of [31]. The differences

between the two analyses can be explained by the different jet clustering methods used (kT-based

versus cone-based). See [41] for further details on how different jet clustering methods compare.
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SM process
Cross Number Luminosity

section (fb) of events
(
fb−1

)
QCD 2,3,4 jets [40 ≥ ET( j1)/GeV ≥ 100] 2.0 × 1010 74 M 0.0037

QCD 2,3,4 jets [100 ≥ ET( j1)/GeV ≥ 200] 7.0 × 108 98 M 0.14

QCD 2,3,4 jets [200 ≥ ET( j1)/GeV ≥ 500] 4.6 × 107 40 M 0.88

QCD 2,3,4 jets [500 ≥ ET( j1)/GeV ≥ 3000] 3.9 × 105 1.7 M 4.4

tt̄ + 0, 1, 2 jets 1.6 × 105 4.8 M 30

bb̄ + 0, 1, 2 jets 9.5 × 107 95 M 1.0

Z/γ
(
→ ` ¯̀, νν̄

)
+ 0, 1, 2, 3 jets 6.2 × 106 6.2 M 1.0

W± (→ `ν) + 0, 1, 2, 3 jets 1.9 × 107 21 M 1.1

Z/γ
(
→ ` ¯̀, νν̄

)
+ tt̄ + 0, 1, 2 jets 56 1.0 M 17, 000

Z/γ
(
→ ` ¯̀, νν̄

)
+ bb̄ + 0, 1, 2 jets 2.8 × 103 0.1 M 36

W± (→ `ν) + bb̄ + 0, 1, 2 jets 3.2 × 103 0.6 M 180

W± (→ `ν) + tt̄ + 0, 1, 2 jets 70 4.6 M 65, 000

W± (→ `ν) + tb̄ (t̄b) + 0, 1, 2 jets 2.4 × 102 2.1 M 8, 700

tt̄tt̄ 0.5 0.09 M 180, 000

tt̄bb̄ 1.2 × 102 0.32 M 2, 700

bb̄bb̄ 2.2 × 104 0.22 M 1.0

W± (→ `ν) + W± (→ `ν) 2.0 × 103 0.05 M 25

W± (→ `ν) + Z (→ all) 1.1 × 103 1.3 M 1, 100

Z (→ all) + Z (→ all) 7.3 × 102 2.6 M 3, 600

γ + 1, 2, 3 jets 1.5 × 107 16 M 1.1

Table 4.1: An exhibition of the Standard Model backgrounds computed in this work at ECM = 7 TeV.
All processes were generated using MadGraph 4.4 [32]. Our notation here is that ` = e, µ, τ, and
all = `, ν, jets. In the background analysis we eliminate double counting between the process
W± + tb̄ (t̄b) and tt̄ by subtracting out double resonant diagrams of tt̄ when calculating W± + tb̄ (t̄b).
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4.2 SUSY models, constraints and collider signatures

To generate candidate models we use a multi-step procedure. We first set the GUT scale pa-

rameters which determines a model at the high scale, then through the renormalization group

evolution we evolve the symmetry breaking parameters down to the electroweak scale, by using

MicrOMEGAs 2.4 [42], which eventually determines the low scale spectrum. After checking all

the constraints and bounds to see if it is a physically allowed model, we feed the spectrum into

SUSY-HIT 1.3 [43] to calculate the sparticle branching ratios and then into Pythia 6.4 [33] by using

the SLHA interface [44]. Then the output file which contains the event record is analyzed within

Parvicursor [35].

MicrOMEGAs 2.4 // SUSY-HIT 1.3 // Pythia 6.4 // PGS 4

��REWSB
LEP/Tevatron bounds
FCNC/DM constraints

OO
O�
O�
O�

modified b-tagging

777w7w7w7w7w7w7w7w7w7w7w

Parvicursor

As we mentioned, not all the models are physically allowed. The most important constraint is

the radiative electroweak symmetry breaking (REWSB) which turns on the Higgs mechanism that

gives masses to all fermions. Then we impose particle mass bounds obtained from LEP and the

Tevatron, the gµ−2 constraint, FCNC constraints from the rare decays of Bs → µ+µ− and b→ s+γ,

the relic density constraint and finally recent constraints on the spin independent neutralino-proton

cross sections due to non-observation of a dark matter particle in direct detection experiments.

LEP and Tevatron put bounds [45] on the sparticle masses and on the Higgs masses, these are

mA > 85 GeV, mH± > 79.3 GeV, mt̃1
> 101.5 GeV, and mτ̃1

> 98.8 GeV where A is the CP odd Higgs

and H± is the charged Higgs. We also impose a bound [46] on the lightest CP even Higgs mass,

mh > (93.5 + 15x + 54.3x2
− 48.4x3

− 25.7x4 + 24.8x5
− 0.5) GeV where x = sin2 (

β − α
)
, tan β is the

ratio of the Higss VEVs and α is the Higgs mixing angle. The final term in the bound represents a

theoretical error of 0.5 GeV in the calculation of mh and mA. Additionally we use the constraints

mχ±1
> 104.5 GeV if |mχ±1

− mχo
1
| > 3 GeV for the chargino mass and mg̃ > 309 GeV for the gluino
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mass [47].

Recent analysis of the hadronic corrections indicate a significant deviation in gµ − 2 around

3.9 σ between the SM prediction and experiment [48]. Such a contribution can arise from super-

symmetry [49, 50, 51, 52] and the size of the correction indicates a light sparticle spectrum. On the

other hand, data from semileptonic τ decays agrees pretty well with the SM prediction. In order to

reflect this uncertainty, we use a rather conservative bound−11.4×10−10
≤ (gµ−2) SUSY ≤ 9.4×10−9

to constrain the SUSY contribution to the muon’s anomalous magnetic moment.

Rare decays of B-mesons also constrain the SUSY parameter space. We use the boundsBR(Bs →

µ+µ−) < 5.8 × 10−8 [53, 47] and BR(b → sγ) = (352 ± 34) × 10−6 [54, 55]. There is currently a

small discrepancy between the SM prediction and the measured decay rate of b → sγ which is a

possible hint for the SUSY contribution [56, 57, 58] and hence another indication of possible light

superpartners. Thus this discrepancy along with the reported gµ − 2 result is encouraging for an

early SUSY discovery [59].

After 7 years of operation, WMAP has measured the dark matter relic density to a great

accuracy with ΩDMh2 = 0.1109 ± 0.0056 [60]. However, to account for the errors in the theoretical

computations and possible variations in the computation of the relic density using different codes

we take a rather wide range in the relic density constraints, i.e., 0.06 < ΩDMh2 < 0.16, in our

analysis.

Finally, we also consider the recent negative results of the direct dark matter detection experi-

ments CDMS-II [61, 62] and XENON-100 [63]. These experiments put the best known limits on the

spin independent neutralino-proton cross sections. Furthermore, we compare our results to the

expected sensitivity for XENON-100 of 6000 kg × day and for XENON-1Ton of 1 ton × year [64]

as well as the expected sensitivity for SuperCDMS [65]. We summarize all the constraints and

bounds we used in Table (4.2).

There are already a number of works which analyze the signatures for supersymmetry at

ECM = 10, 14 TeV. See [26, 28, 29, 66, 67, 68, 69, 70] for a small sample. The signatures we looked at

consist of a combination of multijets, b-tagged jets, multileptons, jets and leptons, and photons with

a variety of cuts designed to reduce the Standard Model background and enhance the SUSY signal
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Constraints / Bounds

REWSB Radiative electroweak symmetry breaking

LEP/Tevatron

mA > 85 GeV, mH± > 79.3 GeV

mh >
(
93.5 + 15x + 54.3x2

− 48.4x3
− 25.7x4 + 24.8x5

− 0.5
)

GeV

mt̃1
> 101.5 GeV, mτ̃1

> 98.8 GeV

mχ̃±1
> 104.5 GeV if |mχ̃±1

−mχ̃ 0
1
| > 3 GeV, mg̃ > 309 GeV

µ’s anomalous magnetic moment SUSY contribution: −11.4 × 10−10
≤ (gµ − 2) SUSY ≤ 9.4 × 10−9

FCNC BR
(
Bs → µ+µ−

)
< 5.8 × 10−8, BR

(
b→ sγ

)
= (352 ± 34) × 10−6

WMAP 0.06 < ΩDMh2 < 0.16

CDMS-II / XENON-100 Bounds on the spin independent neutralino-proton cross section

Table 4.2: A display of constraints and bounds used in our analysis.

with and without missing transverse energy. We use these signatures in the following sections to

compute the LHC reach in the framework of mSUGRA and also to determine benchmark models

that will be observable in the early run of the LHC. Table (4.3) summarizes the collider signatures

we have used in our analysis.

4.3 Sparticle production and LHC reach in mSUGRA

In this section we study sparticle production cross sections within the framework of mSUGRA and

look at the LHC reach at 7 TeV center of mass energy with 1 fb−1 of data.

In Fig. (4.2) we show the sparticle production cross sections as a function of the universal

gaugino mass m1/2 at the GUT scale. For this we set m0 = 500 GeV, A0 = 0, tan β = 20, µ > 0 and

generated 5,000 events for multiple m1/2 values. The left panel of Fig. (4.2) shows the cross sections

for the production of g̃g̃ (solid red line), g̃q̃ (dashed green line), q̃q̃ (dashed blue line) as a function

of m1/2. The middle panel gives the cross sections for the production of g̃χ± (solid red line), g̃χ0

(dashed green line), and the right panel gives the production cross section for χ±χ± (solid red line),

χ±χ0 (dashed green line), χ0χ0 (dashed blue line). We see that these cross sections are significant
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Signature name Description of the signature

1 monojets n(`) = 0 pT( j1) ≥ 100 GeV, pT( j2) < 20 GeV

2 multi-jets200 n(`) = 0 pT( j1) ≥ 200 GeV, pT( j2) ≥ 150 GeV, pT( j4) ≥ 50 GeV

3 multi-jets100 n(`) = 0 pT( j1) ≥ 100 GeV, pT( j2) ≥ 80 GeV, pT( j4) ≥ 40 GeV

4 hard-jets500 n(`) = 0 pT( j2) ≥ 500 GeV

5 hard-jets350 n(`) = 0 pT( j2) ≥ 350 GeV

6 multi-bjets1 n(`) = 0, n(b) ≥ 1

7 multi-bjets2 n(`) = 0, n(b) ≥ 2

8 multi-bjets3 n(`) = 0, n(b) ≥ 3

9 HT500 n(`) + n( j) ≥ 4 pT(1) ≥ 100 GeV ,
∑4

i=1 pT(i) + /ET ≥ 500 GeV

10 HT400 n(`) + n( j) ≥ 4 pT(1) ≥ 100 GeV ,
∑4

i=1 pT(i) + /ET ≥ 400 GeV

11 1-lepton100 n(`) = 1 pT(`1) ≥ 20 GeV, pT( j1) ≥ 100 GeV, pT( j2) ≥ 50 GeV

12 1-lepton40 n(`) = 1 pT(l1) ≥ 20 GeV, pT( j2) ≥ 40 GeV

13 OS-dileptons100 n(`+) = n(`−) = 1 pT(`2) ≥ 20 GeV, pT( j1) ≥ 100 GeV, pT( j2) ≥ 50 GeV

14 OS-dileptons40 n(`+) = n(`−) = 1 pT(`2) ≥ 20 GeV, pT( j2) ≥ 40 GeV

15 SS-dileptons100 n(`+
| `−) = n(`) = 2 pT(`2) ≥ 20 GeV, pT( j1) ≥ 100 GeV, pT( j2) ≥ 50 GeV

16 SS-dileptons40 n(`+
| `−) = n(`) = 2 pT(`2) ≥ 20 GeV, pT( j2) ≥ 40 GeV

17 3-leptons100 n(`) = 3 pT(l3) ≥ 20 GeV, pT( j1) ≥ 100 GeV, pT( j2) ≥ 50 GeV

18 3-leptons40 n(`) = 3 pT(l3) ≥ 20 GeV, pT( j2) ≥ 40 GeV

19 4+-leptons n(`) ≥ 4 pT(l4) ≥ 20 GeV, pT( j2) ≥ 40 GeV

20 1-tau100 n(τ) = 1 pT(τ1) ≥ 20 GeV, pT( j1) ≥ 100 GeV, pT( j2) ≥ 50 GeV

21 1-tau40 n(τ) = 1 pT(τ1) ≥ 20 GeV, pT( j2) ≥ 40 GeV

22 OS-ditaus100 n(τ+) = n(τ−) = 1 pT(τ2) ≥ 20 GeV, pT( j1) ≥ 100 GeV, pT( j2) ≥ 50 GeV

23 OS-ditaus40 n(τ+) = n(τ−) = 1 pT(τ2) ≥ 20 GeV, pT( j2) ≥ 40 GeV

24 SS-ditaus100 n(τ+
| τ−) = n(τ) = 2 pT(τ2) ≥ 20 GeV, pT( j1) ≥ 100 GeV, pT( j2) ≥ 50 GeV

25 SS-ditaus40 n(τ+
| τ−) = n(τ) = 2 pT(τ2) ≥ 20 GeV, pT( j2) ≥ 40 GeV

26 3+-taus100 n(τ) ≥ 3 pT(τ3) ≥ 20 GeV, pT( j1) ≥ 100 GeV, pT( j2) ≥ 50 GeV

27 3+-taus40 n(τ) ≥ 3 pT(τ4) ≥ 20 GeV, pT( j2) ≥ 40 GeV

28 1+-photon n(γ) ≥ 1 pT( j2) ≥ 40 GeV

Table 4.3: List of signatures and cuts used in the early discovery analysis. Our notation is as
follows: ` = e, µ, n(x) is the number of object x in the event, and pT(xn) is the transverse momentum
of the nth hardest object x. For the case of pT(τ) we take this to mean the visible part of the pT from a
hadronically decaying tau. The symbol | should be read as the logic “or”: i.e. the cut n (τ+

| τ−) = 2
would be read “the number of τ+ equals 2 or the number of τ− equals 2.” We required a global cut
of /ET ≥ 200 GeV and a minimum transverse sphericity of 0.2.
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Figure 4.2: An exhibition of the sparticle production cross sections at the LHC at
√

s = 7 TeV for
mSUGRA as a function of the universal gaugino mass m1/2 at the GUT scale. Left panel: production
cross sections of g̃g̃, g̃q̃, q̃q̃ (solid red, dashed green, dashed blue lines). Middle panel: production
cross sections for g̃χ±, g̃χ0 (solid red, dashed green lines). Right panel: production cross sections
for χ±χ±, χ±χ0, χ0χ0 (solid red, dashed green, dashed blue lines).

and 104 or more SUSY events might get produced with 1 fb−1 of integrated luminosity at the LHC.

Hence even at half of its design center of mass energy, it will be possible to discover SUSY at the

early runs of the LHC.

We also studied the reach of the LHC in mSUGRA by using the Standard Model backgrounds

given in Table (4.1) and collider signatures given Table (4.3). We assumed an integrated luminosity

of 1 fb−1. The mSUGRA parameters used are A0 = 0, tan β = 45, sign(µ) =1. The analysis is done

under the conditions of REWSB and the LEP and Tevatron constraints but without the imposition

of the relic density and FCNC constraints. The condition used for a signal to be observable is

S > max(5
√

SM, 10) where SM stands for the Standard Model background. Early LHC reaches at

1 fb−1 for the gluino (g̃), the chargino (χ̃±1 ), the neutralino (χ0
1), the stau (τ̃1), and the stop (t̃1) are

exhibited in the inset where the y axis is plotted on a logarithmic scale.

We see from Fig. (4.3) that the LHC will be able to probe up to about 400 GeV in m1/2 at low

values of m0 and up to about 2 TeV in m0 for low values of m1/2 with 1 fb−1 of integrated luminosity.

If CERN decides to run at half the design center of mass energy for a longer time and accumulate

2 fb−1 of integrated luminosity, the reach can be extended up to 450-500 GeV in m1/2.
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Figure 4.3: LHC reach in the framework of mSUGRA at 7 TeV center of mass energy.

4.4 Nonuniversal mSUGRA and benchmark models

Since the nature of physics at the Planck scale is still largely unknown, one may extend mSUGRA

to include nonuniversalities and one of the most widely used extensions is the nonuniversality

in the gaugino sector [71, 72, 73, 74, 75, 76, 77, 78, 79, 1, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90].

With this extension, we specify each gaugino mass mi separately or equivalently via the relations

mi = m1/2(1 + δi) (i=1,2,3) corresponding to the gauge groups U(1), SU(2)L, and SU(3)C. Hence the

space is extended to six parameters and a sign.

An analysis of cross sections similar to Fig (4.2) for the case of nonuniversalities in the gaugino

sector is given in Fig. (4.4), where we give contour plots in the mg̃ − mχ̃± mass plane with other

parameters as stated in the caption of the figure. The plots give contours of constant log (σSUSY/fb)

in the range 1 − 3.5. The result is that a chargino mass up to about 500 GeV and a gluino mass up

to roughly 1 TeV would produce up to 1,000 or more events with 1 fb−1 of integrated luminosity.

Nonuniversality in the gaugino sector implies that we cannot use the m1/2 −m0 plane to show

the LHC reach as we did for the universal case. In general, as the number of free GUT scale

38



1.5

2

2.5

33.5

100 200 300 400 500 600 700

400

600

800

1000

1200

1400

Χ
�

1
± mass HGeVL

g�
m

as
s

HG
eV

L

m0 = 250 GeV , tan Β = 10

1
1

1.5

1.5

2
2.5

33.5

100 200 300 400 500 600 700

400

600

800

1000

1200

1400

Χ
�

1
± mass HGeVL

g�
m

as
s

HG
eV

L

m0 = 250 GeV , tan Β = 30

1

1.5

2

2.5

3

3.5

100 200 300 400 500 600 700

400

600

800

1000

1200

1400

Χ
�

1
± mass HGeVL

g�
m

as
s

HG
eV

L

m0 = 1000 GeV , tan Β = 10

1.5
2

2.5
3

3.5

100 200 300 400 500 600 700

400

600

800

1000

1200

1400

Χ
�

1
± mass HGeVL

g�
m

as
s

HG
eV

L

m0 = 1000 GeV , tan Β = 30

Figure 4.4: Contour plots with constant values of log(σSUSY/fb) for σSUSY in mg̃ −mχ± mass plane
for the case with nonuniversalities in the gaugino sector. We vary the gaugino masses m1,2,3 up to
1 TeV and keep A0 = 0 and sign(µ)=+1. m0 and tan β are given on the figures.

parameters increases, it gets harder to find a plane similar to m1/2 − m0 which will allow the

drawing of a smooth reach curve. One way of dealing with this difficulty is to produce enough

benchmark models that will capture the characteristics of the theory we consider and to categorize

them according to a unified feature. Then one can study these models in further detail. This was

done in the past for the design center of mass energy of 14 TeV of the LHC. Following [69, 79], we
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accomplish the same task by using the mass of the next to lightest sparticle (NLSP) as our guide

for the models we look at. This method also captures the rich LHC phenomenology better than

previous methods of producing benchmark models which simply focused on covering a wider

range of GUT scale parameters than mass hierarchies. Hence we categorize our models according

to their NLSP’s which can be a chargino (χ±), a stau (τ̃), a gluino (g̃), a CP odd Higgs (A0), or a

stop (t̃).

We generated O(106) random models and selected the ones with a neutralino LSP and that

satisfy all the constraints and bounds given previously in Table (4.2) including the mass bounds of

sparticles, gµ−2 constraint, FCNC constraints and relic density constraints. Then these models are

grouped according to their NLSP’s and tested for visibility in at least one of the channels given in

Table (4.3) at the LHC with 1(2) fb−1 of integrated luminosity. The condition we used for a signal

to be observable is S > max(5
√

SM, 10) where SM stands for the Standard Model background. We

also required that our models be visible at future dark matter direct detection experiments. The

benchmark models we determined are displayed in Table (4.4), and the light sparticle masses are

displayed in Appendix (A.1).

We see that for some of the benchmarks the SUSY production cross section can be as large as

10-20 pb or more, implying that as many as 1 − 2 × 103 SUSY events will be produced at the LHC

with 1 fb−1 of integrated luminosity. So there is a good chance of discovering these models with

properly tuned signatures that will reduce the Standard Model background but will keep enough

SUSY events. In Fig. (4.5) we display discovery channels for which the benchmark models produce

enough events to be visible above background at 7 TeV center of mass energy with 0.1/1/2 fb−1 of

integrated luminosity. In fact for most of the benchmark models of Table (4.4) there are as many as

five channels and often more where the SUSY signal will become visible, thus providing important

cross-checks for the discovery of supersymmetry.

For early detection, the most effective and most studied discovery channels of SUSY, i.e. jets

+ missing energy signatures, should be as inclusive as possible to increase the number of signal

events since the number of SUSY signal events will be small at low integrated luminosities of

< 1 fb−1. As Fig. (4.5) and Table (4.5) indicate four of five chargino NLSP benchmarks can actually
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Label NLSP m0 m1/2 A0 tan β δ2 δ3
σSUSY σSI

(pb) (10−8 pb)

C1 χ̃±1 1663 309 1508 32.9 0.553 -0.687 24.3 7.0

C2 χ̃±1 449 330 176 20.3 -0.382 -0.151 2.4 3.7

C3 χ̃±1 1461 361 1327 30.3 -0.241 -0.702 14.8 4.5

C4 χ̃±1 1264 445 1775 24.7 0.718 -0.736 11.3 4.7

C5 χ̃±1 240 313 -522 5.48 -0.376 -0.106 3.5 0.7

G1 g̃ 1694 755 -2128 45.7 0.745 -0.803 2.2 4.9

G2 g̃ 2231 639 2710 18.0 0.543 -0.850 24.2 3.0

G3 g̃ 2276 615 -2407 47.2 0.631 -0.784 3.1 2.6

G4 g̃ 2180 651 -2271 47.1 0.680 -0.817 5.8 8.3

G5 g̃ 2126 683 2924 38.0 0.580 -0.849 19.4 4.8

G6 g̃ 1983 749 -2332 46.3 0.562 -0.824 3.7 2.7

H1 A0 2225 674 -2531 47.3 0.783 -0.703 0.3 0.9

S1 τ̃1 117 394 0 15.9 -0.327 -0.177 1.4 1.4

S2 τ̃1 101 446 -153 6.1 0.607 -0.207 0.4 0.5

S3 τ̃1 102 470 183 15.3 0.603 -0.266 0.5 3.0

S4 τ̃1 309 581 -613 27.7 0.839 -0.400 0.6 1.6

S5 τ̃1 135 688 -184 5.7 -0.052 -0.499 0.4 1.6

S6 τ̃1 114 404 27 13.0 -0.369 -0.267 2.0 3.0

S7 τ̃1 114 518 87 10.4 0.266 -0.247 0.2 0.6

T1 t̃1 1726 548 4197 21.2 0.132 -0.645 2.3 0.005

T2 t̃1 1590 755 3477 23.4 0.805 -0.803 3.8 0.094

Table 4.4: Benchmarks for models discoverable at the 5σ level at the LHC at
√

s = 7 TeV with 2 fb−1

of integrated luminosity. The model inputs are given at MGUT = 2 × 1016 GeV, µ > 0, and δ1 = 0.
The displayed masses are in GeV. All models satisfy the constraints/bounds given in Table (4.2).
The spin independent neutralino-proton cross section, σSI, is exhibited as well as the cross section
σSUSY for the production of supersymmetric particles at

√
s = 7 TeV.
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Figure 4.5: An exhibition of the visible discovery channels for 0.1 fb−1 (black squares), 1 fb−1 (dark
gray squares) and 2 fb−1 (light gray squares) at

√
s = 7 TeV. The discovery channels are listed in

Table (4.3).

Signature Name SM C1 C4 C5 G2 G3 S3 S6 T1

Multi-jets200 Events 47 91 68 105 28 16 49 88 12
S/
√

B · · · 13.3 9.9 15.2 4.1 2.4 7.2 12.7 1.8

Multi-jets100 Events 180 401 225 213 114 83 77 171 69
S/
√

B · · · 29.9 16.8 15.9 8.5 6.2 5.8 12.8 5.2

Multi-jets40 Events 215 497 316 218 135 107 77 176 85
S/
√

B · · · 33.9 21.6 14.9 9.2 7.3 5.3 12.0 5.8

HT400 Events 965 1035 501 496 286 183 156 419 143
S/
√

B · · · 33.3 16.1 16.0 9.2 5.9 5.0 13.5 4.6

Multi-bjets1 Events 188 460 188 175 51 126 50 102 86
S/
√

B · · · 33.5 13.7 12.8 3.7 9.2 3.6 7.5 6.3

Multi-bjets2 Events 46 157 49 69 7 57 19 39 45
S/
√

B · · · 23.1 7.3 10.1 · · · 8.4 2.8 5.7 6.6

1-lepton40 Events 367 45 20 74 0 0 30 38 27
S/
√

B · · · 2.4 1.0 3.9 · · · · · · 1.6 2.0 1.4

Table 4.5: LHC discovery channels after 1 fb−1 of integrated luminosity for selected benchmark
models. We have also included a much weaker multijet signature (multijets40) in which the four
jets are all required merely to satisfy pjet

T ≥ 40 GeV to channels listed previously in Table (4.3).
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be discovered via jet-based signatures within the first 100 pb−1 of data, with the remainder (C2)

reaching a five-sigma significance in the multijets100 channel within 200 pb−1. By contrast, because

of a heavier spectrum with a heavier gluino producing long cascades with moderately energetic

jets, our stau NLSP benchmark models favor traditional multijet signatures such as multijets200

and HT 500 which involve much harder jet-pT requirements. And finally our Higgs, stop and

gluino NLSP models favor discovery signatures with looser jet requirements including HT 400,

multi-bjets1 and multi-bjets2. The effectiveness of b-jet based signatures for these models can

be explained with the rather small mass gaps between the lightest SU(3)-charged state (i.e. the

gluino or squark) and the LSP which eventually appears at the end of the cascade [91]. An exam-

ple would be a light stop with the following decay chain producing a bjet: t̃1 → χ̃++b→W++b+χ̃ 0
1 .

0.1 1 2
0
1
2
3
4
5
6
7
8
9

10
11
12
13

L Hfb-1L

n
u

m
b

er
o

f
ch

an
n

el
s

C5

G2
S6

T1

Figure 4.6: An exhibition of the rapid rise in the number of discovery channels vs integrated
luminosity for four early discovery benchmarks given in Table (4.4). The number of discovery
channels for supersymmetry in each case is in excess of five and in some cases as large as 10 or
above at 1 fb−1 of data at

√
s = 7 TeV.

It is also interesting to ask how the number of visible signatures depends on the integrated

luminosity. Fig. (4.6) answers this question by showing the number of signature channels where

the SUSY signal becomes visible as a function of the integrated luminosity. The figure shows that
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the number of discovery channels increases rather sharply with luminosity and can become as

large as 10 or more at 1 fb−1 of integrated luminosity. We again see the analysis of Fig. (4.6) also

exhibits that a SUSY discovery can occur with an integrated luminosity as low as 100 pb−1 still

with several available discovery channels.
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Figure 4.7: An exhibition of the spin independent neutralino-proton cross section, σSI, for the
benchmark models. In the plot the curve labeled XENON100* is the expected sensitivity of
XENON100 with 6000kg × days of data, the curve labeled XENON1T is the expected sensitivity
for 1ton × year of data and the curves labeled SuperCDMS25 and SuperCDMS1T are the expected
sensitivities for the two SuperCDMS experiments.

As we mentioned earlier the benchmark models given in Table (4.4) will all be visible in at least

one channel at the early run of the LHC and further, as shown in Fig. (4.7), all of them are also

consistent with the current limits on the spin independent neutralino-proton cross sections from

CDMS-II and XENON-100. We also show the expected sensitivity of the next generation of xenon

and germanium experiments. One can see that our benchmark models will all be visible by direct

detection dark matter experiments in the future. In this sense our benchmark models constitute a

perfect set of models to study for the early detection of SUSY at the LHC and at direct detection of
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dark matter experiments. Finally in Figs (A.1, A.2) we exhibit the sparticle spectra of a subset of

the benchmark models given in Table (4.4).

4.5 Summary

We studied the SUSY discovery potential of the early LHC run at 7 GeV center of mass energy

with up to 2 fb−1 of data. As a first step we worked on generating a good representation of the

Standard Model background at the LHC which is generally consistent with a previous study [31].

We then looked into mSUGRA and nonuniversal mSUGRA frameworks with a nonuniversality

in the gaugino sector. Specifically we analyzed the LHC reach in the mSUGRA framework and

showed a reach of m1/2 ≈ 400 GeV (for low m0) and m0 ≈ 2000 GeV (for low m1/2) is possible

within the first inverse femtobarn of data. We then studied nonuniversal mSUGRA and generated

the benchmark models given in Table (4.4) satisfying both the theoretical and the experimental

constraints. These benchmark models are grouped according to their next to lightest sparticles

and represent different phenomenological properties which can be studied further for the early

detection of supersymmetry at the LHC as well as in direct detection experiments of dark matter.
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Chapter 5

Studying Gaugino Mass Unification at the LHC∗

As we approach the end of the second year of its operation, the LHC has already collected enough

physics data for analyses aimed at New Physics discoveries to be performed. So far there is

no sign of physics beyond the Standard Model but a fraction of the allowed parameter space of

supersymmetry (SUSY) is ruled out [94]. We continue to believe that SUSY is the best-motivated

extension to the Standard Model for physics at the LHC energy scale and there are many reasons

to expect that its presence will be established relatively early on in the LHC program [95]. It will be

even possible to determine some of the masses and spins of lighter sparticles with little integrated

luminosity [96, 26, 97].

After determining the presence of SUSY, the focus will be on interpreting these results. For a

high energy theorist interested in correlating the low scale supersymmetric theory to a high energy

theory, for example string theory, one of the most important properties would be the presence of

gaugino mass universality. The gauginos of the MSSM are said to be universal if they all acquire

soft masses of the same magnitude at the energy scale at which the SUSY breaking is transmitted

to the observable sector. This question is also related to the wave function of the LSP which is the

lightest neutralino for R parity conserving theories where the LSP is also a dark matter candidate.

Furthermore low energy phenomenology, the nature of the SUSY breaking, and the structure

of the underlying physics Lagrangian are all related strongly to the question of gaugino mass

universality [3]. Unfortunately the soft supersymmetry breaking masses of the gauginos are not

directly measurable at the LHC, as opposed to the physical superpartner masses [98]. Quantum

corrections to the gluino bare mass can be large and are related to a large set of other MSSM soft

parameters [24, 99] which are also not directly measurable at the LHC.

∗This chapter is based on the work that has been published in JHEP [84], AIP Conf.Proc. [92] and
Nucl.Phys.Proc.Suppl. [93].
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To study the gaugino masses, one can assume some particular model either with universal

gaugino masses such as mSUGRA [100] or with fixed, nonuniversal gaugino mass ratios [101, 81]

then make a fit to see if the model in hand explains the LHC data. But we are more interested in

knowing if gaugino mass universality is a property of the underlying physics or not, rather than

a feature of a particular theory. To accomplish our goal we consider a concrete parametrization

of nonuniversalities in soft gaugino masses. Among many such frameworks, we choose the so-

called “mirage pattern” of gaugino masses which is a string theory motivated parametrization by

Choi and Nilles [83]. In this paradigm gaugino masses unify at some high energy scale but this

unification has nothing to do with grand unification of gauge groups and the gauge couplings

will in general not unify at this particular energy scale. In the following section we give a brief

introduction to Mirage unification.

5.1 Mirage pattern of gaugino masses

We will now derive the mirage mass pattern here without making any reference to how it arises

from string-theoretic constructions. We begin by assuming there are two contributions to the soft

supersymmetry breaking gaugino masses that arise at some effective high-energy scale ΛUV at

which supersymmetry breaking is transmitted from some hidden sector to the observable sector.

In string constructions, one might choose ΛUV to be different and possibly higher than the GUT

scale such that the supergravity approximation for the effective Lagrangian becomes valid. We

also assume that one of these contributions to gaugino masses is universal and the other one

is proportional to the beta-function coefficient of the Standard Model gauge group. Hence the

universal piece is given by

M1
a (ΛUV) = Mu , (5.1)

where a = 1, 2, 3 labels the Standard Model gauge group factors Ga and Mu represents some mass

scale in the theory. The second piece is the so-called anomaly mediated piece, which arises from

loop diagrams involving the auxiliary scalar field of supergravity [102, 103]. It has the following
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form

M2
a (ΛUV) = g2

a (ΛUV)
ba

16π2 Mg , (5.2)

where Mg is related to the gravitino mass and the ba are the beta-function coefficients for the

Standard Model gauge groups which are given by

ba = −(3Ca −
∑

i

Ci
a), (5.3)

where Ca, Ci
a are the quadratic Casimir operators for the gauge group Ga, respectively, in the

adjoint representation and in the representation of the matter field charged under that group. For

the MSSM these are

{b1, b2, b3} =
{33

5
, 1,−3

}
. (5.4)

Note that if we take ΛUV = ΛGUT then we have

g2
1 (ΛUV) = g2

2 (ΛUV) = g2
3 (ΛUV) = g2

GUT '
1
2
. (5.5)

The full gaugino masses at the high energy boundary condition scale are therefore given by

Ma (ΛUV) = M1
a (ΛUV) + M2

a (ΛUV) = Mu + g2
a (ΛUV)

ba

16π2 Mg . (5.6)

Now we can evolve the above boundary conditions to some low-energy scale ΛEW via the (one-

loop) renormalization group equations (RGEs). Each contribution can be evolved separately and

for the universal piece we can use the fact that Ma/g2
a is a constant for the one-loop RGEs. After

some manipulation this yields

M1
a (ΛEW) = Mu

[
1 − g2

a (ΛEW)
ba

8π2 ln
(
ΛUV

ΛEW

)]
. (5.7)

For the anomaly-generated piece of (5.2) we can simply replace the gauge coupling with the value

at the appropriate scale

M2
a (ΛEW) = g2

a (ΛEW)
ba

16π2 Mg , (5.8)
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Combining these two pieces gives the low scale expression

Ma (ΛEW) = Mu

1 − g2
a (ΛEW)

ba

8π2 ln
(
ΛUV

ΛEW

) 1 − 1
2

Mg

Mu ln
(

ΛUV
ΛEW

)
 . (5.9)

For gaugino masses to be unified at the low scale ΛEW then the quantity in the square brackets

in the above expression must vanish. For a given ΛUV (such as the GUT scale) and a given

overall scale Mu, this gives a one-parameter family of models defined by the choice Mg. There is a

more convenient parametrization of the family of gaugino mass patterns which is realized by the

parameter α defined as

α =
Mg

Mu ln (ΛUV/ΛEW)
, (5.10)

so that (5.9) becomes

Ma (ΛEW) = Mu

[
1 −

(
1 −

α
2

)
g2

a (ΛEW)
ba

8π2 ln
(
ΛUV

ΛEW

)]
(5.11)

and the requirement of universality at the scale ΛEW now implies α = 2. Normalizing the three

gaugino masses by M1 (ΛEW) |α=0 and evaluating the gauge couplings at a scale ΛEW = 1 TeV we

obtain the mirage ratios

M1 : M2 : M3 = (1.0 + 0.66α) : (1.93 + 0.19α) : (5.87 − 1.76α)

' (1 + 0.66α) : (2 + 0.2α) : (6 − 1.8α) , (5.12)

for ΛUV = ΛGUT, in good agreement with the expression in [83].

We can also generalize the parametrization in (5.10) to use mass scales of the theory itself

instead of the starting and stopping points in the RG evolution of the gaugino mass parameters.

Following the convention of Choi et al. [104] we define

α ≡
Mg

Mu ln
(
MPL/Mg

) , (5.13)

where MPL is the reduced Planck mass MPL = 2.4 × 1018 GeV. Our parametrization is now free
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from the boundary condition scales of the RG flow and can be fixed in advance. Inserting (5.13)

into (5.9) yields

Ma (ΛEW) = Mu

{
1 − g2

a (ΛEW)
ba

8π2

[
ln

(
ΛUV

ΛEW

)
−
α
2

ln
(

MPL

Mg

)]}

= Mu

1 − g2
a (ΛEW)

ba

8π2

ln
ΛUV

(
Mg/MPL

)α/2
ΛEW



 . (5.14)

In this parametrization the requirement of universality at the scale ΛUV = ΛGUT implies the soft

supersymmetry breaking gaugino masses unify at an effective scale given by

Λmir = ΛGUT

(
Mg

MPL

)α/2
. (5.15)

The value of α can be thought of as the ratio of the anomaly contribution to the universal contri-

bution to gaugino masses. We obtain the gaugino mass ratios (1:2:6) of the minimal supergravity

paradigm in the limit of α → 0, while we obtain the gaugino mass ratios (3.3:1:9) of anomaly

mediated supersymmetry breaking (AMSB) in the limit of α→∞.

5.2 Setting up the problem

As we mentioned earlier in the beginning of the chapter, our goal is to develop a method to

understand if gaugino masses are universal or not, ideally by using the minimum amount of LHC

data possible. In terms of of the Mirage unification model we used, that translates into determining

if α is zero or not. Our first step is to demonstrate that some set of “targeted observables” [105]

(we will call them “signatures” in what follows) is sensitive to small changes in α when all other

SUSY model parameters are kept fixed. Although this is not too realistic, it is a good point of

departure and certainly in the spirit of the “slopes” of the Snowmass Points and Slopes [106] and

other such benchmark studies. “Slopes” then will correspond to “model lines” in our study in

which all parameters are kept fixed but the value of α is varied in a controlled manner.

To construct a model line we must specify the supersymmetric model in all aspects other
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than the gaugino sector. The MSSM has 105 free parameters but it would be impossible to work

with all those. Fortunately only a small subset are in any way relevant for the LHC collider

phenomenology [107]. We will therefore choose a subset of 19 parameters which is sometimes

called the pMSSM or phenomenological MSSM. The parameters † of the pMSSM are given as

follows: 

tan β, m2
Hu
, m2

Hd

At, Ab, Aτ

M1, M2, M3

mQ1,2 , mU1,2 , mD1,2 , mL1,2 , mE1,2

mQ3 , mU3 , mD3 , mL3 , mE3


. (5.16)

We specify these parameters in (5.16) at the electroweak scale (specifically ΛEW = 1 TeV) so

no renormalization group evolution is required. The gluino soft mass M3 sets the overall mass

scale of the gaugino sector and the other two gaugino masses M1 and M2 are determined relative

to M3 according to the Mirage mass patterns given in (5.12) as a function of α. A model line is a

collection of model points starting with all the inputs parameters of (5.16) fixed and the parameter

α is varied around α = 0 (the mSUGRA limit).

Pythia 6.4 // PGS 4 // Parvicursor

pMSSM

OO

To simulate each model we use PYTHIA 6.4 [33] for spectrum calculation and event generation.

We use PGS4 [34] to simulate the detector response. We then analyze the events in Parvicursor [35].

In the next sections, we will present the method we use to select the optimal set of signatures to

distinguish between α = 0 from other points along the model line by using the least amount of

integrated luminosity, the signature lists determined with this method, and how they perform on

a random set of models.
†Note that one can also use µ and MA instead of m2

Hu
and m2

Hd
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5.3 Signature selection

We would like to combine multiple good signatures to minimize the required integrated luminosity

to distinguish two similar models. To accomplish this goal, we need a method to measure the

“distance” between two model points in the signature space. This distance definition should take

into account the fact that the counting measurements will have uncertainties due to finite statistics.

So we define the following distance function similar to a chi-square statistic between any two

models A and B as the metric on the signature space which is very similar to the one used in [2]:

(∆SAB)2 =
1
n

n∑
i=1

SA
i − SB

i

δSAB
i

2

, (5.17)

where Si is the ith counting signature and δSAB
i is the uncertainty of the numerator, i.e. the difference

between the signatures which we will assume to contain only statistical errors. We can identify any

signature Si with an “effective” cross section σ̄i = Si/L which includes the geometric cuts that are

performed on the data, the detector efficiencies, etc. At large integrated luminosity this converges

to an “exact” cross section σi = limL→∞ σ̄i. Rewriting the metric in terms of these effective cross

sections gives us

(∆SAB)2 =
1
n

n∑
i=1

 σ̄A
i − σ̄

B
i√

σ̄A
i /LA + σ̄B

i /LB


2

, (5.18)

where LA and LB are the integrated luminosities that are used to compute the effective cross

sections.

We can obtain the statistical properties of this metric by replacing each signature (or effective

cross section) by a random variable. At a finite integrated luminosity, we can describe the outcome

of a counting experiment as a Poisson distribution approximated by a normal distribution (this is

a good approximation for approximately 10 counts or more which we require as the mimimum to

observe a signal). Hence we replace each signature with a random variable following a normal
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distribution. After this randomization, the effective cross sections simply become

σ̄i = SA
i /LA = σA

i +
√
σA

i /LA ZA , (5.19)

with a similar expression for the model B.

The sum of two normally distributed random variables is again a normally distributed random

variable, and we can express the sum as

a Z1(µ1, σ1) + b Z2(µ2, σ2) = Z(aµ1 + bµ2, a2σ2
1 + b2σ2

2), (5.20)

where µ is the mean and σ2 is the variance. So we can substitute (5.19) into (5.18) and if we use the

addition property of the random variables we get

(∆SAB)2 =
1
n

n∑
i=1

σA
i − σ

B
i +

√
σA

i
LA

+
σB

i
LB

Zi

2

σA
i

LA
+
σB

i
LB

+

√
1

L2
A

σA
i

LA + 1
L2

B

σB
i

LB Z′i

≈
1
n

n∑
i=1


σA

i − σ
B
i√

σA
i

LA
+
σB

i
LB

+ Z′′i


2

, (5.21)

where Zi, Z′i and Z′′i are independent normally distributed random variables. We assume all Z′′i

are independent which simply means our n signatures are independent from each other. The

algebraic form of Eqn. 5.21 suggests that (∆SAB)2 is itself a random variable following a non central

chi-square distribution given as

P(∆S2) = nχ2
n,λ(n∆S2) , (5.22)

where λ is the non-centrality parameter which is given by

λ =

n∑
i=1

(σA
i − σ

B
i )2

σA
i /LA + σB

i /LB
. (5.23)
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Figure 5.1: Distribution of ∆S2 values for 3 signatures (n = 3) and various λ values.

Here, λ = 0 (, 0) corresponds to comparing a model to itself (to a different model) by using two

sets of independent measurements.

Figure 5.1 shows how the (∆S)2 distribution favors larger values as λ increases. Since our goal

is to tell apart two models, we want the possible (∆S)2 values we will get from this comparison

to be safely away from the possible values we get by comparing a model to itself, i.e. λ = 0 case.

If we quantify this safety condition as the requirement that (100 × p)% of the distributions do not

overlap, i.e. (100 × p)% of the values we get by comparing the same model to itself are less than

(100× p)% of the values we get by comparing two different models, we obtain the following set of

equations

p =

∫ γ

0
nχ2

n,λ=0(n∆S2) d(∆S2) → Γ
(n

2
,

n
2
γ
)

= Γ
(n

2

)
(1 − p) (5.24)

p =

∫
∞

γ
nχ2

n,λmin
(n∆S2) d(∆S2), (5.25)

which can be solved numerically to compute a λmin value (see Table 5.1) for every number of

signatures n and the non-overlap fraction (or confidence level) p. We define γ as the (∆S)2 cut-off

value for which (100 × p)% of the values we get by comparing a model to itself is less than this

cut-off γ and this condition gives us Eqn 5.24 which can be solved numerically to compute γ. Then
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Confidence Level p

n 0.95 0.975 0.99 0.999

1 12.99 17.65 24.03 40.71

2 15.44 20.55 27.41 44.99

3 17.17 22.60 29.83 48.10

4 18.57 24.27 31.79 50.66

5 19.78 25.71 33.50 52.88

6 20.86 26.99 35.02 54.88

7 21.84 28.16 36.41 56.71

8 22.74 29.25 37.69 58.40

9 23.59 30.26 38.89 59.99

10 24.39 31.21 40.02 61.48

Table 5.1: List of λmin(n, p) values for various values of the parameters n and p.

this γ value is used as the lower cut-off for Eqn 5.25 which is solved again numerically to compute

λmin.

The condition for two models to be distinguishable is simply λ > λmin. In this inequality,

λmin is just a numerically computed number which is independent of the physics involved in the

collider experiment and all the physics is in the quantity λ given in Egn. 5.23 which is a function

of cross sections given by each signature.

Let us assume now that “model A” is the experimental data, which corresponds to an integrated

luminosity of Lexp, and “model B” is the simulation with integrated luminosity Lsim = qLexp. We

might imagine that q can be arbitrarily large, limited only by computational resources. Let us

make one final notational definition

R =

N∑
i=1

(σexp
i − σsim

i )2

σ
exp
i + 1

q σ
sim
i

, (5.26)

then we can compute the minimum amount of luminosity required for two models to be distin-
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Figure 5.2: The plot shows an example of the distribution of ∆S2 for n = 3. The curve on the left
represent λ = 0 case, i.e. values we will get when we compare a model to itself. 95% of the possible
outcomes of this comparison are below 2.605 which is shown on the plot. The curve on the right
has λ = 17.17 and 95% of the curve is beyond 2.605. As λ increases, this curve moves further to
the right and gets flatter.

guishable which is given by

Lmin =
λmin(n, p)

R
. (5.27)

If the two models we want to compare are very similar in all the channels (signatures) we

consider, then R will be small and Lmin will be large. On the other hand, if the models are very

different R will be large and Lmin will be small. This is of course what we expect, i.e. similar

models require more integrated luminosity to distinguish.

Now the question is how to make Lmin as small as possible. We see from Table 5.1 that

λmin increases as n increases and since R is a sum of positive quantities it increases with n as

well. Therefore using more signatures does not necessarily help in distinguishing models and,

moreover, the signature space is not big enough (or at least the relevant part of the signature

space, see [2]) to allow multiple independent directions. It is easy to see the orthogonality of

signatures such as number of events with 1 lepton and 2 leptons, but for more general cases, such

as kinematic histograms which we can integrate between limits that are also optimized to increase

distinguishability, we need a method to compute correlations between signatures. This can be

56



1

2

3 4 5

6

7

8

9

10

Figure 5.3: A graph generated by a random adjacency matrix. Connections show uncorrelated
signatures. For example {1, 6, 7} can be combined but {1, 6, 7, 9} can not because signature 9 is
correlated with signatures 6 and 7.

achieved by simply simulating a model many times, calculating all the signatures and using these

statistically independent values to compute the correlation coefficient. The correlation coefficient

between different signatures a and b is defined as

ρab =
cov(a, b)

var(a)var(b)
≈

1
N

∑
k

[
σ̄k

a − σa
] [
σ̄k

b − σb

]
√

1
N

∑
k

[
σ̄k

a − σa
]2

√
1
N

∑
k

[
σ̄k

b − σb

]2
for large N, (5.28)

where the σ̄k represent the individual results obtained from each of the N cross section measure-

ments, labeled by the index k. This correlation matrix ρab then can be used to determine the

compatible observables, i.e. the ones which are not correlated with each other with more than

some fixed threshold ε. This gives us the adjacency matrix of a graph which we define as

Cab =

 1 if |ρab| ≤ ε

0 if |ρab| > ε .
(5.29)

Now finding the compatible observables is equivalent to finding all the complete subgraphs

(or ‘clique’) of that graph which is a well known problem in graph theory. All these complete

subgraphs give us an Lmin value and obviously the one giving the minimum of all these graphs

contains the list of the signatures we want to combine together. One might think that the best

strategy is to include the largest set of uncorrelated signatures in the analysis but in fact the
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optimal strategy is generally to choose a rather small subset of the total signatures. To see this let

us first define the individual “resolving power” of a single signature Si, or the minimum integrated

luminosity required to distinguish between two models A and B as

(Lmin)i = λmin(1, p)
σA

i + 1
q σ

B
i

(σA
i − σ

B
i )2

. (5.30)

then considering n signatures simultaneously gives the minimum integrated luminosity of

Lmin =
λmin(n, p)
λmin(1, p)

{
(Lmin)−1

1 + (Lmin)−1
2 + · · · + (Lmin)−1

n

}−1
. (5.31)

The identity 5.31 suggests that we can find the optimal set of signatures by sequentially or-

dering the calculated (Lmin)i values for any particular pair of models in ascending order, then

including them one by one to find the global Lmin value. From Table 5.1, we can see that the ratio

λmin(n, p)/λmin(1, p) grows with n which implies that by adding more signatures we will eventually

reach a minimum where the resulting overall Lmin starts to grow again.

This can be seen from Figure 5.4 which represents the outcome of just such an optimization

procedure based on an actual pair of models from one of our model lines. In this case the

minimum integrated luminosity to distinguish two model points is achieved by using 12 signatures

represented by the circled point, which yields Lmin = 2.4 fb−1. We typically observed that the

optimal signature set usually consisted of O(10) signatures. If we are willing to settle for a

luminosity just 20% higher than this minimal value then we need only O(5) signatures, typically.

It is interesting to compare this to the results of [2] in which the effective dimension of signature

space was found to be also O(5) to O(10).

5.4 Signatures

To select the best signatures we start with an extremely large initial set of candidate signatures.

These include all the counting signatures and most of the kinematic distributions used in [2], all

of the signatures of [79], several “classic” observables common in the literature [108] and several
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Figure 5.4: In this particular example the minimum value of Lmin is found after combining just
the first 12 signatures. After just the best six signatures we are already within 20% of the optimal
value, as indicated by the shaded band.

more which we constructed ourselves. Removing redundant instances of the same signature

this yielded 46 independent counting signatures and 82 kinematic distributions represented by

histograms, adding up to 128 signatures in total.

As the second step, we computed the 128 × 128 correlation matrix (5.28) in the following

manner. We took a simple MSSM model specified by a parameter set as in (5.16), with gaugino

masses having the unified ratios of mSUGRA. We generated N = 2000 simulations of this model,

each containing 5 fb−1 of events using PYTHIA 6.4, which were then passed to the detector

simulation PGS4. After simulating the detector response and object reconstruction the default

level-one triggers were applied. We then applied the post-trigger cuts given in Table 5.2. After

these object-specific cuts we then applied an event-level cut on the surviving detector objects

similar to those used in [2]. Specifically we required all events to have missing transverse energy

/ET > 150 GeV, transverse sphericity ST > 0.1, and HT > 600 GeV (400 GeV for events with 2 or

more leptons) where HT = /ET +
∑

Jets pjet
T . Once all cuts were applied the grand list of 128 signatures

was then computed in Parvicursor [35] for each run, and from these signatures the covariance
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Object Minimum pT Minimum |η|

Photon 20 GeV 2.0

Electron 20 GeV 2.0

Muon 20 GeV 2.0

Tau 20 GeV 2.4

Jet 50 GeV 3.0

Table 5.2: After event reconstruction using the package PGS4 we apply additional cuts to the
individual objects in the event record. Detector objects that fail to meet the above criteria are
removed from the event record and do not enter our signature analysis. These cuts are applied to
all analysis described in this chapter.

matrix in (5.28) was constructed.

The result of the analysis showed that many of the signatures were correlated with one another.

For example, the distribution of transverse momenta for the hardest jet in any event was correlated

with the overall effective mass of the jets in the events (defined as the scalar sum of all jet pT values:

Meff =
∑

Jets pjet
T ). Both were correlated with the distribution of HT values for the events, and

so forth. One way to eliminate correlations is to partition the events into mutually-exclusive

subsets through some topological criteria such as the number of jets and/or leptons. One can then

apply some other criteria such as the HT distribution to further divide the event data into even

smaller subsets. Our analysis indicated that this partitioning strategy has its limitations because

the resolving power of any given signature tends to diminish as the set it is applied to is made ever

more exclusive. This is of course related to the decreasing cross-section associated with the more

exclusive final state. We were thus led to consider a very simple two-fold partitioning of the data:

Njets ≤ 4 versus Njets ≥ 5,

Nleptons = 0 versus Nleptons ≥ 1.
(5.32)

After constructing the correlation matrix, we then constructed the adjacency matrix 5.29 by

allowing small correlations among signatures, i.e. different tolerance levels ε, which is within

the statistical uncertainties given the finite computational time. As we mentioned before, all the
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Description Min Value Max Value

1 Many
eff

= /ET +
∑

all pall
T [All events] 1250 GeV End

Table 5.3: Signature List A. The effective mass formed from the transverse momenta of all objects
in the event (including the missing transverse energy) was the single most effective signature of
the 128 signatures we investigated. Since this “list” is a single item it was not necessary to partition
the data in any way. For this distribution we integrate from the minimum value of 1250 GeV to
the end of the distribution.

subgraphs of the graph built from the adjacency matrix give us then the possible combinations of

signatures. Each of these signature combinations implies a minimum integrated luminosity and

we minimized over these candidate signature lists.

To accomplish this global minimization we constructed a large number of model families in

the manner described in (5.16), each involving the range −0.5 ≤ α ≤ 1.0 for the parameter α in

steps of ∆α = 0.05. For each point along these model lines we generated 105 events using PYTHIA

6.4 and PGS4. We also generated a Standard Model background sample consisting of 5 fb−1 each

of t/t̄ and b/b̄ pair production, high-pT QCD dijet production, single W± and Z-boson production,

pair production of electroweak gauge bosons (W+ W−, W± Z and Z Z), and Drell-Yan processes.

Then to compute the best subsets out of our 128 signatures to measure the value of the parameter

α, we fixed “model A” to be the point on each of the model lines with α = 0 and then treated each

point along the line with α , 0 as a candidate “model B.” The lists we will present in Tables 5.3, 5.4

and 5.5 represent an ensemble average over these model lines, restricted to a maximum correlation

amount ε as described above. Signatures requiring an integration range are also optimized during

this process to give better discrimination between different α values.

The single most effective signature at separating models with different values of the parameter

α is given in Table 5.3. It is simply the effective mass formed from all objects in the event

Mall
eff = /ET +

∑
all objects

pT , (5.33)

where we form the distribution from all events which pass our initial cuts. It is not surprising

for this particular signature to perform well given the way we have set up the problem. It has a
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Description Min Value Max Value

1 Mjets
eff

[0 leptons, ≥ 5 jets] 1100 GeV End

2 Many
eff

[0 leptons, ≤ 4 jets] 1450 GeV End

3 Many
eff

[≥ 1 leptons, ≤ 4 jets] 1550 GeV End

4 pT(Hardest Lepton) [≥ 1 lepton, ≥ 5 jets] 150 GeV End

5 Mjets
inv [0 leptons, ≤ 4 jets] 0 GeV 850 GeV

Table 5.4: Signature List B. The collection of our most effective observables, restricted to the case
where the maximum correlation between any two of these signatures is 10%. Note that the jet-
based effective mass variables would normally be highly-correlated if we had not partitioned the
data according to (5.32). For these distributions we integrate from “Min Value” to “Max Value”.

large cross section because of its inclusive nature and it is sensitive to the mass differences between

the gluino and the lighter electroweak gauginos which is precisely governed by the parameter α.

Although it is the ‘single’ most effective signature it can often fail to be effective at all in certain

circumstances as we will see in the next section, resulting in a rather large required Lmin to be able to

separate α = 0 from non-vanishing cases. In addition, considering the difficulties in measuring the

missing energy and jet transverse momenta, it suffers the most from experimental uncertainties.

This suggests a larger and more varied set of signatures would be preferable.

We next allow signatures with up to 10% correlation, i.e. ε = 10%. This time we have a larger

set consisting of 5 signatures given in Table 5.4. We again see the totally inclusive effective mass

variable of (5.33) as well as the more traditional effective mass variable, Mjets
eff

, defined similarly

to (5.33) but with the scalar sum of pT values now running over the jets only

Mjets
eff

= /ET +
∑
jets

pT . (5.34)

In this second list, we also include the pT of the hardest lepton in events with at least one lepton

and five or more jets, as well as the invariant mass Mjets
inv of the jets in events with zero leptons

and 4 or less jets, where invariant mass is defined as the norm of the total 4-momenta of objects in

consideration. Without the partitioning the data into disjoint sets according to (5.32) the various

jet-based effective mass variables would normally be highly correlated with one another. The
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reason for favoring jet-based observables to those based on leptons is again largely due to the fact

that jet-based signatures have larger effective cross-sections in most of the parameter space given

in (5.16) than leptonic signatures. The best performing signatures distinguishing two closeα values

are those which track the narrowing gap between the gluino mass and the electroweak gauginos

and the narrowing gap between the lightest chargino/second-lightest neutralino mass and the LSP

mass. In this case the first leptonic signature to appear, which is the transverse momentum of the

leading lepton in events with at least one lepton, is an example of just such a signature.

Finally, we allow as much as 30% correlation between any two signatures in the list and obtain

an even larger list with a wider variety of signatures. We display them in Table 5.5 according to the

partition of data being considered. As we will see in the next section, it is important to have this

wider variety of observables for some of the supersymmetric models that have unusual properties

or for the cases where mass hierarchies depend on the α value.

In this final list in Table 5.5 we have three counting signatures. The first one is the total count

of events containing at least 1 lepton and at most 4 jets. The next one is the total count of events

with opposite charge dileptons having invariant mass in the Z window (within ±5 GeV of Z boson

mass), or simply a count of on-shell Z bosons. This is actually related to one of the spoiler modes for

the trilepton signal which is one of the well known clean discovery channels of supersymnmetry.

Unfortunately the cross section for the trilepton channel does not have a strong dependence on α

and that is why it did not make the list. The last counting signature making the list is the total

count of events with at least 2 b-jets which is a proxy for counting on-shell Higgs bosons. The

effectiveness of these two signatures is more obvious when the mass splitting χ̃ 0
2 − χ̃

0
1 strongly

depends on α.

The remaining signatures are similar to the ones in lists A and B, they all include kinematic

variables or combinations of them. For example the effective mass variables from the list B also

appear in list C, as well as the new signatures such as pT of the 4th hardest jet. There are several

signatures in the list C that are ratios of kinematic variables which turned out to be less correlated

with other signatures compared to the unnormalized ones. Signature #8, which is one of them, is
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Description Min Value Max Value

Counting Signatures

1 N` [≥ 1 leptons, ≤ 4 jets]

2 N`+`− [M`+`−

inv = MZ ± 5 GeV]

3 NB [≥ 2 B-jets]

[0 leptons, ≤ 4 jets]

4 Many
eff

1000 GeV End

5 Mjets
inv 750 GeV End

6 /ET 500 GeV End

[0 leptons, ≥ 5 jets]

7 Many
eff

1250 GeV 3500 GeV

8 rjet [3 jets > 200 GeV] 0.25 1.0

9 pT(4th Hardest Jet) 125 GeV End

10 /ET/Many
eff

0.0 0.25

[≥ 1 leptons, ≥ 5 jets]

11 /ET/Many
eff

0.0 0.25

12 pT(Hardest Lepton) 150 GeV End

13 pT(4th Hardest Jet) 125 GeV End

14 /ET + Mjets
eff

1250 GeV End

Table 5.5: Signature List C. In this collection of signatures we have allowed the maximum cor-
relation between any two signatures to be as high as 30%. Note that some of the signatures are
normalized signatures, (#8, #10 and #11), while the first three are truly counting signatures. A
description of each of these observables is given in the text. For all distributions we integrate from
“Min Value” to “Max Value”.
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defined as the following ratio

rjet ≡
pjet3

T + pjet4
T

pjet1
T + pjet2

T

(5.35)

where we required at least three jets with pT > 200 GeV. This signature, like the pT of the hardest

lepton or the pT of the 4th hardest jet, was effective at capturing the increasing softness of the

products of cascade decays as the value of α was increased away from α = 0.

5.5 Results

To be able to test the effectiveness of our signature lists, we generated an additional set of 500

pMSSM model lines with parameters given in (5.16). Each line consisted of 6 models with α value

ranging from 0 to 0.5 in steps of 0.1. To capture a broader variety of models we scanned over a

wide range of parameters, specifically we allowed slepton and squark masses, the gaugino mass

scale determined by M3 and the µ parameter to range between 300 GeV and 1200 GeV, and tan β

to range between 2 and 50. We fixed the pseudoscalar Higgs mass mA to be 850 GeV. Finally, all

the points on the model lines are required to satisfy experimental mass constraints. We generated

105 events for each point along the α lines and computed Lmin for each of our three signature sets.

The results are shown in Figures 5.5 and 5.6. Figure 5.5 shows the ability of our signature lists

to separate the case α = 0.1 from α = 0 (top pair of plots) and the case α = 0.3 from α = 0 (bottom

pair of plots). On the vertical axis we display the percentages of the models that our signatures are

able to distinguish between two α values. Horizontal axis is the required integrated luminosity.

One can see that the signature list C offers a greater efficiency compared to the signature lists A

and B. This is due to the very broad range of signatures ranging from effective mass to dileptons.

Figure 5.6 shows the integrated luminosity (or number of supersymmetric events) needed to

detect α , 0 for 95% of our random models is given as a function of the five non-vanishing α values

simulated.
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5.6 Summary

In the work presented in this chapter, we asked ourself what is the most important information that

would be useful to a high energy theorist interested in connecting the supersymmetric physics

at the LHC to physics at an even higher energy scale, such as some underlying string theory.

We believe the most important information is the question of gaugino mass universality. We

developed statistical methods that will let us choose the best signatures to resolve the amount of

non-universality in the gaugino sector for a model following the mirage pattern of gaugino masses.

Our results concluded that up to a 30% non-universality is resolvable after just one year of LHC

data.
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Chapter 6

Phenomenology of Deflected Mirage Mediation∗

In the next few years, LHC will be able to probe TeV scale softly broken supersymmetry [110, 111].

The breaking of supersymmetry is thought to be realized in a hidden sector and communicated

to the observable sector via the interactions of mediator fields. In this scheme, the low energy

phenomenology of softly broken supersymmetric models is only governed by the mediation

mechanism transmitting supersymmetry breaking to the MSSM fields and is not sensitive to

the details of the hidden sector. As the result, the collider phenomenology depends on soft

supersymmetry breaking terms only. But large number of these terms (125 in MSSM) makes a

general collider study impossible. It is then important to study possible supersymmetry breaking

mechanisms instead of the most general parameter set.

The three most popular supersymmetry breaking mechanisms are gravity mediation, gauge

mediation and bulk mediation. Gravity mediated terms [22, 112, 113, 114, 115] arise from couplings

that vanish as MP → ∞. Examples are minimal supergravity and modulus mediation models

[116, 117, 118], and the anomaly mediation models [119, 120, 103]. Gauge mediated terms arise

from loop diagrams involving new messenger fields with Standard Model charges [121, 122, 123,

124, 125, 126, 127, 128, 129, 130]. Bulk-mediated terms arise from bulk mediator fields in braneworld

scenarios. Examples include gaugino mediation [131, 132] and Z′ mediation [133, 134]. In most

supersymmetric models, one of these mediation mechanisms is assumed to dominate [106].

One can also have models with mixed mediation mechanisms. Such models are motivated

within string-theoretic constructions, such as the Kachru-Kallosh-Linde-Trivedi (KKLT) approach

to moduli stabilization [135]. As we studied in the previous chapter, Mirage mediation is an

example to this in which the gravity mediated terms and the anomaly mediated terms are com-

∗This chapter is based on the work that has been published in JHEP [85] and submitted to EPJC [109]
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parable in size [136, 137]. As the result of the two supersymmetry breaking mechanisms at work,

the phenomenology of Mirage mediation is substantially different than the minimal supergravity

models [104, 138, 139, 140, 141, 142, 143] including a relatively squeezed gaugino sector compared

to mSUGRA [83] and reduced low energy fine-tuning [144, 145, 146, 147, 148].

Deflected mirage mediation (DMM) is an extension of mirage mediation in which gauge-

mediated supersymmetry breaking terms are also present and competitive in size to the gravity-

mediated and anomaly-mediated soft terms [149, 150]. Threshold effects due to the gauge me-

diation messenger fields shifts (or “deflects”) the mirage unification scale. It is a very general

framework in the sense that all the single mediation mechanisms are special limits and a broader

phenomenology is possible when mixed mediation involving more than one mechanism is turned

on by adjusting the dimensionless parameters of the theory.

In this chapter we will study the collider phenomenology of DMM following previous work

on the sparticle spectrum [150, 151] and dark matter constraints [86]. We will first focus on the

differences between DMM and pure mirage mediation. By adjusting the parameters of the theory

one can get a squeezed gaugino sector resulting in gluinos that are typically lighter than other col-

ored superpartners. In this case, the collider phenomenology is dominated by gluino production,

with soft decay products due to the compressed chargino and neutralino mass spectrum. We will

also look into the possible mass hierarchies of sparticles in the framework of DMM following the

work by Feldman, Liu, and Nath (FLN) [69, 78, 79]. We will present the most common hierarchies

occurring in deflected mirage mediation models and discuss the phenomenology following this

classification.

6.1 DMM framework

Here we will briefly review the deflected mirage mediation paradigm and give the soft supersym-

metry breaking masses and couplings, as well as the threshold corrections arising due to the gauge

mediation messenger fields. DMM is a generalization of pure mirage mediation motivated from

the KKLT flux compactification approach within Type IIB string theory [135]. In this framework
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gravity and anomaly mediation terms are given by

mgravity
soft ∼

FT

T + T
, manomaly

soft ∼
1

16π2
FC

C
, (6.1)

where T is the Kähler modulus and C is the compensator of the gravity multiplet. Supersymmetry

is broken by an uplifting potential of the form (T + T)−2 which cancels the otherwise negative

cosmological constant and results in the following mirage mediation relation [136, 137]:

FT

T + T
∼

1
ln(MP/m3/2)

FC

C
, (6.2)

in which MP = 2.4×1018 GeV is the reduced Planck mass, and m3/2 is the gravitino mass. As m3/2 is

typically ∼ 100 TeV in this class of models, the tree-level gravity mediation terms are comparable

in magnitude to the anomaly mediation terms.

Deflected mirage mediation also introduces a gauge singlet X and vectorlike messenger pairs

Ψ, Ψ with SM gauge charges which are taken to be 5, 5̄ representations of SU(5), as in many models

of gauge mediation. In general, X can acquire an F term vacuum expectation value, leading to

gauge mediated terms of the form

mgauge
soft ∼

1
16π2

FX

X
. (6.3)

Depending on the stabilization mechanism for X, it was shown in [149, 150] that in general,

FX

X
∼

FC

C
, (6.4)

which implies that the gravity, anomaly and gauge mediation terms contribute equally in the

framework of DMM.

Without going into details, one can then use supergravity techniques and obtain the observable

sector soft supersymmetry breaking Lagrangian, the gaugino and the scalar masses as well as

trilinear couplings and threshold corrections. By replacing the F terms with the parametrization
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given in [149, 150], as follows:

FC

C
= αm ln

MP

m3/2

FT

T + T
= αm ln

MP

m3/2
M0 (6.5)

FX

X
= αg

FC

C
= αg αm ln

MP

m3/2
M0, (6.6)

one obtains the soft supersymmetry breaking masses at the GUT scale MG as

Ma(MG) = M0

1 +
g2

0

16π2 b′aαm ln
MP

m3/2

 , (6.7)

Ai(MG) = M0

[
(1 − ni) −

γi

16π2αm ln
MP

m3/2

]
, (6.8)

m2
i (MG) = M2

0

(1 − ni) −
θ′i

16π2αm ln
MP

m3/2
−

γ̇′i
(16π2)2

(
αm ln

MP

m3/2

)2 , (6.9)

and the threshold corrections as

∆Ma = −M0N
g2

a(Mmess)
16π2 αm

(
1 + αg

)
ln

MP

m3/2
, (6.10)

∆m2
i = M2

0

∑
a

2caN
g4

a(Mmess)
(16π2)2

[
αm(1 + αg) ln

MP

m3/2

]2

. (6.11)

where g0 = ga(MG) is the unified gauge coupling at the GUT scale, γ’s are the anomalous dimen-

sions †, ba = ( 33
5 , 1,−3) are the MSSM beta function coefficients and b′a include contribution from

the messenger fields and given as b′a = ba + N.

Let us summarize the model parameters of deflected mirage mediation:

• M0 : Overall scale of the soft terms,

• Mmess : Messenger scale associated with gauge mediation, ranging from 10 − 100 TeV to the

GUT scale,

• αm : Ratio of anomaly mediation to gravity mediation, theoretically-motivated to be in the

range 0 ≤ αm ≤ 2,

†Anomalous dimensions are given in Appendix B in terms of gauge and Yukawa couplings.
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• αg : Ratio of gauge mediation to anomaly mediation, theoretically-motivated to be in the

range −1 ≤ αg ≤ 2,

• N : Number of messenger pairs,

• {ni} : Modular weights of the MSSM multiplets,

and in addition the usual tan β and sign of µ parameters. The modular weights, which describe

the couplings of the matter fields to the Kähler modulus, can in principle be flavor and generation-

dependent. To avoid this issue, we fix the modular weights to the standard values of ni = 1/2 for

the matter fields and ni = 1 for the Higgs fields. Hence we end up with 5 continuous parameters,

1 integer parameter and a sign. Despite its small extension of parameters compared to mSUGRA

which has 4 continuous parameters and a sign, we will see that DMM provides richer LHC

phenomenology.

6.2 Comparison with mirage unification

In pure mirage mediation, the soft terms unify not at the unification scale MG ∼ 1016 GeV as in the

case of mSUGRA, but rather at a “mirage” scale [136, 137, 104] given by:

Mmir = MG

(m3/2

MP

)αm/2
, (6.12)

and in deflected mirage mediation, unification is lost in the scalar sector but gaugino masses still

unify [149, 150] at the following (deflected) mirage scale:

Mmir = MG

(
m3/2

MPl

)ραm/2

, (6.13)

where the ρ parameter is given by

ρ =

1 +
2Ng2

0

16π2 ln
MG

Mmess

 1 −
αmαgNg2

0

16π2 ln
MP

m3/2

−1

. (6.14)

72



2 4 6 8 10 12 14 16

0.4

0.6

0.8

1.0

1.2

1.4

log10HQ� GeVL

g
1,

2
,3

2 4 6 8 10 12 14 16

0.4

0.6

0.8

1.0

1.2

1.4

log10HQ� GeVL

g
1,

2
,3

2 4 6 8 10 12 14 16

0.4

0.6

0.8

1.0

1.2

1.4

log10HQ� GeVL

g
1,

2
,3

Figure 6.1: Renormalization group evolutions of gauge couplings for our 3 deflected mirage
mediation benchmark models given in Table 6.1. Messenger fields turn on at 1010 GeV for the first
and the third models, and at 107 GeV for the second model. The beta function coefficients depend
on the number of messenger fields and hence result in discontinuities in the energy dependence
of the gauge couplings.

In the absence of messenger fields, i.e. N = 0, we obtain the mirage mediation limit, although

in the limit of vanishing gauge mediation contributions, i.e. αg = 0, the messenger fields still

contribute to anomaly mediation. In the presence of the messenger fields, i.e. N > 0, we obtain

ρ > 1 when αg = 0, such that the mirage unification scale is lowered compared to that of the pure

mirage mediation case. If αm, N, and Mmess are fixed; for αg > 0, ρ increases and Mmir is lowered,

while for αg < 0, ρ decreases and Mmir is correspondingly increased.

To see the difference more clearly between pure mirage mediation and deflected mirage medi-

ation, we will consider a set of benchmark points. We display the high scale input parameters of

these benchmark points in Table 6.1. The models are grouped into /DMM (pure mirage mediation)

and DMM (deflected mirage mediation) pairs. All the DMM models are chosen in such a way that

they satisfy LEP sparticle mass bounds and dark matter relic density constraints.

In Figure 6.1 we display the running of gauge couplings of our deflected mirage mediation

benchmark points given in Table 6.1. In the presence of the messenger fields, the values of the

beta function coefficients increase by the number of messenger fields, i.e., b′a = ba + N. With the

messengers, gauge couplings are still unified but at a higher value depending on the number of

messenger fields. In Fig. (6.2) we display a comparison of the renormalization group evolution of

the gaugino masses for our 3 pairs of benchmark models.

For the first pair of models αm and αg are chosen to obtain similar mirage unification scales of
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approximately a TeV. The unification is not exact due to two-loop effects: for the DMM model of the

pair, the three gaugino soft masses at the electroweak scale are M1 = 500 GeV, M2 = 494 GeV, and

M3 = 574 GeV, while for the pure mirage mediation model they are M1 = 929 GeV, M2 = 929 GeV,

and M3 = 1062 GeV. For the pure mirage mediation model, the electroweak symmetry breaking

conditions constrain the µ-parameter to a relatively small value of µ = 239 GeV. The approximate

unification at the electroweak scale is then between the gluino and the heavier pair of neutralinos

and heavier chargino. The lighter pair of neutralinos are mostly Higgsino-like, as indicated by

the LSP composition given in Table 6.1. For the deflected mirage mediation model, however, the

gaugino spectrum is compressed and the gluino approximately unifies with the entire ensemble

of neutral and charged gauginos.

In the remaining two pairs of models, we keepαm fixed and add nonvanishing gauge mediation

contributions by including messenger fields and a nonvanishing αg. The second pair is designed

to show the impact of adding the effects of gauge mediation on the resulting gaugino masses.

Both points have M0 = 1 TeV and αm = 0.6, yet the two cases have very different phenomenology.

The spectrum for the pure mirage mediation point is similar to typical mSUGRA models, with a

bino-like LSP, large mass gap between the lightest and second lightest neutralinos, gluinos and

squarks of roughly comparable size, and relatively light sleptons. In contrast, the deflected mirage

mediation point has a mixed bino/wino-like LSP, a degenerate trio of χ̃ 0
1 , χ̃ 0

2 and χ̃±1 , and a very

light gluino relative to the squarks and sleptons. The third pair have again the same values of

αm = 1 and M0 = 800 GeV. These models have very similar spectra for the light superpartners,

but very different values for the gluino and squark masses and the µ-parameter. The pure mirage

mediation point has a mostly bino-like LSP, the deflected mirage mediation point has a neutralino

LSP which is a mixed bino-wino-Higgsino state.

We also studied the LHC collider signatures of these benchmark points given in Table 6.1. We

generated 5×104 events for each model at
√

s = 14 TeV using PYTHIA 6.4 [33] and used PGS 4 [34]

to simulate the detector response. We imposed the PGS4 level one triggers, designed to mimic

the CMS trigger tables [152] and object-level post-trigger cuts. We require all photons, electrons,

muons and taus to have transverse momentum pT ≥ 10 GeV and |η| < 2.4 and we require hadronic
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Pair #1 Pair #2 Pair #3
/DMM DMM /DMM DMM /DMM DMM

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6
αm 1.9 1.0 0.6 0.6 1.0 1.0
αg 0 0.5 0 1.0 0 0.2
M0 1000 1000 1000 1000 800 800
Mmess - 1010 - 107 - 1010

N 0 3 0 3 0 3
mχ̃ 0

1
236 493 602 322 562 424

mχ̃ 0
2

247 516 848 329 660 452
mχ̃ 0

3
936 698 1114 943 725 569

mχ̃ 0
4

954 718 1127 946 779 601
mχ̃±1

243 498 848 328 658 441
mχ̃±2

937 718 1133 952 779 599
mτ̃1 676 700 763 717 594 556
mτ̃2 687 760 892 808 672 605
mµ̃R , mẽR 679 706 773 726 600 562
mµ̃L , mẽL 685 761 894 810 672 605
mt̃1

620 687 1278 803 875 560
mt̃2

829 913 1579 1091 1115 777
mb̃1

716 865 1542 1055 1062 713
mb̃2

751 936 1624 1153 1115 773
mc̃R , mũR 733 933 1639 1160 1121 769
mc̃L , mũL 713 962 1695 1204 1155 788
ms̃R , md̃R

751 940 1633 1162 1119 777
ms̃L , md̃L

721 968 1702 1210 1162 794
mg̃ 979 603 1816 431 1266 646
LSP Bino % 0.2% 19.1% 99.5% 82.0% 93.1% 52.5%
LSP Wino % 0.8% 70.0% 0.0% 17.0% 0.9% 30.1%
LSP Higgsino % 99.0% 10.9% 0.5% 1.0% 6.0% 17.4%

Table 6.1: Input parameters, physical masses, and LSP composition of the benchmark models.
The first model in each pair is a mirage mediation model and the second is a deflected mirage
mediation model with N = 3. All masses are given in GeV. Low energy physical masses are given
at the scale 1 TeV.
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Figure 6.2: Renormalization group evolutions of gaugino masses for our benchmark pairs given
in Table 6.1. First row: on the left, pure mirage mediation model and on the right corresponding
deflected mirage mediation model designed to have the same gaugino mass unification scale.
Second row: On the left, pure mirage mediation model and on the right corresponding deflected
mirage mediation model with same high scale input parameters and αg = 1. Third row: On the
left, pure mirage mediation model and on the right corresponding deflected mirage mediation
model with same high scale input parameters and αg = 0.2.
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Point 1 Point 2 Point 3 Point 4 Point 5 Point 6
σ SUSY (pb) 5.86 10.86 0.045 44.71 0.58 13.26
Trigger Efficiency 84.8% 78.9% 99.3% 59.4% 98.4% 87.1%

Counts per 50,000 Events
Multijet 5064 1250 10113 579 4645 1246
1 Lepton 694 69 3861 19 4266 445
OS Dilepton 28 0 370 0 1623 9
SS Dilepton 3 0 124 0 201 3
Trilepton 0 0 70 0 388 1

Table 6.2: Gross LHC Features for Benchmark Points. The trigger efficiency is here computed using the level
one trigger table of PGS4. The number of events passing our selection criteria in the multijet, single lepton plus jets,
opposite-sign dilepton plus jets, same-sign dilepton plus jets, and trilepton plus jets channels are given for 50,000
generated events.

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6
Multijet 0.17 0.37 70.30 0.20 1.90 0.30
1 Lepton 2.18 64.20 – 49.90 5.87 1.04
OS Dilepton 68.80 – – – 2.08 –
SS Dilepton – – – – 11.91 –
Trilepton – – – – 2.94 –

Table 6.3: Necessary Integrated Luminosity for 5σ Discovery in Selected Channels. The inte-
grated luminosity (in fb−1) at

√
s = 14 TeV to produce a 5σ excess over Standard Model backgrounds

is given for all cases in which Lint ≤ 100 fb−1. We require a minimum of 100 signal events in the
no-lepton and single lepton channels, and a minimum of ten signal events in the multi-lepton
channels.

jets to satisfy |η| < 3. We display the result of this analysis in Tables (6.2, 6.3). To study the discovery

potential we also generated a sample of 5 fb−1 Standard Model background events, consisting of

Drell-Yan, QCD dijet, t t̄, b b̄, W/Z+jets and diboson production.

We display the total SUSY cross section for each benchmark model in Table 6.2 which depends,

to a first approximation, only on the gluino mass. Thus deflected mirage mediation models offer

the prospect of larger LHC signals relative to comparable pure mirage mediation models. The

trigger efficiency is estimated using the level one trigger table of PGS4 and represents the fraction

of the 5× 104 generated events that passed the trigger criteria. As we see in Table 6.2, however, the

actual number of events that pass post-trigger cuts will often be much smaller.

The most striking effects of a non zero gauge mediation contribution to soft terms can be seen

in Points 3 and 4. The total SUSY cross section increases by 3 orders of magnitude with increasing
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αg. Actually, Point 3 will require an integrated luminosity of 1000 fb−1 to produce 50K events,

while for Point 4, 1 fb−1 will be enough. For smaller values of N, the gluino mass would be larger

and hence the expected signal size would diminish.

Table (6.2) shows that triggering efficiencies are generally slightly better for models with a less

compressed gaugino mass spectrum. This results in slightly harder leptonic decay products at the

final stages of cascade decays of gluinos and squarks. The PGS4 default level one trigger criteria

requires leptons (e± and µ±) to have pT ≥ 10 GeV in the dilepton channel, pT ≥ 15 GeV for an

isolated lepton produced with a tau, and pT ≥ 20 GeV for a single isolated lepton produced in

association with hard jets. In addition to this trigger requirement, standard supersymmetry search

algorithms involving jets, leptons and missing transverse energy generally also demand minimum

pT values for leptonic objects.

To demonstrate the differences between deflected mirage mediation models and their pure

mirage mediation model analogs, we study traditional discovery channels of supersymmetry [108].

These signatures shown in Table (6.2) are defined as follows. All five require transverse sphericity

ST ≥ 0.2 and missing energy /ET ≥ 250 GeV except for the trilepton signature, where only /ET ≥

200 GeV is required. Multijets here refers to events with at least four jets with the transverse

momenta of the four leading jets satisfying pT ≥ (200, 150, 50, 50) GeV, respectively. For this

signature we impose a veto on isolated leptons. For the single lepton, opposite-sign dilepton,

same-sign dilepton and trilepton signatures we include only electron and muon final states and

demand at least two jets with the leading jets satisfying pT ≥ (100, 50) GeV, respectively. The drastic

reduction in the multijet and the leptonic signatures for the deflected mirage mediation models

seen in Table 6.2 is caused by the small mass gap between the LSP and either the gluino or the

lightest chargino/second neutralino. This is also true of the TeV-scale mirage unification model of

Point 1.

Since the total cross sections vary significantly between the benchmark models, we display the

amount of integrated luminosity necessary to observe a 5 sigma excess over the Standard Model

background. The results are given in Table 6.3. Note that we only extrapolate the value of S/
√

B

for cases whereLint ≤ 100 fb−1 and we require at least 100 signal events for the multijet and single-
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Parameter Set αg Value
αm M0 Mmess -1.0 -0.5 0 0.5 1.0

Line A 1 2 TeV 1012 GeV τ̃ LSP X X X XX
Line B 1 1 TeV 108 GeV X XX X g̃ LSP g̃ LSP
Line C 0.771 0.8 TeV 1012 GeV X X X X X
Line D 0.755 0.4 TeV 1012 GeV X X X X X

Table 6.4: Input Parameters for Benchmark Lines. For each model line we begin with the input parameter set
indicated in the initial three columns. Five values of the parameter αg were studied, keeping other parameters fixed.
Points marked with a check-mark had acceptable low-energy phenomenology. Points marked with the double check-
mark were studied in Ref. [149].

lepton channels and at least 10 signal events for the multi-lepton channels. Except Point 3, all of

these benchmark points will be discoverable in the multijet channel early at the LHC running at

14 TeV center of mass energy. Leptonic discovery channels will generally take longer to observe.

Point 5, despite its modest production cross-section of 0.6 picobarns, gives sizable signals in all

leptonic channels within the first 10 fb−1. This is largely due to the mass ordering mχ̃ 0
1
< mτ̃1

< mχ̃ 0
2
,

which does not appear in any of the deflected mirage mediation models considered here.

6.3 Influence of αg on LHC Phenomenology

In this section, we study the effect of the gauge mediated contribution to the expected collider

signatures. To do so we construct four model “lines” in which we vary only the parameter αg

while keeping the other parameters determining the soft supersymmetry breaking masses constant.

We summarize the relevant input parameters in Table 6.4. For each case, we have chosen to fix

N = 3, ni = 1/2 for the matter representations and ni = 1 for the Higgs fields, and tan β = 10. Each

line involves five discrete points with αg = {−1.0, −0.5, 0.0, 0.5, 1.0}.

From Eqn. (6.11), we see that all three soft gaugino mass parameters decrease asαg is varied from

O(1) negative values to O(1) positive values. Since the threshold correction of M3 is proportional

to g2
3(Mmess), the effect is strongest for the gluino. Therefore we expect some value of αg to exist

above which the gluino will become the LSP, which happens for αg = 0.5 and 1.0 in model line B as

shown in Table 6.4. However, states which are charged only under U(1)Y, such as the right-handed

sleptons, are largely unaffected by the variation in αg since the threshold correction to their soft
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Model mg̃ mq̃1 mt̃1
mLSP ∆0 ∆± m ˜̀1 B% W% H%

Line A
A2 2828 2492 2027 1400 175 179 1445 96.4% 0.1% 3.5%
A3 2260 2144 1710 1265 132 132 1429 94.9% 0.4% 4.8%
A4 1677 1895 1479 1133 70 69 1427 94.1% 1.6% 4.3%
A5 1045 1814 1380 977 30 1.6 1441 3.6% 92.5% 3.9%

Line B
B1 1347 1197 942 663 84 80 686 88.7% 1.6% 9.6%
B2 1038 1038 785 595 54 49 679 85.7% 4.5% 9.7%
B3 711 952 707 525 20 11 677 51.4% 37.8% 13.4%

Line C
C1 1440 1277 999 530 167 167 596 98.4% 0.1% 1.4%
C2 1244 1133 868 487 132 132 587 98.0% 0.2% 1.8%
C3 1048 1003 747 444 99 98 582 97.4% 0.4% 2.2%
C4 847 894 647 402 66 65 580 96.4% 1.0% 2.6%
C5 640 818 578 359 34 32 583 93.3% 3.7% 3.1%

Line D
D1 752 672 496 254 75 73 297 94.3% 1.1% 4.5%
D2 647 594 423 232 58 56 292 91.6% 2.3% 5.8%
D3 542 521 357 209 43 39 289 86.3% 5.0% 8.7%
D4 436 460 304 186 30 24 289 75.3% 12.5% 12.2%
D5 325 415 273 161 22 12 290 51.6% 32.6% 15.8%

Table 6.5: Some Key Masses for Model Lines. Low-lying superpartner masses are given in units
of GeV as well as the wavefunction composition of the LSP neutralino. Here mq̃1 is the lightest
first generation squark, mt̃1

is the lighter stop, and we have defined the two mass differences
∆± ≡ mχ̃±1

−mχ̃ 0
1

and ∆0
≡ mχ̃ 0

2
−mχ̃ 0

1
.
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masses scales as g4
1(Mmess). As a result the lightest stau will have a roughly constant mass across

the entire model line. For αg < 0, there can be points for which the lightest stau is the LSP which

occurred for αg = −1.0 in model line A.

The collider phenomenology of these models depends mostly on the overall mass scale of the

superpartners which carry SU(3) quantum numbers. This scale varies dramatically with αg. As

has been pointed out recently [79], once event rates are normalized to the overall mass scale of the

colored superpartners, the next most important factor determining the inclusive signatures for a

model at the LHC is the hierarchy of low-lying superpartner masses. This is particularly true for

leptonic signatures produced through the production and decay of light neutralino and chargino

states. We will study the possible hierarchy patterns in deflected mirage mediation and compare

them to the mSUGRA hierarchy patterns in the next section.

Table (6.5) shows the lightest neutralino mass, the lightest slepton mass (generally a scalar tau),

the gluino and lightest stop mass, and the two mass differences that we define as

∆0
≡ mχ̃ 0

2
−mχ̃ 0

1
, (6.15)

∆± ≡ mχ̃±2
−mχ̃ 0

1
. (6.16)

These mass differences decrease monotonically with increasing αg values because the gaugino

spectrum becomes more squeezed. As a result, the leptonic decay products of cascade decays

involving χ̃±2 and χ̃ 0
2 become softer and one typically encounters a point at which the on-shell

decays of the chargino (or second-lightest neutralino) to a slepton become kinematically forbidden

which further suppresses leptonic final state signatures. These properties are common to many

models in which anomaly-mediated supersymmetry breaking dominates [153]. To illustrate this

we give the bino, wino and Higgsino composition of the lightest neutralino in Table 6.5.

6.4 Comparison with mSUGRA and sparticle landscape

In this section we will compare the sparticle landscape of deflected mirage mediation models to

mSUGRA models following the analysis first proposed by Feldman, Liu and Nath (FLN) [69].
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Model Point σ SUSY (pb) Trigger Eff. Multijet 1 Lepton OS Dilepton Trilepton
Line A

A2 1 × 10−3 98.8% 7794 3846 687 213
A3 5 × 10−3 99.1% 8238 3741 360 105
A4 0.02 98.4% 6171 5976 823 252
A5 0.21 73.8% 1447 31 3 2

Line B
B1 0.38 98.4% 4339 4031 1486 447
B2 1.54 96.8% 3155 3441 379 75
B3 5.56 88.0% 2409 182 0 0

Line C
C1 0.25 98.9% 8798 3784 398 90
C2 0.59 98.6% 7932 3588 310 68
C3 1.45 98.0% 5591 3718 499 102
C4 3.80 96.1% 2931 3577 353 76
C5 11.71 90.2% 2785 871 12 2

Line D
D1 12.7 95.9% 2680 2728 654 145
D2 27.0 94.0% 2274 2195 309 48
D3 61.1 91.0% 1328 1278 132 16
D4 152.0 84.6% 759 660 34 2
D5 459.7 67.2% 365 109 4 1

Table 6.6: Gross LHC Features for Model Lines of Table 4. The total cross section for production of superpartners
and PGS4 level one trigger efficiency are given in the first two columns. The following four columns give the number
of events in each channel per 50,000 generated events. The definitions of these signatures are modified slightly from
those of Section 4.1.
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To be able perform this analysis precisely, we have generated a large set of model parameters

and corresponding low energy spectra, then studied how the patterns of the lightest four non-SM

particles (superpartners and non-SM Higgs fields) vary as we impose a series of phenomenological

constraints.

For mSUGRA, we followed the procedure of FLN [69] and generated 2 million mSUGRA

models by randomly selecting input parameters from the following ranges with flat priors:



0 ≤ m0 ≤ 4 TeV

0 ≤ m1/2 ≤ 2 TeV∣∣∣∣∣A0

m0

∣∣∣∣∣ ≤ 10

1 ≤ tan β ≤ 60


. (6.17)

To be able to compare our results, these ranges and flat priors are chosen to be identical to

those studied by FLN. The ranges of the input parameters are limited by what will be observable

at the LHC after many years of integrated luminosity. The choice of priors is also important for

these kind of statistical studies, since the result might depend on how the parameters are chosen.

Without a more general theory that predicts infinitely many universes with different sets of physics

parameters, nature is limited by a single choice of a set of parameters. It is not obvious in this

case how those parameters acquire the observed values,‡ unless there is a dynamical mechanism

that determine those values or a more general theory, i.e. string theory, that predicts those values

based on geometrical arguments.§ We argue that doing a statistical analysis with flat priors (or any

priors) is interesting and important to understand the phenomenology of the theory better even

if the percentages may or may not imply the realizability of the theory in nature with the most

common sparticle spectrum. Hence we follow the FLN analysis and scan the input parameters

with flat priors ¶.

For the case of DMM models, which involve a larger parameter space and have not been
‡To be observed in this case, since supersymmetry has not been observed yet.
§Although the premise of string theory is to calculate those “free” parameters, different ways of compactifying extra

dimensions result in a very large number of possible vacua (in the orders of 10500) which creates another uniqueness
problem.
¶Note that because of the large number of models we considered (∼ 26 million), repeating the computation with

different set of priors was not computationally possible given the finite CPU time we had access to.
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studied in this way in previous literature, we generated a much larger model set consisting of

24.75 million models. The models in this set were obtained by randomly scanning over the DMM

parameter ranges given below once again with flat priors:



1 ≤ N ≤ 5

4 ≤ log(Mmess/GeV) ≤ 16

50 GeV ≤M0 ≤ 2000 GeV

0 ≤ αm ≤ 2

−1 ≤ αg ≤ 2

1 ≤ tan β ≤ 60



, (6.18)

where the ranges chosen for the dimensionless ratio parameters αm and αg are the theoretically-

motivated ranges studied in [150, 136, 137].

After generating our model sets for both mSUGRA and DMM, the parameters are then evolved

to the electroweak symmetry-breaking scale using a modified version of SoftSUSY 3.0.7 to handle

the threshold effects in DMM models. After obtaining the soft supersymmetry breaking parame-

ters, the spectrum is determined again in SoftSUSY 3.0.7which is then fed into MicrOmegas 2.2

CPC to determine the physical mass spectrum as well as collider and cosmological observables. We

then study the effect of applying a sequence of phenomenological requirements on the models.

These requirements are explained in detail in the following and summarized in Tables (6.7, 6.8,

6.9).

1. Radiative EWSB: Our first requirement is the presence of radiative electroweak symmetry-

breaking, which in both model sets reduces the sample size by a large fraction as we will see

in Table 6.10 where we show the results of the progressive cuts.

2. Neutrlino LSP: Our second requirement is that the lightest R-parity odd state is a neutralino,

which we denote as the lightest supersymmetric particle (LSP). We emphasize that the

acronym “LSP” refers to this state because, as we will see, quite often the lightest particle

beyond those of the Standard Model is one of the heavier Higgs states.
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3. Direct Search Limits: Our third requirement is a set of bounds that we call the “direct”

bounds, in that they reflect conservative direct search limits for new states beyond the

Standard Model. We summarize these constraints in Table 6.7. Many of these constraints

are similar to FLN analysis [69] and a similar scan by Djouadi et al. [154]. However, We have

augmented the Higgs bounds by including direct limits on the pseudoscalar and charged

Higgs masses. In addition, to analyze the effects of tightening the light Higgs mass bound, we

use two separate limits on the Higgs boson mass: the 100 GeV bound of FLN, and the direct

limit on the SM Higgs mass of mh > 114.4 GeV. Next, we have added a rather conservative

gluino mass bound of mg̃ ≥ 309 GeV [155]. This bound is automatically satisfied once the

chargino bound is imposed in mSUGRA models; however, this is not necessarily the case

in DMM models. For the case of squeezed spectrum, it is also necessary to modify not

only this bound but also the chargino bound which can easily occur in DMM models. The

chargino bound essentially vanishes in the case in which the lightest chargino and the LSP are

almost degenerate (mχ̃±1
−mχ̃ 0

1
< 3 GeV) [82]. Similarly, the gluino bound is degraded when

the gauginos are squeezed [156, 157]. To model this effect, we used another conservative

constraint that the gluino bound degrades to 125 GeV when mg̃/mχ̃ 0
1
< 5.

4. Indirect Limits: Our fourth requirement is a set of constraints on the rare decays b→ sγ and

Bs → µ+µ−, as well as the new physics contributions to the anomalous magnetic moment of

the muon. For the inclusive b → sγ rate, we consider the average value as derived by the

Heavy Flavor Averaging Group [158]:

Br(b→ sγ) = (355 ± 24+9
−10 ± 3) × 10−6 , (6.19)

and use a 3.5σ range about the best fit value which was also used in the FLN analysis [79].

We note that the first FLN paper used the slightly tighter range of 283 × 10−6 < Br(b→ sγ) <

463 × 10−6. For the rare decay Bs → µ+µ−, we use the recent 95% confidence level upper
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bound determined by CDF [53]:

Br(Bs → µ+µ−) < 5.8 × 10−8 . (6.20)

This bound is significantly more stringent than the one employed in the original papers of

FLN, which was Br(Bs → µ+µ−) < 9 × 10−6 ‖. Finally, for the anomalous magnetic moment

of the muon, we use the conservative range of FLN and Djouadi et al.:

− 11.4 × 10−10
≤ (gµ − 2) SUSY ≤ 9.4 × 10−9. (6.21)

5. Relic Density Constraints: Our fifth requirement is on the relic density of dark matter in the

universe which is inferred from the measured cosmic microwave background. The standard

approach is to assume that the LSP neutralinos make up the entirety of the dark matter. The

resulting relic abundance, which is determined by standard cosmology, is then compared to

the current constraints from the WMAP satellite to obtain bounds on the SUSY parameter

space. The FLN papers used a 2σ bound from WMAP3 (0.0855 < Ωχ̃h2 < 0.1189). WMAP

has now reported 1σ results of the five years [160] and seven years [161] as:

Ωχ̃h2
|5yr = 0.1099 ± 0.0062 , (6.22)

Ωχ̃h2
|7yr = 0.1109 ± 0.0056 . (6.23)

We can imagine that since these values have been measured really precisely by WMAP, this

will put strong bounds on supersymmetric theories. But the LSP might not be the only dark

matter particle. There may be also effects from non-standard cosmology that alter the relic

abundance (such as in kination-dominated quintessence theories [162, 163]). The theoretical

and computational tools are not precise enough to match the precision of the WMAP results,

the most important being the uncertainties in the halo models. For our computation we use

the package MicrOmegas 2.2 CPC, but results from DarkSUSY often give values that differ

‖Note that D0 collaboration has recently updated this bound to Br(Bs → µ+µ−) < 5.1 × 10−8 [159]

86



by more than the quoted errors in the WMAP measurements. For these reasons, we will

consider three options for the dark matter constraints, which are summarized in Table 6.9.

The first is the 2σ range from WMAP7 [161]:

0.0997 < Ωχ̃h2 < 0.1221. (6.24)

The second option is to consider a broader range that we call “WMAP Preferred”:

0.07 ≤ Ωχ̃h2
≤ 0.14 , (6.25)

which is slightly more expansive than the WMAP3 2σ range utilized by FLN of 0.0855 ≤

Ωχ̃h2
≤ 0.121. The third option, which is even less restrictive, is to follow the procedure of

[82], and only impose an upper limit on the relic abundance obtained from WMAP5:

Ωχ̃h2
≤ 0.121. (6.26)

Before we show our results, we would like to note the differences between SoftSUSY, which

we used, and SuSpect, which was used by FLN. The radiative corrections to the mass matrices of

neutralinos and charginos are interpreted differently in both software which results in sometimes

different hierarchies. In SuSpect, the lightest chargino is always lighter than the second-lightest

neutralino (for µ > 0), but in SoftSUSY either mass ordering between these two states is possible,

and the ordering can indicate whether the states are primarily wino-like, or whether they have a

significant Higgsino component. To be able to compare our results, we repeat the analysis of FLN

using SoftSUSY. Therefore we will present the results of updated FLN analysis as well as our very

large analysis of deflected mirage mediation models in the following sections.

6.5 Impact of Progressive Cuts

In this section we will discuss the hierarchy patterns of the lightest four states we observe in

minimal supergravity and deflected mirage mediation models. We begin our analysis with a
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Condition Bound

Higgs mh > 100 GeV or mh > 114.4 GeV

Chargino** mχ̃±1
> 104.5 GeV

Stop mt̃1
> 101.5 GeV

Stau mτ̃1
> 98.8 GeV

Gluino** mg̃ > 309 GeV (mg̃ > 125 GeV)

Pseudoscalar Higgs mA > 85 GeV

Charged Higgs mH± > 79.3 GeV

Table 6.7: Direct (collider) mass bounds: Our direct limits follow those of FLN [69], with the
following additions. In addition to the FLN Higgs mass limit of 100 GeV, we also consider the SM
Higgs mass limit of 114.4 GeV, and include limits on the pseudoscalar and charged Higgs masses.
The asterisks indicate that the chargino limit is applied only when the mass difference between
the lightest chargino and the LSP exceeds 3 GeV, and the 309 GeV gluino bound is degraded to 125
GeV if the ratio of the gluino mass to the LSP is less than 5, as discussed in the text. For a more
detailed analysis of gluino bounds, see [156, 157].

Condition Bound

b→ sγ 229 × 10−6
≤ Br(b→ sγ) ≤ 481 × 10−6

Bs → µ+µ− Br(Bs → µ+µ−) < 5.8 × 10−8

(gµ − 2) SUSY −11.4 × 10−10
≤ (gµ − 2) SUSY ≤ 9.4 × 10−9

Table 6.8: Indirect bounds: Our indirect limits include the update to Br(Bs → µ+µ−) rate [53]. We
use the HFAG range for b→ sγ [158], and the FLN and Djouadi range for (gµ − 2)SUSY.

Condition Bound

WMAP7 0.0997 < Ωχ̃h2 < 0.1221

WMAP Preferred 0.07 < Ωχ̃h2 < 0.14

WMAP Upper Ωχ̃h2 < 0.121

Table 6.9: Dark matter bounds: We consider three options for the dark matter constraints: the
WMAP7 2σ range [161], a broader “WMAP Preferred” range, and the WMAP5 upper bound, as
used in [82].
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general discussion of the effect of each set of phenomenological requirements on the data sample

set for each model. In Table 6.10, we show the impact of the five progressive cuts described in the

previous section, starting with the full data sample of 2 million model points for mSUGRA and

24.75 million model points for DMM. More precisely, we give the number of model points which

survive the requirement, beginning with the demand for proper electroweak symmetry breaking.

We provide the number of distinct hierarchy patterns which survive, as defined by the absolute

ordering of the four lightest new particles. Here we have taken mh > 100 GeV and chosen the

WMAP Preferred range of Eqn. (6.25).

Table 6.10 shows that the combination of gravity, gauge and anomaly mediation in DMM pro-

vides a much richer set of possible mass hierarchies than mSUGRA. The requirement of radiative

electroweak symmetry breaking eliminates approximately 66% of the mSUGRA parameter space

but only 29% of the DMM parameter space we considered. Once this requirement is satisfied the

impact of the remaining progressive cuts is similar for the two cases.

The indirect limits are slightly more stringent for the DMM models than for mSUGRA models,

with b → sγ and Bs → µ+µ− providing the strongest limits. The b → sγ bound constrains in

particular models with light charginos, which often occur in deflected mirage mediation since the

gaugino spectrum is generically squeezed in comparison to that of minimal supergravity. The

Bs → µ+µ− constraint tends to reduce the number of scenarios in which the additional Higgs

bosons H, A, and H± are light. As we will see, these patterns often occur in DMM, so these limits

have a significant effect on the associated model space.

For both mSUGRA and DMM models, the relic density constraint has a dramatic impact

on the allowed parameter space and on the number of the hierarchy patterns that survive but

they are much easier to satisfy in the DMM parameter space than in the mSUGRA parameter

space. It is well known that most of the viable parameter space in mSUGRA results in a bino-

like LSP, which typically results in a thermal relic abundance well in excess of the upper bounds

in Eq. (6.26) with the exception of the hyperbolic branch/focus point region, in which the LSP

has a nontrivial Higgsino component. Co-annihilation channels or resonance effects are thus

needed in the early universe to reduce the resulting abundance at freeze-out to acceptable levels,

89



mSUGRA Sample DMM Sample

Requirement Points % Patterns Points % Patterns

Radiative EWSB 686,204 – 195 17,580,869 – 1338

Neutralino LSP 528,140 77.0% 105 13,639,985 77.6% 380

Direct Search Limits 491,262 71.6% 64 12,332,788 70.1% 226

Indirect Limits 477,608 69.6% 52 9,948,427 56.6% 194

WMAP Preferred Range 3,829 0.6% 35 657,624 3.7% 96

Table 6.10: Progressive Cuts and Impact on Final Data Sample Size: The number of surviving
mSUGRA and DMM models is given as a series of progressive cuts is imposed. The second column
of each of the model categories is the percentage of surviving models with respect to the number
of models that survives the radiative electroweak symmetry breaking constraint. The light Higgs
mass bound is 100 GeV.

Proper EWSB Neutralino LSP Exper. Bounds WMAP Preferred

NLSP # Models % # Models % # Models % # Models %

χ0
2 348,859 50.8% 348,849 66.1% 323,167 67.7% 981 25.6%

χ±1 20,614 3.0% 20,614 3.9% 8,312 1.7% 648 16.9%

τ̃1 131,809 19.2% 131,809 25.0% 125,492 26.3% 1,870 48.8%

g̃ 70 0.0% 70 0.0% 0 – 0 –

t̃1 16,039 2.3% 16,039 3.0% 12,899 2.7% 227 5.9%

H or A 8,338 1.2% 8,338 1.6% 6,720 1.4% 98 2.6%

ν̃ 63 0.0% 63 0.0% 0 – 0 –

Higgs LSP 2,790 0.4% 2,358 0.4% 1018 0.2% 5 0.1%

ν̃ LSP 15 0.0% 0 – 0 – 0 –

Other LSP 157,607 23.0% 0 – 0 – 0 –

Table 6.11: Progressive cuts in mSUGRA: We list the NLSPs of minimal supergravity models as
a series of progressive cuts is imposed. The experimental bounds include the direct and indirect
bounds with mh > 100 GeV.
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Proper EWSB Neutralino LSP Exper. Bounds WMAP Preferred

NLSP # Models % # Models % # Models % # Models %

χ0
2 3,494,589 19.9% 3,494,589 25.6% 3,184,847 32.0% 104,672 15.9%

χ±1 4,604,411 26.2% 4,604,411 33.8% 2,777,966 27.9% 222,095 33.8%

τ̃1 3,271,607 18.6% 3,271,607 24.0% 2,774,387 27.9% 105,472 16.0%

g̃ 16,731 0.1% 16,731 0.1% 7,185 0.1% 0 –

t̃1 2,871 0.0% 2,871 0.0% 149 0.0% 7 0.0%

ẽR 37,921 0.2% 37,921 0.3% 33,701 0.3% 282 0.0%

H or A 242,500 1.4% 242,500 1.8% 148,322 1.5% 14,676 2.2%

ν̃ 5,653 0.0% 5,653 0.0% 0 – 0 –

Higgs LSP 3,106,146 17.7% 1,963,702 14.4% 1,021,870 10.3% 210,420 32.0%

ν̃ LSP 4,310 0.0% 0 – 0 – 0 –

Other LSP 2,794,130 15.9% 0 – 0 – 0 –

Table 6.12: Progressive cuts in DMM: The NLSPs in deflected mirage mediation models are given
with the same set of progressive cuts used in the previous table.

which disproportionately favors models with light staus or stops [110, 111]. In deflected mirage

mediation, we will see that the LSP can be bino-like as in mSUGRA models, but it can also be purely

Higgsino with an LSP mass in the TeV range, or it can be a mixture of gauginos and Higgsinos,

i.e., a “well-tempered” neutralino [164].

In Tables (6.11, 6.12) we show the impact of the cuts on the distributions of NLSP’s for mSUGRA

and DMM models. For this analysis, we group the direct search bounds with the indirect con-

straints and denote them as experimental bounds. We first note that there is a sizable set of

patterns in which the second lightest neutralino is the NLSP; as mentioned previously, this is a

result from running SoftSUSY as opposed to SuSpect, as done in FLN. We see from Table 6.11

that in mSUGRA the direct and indirect constraints affect all NLSP categories more or less equally,

but the dark matter requirement heavily favors co-annihilation with staus or stops or (to a lesser

extent) charginos. In contrast, we see from Table 6.12 that in DMM the preferred patterns from the

dark matter constraints are the chargino NLSP and Higgs LSP patterns. The stau NLSP patterns are

no longer particularly favored, although a significant number of them remain. As we mentioned
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previously, this shows that there are additional ways to satisfy relic density constraint in DMM.

Another reason for these features is that the overall mass scale for the scalars and gauginos

are controlled by the same mass scale M0 in DMM models and it is the gauginos that can be

more easily deflected by threshold corrections to lower values. Furthermore, in DMM models

the trilinear couplings (A terms) are not separately adjustable, which also affects the low energy

spectrum. This is clearly a different situation than the mSUGRA case, where the masses of the

scalars and the gauginos are governed by two separately adjustable parameters (m0 and m1/2), and

the left-right scalar mixing terms also have contributions from the independent parameter A0. For

this reason, patterns in which sfermions are the NLSP are relatively disfavored in DMM models. We

see the biggest impact of this on the number of stop NLSP patterns. Even before any experimental

cuts, the percentage of stop NLSP patterns in the full data set is significantly smaller than it is

in mSUGRA, and with the experimental cuts and the dark matter cuts imposed the stop NLSP

patterns are completely eliminated. The selectron NLSP patterns, while numerically insignificant,

also result from these features. In these patterns, the selectron NLSP is highly degenerate with the

stau, and the patterns share similar features with stau NLSP models.

We see from Table 6.12 that the gluino NLSP patterns are also absent in DMM models once

the dark matter cuts are imposed. Although spectra with relatively light gluinos occur naturally

in deflected mirage mediation [85], pushing the gluino below the lightest chargino requires fine-

tuning of the mirage unification scale to be at a very particular low scale region. This is not generic

in DMM, but it can happen and in fact, prior to the dark matter cuts, it is relatively easier to have a

gluino NLSP than a stop NLSP. However, such points in parameter space are severely constrained

by the dark matter bounds. As we will see, gluino NLSP patterns typically predict too low of a

relic abundance because the LSP is generically a mixed-composition state with a relatively low

mass, and hence such patterns are completely eliminated by the WMAP preferred constraint.

We now show the impact of the different dark matter cuts and the light Higgs bounds on the

NLSPs in both sets of models after the direct and indirect bounds are imposed, with mh > 100 GeV

in Table 6.13 and mh > 114.4 GeV in Table 6.14. The WMAP Preferred and WMAP7 bounds

show similar results for both models and both Higgs bounds, with the WMAP7 limits showing
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a stronger preference for τ̃ NLSPs than the WMAP Preferred bound, and a weaker preference

for Higgs LSP patterns in the DMM case. By comparing Tables 6.13 and 6.14, one sees that the

effect of the stronger Higgs limit is to decrease the number of stop and stau NLSP cases in minimal

supergravity models, and to decrease the number of chargino NLSP cases and increase the number

of Higgs LSP cases in deflected mirage mediation models. However, the situation is different when

only the WMAP upper bound is imposed. As expected, for both model sets the number of chargino

NLSPs drastically increases and the number of stau NLSPs decreases as compared to what is found

with the WMAP Preferred and WMAP7 cuts.

WMAP Preferred WMAP 7-Year Upper Bound Only

NLSP mSUGRA DMM mSUGRA DMM mSUGRA DMM

χ0
2 25.6 15.9 26.3 18.3 23.8 5.3

χ±1 16.9 33.8 15.2 33.9 35.4 62.0

τ̃1 48.8 16.0 51.1 18.8 31.7 6.4

g̃ – – – – – 0.2

t̃1 5.9 – 5.2 – 7.5 –

H or A 2.6 2.2 2.2 2.1 1.6 1.9

Higgs LSP 0.1 32.0 – 26.8 0.1 24.2

Total Models 3,829 657,624 1,256 179,834 9,213 3,637,491

Number of Patterns 35 96 29 80 40 175

Table 6.13: NLSPs and Number of Models/Patterns for Different Dark Matter Assumptions: The
numbers in the upper table are percentages of the total datasets. The Higgs bound is mh > 100 GeV.

6.6 Hierarchy Patterns in mSUGRA and DMM

We now present a detailed analysis of the hierarchy patterns of the lightest four non-Standard

Model states obtained in minimal supergravity and deflected mirage mediation models. The

results are summarized in Table 6.15 and shown in detail for the original FLN cuts in Table 6.16

and with the updated cuts in Tables (6.17, 6.18). Let us emphasize again that since we used

SoftSUSY as opposed to SuSpect (used by FLN and Berger et al.), the details of the hierarchies
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WMAP Preferred WMAP 7-Year Upper Bound Only

NLSP mSUGRA DMM mSUGRA DMM mSUGRA DMM

χ0
2 29.5 17.8 29.9 20.7 25.7 7.7

χ±1 21.2 27.7 19.5 27.9 43.7 52.3

τ̃1 44.1 14.1 46.1 16.9 26.7 6.9

g̃ – – – – – 0.1

t̃1 2.0 – 1.9 – 2.2 –

H or A 3.1 2.6 2.6 2.5 1.6 1.8

Higgs LSP 0.2 37.7 – 32.0 0.1 31.2

Total Models 2,908 555,631 959 150,392 7,351 2,355,932

Number of Patterns 27 90 24 76 33 137

Table 6.14: NLSPs and Number of Models/Patterns for Different Dark Matter Assumptions:
The numbers in the upper table are percentages of the total datasets. The Higgs bound is mh >
114.4 GeV.

differ from the FLN results because of the differences of the two codes in handling the chargino and

neutralino sectors when the lightest chargino and second-lightest neutralino are nearly degenerate.

As mentioned earlier, in this limit, it is found that for minimal supergravity models, the lightest

chargino is almost always lighter than the second-lightest neutralino when SuSpect is used, while

either outcome can occur when SoftSUSY is used, depending on whether these two states are

wino-dominated or whether they include a nontrivial Higgsino component.

To see this more explicitly, we reproduce the mSUGRA analysis of the first FLN paper [69]. The

FLN cuts include a 100 GeV Higgs mass bound and direct limits as given in Table 6.7, the branching

ratios 283 × 10−6 < Br(b → sγ) < 463 × 10−6 and Br(Bs → µ+µ−) < 9 × 10−6 as well as the muon

anomalous magnetic moment limit of Table 6.8, and the WMAP3 2σ limits, 0.0855 < Ωχh2 < 0.1189.

The results are presented in Table 6.16. We follow the FLN notation in labeling the patterns as

mSP1, mSP2, etc., but use primes when the ordering of the lightest chargino and second-lightest

neutralino is reversed from that of FLN. We also note that in the FLN papers, the Higgs LSP

and Higgs NLSP patterns were grouped together in a single pattern, but here we will not do so

presenting the DMM results.

94



FLN Analysis

Stau NLSP χ0
1 < τ̃1 < ˜̀R < ν̃3 (mSP5), χ0

1 < τ̃1 < χ0
2 < χ

±

1 (mSP6′)

Chargino NLSP χ0
1 < χ

±

1 < χ
0
2 < χ

0
3 (mSP1)

Neutralino NLSP χ0
1 < χ

0
2 < χ

±

1 < H,A (mSP2′), χ0
1 < χ

0
2 < χ

±

1 < χ
0
3 (mSP1′)

Updated FLN Analysis

Stau NLSP χ0
1 < τ̃1 < χ0

2 < χ
±

1 (mSP6′)

Chargino NLSP χ0
1 < χ

±

1 < χ
0
2 < χ

0
3 (mSP1)

Stau NLSP χ0
1 < τ̃1 < ˜̀R < ν̃3 (mSP5)

Neutralino NLSP χ0
1 < χ

0
2 < χ

±

1 < H,A (mSP2′), χ0
1 < χ

0
2 < χ

±

1 < χ
0
3 (mSP1′)

DMM Hierarchies: Weak Higgs Bound

Higgs LSP H,A < H± < χ0
1

Chargino NLSP χ0
1 < χ

±

1 < χ
0
2 < τ̃1 (mSP3), χ0

1 < χ
±

1 < χ
0
2 < H,A (mSP2)

Neutralino NLSP χ0
1 < χ

0
2 < χ

±

1 < τ̃1 (mSP3′), χ0
1 < χ

0
2 < χ

±

1 < H,A (mSP2′)

Stau NLSP χ0
1 < τ̃1 < χ0

2 < χ
±

1 (mSP6′)

DMM Hierarchies: Strict Higgs Bound

Higgs LSP H,A < H± < χ0
1

Chargino NLSP χ0
1 < χ

±

1 < χ
0
2 < H,A (mSP2)

Neutralino NLSP χ0
1 < χ

0
2 < χ

±

1 < τ̃1 (mSP3′), χ0
1 < χ

0
2 < χ

±

1 < H,A (mSP2′)

Chargino / Stau NLSP χ0
1 < χ

±

1 < χ
0
2 < τ̃1 (mSP3), χ0

1 < τ̃1 < χ0
2 < χ

±

1 (mSP6′)

Table 6.15: Summary of the most dominant hierarchy patterns: The hierarchies of the most
dominant mSUGRA patterns we observed by using the original FLN cuts and updated FLN cuts
as well as the most dominant DMM hierarchy patterns we observed with the weak Higgs bound
of mh > 100 GeV and the strict Higgs bound of mh > 114.4 GeV.

As the result of using SoftSUSY to determine the spectrum, we obtain several patterns in

which the NLSP is the second-lightest neutralino rather than the lightest chargino. The dominant

neutralino NSLP patterns always have the chargino as the third-lightest state, which indicates that

the lightest chargino and second-lightest neutralino are wino-like. These kinds of patterns with a

bino-like LSP are very common in mSUGRA. In fact, the only surviving chargino NLSP pattern is

the mSP1 pattern of FLN, where the second-lightest neutralino is the third-lightest new state. This

pattern corresponds to the focus point/hyperbolic branch region of mSUGRA, for which the LSP

has a nontrivial Higgsino component.
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In general, the overall percentages obtained from summing the original pattern and the primed

pattern (when needed) are in agreement with the FLN results. As found in FLN, there are also a

number of subdominant hierarchy patterns in which the stop is the NLSP, with the most popular

one being the χ0
1 < t̃1 < χ0

2 < χ
±

1 (mSP11′) pattern, and patterns in which the heavy Higgses are

the NLSP, with the most popular one being χ0
1 < H,A < H± (mSP14).

We now use our updated sets of cuts and show the hierarchy patterns for both mSUGRA and

DMM in Table 6.17 for mh > 100 GeV, and Table 6.18 for mh > 114.4 GeV and for all three sets of

dark matter bounds. The favored patterns by the dark matter constraints are very different for the

two models. While in mSUGRA the dominant patterns tend to be stau NLSP patterns, in DMM

the favored pattern is always the Higgs LSP pattern, with H,A < H± < χ0
1. The Higgs LSP pattern

found in DMM models is quite different from typical mSUGRA mass patterns, with a relatively

squeezed spectrum, an LSP with a mixed composition of bino, wino, and Higgsino states, and

a high degree of degeneracy between the lightest chargino and the lightest two neutralinos, as

we will discuss in greater detail in the next section. The other favored patterns in DMM models

have light charginos and neutralinos compared to the scalar masses, which is expected since the

gaugino mass ratios at low energies are adjustable depending on the size of the mirage unification

scale and the threshold effects from integrating out the messenger fields from gauge mediation.

In addition, we see from Tables (6.17,6.18) that for both mSUGRA and DMM models the WMAP

Preferred and WMAP7 bounds result in similar orderings of the most common patterns for a given

light Higgs mass limit, but the pattern ordering is quite different for the WMAP upper bound. This

cut preferentially selects patterns with light charginos, which include the Higgs LSP pattern and

the chargino NLSP patterns. This result is expected since such patterns typically have LSPs with a

significant fraction of wino and/or Higgsino components. For all dark matter cuts, increasing the

bound on the lightest Higgs boson disfavors models with lighter scalars, which is also expected

since the Higgs limit tends to require an increase in the third generation scalar masses.

For mSUGRA models with the 100 GeV Higgs bound, the WMAP Preferred and WMAP7

bounds lead to the same dominant patterns as the FLN cuts. Increasing the light Higgs mass bound

to 114.4 GeV favors patterns with light charginos, neutralinos, and additional Higgs bosons, and
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Hierarchy FLN Cuts

mSP 1 2 3 4 mSUGRA

mSP2′ χ0
1 χ0

2 χ±1 H, A 10.9

mSP1′ χ0
1 χ0

2 χ±1 χ0
3 9.3

mSP3′ χ0
1 χ0

2 χ±1 τ̃1 2.8

mSP4′ (mSP22) χ0
1 χ0

2 χ±1 g̃ 1.4

χ0
1 χ0

2 χ0
3 χ±1 0.6

χ0
1 χ0

2 H, A χ±1 0.1

χ0
1 χ0

2 τ̃1 χ±1 0.1

χ0
1 χ0

2 χ±1 t̃1 0.1

mSP1 χ0
1 χ±1 χ0

2 χ0
3 17.0

mSP5 χ0
1 τ̃1 ˜̀R ν̃3 20.1

mSP6′ χ0
1 τ̃1 χ0

2 χ±1 19.2

mSP7′ χ0
1 τ̃1 ˜̀R χ0

2 3.8

mSP8 χ0
1 τ̃1 H, A 2.9

mSP7 χ0
1 τ̃1 ˜̀R χ±1 0.4

mSP9 χ0
1 τ̃1 ˜̀R H, A 0.3

mSP6 χ0
1 τ̃1 χ±1 χ0

2 0.1

χ0
1 τ̃1 t̃1 χ0

2 0.1

χ0
1 τ̃1 H, A χ0

2 0.1

mSP10 χ0
1 τ̃1 t̃1 ˜̀R 0.1

mSP14 χ0
1 H, A H± 3.7

mSP15′ χ0
1 H, A χ0

2 0.3

χ0
1 H χ0

2 A 0.2

mSP16 χ0
1 H, A τ̃1 0.2

mSP11′ χ0
1 t̃1 χ0

2 χ±1 4.5

mSP12′ χ0
1 t̃1 τ̃1 χ0

2 1.0

mSP13 χ0
1 t̃1 τ̃1 ˜̀R 0.4

H, A H± χ0
1 0.1

H, A χ0
1 H± 0.1

Table 6.16: Hierarchy Patterns and Relative Percentages: FLN cuts. The hierarchies of the four
lightest non-SM states for mSUGRA models with cuts given in FLN [69].
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slightly disfavors those with light sneutrinos, first/second generation sleptons, and stops. For the

114.4 GeV Higgs bound, the preferred patterns for the WMAP preferred and WMAP7 bounds are

the same as in FLN, but with a different ordering in which models with light sleptons tend to be

less dominant.

As seen in Table 6.17, when the weak Higgs bound is imposed the dominant hierarchy patterns

are different from the FLN set. The Higgs LSP pattern, which is essentially negligible in mSUGRA

models, is the most popular pattern in DMM models. This is also true for the WMAP upper bound

as well as for an increased light Higgs mass bound. Table 6.18 shows that for the 114.4 GeV Higgs

bound, the dominant patterns for the WMAP Preferred and WMAP7 bounds are identical but with

a change in order.

The increased Higgs mass bound has a negligible effect on the Higgs LSP pattern, but it does

reduce the number of allowed models for the other patterns. The most significant effect is for the

mSP3 pattern, for which 55% of the model points that satisfy the 100 GeV Higgs mass bound are

lost. The bound predominantly affects patterns in which the heavy CP odd Higgs boson A is in

the lightest four non-SM particles, with 26% of the mSP2 patterns and 17% of the mSP2′ patterns

with A as the fourth-lightest state lost, as opposed to the mSP2 and mSP2′ cases with H as the

fourth-lightest state, for which 2.6% and 0.03% of the points are lost, respectively.

In summary, the most dominant DMM hierarchy patterns have minimal overlap with their

mSUGRA counterparts. The dominant DMM pattern is the Higgs LSP pattern, for which the

heavy Higgs particles are lighter than the LSP. For two other sets of dominant DMM patterns, the

only difference in the lightest four non-SM particles is the ordering of the lightest chargino and the

second-lightest neutralino as either the NLSP or the third-lightest particle. There are also DMM

patterns in which the stau is the NLSP, which more closely resemble similar mSUGRA patterns.

In the next section, we will study the typical DMM mass spectra within several of these dominant

patterns, and when relevant, compare the outcome to analogous mSUGRA patterns.
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Hierarchy WMAP Preferred WMAP 7-year Upper Bound Only
mSP 1 2 3 4 mSUGRA DMM mSUGRA DMM mSUGRA DMM

mSP3′ χ0
1 χ0

2 χ±1 τ̃1 3.1 7.1 3.0 8.4 2.1 3.1
mSP2′ χ0

1 χ0
2 χ±1 H,A 10.3 6.8 11.0 7.5 11.4 1.6

mSP4′ χ0
1 χ0

2 χ±1 g̃ 1.8 1.7 1.8 2.0 1.2 0.5
χ0

1 χ0
2 χ±1 t̃1 0.1 0.1 0.1 0.1 0.1 –

χ0
1 χ0

2 χ±1
˜̀R – 0.1 – 0.1 – –

mSP1′ χ0
1 χ0

2 χ±1 χ0
3 9.7 – 9.9 – 8.4 –

χ0
1 χ0

2 χ0
3 χ±1 0.6 – 0.3 – 0.6 –

mSP3 χ0
1 χ±1 χ0

2 τ̃1 0.3 12.6 0.1 14.2 – 22.9
mSP2 χ0

1 χ±1 χ0
2 H,A 0.1 10.8 – 9.3 0.1 9.8

mSP4 χ0
1 χ±1 χ0

2 g̃ – 3.8 – 3.6 – 12.9
χ0

1 χ±1 g̃ χ0
2 – – – – – 4.9

χ0
1 χ±1 H,A – 0.8 – 0.6 – 3.4
χ0

1 χ±1 χ0
2

˜̀R – – – – – 1.8
mSP1 χ0

1 χ±1 χ0
2 χ0

3 16.5 3.7 15.0 4 35.2 2.3
χ0

1 χ±1
˜̀R τ̃1 – – – – – 0.6

χ0
1 χ±1 g̃ H,A – – – – – 0.5
χ0

1 χ±1 τ̃1 χ0
2 0.1 0.7 0.1 0.8 – 0.5

χ0
1 χ±1 τ̃1 ˜̀R – 0.5 – 0.5 – 0.9
χ0

1 χ±1
˜̀R χ0

2 – – – – – 0.1
χ0

1 χ±1 χ0
2 t̃1 – 0.8 – 0.9 – 1.0

χ0
1 χ±1 τ̃1 H,A – 0.1 – 0.1 – 0.1
χ0

1 χ±1 H,A χ0
2 – 0.1 – 0.1 – 0.2

mSP6′ χ0
1 τ̃1 χ0

2 χ±1 19.7 5.8 21.0 6.7 15.4 2.7
mSP7′ χ0

1 τ̃1 ˜̀R χ0
2 4.8 2.7 4.4 3.2 3.7 1.3

mSP8 χ0
1 τ̃1 H,A 1.7 1.6 1.8 1.9 0.8 0.3

mSP7 χ0
1 τ̃1 ˜̀R χ±1 1.3 2.8 1.5 3.3 0.2 1.0

mSP6 χ0
1 τ̃1 χ±1 χ0

2 0.5 1.8 0.6 2.2 0.1 0.6
χ0

1 τ̃1 χ±1
˜̀R – 0.7 – 0.7 – 0.4

mSP5 χ0
1 τ̃1 ˜̀R ν̃ 20.2 0.5 21.0 0.5 11.0 0.1

mSP9 χ0
1 τ̃1 χ±1 H,A – 0.1 – 0.2 – 0.1
χ0

1 τ̃1 ˜̀R H,A 0.2 0.1 0.3 0.1 0.1 –
mSP14 χ0

1 H,A H± 1.9 1.5 1.8 1.5 1 0.7
χ0

1 H,A χ±1 – 0.4 – 0.3 0.1 1.0
mSP15′ χ0

1 H,A χ0
2 0.3 0.2 0.2 0.2 0.4 0.1

mSP16 χ0
1 H,A τ̃1 0.1 0.1 – 0.1 – –
χ0

1 g̃ χ±1 χ0
2 – – – – – 0.2

mSP11′ χ0
1 t̃1 χ0

2 χ±1 4.5 – 4.0 – 5.6 –
mSP12′ χ0

1 t̃1 τ̃1 χ0
2 0.9 – 0.7 – 1.2 –

mSP13 χ0
1 t̃1 τ̃1 ˜̀R 0.5 – 0.5 – 0.7 –
H,A H± χ0

1 0.1 31.3 – 26.2 – 23.0
H,A χ0

1 H± – 0.6 – 0.5 – 1.0
TOTAL 99.3 99.9 99.1 99.8 99.4 99.6

Table 6.17: Hierarchy Patterns and Relative Percentages. The hierarchies of the four lightest
non-SM states, with some grouping of cases. The Higgs mass bound is mh > 100 GeV.
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Hierarchy WMAP Preferred WMAP 7-year Upper Bound Only
mSP 1 2 3 4 mSUGRA DMM mSUGRA DMM mSUGRA DMM

mSP3′ χ0
1 χ0

2 χ±1 τ̃1 2.8 7.9 2.2 9.3 1.8 4.5
mSP2′ χ0

1 χ0
2 χ±1 H,A 12.0 7.6 13.0 8.7 12.1 2.2

mSP4′ χ0
1 χ0

2 χ±1 g̃ 1.6 2.0 1.8 2.3 0.9 0.8
χ0

1 χ0
2 χ±1 t̃1 0.2 0.1 0.1 0.1 – –

χ0
1 χ0

2 χ±1
˜̀R – 0.1 – 0.1 – –

mSP1′ χ0
1 χ0

2 χ±1 χ0
3 12.0 – 12.0 – 10.1 –

χ0
1 χ0

2 χ0
3 χ±1 0.8 – 0.4 – 0.7 –

mSP3 χ0
1 χ±1 χ0

2 τ̃1 – 6.7 – 7.8 – 19.3
mSP2 χ0

1 χ±1 χ0
2 H,A – 11.7 – 10.5 0.1 10.4

mSP4 χ0
1 χ±1 χ0

2 g̃ – 3.5 – 3.3 – 10.2
χ0

1 χ±1 g̃ χ0
2 – – – – – 3.0

χ0
1 χ±1 H,A – 0.9 – 0.7 – 2.6
χ0

1 χ±1 χ0
2

˜̀R – – – – – 2.5
mSP1 χ0

1 χ±1 χ0
2 χ0

3 21.0 3.8 20.0 4.3 43.7 2.4
χ0

1 χ±1
˜̀R τ̃1 – – – – – 0.7

χ0
1 χ±1 g̃ H,A – – – – – 0.3
χ0

1 χ±1 τ̃1 χ0
2 – 0.6 – 0.7 – 0.3

χ0
1 χ±1 τ̃1 ˜̀R – 0.3 – 0.3 – 0.2
χ0

1 χ±1
˜̀R χ0

2 – – – – – 0.1
χ0

1 χ±1 χ0
2 t̃1 – 0.1 – 0.2 – 0.1

χ0
1 χ±1 τ̃1 H,A – 0.1 – – – 0.1
χ0

1 χ±1 H,A χ0
2 – 0.1 – – – 0.1

mSP6′ χ0
1 τ̃1 χ0

2 χ±1 23.0 6.7 23.0 7.8 16.0 3.9
mSP7′ χ0

1 τ̃1 ˜̀R χ0
2 5.3 3.0 4.8 3.5 3.9 1.8

mSP8 χ0
1 τ̃1 H,A 1.9 1.8 2.2 2.4 0.8 0.4

mSP7 χ0
1 τ̃1 ˜̀R χ±1 – 0.9 – 1.2 – 0.2

mSP6 χ0
1 τ̃1 χ±1 χ0

2 – 0.6 – 0.8 – 0.2
χ0

1 τ̃1 χ±1
˜̀R – 0.6 – 0.6 – 0.2

mSP5 χ0
1 τ̃1 ˜̀R ν̃ 14.0 0.3 15.0 0.3 5.7 0.1
χ0

1 τ̃1 χ±1 H,A – 0.2 – 0.2 – 0.1
mSP9 χ0

1 τ̃1 ˜̀R H,A 0.3 0.1 0.4 0.1 0.1 –
mSP14 χ0

1 H,A H± 2.2 1.8 2.1 1.7 1.0 1.0
χ0

1 H,A χ±1 – 0.4 0.2 0.3 – 0.7
mSP15′ χ0

1 H,A χ0
2 0.4 0.2 0.2 0.2 0.5 0.1

mSP16 χ0
1 H,A τ̃1 – 0.1 0.1 0.1 – –

mSP11′ χ0
1 t̃1 χ0

2 χ±1 1.7 – 1.8 – 2.0 –
mSP12′ χ0

1 t̃1 τ̃1 χ0
2 0.2 – 0.1 – 0.2 –

mSP13 χ0
1 t̃1 τ̃1 ˜̀R – – – – – –
H,A H± χ0

1 0.2 36.9 – 31.3 0.1 30.3
H,A χ0

1 H± – 0.7 – 0.6 – 0.8
TOTAL 99.6 99.8 99.4 99.4 99.7 99.7

Table 6.18: Hierarchy Patterns and Relative Percentages. The hierarchies of the four lightest non-SM states, with
some grouping of cases. The Higgs mass bound is mh > 114.4 GeV.
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6.7 Focusing on DMM Hierarchy Patterns

In this section, we investigate the characteristic mass spectra of several of the most common

DMM hierarchy patterns discussed in the previous section. Throughout, we will use the WMAP

Preferred dark matter bounds and the stronger Higgs mass bound of mh > 114.4 GeV. We will

first briefly discuss more generic features of several classes of hierarchy patterns and point out the

similarities in their underlying DMM parameter space.

We start with the dependence on the gaugino mirage unification scale as given in Eqn. (6.13),

where the gaugino mass parameters unify at one-loop. Although no new physics enters at the

mirage unification scale, it has a strong impact on the gaugino mass ratios at low energies. In

mSUGRA models, the unification of the gaugino masses arises at the GUT scale, leading to a very

specific set of splittings between the gauginos at the TeV scale. However, the “deflected” mirage

unification scale in DMM models can lead to very different mass splittings, which in turn has a

strong impact on both dark matter and collider signatures.

To see this explicitly, in Fig. (6.3) we show the distribution of the mirage unification scale for

four of the most common DMM hierarchy patterns discussed in the previous section: the Higgs

LSP (H,A < H± < χ0
1), mSP6′ (χ0

1 < τ̃1 < χ0
2 < χ±1 ), mSP2 (χ0

1 < χ±1 < χ0
2 < H,A), and mSP3′

(χ0
1 < χ

0
2 < χ

±

1 < τ̃1).∗∗ The distribution of the mirage unification scale peaks at lower values and

has a sharp cutoff at 108 GeV for the Higgs LSP and mSP2 patterns, as well as for the narrower peak

of the mSP3′ pattern. We will see that the relatively low typical value of the mirage unification scale

for these patterns indicates a mass spectrum characterized by Higgsino-dominated and/or mixed-

composition LSP’s. The similar structure of the distributions also suggests that these patterns share

similar phenomenological features that we will explore below in more detail. In contrast, the peak

of the mSP6′ distribution and the right peak of the mSP3′ distribution have much higher values

of the mirage unification scale, with the peak for the mSP6′ pattern approaching the mSUGRA

limit of MG ∼ 1016 GeV. Hence, in these cases the gaugino mass splittings are more similar to those

∗∗Although mSP2′ is one of the common patterns we do not display the distributions for it, because it strongly
resembles that of mSP2, and mSP3, which resembles mSP3′ except that the large peak at higher values of the mirage
unification scale is dramatically reduced.
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Figure 6.3: Mirage unification scale. Histograms of the gaugino sector mirage unification scale
(in GeV) for the Higgs LSP (upper left panel), mSP6′ (upper right panel), mSP2 (lower left panel)
and mSP3′ (lower right panel) patterns, with the WMAP Preferred dark matter constraints and
mh > 114.4 GeV.

found in mSUGRA models, resulting in bino-dominated neutralino LSP’s.

We will consider several patterns sequentially according to their mirage unification scales.

With a rough grouping of patterns we also give less weight to the specific rankings of the hierarchy

patterns obtained in our analysis which depend, for example, on the choice of priors. Rough

grouping is also useful for the cases where lightest states are almost degenerate which makes

classifying the LHC phenomenology difficult by just using the lightest four sparticles.

We will begin our analysis with the Higgs LSP pattern, then compare it to the mSP2 pattern,

which also has a low mirage unification scale. We will then study the mSP3′ pattern, which is a

mixed pattern with both features. Finally, we will study the mSP6′ pattern, and compare it to the

mSUGRA expectations.

102



6.8 DMM Higgsino/mixed LSP patterns: Higgs LSP
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Figure 6.4: Higgs LSP pattern: χ0
1 mass and H mass. Histograms of the mass of the neutralino

LSP χ0
1 (left panel) and the mass of the heavy Higgs H (right panel) for the Higgs LSP pattern, with

the WMAP Preferred dark matter constraints and mh > 114.4 GeV.
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Figure 6.5: Higgs LSP pattern: Higgsino and bino fraction. Two-dimensional histograms of the
Higgsino fraction (left panel) and bino fraction (right panel) χ0

1 as a function of the χ0
1 mass for the

Higgs LSP pattern, with the WMAP Preferred dark matter constraints and mh > 114.4 GeV.

We begin with the Higgs LSP pattern (H,A < H± < χ0
1), since this pattern is the most dominant

one once the dark matter constraints are taken into account, and because of the rarity of this pattern

in mSUGRA. In Fig.(6.4), we show the distribution of the mass of the lightest neutralino χ̃ 0
1 (the

true LSP) and the heavy Higgs H. The heavy Higgses H, A, and H± are strongly degenerate, with

typical masses in the order of 800 GeV. We see that the heavy Higgs particles are not particularly

light in the Higgs LSP pattern; these particles are lighter than the lightest neutralino simply because
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χ̃ 0
1 is forced to be in the order of the TeV scale to satisfy the dark matter constraints.
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Figure 6.6: Higgs LSP pattern: χ±1 − χ
0
1 and χ0

2 − χ
0
1 mass differences. Histograms of the mass

difference between χ±1 and χ0
1 (left panel) and the mass difference between χ0

2 and χ0
1 (right panel)

for the Higgs LSP pattern, with the WMAP Preferred dark matter constraints and mh > 114.4 GeV.
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Figure 6.7: Higgs LSP pattern: gluino and squark masses. Histograms of the mass of the gluino
(left panel) and the first generation squark versus gluino masses for the Higgs LSP pattern, with
the WMAP Preferred dark matter constraints and mh > 114.4 GeV.

The Higgsino and bino fraction of χ̃ 0
1 as a function of the mass of χ̃ 0

1 is shown in Fig. (6.5).

Clearly, this is a very common pattern in Higgsino-dominated LSP’s with masses in the order

of the TeV scale. As we will see, this type of neutralino LSP will be characteristic of all DMM

patterns with mirage unification scales less than 108 GeV. In addition, the lightest chargino χ̃±1

and second-lightest neutralino χ̃ 0
2 are very close in mass to χ̃ 0

1 , with (mχ±1
− mχ0

1
)/mχ0

1
∼ 0.01 and

(mχ0
2
−mχ0

1
)/mχ0

1
∼ 0.02 on the average, as shown in Fig. (6.6).

We show the distribution of the gluino mass and the gluino versus lightest up-type squark
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Figure 6.8: Higgs LSP pattern: gluino/neutralino mass ratio and squark/gluino mass ratio. One-
dimensional histogram of the ratio of the gluino mass to the mass of the lightest neutralino (left
panel) and the ratio of the first generation up-type squark mass to the gluino mass (right panel)
for the Higgs LSP pattern, with the WMAP Preferred dark matter constraints and mh > 114.4 GeV.

masses in Fig. (6.7). We see that the gluino and the lighter generation squarks have masses in

the order of 1-3 TeV. In Fig. (6.8), we show the ratio of the gluino mass to the mass of the lightest

superpartner in the left panel, and the ratio of the first generation up-type squark mass to the gluino

mass in the right panel. Note that the peak value of the gluino to neutralino mass ratio is about 2, as

opposed to the much higher values found in mSUGRA because of the characteristic splitting of the

low energy values of the three gaugino masses in minimal supergravity (M1 : M2 : M3 ∼ 1 : 2 : 6).

The first generation squark to gluino mass ratio distribution shown in Fig. (6.8) implies that the

gluino and squarks are typically comparable in size. Overall, the spectrum is relatively heavy due

to the need for a TeV-scale χ̃ 0
1 in order to satisfy the relic density contraints, but quite compressed.

This makes the light Higgs mass heavy enough to be above the 114.4 GeV mass bound. Relaxing

the bound to 100 GeV does not change the number of viable models with this pattern, so it is quite

robust with respect to this constraint.

6.9 DMM patterns: mSP2 and mSP3′

The mSP2 pattern has low peak values of the mirage unification scale, and hence it shares many

common features with the Higgs LSP pattern. In Fig. (6.9), we show the masses of the neutralino

LSP and the heavy Higgs boson H for the mSP2 pattern. We see that the LSP is again of order the
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Figure 6.9: mSP2 pattern: χ0
1 mass and H mass. Histograms of the mass of the neutralino LSP

χ̃ 0
1 (left panel) and the mass of the H boson (right panel) for the mSP2 pattern, with the WMAP

Preferred dark matter constraints and mh > 114.4 GeV.

0 0.3 0.6 0.9 1.2 1.5
0

0.2

0.4

0.6

0.8

1

Χ1
0
mass HTeVL

h
ig
g
s
in
o
fr
a
c
ti
o
n

mSP2

0 0.3 0.6 0.9 1.2 1.5
0

0.2

0.4

0.6

0.8

1

Χ
1

0
mass HTeVL

b
in
o
fr
a
c
ti
o
n

mSP2

Figure 6.10: mSP2 pattern: Higgsino and bino fraction. Two-dimensional histograms of the
Higgsino fraction (left panel) and bino fraction (right panel) χ0

1 as a function of the χ0
1 mass for the

mSP2 pattern, with the WMAP Preferred dark matter constraints and mh > 114.4 GeV.

TeV scale, and that the heavy Higgses tend to be very close in mass to χ̃ 0
1 . As shown in Fig. (6.10),

the LSP is most typically Higgsino-dominated, with masses peaked at the TeV scale, though

in this pattern there is a subset of models with a bino-dominated LSP that is correspondingly

lighter. The spectrum is relatively heavy but compressed, similar to the Higgs LSP pattern.

The lightest chargino and second-lightest neutralino are both highly degenerate with χ0
1, with

(mχ±1
− mχ0

1
)/mχ0

1
∼ 0.02 and (mχ0

2
− mχ0

1
)/mχ0

1
∼ 0.03. Fig. (6.11) (which should be compared to

Fig. (6.7)) shows that the gluino mass distribution tends to peak at higher values but has a sharp

cutoff around 2.5 TeV. As seen in Fig. (6.12), the ratio of the gluino mass to the LSP mass and the
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ratio of the first generation squark masses to the gluino mass are similar to that of the Higgs LSP

pattern, as expected.
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Figure 6.11: mSP2 pattern: gluino and squark masses. Histograms of the mass of the gluino (left
panel) and the squark versus gluino masses (right panel) for the mSP2 pattern, with the WMAP
Preferred dark matter constraints and mh > 114.4 GeV.
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Figure 6.12: mSP2 pattern: gluino/neutralino mass ratio and squark/gluino mass ratio. His-
tograms of the ratio of the gluino mass to the mass of the lightest neutralino (left panel) and the
ratio of the first generation up-type squark mass to the gluino mass (right panel) for the mSP2
pattern, with the WMAP Preferred dark matter constraints and mh > 114.4 GeV.

For the mSP3′ pattern (χ0
1 < χ

0
2 < χ

±

1 < τ̃), we see significant differences from the Higgs LSP and

mSP2 patterns, which can also be expected from the peak values of the mirage scale as shown in

Fig. (6.3). Recall that this pattern was dominated by higher values of the mirage unification scale,

indicating that typical models in this category would more closely resemble mSUGRA models.

We see from Fig. (6.13) that the LSP tends to be lighter than in the Higgs LSP and mSP2 patterns,
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Figure 6.13: mSP3′ pattern: χ0
1 mass and heavy Higgs mass. Histograms of the mass of the

neutralino LSP χ0
1 (left panel) and the heavy Higgs boson mass (right panel) for the mSP3′ pattern,

with the WMAP Preferred dark matter constraints and mh > 114.4 GeV.
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Figure 6.14: mSP3′ pattern: Higgsino and bino fraction. Histograms of the Higgsino (left panel)
and bino (right panel) fractions of χ0

1 as a function of the χ0
1 mass for the mSP3′ pattern, with the

WMAP Preferred dark matter constraints and mh > 114.4 GeV.

while the peak value of the heavy Higgs mass has shifted to higher values.

Fig. (6.14) demonstrates that the LSP is most often bino-dominated, with a subset of models with

heavier LSP’s that are Higgsino dominated. For this pattern, (mχ±1
−mχ0

1
)/mχ0

1
and (mχ0

2
−mχ0

1
)/mχ0

1
∼

0.26 on average. The lightest chargino and the second-lightest neutralino are typically quite

degenerate, since for the majority of models there is a bino-like χ0
1 and a nearly degenerate wino-

like pair χ±1 , χ0
2, as is often the case in mSUGRA models.

The distributions of the gluino and squark masses are shown in Fig. (6.15), and the mg̃/mχ0
1
,

and mq̃/mg̃ distributions are shown in Fig. (6.16). Both distributions feature two peaks, with the
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dominant peak of the gluino mass distribution being at lower values than that of mSP2. The squark

to gluino mass ratio has two peaks at ∼ 1 while the ratio of the gluino to LSP masses peaks at ∼ 3,

representing a shift toward mSUGRA-like features. The one sharp peak at mq̃/mg̃ < 1 corresponds

to the low mirage scale behavior found also in the mSP2 case, but there is also a much larger peak

at higher values that corresponds to models with a high mirage unification scale.
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Figure 6.15: mSP3′ pattern: gluino and squark mass distributions. Histograms of the gluino
mass (left panel) and the squark versus gluino (right panel) for the mSP3′ pattern, with the WMAP
Preferred dark matter constraints and mh > 114.4 GeV.
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Figure 6.16: mSP3′ pattern: gluino/LSP mass ratio and squark/gluino mass ratio. Histograms of
the ratio of the mass of the gluino to the LSP mass (left panel) and the ratio of the first generation
up-type squark mass to the gluino mass (right panel) for the mSP3′ pattern, with the WMAP
Preferred dark matter constraints and mh > 114.4 GeV.
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6.10 mSUGRA-like DMM patterns: mSP6′

The final DMM hierarchy pattern we will consider is the mSP6′ pattern, in which the NLSP is

the lightest stau. As we will see, this pattern is similar to the typical hierarchy patterns found in

mSUGRA models (significantly more so than the DMM mSP3′ pattern described in the previous

section), though the spectrum will once again exhibit the compressed features that are characteristic

of DMM models.

We begin by showing the distribution of the LSP mass and the bino fraction of the LSP as a func-

tion of its mass, which are given in Fig. (6.17). This pattern is characterized by a bino-dominated

LSP that is correspondingly much lighter than the Higgsino-dominated neutralino LSP’s found

in the Higgs LSP pattern and the mSP2 pattern. In fact, the mass pattern of the charginos and

neutralinos very much resembles that of standard minimal supergravity, with the lowest mass

state given by bino-like LSP and the next lightest states in the electroweak chargino/neutralino

sector consisting of degenerate wino-like pair consisting of χ0
2 and χ±1 . The splitting of the χ0

1 mass

compared to the χ±1 and χ0
2 is more substantial for this pattern, with both (mχ±1

− mχ0
1
)/mχ0

1
and

(mχ0
2
−mχ0

1
)/mχ0

1
∼ 0.6 on average.
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Figure 6.17: mSP6′ pattern: χ0
1 mass and bino fraction. Histograms of the mass of the neutralino

LSP χ0
1 (left panel) and the bino fraction of χ0

1 as a function of the LSP mass(right panel) for the
mSP6′ pattern, with the WMAP Preferred dark matter constraints and mh > 114.4 GeV.

The spectrum of the mSP6′ pattern is less compressed on the average than the other DMM

pattern considered. In Figs. (6.18 and 6.19), we plot histograms of the gluino mass (upper left
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Figure 6.18: mSP6′ pattern: gluino mass and mq̃/mg̃ distributions. Histograms for the mSP6′ of
the gluino mass (left panel) and the ratio of the first generation squark mass to the gluino mass
(right panel), with the WMAP Preferred bounds and mh > 114.4 GeV.

panel) and the ratio of the gluino mass to the LSP mass as well as the ratio of the typical first

generation squark mass to the gluino mass. The mg̃/mχ0
1

distribution is peaked at significantly

larger values than the other DMM patterns, which is as expected since the mSP6′ pattern favors

high values of the mirage unification scale. For the purposes of comparison, the gluino to LSP

mass ratio for the analogous mSP6′ pattern in mSUGRA models is also shown in Fig. (6.19), which

indicates that this ratio is peaked at still higher values in minimal supergravity. The ratio of

the squark to gluino masses in the DMM mSP6′ pattern, in contrast, is very sharply peaked at

mq̃/mg̃ ∼ 1, indicating that on average the first generation squark and gluino masses tend to be

clustered and significantly heavier than the LSP.

6.11 Summary

In this chapter we studied the phenomenology of deflected mirage mediation, a string-motivated

scenario involving comparable contributions to supersymmetry breaking from gravity, anomaly

and gauge mediation. We first focused on the implications for LHC physics between deflected

mirage mediation and pure mirage mediation, which includes gravity and anomaly mediation,

but not gauge mediation. We generated benchmark points with similar gaugino mass unification

scale in both frameworks. We also studied the effects of turning on the gauge mediation starting
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Figure 6.19: mSP6′ pattern: mg̃/mχ0
1

and comparisons with mSUGRA. Histograms for the mSP6′

of the the ratio of the gluino mass to the LSP mass in DMM (left panel) and in mSUGRA (right
panel), with the WMAP Preferred bounds and mh > 114.4 GeV.

from pure mirage mediation scenarios.

The results show that there is a broad variety of phenomenological outcomes within deflected

mirage mediation, depending on the messenger scale and the size of the threshold effects from

gauge mediation. One interesting class of examples have a deflected gaugino mirage unification

scale at TeV energies, leading to a squeezed spectrum in which the gluino can be the lightest

colored superpartner, which in turn results in LHC signals with softer jets and leptons than in

standard MSSM models. The effects of gauge mediation can also have a large impact on the total

superpartner production cross section, in some cases by several orders of magnitude. Wee see that

for the deflected mirage mediation examples studied here, the most robust discovery mode will

be the multijet channel.

Next we have used the hierarchy of mass eigenstates for the superpartners as an organizing

principle, and investigated the landscape of these hierarchies for both the mSUGRA and DMM

frameworks. We generate a very large data set of mSUGRA and DMM models, and apply pro-

gressive cuts motivated by phenomenology: radiative electroweak symmetry breaking, a neutral

lightest superpartner that can be a dark matter candidate, direct search limits on superpartner

masses and indirect limits from rare processes. We show that if we impose a strict dark matter

constraint, there is no overlap between the five most populated hierarchies in mSUGRA with the

six most populated hierarchies in deflected mirage mediation. These hierarchies account for 77.5%
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of all DMM models when the WMAP Preferred constraint of (6.25) is imposed.

We also studied the distributions of various masses relevant to the collider phenomenology

within the top 6 hiearchy patterns, namely Higgs LSP, mSP2, mSP2′, mSP3, mSP3′ and mSP6′. One

interesting observation is that the Higgs LSP pattern appears to dominate the parameter space of

DMM, in contrast it appears very rarely in the mSUGRA framework.
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Chapter 7

Conclusions

In this thesis, we focused on the collider phenomenology of supersymmetry, one of the best moti-

vated candidate for beyond the Standard Model physics. The analyses presented were carried out

in the framework of mSUGRA, mirage mediation and deflected mirage mediation. We summarize

the main conclusions below.

• In Chapter 4, we studied the SUSY discovery potential of the early LHC run at 7 GeV

center of mass energy with up to 2 fb−1 of data. As a first step we worked on generating

a good representation of the Standard Model background at the LHC which is generally

consistent with a previous study [31]. We then looked into mSUGRA and nonuniversal

mSUGRA frameworks with a nonuniversality in the gaugino sector. Specifically we analyzed

the LHC reach in the mSUGRA framework and showed a reach of m1/2 ≈ 400 GeV (for

low m0) and m0 ≈ 2000 GeV (for low m1/2) is possible within the first inverse femtobarn

of data. We then studied nonuniversal mSUGRA and generated the benchmark models

given in Table (4.4) satisfying both the theoretical and the experimental constraints. These

benchmark models are grouped according to their next to lightest sparticles and represent

different phenomenological properties which can be studied further for the early detection

of supersymmetry at the LHC as well as in direct detection experiments of dark matter.

• In Chapter 5, we asked ourself what is the most important information that would be useful

to a high energy theorist interested in connecting the supersymmetric physics at the LHC to

physics at an even higher energy scale, such as some underlying string theory. We believe

the most important information is the question of gaugino mass universality. We developed

statistical methods that will let us choose the best signatures to resolve the amount of non-

universality in the gaugino sector for a model following the mirage pattern of gaugino
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masses. Our results concluded that up to a 30% non-universality is resolvable after just one

year of LHC data.

• In Chapter 6 we studied the phenomenology of deflected mirage mediation, a string-

motivated scenario involving comparable contributions to supersymmetry breaking from

gravity, anomaly and gauge mediation. We first focused on the implications for LHC physics

between deflected mirage mediation and pure mirage mediation, which includes gravity and

anomaly mediation, but not gauge mediation. We generated benchmark points with similar

gaugino mass unification scale in both frameworks. We also studied the effects of turning on

the gauge mediation starting from pure mirage mediation scenarios.

The results show that there is a broad variety of phenomenological outcomes within deflected

mirage mediation, depending on the messenger scale and the size of the threshold effects

from gauge mediation. One interesting class of examples have a deflected gaugino mirage

unification scale at TeV energies, leading to a squeezed spectrum in which the gluino can be

the lightest colored superpartner, which in turn results in LHC signals with softer jets and

leptons than in standard MSSM models. The effects of gauge mediation can also have a large

impact on the total superpartner production cross section, in some cases by several orders

of magnitude. Wee see that for the deflected mirage mediation examples studied here, the

most robust discovery mode will be the multijet channel.

Next we have used the hierarchy of mass eigenstates for the superpartners as an organiz-

ing principle, and investigated the landscape of these hierarchies for both the mSUGRA

and DMM frameworks. We generate a very large data set of mSUGRA and DMM models,

and apply progressive cuts motivated by phenomenology: radiative electroweak symmetry

breaking, a neutral lightest superpartner that can be a dark matter candidate, direct search

limits on superpartner masses and indirect limits from rare processes. We show that if we

impose a strict dark matter constraint, there is no overlap between the five most populated

hierarchies in mSUGRA with the six most populated hierarchies in deflected mirage medi-

ation. These hierarchies account for 77.5% of all DMM models when the WMAP Preferred

constraint of (6.25) is imposed.
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We also studied the distributions of various masses relevant to the collider phenomenology

within the top 6 hiearchy patterns, namely Higgs LSP, mSP2, mSP2′, mSP3, mSP3′ and

mSP6′. One interesting observation is that the Higgs LSP pattern appears to dominate the

parameter space of DMM, in contrast it appears very rarely in the mSUGRA framework.
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Appendix A

Benchmark models for early discovery of SUSY at the LHC

Here we display the spectra of the selected benchmark models.

Label C1 C2 C3 C4 C5 G1 G2 G3 G4 G5 G6
NLSP χ±1 χ±1 χ±1 χ±1 χ±1 g̃ g̃ g̃ g̃ g̃ g̃
σSUSY (pb) 24.3 2.4 14.8 11.3 3.5 2.2 24.2 3.1 5.8 19.4 3.7
µ 145 345 239 231 489 480 314 523 434 324 539
mÑ1

103 130 140 171 123 327 256 270 283 275 328
mÑ2

157 151 189 240 146 485 324 522 439 333 541
mC̃±1

141 150 183 229 145 480 316 520 435 326 539
mτ̃1

1463 441 1318 1170 260 1079 2155 1542 1475 1719 1311
mt̃1

922 560 828 621 402 612 1145 1115 1048 1054 863
mg̃ 316 698 341 354 680 452 314 432 393 325 421

Label H1 S1 S2 S3 S4 S5 S6 S7 T1 T2
NLSP Ao τ̃1 τ̃1 τ̃1 τ̃1 τ̃1 τ̃1 τ̃1 t̃1 t̃1
σSUSY (pb) 0.3 1.4 0.4 0.5 0.6 0.4 2.0 0.2 2.3 3.8
µ 630 425 426 301 393 443 388 432 1213 691
mÑ1

297 157 181 188 241 280 159 211 232 324
mÑ2

630 198 408 303 395 415 189 408 508 689
mC̃±1

629 198 405 295 390 409 187 406 508 687
mτ̃1

1456 167 194 192 248 289 176 221 1546 1436
mt̃1

1032 541 504 529 329 506 497 615 258 357
mg̃ 594 771 835 817 834 817 709 913 532 422

Table A.1: An exhibition of the light sparticles for the benchmarks given. These benchmarks are
listed in Table (4.4). All masses are given in GeV.
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Figure A.1: Spectrum of the benchmark models C1, C4, C5, G2. In each column masses increase
from left to right.
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Figure A.2: Spectrum of the benchmark models: G3, S3, S6, T1. In each column masses increase
from left to right.
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Appendix B

Anomalous dimensions in the DMM framework

At one loop, the anomalous dimensions are given by

γi = 2
∑

a
g2

aca(Φi) −
1
2

∑
lm

|yilm|
2, (B.1)

in which ca is the quadratic Casimir, and yilm are the normalized Yukawa couplings. Here we will

consider only the Yukawa couplings of the third generation yt, yb, and yτ. For the MSSM fields Q,

Uc, Dc, L, Ec, Hu and Hd, the anomalous dimensions are

γQ,i =
8
3

g2
3 +

3
2

g2
2 +

1
30

g2
1 − (y2

t + y2
b)δi3

γU,i =
8
3

g2
3 +

8
15

g2
1 − 2y2

t δi3, γD,i =
8
3

g2
3 +

2
15

g2
1 − 2y2

bδi3,

γL,i =
3
2

g2
2 +

3
10

g2
1 − y2

τδi3, γE,i =
6
5

g2
1 − 2y2

τδi3,

γHu =
3
2

g2
2 +

3
10

g2
1 − 3y2

t , γHd =
3
2

g2
2 +

3
10

g2
1 − 3y2

b − y2
τ, (B.2)

respectively. Above Mmess, the beta function of the gauge couplings changes because of the

messenger fields. However, γi does not change according to Eq. (B.1), and hence γ′i = γi. The γ̇i’s

are given by the expression

γ̇i = 2
∑

a
g4

abaca(Φi) −
∑
lm

|yilm|
2byilm , (B.3)
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in which byilm is the beta function for the Yukawa coupling yilm. The γ̇i’s are given by

γ̇Q,i =
8
3

b3g4
3 +

3
2

b2g4
2 +

1
30

b1g4
1 − (y2

t bt + y2
bbb)δi3

γ̇U,i =
8
3

b3g4
3 +

8
15

b1g4
1 − 2y2

t btδi3, γ̇D,i =
8
3

b3g4
3 +

2
15

b1g4
1 − 2y2

bbbδi3

γ̇L,i =
3
2

b2g4
2 +

3
10

b1g4
1 − y2

τbτδi3, γ̇E,i =
6
5

b1g4
1 − 2y2

τbτδi3

γ̇Hu =
3
2

b2g4
2 +

3
10

b1g4
1 − 3y2

t bt, γ̇Hd =
3
2

b2g4
2 +

3
10

b1g4
1 − 3y2

bbb − y2
τbτ, (B.4)

where bt = 6y2
t +y2

b−
16
3 g2

3−3g2
2−

13
15 g2

1, bb = y2
t +6y2

b+y2
τ−

16
3 g2

3−3g2
2−

7
15 g2

1 and bτ = 3y2
b+4y2

τ−3g2
2−

9
5 g2

1.

γ̇′i is obtained by replacing ba with b′a = ba + N in Eq. (B.4).

Finally, θi, which appears in the mixed modulus-anomaly term in the soft scalar mass-squared

parameters, is given by

θi = 4
∑

a
g2

aca(Qi) −
∑
i, j,k

|yi jk|
2(3 − ni − n j − nk). (B.5)

For the MSSM fields, they take the form

θQ,i =
16
3

g2
3 + 3g2

2 +
1
15

g2
1 − 2(y2

t (3 − nHu − nQ − nU) + y2
b(3 − nHd − nQ − nD))δi3,

θU,i =
16
3

g2
3 +

16
15

g2
1 − 4y2

t (3 − nHu − nQ − nU)δi3

θD,i =
16
3

g2
3 +

4
15

g2
1 − 4y2

b(3 − nHd − nQ − nD)δi3,

θL,i = 3g2
2 +

3
5

g2
1 − 2y2

τ(3 − nHd − nL − nE)δi3

θE,i =
12
5

g2
1 − 4y2

τ(3 − nHd − nL − nE)δi3,

θHu = 3g2
2 +

3
5

g2
1 − 6y2

t (3 − nHu − nQ − nU)

θHd = 3g2
2 +

3
5

g2
1 − 6y2

b(3 − nHd − nQ − nD) − 2y2
τ(3 − nHd − nL − nE). (B.6)

As in the case of γi, θ′i is the same as θi.
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