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PREFACE 

In recent years we have gained insights into much wider possibilities for the 

dynamical symmetry breaking than ever thought of. In a word, field theories 

with a nontrivial ultraviolet fixed point and/or a large anomalous dimension 

have become rather serious candidates for the framework of the dynamical 

electroweak symmetry breaking. 

In December of 1989, on the occasion that Professor Y. Nambu, the very 

originator of dynamical symmetry breaking, was visiting Japan, we organized 

1989 Workshop on Dynamical Symmetry Breaking at Nagoya University. The 

purpose of this workshop was to have intensive discussions on the new devel

opment of this exciting field, particularly that after our preceding workshop, 

1988 International Workshop on New Trends in Strong Coupling Gauge Theo

ries(SCGT 88), Nagoya, August 24-27. More than 60 people gathered at the 

workshop. About 30 papers were presented, which are contained in this volume. 

The workshop was sponsored by the Particle Theory Group at Nagoya 

University and was supported in part by the Grant-in-Aid for Scientific Re

search from the Ministry of Education, Science and Culture(No.63540221 and 

No.62540202). We would like to express our sincere thanks to the Ishida Foun

dation for financial support and to the High Energy Experiment Groups at 

Nagoya University. Special thanks are due to young physicists at Nagoya Uni

versity for their devoted assistance to make the workshop a success. Finally 

but not the least, we would like to thank Mrs. M. Kitajima for her patient help 

in preparing the workshop. 
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Model Building Bm~ed on Boolslrop Symmetry Breoking-11. 

Voichiro Nambu 

University of Chicago 

1. At the Nagoya Vlorkshop last year, I presented my ideas concerning the 
nature of the Higgs boson in the standard model [1]. It was motivated by 
my long-standing interest in the BCS mechanism as the origin of masses. 
In essence it boils down to the propositlon that the Higgs boson is a 
top-antitop bound state. 

This idea has also been advanced by the Nagoya-Kiev group {2], and some 
detailed calculations have have been carried out by the Fermilab group [3]. 
lndependtly of the motivation that led me to the model, it looks very 
natural now that the experimental searches for the top quark are raising 
the top quark mass higher and higher. (I understand the current lower limit 
for the top mass from the Fermilab experiment to be in the W-Z mass 
range.) This makes the Vukawa coupling of the top quark larger and larger, 
and therefore the picture emerges that the Higgs ffeld is largely made up 
of the top-ant itop component. 

I will briefly recapitulate here my ideas about the BCS mechanism, 
which consist of several ingredients. By the BCS mechanism I mean 
dynamical generation of the fermion mass due to a short range interaction, 
toget~er with the Goldstone (pi) and Higgs (sigma) bosons as collective 
modes. The mass scale is usually smoll compared to the energy scale at 
which the original interaction is considered. Remarkobly the mosses of 
these low energy modes satisfy a simple relation 

( 1) 

in tlie short range, or bubble approximation, limit. Actually tliis is a 
special case of a more general sum rule 

m 2+m 2-4m 2 1 2 - f , (2) 

which is essentially a completeness relation for the composite 
two-fermion operators. In nonrelativistic examples of superconductivity 
and 3He superfluidity, these relations are known to be satisfied. 

*)Revised version, March 1990. Supported in part by National Science 
Foundatio:PHV 88-21039. 
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Once the low energy modes are identified, one can write down an effecUve 
Ginsburg-Landau theory for them. Because of the mass relation ( 1), the 
Higg~ eself-coupling ~and the Yuk:owo coupling fore related by r. = mf. The 

vacuum expectation value v, or the "pion decay constant", represents the 
high energy scale of the original BCS Hamiltonian, and f is by definition 
tt1e ratio between the two energy scales. 
The simple mass relations suggest a kind of broken sypersymmetry 

inherent in the BCS mechanism. In fact the effective GL Hamiltonian can be 
factorized as a product of f ermionic opeerators as in the real 
supersymmetry, provided one ingnores the kinetic terms. I will discuss 
relativistic generalizations of this ·quasi-supersymmetry" at the end. 
There are also two physical concepts that I have proposed to add to the 

BCS mechanism. One is tumbling, borrowing from the work of Dimopoulos, 
Raby and Susskind [4]. The other is what I would call bootstrap. Tumbling 
means that the Higgs boson associated with the chiral symmetry breaking 
in turn provides a new attractive interaction that can trigger a second 
symmetry breaking at a lower energy than the original, and so on. Indeed 
one such example of tumbling is the formation of nuclei and nucleon 
pairing in nuclei, due to the existence of the sigma meson which is the 
"Higgs" boson associated with the chiral symmetry breaking in QCD. One 
could say that superconductivity is another example:it is induced by the 
phonons which are the Goldstone bosons associated with the breaking of 
translational and rotational invariance in crystals. 

Instead of a hierarchical chain of symmetry breakings, one can 
contemplate a theoretical possibility of bootsrtap, namely the possibility 
that the Higgs boson is the cause of attraction bewteen fermions that is 
responsible for its very existence. I proposed the hypothesis that this 
applies to the standard model, which implies that the fermions, gauge 
bosons, and the Higgs fields that appear in the standard model are 
dynamically closed among themselves without a need. to ref er to the 
possible underlying structure. The condition for bootstrap was expressed 
by tt1e requirement that the standard theory be free from quadratic 
divergences on the ground that the theory should be insensitive to the 
cut-off, which presumbaly represent the energy scale of the underlying 
structure. Unf ortunaely the formulas I used to predict the Higgs and top 
masses were not correct. Later I will discuss a modified version of the 
liypot11esi s. 

2. Dyson-Schwinger equation, hard mass, and soft mass 

Tile mass of a fermion can be spontaneouly generated when there is a 
sufficiently strong attractive interaction, as is known from various 
examples. 

In a renorma Ii zab 1 e theor~, the interaction may be due to a vector or a 



scalar boson exchange. There are two types of Feynman diagrams that 
contribute to the fermion self-energy viev'fed as the potential energy due 
to fermions in the vacuum, corresponding to the direct (tadpole) and 

exchange (usual self-energy) terms which are respectively quadratically 
and logarithmically divergent in the lowest order. Pursued to all orders, 
the latter leads to the Dyson-Schwinger equation which may be treated 
nonperturbativley at various levels of approximation. 

For the vector interaction, only the exchange term is nonzero. For the 
scalar interaction, both terms are present, but the quadratically divergent 
direct term (tadpole) is dominant, whereas the exchange term has the 
wrong sign to generate a mass by itself. (In general the sign alternates 
with the degree of divergence.) The latter fact was the basis for the 
t11eory of Sakata and Pais [51, who independently proposed to render the 
electron self-energy finite by the cancellation between electromagnetic 
forces and the cohesive force due to a hypothetical scalar field. Their 
t11eory is not relevant here because of the neglect of the tadpole, as well 
6S the Jack of chiral invariance. 

Speaking of old theories, Weisskopf [6] was the flrst to show the 
logarithmic nBture of electron's self-energy, but he also interpreted it as 
the result of a cancellation between two quodratically divergent physicol 
effects. In terms of Feynman diagrams, one corresonds to a loop made up 
of on-shell electron and off-shell photon, and the other made up of 
off-shell electron and on-shell photon. Actually these quadratic terms 
belong only to the wave function renormalization, so again this analysis is 
not of interest here. 

A similar but more instructive way of Bnalyzing the self-energy may be 
the following formal manipulation: Set the externol electron momentum to 
zero (this will not chonge the divergence properties), end split the two 
progpagators in the loop as 

'when inserted into the Dyson-Schwinger equation, each term yields a 
quadratically divergent integral like that for a tadpole or a four-fermion 
i nterecti on. In fact the two terms look like the fermion loop and boson 
1oop contributions to the tadpole, and their signs are correct for such an 
interpretation provided that mv > mf, i.e., a sufficiently short range 

interaction. 
The above excerci se "Nas to compare the vector interaction with the 

scalar and four-fermion interaction cases, and to see how the latter might 
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be interpreted as effective low energy theories of the former. 
The Dyson-Schwinger equation for the exchonge term gives o running 

mo~~ m(p) o~ o nonperturbotive ~olution, -rrhereo~ the tadpole :)Upplie~ a 

bare mass mo which gets dressed up and becomes a running mass by the 
exchange term. The bare moss serves os the boundary condition for m(p) at 
Jorge momentum. If mo is absent as in the vector interaction, m(p) goes to 
zero like - 1 /p2 (up to log factors) as is well known, so the mass is soft. 

Are the masses (current masses) of quarks and leptons soft or hard? This 
should be an important question which has a bearing on whether the Higgs 
field is elementary, or comes from a gauge theory like technicolor. 

One way in which the dressing effect manHests itself is in the mass 
ratio between the fermion and the Higgs. In the bubble approximation of 
the four-fermion interaction, it was 1:2. In general one has to solve a 
Bethe-Salpeter type equation in the scalar channel, but even in the context 
of bubble approximation, one can see the effect of the softness of the 
fermion mass in the bubble. It is easy to derive the expression 

(4) 

where the right-hand side is an average with respect to a weight 
dp4/(p2 + mf2)2 - dp/p. Clearly mH i 2mr in general. This is in agreement 

with the more elaborate calculations by Vamawaki et al. [71 and by 
suwa and So [8]. If one adopts the standard behavior 

m(p) - 1/pY, y = 1 -1(1 -/\), (5) 

where/\ characterizes the coupling strength in the Dyson-Shwinger 
equation, one gets 

x = 4/(1 + /(1 -/\)). (6) 

Even in the limit/\= 0, this gives mH2/mf2 = 2(1 - exp(-2)). 

3. Models of bootstrap 

First consider nonrelativistic cases like supercondcucttvity. 
The typical gap equation can be written as 



(7) 

Usually the factor in front of 2sh-1 is <V>N, the product of the average 
potential <V> and the density of states N of fermions. Here the short range 
potential is represented by a propagator 1/(m2 + v2k2) ~ 1/m2 (v = 
velocity) and a couplinq constant f, whereas N is related to the Higgs 
condensate v by N = 4v1 in the Ginzburg-Landau translation. 

Now apply the bootstrap concept, and say that the propagator is that of 
the sigma (or Higgs) boson, in which case mer= 2mf = 2fv. So the factor in 

Eq.(7) = 1, and the solution is A/mf - 1 /2, Almrs - 1. In other words, 

bootstrap is a self-consistent picture that makes mer the only ava1Iable 

scale parameter. 
Let us next turn to relativistic dynamics. Assume a U( 1) * U( 1) set of 

moss less fermion fields ond massive spin O fields (bare moss m0) with 

Vukawa coupling f. As was shown above, the fermion mass is generated by 
the tadpole and exchange diagrams. The equation for m0 from the tadpole 

takes the form 

mf = mfF, or 1 = F, w11ere 

F = (f 2 /m
6 

2)(A 2 - mf2 ln(A2 /m<J2)1/(4rr2 ). (8) 

The exchange diagram dresses mf, but this can be interpreted as the 

dressing of the vertex f. Tl1e scalar and pseudoscalar masses ~<J and mrr 
must also include their own self-energies: 

(9) 

The condition mn = O serves to relate m0 to A, or to eliminate it between 

m11 and m<J: 

5 



6 

( 10) 
This gives the mass ratio m~/mf in terrns off and A/mf, which con be 

seen to be~ 2. When 11\r is substituted in Eq.(9), one gets the gep equation 

determining mr- or one may regard it as an equation for the "vacuum 

expectation value" v defined by v = mf/f. 

The above model is not satisfactory for two reasons: lt has a bare mass, 
and it does not have a quartic coupling, which is not ·natural·. If the 
masses are to be generated dynamically in a renormalizable theory, one 
may allow all dimensionless parameters but no bare mass. The mass scale 
will then be related only to a scale parameter or a cut-off. 

One is thus led back to the conventional Higgs (or Ginzburg-Landau
Gell-Mann-Levy) Lagrangian, except that the vacuum expectation value v 
must be purely dynamical, i.e., no bare v0, only the tadpoles. Equating v 

wHh the tadpoles, one gets the gap equation 

The sum runs over all fermions and bosons that can couple to the Higgs 
boson. One may conveniently define the coupling constants in such a way 
that the masses are given by mi = gi v. The numerical coefficeients c1 are 

then 4 for each Dirac fermion, 3/2 for the Higgs scalar, 1/2 for each 
pseudoscalar, and 3 for each gauge boson. Eq.( 11) is an equation for v, 
given the coupling constants gi. 

Assuming the A2 terms to dominate the sum, one first gets the 
inequality 

12) 

The presence of quadratic terms means, however, a fine tuning of A. It 
was al so argued before that, from the bootstrap point of view, the gap 
equation should not sensitively depend on A since the low energy 
parameters should be self-consistent among themselves, without a need to 
refer to an unknown higl1 energy scale. With this ansatz, Eq.(12) becomes 
an equality 

( 13) 

One is then 1 ef t with 



( 14) 

where a common massµ was inserted in the logarithms for simplicity. 
One first observes from Eq.( 14) that 

( 15) 

Eqs.( 13) and ( 15) constrain the mass values. For fixed J\, Eqs.( 13) and 
coupling constants gi 2 in general behave like 1/1n(J\/µ), so all the terms 

are of the same order. 
The specific application of these conditions to the standard model Jeacl 

to the following results. 
Eqs.( 13) and ( 15) read 

( 16) 

Wtih the known Yalues mw = 80 Gev, Mz = 91 GeY, there are two regions 

of compatibility, 

mt s. 80 Gev, mH s. 64 Gev; 

mt z 150 Gev, rnH z 195 Gev. ( 17) 

The first region seems excluded by experiment. If Eqs.(13) and (14) are 
used, one can solve for mt and mH as a function of J\. The mass values turn 

out to be pushed consi derab 11 y higher for standard choices of J\: mt = 230 

Gev, mH = 440 Gev for J\ = 1O 19 Gev (Pl an ck); mt = 260 Gev, mH = 500 Gev 

for J\ = 1Ol5 Gev (GUTS); and getting even higher as J\ is further lowered. 
The general trend is similar to the results of Bardeen et al. [3]. 

There remain questions of principle and questions of numerical 
rel i abi 1 ity. These have not been addressed yet. The most serious one may 
be that concerning the quadratic divergence condition. For it to make 
sense, one must have a prescription for handling higher order terms as 
well. (See [9] for computations using dimensional regularization, but the 
physical meaning of such a procedure is not clear.) If it makes sense at 
a 11, it may perhaps be understood in terms of a dynami ca J supersymmetry 
like quasi-supersymmetry. The quantitative results like those given above 
of course will change when renormalization correctons are included, but 
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one must also have a definite prescription for them. 

4. Quasi-supersyrnmetry 

I will now briefly di cuss o different topic. Quasi-supersymmetry wos 
found in non-relativistic BCS mechanisms. Whatever the orign of the 
symmetry, can it be made relativistic? This question has Jed to the 
following results [ 1 OJ. 

The static part of the effective Landau-Ginzburg Hamiltonian 
satisfying the BCS mass ratios can in general be factorized in terms of 
f ermi oni c operators 

H = {Q, !tl/n. 18) 

i.v and 1¥+ are n-component fermion fields, <P and ip+ are n by n complex 
matrix Higgs fields acting on the former, Il = o<fllot and n+ = 0$ +lot are 
their canonical cojugates. The underline indicates spatial integral. 

The f ermionic currents in (extended) supersymmetry, on the other hand, 
are made up of the following types of pieces in general. 

qJJR(x) = ov <j)(x) <Jv <J-µ 1-VR(x), 

QJlR(x) = Fi\p(x) i' <J-p (.JJl 1-VL (x), 

QJlR(x) = W Ciµ i.lfL (x), ( 19) 

and similar forms with L and R interchanged. The first and second lines 
represent kinetic currents for chiral and gauge multiplets, the third one 
represents the potential for the scalar field. The Q's have internal indices 
which are suppressed. Anticommutators {Q, q+} generate the Poincare 
algebra, {Q, Q} and {Q+, q+} generate central charges. 

Comparing Eqs.( 18) and ( 19), one can see the correpondence: 1iJ -> 141 R, 

111+ ->\jll; the first term of EQ.(1Ba)-> EQ.(19a), the second term -> 

EQ.( 19c ). 
So the relativistic generalization seems easy. However, the Higgs 



potential in Eq.(18) is not the Kaehler potenliol in Eq.(19c), the main 
reason the masses do not come out equal. Since one does not have exact 
supersyrnmetry, one has to decide which part of supersymmery relations 
to keep and which part to give up. I have proposed to keep one Poincre 
algebra (N= 1 subalgebra), and give up all others. That means, in addition to 
the energy part of~ {Qi, o1 +}, the momentum part of it must come out 

right. It turns out that the f ollwoing conditions must be met: 
a. Matching of f ermionic and bosonic degrees of freedom, in order that 

kinetic energies of the various fields in the Hamiltonian have the same 
weight; 

b. Absence of interaction pieces in the momentum part of the Poincare 
agebra. For this, one must have fermion, Higgs, and gauge fields all 
present in such a wa·y that the interactions arising from various cross 
terms in the anti commutators cance 1 each other for the momentum 
algebra, but not for the energy algebra. The Vukawa and gauge couplings 
must then be related, but the relation does not seem to be unique. It is due 
to the fact that the currents in our cases carry gauged quantum numbers, 
and there are ambiguities in the gauge-invariant definition of 
anti commutators. 

The physical meaning of relativistic quasi-supersymmetry thus 
defined is unclear, but some models satisfying the above criteria can be 
constructed. They seem to have some resemblance to the hidden symmetry 
scheme in chiral dynamics. It should be interesting if Higgs and gauge 
fields both are found to play dynamical roles in the BCS mechanism and 
lead to quasi-supersymmetry. One would also hope that the 
quasi-supersymmetry eliminate the quadratic divergences llke in real 
spersyrnrnetry,. but this does not seem to be the case in general. 

A final comment concerns an observation on quasi-supersyrnmmetry in 
SU(5) grand unification. The degree matching beween fermions and bosons 
works out fine if there are three generations of fermions (1+5 + 10·*) * 2 
* 3 = 96 against the SU(5) gauge fields (24 * 2) and a set of complex 
adjoint Higgs fields (24 * 2). The Higgs fields can break SU(5) down to 
SU(3)*SU(2)*U( 1 ), but there are no Vukawa couplings, so fermions remain 
massless al this energy scale. The Higgs fields of the standard model 
presurnbaly will arise later as composites. 
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FUN WITH LARGE ANOMALOUS DIMENSION 

IN DYNAMICAL SYMMETRY BREAKING*) 

Koichi Yamawaki 

Department of Physics, Nagoya University 
Nagoya 464-01, Japan 

Abstract 

We advocate dynamical symmetry breaking with large anomalous dimension for trig
gering the electroweak symmetry breaking. Based on the ladder Schwinger-Dyson equa
tion, we explicitly obtain spontaneous-chiral-symmetry-breaking solution of QED-like the
ories, QCD-like theories and these gauge theories plus four-fermion interactions ("gauged 
Nambu-Jona-Lasinio models"), and argue the phase structure associated with them. Al
though all such theories equally yield the sigma model as the low energy effective theory, 
the parameters of the effective theory are determined to be different depending on the 
high energy behavior of the original theories, i.e., the anomalous dimension plays a cru
cial role. Implications of the large anomalous dimension for technicolor and "top-mode 
standard model" (dynamical electroweak symmetry breaking due to a top quark conden
sate) are fully discussed. In particular, the top-mode standard model predicts a very large 
mass for the top quark, typically of mi :::::: 250GeV, without affecting the weak isospin 
relation p = m~/m1 cos2 Bw :::::: 1, and a Higgs boson as a tt composite with a mass 
mH :::::: v'2mi ~ 350GeV. 

1. Introduction 
As it stands now, the standard model is a very successful framework for describing elementary 

particles in the low energy region, say, less than lOOGeV. However one of the most mysterious 
part of the theory, the Origin of Mass, has long been left unexplained. Actually, mass of all 
particles in the standard model is attributed to a single order parameter", the vacuum expectation 
value (VEV) of the Higgs doublet. Thus the problem of the origin of mass is simply reduced to 
understanding the dynamics of the Higgs sector. 

Here we note that formation of the Higgs VEV is a second order phase transition. The 
situation thus very much resembles the Ginzburg-Landau (GL)'s macroscopic theory for the su
perconductivity, the mysterious parts of which were eventually explained by the microscopic theory 
of Bardeen-Cooper-Schrieffer (BCS): The GL's phenomenological order parameter was replaced 
by the Cooper pair condensate due to the short range attractive forces. 

A similar thing has also happened to the hadron physics where the sigma model description 
by Gell-Mann and Levy (GML) works very well as far as the low energy (macroscopic) phenomena 
are concerned, while the deeper understanding of it was first given by Nambu and Jona-Lasinio 
(NJL)[l] based on the analogy with the BCS dynamics (short range four-fermion attractive inter
action). Nowadays people believe that essentially the same phenomena as described by the NJL 
paper takes place in the microscopic theory for hadrons, QCD, where the VEV of a, the GML's 

•) Work supported in part by the Grant-in-Aid for Scientific Research from Ministry of Ed
ucation, Science and Culture ( #62540202) and by the Kato Foundation of Nagoya University. 
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order parameter (a} = f1f = 93MeV, has been replaced by the quark-antiquark pair conden
sate (qq} = O(f~). an analogue of the Cooper pair condensate, formed by the attractive color 
forces. The Nambu-Goldstone (NG) boson, the pion, is now a composite state of the quark and 
antiquark. This is actually the prototype of the dynamical symmetry breaking (DSB). 

In fact Higgs sector in the standard model is precisely the same as the sigma model except . 
that (a} = f1f = 93MeV is now replaced by the Higgs VEV= F'lf = 250GeV, roughly a 2600 
times scale-up. One is thus naturally lead to speculate[2] that there should exist a microscopic 
theory for the Higgs sector, with the Higgs VEV being replaced by the fermion-antifermion pair 
condensate due to yet another strong interaction called Technicolor (TC). It is well known that 
the original version of TC was too naive to survive the FCNC (flavor-changing neutral current) 
syndrome[3J. It was not the end of the story, however. QCD-like theories (simple scale-up's of 
QCD) turned out not to be the unique candidate for the underlying theory of the Higgs sector. 
In fact, a TC model with a large anomalous dimension, Im = 1, was proposed to solve the 
FCNC problem, based on the ladder Schwinger-Dyson (SD) equation for "QED-like" theories 
(non-asymptotically gauge theories with a nontrivial ultraviolet fixed point or "walking" gauge 
theories )C4,s,6,7J. 

It was further pointed out[8] that "gauged NJL models" (gauge theories plus four-fermion 
interactions) in the ladder approximation[91 possess an even larger anomalous dimension, 2 > 
Im > 1, near the critical lineClO,llJ. Such a large anomalous dimension, particularly 'Ym ::: 2 (in 
QCD plus four-fermion interactions), enables one to construct a model of a top quark condensate 
(lt} =f:. 0 as an underlying theory of the Higgs sector without destroying the weak isospin relation 
p = mw/m~cos2 Bw::: 1 ("top-mode standard model")[12,l3J. 

The top-mode standard model predicted[12l a very large mass of the top quark 

mt ::: 250GeV (1.1) 

as a typical value (op= p - 1:::::: 0.02), and also a spinless tt bound sate (Higgs boson) with a 
mass 

(1.2) 

Although these values seemed to be absurd at the time when the paper[12l was written, recent 
experimental situation seems to be getting more and more closer towards the above prediction. 
Similar ideas were also developed by Terazawa[141 and NambuC15l, with the same result as (1.2) 
and somewhat different values for m 1. Several groups[l6,17,l8] have further studied consequences 
of the top-mode standard model and confirmed the large m 1(> 200GeV) similar to that in Ref.12. 

In this talk I would like to emphasize that there in fact exist many varieties of microscopic 
theories with DSB, i.e., QCD-like theories, QED-like theories, QCD/QED-like theories plus four
fermion interactions, etc., which yield the same kind of low energy effective (macroscopic) theory, 
the sigma model (or the Higgs sector). How can we, then, distinguish among these varieties of 
theories by only looking at the low energy phenomena? We shall argue that this is the very place 
where the anomalous dimension comes into play. 

One might immediately raise an objection that the anomalous dimension is only related to 
the high energy behavior of the theory and has little to do with the low energy parameters we 
are talking about. However, a crucial point is that important low energy parameters in DS B are 
often given in terms of integral of a certain function of the dynamical mass of the fundamental 
fermion L(p2), and hence can be affected by the high energy behavior of L(p2), 

3 
L:(p2)p~m ?!!.__(!?_)Im' 

p2 m 
(1.3) 



with /m being the anomalous dimension (Eq.(1.3) is a consequence of the operator-product 
expansion (OPE) and the renormalization-group equation )C7l. Typical examples of such are the 
"decay constant" of composite NG boson F,,. (see (3.16)) and the quark/lepton masses in the 
TC models (see (2.15)). Quite recently we have calculated[19l the "sigma model parameters", 
F,,., gy = m/F,,. (Yukawa coupling of 7r and O') and mer (mass of O'), in terms of m = 2:(0) (or 
more precisely m = 'L(m2)) in the (QED-like) gauged NJL model in the ladder approximation. 
Actually these parameters do vary according to the change of /m along the critical line. Thus 
we might be able to "measure" the anomalous dimension or discriminate the microscopic DSB 
theories through the low energy parameters in the effective theory. 

Phenomenological implications of the DSB with a large anomalous dimension will also be 
discussed. Special emphasis will be placed on the top-mode standard model in which the above 
calculation[19l implies 

mH :::::: v'2.mi :::::: 350GeV (1.4) 

instead of the original prediction (1.2), due to the effect of a small (but non-zero) QCD gauge cou
pling. The prediction (1.1) and (1.4), although crude because of the ladder approximation, could 
be tested experimentally in 1990's, which I hope will open the window to deeper understanding 
of the Origin of Mass. 

2. Dynamical Symmetry Breaking with 'Ym = 1 (QED-like Theories) 
In order to demonstrate virtue of the large anomalous dimension, we start with a brief review 

of TC with /m = 1[4J which simultaneously resolved the problems of FCNC and light technipions 
(pseudo NG bosons)*). The dynamical model we are based on is the ladder SD equation of QED, 
which takes the form (in Landau gauge and in Euclidean space) 

(2.1) 

where the mo and g are the bare mass of the fermion and the gauge coupling constant, re
spectively. Eq.(2.1) has been extensively studied by many authors. In particular, it was clearly 
demonstrated in the cutoff version[20J that there exists a critical point a(=: e2 /47r)= ac(= 7r/3) 
above which (a > ac) the chiral symmetry is spontaneously broken, with 2:(0) being non-zero 
for mo= 0. . 

This is easily seen by converting (2.1) (after angular integration) into a differential equation 
and the infrared (IR} and ultraviolet (UV) boundary conditions (BC's): 

II ..\'[(x) 
(x'L(x)) + x + 'L(x)2 = 0 

_ 2 _ 3a 
(x=p ,>.= 47r), (2.2) 

lim x2'L(x)1 = 0 
x-0 

(IRBC), (2.3) 

(xL(x))' lx=A2 =mo(/\) (UVBC). (2.4) 

A useful analytical solution to (2.2) with (2.3) have been obtained[21l in a linearized approximation 
where 'L(x) in the denominator of (2.2) is replaced by a constant mass m; >./(x + r:2(x)) _. 
>./(x + m2). This is a very good approximation particularly for large A(-:P m) which we are 
interested in. Out of two linearly independent solutions to (2.2) in this approximation, we have a 
unique solution written in terms of the hypergeometric function F(l/2 - 1', 1/2 + / 1

, 2; -x/m2). 

*) For detailed discussions see Ref.7. 
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with 1'::: i1::: (1/2)y'l - >./Ac (Ac::: 3ac/47r = 1/4), which satisfies the IRBC (2.3), while 
the other solution is not (divergent at x = 0). Thus we havel21l 

( ) ( 1 I 1 I X) 
L: x = ~mF 2' - 1 , 2' + 1, 2; - m2 , (2.5) 

where~ is a normalization constant of order 0(1) (L:(O) = ~m)*). The asymptotic form of (2.5) 
is given by 

L x;:$>m
2 r(2,') ( x )-t'-t ( I I) 

(x) ::: mr(t+r')r(~+r') m2 +I .,_._I (0 <A< Ac), (2.6) 

2 ( x )-t ( x ) -m - ln-+2(1n4- l) 
7r m2 m2 

(A= Ac), (2.7) 

m (--;)-t [ r ., ) ] ',;n (-yin..;+ 2-y(ln4 -1)) 
m 7rl 12 + t m 

(A > Ac). (2.8) 

It is evident that (2.4) for mo::: 0 is not satisfied by (2.6), behaving as L:(p2),..., p-l+vl-)./>.c, 
nor by (2.7). (These solutions are actually the explicit chiral-symmetry breaking solutions with 
mo(/\)-=/= 0 (and mo(/\)__.,. 0 as/\__.,. oo) )l2°l. Only the oscillating solution for A> Ac satisfies 
the UVBC (2.4) for mo(/\) ::: 0, to be identified with the spontaneous chiral-symmetry breaking 
(SxSB) solution. Eq.(2.4) with mo(/\)::: 0 now reads (scaling relation) 

n7r 
m = J\ · 4e -J>.f>.c- 1 (n 2: 1), (2.9) 

with n = 1 being the ground state solution. 
Eq.(2.9) requires a nontrivial dependence of A on the cutoff /\ if m is required to be kept 

finite for /\ __.,. oo; 

A(/\) = 1+7r2 (in 4/\)-
2 

(n = 1) 
Ac m (2.10) 

__.,. 1 (A/m __.,. oo). 

This cutoff dependence of the SxSB solution has been nicely interpreted by Miranskyl21l in the 
sense of the continuum limit of lattice gauge theories, leading to a new field-theoretical insight; 
the critical point A = Ac should be regarded as a nontrivial UV fixed point, defining the continuum 
limit of the theory. In fact, from (2.10) we obtain 

,B(A(/\)) == /\ OA(/\) = _ _!__ A(/\) - 1 
( ) 

3/2 

8/\ 27r Ac 
(A > Ac), (2.11) 

while ,8(,\) = 0 for A < Ac. Eq.(2.9) now takes a characteristic form to the nonperturbative 

mass generation; m = /\·exp (J).(A) /Jg'.)). Mass scale m has been acquired through the 

dimensional transmutationl4l. If this ,8-function can be identified with that of the continuum 

theory, we may set ,B(,\(µ)) = --,}; Ci~) - 1) 
312

, where A(µ) is the renormalized coupling at 

the renormalization point µ**). 

•) ~may be determined by requiring L:(m2) = m, which yields~= F(l/2-r', 1/2+,'; -1)-l 
(:::::: 1.1for1'::: 0). For simplicity we shall set~= 1 hereafter. 
**) This would contradict a formal proof that ,B(A(µ)) 2: 0 based on the spectral function 
representation[22l. It is actually a highly dynamical problem how ,B( A(/\)) is related to ,B(>.(µ)). 
We shall come back to this point later. 



Still another amazing fact is that the anomalous dimension of the fermion bilinear operator, 
Im(>.)= -A.IA. In mo(/\.), becomes unity at the fixed point (f\./m-+ oo) in the strong coupling 
regime;[4] 

Im= 1 (>. "- >.c), (2.12) 

while Im = 1 - y'l - >./ >.c for >. < >.c,(231 where mo(/\.) can easily be obtained from (2.4) with 
the solution (2.8) and (2,6). Accordingly, the asymptotic form of :L(p2), "renormalized" a la 
Miransky, can be rewritten through (2.10) into the form of (2.7); 

2 m2 p 
:L(p ) ,..., - In-, 

p m 

which in fact agrees with the OPE with (2.12) up to logarithm (see (1.3))(4,241. 

(2.13) 

Now in the non-asymptotically free TC model, the ladder SD equation remains the same 
as (2.2)-(2.4) except that >. is replaced by C2(F)>., with C2(F) being the quadratic Casimir 
of the technifermion representation F.*) Thus the nontrivial UV fixed point does exists at 
>. = >.c = 1/4C2(F), with the same anomalous dimension Im = 1. Accordingly, we have the 
same asymptotic behavior of the SxSB solution :L(p2) as that in the U(l) case (2.13), with m 
being the dynamical mass of technifermion. 

This is to be compared with the asymptotically free TC in which we have[25l 

m3 ( p )A/2-1 
L:(p2) "' pl In;; , (2.14) 

with A=: 3C2(F)/Trb = 9(N~ - l) 33 _
1
2Nf for Nrflavored SU(N) TC. Eq.(2.14) is a SxSB 

solution to the "improved" ladder SD equation with the above fixed coupling constant simply 

replaced by the running one >.(p2) = 
3CJ~F)a(p2 ) = ft (t = In fk). Eq.(2.14) is also 

consistent with OPE, (1.3), where (fk)'m in this case is understood as exp J; lm(t1)dt1 = 

(in fk) A/
2 

for the vanishing anomalous dimension Im :::::: 2>.(p2) -+ 0 (additional (in /k )-l 
comes from the Wilson coefficient). 

:L(p2) in (2.13) is then communicated, through ETC (or preonic) gauge interactions having 
a scale /\.s(-:?> m ), down to the ordinary fermions (quarks/leptons) mass m ![7] 

1 N lo"~ xL:(x) m1 - -- dx---=---
- /\.~ 47r2 o x + [2(x)' 

(2.15) 

where we have taken SU(N) TC for simplicity. Substituting (2.13) into (2.15), we have (up to 
N /4Tr2 and logarithm) [4 ,s,6,7] 

m2 

m1:::::: /\.s' (2.16) 

which is much enhanced compared with the asymptotically free case (2.14); m1 :::::: m3 /A.~[3J_ 
Now, the most stringent FCNC is the K 0-I<0 invoking s quark mass, from which we have 

As > 350TeV. This yields m1 ,..., 102MeV for m :::::: 250GeV (a typical value of TC models), 
103 times enhancement of the asymptotically free case, in agreement with the realistic value. 
Moreover, (2.13) simultaneously raises the mass of problematic light technipions (pseudo NG 
bosons). This in fact gave rebirth to TC.[7] 

*) U(l) TC model is not excluded, though not quite successful. 
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Actually the above TC model is the first explicit dynamical model realizing the fixed point 
scenario that Holdom and others hoped for beforel26l. Also a similar idea of "walking" Tcl6l 
imitates the effect of {2.13) (or Im= 1) within the terminology of asymptotically free theories.*) 
Note that m1 is indeed a typical example of the low energy parameters which are influenced by 

the anomalous dimension; (2.15) with (1.3) yields m1 ~ r;f- ( ~ f"' .l26l 
As 

Although the above result is based on a very crude approximation, ladder approximation, it 
is remarkable that recently a similar phase structure to {2.9)-(2.11) has also been observed by 
Kogut et al. through the Monte Carlo simulation of the non-compact lattice QED.l28l Apart 
from the application to TC or other model buildings, it is certainly very interesting whether we 
can construct a nontrivial continuum field theory (QED, quantum gravity, etc.) at the nontrivial 
UV fixed point. This direction I hope will become one of the central activities on field theory in 
1990's. 

3. Dynamical Symmetry Breaking with a Very large Anomalous Dimension 
So far we have considered four-technifermion interaction due to ETC as merely a perturbative 

effect. This may not be true when the four-technifermion interaction becomes strong enough to 
trigger the SxSB. We here consider nonperturbative effect of this interaction in the framework 
of ladder SD equation for QED plus chiral-invariant four-fermion interaction, Go/2[{ ~'if; )2 -
{-ijJ15'if;)2], (gauged NJL model) which was first studied by Bardeen et all9l. This dynamics, 
especially for Im ~ 2, is also useful in models of dynamical electroweak symmetry breaking other 
than TC, as will be seen in the next section. 

In this case the ladder SD equation (2.1) is replaced (after angular integration) by 

(3.1) 

where we have defined a dimensionless coupling g = GoA2 /47r2• Eq.(3.1) may be converted into 
precisely the same differential equation as (2.2) and the same IRBC (2.3), with only the UVBC 
(2.4) being changed into 

(xL:(x))' + ~xL:(x)''x=l\2 = mo(A). (3.2) 

It is very important that the four-fermion coupling constant enters only through UVBC (3.2). 
Thanks to the additional term there exists a SxSB solution even for the non-oscillating solution 
(>. < >-c). which was first obtained by Ref.10 and 11. Existence of this SxSB solution at 
>. < >-c is due to the attractive four-fermion interaction. Substituting dominant three terms in 
the asymptotic expansion of Eq.(2.5), (x/m2)±-y'-l/2 and (x/m2)''-3/2, into the UVBC (3.2) 
with mo(A) = 0, we obtain a scaling relation among >., g and Ajm**): 

( 1 ')2 ( 1 ')2( - + 1' - - - I p + Q) 
g - 2 2 

- 3/2 - "/ ) 
1-P+ I ,Q 

1 2 +I 

2 I 

P = r(1- 2,1)r(3/2+ 1
1
)
2 

(m
2

) ' 
- r(1 + 21')r(3/2 - 1

1 )2 A2 ' 

*) Detailed comparison between TC's of Ref.4 and Ref.6 is given in Ref.24 and Ref.27. 
**) This particular form was obtained in Ref.29. 

(3.3) 

(3.4) 



g 

1 
4 

0 

Fig.1. 
Critical line in (>., g) plane is depicted by the solid line, which separates the spontaneously unbroken phase 

(shaded region) and the broken phase of chiral symmetry. 

- (1/2+1')2 m2 
Q = 1 - 21' f\2 ' 

(3.5) 

with Q being the contribution from the (x/m2yr'- 312 term which becomes of the same order as 
the (x/m2)-·l-l/2 term in the pure NJL limit, A -+ 0 ( r' -+ 1/2). Note that Q is crucial to 
reproducing the correct NJL limit; aU-+ 0 ( r' :::::::'. 1/2-A -+ 1/2) we have P :::::::'. (m2 //\2)1-2>.;2>.. 
and Q :::::::'. (m2//\2)/2A, which cancel each other in the denominator of (3.3), yielding the weH
known NJL result 

1 
(3.6) g = 2 2. 

m /\ 
1- -ln-

t-,2 m2 

Were it not for the q term, (3.3) would be divergent at >. :::::::'. 2Acm2 / A2. 
More explicitly, we write (3.3) into[29,30,31] 

(>.. < Ac), (3.7) 

(A = Ac), (3.8) 

(>.. > Ac), (3.9) 

where n = 1 is the ground state solution. It is clear that these scaling relations take a generic 
form m =A· G(A,g), with G(A,g) being a certain function of A and g. 

Actually, the scaling relation (3.3) or (3.7)-(3.9) is nothing but the generalization of Miran
sky's scaling[21l in the pure QED (g = 0), (2.9). Taking /\/m-+ oo limit, we obtain the critical 
line[lO,ll] (Fig.I): 
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1 
g = (- + 1')2 (0 < >. < >-c), 

2 
i 

>. = >-c (g < 4 ). 
(3.10) 

This is the line of second-order phase transition separating the spontaneous broken ( m//\ # 0) 
and unbroken (m//\ = 0) phases of the chiral symmetry. Then the renormalization in the 
spontaneously broken phase is performed a la Miransky now for the two couplings ( >., g) according 
to the above scaling relation. Thus, as in the pure QED we expect existence of a sensible 
continuum theory (cutoff/\ .- oo, m =finite) at the nontrivial UV fixed point on the critical line 
(3.io). 

In order to identify the fixed point, however, we further need to know the renormalization
group flow, since this time we have two couplings instead of one. This may be obtained through 
the scaling law of L:(x ), an analogue of the scaling law of the correlation function; we require that 
L:(x, >., g) = CL:(x/ "-2, >.', g1

) under rescaling x .- x/ K-
2, with "' and C being constants, which 

determines the line, the renormalization-group flow, connecting(>., g) and(,\', g1
). In the case at 

hand, our solution (2.5) only depends on >. but not on g at all and hence the flow satisfying the 
above scaling law is the fixed->. line (upward direction); this would suggest that the whole critical 
line is the fixed point (may be called a "fixed line" )[l0,291. Once the renormalization-group flow 
is so identified, the .8-functions are readily obtained from (3.7)-(3.9). ,B(g) has an UV fixed point 
only at >. ::; >-c. i.e., 

,B(g) = - 2 [g - (i + 1/i] [g - (i-1')2] 
0 

i (31] 
(g > ( 2 + -y')2), 

i 
(g < (2 + 'Y')2), 

(3.11) 

while 

.8( >.) = 0 (3.i2) 

for all>.. This is a rather different situation from the pure QED case, (2.11), and seems to 
suggest that (2.11) may not correspond to a .8-function of the continuum QED in accord with 
Ref.22. 

Now we turn to the anomalous dimension in this model. Substituting the asymptotic form 
(2.5) into the UVBC and using the scaling relation (3.7), we obtain[8J 

(0 < >. < >-c), (3.i3) 

which implies *) 

Im = i + 21
1 = 1 + Ji - >./Ac > 1. (3.i4) 

This is substituted into the OPE expression (1.3), yielding L:(p2),..., p-1-../l->./>.c, which agrees 
with (2.6), the SxSB solution in this case(lO,llJ. Thus we find a large anomalous dimension 

*) This is to be compared with the result in the symmetric phase[231, Im = i - 2')'1 = i -
Ji - >./ >-c < 1. The difference of the sign is due to the lack of the scaling relation (gap 
equation) in the symmetric phase. This discontinuity of the anomalous dimension between the 
symmetric and the broken phases may be an artifact of the ladder approximation. In fact, in 
the renormalizable four-fermion theory in less than four dimensions, renormalization -of the four
fermion coupling in the symmetric phase fill in the gap of the anomalous dirnension[32J. 



1 < 'Ym < 2 for >.c > >. > 0. In particular, we have a very large anomalous dimension 'Ym :::::: 2 at 
>.:::::: 0. This corresponds to the very slowly damping behavior of L:(p2) in (2.6); 

( 

2 )-,\ ( 2 )-1+.\ 
L:(p2):::::: c1(>.)m : 2 + c2(>.)m : 2 (3.15) 

with c1(>.), c2(>.) :::::: 1 (>. :::::: 0). It is very important to note that thanks to the four-fermion 
interaction such a very slowly damping solution (irregular asymptotics) can be the SxSB solution 
as well as the explicit breaking solution. 

It is also noted that the large anomalous dimension hm > 1) would suggest the four-fermion 
interaction might be renormalizable, since in ladder approximation dim{1/i1f!)2 = 2(3 - 'Ym) < 4, 
i.e., (1/i7j1)2 might be a relevant operatorf8l. In fact, in the gauged NJL model(>.# 0) we obtain 
finite fermion-antifermion scattering amplitude, with the effective Yukawa coupling gy = m/ F,,. 
being finite in the A/m-+ oo limit, in contrast to the pure NJL model where gy = 0 (F,,.-+ oo) 
in that limit. In fact, F,,. is evaluated through the formula[33l: 

2 2 x d 2 
1 la/\ L: ( x) - - -L: ( x) 

p2 = - dxx 4dx 
"' 47r2 o (x+L:2(x))2 ' 

(3.16) 

which is convergent for L: in (3.6) as far as >. # 0. Calculation of gy through (3.16) along the 
whole critical line is given in Fig.2[191. gy does depend on the anomalous dimension 'Ym or the 
gauge coupling >.. 

We also obtain a non-zero mass mu(< oo) for the scalar bound state a ("massive dilaton") 
[9,rn.29 .3o,34J. This is actually a composite Higgs boson in the model for dynamical electroweak 
symmetry breaking. The absolute value of m~ may be calculated through the Partially Conserved 
Dilatation Current (PCDC) relation. The result[19l is given in Fig.3 for both the solution of the 
linearized SD equation and that of the full nonlinear equation (3.1). The ratio mu/m also varies 
according to the anomalous dimension 'Ym or the gauge coupling >.. A striking feature of the 
result based on the (numerical) solution of the full nonlinear SD equation is that[19l 

mu/m:::::: h (3.17) 

for very small >. (but non-zero), in contrast to the pure NJL result, mu /m = 2. 
Finally the above discussion can easily be applied to QCD (QCD-like theories) plus four

fermion interaction by replacing the fixed >. by the running one in the ladder SD equation (3.1) 
("improved" ladder SD equation): 

L:(x)=mo+ 9
2 jr/\:y yiJi )+ {/\:y yL:i;l) [>.(x)B(x-y)+>.(y)B(y-x)], (3.18) 

A o y + y Jo y + y x Y 

where >.( x) is parametrized as[24,21 ,35] 

(3.19) 

with A being 24/(33-2N1) and pa free parameter which is chosen so as to trigger the SxSB 
already in the pure QCD (µ is the chiral symmetry breaking scale of order O(AqcD )). SxSB 
solution to (3.18) takes the asymptotic form 

( 

2 )-A/2 3 ( 2 )-l+A/2 
L:(p2

) = cim In : 2 + c2 ; 2 In : 2 , (3.20) 
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Fig.2. 
Dependence of Yukawa coupling gy on the gauge 
coupling along the critical line. 
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Fig.3. 
Dependence of m.,. /m on the gauge coupling,\ along 
the critical line. Linearized analytical result is de
picted by the bold solid line. Linearized numerical 
result is depicted by the dashed line ( /\2 /m2 = 1010 ) 

and by the solid line (/\2 /m2 = 1020 ). Full nonlin
ear numerical result is depicted by the dashed line 
(/\ 2 /m2 = 1010 ) and by the solid line (/\2 /m2 = 
1020). 

where q, c2 ::::= 1 as· far as we take p =constant (/\-independent) or g ::::= 1 + (2/A - 1)>.(/\2) -

(µ//\) 2/>.(/\2).P5l Note that g-+ 1 = 9cr (!\-+ oo). As in (3.15) the slowly damping solution 
(irregular asymptotics) can be a SxSB solution with Im::::= 2 - 2,\(/\2)-+ 2 due to the presence 
of four-fermion interaction[8,35l. This property is an essential ingredient to the top-mode standard 
model in the next section. 

4. What is Higgs After All? 
Having been equipped with the basic machinery of explicit dynamics of DSB with a large 

anomalous dimension Im ::::= 2, we now attack our central problem addressed in the beginning of 
this talk,i.e., the Origin of Mass. · 

Recent experiment has shown that the number of light neutrino species is three, which 



strongly suggests that the number of families is also three. This implies that top quark is the last 
quark to be found. Also the lower bound of the mass of the top quark is nearly a hundred GeV. 
Some indirect measurements suggest even much larger value for mt than a hundred GeV. This 
implies only the top quark has a mass close to the weak scale 250GeV: top quark is a special 
quark. Thus we may infer a distinguished role of the top quark in the mass generation of all 
particles. In the standard model language the large top quark mass in fact corresponds to large 
Yukawa coupling, which is nothing but a reminiscent of Goldberger-Treiman relation in hadron 
physics. 

A simple picture[12•13l to understand the large top quark mass will then be to regard the top 
quark mass as the dynamical mass due to a top quark condensate (tt) f. 0. This top quark 
condensate actually produces composite NG bosons which give rise to the mass of W and Z 
bosons, and at the same time to the mass of other quarks and leptons. Thus the top quark 
condensate entirely takes the place of elementary Higgs VEV (top-mode standard model). This 
picture predicted£12l a very large mass of the top quark, mt :::::: 250GeV, without affecting the 
weak isospin relation (op :::::: 0.02), and also the existence of a spinless tt bound state (Higgs 
boson) with a mass mH:::::: 2mt. Actually, this prediction came out much earlier than the recent 
experiments mentioned above. If this picture is indeed correct, the circle will be closed in the 
standard model, with the identification of the two missing ingredients, the top quark and the 
Higgs boson. 

At first sight the obstacle to this scenario is obvious. We would need a large weak isospin 
violation in the condensate (tt) -:/= (bb), to give a realistic mass difference mt ~ mb, which would 
then lead to a large deviation of the P parameter P = m?v / m~ cos2 ew ¥= 1 in contradiction 
to the present experimental limit op ;::s 0(10-2). However, we shall see that this is not the 
case for the theory with a large anomalous dimension 'Ym :::::: 2. Such a theory, QCO plus four
fermion interaction, was already described in the previous section. Presence of such additional 
four-fermion interactions is very common to unified theories beyond the standard model. 

Let us now consider the simplest version of our model which consists of the standard three 
families of quarks and leptons with the SU(3)c x SU(2)L x U(l)y gauge interactions but without 
Higgs doublet. Instead of the standard Higgs sector we introduce the SU(3)c x SU(2)L x U(l)y
invariant four-fermion interactions among quarks and leptons, the origin of which is not specified 
at this moment (may be due to the ETC, GUT, preon dynamics, gravity, etc.). The general form 
of such four-fermion interactions among quarks may be written asC12l 

411"
2 

[ (1) -ai o/j -j3j f3'i) 
Lil,/= Ncf\2 9acl{3{31('h 1/JR )(1/JR 1/JL 

+ g~~'/3/3'( ~T1/J~i )( ir2tk( i72)i'( ;j;~k1/J%/) ( 4.1) 

+ gS32',8/3'<;j;f!1fJ~i)(r3)ik(;j;~k1/Jf;)] + h.c., 

where Ne(= 3) is the number of color and the sum of color indices is understood, g~12'/3/3'' gS22,,8/3' 

and g~32, /3/3' are the dimensionless four-fermion couplings, with /\, (a, a', /3, ;31
) and ( i, j, k, l) 

being the ultraviolet cutoff, the family and the weak isospin indices, respectively. 
The symmetry structure (besides SU(3)c) of those four-fermion interactions in (4.1) is 

SU(2)L x SU(2)Rx U(l)v x U(l)A, SU(2)L xSU(2)Rx U(l)v and SU(2)Lx U{l)y x U(l)v x 
U(l)A. respectively. In the absence of the gC2)_term, ( 4.1) possesses the U(l)A symmetry which 
is explicitly broken only by the anomaly due to the gauge interaction and plays the role of the 
Peccei-Quinn symmetry[13l. It is straightforward to include the leptons into the form of ( 4.1 ). 

Out of the terms in ( 4.1) we are particularly interested in those associated with the third 

family quarks \If= Oa31/Jo: = (t, b) and g(a) = g~;~3 (a= 1, 2, 3). Here we study the dynamical 
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symmetry breaking of the (t,b) quarks in our model on the basis of the ladder SD equation. In 
order to illustrate the essential feature of our dynamics, we first study the ladder SD equation 
for the fixed gauge coupling >.. It is possible to show that the ladder SD equation possesses the 
solution without U(l)em breaking ((tb} = (bt} = 0). Actually in such a case, in the lowest order 
of g(2), the ladder SD equations take the same form as (3.1); 

/\2 
I:i(x) = 9i { dy yl:i(Y) 

/\2 lo Y + l:i(Y)2 

la/\2 

yl:i(Y) [1 1 ] +>. dy I:( )2 -B(x-y)+-B(y-x), 
y+ iY x Y 

(4.2) 

where l:i( x) (x = p2 and i = t, b) are the dynamical mass functions oft and b quarks, respectively 
and 9t = g(l) + gC3) and 9b = g(l) - g(3). 

In view of the critical line (3.10), there exists a SxSB solution I:i(p2) having a large anoma
lous dimension (3.14) and asymptotically behaving as (3.15), when 9i > 9ci· = (1/2 + 7')2: 

{4.3) 

Our SD equation ( 4.2) includes the weak isospin-violating four-fermion couplings 9t # 9b (gC3) # 
0). It is easily seen that when gt > 9cr > gb. we have a SxSB solution with maximal isospin 
violation, mt # 0 and mb = 0, which indeed yields a standard symmetry breaking pattern 
SU(2)L x U(l}y _. U(l)em to feed the mass of W and Z bosons. The relevant NG bosons 
contents are 11'"+,..., it(-1 + 'Ys}b/,/2, 11'"- rv ib(l + 'Ys)t/,/2 and 7ro,..., it751:. 

In the actual case where >. is the running QCD coupling (3.20}, the SD equation takes the 
same form as (3.18}; 

~ ~ [ . I:i(x)= gi { dy yl:i(Y) + ( dy YLi(Y) >.(x)B(x-y)+ >.(y)B(y-x)]. (4.4) 
A2 1o y+r..l(Y) lo y+L.z(y) x Y 

Eq.( 4.4) has a very slowly damping SxSB solution (irregular solution with 'Ym :::::: 2), (3.20), at 
g:::::: 9cr = 1 and >.(/\2):::: A/2 ln(/\2 / µ 2) (p = const.): 

2 

2 (lnf;r)-4 Li(P ) :::::: mi -;;:J , 
In -+ µ-

(4.5) 

where we have parametrized L:(x) such that L:(m2) = m. As in the above fixed->. case, we have 
a SxSB solution with maximal isospin violation, mt # 0 and mb = 0, for :lt:::: gcr = 1 > gb. 

We now come to the central part of this model, determining the top quark mass m1 and the 
p parameter in terms of the cut off/\. In the lowest order in the electroweak coupling, p is given 
by p = F;±f F;0 • where F"± and F"o are the decay constants of the composite NG bosons to be 
absorbed into Wand Z, respectively. We can compute the decay constants through modification 
of (3.16) into the SU(2)-asymmetric case mt # mb.[12•361 In the general case mt,b # 0, F"'s 
take the formf12l 



let us consider the extreme case of the maximal isospin violation mentioned above, Lt(p2) # 
0 and tb(p2) = 0. In this case one would expect a large isospin violation F-x:± # F-x:o· For Im~ 2, 
however, with a slowly damping Lt(p2), ( 4.3) or ( 4.5), the integrals ( 4.6) and ( 4. 7) are dominated 
by the ultraviolet region p2 ~ m;_ This is in sharp contrast to the case of smaller Im < 2 (e.g., 
Im = 1) where those integrals are dominated by the infrared region. In the "weak-coupling" limit, 
>.-+ 0, the difference in the denominators in ( 4.6) and ( 4. 7) can be ignored, and the contribution 
from the terms with derivative t~ is suppressed. (An extreme case would be Lt = const. (NJL 
limit), for which ( 4.6) and ( 4.7) are both logarithmically divergent with the same coefficient, thus 
giving p = 1 in a trivial sense.) Consequently, one obtains 

2 
F-x:± 

p=-2 ~l. 
F-x:o 

More specifically, ( 4.6) and ( 4. 7) are rewritten as 

F2o = r/\~xio(tt(x), 0) = m; {~ dxlo(O't(x), 0) = m;2' 
~ lo lo (O) 

gy 

(4.8) 

( 4.9) 

(4.10) 

where O't(x) = 'Lt(x)/mt. and the effective Yukawa couplings A±) and g~) are slowly decreasing 
functions of /\/mt (finite at /\/mt -+ oo) for ( 4.5), i.e., 

(4.11) 
as /\ /, 

which implies 
mi'\, as /\ /, ( 4.12) 

since we fixed F-x:± '.::::'. F7fo::: 250 GeV. On the other hand, op= p- 1 is given by 

(4.13) 
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whose integral is quite insensitive to change of A2 /m;. (Eq. ( 4.13) is identical to the one-loop 
contribution of the top quark in the standard model with the QCD effects included). Thus we 
have 

op'\. as A/. (4.14) 

The largest (physically sensible) A would be the Planck scale A= 1019 GeV, which yields [l2l 

mi::::::: 250GeV, 

op::::::: 0.02, 

gy ::::::: 1. 

( 4.15) 

(4.16) 

(4.17) 

These values ( 4.15) ( 4.16) are little bit larger than the present experimental limit, < 200GeV 
at 90 % CL and < 230GeV at 95 % CL. However, Bardeen et a/J17J have recently commented 
that ambiguity of the charm threshold in the analysis of the deep inelastic /1 scattering might 
relax the constraint to mt < 250GeV even at 90% CL. 

Now that we have resolved the weak isospin problem, we are in a position to discuss the full 
implication of the simplest version of our model. Our basic assumption here is that only the 9t is 
large enough (gt ::::::: gcr = 1) to trigger the spontaneous chiral symmetry breaking, while all other 

four-fermion couplings in (4.1) are small; gb. g~~'f3f3' ~ gcr. Then the solution of the ladder SD 
equation mentioned above implies that only the t quark acquires the dynamical mass mi. whereas 
the b quark (as well as other quarks) does not, besides a small mass due to the (long- distance) 
color forces. 

The b quark can only acquire the mass from the tt condensate 

- Ne J/\2 

XLi(x) Ne (mt)2--Ym 2 
(tt)A = --2 dx L ( )2 ::::::: --2 --;;:- ·A mt, 

47r x + t x 41f I\ 

(4.18) 

through the perturbative gC2) interaction in the same manner as the ETC in (2.15); 

(2) 47r2 - (2) (mi) 2--Ym (2) 
mb = -g --2(tt)A::::::: g --;;:- · m1 ::::::: g mi, 

NcA I\ 
(4.19) 

for 'Ym ::::::: 2. This also coincides with the result of the nonperturbative g(2) interactionJ13J 
Similarly, quarks of the first and the second families also acquire mass from the tt condensate 

through the perturbative g~~'f3f3' interactions. In fact, mass matrices of the "up" and the "down" 

k . b · ( (l) (J) ) d (2) . I I . quar s are given y m(u) ::::::: gaa'JJ + gaclJJ mi an m(d) ::::::: gacl 33 m 1, respective y. t 1s now 

evident that our dimensionless four-fermion· couplings g~~133 play the role of Yukawa couplings 
of the standard model. Obviously the above mass spectrum leads to the realistic Kobayashi
Maskawa matrix. Also the lepton masses are acquired in the same way as those of the "down" 

quarks through the gC2) type couplings m(l)::::::: g~2~33 mi. Due to the large A (could be 1015 GeV-
1019GeV) and the small anomalous dimension of 01/J other than tt, our four-fermion interactions 
of order 0(1/A2) are perfectly free from the FCNC's problem. 

Thus the ad hoc Higgs sector of the usual standard model (we may call this "Higgs-mode" 
standard model) has been successfully replaced by the new very short range interactions, the 
four- fermion interactions, of quarks and leptons themselves, the origin of which is not specified 
at this moment. Among them only one quark is assumed to have a sufficiently large coupling to 
produce its own mass, the dynamical mass. This we identify with the t quark (g1 ~ 9cr = 1), 
which is then responsible for the mass of W and Z bosons (we may call it a "top-mode" standard 
model in contrast to the usual one, the "Higgs-mode" standard model). 



A striking feature of our model is a definite prediction[12l of a tightly bound spinless lt state 
( Higgs boson ) due to the very short range dynamics of the four-fermion interactions. We 
have already argued in section 3 that mass of the Higgs boson ("massive dilaton") can be much 
affected by the small gauge coupling,(3.17), 

( 4.20) 

in contrast to the original prediction mH ::::= 2m1[12l. This can clearly be distinguished from the 
softly bound (non-relativistic) tt state due to color forces. 

Our discussions here were based on the crude approximation, the ladder SD equation. We 
needed a nontrivial UV fixed point in g (see (3.11)) to obtain a natural mass hierarchy m1 ~A. 

It is actually an open question whether or not the fixed point described in the above really exist 
beyond the ladder approximation. However, it is important that the main qualitative results do 
not depend on the details of such a dynamics but are based on merely the fact that the anomalous 
dimension 'Ym ::::= 2. 

Of course the values we obtained , ( 4.15)-( 4.17) and ( 4.20), are also based on the very 
crude approximation, ladder approximation, and should not be taken so seriously. More elaborate 
calculation may change the concrete values substantially. Recently several authors (16,17] made 
further studies of the top quark condensate and confirmed the same tendency as ( 4.12) and ( 4.14), 
arid also the large value for m1 through somewhat different computational method. (Method of 
Ref.16 is the same as ours but was supplemented by the arguments on some relation to the 
coupling reduction). 

Finally, the dynamics with large anomalous dimension can also be applied to TC. The mech
anism described here would give a simple answer, an alternative to the custodial SU(2), to the 
question (37] concerning the weak isospin violation in TC with 'Ym ::::= 1. In TC models other 
effects of large anomalous dimension, particularly 'Ym ::::= 2, are obvious: Suppression of FCNC's 
and enhancement of the pseudo NG bosons masses are much more dramatic than in the 'Ym = 1 
case (note that the TC of this kind. now can be an asymptotically free gauge theory with normal 
(or even fast) running coupling constant in contrast to the 'Ym = 1 case). [12•13•38] 

5. Conclusion 
Under the motivation to understand the Origin of Mass of all particles, we have discussed 

various new· aspects of DSB. We have seen a variety of theories having different short distance 
behavior / anomalous dimension yield the same type of !ow energy effective theory, the sigma 
model. It was explicitly demonstrated that the low energy parameters in the latter theory, m1, 
F-.:. mu. gy, etc., can be different depending on the difference in the anomalous dimension 
of the original theories. We have argued virtue of the large anomalous dimension in DSB, 
which is realized at the nontrivial UV fixed point. Phase structure of such fixed-point theories, 
i.e., QED-like theories, QED-like/QCD-like theories plus four-fermion interactions (gauged NJL 
models) were studied based on the ladder SD equation. Particular emphasis was placed on a 
possibility that the four-fermion interactions may become renormalizable due to the presence of 
gauge interactions in these theories. 

The applications of these theories to the models of dynamical electroweak symmetry breaking 
were discussed in some details, TC with 'Ym = 1 and the top-mode standard model with 'Ym ::::= 2. 
Influence of the large anomalous dimension on the low energy parameters was in fact remarkable. 
Particularly, the top-mode standard model would be the simplest idea to understand the Origin 
of Mass by identifying the two missing ingredients of the Standard Model, the top quark and the 
Higgs boson, as the same object. 

Although the results discussed here are totally based on the ladder approximation, a rather 
crude approximation, it may be clarified in 1990's whether or not such new types of field theories 
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really exist. Also 1990's may become an era when the Origin of Mass will be eventually revealed 
by the experiment, and hopefully by the DSB with large anomalous dimension (LAD). Actually, 
DSB with small anomalous dimension (SAD}, motivated by the asymptotically free gauge theories 
(a paradigm in 1970's through 1980's}, has been really sad to account for the Origin of Mass. 
TeV physics in 1990's may become a turning point where the old paradigm will be taken over by. 
a new one for younger physicists, LAD DSB. 

I would like to thank Y. Kikukawa, S. Shuto and M. Tanabashi for collaboration and help in 
preparing the manuscript. 
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Abstract 

Motivated by the top quark condensation scenario of the electroweak symmetry 
breaking ("top-mode standard model"), dynamical chiral symmetry breaking (xSB) 
due to strong coupling Yukawa interaction is studied in the framework of Schwinger
Dyson equations. In quenched approximation, we show existence of the dynamical xSB 
phase( (Ojo-jO) = 0, (Ol-ifa1/JIO) =f. 0) in strong Yukawa coupling region. Introducing dy
namical fermion (tadpole) in our framework, we still have.a parameter region where xSB 
has its origin in the fermion condensate. 

1. Introduction 

The origin of electroweak symmetry breaking, which explains the masses of the weak bosons 
and fermions, is one of the most important problems in modern particle physics. In the standard 
model we introduce Higgs field ¢ = ~ (11"2 + .i7ri) which is tuned to have a non-zero vacuum 

V2 (]' - Z1r3 

expectation value (VEV) (Ojo-jO) = v. Here v is an order parameter of the electroweak sym-
metry breaking, through which the weak gauge bosons w±, zO become massive due to Higgs 
mechanism. Masses of fermions, though being in principle independent order parameters of the 
electroweak symmetry breaking, are also explained by v through Yukawa couplings with Higgs 
boson, 

T/J 
m1 = hv. 

This scenario is reasonable when all fermions have small masses, m1 ~ v. However if there 
exists a heavy fermion, m f ;;:; v, it seems rather awkward to assume that the fermion gets its 
large mass from a small VEV of Higgs field. In this case it would be more natural to consider a 
converse, i.e., the origin of v =f 0 comes from a large m f, the dynamical mass of the fermion. 

In fact, in the low energy effective theory of the technicolor models, the mass of technifermion 
determines the value of the order parameter v. 

More exciting possibility will be the top quark which may have a large mass mt ;;:; v in 

the recent experimental situation. Actually, two of the authors (M.T. and K.Y.) and Miransky 

* Reported by M. Tanabashi 
** Work supported in part by the Grant-in-Aid for Scientific Research from the Ministry of 
Education, Science and Culture ( #62540202), and by the Kato Foundation of Nagoya University 



proposed some time ago the top quark condensation scenario[l] ("top-mode standard model"). 
In this model we no longer need elementary Higgs boson. We instead regard the large top quark 
mass as the result of certain short range dynamics of unspecified origin which breaks the chiral 
symmetry dynamically through the top quark condensate (Oltt!O) -:# 0. Because of dynamical 
xSB we obtain composite Nambu-Goldstone (NG) bosons, which give rise to masses of the weak 
gauge bosons through dynamical Higgs mechanism. We predicted a very large mass of the top 
quark mt"' 250GeV and also a composite Higgs boson H "'tt with a mass mH:::::: 2mt.* Similar 
ideas were also advanced by Terazawal2J and Nambu[3J in somewhat different terminologies and 
with different results for the value of mt. Further studies of the top-mode standard model 
have recently been done by various groups[4,S,G,7] and confirmed the very large top quark mass 

mt > 200GeV in this model. 

In our previous paperl1], we considered the case where the four-fermion interactions are 

responsible for triggering the top quark condensation at very high energy scale(~ GUT scale), and 

in fact our arguments were based on the explicit solution of the gap equation for spontaneous xSB 
in the gauged Nambu-Jona-lasinio model (four-fermion interaction plus gauge interaction)J7l 

What is the origin of the four-fermion interactions, then? One might immediately think of 
exchange of heavy spin 1 bosons with mass mv. In fact one finds[9,l0,ll] that the behavior 

of the xSB solution in this system is similar to that of the NJL model for mv "' A, based 
on the ladder SD equationflO] for is-1(p) = A(-p2)zi- B(-p2) (with "gauge parameter" f, 

Dµv(P) = -i(p2 - mi )-1[gµv - (1 - f.)PµPv(P 2 - mi )-1]); 

e2 ('2 B(y) 
B(x) = (4?r)2 lo dyyJCB(X, y) A2(y)y + B2(y)' (la) 

e2 t2 y A(y) 
A(x) =l + 2(4?r)2 lo dy ;ICA(x, y) A2(y)y + B2(y)' (lb) 

where 

2 [ ( 1 - f.)mi ] ICB(x,y)=KB(x,y;my) (3+f,)+ ./ , (2a) 
y ( x + y + mi )2 - 4xy 

2 [ (f,-l)mi ] ) JCA(x,y)=2KA(x,y;my) f,+. / , (2b 
y ( x + y + mi )2 - 4xy 

with KA and KB being defined in Eq.(6). Including gauge interaction in Eq.(l), we obtain a 

solution which is similar to that of the gauged NJL model in view of the top-mode standard 

model. (For detailed analysis, see Ref.[11].) 

However, in the case of spin 1 boson exchange, we cannot obtain such an effective four

fermion interaction as 

Eij( ~{tn)( 1-{bn), 

through which (gC2) term in Ref.(lJ) the bottom quark acquires its mass from a top quark con

densation. We then must assume a bottom condensate independently of a top quark condensate 

* Our recent analysis[8J, including the effect of gauge interaction on the spectrum, implies 

mH:::::: v'2.mt:::::: 350GeV. 
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in order to feed the mass to "down" -like fermions. It would be simple that the masses of fermions 
other than the top quark are also explained by the top quark condensate alone. So it does not 

seem to be the case that the interaction is mediated by spin 1 bosons. 

Here, we wish to discuss another possibility that an attractive force due to a heavy spinless 
boson exchange through Yukawa interaction causes the top quark condensation. Even if we write 
the same SU(2)L x U(l)y symmetric Yukawa interaction as the usual standard model, there will 
be in this picture an essential difference that the SU(2)L x U(l)y breaking is mainly not due to 
the VEV of the spinless boson but to the top quark condensate caused by the attractive force of 
the strong Yukawa coupling. 

Then, our task is to investigate the phase structure of the standard model with very large 
Yukawa coupling. In the following sections, we will investigate chiral phase transition of standard 
model in the framework of the Schwinger-Dyson (SD) equation and find the phase where xSB 
is dynamical. 

2. The SD equations 

In this section, we derive the SD equation for fermion propagator in the form of integral 
equation, which we can solve numerically and analytically. We discuss here SU(2)L x SU(2)R 
symmetric Yukawa interaction, for simplicity. Extension to other types of Yukawa interaction is 
straightforward. The lagrangian is given by 

£ = ~i ~1/J- ~ [~1/Ja + ~iisr1/J. ?r] +~ [(oµa)2 + (oµ1f)2]- ~6 [a2+ 112]- ~o [a2 + ;2]2. 

From the equation of motion for 1/J, i iN - "2(1/;a + i15r1/J · ?r] = O, we obtain the SD equation 

for fermion propagator, 

i ~(OIT1/J(x)-ijJ(O)IO) = ioC4)(x) + ~(OIT(a(x) + ir · ?f(xhs)1/;(:i:)~(O)IO). 

Assuming {Ol?rlO) = 0, we can rewrite the SD equation in momentum space 

. -1 110 110 J d4 
k [ p-iS (p)= v'2{0laiO)+ v'2 (

2
7r)4 Du(k)S(p-k)fu(p-k,p) 

(3) 

+D"K"(k)ifsrS(p - k)f"K"(p - k,p)], 

where Du. D"K" and Sare full propagators of a, 7r and fermion 1/J, respectively, and r u and f"K" are 
fu II vertices of 'lj;-ijJa and 'lj;-ijJ?r. . 

Under the approximation of boson propagators and vertices 

iZ3 iZ3 
Du = k2 - m2 ' D"K" = k2 - m2 , u "K" 

r . 770 r- . 110 -· 
u = -·i J2_' ir = -i J2_Ti/5, 

we obtain the integral equation (SD equation), which reads after Wick rotation 

B - 77 C (\2 B(y) 
(x) - J2v + 2 lo dy yKB(x, y) A2(y)y + B2(y)' (4a) 

C {1\2 y ~ A(y) 
A(x) = 1 + 4 lo dy ;KA(x,y) A2(y)y + B2(y)' ( 46) 



l 

where C = 11
2/(47r)2,x = -p2, y = -k2 and v = z;2 (0ICTIO}, 112 = Z317~. Here an ultraviolet 

(UV) cutoff/\ is introduced. The integral kernels !Cs and /CA are defined as 

Ks and KA are given by 

!Cs(x, y) = 3Ks(x, y; mi) - Ks(x, y; m;), 

ICA(x, y) = 3KA(x, y; mi)+ KA(x, y; m;). 

KB(x,y;m2) = - de----s_i_n ___ _ 2111" . 2 (} 

1f 0 x + y - 2V£Y cos e + m2 
2 = -----;;---;::::=====;;:=:;;=== 

x + y + m2 + -j(x + y + m2)2 - 4xy' 

Tf ( • 2) _ 4 ladll" VXYCOS8Sin
2 

(} .HAX,y,m =- (} 2 
1f 0 x + y - 2V£Y cos e + m 

4xy 
= 2· 

[x + y + m2 + -)(2: + y + m2)2 - 4xy] 

Note that from Eq.(Sa) CT gives repulsive force while 7r does attractive one. 

(Sa) 

(Sb) 

(6a) 

(6b) 

For the case of Yukawa interaction with a discrete chiral symmetry, CYuk = -7;_;j;'lj;CT, the 
SD equations are given by Eq.(4) with the integral kernels 

!Cs(x, y) = -Ks(x, y; m;), 

JCA(x, y) = KA(x, y; m;). 

(7a) 

(7b) 

For the case of U(l)L x U(l)R symmetric Yukawa interaction, CYuk = -7;_[;j;'lj;CT + ;j;i157/J7r], 
the SD equations are given by Eq.( 4) with the integral kernels 

!Cs(x, y) = Ks(x, y; mi) - Ks(x, y; m;), 

ICA(x, y) = KA(x, y; mi)+ KA(x, y; m;). 

In the case of the massless boson exchange, i.e., m2 = 0, Ks and KA become simple; 

1 1 
Ks(x, y; 0) = -B(x - y) + -e(y- x), 

x y 

KA(x, y; 0) = 1j_B(x - y) + :_(}(y - x). 
x y 

(8a) 

(8b) 

Then, in this case the integral kernels are the same as that of QED in ladder approximation. 

3. Solution within Quenched Approximation 

First we consider v = 0 phase. In quenched approximation, v = 0 does not mean (Ol;j;7/JIO} = 
0. In fact, as we will see in the following, there exists a chiral phase transition even in the v = 0 
phase at strong Yukawa coupling region for SU(2)i x SU(2)R symmetric Yukawa interaction. 

In the v = 0 phase, CT and 7r have degenerate masses mq = m,,. = m. Then the integral 
kernels of the SD equation Eq.(4) are written simply as 

!Cs(x, y) = 2Ks(x, y; m2), 

JCA(x, y) = 4KA(x, y; m2). 

(9a) 

(9b) 
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Note that the integral kernels Eq.(9) are the same up to factor as those of the case of the 
massive vector boson exchange Eq.(2) in "Feynman gauge", ~ = 1. Then we obtain the xSB 
solution at strong coupling Yukawa region in the same way as the case of the massive vector 
boson exchange[lO]. 

Note that we cannot obtain the xSB solution within this approximation (only ladder, without 
tadpole) in the cases of discrete chiral symmetric Yukawa interaction (U(l)L x U(l)R symmetric 
Yukawa interaction) because of absence (cancellation) of attractive force. (See Eq.(7a ), Eq.(8a).) 

Following Ref.[10]. we approximate wave function renormalization A = 1 for analytical cal
culation. This approximation is good if f\,...., m ~ B(O). Here we make a simple approximation 
for (6a); 

To study a scaling relation near the critical point of chiral phase transition, it is sufficient to study 
the linearized integral equation (bifurcation technique}l12l. Then we obtain a simple integral 
equation; 

B(x) = C [ rdy B(y) + 1J\~y B(y) ] , 
}M2 x + m 2 x y + m2 

(10) 

where an infrared (IR) cutoff M '.::::'. B(O) was introduced. Solving Eq.(10), we obtain a scaling 
relation[lO]; 

M2 [ -4 (?r _1 )] m2 
2 2 = exp - - tan J 4C - 1 - 2 2 . 

A + m vf 4C - 1 2 A + m 
(11) 

Critical coupling constant Cc which separates xSB phase from the symmetric one corresponds 
to the solution of Eq.(11) in the limit of M--> 0. 

let us next consider v -=fa 0 phase. In this phase m~ is zero because of the Goldstone theorem. 
Then our integral equation is given by the kernels 

K.s(x, y) = 3Ks(x, y;O)- Ks(x,y;m;), 

K.A(x, y) = 3KA(x, y; 0) + KA(x, y; m; ). 

(12a) 

(12b) 

In this phase, we can define a renormalized <f} coupling ..\ as ..\ = m;/(2v2). In the case of 
,\ = oo, Ks(x, y; m;) can be neglected. Then the SD equations are 

B(x) =_'.Z_v + ~C [.!. fdy yB(y) + 1~Y B(y) ] (13a) 
.Ji 2 x}o A2(y)y+B2(y) x A2(y)y+B2(y) ' 

A(x) =l + ~c [.2_ fdy Y
2 
A(y) + 1J\~y A(y) l (13b) 

4 x2 }0 A2(y)y + B2(y) x A2(y)y + B2(y) . 

These integral equations are the same as those of QED in ladder approximation with gauge 
parameter ~ = 3. Here, we will discuss the behavior of solution only in the ). = oo case. 

It is convenient to rewrite Eq.(13a) and Eq.(13b) into differential equations and boundary 
conditions; 

[ 
d

2 
d 3C 1 l 

x dx2 + 2 dx + 2 A2(x) + B2(x) B(x) = O, (14a) 

[ 
d

2 
d 3C 1 l 

x dx2 + 3 dx + 2 A2(x) + B2(x) A(x) = O, (14b) 
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3 d J x -d A(x) , 
x x=O 

( 1 + xdd) B(x)J = ~v, 
X x:/\2 y 2 

(l+~~)A(x)j =l. 
2 dx x=f\2 

(15) 

2 d J x -d B(x) , 
x x:O 

We define a local order parameter of the chiral phase transition: 

- _ I d
4
p 1 lo/\2 

xB(x) 
(Ol7f1/llO) = - -( )4 trS(p) = --2 dx 2( ) 2( ) • 

27r 27r o A x x + B x 
(16) 

-(01~1/llO) is a positive definite function of 77. In the case of 17 = 0, we obtain (01~1/llO) = 0. 
In the strong coupling limit 17 _.. oo, B( x) becomes large and dominates the denominator of 

Eq.(16) and we obtain -(Ol1/i¢j0) "" 1/ B(O) in that region. (This behavior is consistent with 

the strong coupling expansion which says -(01~1/llO) "" 1/17.) Then we have a turning-over point 

where the function (Ol-¢¢10) takes the maximum value*. We in fact investigate the behavior of 

this function using a numerical solution of Eq.(14). The result is given at Fig.la and Fig.lb. The 

turning-over point appears when the dynamical mass of fermion M = B(O)/A(O) has its value 

M "" /\. Note also (Ol-¢¢10) is nonvanishing at the strong Yukawa coupling region even in the 

limit of v //\ - 0 (continuum limit). 

Note that the behavior of (Ol-¢¢10) is consistent with the result of lattice MC simulation[13]. 

We next investigate the "renormalized Yukawa coupling"[l3] TJR, defined by 11R:: v'2M/v. 
The result is shown in Fig.2. Because of nonvanishing Min the continuum limit (v//\ _.. 0), this 

value diverges at the strong Yukawa coupling region. 

* Note here that this property of -(Ol-¢¢10) (existence of a turning-over point and a maximum 

value) is universa1[14] in ourframework, i.e., it does not depend on details of the interaction which 

breaks the chiral symmetry. In fact, we can explicitly show the existence of a maximum value of 

-(Ol-¢¢10) also in the; cases of strong coupling QED and the NJL model in ladder approximation. 

33 



34 

Fig.2 
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Finally, we discuss the effect of dynamical fermion (tadpole) on the above analysis using the 

SD equation. 

Using the equation of motion of a, 

we obtain the SD equation for VEV of a, 

(17) 

We wish to discuss xSB due to the effect of T/Q, hence we disregard the effect of >.o here. Then, 

the value of v is determined by (01~1/JIO); 

{18) 

Unlike the case of quenched approximation, v = 0 means (01~1/JIO} = 0 in this unquenched 

case. From Eq.(4), Eq.(16) and Eq.(18), we obtain the SD equation 

4C {A
2 

yB(y) C {A
2 

B(y) 
B(x) = Z3mB lo dy A2(y)y + B2(y) + 2 lo dyylCs(x, y) A2(y)y + B2(y)' (19) 

where the kernel Ks is defined in Eq.(Sa) and the SD equation for A is the same as Eq.(4b). Here 

we must note that m 17 and m,,. are not independent quantities of 17. For example, in the strong 



coupling phase of 71 where xSB occurs, we have mir = 0 because of the Goldstone theorem. On 
the other hand, in the weak coupling phase of 71 where chiral symmetry is unbroken, mir and mo
should be degenerate. Such an 71 dependence of mass spectrum of bosons comes from the loop 
effect of fermion in the vacuum polarization in the <1 and 7r propagators. 

Especially in the strong coupling phase, the massless pole of 7r propagator comes from mixing 
with massless bound states of fermions,i.e., composite NG bosons. Then we must solve the SD 

equations for rJ and 7r propagators and Nambu-Bethe-Salpeter equation for the bound state in a 
self-consistent manner. This is very difficult technically, however. We simply disregard the effect 
of dynamical fermion on the propagators of <1 and 7r. We only consider the effect of dynamical 

fermion on the VEV of rJ. Here we use the integral kernels !Cs, /CA given in Eq.(9). 

In such an approximation we obtain the SD equation with the effect of the dynamical fermion, 

4C ff\2 
yB(y) ff\ 2 

2 B(y) 
B(x) = Z3m~ Jo dy A2(y)y + B2(y) + C Jo dy yKs(x, y; m ) A2(y)y + B2(y)' (20a) 

A2 

( ) ,...,1 y ( 2) A(y) Ax =l +c dy-KA x,y;m 2() 2( f o x A yy+B y 
(20b) 

We calculate this integral equation numerically. Fig.3 is the result of the chiral phase transition 

of this system. In this case it is difficult to say whether the xSB is dynamical or not, because 

we always have non--zero value of v whenever xSB occurs. Hence we next discuss a criterion of 

dynamical xSB. 

The NG bosons couple to the axialvector current through its "decay constant" P,., 

The axialvector current is written as 

a - 'Ta a a 
lsµ= 1/J2'Yµ'Y51/J + rJ0µ1r - 7r oµrJ. 

We divide the NG boson decay constant into two parts; 

(Ol~~a lµ'Y51/Jl7rb(q)) =iqµF!oabe-iqx, 

{Oj<10µ7ra - 7ra0µ<1j7rb(q)) =iqµF;oabe-iqx. 

We call the xSB is dynamical, when the fermionic part of the NG boson decay constant Ff is 

sufficiently larger than the bosonic part of the NG boson decay constant F:. 

In this case the bosonic part F; is written in terms of the VEV of <1, F; = Z3v. On the 
other hand, the fermionic part Ff is written in terms of the mass function of the fermion and its 

value is order of M, Ff,...., M. Then our criterion of dynamical xSB is 

M ""'" z __ 77 (Ol~1/!IO) 
#' 3v - ;;:; 2 . 

v2 m0 

(21) 

(01~1/JIO) is given by 
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where I is determined from the high energy behavior of the fermion mass function (an analog of 
anomalous dimension[7J). 

In our numerical calculation we obtain/::::: 1.61 for m 2 = 10-3/\2, Z3mij = J\2, and/::::: 1.97 

for m2 = J\2, Z3mij = J\2. Noting Z3 < 1, we find our criterion of dynamical xSB is fulfilled for 

small m and sufficiently large UV cutoff /\. 

5. Conclusions and Discussion 

We have investigated the dynamical xSB due to strong coupling SU(2)J, x SU(2)R symmet
ric Yukawa interaction in the framework of the SD equations. Within the quenched approximation 

we found the phase where xSB occurs while the VEV of elementary scalar field vanishes. In the 

approximation where the loop effect of the dynamical fermion affects the value of v, we discussed 

the criterion for dynamical xSB. We found the region where our criterion is fulfilled. 

We discussed here only SU(2)L x SU(2)R symmetric Yukawa interaction. However, the 

Yukawa interaction with large isospin violation is important for the top quark condensation. More 
detailed analysis including the case of isospin violation will appear elsewhere. 
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I. Motivation and Basic Assumptions 

As is well known, the standard model (S:tvI) of strong, weak and electromagnetic 

interactions is successful with SU(3)cxSU(2)1xU(l)y gauge symmetries. However, 

there are some unsatisfactory features in this theory. 

One of these features concerns with t.he representation of SU (3 )c. The strong 

sector of SM is described by Quantum Chromoclynamics (QCD) with <rn SU(3) gauge 

group. Quarks belong to ;!. the fundamental representation of SU (3), and gl uons to 

~ the adjoint representation. Mathematically there are also an infinite number of 

higher representations in SU(3): .§., 10, 15, 15',· · ·. ll has not been known whether 

the particles belonging to such representations exist. If these particles are not in 

nature, the reason which forbids such particles should exist. Marcianofll suggested 

th~t the high-color effect of quark-anti-quark binding potential may increase in the 

energy scale of QCD confinement to a few hundred GeV or a few TeV and proposed 

the sextet quark condensation model. 

Another unsatisfactory feature is the mass hiera.rchy problem. In SM, masses of 

all fermions and weak gauge bosons are originated from the Higgs field. Because the 

Higgs is a scalar field, the perturbative correction to masses is quadratically diver

gent. One can evade this problem by replacing the Higgs field by some fermion-field 

condensate in the dynamical electroweak symmetry breaking just as t.he technicolor 

model~'l or Ma.rciano's high-color quark model mentioned aboYe. To produce the 

weak boson masses, the vacuum expectation value (ifiJt) of these fermion fields iJt 

must be about 250 GeV. Then, in general, masses of fermions '11 may lie in the range 

between a few hundred GeV and a few TeV. 

Though once the technicolor-like models were nearly abandoned beca.use of the 

well-known flavour changing neutral current problem, it has been shown that the 

models may be revived if the composite operator ifiJt has a large anomalous di

mension 'Y* in these models. 131 In t.he t.echnicolor model however, we were forced t.o 

introduce an extra fundamental fermion by hand. 111 the present. paper we would like 

to circumvent this unsatisfactry situation by appearing to the color-sextet quarks. 

On the other hand, being stimulated by recent experiment.al consequences that 

the top-quark mass may be very heavy as the \V boson mass or more, several au

thors pointed out that the top quark may condense t.o be a subst.it.ute for t.he Higgs 

t . 1 t•J. t>J ~r· k T b l . cl '"' k.t•J. t•J I · par ice. 11' lta.ns ·y, ana as 11 an iamawa ·1 o )Served t.hat. the composite 

operator It acquires a large 'Y* by using t.he Schwinger-Dyson equation in ladder 



approximation. This implies that the four-fermion opera.tors such as tttt, ttqq and 

ttf.£. become relevant and have to be included in the original Lagrangian, where q 

means u, d, s, c and b quark and e the lepton. Their model is att.ract.iYe because 

of the large 1* and the economy: less particles and less free parameters than Higgs' 

scenario. 

We pursue an alternative possibility that the color-sextet quark condensate to 

trigger the electroweak symmetry breaking. We st.art with the following assumptions 

to examine this possibility: 

• The color-sextet quarks Q belonging to Q. (or Q.*) in SU (3)c exist. 

• The bound sta.tes QQ condensate. 

We choose Q as an weak iso-doublet (U, D) for the second assumption. Q should be 

heavy as the weak boson masses to induce them. This may explain why the sextet 

quarks have not been found by experiments yet. 

II. Dynamical Electroweak Symmetry Breaking 
by Sextet Quark Condensation 

We start with the Lagrangian including a N ambu-Jona-Lasinio
17

J type four

fermion interaction term to and study the mechanism of the dynamical electroweak 

symmetry breaking by the sextet quarks, 

[, = LQCD + LEiectro-Weak(without Higgs terms)+ L4f , 

( 1) 

One gets the self energy or the dynamical mass .B(p) of Q by solving the Schwinger

Dyson equation in the quenched planner approximation, 

(0) 94f 111
' d 2 :S(q) .B(p) :::::: m + q ----

A2 m~ q2 + .S(q)2 

(2) 
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where 

do) NclYr A. 2 

94£ = 
3 (0) 

,\(q) = - 0'3 (q) 
41r 

Here Ne and Nr are the numbers of colors and flavours, respectively, A. the ultraviolet 

cut-off, a 3 the QCD running coupling, and by the superscription (0) we mean the 

bare quantity. As shown in ref. [4], a non-trivial solution for :S(p) is obtained in the 

symmetry-broken phase and the anomalous dimension of the composite opera.tor QQ 
can be 2, if 94£ and .\(q) approach along a certain path to the critical point g41 = 1 

and .\(q) = 0 in the continum limit q ~ oo. Therefore the four-fermion terms like 

(°1f1j;)(QQ) where 7jJ is any fermion field become relevant and it is justified that we 

ha~e introduced the four-fermion terms into the original Lagrangian. According to 

the condensation of QQ, the vacuum expectation value (QQ) is non-vanishing, and 

the four-fermion terms play the role of the mass t.erms as 

where 941(,p) is a. coupling corresponding to the four-fermion term QQ-:v;"lj;. Note that 

QQ behaves just like the Higgs field a.t low energy owing to the decrease of its scale 

dimension by 1*. 

III. Masses of Sextet Quarks 

We will now evaluate the masses of Q. As in the Technicolor-like models121
, the 

W-boson mass mw is induced by the condensation of the mass-genercd.ing fermions, 

(3) 

where 92(mw) is the weak coupling constant and F"± the 'pion' decay constant of 

QQ. To estimate F"±' we use the following formula derived in ref. [4]. 



v. A
2 d F 2 - l c 1 x x [("2 "2) 1 (B2 .E2)' 

,,.:1: - S7r2 mQ21 (x + Ef)(x + E:f) -'-'l + "-'2 - 4 l + 2 

x(" 2 '"' 2){l+(E{)' l+(E])'}] +- .:...J - J..., - ---"--') 1 2 x+"2 x+"2 -' .:...ti "-'::? 
(4) 

where x = p2
, '= d/dx, rnq1 = B1(mq,), and by the subscript 1 and 2 we mean the 

heavier and lighter color-sextet quark in an iso-doublet, respectively. 

At the energy scale p 2:'.: rnq 1 , the behavior of E; of with i = 1, 2 is computed by 

solving eq. (??)'.61 

[ 
Ct3(p) ] A/2 

E;(p) ::::: mq; . 
Ct3(mq;) 

(.5) 

The quantity A is 60 for present sextet quark model, while 8/7 for the top conclen-

sation model. 

. By neglecting all fermion masses, the asymptotic form of cr(p) at the energy scale 

above mq1 is 

( )
-1 "' 1 1 p a3 p = - n-, 

61r Mq 
(6) 

where Mq is a scale parameter. Note that this expression for a 3(p) is applicable only 

for p 2'.: mq 1 and is different from the ordinary a 3(p) in low energy scale. 

We would like to evaluate Afq in terms of the low energy QCD para.meter M4 (for 

four light quarks). For this purpose, we take into account the quark mass effects so 

that we employ the beta function for massive quarks given by Georgi and Polizer1; 1 

f33(g3, ~) ~~ - 1~3:2 (11 - ~ ~ \_!!]_: - ~; L \m2 ) 
triplets 1 + pl ' sextets 1 + -pr 

(7) 

where g3
2 = 41i a 3. This equation leads another expression for et3(p) applicable to 

the energy scale p 2'.: me, 

i 1 ( p "'""' p2 + .5mi2 a 3 (p)- ~ - 2.5 ln - - ~ In ., ., 
6rr A14 i=b,t J\/4-+.Sm;-

p2 + .5mi2 ) 
-.5 In ., ., . L M -+.5m·-

•=Q1.Q2 4 t 

(8) 

For p 2'.: m.q 1 , eq. (??) should reproduce eq. (??) a.ncl we have the relation 

lnMq = 25lnM4 - 2 L lnmi - 10 L lnmq; - 12ln.5. (9) 
i=b,l t=l.:::? 

There have been reported many experiment.al estimations for i\/4 • Since our 
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Fig. 1 The beha.vior of QCD running coupling cr3(p). The solid line corresponds to the present 

sextet model, while the <la.shed line represents the ca.se without sextet qua.rks. Here mq,. 

mq, a.nd mi a.re ta.ken to be 300 GeV, 250 GeV a.nd 150 GeV, respectively. 

argument is based on the leading order approximation in Q 3 , we adopt as M4 the 

average value of the scale parameter determined by using the leading order QCD 

predictioni
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Our value taken here is 

(10) 

The behavior of Q 3(p) is shown in fig. 1. Note that Q 3 walks very slowly in the 

energy region above mq1 • 

Now let us go back to eq. (3), 

(11) 

I) Its five-light-qua.rk version is M5 = ( 240 ± l~Z ) MeV with 77lb = 4.9 GeV. 



The recent experimental values for the input parameters are 

mw = ( 80.0 ± 0.6) GeV ~ 101 

g2(mw)2 
(11) 

g2(mw) : a2(mw) = --- = 0.0344 ± 0.0007, 
411" 

(12) 

and M 4 given in eq. (10). We take A to be 1015 GeV for calculation, but it makes no 

significant change, even if it is 1012 GeV or 1019 GeV. Remaining unknown masses 

are mql> mq2 and mt to which eq. (11) imposes a constraint. 

There is another experimental restriction com.ing from the p parameter, 

with 

,---, 

> 
Q) 

(.'.) 
'--' 

Cll 
O' a 

p = F.,,.±2 

F o 2 ' 71" 

2 _ Ne 1A2 [Ef + ~(Ef)' Bi+ ~(Bi)') 
F.,,.o - 8 2 dx x ( ~")" + ( "")" 

7r m~ X + 2..1- - X + £.Ji -

aoo 

ffiQ1 

280 

290 GeV 

:~eo 
300 GeV 

::!40 310 GeV 

320 GeV 

:~20 

200 l-.1.-..L.-..L.-..L-...l-.J--.J--...J--1--1--'---'---'--'--'-............ -'--'-~ 

0 100 200 300 

ffit [Ge VJ 

(13) 

(14) 

Fig. 2 The allowed region of three masse:s mq,, mq, and m1• Here mq, is represented by the 

iso-mass lines in the plane of mq, and m1 . 
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Its experimental value is 

p == 0.998 ± 0.0086 ~II} (15) 

Three quark masses must be chosen to reproduce this value. 

The contour map of mQ 1 is shown in fig. 2. The weak dependence of mQ, on mt 

comes through eq. (??). The upper bound of the graph corresponds to mQ1 ;:::: mQ,, 

the right one to mQ 1 ;:::: mt (assumed), the lower one to the p paramct.er and the left 

boundary to the recent pp collider experiment. at Fermi Lab.l
121 

The allowed ranges of the masses are 

330 GeV , 

280 GeV, 

77 ,...., 330 GeV. ( 16) 

The uncertainties caused by the errors of input. data in eqs. (??) and (??) are about 

10 Ge V for each of boundaries except for the lower limit of the top quark mass. 

These predictions are consistent with the lower limit of the sextet quark mass 

given by the recent experiment: mQ ;:::: 84 GeV (953 C.L.) for the long lifetime 
[lJ] 

case. 

IV. Quantum Number Assignments for Sextet 
Quarks 

Now we discuss quantum number assignments for Q briefly. For this purpose, 

we need a new assumption in addition t.o the ones giYen before: 

• The sextet quarks can decay int.o the ordinary quarks and/or leptons Yta 

SU(3)cxSU(2)LxU(l)y invariant interactions. 

This requirement may protect our scenario from the cosmological constraints. Al

though there are numerous sets of quantum numbers and decay modes of Q satisfying 

the present assumptions, we choose t.he simplest solution among many possibilities: 

o The sextet quarks belong to!!."" and the anti-sextet-quarks belong t.o !}.. 



o The sextet quarks are an SU{2)L doublet. 

o The charges of the sextet quarks are +2/3 for U and -1/3 for D, respectively, 

just as the ordinary quarks. 

o The decay modes of the sextet quarks are 

- -
or Q q+q+e. (17) 

The baryon number and the total lepton number of Q are 1/3 and O for the 

former mode, respectively, -2/3 and -1 for the latter mode, respectively, if 

they are conserved. The heavier sextet quark Q1 decays into the lighter one 

through the weak interaction, too. (If the mass splitting permit.s, real w± will 

be produced.) 

o It is needed two additional iso-<loublet leptons for the chiral anomaly cancella

tion. The additional leptons are sequential, i.e. the same quant.um numbers as 

the ordinary leptons except for the lepton numbers associated with the gener

ation. (These additional neutrinos must have masses heavier than 4.5 Ge V to 

be consistent with the Z-decay experiments'.
1

'
1
) 

Any adclitonal quarks will violate the QCD asymptotic freedom. 

Possible bound states are QQ, Qqg, etc. for bosons and QQQ, Qqq ,et.c. for 

fermions where g represents gluon. Note that the charges of these bound st.a.tes are 

integral. 

V. Conclusion 

The consequences of the dynamical electroweak symmetry breaking by the color

sextet-quark condensate with the four-fermion interactions is present.eel. Due to the 

large anomalous dimension of the composite operator, the four-fermion operators 

like QQ~1.f; become relevant and the condensat.e QQ play the role of the Higgs field. 

The masses of two color-sextet iso-doublet quarks are 280""'330 Gcv and 210""'280 

GeV. The simplest quantum number assignments is t.hat the sextet quarks belong to 

§.* of SU (3)c and have charge +2/3 and -1/3 for the iso-spin up and down part.icle, 

respectively. 
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In this talk, we have given just a sketch of our work. For the details, please, see 

ref. [OJ. 
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ABSTRACT 

In applying the concept of the reduction of coupling constants 

to the standard theory for the strong and electro-weak 

interactions, we have made assumptions, which can be motivated 

in the asymptotic behavior of the theory. Those assumptions 

are clarified in detail, for I believe that these may be 

where one could find a relation to the dynamical breaking 

of the electro-weak gauge symmetry. 



I Introduction 

In formulating realistic quantum field theories, renormal

izability has played undoubtedly an important role. In particular, 

the structure of the independent parameters in a given theory 

is essentially fixed by renormalizability. 

The concept of the reduction of coupling constants (RCC)l 

is to reduce the number of the independent parameters of 

a theory without imposing symmetries, and hence it generalizes 

the usual notion of renormalizability. During the last years, 

the theoretical nature of the RCC has been intensively 

investigatedl-9. But the physical principle, which the RCC 

is based on, has always been lacking. And so the RCC has 

been often seen as something outside of phenomenology. The 

contact to phenomenology slowly began as the lower bound 

of the top quark mass became higher with timelO. The recent 

theoretical observationll, moreover, might suggest that the 

RCC when appliedS,8 to the standard theory for the strong 

and electro-weak interactions is related to the dynamical 

breaking of the electro-weak gauge symmetry by the top 

condensationl2,13 

It is the purpose of my talk to come close to an answer 

to the question of whether there is any relation between 

RCC and dynamical symmetry breaking (DSB) . I would like 

to start, in sect.II, by reviewing briefly the concept of 

the RCC. In applying this concept to the standard theory, 

we have made assumptionsS,8 which can be motivated in the 

asymptotic behavior of the theory. So I shall first discuss 

the asymptotic behavior of the standard theory in sect.III. 

Then, in sect.IV, I would like to clarify our assumptions, 

for I believe it is this set of the assumptions that will 

be crucial to find the relation between RCC and DSB if any. 

It is also worth mentioning that the compositeness conditions 

of Ref.14 - in the certain limit of parameterslS - are exactly 

satisfied in the solution of the non-trivial reduction. 
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II What is the reduction of coupling constants? 

Let me begin by considering a renormalizable massless 

theory with n coupling constants, gi (i = 1, ••• ,n). The gi s 

are renormalized at a renormalization scale f-' and so depend 

on /I" in general. A remarkable feature of renormalizability 

is that, once gi s are known at some f , we can determine 

gi s at any different renormalization scale. This change 

of gi s with respect to ~ which defines the renormalization 

group flow) can be studied via non-linear first-order differential 

equations, 

where 'l. -:::: 3~ /47(. I 

Here ~4'. Sare the Callan-Symanzik ~ -functions, and can 

be calculated in perturbation theory. we assume, therefore, 

that all the partial derivatives of ~i S exist near the 
.. ;:r_-o~. origin V\ 

The differential equation (dfe) ( 1) is equivalent to 

dt '::. L 

where L stands for 

~ clct?. de<" -::: 

~ 
= ::: 

~ ~I 

Note that Eq. (2) is nothing but the characteristic system 

of the partial dfe, 

(1) 

(2) 

( 3) 



The solutions of (3) define n-dimensional surfaces - there 

are (n-1) independent surfaces in general - which do not 
~ 

ascend in the direction of the "velocity" ~ . That is, 

a renormalization group(RG) trajectory corresponds to a contour 

line on the surface defined by a 4 , and so the altitude 

on the surface along the trajectory remains constant: 

0 ( 4) 

(n-1) dimensional surfaces defined by ~i = Ci may be called 

the RG invariant surfaces. They are analogous to the constrained 

surfaces in the phase space of a constrained Hami+tonian 

system. As in that case, it is possible to eliminate (n-

1) couplings by using the (n,-1) RG invariant "constraints", 9'~ . 
Suppose we have eliminated the (n-1) couplings in favor 

of ~! . The subscript 3 has no deep meaning here. ) That 

is, o(;. s ( i=3) are now functions of i 3 . It could happen 

that these functions can be written as power series expansions 
00 

ex:,\ -:::. L c .. I,, d..34. 
J 

n-:::.1 

for sufficiently small ol.: • Then we say, the system can 

be reduced and the reduced system is renormalizablel,17. 

In practice, of course, one is restricted to work at a finite 

order in perturbation theory, and so it is not possible in 

general to find the exact functions. But the coefficients, 

(5) 

Cni s, can be calculated at any desired order. It is remarkable 

that the uniqueness of Cni s can be investigated at the one

loop level2 (see Ref.4 for a more exhaustive analysis of 

the problem ) , except for some special cases3. 

51 

Thus the concept of RCC is to exhaustively find (perturbatively) 

renormalizable theories for a given set of quantum fields. 

Interestingly the reduction solutions include even solutions 

to which one can not assign any symmetry. Can one give any 

physical interpretation to these solutions? we do not know 

the answer yet. 
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Let me, however, ignore this question and wonder how to 

apply the concept of the RCC to the standard theory5,8. one 

immediately realizes that this can not be done so simply. 

For 1) the theory involves couplings with opposite asymptotic 

behaviors, e.g. the SU(3)c and the U(l)y couplings, and 

2), even if the problem 1) is solved, one expects contradictions 

with phenomenology because then all the Yukawa couplings, 

for instance, would be related. 

To overcome these problems, we have proposed the partial 

reduction with perturbations5,8. In order to carry out this 

program, we have made assumptions that can be motivated in 

the asymtotic behavior of the standard theory. This will 

be explained in the next section, and the notion of the partial 

reduction with perturbations will become clear in sect. IV. 

III Asymptotic behavior of the standard theory 

Here I am interested particularly in the asymptotic behavior 

of the couplings o(i 18, and I consider the dfe (1) for 

large t. For a given initial value, one obtains in principle 

an unique trajectory. There may be initial values which belong 

to the trajectories that, as t goes to infinity, approach 

asymptotically the origin of the n-dimensional space of couplings. 

This set of the initial values is called the stable manifoldl9. 

Since trajectories lie on RG invariant surfaces, we can talk 

about stable surfaces. It is then clear that the system can 

be asymptotically free (AF)20 only if the stable manifold 

is not trivial. Therefore, if asymptotic freedom is a physical 

requirement, the physical trajectories have to lie on some 

stable ( or so to say asymptotically free ) surface. This 

is very similar to the case of constrained Hamiltonian systems 

where the physical trajectories lie on the constrained surfaces. 

Thus the requirement of asymptotic freedom may imply reduction 

of coupling constantsl,2. 
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Now I come to the question of how to find stable manifold. 

It is certainly possible to do this in perturbation theory 
' 

at least near the origin. There is an useful theorem by Liapunov, 

which can be used to study the stability of the solutions 

of ordinary dfes at a fixed point. Let me briefly explain 

the idea by considering a dfe of the form, 

(6) 

~ .... ~ 
with some regularity properties for -f . we assume that t (d) = O / 
so the origin is a fixed point of (6). We are interested 

in the solutions near the origin. Therefore, we may expand 

(6) around X ~ O 

dx~ ::. - + ... 
dt 

The stability of the solutions can be exactly investigated 

by studying the eigenvalues of the nxn matrix 

d+~ (. 0 ) 
&~ 

That is, the non-linear problem can be suitably linearized 

as far as the stability problem is concerned. ( This fact 

is related to that the uniqueness of (5) can be investigated 

at the one-loop level.) 

( 7) 

( 8) 

However, in our case the problem can not be simply linearized 

because the ~ -functions are at least quadratic in the 

couplings. Fortunately, there is a way out. we look for a 

coupling which is obviously asymptotically free at the one-

loop level- this coupling is denoted by 

that, to all orders, 

0.S t -7 ao 

o(
3 

- and assume 

Then we look for the stable manifold under this assumption. 

( 9) 
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If this is possible, the assumption is certainly self-consistent. 

How to do this job in practice? Let me make a change of 

variables21: 

( ~ ~ 3) 

( As mentioned previously, the d3 is the coupling which 

is obviously asymtotically free at the one-loop order. 

The dfe (2) become, in the new set of variables, 

Then we look for solutions which satisfy 

( 0 L. ~· < ¢,£) ) 

If there is no solution which satisfies (12) for the choice 

of the variables (10), we try to choose another one which 

is asymptotically free at the one-loop level and denote it 

(10) 

(11) 

(12) 

by c( 3 , and so forth. So, the o(
3 

is the one which approaches 

the origin most slowly. 

This problem can be linearized, with the price that we 

have introduced singularities at the origin in (11) , due 

to (10). It is now clear how to find the stable manifold 

in perturbation theory: 

1) We solve the algebraic equations 

The solutions of (13) - the fixed points of (11) - correspond 

to the origin of the original n-dimensional space. 

2) we then analyse the stability of the solutions near the 

fixed points by looking at the eigenvalues of 

~ (I) 

M·· - s~ d ( 4 = + dcl· 7) .c.J 
Q.t ~.:::. f.: d ~ 

( ' :\ 3) J,.) J 

(13) 

(14) 



{0 
Here ~- .S are the 

I. 

-functions of the one-loop order. 

With those primary discussions, let me come to the standard 

theory22. The theory involves a lot of couplings: we have 

three gauge couplings 
1 

cJ..;. ( i=l, 2, 3) , corresponding to 

the SU(3)cxSU(2)LxU(l)y gauge symmetry, three Yukawa couplings 

for the leptons, cXe_ (l= e., /"'" , C: ), and six Yukawa 

couplings for the quarks, o(~ (q=u,d,c,s,b,t). we have also 

the Higgs coupling, o<).. 23. It can be shown that points for o(4 ~ o 
and/or o(t s ~ D can not belong to the stable manifold. 

At this stage, there are two options: 

1) we stop here because the physical point does not lie on 

a stable surface, and hence perturbative analysis on the 

asymptotic behavior of the theory may not be meaningful. 

2) It is reasonable to study the stable manifold whilst ~~ S 
and «1 may be regarded as some perturbation. 

The choice 2) is the first assumption which we have made 

in applying the RCC to the standard theory. So, in the following, 

we consider the system with <X.:::. d 2. .$ ::. o , and look for the 

stable manifold by using the method explained previously. 

There are many solutions24 of the algebraic equations (13) 

for that system. It can be shown that there is1·_,however, 

no solution for which all the eigenvalues of the stability 

matrix (14) are non-negative. This indicates the existence 

of some not-asymptotically free manifold near the origin, 

and the asymptotic freedom requirement to that ·system implies 

reduction ( as mentioned at the beginning of this section) . 

we are, of course, interested to see how the stable surfaces 

look like, particularly near the (semi)physical point, which 

is supposed to be close to the origin, and can be perturbatively 

reached. Since, for that point, rXt;, >) c{~ (~~t) must be 

satisfied - this is an experimental constraint -, we make 

an approximation by setting c{ ~ ( ~ ~ t,) equal to zero. Thus 

we have arrived at a four dimensional problem; we must study 

the asymptotic behavior of cl.2,.r:J.~ 
1 

o(t and o(A , while 

all the other couplings are set equal to zero. 
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The corrections due to non-vanishing o(~ ( c+~t) can be 

consistently taken into account, showing that the approximation 

is rather goods. 

As the " r:J..3 ", we choose the QCD coupling, o(3 , and 

find for the system the stable manifold, which, once it is 

found, is clearly independent of this particular choice for 

the II o(3 II• we have20,21,25: 

2. 

:::. - \4-0<'3 

And there are three solutions of (13)24: 

(a> P1 ~t=~li=O, 

(b) ~l = O, ~t= 2/9, ~>. = ({689 - 25)/18 = .3., 

(c) ~:l. = 42/19, P = 2211111, o>.. = i.18 ... = d, 
\t \ . 

with the eigenvalues of the stability matrix (14), 

-1 , 1/7 , -1 for (a) , 

-1 , -1/7 , - (25 + 18a) /21 ) for (b), 

and 

1 , -227/266 , -(6d/7 + 286/399) ) for (c). 

(15) 

(16) 

(17) 
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The signs of the eigenvalues (17) indicate that there is 

only one AF trajectory which satiS!fiies (b) of (16) at the 

origin26, and that, in the case (a) ((c)), we have two dimensional' 

stable surfaces on which all the trajectories satisfy (a) 

((c)) at the origin. 

IV Assumptions and conclusion 

1. The first assumption 

As mentioned, the non-vanishing o(, and o( ~ S does 

not correspond to a point on a stable (AF) surface. Nevertheless, 

we have looked for the stable manifold ( by setting ol~ = ch s 
= O ) • How can a point on the stable manifold be related 

to a point in another regime? Remember there are in general 

(n-1) independent RG invariant surfaces defined by ¢· s . 
\. 

It may happen that a RG invariant surface contains asymptotically 

free, as well as not asymptot~cally free surfaces. That is, 

two points, one·on an AF surface and_ the other on a not AF 

surface, may lie on the same RG invariant surface. One can, 

therefore, reach the one point from the other one by solving 

the partial dfe (4). 

2. The second assumption 

This assumption is related to the first one. So far we 

have treated ol.;i. , differently from o<4 . we did this 

because it was not necessary to set ~ 2 = 0 to find the 

stable manifold. However, this is somewhat unnatural, though 

technically possible. It is certainly more reasonable if 

the SU(2)LxU(l)y gauge interactions are treated on the same 

footing. our second assumption is, thus, that we regard ci.2 also 

as perturbation. Then there are exactly two solutions of 

(13) - (a) and (b) of (16) - for which o(2 can be treated 

as perturbation. 
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The assumptions, (1) and (2), give the unique extension 

of the stable surface27. More precisely, the AF surface of 

the undisturbed system (near the origin)is defined by 
1/r, 

J.o cl~ ( 2 "' ( 
'1' t ~ cXt · \ Cf - c< t ) -= C.. L o ) < 18 ) 

~~ : ( J.t) v ( c1 >- - 1- ~t. l. + r,;_ ;; t ~ ~ · -- ) = o 
or 
,!._~ (2 rv -l:\j~ ( 'V 12 Q. - 32./3 (2.. t\J 

't' "- = q- - c:<t) ( Q- o{). ) + ---- 9- dt;) 
12.. a.. +44/ 3 

+ · · · ) tor ~~ ~ ~ 
where a = <J 689 - 25) /18 and A = 12a + 50/3. " " denotes 

terms like d:-,. W\JtYI in (19a) and ( 0..- <X;. r (i-- ~fin (19b). 

And the extended surface is defined by 

(19b) 

'/7 
o<'3 .2. IV "' \(7 /\.. ) c. (2o) (20) 

~t= ~ (Cf -c<t. -*c<l. - 630 o(, .1-··· = 
'V 'l II.. .<L "'l.. hr"'\, ) f /\-<Piv "' («'t) ( d...)\ - 3 C<' t + 7 d.. t d..>. + . . . = 0 . 0 (" «t ~ 0) ( 21 ) 

""' or for 0(.1::; 2/9, we have 

d.~19 
( ~ - Jt) -

_L "' I 17 "' 
~ ::: ( (~ c<'l. - - o<'.4 "'!' ••• 

«t S"4o 
-HA 

ti\. \ 2. "' -1 "- l1l.. ~ l '1. 
= \ 9-a(t) - 1'2.. ( d.1 + 4) • ) )( 

3. The reduction5,8 

) = ~ Clo) (2la) 

(2la) 

The physical point is supposed to lie on the not AF surface 

which is defined in (20) and (21), which we call the trivial 

reduction. If C = 0, we call the non-trivial reduction. 



Since all the couplings, 

are experimentally known ( 

trivial reduction requires 

while, for the non-trivial 

fixed. 

except for o<;: and 

with some uncertainties 

o(), to be a function 

reduction, ott and 

o( >. 
) , the 

of o(t 
o( >.. are 

It can be, furthermore, shown that the surface defined 

by the non-trivial reduction is a boundary of the surface 

of the trivial reduction; the solution of the non-trivial 

reduction gives the upper bound for the trivial reduction. 

Beyond the non-trivial surface is presumably something we 

do not know in perturbation theory. 

Since the masses in the standard theory·are generated 

by the Higgs mechanism, reduction of couplings implies certain 

mass relations. For the non-trivial reduction, for instance, 

we obtainS,8,28 

mt ~ 100 GeV and mh ~ 68 GeV, 

where we have used: o<'3 = o.123, 0.228, 

~D.Ji"I 1/128, and Mw = 81 GeV. 

The trivial and non- trivial reductions are technically 

different: In the trivial reduction all the Yukawa couplings 

for the quarks are equally treated, and the zeroth order 

system contains only QCD interactions. The fact that the 

contributions of O(q_ (q\=t) to o( >.. are negligibiy small is 

an experimental consequence. 

As for the non-trivial reduction, the role of olt is 

singled out, and the zeroth order system involves o<3 along 

with ~t and ~3 • If we thus remember the lowest order 

approximation of the DSB by the top condensationl2 and our 

assumption for the non-trivial reduction, we recognize that 

the both schemes share certain similarities. So, in order 

to establish the relation between the RCC and the DSB, it 

is certainly necessary to observe that the asymptotic behavior 

of the standard theory is influenced by the top condensation 

or vice versa. 
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Compositeness Condition in 
Renormalization Group Equation * 
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The top quark mass is now known to be heavier than 89Gev. This might 

imply that the Higgs boson is composite of the top quarks; that is called top 

condensation. Miransky, et al. 
2
J have elaborated this idea with the four-fermion 

interaction. Recently, Bardeen, et al. 3J conjectured that the divergence of the 

Yukawa coupling constant at some scale A shows the compositeness of the Higgs 

boson, and predicted the top quark mass and the Higgs mass. However, their 

compositeness condition has a few problems. Here we discuss this problem, and 

give some improvements to their treatment of renormalization group equations. 

To begin with, we must define a composite particle. When a field has no 

kinetic term in a bare lagrangian, but obtains it at the low energy, we call that 

field composite. Fields are usually normalized such that their kinetic terms have 

weight 1. Therefore this definition is consistent with the ord~nary compositeness 

condition Z=O. 

We can regard a field as composite when all bare couplings of the field are 

infinite and the field has a pole at the low energy, because it implies that the 

lagrangian loses kinetic term, when the field is rescaled. For example, we take 

the following lagrangian; 

* This work is collaborated by M.Bando, T.Kugo, N.Sasakura, K.Suehiro, Y.Watabiki 
1

> 

63 



64 

where .C1c is the kinetic term of quarks and L = (t, b)L. When mo,gw,gbO, .Ao are 

all very large of order c 1 ( E ~ 1), the field redefinition ef>o = Et¢ renders the 

lagrangian (1) into 

This indeed loses the kinetic term in the limit E ---> 0. And if the field ¢> has a pole 

at low energy, ¢>can be called composite. Note here that, if the starting lagrangian 

is given by (2) with m, g1, gb, .\ finite and E = 0, then all the bare couplings in 

the corresponding lagrangian (1) must be of the same order of infinities. 

Let us consider the theory with cut off A. Then the running couplings 

g(µ) = (m(µ),gt(µ),gb(µ),.A(µ)) are regarded as the bare couplings go atµ"' A. 

Therefore it is legitimate to impose the following boundary conditions for the 

renormalization group equations as the compositeness condition: 

9t(A), 9b(A), m(A) = oo (3) 

[Here we are considering renormalization group equation in the theory in which 

¢> has its kinetic term.] For simplicity, we calculate the j3 function in the system 

(1) without cut off, and obtain 

l67r2 d ldn 91 = I< h + KY) + Kv( t) +Gt, 
t . 

l67r2 dl~gb = I<h + I<jb) + Kv(b) + Gb, 1 ? •) 
t = 21n(µ· I µ5) 

(4) 

where Kh, I<1 and Kv correspond to the one loop correction terms to Higgs 

self-energy, fermion self energy and the vertex, respectively, excluding the con-



tributions from the gauge fields which are all included in G. 

Kh = 3(9i + 9l), 
,( t) 3 2 1 2 ( b) 3 2 1 2 

Rf = 2,9t + 2,9bi Kf = 2,9b + 2,9t, 

Kv(t) = -29l; Kv(b) = -29;, 
(5) 

2 g 2 17 2 2 g 2 5 2 
Gt= -893 - 492 - 1291i Gb = -893 - 492 - 1291i 

where 91, 92, and 93 are the gauge couplings of U(l), SU(2) and SU(3). 

Let us consider running of the ratio R = 9t/9b, which is given from (4) by 

(6) 

This indicates that R also diverges when 9t, 9b -+ oo unless 9t = 9b, and therefore 

we cannot have a situation in which two couplings 'flt and '!lb have a finite ratio. 

In other words, if one starts from the low energy side with R-1(µ = Mz) = 0.1, 

for instance, we are inevitably led to R-1(A) = 0. This is an absurd conclusion, 

since we are free to consider the models possessing any values of gtf gb. 

Does this indicate that the compositeness condition in renormalization group 

equations is inconsistent? The answer is "No" and we here propose an improverd 

renormalization group equation compatible with the compositeness condition 

with finite ratio 9tf 9b· If one recalls the fact that the Higgs mass m2 diverges 

at µ = A also, one thinks that the contributions of the loop diagrams with the 

internal lines of Higgs particle, which appear in the terms Kt and Kv, should be 

suppressed. Notice that the right-hand side of eq.(6) does not include the Higgs 

self energy term Kh for which no suppression works. Therefore if we can take 

account of the infinity of the Higgs mass properly, all must go well. 

So, instea,d of the above mass-independent renormalization, we now employ 

mass-dependent renormalization devised by Georgi-Politzer :l in which the con

tributions of the heavy mass particles are automatically suppressed. We set the 
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renormalization conditions as follows; 

(7) 

where r~:f are the inverse propagators of Higgs and fermion, respectively, and 

r~j 1 is the vertex function of the Higgs and fermions. Here we take "pk = O" 

instead of "pk = - µ 2
" in the vertex renormalization condition only for the 

convenience of calculation. The results are expressed as follows: 

where 

l611' 2 d~gt = Kh +KY) f(a) + K~t) f(a) - Gu 

l611'2 d~/b =Kr.+ KY) f(a) + K~b) ](a) - Gn 

1671'2 ~; = 2a[1671'2 
- (1 + a)Kr.] 

f(a) = 1 + ~[(1 + ~ - 3] ~a - ~6 a2 + O(a3 ), 
a a 

- 2 1 2 a2 
3 f(a) = 1 - ;:;[1 - ;:;ln(l +a)]~ 3a - 2 + O(a ) 

(8) 

(9) 

with a = µ 2 /mk. Note here that we get suppression factors f(a) and f(a) in 

front of Kj, Kv terms in (8) as expected. Thanks to this, these renormalization 

group equations can now have some solutions possessing the desired properties, 

9t(A) "'0(1), 9b(A) ""'0(1) 
m(A) m(A) 

(10) 

Note that the divergences of the running couplings are now governed by the 

contribution of the Higgs self energy term, Kr.. This result is consistent with the 

fact that the divergences of couplings are solely the redefinition of Higgs field. 



Unfortunately, the relation among mt, mb and the scale at which the cou

plings diverge depends on the renormalization scheme. But it is natural, when 

one recalls that a renormalization scheme decides a definition of couplings. For 

example, if we change the renormalization condition of the fermion propagator 

as follows, 

r (2)1 µ f pl:-µ2 = p /µ, (11) 

then the suppression factor becomes, 

2 1 a a2 
3 f(a) = 1 - ;:;[(1 + ;:;) ln(l +a) - 1]::: 3 - 6" + O(a ). (12) 

However, this is also a suppression factor, therefore the above properties (10) 

well remain to be satisfied. 

As conclusions, when we impose the compositeness condition as the bound

ary conditon of the renormalization group equation, we should use the mass 

dependent renormalization, since the Higgs mass also becomes infinite. 

We apply these conditions to the Standard Model, and obtain 

fil.::l 
A mt(GeV) ~ ~ 

gt(Ml':) 

1015 234 0.28 

1010 259 0.33 

104 405 0.50 

But the value of ~:t~V~:f:~~~ is fairly dependent on the renormalization 

scheme. 

Finally we add a remark on an interesting fact; when the top quark mass is 

heavy, the mass ratio mtfmH is decided by the infra fixed point of the renormal-
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ization group equation. 

(13) 

for Ne-colored fermions and the ratio r = 2>./gf obeys the equation 

(14) 

Thus the solution of the equation 

(15) 

gives an infrared fixed point; 

r = 1~[V(2Ne - 3)2 +192Ne - (2Ne - 3)] = 4 + O( ~~). (16) 

Since 2>./gf = mkfm;, this fixed point gives mH = 2mt, the same mass relation 

as Nambu-Jona-Lasinio's, in the limit Ne_. oo. When we put Ne= 3, then we 

obtain r = 1.77. The situation does not change drascally even if one includes 

gauge interaction effects. 
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Extra Weak Bosons Implied by Complementarity 
in a Confining Gauge Theory 
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Abstract 
Extra vV and Z bosons together with vV and Z as composite particles are intro

duced in a confining gauge model based on a "color" SU(2)1/,c x SU(2)1ZC x SU(2)~c 
symmetry. Within the framework of complementarity, the vector meson (such as Z) 

dominance of the photon is naturally implemented and quarks (qf for A=l,2,3 and 
i=l,2) and leptons (fi) are composites of scalars, wi' carrying the weak charge and 
spinors, c°' (a= 0,1,2,3), carrying the three colors (a= 1,2,3) and the lepton number 
(a= 0): q,,4 '"' w.c-4 and e. "'w.c0 . The confined gauge model is shown to be equiv-

' ' ' alent to the conventional model realized in the Higgs phase as far as the scalar degrees 
of freedom are frozen. Phenomenological implications of these extra vV and Z bosons 
are discussed. 

The experimental determination of mw = (80.00 ± o .. 56) GeV
1

) and mz = (91.09 

± 0.06) GeV
2

) has confirmed the mass relation, mw = cosfJmZ' with sinfJ evaluated 

in low - energy weak interactions. 3) It has implied the validity of the standard elec

troweak model of the Glashow - Weinberg - Salam (GWS) type 
4

) based on SU(2)'£c 
x U( l)~c. However, there is a theoretical belief that new physics beyond the standard 

model manifests itself above the energy scale specified by the Fermi mass. o; 112
, of 

,....,300 GeV. Among them are new phenomena due to compositeness of the "elementary" 

particles such as quarks, leptons and weak bosons. 
5

) If underlying dynamics for com
posite particles are provided by a non - abelian gauge theory, the useful notion called 

complementarity 
6

) can be used to examine low - energy physics for composites. I) \Vhen 
it is applied to weak bosons, the GWS model turns out to be (almost) equivalent to the 
model on U(I)~~,; with the confined "color" SU(2) 1t symmetry, i.e., the Bjorken-Hung-

Sakurai (BHS) model for the kinetic 7 - Z mixing scheme. 
8
l The weak bosons, vv± 

and Z, are made as
9

) w;= "'Tr(ri±ltv1DµwL) and Zµ "'Tr(r(3 liv1DµtuL)' where 
iv L is a scalar carrying the weak charge and is represented by the Higgs scalar o as 

zl>L = (,PG, 6). At the same time, L-handed quarks (qii for A=l.2,3 and i=l.2) and 

leptons ( e LJ are regarded as composites described by qti = w£;ci,. and e Li = 1u'£;cL. 
Starting with the lagrangian of the GWS model, one can derive the BHS model with 
the kinetic mixing parameter,>., for ~r- Z, >. = e/g under the constraint of (tl:l1vr) = 

I. lO) This equality can be regarded as a. result of vector meson (such as Z) dominance 
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of the photon. ll) 

One may wonder what happens in QCD, which is certainly based on the confining 
color SU(3):t symmetry. Nucleons, scalar mesons and vector mesons are composites 
of quarks. Complementarity will state that composite nucleons are regarded as (con-

. ) k l . . 1 12 ) s al st1tuent quar ·s anc composite vector mesons as massive g uons. c ar mesons are 
described by the Nambu - Goldstone bosons, which are not absorbed into the massless 
gluons. Let the flavor group be SU(3) 

1 
for q~4 (A =1, 2, 3 for three colors: i = 1, 2, 

3 for three flavors), i.e., u, d and s, which comes from the symmetry breaking of the 
chiral SU(3) L x SU(3) R symmetry. To faciliate the symmetry breaking, we introduce 

two scalars, ~i( (3, 1) and(~;: (1, 3) for (SU(3) L' SU(3) R), which are decomposed as 

(ii= (f (Vj and(~;= (li(Vj· It is suggested that (vis identified with scalar diquarks, 

(V; = c;..J.BCc;ijkq~q~/ffr.. 12 ) The remaining scalar,(, represents the Nambu - Gold

stone modes, II{ as ~ = exp(II/ / 11). QCD gets broken completely as fas as diquarks 

are condensed to develop < (V; > = frr8;4. In this phase, i.e., the Higgs phase of 

QCD, the gluons, G~, become massive and serve as the octet vector mesons including 
p and quarks act as the octet baryons including P, N and A. While, in the confining 
phase, color-singlet composites are supplied by (Viq:) f rr ("-' qqq for Ev ,...., qq) as the 

octet baryons and by (iiDµ(v/ J{i ("' ijijqq) as the octet vector mesons. Then. the both 
phases at low-energies contain the octet baryons and vector mesons. The transmutation 

of gauge bosons (i.e., gluons) into massive vector mesons (i.e., p etc.) arises.
13

) The 
similar suggestion has been lately advocated on the basis of the non-linear sigma model 

with a dummy hidden symmetry, H) where gauge bosons are regarded as composites 
and scalar mesons like 7r are taken into account but without the baryons as qqq. 

Along this line of the compositeness of "elementary" particles. a possible new 
physics beyond the standard model is investigated by introducing extra ~V and Z 
bosons. The confining "color" gauge group to be studied in the present article is spec
ified by SU(2)1ZC for the W and Z bosons as well as G10c = SU(2){~c x SU(2)'.Jc 
(equivalently, SU(2l'.ZC x SU(2)~c) for extra W and Z bosons. The QCD - like "color" 

(vectorial) SU(2)0c symmetry as G10c is not suitable for the L - R asymmetric weak 
interactions. If the effects from the composite vector mesons coupled to the right -
handed currents (corresponding to the SU(2)~c - gauge bosons) are neglected. the ex

tra VV and Z bosons, related to SU(2)~c, are allowed to be as light as 100 GeV as 

far as the low-energy weak interaction phenomenology is concerned. 
15

) It is because 
the couplings to quarks and leptons are of the -V - A form, which does not alter low
energy charged-current interactions. The lagrangian with extra composite weak bosons 
is characterized by vector meson domina.nces, which are described by the kinetic mixing 
terms among the photon (A.0 ), W and Z (mainly F) and extra W and Z (mainly L 

16) 
and R) 

(:3. 9) 



We will demonstrate how the kinetic muangs a.re generated in the confining phase 
of SU(2)1_t x SU(2)1_t x SU(2)~c(= gtoc) and obtain the effective la.grangia.n for 

composite quarks, leptons, vV, Z and extra weak bosons. 1 
i) 

The particles contained a.re 1) "color" gauge bosons, (G1J~ of SU(2)~''' with the 

gauge coupling g, (GL)~ of SU(2)'£c with gL a.nd (GRµ)~ of SU(2)~c with gR' a.nd a 

"flavor" gauge boson, Bµ, of U(l)~c with 91
; 2) "color" SU(2)LR doublet fermions with 

the "flavor" suffix a(= 0,1,2,3) for the three colors ( o: = 1,2,3) and the lepton number 
(a= 0), c~L: (1. Y; 2, 1) a.nd c~R: (1, Y; 1, 2), for (SU(2)'£c, U(l)~c: SU(2)'£c, 
SU(2)~c), where m(= 1, 2) denotes the SU(2)'£'R - "color" a.nd Y (= B -L)= -1 for 

c0 ; = 1/:3 for c-·1 (A = 1, 2, 3),and; 3) three kinds of "color" sea.la.rs, 17;[} (L ,-(3l: 2, 

1), ib'Jt( (1, ,-(3 ); 1, 2) and~~: (2, O; 2, 1), where i(= 1,2) and a(= 1.2), respectively, 
denote the "flavor" and SU(2)'£c - "color". 

Let us demand that gloc be confined to generate composite particles and to form 

the following sca.la.r condensates: ( WL(R)/1I{(R)){n) = 8{) (( u{(R))~ tVL(R)J = 8;;,) 
((~t):;i~~.) = 8~ and (~~(~t)~) = 8;;,. Also defined a.re "color" - singlet composite 
fermions for qu<1rks (q) and leptons(£) and composite vector mesons, v~, L11 and R11 

for W. Z and extra weak bosons, according to: 

m m 

m rn 

f (L )j =[ti' ((iD ~t)tvt]i L µ, L µ Li' 

(2a. b) 

(2c.d) 

(2e,f) 

(2g) 

as well as f' A~ == g' B w Hereafter, quarks and leptons are denoted by 0)£ = CiL ( a=O): 

= q;J, (o: (=A) == 1.2,3). 

By noticing that gGµv = (wL~)tv1µJu>L0' gLGLµv = wlv2µ11 tvL and 9RGRµv = 

·wkv3µ
11

1vR for v 1111 = OµV 11 - 811 vµ - i[vµ, v11 ] etc., where 

v1µ = fv~ + f LLµ+ e(r(3l /2)A.~, 

v =JV + e(r(3l/'))A0 
2µ µ - µ' 

v3µ = JRRµ + e(r(3)/2)A~, 

( 3a) 

(3b) 

(:3c) 

j '\ 

we find. from the lagrangian for the gauge theory evaluated in the confining phase. 1:>, 

[,conj to be: 

[, = --1
-Tr( v vµ 11

) - -
1
-Tr( v vµ 11

) - -
1
-Tr( v v11 µ) 

conj 2g2 lµv 1 2g1 2µv 2 2gh · 3µv 3 

71 
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- 4:~2 A~vAOµv + ll. 2 T1·(f1,~)2 + AlTr(f1 L 1,f + A1Tr(JRR1,)2, 

+ 'f/,'ri'µ(ifJµ +JVµ+ eQemA~)~·L + '!f,·R~/(ifJµ + f RRµ 

+ eQemA~h!'R' (4) 

as long as the radial scalar excitations are neglected. The mass - dimensions, A and 
ll.L(R)' are associated with the scalars, ti.•1 and ((ti.1R), Note that the extra boson, 

L µ- does not couple to quarks and leptons. The coupling strengths, f, f L' f R and 
') ? ") ,.., ~) /') •) 

f'. satisfy l/f- = l/g· + l/gj,, JL = g, JR= gR and 1/f • = l/g., + l/g- + l/gj_ 

+ l/g1 for the canonical kinetic terms of l'~, Lµ, Rµ a.nd A~. For "color" singlet 
composites, the unbroken U(l)~~c symmetry is coincident with the U(l)~~ symmetry, 
The third - isospin is provided through the U ( 1 )~<?c charge of tu, which ensures Q em 

= (,,..(3 l + Y)/2.The kinetic mi.xings are now characterized by e/f (= \vl for A 0 and 

V, e/ fL(orR) (= \L(orR)) for A0 and L (or R) and f / f 1 (= ..\FL) for V and L. The 
kinetic mixings cause the following field - redefinition: 

v1±i = vJ±l + >.nr~±J, .c~J = j1 - >.hL~l, 

n~3) = j(l - >.;\! - >.;R)/(1- .A;F)R~3 ), n~±) = R\,±l. 

(5a) 

(5b.c) 

(.Sd. e) 

It is not difficult to show the equivalence of the interactions in the confining and 
Higgs phase as far as the scalar degrees freedom are frozen. The vector fields. Aw Vil' 
.Cµ and Rµ, defined in Eqs.(5a ,..., e), are also expressive in terms of fields with the 

orthogonal mixings in the Higgs phase, which reflect SU('2)1,t x SU('2)1,c - SU(2)~c 

with the gauge coupling gD = ggL/ Jg2 + gi (= gcos () L = gL sin() L), U(l)y x SU(2)~c 

-+ U(l)~c with g'_v = g1gR/Jg'2 + g1 (= g1 cos()R = gRsin()R) and SU(2)~c x U(l)~c 
-+ U(l)~~ withe= gDgf;/ Jgb + 9b (= gf;cos() = gDsin()): 

A =sin ()a(3
) +cos ()b V( 3) =cos ea(3l - sin ()b (6a, b) µ µ µ> µ ·µ µ> 

v(±) = sin() G(±) +cos 8 G(±) ,e(iJ = cos e G(i) - sine G(i) 
µ L Lµ L µ ' µ ' L Lµ L 11 ' 

n(3) = cos e G(3J - sin() B n(±l = ot±l (6c,...., f) µ R Rµ R µ> µ Rµ' 

where a(µ3
) = sin()LG(3) + cos()LG( 3 ) and bµ = sin() G( 3 ) + cos() B . Following these 

Lµ µ R Rµ R µ 
relations together with the identification of f = g D' f L = g and f R = g R leading to 



A
1
v = sinO, \L = sinOsinOL' \R = cosOsinOR and \,.L = sinOL, it is shown that the 

lagrangian evaluated in the Higgs phase is exactly same as the one in the confining 
phase, £~~nr The similar argument can be applied to models with an extra Z bosons 

based on gloc = SU(2)tc x U(I) 10c. l 9
) 

For the SU(2)tc x U(l)i'?c x SU(2)tc model, where the contribution from the 
right - handed bosons, Rµ, are neglected, we find that the low - energy phenomenology 
is controlled by 

[, ch = ') 0G j(-)j(+)µ 
eff -V.:, F Lµ . L ' 

C~ff = 4v'2Gp[(Jl3J - sin2 erm)2 + C'emrm rm], 

(la) 

(lb) 

where 4v'2GFmi = J2 for mv =/A and Gem= (mi/ml(/2/Jl)sin4 8. The weak 
boson masses, mW,Z' are fi..xed to be: mz = 91.09 GeV (as the central value of the 

averaged data) The constraints on sin2 e and Gem' respectively, come from v - induced 

reactions
20

) and the Bhabha- scattering with A:.> 7.1 TeV (for vector coupling), 21
) 

·which result in sin2 e = (0.22 ,..., 0.24) and Gem < 0.002. Computation of Cem shows 
that Gem < 0.002 is satisfied. Another constraints are based on the experimental results 

on pp- W' (or Z') +···followed by W' (Z') - ev (e+e-).
22

) These impose mw, ?'.' 

(290, 240, 200) GeV for sin28 = (0.22, 0.2225, 0.2235) and rnz, > (440, 330, 200) Ge\/ 

for sin2 e = (0.22, 0.225, 0.228) but no restriction for the case with sin2 e > 0.2235 (VV') -
and 0.228 (Z'). The prediction on pp~ W' (or 2 1

) + · · · - jj +··is so far consistent 

with the data. 2:1) The theoretical constraint elect.ates mwmw, = cos8m2 mz,· Under 
these constraints, we evaluate various quantities and show 

1) the dependence of the Z decay widths on mz, (= m 2 • in the Figures) for sin28 = 
0.22, 0.22.5 and 0.23: f(Z _,.all) (in Fig.I) and f(Z - e+e-) (in Fig.2) together 
with the standard model predictions at sin28 = 0.2313 (for m

1 
= 100 GeV), 

2) the coupling constant of h (= g* in the Figure) divided bye (in Fig.3) and the 
Z' decay width f(Z' __,.all) (in Fig.4) and · 

3) the cross section of <T(e+e- - µ+µ-) as functions of vs for rnz, = 250, 500, 

1000, 1500, 2000 and 3000 GeV at sin28 = 0.22.5 (in Fig.5). 

The expected deviations are to be detected by the precise determination of the Z 
properties. Furthermore, TeV - e+e- colliclers such as JLC. CLIC and so on will see the 
extra weak boson as heavy as 1 TeV or even heavier than the beam energy owing to the 
broader width of Z' of 0(100 GeV) as long as the extra boson acts as a "elementary'· 
particle. However, since the compositeness scale can be a.s low as the order of a;1/ 2 ~ 
300 Ge V, the electron itself will manifest the substructure perhaps through (unknown) 
form - factor effects around E = 0( 1 Te V), which even distort the behavior of e+ e
a.nnihilation via the photon and Z. 
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abstract 

DYNAMICS OF THE NAMBU-JONA-LASINIO TYPE 

FOR SUBQUARKS 

Keiichi Akama 

Department of Physics, Saitama Medical College 

Kawakado, Moroyama, Saitama, 350-04 

We present an improved version of the dynamical subquark model of the Nambu-Jona Lasinio 

type. The six-fermion interaction to form the composite quarks and leptons is incorporated. The 

four fermion interaction to form Higgs scalar is omitted. It allows us a parameter assignment which 

guarantees light quarks and leptons and heavy weak bosons. 

This talk is based on the recent work in collaboration with T. Hattori. 1
) Proliferations 

of the color triplets and weak iso-doublets seem to suggest a further fundamental layer of 

matter, the subquark (or preon). 2),
3

),
4

) In this picture, quarks q and leptons l are composite 

such that 

q"' we or whc, l ,._, wcl or whcl' (1) 

where w, h, c, and cl are the subquarks carrying the weak isospin, the generation quantum 

number, the color, and the leptonic color, respectively. The weak bosons wi, Higgs scalars 

¢>, and even photon Aµ and gluon G~ could also be composite. 
3

) 

(2) 

where I:_, indicates the summation over the subquark species s = ( w, h, c, cl), and Qs is the 

electric charge of the subquark s. About a decade ago, we proposed the dynamical subquark 

model
3

) of the Nambu-Jona-Lasinio type. 5
) Let us summarize the main features of the 
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model. The basic Lagrangian is given by 

[, = iw ~w + h(i fJ - mh)h + c(i f)- mc)c + cl(i ~ - mcJcl 

+ F, ( ~ i1,Y,, )' + F2 ( w1, r'wL)' + F3 (01,-''') 
2 

F I -G c - 12 + H - al w RwlL + a2 w L w2R 

(3) 

where ms (s = h, c, cl) denotes the mass of the subquark s, Fi (i = 1, 2, 3, H) denotes the 

coupling constant, and Ys denotes the weak hypercharge of the subquark s. The Fi (i = 
1, 2, 3) is finally taken as infinity to guarantee U(l)y ® SU(2) L ® SU(3)c gauge symmetry. 

Quantum effects due to the four fermion interactions in (3) give rise to the composite bosons 

Bµ, w;, G~, and¢>, which are interpreted as the gauge bosons of U(l)y@SU(2) L ®SU(3)c 

and the Higgs scalar. The derived effective Lagrangian is nothing but that of the standard 

model for subquarks. 

£eff = wil/)w + h(il/) - mh)h + c(il/) - mck+ c/iJ/J - mcJcl 

- ~ (Bµv)
2 

- ~ (w;v)
2 

- ~ (G~v) 2 + IDµ</>1 2 + µ 2 J¢1 2 
-- ,\1¢1 4 (4) 

+ G¢t (-a1 w~wfL + a2wLw2R) + h.c., 

where D µ are the covariant derivative, Vµv is the field strength of the vector boson Vµ, and 

µ, ..\, and G are coupling constants. The gauge, Higgs, and Yukawa coupling constants are 

written in terms of the compositeness scale A b' which serves as the momentum cutoff of the 
SU 

quantum loop integral. Eliminating A b from them leads to the following relations among 
>U 

the coupling constants and masses . 

. 2 I [ 2 2 2 2 2] 3 sm ()w = 1 4 Qw1 + Qw2 + 3Qc + Qcl + N9 Qh :S 
10 

g = ,/2,gs, 

(5a) 

(.Sb) 

(5c) 

( 5d) 

where Ow is the Weinberg angle, g and g, are the weak and the strong coupling constants, 

respectively, and .i'v!ef> and MW are the masses of the Higgs scalar and the W boson, respec

tively. In deriving (5a), we assumed that the compositeness scale A b dose not depend on 
SU 



the subquark species. If mw
1 

"' mw
1

, Eqs. (Sc) and (Sd) implie that mw ,...., 46GeV and 

Mt/>,...., 92GeV. 

This model, however, involves some unsatisfactory aspects. i) Since the effective theory 

is a gauge theory, the coupling constants are expected to vary with the energy scale according 

to the renormalization group equation below A b' and the relations (5a)-(Sd) hold at A b. 
m n 

If we use the measured values of sin2 Bw, g, and gs, the relation (Sa) indicates that 1\ub;:;; 

1010GeV, while the relation (Sb) indicates A b much larger than the Planck mass. ii) It 
SU 

is natural to take the chiral symmetry for the subquark w as the origin of the lightness 

of the quarks and leptons. Then, the w-subquark mass mw which is related to the W

boson mass MW by the relation (Sd) is too large. iii) The model includes no interactions to 

form composite quarks and leptons dynamically. They are also necessary to make definite 

arguments on the lightness of quarks and leptons. In this talk, we would like to present 

an improved version of the model in Ref. 3) without the above mentioned drawbacks. 

The basic Lagrangian is given by 

{, = w(i 9J - mw)w + h(i 9J - mh)h + c(i fJ - mc)c + cl(i fJ - mcJcl 

+ F1 ( ~:.o,Q,, )' + F2 ( wo,r;wL)' + F3 (c-,,,1;,)
2 

+ L FqP( w, h, c)P( w, h, c) + L FlP( w, h, cl)P( w, h, £), 
q l 

(6) 

where P( 1/;l' 1/;
2

, 1/;
3

) is a projection from the direct product of the three spin ors 1/;1 , 1/;2 , and 

1/;
3 

to a spin t state. We added to the basic Lagrangian (3) the six-fermion interactions to 

form the composite quarks and leptons. We discarded the F H-term which is to form Higgs 

scalar, and replace the hypercharge Ys in the F
1
-term by the electric charge Qs. The F

1 
and 

F
3 

are finally taken as infinity to guarantee U(I)em 0 SU(3)c gauge symmetry, while F'2 is 

taken as finite, since SU(2) symmetry is explicitly broken by Qw
1

,
2 

in the F
1 

term in (6). 

The Fq and Fl are taken as infinity to guarantee chiral symmetry. Again quantum effects 

due to the Lagrangian (3) give rise to the composite bosons A~, w;, G~, q, and £, which 

are interpreted as the photon (to be diagonalized), weak boson, gluon, quark, and lepton, 

respectively. In evaluating the quantum effects, we adopt the regularization scheme which 
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respects the U(l)em 0 SU(3)c gauge symmetry and the chiral symmetry for mw _,. 0. See 

Ref. 1) for the further details. The effective Lagrangian for composite particles is given by 

where 

D (J'.l • Q A' i iwi i >.aaa) µq= uµ+ie q µ+29·hr µ+29$ µ q, 

D/ = (8µ + ieQtA~ + ~9/LriW~)l, 

A~v = OµA~ - 011A~, 
i i i ijk i k Wµv = 8µWv -811Wµ -9E WµW11 , 

G~v = 8µG~ - avG~ - 9Jabcata~. 

The coupling constants and the masses are given as follows. 

e = 1/2 (Q~I + Q~l) Iw + 3QUc + Q~/c, + NgQFh' 

9 = 1/ VJ:, 9$ = 1/ v'2Tc, 
mq = mwKq/ Jq, mt = mwK/ Jt, 

M'tv = 3m~ - 1/SF/w, 

(7) 

(8a) 

(Sb) 

(Sc) 

(8d) 

(Se) 

(9a) 

(9b) 

(9c) 

(9d) 

where J3 (s = w, h, c, ct) is the logarithmically divergent integral of the loop diagram with 

internal s-subquark line, and Jq, Kq, Jl, and Kt are the quartically divergent two-loop 

integrals which are precisely defined in Ref. 1). The Lagrangian (6) is that for the current 

mixing scheme of Hung and Sakurai. 
6

) It is well known that this scheme is equivalent to 

the standard model except for the part concerned with the Higgs scalar, which has not yet 

been established phenomenologically. Thus, the present model can be an alternative to that 

in Ref. 3). 



The divergent integrals depend on the momentum cutoff at A b and the number of 
SU 

subcolor. Unlike in Ref. 3), we assume that the cutoff and the number of subcolor depend 

on the species of the subquarks. Then, the relations (Sa) and (Sb) do not hold any longer, 

but only the following sum rule is left. 

( 10) 

where gt = 1/2-./Icl and gh = 1/ ~- If we incorporate the hypothetical particles 

at ~ C/'fµCl (leptonic gluon) and H; ~ h>.a1µh (horizontal gauge boson), 9t and gh 

respectively become the coupling constants of their interactions. Unlike in the model in 

Ref. 3), the relation (Sb) dose not lead to contradictory restriction on A b' On the other 
SU 

hand, the relation (Sd) is replaced by (9c) and (9d), which allows the option with small 

mw "' O(mq), O(ml) and large Afw, since F2 is finite. Thus, we have shown that the 

present model overcomes the above mentioned drawbacks of the model in Ref. 3). 
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Baryon Physics based on the Nambu-Jona-Lasinio Model 
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Department of Physics, Faculty of Science, 
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The mean-field treatment of the Nambu-Jona-Lasinio lagrangian is shown to provide us 

with a powerful means to study the structure of baryons. It enables us to calculate various nucleon 

observables in a nonperturbative way, with full inclusion of the sea-quark effects. 

Witten 's identification 1) of Skyrme solitons with QCD baryons has been widely accepted by 

now, but we are still far from complete understanding of the underlying dynamics of the Skyrme 

model 2). The theoretical interpretation 3) of the recent EMC experiment 4) strongly suggests 

that the Skyrme solitons are very remote from the naive quark bound-state picture. What picture 

do we obtain then, if it is at all possible to translate the principle physical content of the Skyrme 

model into a quark language. 

The celebrated Nambu-Jona-Lasinio (NJL) model 5) has recently re-emerged as a means 

of establishing a link between quark models and chiral soliton models such as the Skyrme model. 

A key ingredient is the introduction of the composite fields carrying meson quantum numbers. 

The implied quark-meson coupling generates the Hartree type mean field for quarks to form a 

soliton-like bound state. The non-trivial topology of this Hartree potential makes the above soli-

ton solution much resembling to the Skyrmion, although it simultaneously holds the chracteristic 

of the standard nonrelativistic quark model. The study of the NJL solitons will therefore provide 

us with valuable informations for reaching deeper understanding of the Skyrme like topological 

soliton models. The present note is only a brief introduction of such studies. 
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We start with the chiral symmetric NJL lagrangian 5), 

(1) 

or its equivalent, given as 

2 

£~JL = ¢ [ i-yl'oµ - g (a-+ i '"'/T. ?r) j \fi - ia (o-2 + ?r2). (2) 

The effective meson action obtained from this lagrangian is 

2 

Se11[0-, ?r J == - i Ne log det [ i··toµ - g(o- + i ·-/ r · ?r)] - ~G j d4 x ( a-2 + ?r
2
), (3) 

where Ne is the number of colors of quarks. In the following, we simply assume that the self-

consistent classical solution of the above effective action exists and it satisfies the nonlinear 

constraint o- 2 + ?r2 == J;. In this case, it is convenient to express the linear combination of a- and 

?r in terms of one unitary matrix U as follows: 

. 1+75 1-y s 
g (a- + q 5 r . 1r) = M ( -- u + -- ut) = Mu.., . 

2 2 
(4) 

Eq.(3) then reduces to a simple form: 

(5) 

which is nothing but the effective action investigated by Diakonov et al. 6) (Here M = g f", 

and Sp 6 = J d4 x tr-r tr1(x IO Ix).) This expression is formally complete, but of little practical 

use. In order to obtain actual numerical values for any quantities of physical interest, we must 

usually resort to some approximation such as the derivative expansion. We can go beyond such a 

perttirbative treatment, by directly evaluating the trace sum of eq.(5) with use of the eigenstates 

of a time-independent hamiltonian (specified below) as a complete set. This becomes feasible, if 

we assume a simple time dependence for the unitary matrix U as 

U(x, t) = A.(t) U0 (x) At(t). (6) 



84 

Here U0 (x) stands for the static meson configuration, which is assumed to take the hedgehog 

form U0 (x) = exp(iT·fF(r)) with F(r) = ;re-rfR, and A(t) is a time dependent SU(2) matrix. 

This just corresponds to the assumption of collective iso-rotation in the Skyrme model 2). Now, 

using eq.(6), we can rewrite the operator D = i 1µ8µ - MU75 as follows: 

D = A(t) 'Yo (i 8t - H + fl)At(t). (7) 

Here H is the time-independent hamiltonian given as 

H= a·.\l +M,B(cosF(r)+i15 T·fsinF(r)), (8) 
i 

and n is the collective angular velocity operator defined by 

(9) 

• d 
where A = dlA. Under the above assumption, the effective action can be written as 

Seff[U] = - i Ne Sp log [ i 81 - H] 

i Ne {Sp log [ i 81 - H +fl] - Sp log [ i 81 - H]}. (10) 

Here we have intentionally divided the total action into two parts: the first part has a trivial 

time dependence and can be related to the static energy of the soliton system 6), while the 

second part, which depends on n. describes the collective iso-rotational energy. In reference to 

the Skyrme model 2), we assume that the r~tational velocity is relatively slow, and the expansion 

in powers of n converges sufficiently fast. The first non-vanishing correction to the static energy 

comes from the second order term in n. After some algebra, we arrive at the following expression 

for the energy of the quantized soliton with the definite angular momentum J(= T): 

J(J + 1) 
E = E,1atic + 

21 
. (11) 

Here use has been made of the quantization rule fla _,, ]a/ I ( Ja is the angular momentum 

operator). 



The discussion above pays little attention to the special role of the valence level (it is 

the lowest energy eigenstates of the hamiltonian H, which emerges from the positive energy 

continuum). When the energy of this valence level lies between 0 and M, its contribution must 

be separately taken into account 6). Furthermore, the momentum cutoff A must be introduced 

in order to regularize the ultraviolet divergence. This cutoff is determined so as to reproduce 

the pion kinetic term in the effective meson lagrangian obtained from eq.(5). Adopting the 

proper-time regularization, this requires to set 

(12) 

After taking all these into account, we are led to the following formula for the moment of inertia: 

I = Io + I,,.p., (13) 

where 

Io = Ne L < 0 I r3 j m > < m j r3 I 0 > 
(14) 

2 m;tO Em-Eo 

Iv.p. 
Ne 

L: < n I r3 Im > < m I r3 In > f(Em, En; A), (15) = -
8 m,n 

with 

= 
sign(Em)erfc(IEml/ A) - sign(En)erfc(IEnl/A) 

2 e-E'!,./A2 - e-E'f,/A2 
- -r=-. A. __ E_2 ___ E_2 __ 

V" m n 

(16) 

Here Im > denotes the eigenstates of the static hamiltonian H with the eigen-energy Em. In 

particular, I 0 > represents the valence state with the the eigen-energy E0 . To make all the above 

sums tractable, we introduce the plane-wave basis a la Kahana and Ripka 7). The momenta of 

this plane-wave basis are discretized by imposing an appropriate boundary condition at r = D 

chosen to be sufficiently larger than the soliton size R. The basis is made finite by introducing 

only those states with the momentum k as k < kma.x· The eigenvalue problem is solved by 
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Table 1: The soliton size dependence of I. 

R(fm) lo fv.p. !(total) 
= 

0.4 0.0096 0.0003 0.0099 

0.6 0.0043 0.0015 0.0058 

0.8 0.0032 0.0039 0.0071 

1.0 0.0026 0.0079 0.0105 

1.2 0.0159 0.0159 

diagonalizing the hamiltonian H in the above basis. All the results were checked to remain 

unchanged with increasing D and kma.:i:· 

Since we do not have enough space, here we show in table.I only the final numerical 

result for I, which was caluculated with eqs.(13) ,...., (16), by assuming a simple parametrization 

F(r) = 7re-r/R for the soliton profile. We try several choices for R to examine the soliton size 

dependence of the resultant moment of inertia. One sees that the vacuum quark contribution 

lv.p. is a rapidly increasing function of R. This feature is quite reasonable, since larger soliton 

size in our model means stronger chiral background potential, and consequently stronger vacuum 

polarization. The total moment of inertia I.seems to have a minimum around R ~ 0.6f m. (We 

recall that the static soliton energy evaluated with the same soliton profile has a minimum around 

the same radius R ~ 0.6fm 8).) The value of the moment of inertia at this soliton radius is 

about 0.0058M e v-1
. It is fairly close to the value 0.005M e v-1• which is extracted from the 

observed N - 6. mass difference with use of the formula MA - MN= fl. 

Summarizing our arguments, a semi-classical quantization procedure was carried out, by 

starting from a schematic form of the mean-field solution of the Nambu-Jona-Lasinio lagrangian. 

A fundamental quantity appearing in this quantization scheme is the moment of inertia of the 



soliton system. We have calculated this quantity without recoursing to the derivative expansion. 

by performing double sum over all the positive and negative energy quark orbitals in a mean 

potential. A similar analysis can be readily extended to other nucleon observables such as the 

magnetic moments and the spin expectation value etc. 9·10 ). It is hoped that such a study 

will throw more light on the approximate nature of the fermi-bose correspondence in the 3 + 1 

dimensional field theoretical models and thereby provide us with valuable information about the 

utility and the limitation of the Skyrme like topological soliton models. 
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Calculating f 'lf * 

TAICHIRO KUGO 

Department of Physics, Kyoto University 

Kyoto 606, JAPAN 

ABSTRACT 

A review of the bilocal auxiliary field method is given in the first to emphasize 

that it gives a systematic approximation scheme consistent with chiral symme

try and reveals an interesting interplay between Schwinger-Dyson equation and 

Bethe-Salpeter equation. Then applying the method, we examine physical quan

tities accompanying dynamical chiral symmetry breaking in QCD-like theories. 

In particular expression for the decay constant fir is given exactly to the lad

der approximation by solving the BS equation. Some results- of our numerical 

calculations for fir, ( {np) and :E(p2) are also reported. 

1. Introduction 

The spontaneous breakings of chiral symmetries play important roles in var

ious places in particle physics. Namely, the best-known example is QCD theory 

of strong interaction, in which pion is identified as Nambu-Goldstone boson cor

responding to the spontaneous breaking of an approximate SU(2) x SU(2) chiral 

symmetry. In the standard electroweak theory of Weinberg-Salam also, some chi

ral symmetry has to be spontaneously broken, which we may suppose is caused 

dynamically by a certain strong interaction, e.g., technicolor, 4-fermi interaction 

and so on. Even in QED in its strong coupling phase, it is known, at least in 

* This talk is based on the work in collaboration with K-I. Aoki, M. Bando and H. Nakatani. 



the quenched ladder approximation of Scwinger-Dyson equation, that such a dy

namical spontaneous breaking takes place. In any case, it is much desirable to 

understand the dynamical properties concerning spontaneous chiral symmetry 

breaking more. 

The calculable physical quantities relevant here are i) self-energy function 

:E(x) offermion, ii) /'Ir and iii) the vacuum expectation value (VEV) (-ef;1/;). Here 

/'Ir and (-ef;1/;) are directly related to the measurable quantities; indeed /'Ir is the 

decay constant of NG boson if the chiral symmetry is global, or gives the mass 

of gauge boson if it is local, and ( '¢1/;) is related to the mass of NG boson for the 

case of approximate chiral symmetry. On the contrary, :E(x) is not so, although 

its nonvanishingness equally signals the spontaneous breaking. 

I will report in this talk on our recent work of calculating f 7r and (-ef;1/;) 
performed in collaboration with Aoki, Bando and Nakatani~l] The self-energy 

function :E(x) has long been calculated by many authors in the quenched ladder 

approximation in strong coupling QED, and also in QCD in a similar approx

imation. The decay constant /11:, however, has only been calculated by using 

a further "approximation", namely Pagels-Stoker's formula~2] up to now. The 

Pagel-Stoker formula, which was derived in the so-called dynamical perturbation 

theory, is indeed a convenient formula since it gives /'Ir in terms of the knowledge 

of :E( x) alone. But the nature of this approximation is not necessarily so clear. 

So we here calculate f 'Ir exactly in the ladder approximation with no additional 

assumptions. 

2. General framework - Auxiliary field method 

It is best seen in the auxiliary bilocal field method that f 7r and :E( x) can be 

calculated to any common order of approximation, and consistently with the 

chiral symmetry. We therefore review the auxiliary bilocal field method first. 
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2.1 LOCAL AUXILIARY FIELD 

The history of auxiliary field method itself is very old. It was first introduced 

by Stratovich and Hubbard [3l in '50s in statistical physics, and was applied in 

particle physics by Coleman-Jackiw-Politzer and Gross-Neveu [
4
l in '70s. These 

authors' method is local field one. So let us see first how it works in the simplest 

case of local 4-fermi interaction: 

(2.1) 

where 'I/; is an N-plet of Dirac fields ( '1/;1, '1/;2, · · · , 'I/; N )T. The generating functional 

of Green's functions is given in the path-integral expression by 

Z[7J, ij] = J 1J'l/;1J-ef; exp i J dx(C + ij'lj; + -ef;7]). (2.2) 

We now introduce an auxiliary local field x(x), 

1 = j Vxexpi j dx[-~x2] 

J J N -\-, = Vxexpi dx[- 2,\ (x + N'l/;'lj;)-] 
(2.3) 

and multiply Z[7J, ij] by this expression of l. Then we get 

Z[7J, ij] = j 1J'l/;1J-ef;1Jx exp i j dx[t,b( i/j - m - x)'I/; - ~ x 2 + ij'I/; + ~;7J] (2.4) 

= j VxexpiN [- 2~ x2 
- iTrLn(i9- m - x) - k(i<l- m - x)-1 ~] 

(2.5) 

Note that from (2.4) or (2.:3) the equation of motion of x gives 

(2.6) 

and hence the auxiliary field x is essentially a replacement of the composite 

operator t,b'I/;, Now the exponent of the integrand in the final expression (2.5) 



gives a quantum action for X· Since N is factored out as an overall multiplicative 

factor, the 1/N expansion (regarding TJ/"11 as of order 1) becomes identical with 

the "loop" expansion based on this effective action. [This is just like the ordinary 

loop expansion =Ii expansion for which 1/1i is an overall multiplicative factor.] 

The effective action to the leading order in 1/ N is, for the case of vanishing 

fermion source, 

"t " 1 2 S ree =-
2
,\x -iTrLn(i~-m-x), (2.7) 

which yields the following effective potential by setting x x-independent: 

"tree" 1 2 ·/ d
4
k (l1 ) V = 2). X + i ( 2,,.)4 tr ln ,,, - m - x . (2.8) 

The stationary condition of this determines the VEV Xe= (x(x)) =--fr ({;1/;): 

av"tree" I d4k 1 ---ax-lx=xc = O --+ ~e = i (27r) 4 tr¥ - m - Xe. (2.9) 

This is nothing but the gap equation or N ambu-Jona-Lasinion's self- consistency 

equation (for chral symmetry case m = 0). The higher order terms of the effective 

action (or potential) can be calculated using the quantum action in (2.5) which 

reads diagramatically 

+ , 

, •o:/ ~ I 
. I 

.0 . I ••• ! I 

.Ltr.t ::: ;- + •.• + !_ 
I I < I 

\ 
' ' ~ ' '7 .., (2.10) 

where now the fermion line stands for the propagator i(¥ - m - Xe)- 1 with new 

mass m +Xe determined by (2.9). Thus, using the "dressed" x-propagator 
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• 
(, .............. -

-± + ··0·-
the higher order terms are given by 

J_ (2-kp): 
N2. 

and so on. 

.. -..... , ... 
' . ' , 
'~-""' ' 

This auxiliary field method has various merits: 

> (2.11) 

(2.12) 

i) It specifies a systematic way of summing Feynman diagrams, with which 

the ultraviolet behavior becomes often better. 

ii) It gives a Lagrangian (action) formalism of bound state(s) X· Since we have 

the action S[x] or the potential V(x), we can discuss the vacuum energy 

and the stability of solutions of {)V /ox = 0. 

iii) Global symmetries (e.g., chiral symmetry) are kept manifest in the action 

S[x]. 

2.2 BILOCAL AUXILIARY FIELD 

This auxiliary field technique can be extended to the case of Yukawa type 

interaction by introducing bilocal field x(x, y), as was first done by Kleinert and 

Shrauner.[s] It is in this formulation that the Schwinger-Dyson equation and the 

Bethe-Salpeter equation come into an intriguing interplay concerning; the vacuum 

stability, as was pointed out first by the present author.[6
] 



Let us consider the system of QED: 

-( . fl 4) 1 2 1 ( 2 ,C ='I/; iv+ e 'I/; - -F - - 8A) 4 µv 2a ' (2.13) 

which yields, after integrating out the photon field Aµ 

(2.14) 

that is, effectively, a non-local 4-fermi interaction system. 

We now introduce a bilocal auxiliary field x(x, y) and add the following Gaus

sian term to (2.14) so as to cancel the non-local 4-fermi interaction: 

-
2
: 2 [x( x1Y1 )·-K( x1Y1; x~yi)7,&(x~h6(yi)] 

x K- 1(x1y1; x2y2)[x(x2y2) - K(x2Y2i x~y~)'l/;(x~)~(y~)] (2.15) 

1 - l -= -
2

e2 (x - I<'l/;'l/;)K- (x - K'l/;'I/;). 

Note here that the auxiliary field x(x, y) is a bilocal and bispinor field representing 

the composite operator 

(2.16) 

By just the same procedure as before, the generating functional Z of Green's 

functions is now given by 

Z[17, ij] = j 1>'1/;1>~1>x expi j dx[~(i{j - x)'I/; -
2
: 2 tr(xK-1 x) + ij'I/; + ~11] 

= j Vxexpi[- 2~2 tr(xK-1x) -iTrLn(i~ - x) -ij(i{j- x)- 117] 

(2.17) 
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Thus, to the "leading order", we get the effective action: 

5"tree"[x] = --
2
\ tr(xK- 1x) - iTrLn(iq- x). 
e 

(2.18) 

We henceforth work with this action persistently, and wil see the following:[
6

] 

i) The stationary condition 8-V"tree" / 8xlx=xc = 0 is just identical with the 

Schwinger-Dyson (SD) equation for self-energy function E(p2
) = Xe(P 2) of 

the fermion 'i/; in the ladder approximation. Thus E(p2) is interpreted as a 

condensation of bilocal field, E = (x) = K ( 'i/J{;). 

ii) Expanding 5"tree" [x] around each possible solution (x) = Xe, the condition 

of diagonalizing the quadratic parts in x = x - Xe reproduces the ladder 

Beth-Salpeter (BS) equation [with improved fermion propagator i(i~-x)- 1 ] 

for {;?jJ bound states. Therefore the instability of the vacuum corresponding 

to the solution E = Xe of SD equation is signaled by the appearance of 

tachyonic eigenmodes in the corresponding BS equation. 

Note also that the chiral symmetry is maintained manifest in 5"tree" [x] (or 

in any higher order approximation in this formalism) and hence that if (x) = 
Xe -:/:- 0 solution exists in SD equation, then the NG bound state appears in the 

corresponding BS equation automatically in this approximation.* Now let us 

see the points i) and ii) in turn explicitly. 

First let us switch to the momentum space: 

Jd4qd4 p . x + y . 
x(x, y) = (27r)8 exp{-zq-2- - zp(x - y)} x(p; q), 

J d4qd4p1 d4p2 ' 
K( X1Y1; X2Y2) = (27r) 12 Aq(P1; P2) 

{ 
X1 -l- 'I/? X? + Y2 } 

x exp -iq( ~ · • - · 
2 

) - ip1(x1 - Y1) - ip2(x2 - Y2) 

(2.19) 

where p's stand for relative momenta while q for CM momenta. The VEV of 

* This fact itself was known to Maskawa l
7
l independently without the use of auxiliary field 

method. 



x(x, y) must be independent of CM coordinate (x + y)/2 from translation invari

ance and hence takes the form 

(x(p; q)) = E(p). (27r)454(q). 

The effective potential is given from the action (2.18) as 

v"tree"[:s] == -s"tree" [x(p; q) = :S(p). (27r)4o4(q)J I j d4(x; y) 

== 
2
\ 1 tr[E(p)K;;0 (p;k):S(k)]+iltrln(p-:S(p)), 
e p,k P 

(2.20) 

(2.21) 

with abbreviations JP:= f d4p/(2?r) 4 etc. Stationary condition ov"tree"/o:S(p) = 

0 gives 

:S(p) = ie
21 Kq=o(p; k) ~ _ ~(k), (2.22) 

or diagramatically, 

(2.23) 

This is nothing but the SD equation for the fermion self-energy E as announced 

above! Thus the self-energy E is interpreted as a vacuum condensation of the 

bilocal field X· 

Next we look for the eigenmodes of x on the vacuum realizing the VEV 

(x) = :S. Performing a field shift 

x(p; q) --+ x(p; q) + E(p) · (27r) 484 (q) (2.24) 

in s"tree"[x], we pick up the quadratic parts in x (omitting tilde of x): 

S~~~eJ;atic[xJ = { { - 2\ 1 tr[x(p; -q)K~ 1 (p; k)x(k; q)] 
}q e p,k 

i 1 q q } - 2 P tr[x(p; -q)Sp(p + 2)x(p; q)Sp(p - 2)] 
(2.25) 
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where Sp is the fermion propagator on this vacuum: 

Sp(p) = i(p - E(p))-1 . (2.26) 

For each fixed value of CM momentum q, the quadratic form of X in (2.25) can 

be diagonalized by solving the following eigenvalue equation: 

-i 1 Kq(p; k)Sp(k + ~)</>11 (k; q)Sp{k - ~) = e;;2(q 2)</>n(p; q), (2.27) 

or diagramatically, 

(2.28) 

This is just the BS equation as announced above, although it is a bit more 

improved than the usual ladder BS equation since the fermion line here is not 

the bare one i/p but Sp in (2.26) with non-trivial self-energy function E(p). 

Owing to the orthonormalization condition 

-ii tr[<fan(p; -q)Sp(p + ~)<fam(p; q)Sp(p - ~)] = 8n,m, (2.29) 

the quadratic parts (2.25) of aciton now becomes diagonal: 

"tree" en q - e 1 1 2 ( 2) 2 

Squadratic[X] = q -2 ~ Xn(-q) e2 Xn(q), (2.30) 

x(p; q) = L Xn( q)<fan(p; q). (2.31) 

From this, the 2-point function of the bilocal field x, for instance, is seen to be 

(T ( . _ ) (k· )) = '"°"'. 2<fan(p;-q)<fan(k; q) 
X p, q X 'q ~ ie 2 ( 2) 2 n en q - e 

(2.32) 

which has poles at masses q2 = m; determined by e?i ( m?i) = e2 . 



The auxiliary bilocal field method was extensively studied by Morozumi and 

So(s] for QED case. Another method treating composite operators was also 

developed by Comwall-Jackiw-Tomboulis~9) with which the stability problem was 

discussed by Fukuda.[lO] Comparison of these two methods is done by Haymaker 

and Matsuki.(1l] Related subjects were studied probably by many other authors 

to whom I apology for not citing them all. 

3. Schwinger-Dyson equation for QED and QCD 

The Schwinger-Dyson equation (2.23) in Landau gauge (a = 0) for QED 

( with vertex e'yµ) and QCD (with vertex 91µTa) is given, after making Wick 

rotation and performing the angle integration, as 

}:(x) = ..\(x) r yE(y)dy + 1A2 ..\(y)E(y)dy 
4x Jo y + E2(y) x 4(y + E2(y)) ' 

(3.1) 

where x =Pk (Euclidean). Now E(x) is not a bispinor but a scalar function in 

this gauge. In QED case the coupling ..\ is a constant ..\ = 3e2 / 47r2, but in QCD 

case we are adopting a slightly better approximation than the mere quenched 

ladder approximation and using the following running coupling constant ..\( x ): 

3 
..\(x) =: 

4
7r2 C2(F)g2(x) (3.2) 

a 

This is an approximation devised by Higashijima [lZ] so as to make the high energy 

behavior of the solution E(x) to (3.1) consistent with the leading renormalization 

group analysis (as we will see shortly). typ is an infrared cutoff above which ..\(x) 

runs according to the leading logarithmic renormalization group but below which 

..\( x) is kept constant to avoid the divergent pole. 

97 



98 

Let us define a parameter B in terms of A and Ao in (3.3): 

A /30 
B = Ao = 12C2(F) ' 

(3.4) 

where /30 is the lowest order coefficient of the /3-function ofrenormaiization group 

equation. B is a renormalization-point independent parameter characterizing the 

theory. For example, SU(3) color QCD with 3 flavors of quarks has B = 9/16. 

With this parameter B we can deal with various QCD-like theories in a unified 

way, even including the fixed coupling theories (like QED in this approximation) 

as a limit B = 0. Originally theory is uniquely characterized by the parameter 

B. But we here treat the infrared cutoff irp also as an additional free parameter, 

which is a price we must pay for lacking of our knowledge in strong coupling (or 

confinement) regime. 

The integral equation (3.1) is equivalent to the following differential equation 

with appropriate boundary conditions: 

[ 
L:1(x) ]' = xL:(x) 

(A(x)/4x) 1 x + I;Z(x) 
(3.5) 

from which the asymptotic behavior of the solution is easily found as 

1 ( ) ~-1 E( x -+ oo) ,...,, - In _:;, 
4 

, 
x µ-

(3.6) 

This is quite consistent with the operator product expansion result: 

(3.7) 

For the detailed numerical analysis of eq. ( 3.1), we refer the reader to Ref.[13]. 



4. Bethe-Salpeter equation and f'lf' 

The Bethe-Salpeter equation (2.28) has a massless solution e6( q2 = 0) = e2 

automatically whenever E i= 0 because of chiral symmetry. Let us consider the 

BS amplitude x = (OIT'1f!~!Ps) for JPc = o-+ massless state Ps (call pion) in 

the QCD-like theories. The bispinor x is expanded into the following invariant 

amplitudes: 

x(p + q/2, p - q/2) =1sS(p, q) + /µls(P(p, q)(p · q)pµ + Q(p, q)qµ) 

+ <rµv/sT(p, q)(qµpv - pµq") . 
(4.1) 

We also define the same from expansion for the amputated BS amplitude x: 

x(p, q) = (f; - E(p2 ))x(p, q)(i - E(q2
)) , 

x(P + q/2, p - q/2) =1sS(p, q) + /µ!s(P(p, q)(p · q)pµ + Q(p, q)qµ) 

+ <rµv/{T(p, q)(qµpv - pµq") . 

(4.2) 

(4.3) 

[The eigen-functions denoted by </>n in Sect.2 correspond to this amputated BS 

x.] From the properties under charge conjugation and parity, all the invariant 

amplitudes S, P, ... , Q, T defined above are even functions in (p · q). So we write 

S(p, q) = S(p2
) + O((p · q) 2

), etc, ( 4.4) 

since q2 = 0 now. We will need only the first terms S(p2
), P(p2

), .•. , to calculate 

f'lf'· 

The decay constant f 1" is defined as usual by 

(4.5) 

where 7ra is renormalized pion asymptotic field. Sandwiching this by (OI and IPs), 
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we have 

J d4p 
f1fqµ = - i(27r) 4 tr [Jµ/sX(P + q/2, p - q/2)] (4.6) 

which by substituting ( 4.1) immediately leads to 

N [ 00 xdx 
f1f = 2 lo l67r2(4Q(x) - xP(x)) ' (4.7) 

Here x = pfu(Euclid) and the factor N is the N of color group SU(N). 

In the above, the normalization of the BS amplitude X = (OITifa~IPs) was 

fixed by (Ps(p)IPs(q)) = (27r)32p053(p- q). With this normalization, the Ward

Takahashi identity 

-qJ.lfsµ(P - q/2, p + q/2) = Si 1(p - q/2hs + 1sS"i-1(p + q/2) , (4.8) 

gives in the limit q -+ 0 

firS(x) = 2E(x) (4.9) 

So it is now more convenient to rescale the BS amplitude x as well as x by 

multiplying a factor fir/2 so as to take simply S(x) = E(x). Performing this 

"renormalization", we finally obtain an exact formula for f 1f: 

1 2 N f':.o xdx 
2f1f = 2 lo 1671"2 (4Q(x)- xP(x)) , ( 4.10) 

Although the formula ( 4.10) is exact, we need an approximation to obtain the 

amplitudes Q(x) and P(x). We calculate Q(x) and P(x) using the BS-equation 

(2.28) for the amputated amplitude </Jp5 = x, which is exact only to the ladder 

approximation. We expand it in powers of (p · q), and have to solve it only up 

to the first order in (p · q) since Q( x) and P( x) are first order terms in ( 4.1). To 



the zeroth order in (p · q), it gives after the angle integration is done 

[ 
x A

2 

] 
S(x) = ~ >.(x) 1 dy~S(y) + 1 dy,\(y)S(y) . ( 4.11) 

On the other hand, the invariant amplitudes of BS amplitue x and the amputated 

one x are related via ( 4.2) as 

1 ' 
S(y)=y+E2(y)S(y) (4.12) 

Q(y) = (y + ~2 (y)) 2 [(E2(y) - y)Q(y) + E(y)S(y) + 4yE(y)T(y)] (4.13) 

P(y) = (y + ~2 (y)) 2 [-2Q(y) + (y + E2(y))P(y) + 2E'(y)S(y) + 4E(y)T(y)] 

( 4.14) 

Thus we see that the BS equation (4.11) with (4.12) substituted becomes of 

exactly the same form as the previous SD equation (3.1) and hence that S(x) = 

E(x), as told by WT identity (4.8), actually gives the soluiton to the BS equation 

(4.11) for the massless NG bound state. 

To the first order in (p · q) next, the BS equation gives the following coupled 

equation: 
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( ~(x)) = -,\ (J; dyY(;:tu) + J: 2 

dy~ 
P(x) J; dy 2Y(~-x) 

(Yd -y
2

(3x+y) + rA
2 

d 5x-9y) ( Q( ) ) 
Jo Y 12x2 Jx Y 12 Y 

rx d y2(3x-2y) + JA2 d l P( ) 
Jo Y 6x3 x Y 6 Y 

(4.15) 

where we udnerstand the coupling "constant" ,\ to represent >.( x) in the inte

gration region JC: dy and ,\(y) in fxA
2 

dy, respectively. It is also seen easily that 

T(x) = 0 follows from the structure of BS equation. Using (4.13) and (4.14) as 

well as S(x) = E(x), the equation (4.15) is now an inhomogeneous linear integral 

equation for Q( x) and P( x) of the form 

(l+ K[A, E]) ( ~) = C[A, E] , (4.16) 

where the kernel I< and the inhomogeneous term C are local functionals of E( x). 
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Thus, given a I:( x), we have a unique solution for Q( x) and P( x), and then we 

can obtain !11: using the formula (4.10) with (4.13) and (4.14). 

If we set >. = 0 but keeping E(x) unchanged, the solution to eq.(4.15) is 

trivial: 

Q(x) = 0 , P(x) = 0 ( 4.17) 

Then the formula (4.10) with (4.13) and (4.14) gives the following f11:: 

! 2 = !!_ f'X) xdx E(x)(E(x) - xE'(x)/2) . 
7r 47r2 lo (x + E2(x))2 

(4.18) 

This formula is nothing but the Pagel-Stoker approximation ~2 ] Thus we see that 

the approximation is applicable in the case of weak coupling >. (but strong enough 

to produce non-zero E( x)). As we will see later, due to the asymptotic freedom 

in QCD-like theories, the Pagel-Stoker formula gives rather good estimate for f11:· 

Before going to the numerical analysis of (4.15), we here discuss the VEV 

( {n/;) a little. First note that 

is a renormalization-point (µ) independent quantity, if m(µ) is the running mass 

and ( ( {n/;) µ) is the composite operator renormalized at µ. Then we can identify 

the quantity 

= _1_ t, dx xE(x) 
l67r2 lo x + E2(x) ' 

(4.19) 

with the VEV ( ( ,,/;1/;) A) of the renormalized operator at µ = A. This identification 

is indeed consistent since E( x) obtained by Higashijima approximation has the 



asymptotic behavior as predicted by OPE. Using the leading renormalization 

group formula form(µ), we find 

1 2 - [,\(A)] 4JJ 1 {A xE(x) 
((1/n/;)µ) = ,\(µ) . l67r2 Jo dx x + E2(x)" (4.20) 

The BS equaiton ( 4.15) can be solved numerically by discretization. Taking 

150 points for Q(x) and P(x) each, the integral equation (4.15) becomes a 300-

dimensional coupled linear equation. 

We show some results of our numerical calculations. The ultraviolet cutoff is 

set to be 

(4.21) 

where AqcD is the point at which the leading logarithmic running coupling con

stant diverges. [We set A for B = 0 case to be ln(A2 /E2(0)) = 30 .] 

A schematic view of the Bethe-Salpeter kernel is in Fig. 1, where we show 

two cases of B = 9/16 (three triplets QCD) and B = 0 (non-running coupling 

constant). The corresponding E( x ), solutions Q( x), F( x) and the integrands for 

fir and for N7/J), are shown in Fig. 2a and 2b. As for the integrand for fir, we 

plot both our ladder exact integrand and the Pagels-Stoker integrand. Both are 

strongly peaked at near the peak of IE' ( x) I· 

Changing the infrared cutoff trp, we get Fig. 3a, where we take the case of 

B = 9 /16 (three triplets QCD ). Fig. 3b is its zoom-up. Lower trp drives the 

infrared coupling constant larger. In any case, we set a renomalization condition, 

fir (ladder exact) = 94MeV, which is shown as a thick line of every plots. The 

reason of taking a specific value of 94MeV is simply for us to easily catch relative 

scales of various parameters. One sees the following results of our ladder exact 

calculation. 

1. The Pagels-Stoker approximation is rather good. We understand that it is 

due to the asymptotic freedom of the theory, that is, after the most essential 
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part of dynamics is taken as a solution of the Schwinger-Dyson equation 

'E( x ), the rest is controlled by the rather 'weak' coupling >., as is seen in 

eq. (4.16). 

2. The renormalization of ( {;7j;) works excellently. We get an almost stable 

value of the renormalized ( ( {;'lj; hcev) = ( {;'lj; )R, stable against change of 

the infrared cutoff parameter trp, while the unrenormalized counter part 

(({;'l/;)A) = ({;7/J)u depends much on trF· 

3. On the other hand, 'E(O) depends quite a lot on trF· In many articles, 'E(O) 

is used as a mass scale of the spontaneous symmetry breaking. One should 

note that it does depend on the infrared structure of the running coupling 

constant, and thus it is not a good measure of physics. 

4. As for Aqcn, it depends on trF· However, the dependence is negligible for 

lower trF region, while in such region, 'E(O) diverges. 

I would like to thank H. Hata for valuable advices in TEX typing. 
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Scalar Bound States in SCQED and Teclmicolor Model 

Misako Suwa 

Department of Physics, Niigata University, Niigata 950-21, Japan 

Abstract 

Using the bilocal auxiliary field method, we have numerically deter

mined the mass spectra of scalar and pseudo-scalar fields as fermion bound 

states in the framework of the strong coupling QED(SCQED). 12 ),l3 ) The 

consistency of the mass poles with the Miransky's continuum limit is in

vestigated. The renormalizations of the bound states are discussed and 

the application of SCQED to a teclrnicolor model is also investigated. 

On the massless fermion-U(l) gauge field system, it is known that the spontaneous 

chiral symmetry breaking (xsb) occurs l), 2) and fermions get a dynamical mass scale 

(B0{0)) in the strong coupling region. 3
).4 ) In other words, the scalar bound state of 

fermion and anti-fermion has a vacuum expectation value. On the other hand, the pseudo

scalar bound states are eaten by W and Z bosons and the bosons become massive. 

In the present article, our purposes are the following ; to calculate the mass spectra 

of the bound states of fermions which appear as the result of the xsb using the method 

of the bilocal auxiliary fields s)~lo), to check the consistency of their masses with the 

Miransky's continuum limit in SCQED, to renormalize the composite fields and to apply 

our calculations to the technicolor model.11) 

First, we shall derive the effective action for meson fields (the bound states) form 

QED action. We start with the well known chiral symmetric action, 

where 'li4 (:e) is the massless fermion field of N,-flavor interacting with U{l) gauge fields 

A,.( :e ). By using the method of bilocal auxiliary field developed by Morozumi and So10l, 

the effective action S~n for bilocal fields is obtained, 
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11 0 

Seff [o-, 11", V, A, T] = -~ J d4 zd4 y[o-"'b(z, y)M- 1 (z - y)o-b"(y, z) 

+ 71""'b(z,y)M-l(z - y)11"ba(y, z)] 

-J d4 zd4 y tr ln[5(z - y)5"0/µ.0µ. + o-"b(z, y) + i/s71""0(z, y)] . (2) 

M- 1 (z) and M;,,1(z) are defined as 

(3.a) 

(3.b) 

where the vector, axial-vector and tensor terms and the mixing terms with them are ignored 

for simplicity. 

Next, we want to derive the quadratic parts of the effective action for scalar and 

pseudo-scalar fields in order to obtain their invese propagators. In Landau gauge (~ = 0), 

the vacuum expectation values of the fields are 

< 0 I o-;0(P) I 0 >= (211")4 5(4)(P)B(q2)6,.b, 

< 0 111";b(P) I 0 >= 0, 
(4) 

where the fields are transformed into the momentum space. P and q are total momentum 

and relative momentum respectively. The solution of fermion mass scale can be obtained 

in the strong coupling region, by analyzing the Landau-gauged gap equation of the vacuum 

expectation value of scalar bound state; 

271" 2 dz d 2 2(-q2 + B(q2)2) 2 
- 3o:o (4q (dq2)2 + 8 dq2 )B(q ) + (q2 + B(q2)2)2 B(q ) = 0, (5) 

with the infrared and ultraviolet boundary conditions as, 

lim d( qz B( q2)) -+ 0. 
q-+A dq 2 

(6) 

It takes the same form as the ladder Schwinger-Dyson equation for a fermion self-energy.18) 

Then only the solution which has no nodes corresponds to the true vacuum expectation 

value. At the zero momentum point, 

11" 
Bo(O) = 11Aexp [- ] , 

Ja:o/a:c - 1 
(7) 

where A, o:o, O:c, and 1J are, ultraviolet cut off, bare coupling constant, critical coupling 

constant, and numerical constant. Since Bo (0) is proportial to A, so if A is taken to be 

infinite, Bo (0) will diverge. Miransky propsed in his paper that we should. take o:0 -+ a:c 



as A-+ oo, Bo(O) remainds finite 5
). This is so called Miransky's continuum limit. Then 

the scalar and pseudo-scalar quadratic part, s~~~' of the effective action is 

(8) 

D; 1 (q, P) and D; 1 (q, P) correspond to the inverse propagators of the mesons, given by 

(9.a) 

(9.b) 

·where ao (= eV41r) is the bare coupling constant and SF(qµ.) means a fermion propagator. 

Now, we consider the eigenvalue problems of the inverse propagators eqs.(9.a) and 

(9.b ). They correspond exactly to solving the ladder Bethe-Salpeter equations.7),lS) Then 

the scalar mass and pseudo-scalar mass can be estimated by eigenvalues, .X(P) and µ(P), 
of the Schrodinger-like operators eqs.(9.a) and (9.b), 

D; 1(q,P),,p;(q,P) = .X(P),,P;(q,P), 

D; 1(q, P),,P:(q, P) = µ(P),,P:(q, P). 

(10.a) 

(10.b) 

The mass poles of scalar and pseudo-scalar bound states can be calculated numerically as 

the zero eigenvalue points of them. The wave functions of the bound states, rr and 11"1 

are expanded by these eigenfunctions which correspond to the infinite eigenmodes of BS 

amplitudes, ,,P~ and ,,P~, 

(11.a) 

1rq(P) = L bµ.(P),,P~(q, P). (11.b) 
p. 

Using the method of variation, we get the relation between eigenvalues of those inverse 

propergators and total momentum Pµ. for each set of fixed coupling and cutoff. (Relative 

momentum qµ. is integrated out.) We show the result for the scalar case in Fig.I with 

the gauge coupling constant C = a 0 /1r. In order to make the check of our variational 

method, we also show the result for the pseudo-scalar field in Fig.2, because we know it 

as a Goldstone boson so its mass pole is expected to be zero. From Fig.I we can see 
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m.,./ Bo(O) rv 1.4 and is almost independent of a 0 , which implies it to be consistent with 

Miransky's continuum limit. 

2.0.------------., 
• 10 ~ • 

1.0 . - ........... ~·-. ·. 

o.or::===·::··::· ::=::~:::.~:;,,~·==--~P';/B~o(O):::.'-:-:J 
0.0 1.0 2.0·~:·--.~ 

~ ,, -- ,;,, ~~ < <:::: 
•2·0 -- 0.550 10.06 

- 0.525 12.73 
.J.O - 0.500 17.00 

•4.0'-----------'-' 

2.0..-----------~ 
I 10·1 

P'!Bo(O)' 

·2.0 ·-
0 ' ..,, 
"' :I. c NBo 

·4.0 -·-0.575 8.26 
-0.550 10.06 

-0.0 
-0.525 12.73 
-0.500 17.00 

-8.0'-------------' 

Figure 1. Eigenvalue lines, A( P)Bo(0) 2
, 

of a scalar inverse propagatar. 

Figure 2. Eigenvalue lines, µ(P)B0 (0) 2 , 

of a pseudo-scalar inverse propagatar. 

It can be also seen that the curvature, 52 Veft(B) "' D,; 1 (0), of the effective potential 

goes to zero as the ultraviolet cutoff tends to infinity (at the same time, the coupling tends 

to its critical value). The obtained value is slightly smaller than the prediction, "' 2, 

by partially conserved dilatational current hypothesis (PCDC).14> With respect to higher 

excitation masses,15) we could not find any physical excitation mass of the scalar state. 

One necessity of a renormalization16) is caused by a fact that the operator q,W has 

a ultra.violet linear divergence. So we should conclude field renormalization Z factors for 

composite fields from our results. In general, they a.re defined as 

(Ta;b 1. 

= z 2 (Ta;b (12.a) 0 
" ? ' 

1rab 
0 = z! 1rab 

,,. ? ' 
(12.b) 

D:;,~(q, P) = Z,D:;,!(q, P), ( 13.a) 

D;,~(q, P) = Zp1 D;,!(q, P). (13.b) 

Our numerical analysis suggests the following Z factors for the bound states; 

_1 (· A )2+• 
Zu = z, = Bo(O) ' (14.a) 

( 
A )2+<' 

z" = z;,1 = Bo(O) ' (14.b) 

where € and £
1 are nearly equal to zero. Powers of A in eqs. (14.a) and (14.b) may 

correspond to twice anomalous dimensions of q,w and {iii-y5 W. Now, we put€ and£' zero. 

The renormalized eigenvalues are shown in Figs.3 and 4. For the scalar case, the good 



correspondence along one 'renormalized line' is surprising. This fact suggests that the 

present method could be correct. For the pseudo-scalar case, the correspondence is not 

so good because the region is so far from the mass pole. 

2.0 

~< 
~ 

00 
n.o 1.0 20 

c A/Bo 
·2C 0.575 8.2$ 

0-550 10.00 . o.525 12.73 

0 0.!!00 17.00 

~ ... o 

P7B.(o)' 

3.0 

ltJ.O 0 5 
o.o l 

'< ,,_ 

~2.0 

~4.0 

c 
o.575 

0.550 

~6.0 . o.s2s 

0 o.aoo 

10 

A/Bo 
8.26 

10.08 

12.7J 

11.00 

r'la<of 
1.5 

~a.o~-------~ 

Figure 3. Renormalized eigenvalues for 

the scalar field, .1.(P)A2
• 

Figure 4. Renormalized eigenvalues for 

the pseudo-scalar field, µ(P)A 2 . 

In the last place, we will apply our results to technicolor theory and estimate the 

Higgs mass. If we interpret SCQED as U(l) technicolor theory, scalar and pseudo-scalar 

fields can be regarded as composite Higgs boson(s), h, and Goldstone bosons, II, as the 

result of the dynamical xsb of technifermions. To obtain the mass of Higgs particle, we 

must se.t a Weinberg-Salam scale at first. For that, we use a weak boson mass scale; 

2 
M2 91 p,2 

W = 4 TC• 

FJ.c = N2F;/N1, 

F; is a bare pion decay constant as numerically given, 

2 _ I d4q Bo(q2)(Bo(q2) - s;~Bo(q2 )) 
F1r - 4N1 (27r)4 (q2 + Bo(q2)2)2 ' 

= 4.749 x 10-2 N1 B0 (0) 2 . 

(15) 

(16) 

(17) 

N 2 means the weak doublet number of techni-fermions. From eqs. (15) - (17) and 

using the experimental values of Mw = 81.0 GeV and Mz = 92.4 GeV, we can obtain 

FTc rv 250 GeV. Our SCQED scale (B0 (0)) and Higgs mass are determined as 

Bo(O) = 1.1 TeV / ..[ii;, 
mh ~ 1.6 TeV / ..JN,., 

(18) 

(19) 

From eq.(19), we expect several hundreds GeV as Higgs mass. It should be noted that, 

however, the naive one doublet model has anomalies; global SU(2) anomaly and SU(2)L -

SU(2)L - U(l)scQED triangle anomaly. So we can conclude N 2 2': 2. 17
) 
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From eq.(19), we expect several hundreds GeV as Higgs mass. It should be noted that, 

however, the naive one doublet model has anomalies; global SU(2) anomaly and SU(2)L -

SU(2)L - U(l)scQED triangle anomaly. So we can conclude N2 2: 2.11
) 

Finally, we have some questions. (a) Can the mixing effect among scalar-vector-even 

part of antisymmetric fields and among pseudoscalar-axial vector-odd part of antisym

metric fields be ignored? (,B) Is ladder approximation sufficient to predict the mass of a 

Higgs particle? ('r) Are there any realistic models which can predict N 2? Details of our 

calculation and further developments involving above points will be reported in separate 

papers. 
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BCS-TYPE RELATION FOR THE COMPOSITE HIGGS BOSON IN 

GAUGED NAMBU-JONA-LASINIO MODEL* 

Susumu Shuto, Masaharu Tanabashi and Koichi Yamawaki ** 

Department of Physics, Nagoya University 
Nagoya 464-01, Japan 

Abstract 

We study the relation between the dynamical mass of fermion m1 and the mass of 
the scalar bound state rJ ("Higgs boson") mu in the gauged Nambu-Jona-Lasinio (NJL) 
model based on the PCDC hypothesis. In contrast to the result of the pure NJL model 
mu/m1 = 2, the mass ratio mu/m1 does vary according to the gauge coupling >. from 
2 (>. = 0) to 1.2 (>. = >-c = 1/4). We also find that the mass ratio mu/m1 drastically 
varies near the pure NJL limit, i.e., mu/m1 ~ /2. for very small (but non-zero) >.. In 
the top quark condensation scenario for the dynamical electroweak symmetry breaking 
this implies a mass relation between the Higgs boson and the top quark, mH ~...ti.mt. 

1. Introduction 

Dynamical symmetry breakingf1l (DSB) is a familiar phenomenon in many models of quan

tum field theories. The concept of DSB is also important in modern particle physics to describe 

the spontaneous symmetry breaking in a natural way. Unfortunately in many models with DSB 

it is not so easy to determine the parameters of the low energy effective theory because of the 

non-perturbative nature of the DSB. In this respect, Nambu-Jona-Lasinio (NJL) model[1l is 

interesting, because we can explicitly calculate the parameters in the dynamical chiral symmetry 

breaking (DxSB) phase based on the 1/N expansion. 

Within 1/ N leading approximation (or chain approximation) we obtain a simple relation in 

the mass spectrum of the NJL model (BCS-type relation )l2l: 

mu: m1: m"K = 2: 1: 0, (1.1) 

where m f is the dynamical mass of the fermion and mu and m"K mean the masses of scalar bound 

state rJ and pseudoscalar bound state (Nambu-Goldstone (NG) boson) 7r, respectively. 

Unfortunately, the NJL model is not renormalizable in four dimensions. Recently, it was 

suggestedl3l that the NJL model with gauge interaction (gauged NJL model)l4•5,6l becomes renor

malizable in the DxSB phase even in four dimensions. In fact, explicit calculation of this model 

based on the gap equation shows that the physical quantities are finite (in the continuum limit) 

within the ladder approximation[3,7,8,9J. 

* Reported by S. Shuto 
** Work supported in part by the Grant-in-Aid for Scientific Research from Ministry of Education, 
Science and Culture ( #62540202) and by the Kato Foundation of Nagoya University. 
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Important application of this model is a top quark condensation scenarioC9,1o,11,12,13,14] for 

the dynamical electroweak symmetry breaking ("top-mode standard model"). In the top-mode 

standard model, a top quark condensate (tt) # 0 triggered by the gauged NJL model (NJL plus 

QCD) plays a role of the vacuum expectation value of the elementary Higgs boson in the standard. 

model. The model predicted[lO] a large top quark mass, typically m 1 :::= 250GeV, and a spinless 

tt bound state (Higgs boson) with a mass mH :::= 2m1. The latter relation, mH :::= 2m1, [l0,11,lS] 

would immediately follow as in the NJL model, Eq.(1.1), if the QCD had only a small effect on 

the low energy mass spectrum of the composite bosons. On the contrary, if the QCD effect is 

significant, the BCS-type relation Eq.(1.1) will no longer hold: the prediction mH :::= 2m1 must 

be changed. 

Here, we wish to study the effect of gauge interaction on the BCS-type relation in the gauged 

NJL model. To compute m~ we regard O" as a "massive dilaton"[4,5,s,l&] and employ the Partially 

Conserved Dilatation Current (PCDC) hypothesis, since it is rather difficult to compute directly 

the pole position in the JPC = o++ channel of the fermion and antifermion scattering amplitude 

even in the ladder approximation. In what follows we shall see how this hypothesis actually works 

in the models in which we can compare the PCDC result with the direct computation of m~. We 

then calculate m; in the gauged NJL model through the PCDC hypothesis. We find the effect 

of gauge interaction is rather significant, no matter how small (but non-zero) the gauge coupling 

may be. In fact, we obtain mu :::= ./2.m1 for the case of a very small gauge coupling. 

2. PCDC relation - derivation -

Consider the scalar boson (dilaton) O" which couples to the energy-momentum tensor Bµv as 

(2.1) 

where Fu is the dilaton "decay constant" and D the dimension of space-time. Under the as

sumption of O" dominance in the channel of B~, we obtain 

(2.2) 
-m2F2 - u u· 

Noting the relation of energy-momentum tensor and dilatation current, Dµ = xvBµv. aµDJ.1 = B~. 
and the Ward-Takahashi identity, we obtain 

(2.3) 

where the dilatation charge QD is defined by QD = J dxD0. Comparing Eq.(2.2) with Eq.(2.3), 

we can write the dilaton mass mu in terms of Fu and the vacuum expectation value of the 

energy-momentum tensor (PCDC relation): 

(2.4) 
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When the operator (}~ obeys a simple scaling i[QD, (}~] = do(}~, the PCDC relation becomes 
simple: 

m~ = -DdoE/F'j, (2.5) 

where the vacuum energy (density) Eis defined by (Oj(}µvlO) = gµvE. 

As an illustration for Eq.(2.5), let us consider the tp4 theory with D = 4, 

(2.6) 

The energy-momentum tensor within the tree approximation is 

(2.7) 

where d(f means the scale dimension of(;. In this case,(}~= (D- 4)£i-(j4 + ffev2(j2 = ffev2(j2, 

so that we obtain the scale dimension of B~. do = 2. In the symmetry-broken phase (j develops 

a vacuum expectation value v, (j = v +a, a being the dilaton field. Then from the definition of 

F(f Eq.(2.1) and E, it is easy to obtain 

1 4 
E = - D· 3!v A, 

where we used d(f = 1. PCDC relation Eq.(2.5) reads 

m2 = - 8E = 2 (~v2) 
(1 F~ 3! . 

(2.8) 

(2.9) 

Thus the dilaton mass calculated in this way correctly reproduces the mass of a determined from 

the lagrangian Eq.(2.6). 

In more complex systems, the prediction of the dilaton mass in Eq.(2.5) corresponds to the 

mass term of the dilaton field in the effective theory which contains only the dilaton and has the 

same scale dimension of B~ and dilaton decay constant as those of the original theory. In fact, the 

PCDC relation Eq.(2.5) can also be derived in terms of the effective theory of dilaton field[17•18l. 

In the linear (j model of SU(nJ)L x SU(nJ)R-+- SU(n1)v. F(f can be related to the NG 

boson decay constant F"' as[l6J 

(2.10) 

where d(f is the scale dimension of the scalar field in the linear (j model. Then we can rewrite 

the PCDC relation Eq.(2.5) in terms of F11:; 

(2.11) 

Eq.(2.11) is our basic formula. 
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3. BCS-type relation in the renormalizable NJL model with D < 4 

Let us first check how the formula Eq.(2.11) works in the NJL model in D dimensions 

(D < 4). The model is renormalizable in l/N expansion and we can directly compute m~ 
without recourse to the PCDC hypothesis[l9J. 

The lagrangian is 

(3.la) 

where the suffix j runs from 1 to N. Introducing auxiliary fields a and 7!', we rewrite Eq.(3.la) 

into 
- · · [.ii ::ii · a a] N [ 2 2] £ = 1/}i ,tf;; - r tf;;a + r i1sr t/lj1l' -

20 
a + 7l' . (3.lb) 

The effective potential within the 1/ N leading approximation is given by 

V(a) = N [a2 -sf dDPE In (p~ + a2)] · 
2 G (27l')D P1 (3.2) 

The stationary condition of the effective potential gives the gap equation, 

0- 2- av - ~ - sf dDPE O' = saf dDPE [-1- - 1 l (3.3) 
- Noa - G (21l')D a2 + P1 (21l')D gp1 cr2 + P1 ' 

where the dimensionless coupling constant g is defined by g = SG J (dDp)£ -}. It is well known 
27!' PE 

that Eq.(3.3) has DxSB solution a# 0 when g > 1 (g = 1 is a nontrivial ultraviolet fixed point 

of the bare coupling[19l.). The dynamical fermion mass is given by the vacuum expectation value 

of the auxiliary field, m1 = O'aol· 

Now the vacuum energy in the DxSB vacuum can be written in terms of O'aoi: 

I 
(3.4) 

Computing the correlation function for axialvector currents, we find the NG boson decay 

constant in this model; 

(3.5) 

Noting e~ _...., (1/;tf;)2, a_...., (1/;tf;) and n1 = 2, we find that the PCDC relation Eq.(2.11) reads 

m2 -
<1 - (3.6) 

where de= 2(D - 1- 'Ym) = 2 and d" = (D- 1- I'm)= 1, with 'Ym(= D - 2) [l9l being the 

anomalous dimension of.the mass operator (1/;tf;)R· Note that Eq.(3.6) holds independently of D 

and perfectly agrees with the direct computation of m~[19J. 

Incidentally, effective Yukawa coupling in the low energy effective theory is also calculated 

( Goldberger-Treiman relation): 

g2 = m2/p2 y f .,., (3.7) 



g 

1 
4 

0 

Fig.l. 
Critical line in (>., g) plane is depicted by the solid line, which separates the spontaneously unbroken phase 

(shaded region) and the broken phase of chiral symmetry. 

Fi being given by Eq.(3.5). Note that in the limit D -+ 4 (NJL limit) the NG boson decay 

constant F-x- diverges. Thus in this limit the Yukawa coupling vanishes and we have a trivial 

(non-interacting) effective theory. 

4. BCS-type relation in the gauged NJL model 

Having convinced ourselves of validity of the PCDC relation, we now derive a BCS-type 

relation in the gauged NJL model through the PCDC relation. For simplicity we calculate the 

case of U(l) gauge theory. The lagrangian is given by 

C = ~i ~t/; + ~[(~t/;)2 + (~i-y5rt/;)2 ] + e~f..t/; - ~Fµ11Fµ11 +gauge fixing term. (4.1) 

The CJT effective potential[20J is written explicitly[8J in Landau gauge in 2 loop approximation; 

A
2 

[ 2 2 l V[I:] = --1-{ { dx · x ln(l +I: (x»- 22:: (x) 
47r2 ) 0 x x + I:2(x) 

t-2 

x:L(x) y[(y) [.A .A g] } +./
0 

dxdyx+I:2(x)y+:L2(y) ;B(x-y)+y-B(y-x)+ A2 , 

( 4.2) 

where L was defined as is-1 =/; - I:(-p2) and x,y mean the space-like momentum square, 

x :::: -p2, y:::: -q2 . In Eq.( 4.2) an ultraviolet cutoff A was introduced and we used dimensionless 

couplings g:::: A2G/(27r2), .A:::: 3e2/(47r)2. 

The stationary condition of the CJT potential Eq .( 4.2) yields the gap equation (ladder 

Schwinger-Dyson equation) which was first studied by Bardeen et a/.f4l: 

( 4.3) 

11 9 
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Eq.( 4.3) is written into the differential equation and the boundary conditions: 

[ x ::, + 2:. + x + ~( x J' l l:( x) = 0, 

J~o x2 d~ L.(x) = 0, [ 1 + ( 1 + i) x ~] L.(x )lx=A2 = 0. 

(4.4) 

If there exists a nontrivial (DxSB) solution L.,0 1 # 0, the vacuum energy E for this solution is 

given by[8] 

E = V[L.,0i] - V[L. :::: O] 

= __ 1_ [J\4 In (i + r.;01(A2)) - gJ\2 :z:::2 (A2)] . 
81!"2 f12 (.\ + g)2 •ol 

(4.5) 

In fact, it was found[S,5] that Eq.( 4.4) has a DxSB solution when g > (1 + 2"/)2 /4 or 

,\ > Ac= 1/4, where"/= h/1- A/Ac. (See Fig.1). We scale the bare parameters (A,g) to 

get a finite solution L. in such a way (a la Miransky)[21l that they depend on the cutoff A. At 

A - oo the parameters (A,g) go to on the critical line which separates the xSB phase from the 

chiral symmetric one[5,6l: 

g = (1 + 2y)2 for 
4 

1 
g > 4' 

1 
for g < -. -4 

(4.6) 

Note here that the anomalous dimension is large, 'Ym = 1+2"/, in the DxSB phase[3l_ 

To solve the gap equation analytically, it is convenient to use the linearized differential 

equationfS,2l] instead of Eq.(4.4): 1/(x + L.2(x)) - l/(x + m}), with m1 = L.(m}). The 

solution of this equation is written in terms of the hypergeometric function: 

L.,01(x) = emr F(~ + "1
1

, ~ - "f',2;- ;}) 

[ 

-~+;' l r(2"/) ( X ) ( / J 

-:::::. em1 rct + 'Y')r(~ + "/) m} + 'Y +-+ -'Y) ' for x ~ m},(4.7) 

e being a constant (-:::::. 1[8l). 

For calculating m; we need to evaluate the vacuum energy E. From the explicit solution 

Eq.( 4.7) the vacuum energy Eq.( 4.5) now reads[8l 

_ t:,2 4 'Y' cot( 1l""f
1

) 
E- --2 m 1 2 , (4.8) 

81!" 1l" (<t)2 -h')2) 

in the cutoff A - oo limit (on the critical line). Note also that the vacuum energy becomes finite 

(at ,\ > 0). 

On the other hand, Pagels-Stoker formula[22·23l for the NG boson decay constant F.,. is given 

by 

(4.9) 
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This integral converges (for ,\ > 0) using the solution of the differential equation. We can 

evaluate F11: explicitly using the solution of the linearized equation Eq.( 4. 7): 

where 

8 =~In (r(i + l'')r(t- "/)) + 2 'In 2. 
2 r(1- 'Y')r(i + '!') 1 

Noting B~ ,...., ( ;j;'lj; )2, we find that rJ ,...., ( ¢¢ ), and n f = 2, we find that the PCDC relation 

Eq.(2.11) reads* 

(4.11) 

Thus we obtained the BCS-type relation Eq.(4.11), which actually depends on the anomalous 

dimension I'm (or gauge coupling ,\). We also calculate m~/m} numerically using the PCDC 

relation. These results are shown in Fig.2. 

Although the agreement of our analytical calculation Eq.(4.11) with the result of the nu

merical one within the linearized approximation is remarkable, the difference of the result in the 

linearized approximation and that of the full nonlinear gap equation is most amazing. At suffi

ciently large cutoff /\, the numerical result based on the solution of full nonlinear gap equation 

(Fig.2) strongly suggests 

m 11 ::::...f2m1, (4.12) 

if the gauge coupling constant ,\ is very small (but non-zero). 

Important effect of the gauge coupling (however small) can also be seen through the effective 

Yukawa coupling in the low energy effective theory, 

2 2;p2 gy = mf ir> (4.13) 

which vanishes in the pure NJL limit (A-+ 0), since the solution [ 301 becomes a constant function 

and F'I( diverges logarithmically in that limit. Thus the inclusion of the gauge coupling makes the 

theory non-trivial (gy =f:: 0). Numerical result of the gauge coupling dependence of the effective 

Yukawa coupling is shown in Fig.3. 

* One obtains the same result for any nrflavored model, i.e., SU(nJ)L x SU(nf)R _,. 

SU(n1)v for n1 > 2 and U(l)L x U(l)R _,. U(l)v for n1 = l. 
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Fig.2. 
Dependence of m(J' / m f on the gauge coupling .X 
along the critical line. Linearized analytical result is 
depicted by the bold solid line. Linearized numerical 
result is depicted by the dashed line (A2 /m} = 1010) 

and by the solid line (A2 /m} = 1020 ). Full nonlin
ear numerical result is depicted by the dashed lin~ 

(A2/m} = 1010 ) and by the solid line (A2 /m} = 
1020). 

5. Conclusion 
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Fig.3. 
Dependence of Yukawa coupling gy on the gauge 
coupling along the critical line. 

In the U(l) gauged NJL model, we found that the mass ratio m(J'/m1 does vary from 2 

(A= 0) to 1.2 (A= Ac= 1/4) according to the gauge coupling A. In the pure QED limit (g = 0, 

A = Ac). our result (mu/m1 :::::: 1.2 < 2) has the same tendency as that of the lattice Monte 

Carlo simulation (mu/m1:::::: 1.7 < 2)l24l and of the analysis through the Nambu-Bethe-Salpeter 

equation (mu/m1:::::: 1.4 < 2)l25l. 

On the other hand, the mass ratio mu/m1 drastically varies near the pure NJL limit, 1.e., 



mu/m1 ~ ../2 < 2, no matter how small (non-zero) the coupling>. may be. If this property of 

the U(l) gauged NJL model also holds in the QCD-gauged NJL model, the prediction of Higgs 

boson mass in the top-mode standard model will become 

(5.1) 

in contrast to the previous prediction, mH ~ 2mt[lO,ll,lSJ, ignoring the gauge interaction effect. 

It is arguedC26l that our result Eq.(5.1) can be made consistent with the bootstrap symmetry 

breaking. This tendency (the Higgs mass decreases with the inclusion of gauge interaction) is 

also consistent with the renormalization group analysis employed by Bardeen et al.l13l. 
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ABSTRACT 
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We report the recent developments on the phase structure of the strong coupling 
QED in the framework of the Schwinger-Dyson equation, taking account of the 
vacuum polarization effects. The results are compared with those obtained in the 
quenched planar approximation. The various problems concerning the construction 
of the continuum QED are discussed in connection with these results. 
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§1. INTRODUCTION 

The study of the critical phenomena in the regularized QED may open a new 

window to the understanding of the non-asymptotically free (N AF) field theory. As 

usual, QED is regularized by introducing the cutoffs, and then QED in the euclidean 

region can be regarded as one of the statistical-mechanical models. Necessary 

information to take the continuum limit is obtained through the critical behaviors 

of the model. This viewpoint is extremely powerful, because the tools and the 

concepts in rigorous and non-rigorous statistical mechanics become available to be 

able to control the continuum limit. This is demonstrated by the rigorous triviality 

proof of the ..\( ¢>4)d theory, [tJ[iJ and more generally by various achievements of the 

lattice gauge theories. 

The question which we are addressed to is: Can QED be constructed as an 

interacting field theory? This is a. long-standing problem of the constructive field 

theory, l3l although even a.t present we must stay in the heuristic level. The most 

straightforward way to study this issue is to examine the renormalized coupling 

constant related to the scattering amplitude among fermions, anti-fermions and 

photons. This is conceptually simple but difficult in actually carrying out. In ad

dition, to study the consistency of the field theory we need some non-perturbative 

method. An a.Hernative wa.y is to obtain a set of critical exponents and hyperscaling 

relations in the critical phenomena.. For example, in the ferromagnetic model with 

inverse temperature J := l/kT, which is obtained a.s the lattice regularized version 

of scalar field theries, the 4th Ursell (connected 4-point) function U4, the suscepti

bility x and the correlation length ~ a.re characterized by the critical exponents in 

the neighborhood (nbd) of the critical point Jc as follows: 

U4 := L U4(xi, ... ,x4),..,,(Jc-J)-"Y-264, 
zi,:r3,:r4EL 

X := L(<pzj<py} ""(Jc- J)-"Y, 
yEL 

~-l := m := lim -
1

1

1
ln(<po; <px} ""(Jc - Jt. 

lzl-+oo X 

(1) 

(2) 

(3) 

This implies the following critical behavior for the 4-point renormalized coupling 
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constant (corresponding to the scalar-scalar scattering) 

(4) 

Then if the lattice model have classical exponents, v = 1/2, "f = 1, Ll4 = 3/2 in 

d > 4 dimensions, as predicted by the mean-field (MF) theory, then vanishing of 

the renormalized coupling constant in the continuum (scaling) limit J t Jc (the 

triviality of .\(efi4)d theory for d > 4) is understood as a. result of the violation of 

the hyperscaling relation: 

dv + "( - 2Ll4 > 0. (5) 

On the other hand, in lower dimensions the hyperscaling relation is satisfied, dv + 
'Y - 2Ll4 = 0, which implies the non-triviality of the .\( efi4)2, .A( efi4)a theories. 

In four-dimensions, the exact MF theory predicts the non-triviality of .\(efi4)4 

theory, while the log-correction to the MF theory implies to the triviality of .\(efi4)4 
theory, as predicted by the renormalization group (RG) analysis. This yields 

(6) 

In the broken symmetry phase where the scalar field (ip) acquires the non-vanishing 

vacuum expectation value (VEV), (ip} f. 0, the symmetry <p-+ -<p (for 1-component 

scalar model) is spontaneously broken. In the nbd of the critical point, (ip} ,..., 

(J - Jc)fl. If we renormalize the model such that 0 < {'PR} < oo to obtain the 

broken symmetry .\(efi4)d theory, then the renormalized 3-, and 4-point coupling 

constants go to zero in the scaling limit J ! Jc, under the requirement of the 

finiteness of the renormalized two-point function (<po; 'Pz)Y1 

The massless QED in which the bare fermion mass mo is set to zero, mo= 0, 

possesses the chiral symmetry. Then if the fermion acquires the dynamical mass, 

md, the chiral-symmetry is spontaneously broken. The existence of the strong 

coupling phase in which the dynamical mass generation takes place and the chiral

symmetry is spontaneously broken above the critical coupling ec is first demon

strated by Maskawa and Nakajima{&! in the framework of the Schwinger-Dyson 

(SD) equation, in the quenched planar (ladder) approximation. Recently the seal-



ing law for this phase transition was discovered by Miransky1' 1 to obey the essential

singularity type: 

f := :d rv exp[-7rh/e2 /e~ -1], (7) 

which may lead to the non-trivial QED. This result was very suprising to me and 

I doubt that this must be an artifact of the quenched planar approximation. This 

is the motivation of my study on the SD equation. 

In the chiral-symmetry-breaking (CSB) phase e > ec, the critical exponents are 

defined for the dynamical fermion mass and the chiral order parameter. as follows: 

(8) 

(9) 

where rv should be understood in the sense that 

l
. lnf 

Vm := - lllle!ee In( e2 - e~) , (10) 

Then Vm < oo implies the power-type scaling, while the essential-singularity type 

scaling corresponds to Vm = oo. 

A necessary condition to be able to take the continuum limit is the existence 

of the 2nd or higher order phase transition point where the correlation length 

diverges. Existence of such a critical point has been reported by the Monte Carlo 

simulation. 111 From the Miransky scaling, we may expect that the non-trivial QED 

could be obtained by taking the continuum limit of the cutoff QED model in the 

CSB phase.· Furthermore the critical point ec of the "bare" coupling constant was 

identified with the non-trivial ultraviolet (UV) fixed point. If so, however, we must 

consider the following questions. How the notorious disaster of the Landau ghost 141 

is compatible with the non-triviality of QED? Or, whether the renormalized f3 

function f3(e~) may have a non-trivial UV fixed point, besides the Ga.ussioan fixed 

point resulting from the 1-loop RG equation. Incidentally, the quenched (QED)d 
obeys the MF type scaling ford> 4.1' 1 Then (QED)d is expected to be trivial for 
d > 4. (Fl) 

(Fl) Quite recently, Liischer has obtained in non-compact lattice QED the upper bound on the 
renormalized coupling constant: 0 ~ e .. ,. ~ a<4- 4>e ( a:lattice spacing; e: bare coupling), 
which implies the triviality of ( Q ED)d for d > 4. 

127 



128 

In this talk we report the recent results on the SD equation for the fermion prop

agator in massless QED. The quenched planar approxmation is improved by taking 

account of the vacuum polarization through the vacuum polarization function at 

the I-loop level in the SD equation for the photon propagator. 

§2. SD EQUATION 

The SD equation for the fermion propagator S(p) is given by 

S(p)-1 = So(p)-1 + E(p), (1) 

with the fermion self-energy part 

E(p) := e2 j(~:~4 111S(q)r v(q,p)D1111 (q - p) , (2) 

where S0 (p) = (jJ + m0 )-1 is the bare fermion propagator, r 11(q,p) the vertex 

function and D"11 (q - p) the photon propagator: 

(3) 

where the vacuum polarization function Il(k2) is defined as 

(4) 

In what follows we consider the Landau gauge a = O, and take the bare vertex 

approximation, r µ ( q, p) = 1" (for the arbitrary gauge, see ref.11°1 
). The vacuum 

polarization effect is included through the 1-loop vacuum polarization function: 

(5) 

where p := lnA~/ A 2 := ln17 and C is a regularization-dependent constant. The SD 

equation for the fermion propagator is solved in the form of 

(6) 

Then the SD equation reduces to a pair of integral equations for A(p2) and B(p2). 

Here we introduce the infrared (IR) cutoff€ and the ultraviolet (UV) cutoff A. 



§3. ANALYTICAL RESULTS
1111 

3.1 The bifurcation equation In order to consider the scaling law in the nbd of the 

critical point, it is sufficient to consider the bifurcation solution1121 which obeys the 

linear equation: 

where d(lc2) := 1/[l+II(lc2)] and we have adopted the Landau-Abrikosov-Khalatnikov111 

(LAK) approximation: 

II((p - q) 2) = II(max(p2, q2)), (2) 

which yields A(p2) = 1. 

3.2 Asymptotic solution Introducing the new variable z := z0 + lnA2 /p2 with 

zo := 3/3 / N + C + p, the above integral equation can be converted to the boundary 

value problem of the differential equation: 

d2 B(z) + [~ _ _ z_] dB(z) + O' [! _ 2-J B(z) = O, O' := ~. (3) 
dz 2 z z - 1 dz z z2 4N 

with the following boundary conditions, 

z dBi O=B(z)+---d , 
1- Z Z z=zo 

(4) 

O = d~~z) I z=z,.:=zo+lnA2 / µ2 

(5) 

This is a linear 2nd order differential equation with three singular points, z = 
O, 1, oo, of which z = O, 1 are regular singular points and z = oo is the irregular 

singular point. Therefore the solution can not be expressed through the known 

special functions. However Gusynin1131 solved the simplified version of the above 

equation by restricting to the region /3/N ~ 1, and obtained the critical point 

/3c = 1.61 for N = 1, in good agreement with the previous numerical result. 1101 

Furthermore he has shown that the scaling law is given by the MF type, f ,....., 
(/3c _ /3) 1/2. 
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We have solved the original differential equation and obtained the two indepen

dent asymptotic solutions for large z: 

z -1-<7 [ q + u 2 Rfa1>] B1 (z) = e z 1 + --+ ... + - , z zn (6) 

u [ u - u2 R';;>] B2(z) =z 1+--+ ... +-. z zn (7) 

The general solution is given by the linear combination B(z) = C1B1(z) +C2B2(z). 

The coefficients C1, C2 can be determined from the boundary conditions. The 

numbers Rfa1>, R<,?> are calculated up to n = 4, see [11]. 

3.3 Critical line and scaling law Defining the functions g(z) and h(z) by 

(8) 

(1- z)B2(z) + zBHz) := -z-.r-nh(z), (9) 

then they are polynomials in z with deg[g] = n, deg[h] = n+l. Then, using the 

boundary condition, it is shown that the scaling law for the dynamical fermion 

mass is given by 

f,..., [h(zo)/g(zo)]112,zo := {3/3N. (10) 

From this we obtain the critical point z0 as a zero point of the function h(z) (see 

Fig.1), and the scaling law is given by the MF type, 

(11) 

since h1(z0) f 0, which is ascertained by the direct numerical calculations. 

3.4 Chiral order parameter It is shown that the chiral order parameter obeys the 

same scaling as that for the dynamical fermion mass and has the MF critical ex

ponent, since it is shown that for N f 0 

(12) 

which should be compared with the result 1151 in the quenched planar approximation; 
({1¢),..., Am~,..., A3 / 2 • 



3.5 Anomalous dimension The anomalous dimension for the composite operator 

{n/; is calculated to result in 

'Ym = 0, (13) 

in sharp constrast with the quenched planar case, 1' 1 'Ym = 1. 

3.6 The critical fermion number The solution of the SD equation with nonvanish

ing C, p is obtained from that with C = 0 = p by shifting the coupling constant as 

follows: 
N 

/3 .- /3- -(C + p) := /3', 
3 

Then this fact tells us that the non-trivial solution exists only in the region 

3 
N<-c /3. +p 

(14) 

(15) 

Then the critic al flavor number N c above which there is no chiral symmetry breaking 

is obtained as the intersection point of N = (3/C+p)/3 with the critical line obtained 

when C = 0 = p, see Fig. 1. The existence of the critical fermion number was first 

demonstrated by the Monte Carlo simulation. 111 

§4. NUMERICAL STUDY OF THE SD EQUATION
1171 

We have carried out the numerical cakualtions of the original integral equations 

given in section 2, which invole double integrals. Then our results support the MF 

scaling, irrespective of the fermion flavor N; 

(1) 

except the quenched planar case which corresponds to N = 0 in our scheme. The 

scaling is unchanged with (Fig.2) or without (Fig.3) the LAK approximation. 
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§5. ADDITIONAL 4-FERMION INTERACTION
1111 

Introducing the additional chiral-invariant 4-fermion interaction 

~Go[( ~"Tj/') 2 
- ( ~"1's1/1")2], (a = 1, ... , N), (1) 

we consider the SD equation 

S(p)-1 = So(p)-1 + Go(~"?/I"} + E(p). (2) 

This SD equation is solved in the same way as in the pure QED case with the vac

uum polarization function given in section 2. The critical line and the scaling law are 

analytically obtained in the bare parameter space ( e2, g) where g := N GoA 2 /47r2• 

For the critical line, see Fig.4 and Preprint rui for the analytic expression. The 

scaling law for the dynamical fermion mass and the chiral order parameter is given 

by the MF type, irrespective of the direction approaching the critical line. The 

"bare" f3 functions are obtained from the coupling constant flow equation which is 

obtained by converting the scaling relation; in the CSB phase, 

f3(g) = -2(g - 9cr),/3(e2
) = -2(e2 - e!.), 

while {3(g) = 0 = {3(e2) in the symmetric phase. 

§6. CONCLUSION AND DISCUSSION 

We have obtained analytically and numerically the non-trivial solutions of the 

SD equation for the fermion propagator, takeing into account the vacuum polariza

tion effect in massless QED with N fermion flavors. The vacuum polarization effect 

is included through the vacuum polarization function at the 1-loop level. Within 

this framework we have shown that in the presence of the vacuum polarization 

there exists a critical point ec which separates the weak coupling phase from the 

strong coupling phase where the chiral symmetry is spontaneously broken. 

Based on the asymptotic solution, the critical coupling ec(N) for each fermion 

flavor N is obtained, which is in good agreement with the result of the direct 

numerical calculations of ours for N = 1,2. The scaling law is given by the MF 

type, irrespective of N i= 0. The critical exponents for the dynamical fermion mass 

and the chiral order parameter have the same classical MF value, i.e., v = 1/2. 



Additional chiral-invariant 4-fermion interaction is also introduced. We ob

tained the critical line in the bare parameter space ( e2 , g ), which connects the pure 

N ambu-Jona-Lasinio point with the pure QED critical point in the unquenched 

case. However introduction of the additional 4-fermion interaction does not change 

the scaling law. So far there is no compelling evidences to support the non-triviality 

of QED, although it remains to calculate the anomalous dimension on the whole 

critical line. 

Furthere problems to be resolved are: 

1) The first Monte Carlo (MC) result of Kogut et al. 1" 1 supports the Miransky 

scaling in the quenched limit, while the recent result by another group1111 shows the 

MF scaling even in the quenched limit. Remembering that the quenched planar 

QED is shown to obey the Miransky scaling, it may be possible that the non-planar 

effect or the vertex correction may change the scaling, in other words, the essential

singularity type scaling is unstable for the improvement of the approximation. 

2) If the 1-loop result presented in this talk is qualiltatively good approximation 

to the full QED, the original QED coupling vanishes in the continuum limit, since 

it sufferes from the Landau ghost. However there may exist the induced Yukawa 

coupling resulting from the spontaneous breakdown of the chiral symmetry which 

forms th~ fermion-antifermion (scalar) bound state. Existence of such a state may 

be judged from the calculation of the pion decay constant fr· Finite fr may 

rescue the strong coupling QED from the naive triviality. The result will be given 

elsewhere. 

3) Confinement or deconfinement of the fermion in the CSB phase is very 

interesting to go beyond the quenched planar analysis, 1211 which is examined by 

searching for the pole in the fermion propagator. 

4) To answer the Landau ghost problem and to obtain the phase structure of 

QED more completely, we must obtain the vacuum polarization function II(k2) as 

a. self-consistent solution in the simultaneous SD equation. This is in progress. 

133 



134 

REFERENCES 

1. J.Frohlich, Nucl. Phys. B200 [FS4J (1982) 281. 

2. M.Aizenman, Commun. Math. Phys. 86 (1982) 1. 

3. J.Glimm and A.Jaffe, Quantum Physics, 2nd ed. (Springer, Berlin, 1987). 

4. K.-I.Kondo, Prog. Theor. Phys. 79 (1988) 1217. 

5. T.Maskawa and H.Nakajima, Prog. Theor. Phys. 52 (1974) 1326; 54 (1975) 
860 .. 

6. V.A.Miransky, Nuovo Cimento 90A {1985) 149. 

7. J.B.Kogut, E.Dagotto and A.Kock, Nucl. Phys. B317 (1989) 253. 

8. L.D.Landau, in Niels Bohr and the Development of Physics, ed. W.Pauli 

(Pergamon, London, 1955). 

L.D.Landau, A.Abrikosov and I.Khalatnikov, Nuovo Cimento, Supplement 3 

(1956) 80. 

9. K.-I. Kondo and H.Nakatani, Mod. Phys. Lett. A4 (1989) 2155. 

10. KA.Kondo, Y.Kikukawa and H.Mino, Phys. Lett. B220, {1989) 270. 

11. K.-I.Kondo and H.Nakatani, Chiba Univ. Preprint, CHIBA-EP-34, 1990. 

12. D.Atkinson, J.Math.Phys. 28 {1987) 2494. 

13. V.P.Gusynin, ITP-89-45E, Kiev 1989. 

14. J.Oliensis and P.W.Johnson, ANL-HEP-PR-88-45, 1988. 

15. K.-I.Kondo, in New Trends in Strong Coupling Gauge Theories, ed. by 

M.Bando,T.Muta and K.Yamawaki (World Scientific, Singapore, 1989). 

16. J.B.Kogut, E.Dagotto and A.Kocic, Nucl. Phys. B317 {1989) 271. 

17. K.-I.Kondo and H.Nakatani, Chiba Univ. Preprint, CHIBA-EP-35, 1990. 

18. K.-I.Kondo, Chiba Univ. Preprint, CHIBA-EP-36, 1990. 

19. M.Gockeler et al., DESY-89-124, 1989. 

20. S.Hands, J.B.Kogut and E.Dagotto, NSF-ITP-89-180. 

21. R.Fukuda and T.Kugo, Nucl. Phys. Bll 7 (1976) 250. 



135 

Fig.l Fig.2 

(a) N 1 (b) N 2 

JO .. _ ..... , -- :i-s 

...., 
._ 

N 
.._. 

:Z.00.1 

r ._, 

\ 
1-z ..... ..... 

l""'Z 
10 - ..... , 

~ ..... 
N =3~ ...... _, \ - 1""1 _..., 

~ - ....... .... -1.0 l.S 2.0 :u l.O 1.$JtJ 1..SlU UJIS i..$116 IS/Tl l..Jlll l.140 U41 U4% 

p 

Fig.3 Fig.4 

,------------...s.Oo-4 

1.2 
N = 1 

0.002 

:\ 
4.o.4 g 1 

\ 
' 0.8 
~ 

~ 
\~, 

0.6 

0.001 \ r\\::: -··---
\'" 

0.4 

OP 
\ "' N=2 

N=t 1\ ~ 
\ "' '\ 

~ I\ 

0.2 
1.0.-6 

0 

I.Sil l.S14 UIS 
o.ooo+--~--~-----40.o.+o 

l.Sl6 --0.2 
0 0.5 1.5 2 2.5 3 3.5 

A 



136 

ON THE SOLUTION OF THE SCHWINGER-DYSON EQUATION OF QED 

Minoru Hirayama 

Toyama University 

The Fukuda-Kugo version of the Schwinger-Dyson equation 

of QED is discussed. Through constructing the Liapunov func

tion, it is analytically proved that Fukuda and Kugo's non-

linear differential equation for the fermion propagator 

possesses chiral-symmetry breaking solutions. The structure 

of the general solution of their equation is studied by the 

method developed in the theory of dynamical systems. 

1. Introduction 

In the course of the analysis of the fermion self-energy 

of QED, the Schwinger-Dyson equation 

3e 2 1 
B(p2) ( 1. 1) 

( 21T) 4 (p-q)2 
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was discussed by many authors, where B(p 2
) is defined by 

( 1 . 2) 

We are adopting the Landau gauge and the ladder approximation. 

Fukuda and Kugel) translated (1.3) into a much tractable 

differential equation 

dg 
g + 4g 

du 
- 3u ( 1 + 

l+u 2 
( 1. 3) 

where A, u and g are given by 

g(u) = du(t)/dt and t = log p. The boundary conditions on g 

and u at t = ±oo are given by 

0, lim e 3 t(g+u) 
t+-oo 

0 . ( 1. 4) 

In this talk, with the help of Liapunov's direct method, I 

present an analytic proof that (1.3) and (1.4) have non-trivial 

2\ 
solutions. ; I also discuss how the analytic form of solution 

can be explored. 2) 

2. Liapunov Function of Fukuda-Kugo Equation 

Eq.(1.3) is rewritten as 

dg 
- {(4g +Ku) + (4g + 3u)u 2 

} , ( 2. l) 
dp 

du 
( 2. 2) 

dp 
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where K and P are defined by 

dp 1 
K 3( 1 + 7\) > 3 , > 0 . f2. 3) 

dt l+u 2 

Apart from mathematical subtleties, it is intuitively clear 

that any trajectory starting from any point on the (u,g) plane 

tends to (0,0) as P (and so t) goes to infinity if there exists 

a function L(u,g) satisfying 

(i) L(O,O) 0 , 

(ii) L(u,g) > 0 

dL(u,g) 
(iii)---- < 0 

d p 

for (u,g) + (0,0) , 

for (u,g) ~ (0,0) . 

The function L(u,g) is called the Liapunov function at (0,0). 3 ) 

Making use of (2.1) and (2.2), it can be seen that the 

function 

L1(u,g) 

satisfies (i), (ii) and (iii) for any value of A > 0. 

also seen that the simpler function 

Lz(u,g) g 2 + 4gu + (8 + ~)u2 

satisfies (i), (ii) and (iii) for 3 < K < 19 + 8 /3 . 

(2.4) 

It is 

( 2. 5) 

Thus 

we understand that the nonlinear differential equation ( 1. 3) 

with the boundary condition (1.4) possesses non-trivial solu

tions, which implies that the chiral-symmetry might be broken. 
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3. General Structure of Solutions of Fukuda-Kugo Equation 

Equations (2.1) and (2.2) are expressed in the form 

dx 
= Ax + f(x) ( 3. 1) 

dp 

g 

A ( 3. 2) 

u 

where f(x) consists of terms of third order in x. If we define 

z by 

[ 
1 -\2 

z Ux 
' u 

1 -\1 (3.3) 

\1 -2 + 11-3\ \2 -2 - 11-3 \ 

we have 

dz [ :' :J + h( z) , 
(3.4) 

dp 

where h(z) is given by h(z) = Uf(U- 1 z) and consists of terms 

of third order in z. It is known that there exists a unique 

transformation from z to y 4 ) 

z y + k(y) (3.5) 

such that y satisfies the simplest equation 

dy 
(3.6) 

dP 

If we write 
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y z - k(y) Ux - k(y) Ux - l\!(x) , ( 3. 7) 

l\J ( x) is an infinite power series of x 

l\J ( x) [ :::J ( 3. 8) 

l\J. ( x) I f(i) Q, m i 1' 2 X1 Xz 
l 1-+m;;; 3 

1-m 
( 3. 9) 

Coefficients can be obtained recursively through f(x). 

Since the general solution of (3.6) is given by 

i 1, 2 ' (3.10) 

we get 

(3.11) 

where c is an arbitrary constant. Now we realize that the 

general solution of the Fukuda-Kugo equation (1.3) is obtained 

through solving the equation 

A.2 
[g - A.2u - ¢1(g,u)] 

-A.1 
[g - A.1u - l\Jz(g,u)] c (3.12) 

with respect tog. The behaviour of the solution of (3.12) 

should be classified by the value of the parameter a= A. 2 / A. 1 • 

5 
For 0 < A < 27 (2 < a < 3), we recover the analytic form 

of solution which was originally obtained by Fukuda and Kugo.
1

) 

F 5 <-'<-31 or 27 /\ ( 1 < a :;; 2) , terms other than those included 

in the Fukuda-Kugo solution become dominant. For the case of 

strong coupling 

by 

A. > ..!. 3 ( 0 ; complex) the solution is given 



R e canst. , v = 13 A.-1 

where R and 6 are defined by 

g - A2u - W1(g,u) i6 R e 

141 

(3.13) 

(3.14) 

The trajectory on the (u,g) plane is a deformed logarithmic 

spiral. 
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Renormalization Group Flow in Lattice QED 

and Four Fermi Coupling 

Masahiro IMACID 

and 

Hiroshi YONEYAMAt) 

Depa.xtment of Physics, Kyu.shu University, Fukuoka. 812, Japan 

and 

Department of Physics, Saga University, Saga 840, Japant) 

ABSTRACT 

Renormalization group fl.ow of the U(l) lattice gauge theory with staggered fermions 

is studied by the Migdal-Kadanoff renormalization group method. The phase structure is 

extensively investigated. It is shown that an induced four fermi coupling term becomes 

relevant in the strong gauge coupling region while it becomes irrelevant in the weak gauge 

coupling one. The chiral order parameter and the anomalous dimension of the fermion 

mass operator are calculated. 

The Migdal-Kadanoff renormalization group (MKRG) method 
1

'
2 

is an approximate 

but suitable tool to get into an essential feature of the lattice gauge models~-s Such a 

method may provide us with an important information of the dynamics with the strong 

four fermi coupling, and is complementary to Monte Carlo calculations which are currently 

providing interesting results~- 13 
One of the authors (M.I.) has recently studied the theory 

by incorporating the fermion self-energy to the recursion equation, and found that the four 

fermi interaction is in fact induced from the original QED in the strong gauge coupling 

region~4 In the present paper we make an extensive study of its RG fl.ow and the phase 

structure. 

The main results are as follows. The bare parameter space is divided into two phases, 

one being the phase where the four fermi coupling is relevant and another where it is irrel

evant. Within the former phase, there is a distinction with respect to RG fl.ow between the 

strong and the weak gauge coupling regions. The chiral order parameter shows a transition 

separating the two phases. The anomalous dimension /m of the fermion mass operator is 

also calculated by the UT(U nique Trajectory 
15 

) method 
5 

in the chiral symmetry unbro-



143 

ken phase. It is found that 'Ym is large at the critical line and monotonically decreases as 

one goes off from the critical line, i.e., 'Ym decreases monotonically as the gauge coupling 

and/ or the four fermi coupling Co become weak. 

Migdal-KadanofF renormalization group transformation 

The recursion equations for the MKRG transformation for U(l) LGT with staggered 
r . 16

'
17 d 14 I al RG r . . d lin h" h 1erm1ons are presente . n gener , transJ.ormahons in uce coup gs w ic are 

not in the original bare theory. It is then convenient to write here the most general form 

of action in the MKRG framework. The lattice action of U{l) gauge group with staggered 

fermions 1/J and {1 is given by 

00 

Su= - 2 L L(l - Rexq{B) )/3q, 
pla.q q=l 

St =Ao L 1]µ{n)(e:+{l(n)U,.(n)1/J(n + µ,) + e;_{l(n + µ,)UJ(n)'ifJ(n)) 
n.,µ 

(1) 

- Bo L {;(n)'ifJ(n) 

- Co L {;(n)U,.(n)'ifJ(n + µ,) {;(n + µ,)U~(n)-r/J(n), 
n,µ 

where Xq in Sg denotes the q-irreducible character of a plaquette variable; Xq(B) = TrUq = 

eiqU (q =integer, 0 ::; 8 ::; 211"), and /3q is corresponding bare inverse gauge coupling. The 

fermionic action S1 contains three bare parameters A0 , Bo and Co which represent hopping 

parameter, mass and four fermi coupling in tum. Positive values of Co correspond to an 

attractive force. e+ and e;_ are sign factors (e+ = -1 and e;_ = +1), and 17,.(n) = 

(-1 )n.1 +nl+ ... +n.,.-1, where ni is the i-th coordinate of the site n. The following convention 

for integrating Grassmann variables 1/J and {1 is employed: 

(2) 

A RG transformation consists of two procedures, the decimation and the bond-moving, 

both for the gauge and fermionic degrees of freedom. In each decimation, the gauge degrees 

of freedom receive fermion loop corrections, while the fermionic ones contain self-energy 

corrections. 

The recursion equation for the gauge field 
3 

connecting two scales L and >..L is given 

by 
;1.D-l 

F(>.L, 0) ~ [~ F,( L)'°-'<'i,(L)x,(O)l (3) 
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where Fq is coefficient in the character expansion of the plaquette function F(L, 8) at scale 

L, 
F(L,8) = LFq(L)xq(8), (4) 

q 

where F(L, 8) is written in terms of the gauge couplings as 

F(L,8) = F(L,O)exp{-2 L(l -Rexq(8))/3q(L)}. (5) 
q:l 

While Qq is the coefficient in the expansion of Q(L,8), which represents the contribution 

from the innermost plaquette in Fig.1 receiving the fermion loop correction with N1 :flavors 

(vacuum polarization). A RG transformation is thus completed by the bond-moving as 

is represented by the exponent _xD- 2 in (3), which is the contribution from the D - 2 

directions perpendicular to the plane on which the plaquette in question is sitting. 

The l.h.s. of(3) is also represented by the renormalized couplings {.Bq(.XL)} at scale 

.XL in the same manner as ( 5) 

F(.XL, 8) = F(.XL, 0) exp{-2 L(l - Rexq(8))j3q{AL)}. (6) 
q:l 

Therefore, by solving (3) and (6) one obtains the recursion equation for. the gauge coupling 

{.Bq(L)} -t {.Bq(AL)}. 

Through fermion decimation( Fig.2( a)) 
14 

we obtain fermion parameters A( .XL), B( AL) 

and C(.XL) at scale .XL from those at L. If we take into account fermion self-energy 

correction( Fig.2(b)), we have 

Aa(H)=A(U) (;:) ', 

BG(.XL) =B(AL), 

(

- ) 2..\ 

CG(.XL) =C(.XL)- {1 - ~~ }A(AL)c+c-· 

(7) 

The factor i't/Fo is ,....., /3 at strong coupling regions (/3 ~ 1) and ,....., (1-1//3) at weak 

coupling regions(/3 ~ 1). Then CG receives large (small) effect from fermion self energy 

correction in strong (weak) gauge coupling regions. It may be convenient to define nor

malized para.meters Mand G rather than using A, Band C. They are defined by 



Renormalization group How and phase structure 
18 

We a.re now ready to calculate RG flow. Throughout this paper the scale factor,\ and 

the number of staggered fermion Nt are taken to be three and unity, respectively. All the 

calculations in this section are made for a sufficiently small fixed value of Bo ( =0.05 ). Its 

extrapolation to B0 =0 will be discussed in the following section. 

Flow of the renormalization group transformations runs in the infinite dimensional 

parameter space, ( { /3q ; q = 1 ,..., oo }, M, G). It may then be convenient to project it to 

various subspaces. In what follows we, in tum, see the one projected to the subspaces of 

pure gauge (/31,/32), gauge and fermion (/3i, G) and pure fermion ( G, M). 

Flow diagram of gauge coupling /3q is shown in Fig.3. We observe critical point 

/31c at 2.3 < /31c < 2.4. For /31 > /31c, trajectories flow to weaker coupling regions, which 

represents "screening" due to vacuum polarization. For /31 < /31c , trajectories flow to IR 

fixed point /3q = 0 (q =all). 

As to the projection onto the subspace, (/3i, G), the RG flow moves as shown in Fig.4. 

For each trajectory in the figure, starting point corresponds to the bare theory with certain 

(/31, Co). One clearly sees that the two dimensional subspace (/31, C0 ) is divided into two 

phases in view of the manner of the movement of the G. For small /31 and all allowed Co 

values, trajectories move up to large G region very quickly. This feature is seen up to the 

critical point /31c· In the weak gauge coupling region beyond /31c, trajectories. move up 

first but eventually go down to small G for small C0 values, while for large C0 values the 

trajectories move up quickly to the large G region. Namely, in between strong and weak 

four fermi coupling regions, a critical line runs (see Fig.7). 

Keeping the above feature in mind, let us now see the behavior of the trajectories 

in the fermionic parameter subspace (M, G); For small /31( < /3ic); 
(1) In the very strong coupling region /31 (;:;, 1.0), a range of bare theories in different /31 

and Co values moves on to a scaling trajectory as seen in Fig.5. The functional form 

of the trajectory reads G ex: M 2 for large M and G values. 

(2) As /31 increases beyond 1.0, the flow starts to deviate from such a trajectory, and the 

slope of the trajectory becomes smaller in the logG-logM plot. 

For large fh(> f3v::), the behavior is quite different from the one for small /31; 
(1) For large bare C0 values, the trajectories move up as shown in Fig.6. 

(2) Whereas for small Co values, flows move down and converge to a single trajectory, 

which moves eventually toward G = 0. 

(3) In between there exists a critical point Cc, at which trajectory moves flat. 

( 4) The locations of both the critical C0 value and the convergent trajectory depend on 

chosen /31 value. As /31 increases, the value of Cc monotonically increases as seen 
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in Fig.7. Such a critical line (actually critical surface in the full parameter space) 

separates the parameter space into chiral symmetry unbroken( weak four fermi side) 

and broken( strong four fermi side) phases. Similar critical line is found also in the 

analysis of Schwinger-Dyson equation of quenched QED.
19 

( 5) On the other hand, the value of G of the convergent trajectory at sufficiently large M 

decreases, as the bare /31 increases. 

In Fig. 7 the two phases are labeled by I (chiral symmetry broken) and II ( unbro

ken). Within the chiral symmetry broken phase I , we found a distinct behavior between 

strong and weak bare gauge couplings. Trajectories for large bare /31 values move very 

slowly toward larger /31 value, while those for small /31 converge rapidly to the fixed point 

at /3q = O. This appears to suggest that there is a phase boundary between the two regions. 

We then distinguish the weaker gauge coupling side from the stronger one by naming it 

the domain III, as indicated in Fig.7. II and III are then connected to the chiral symmetry 

unbroken and broken phases, respectively , in the Nambu-Jona-Lasinio model?
0 

Chiral order parameter < -{np > is calculated from the partition function Z by 

- -1 [ 8Z ] (1/n/J)Bo = -N. llB /Z , 
ute• U O ·Bo 

(8) 

and by taking linear extrapolation to B0 = 0. N,ite denotes the total site number, AtD, 

with t and D being the number of RG iterations and the space time dimension( =4 in our 

case), respectively. The result is shown in Fig.8. We observe that < -{np > at strong 

gauge couplings is much larger than that at weak ones. In the weak gauge coupling region, 

however, < -{np > is not exactly zero. Subtracting the value (~ 5 x 10-5 ) at large /31 , 

therefore, it can be fitted by an essential singularity form aexp(-1 / v'f3e - {31). The result 

is insensitive to the assumed value of f3e· For example, a case for f3e=2.3 is shown in the 

figure. 

Anomaloua dimenaion 

We will discuss the anomalous dimension of {np. Fig.9 shows RG fl.ow for various 

small values of bare mass Bo in the symmetric phase (or domain II). One sees that all 

bare theories (for Co = 0) with these different values of Bo converge to single trajectory. 

Therefore the unique trajectory method applies in order to get the anomalous dimension of 

{np. That is, one sets up a gate on the trajectory, and then count the number of steps tG of 

RG transformations necessary to reach the gate from various bare points. The scale at the 

gate fo and the lattice constant a of a bare point is related by log a = -t G log .A +log fo. 
We found 

log Bo~ -c(f31)tG + d(/31), (9) 



and its slope c(,Bi) increases as ,81 becomes larger. The c(,Bi) is calculated to be 0.37, 

0.28, 0.19 and 0.14 for ,81 =2.5, 3.0, 5.0 and 10.0 in order. This slope gives essentially the 

anomalous dimension of {n/l as follows. 

The anomalous dimension Im is defined by 

8logmo(A) 
Im= - 8logA ' (10) 

where mo is a dimensionful bare mass, and A denotes an ultraviolet cut-off. In the lattice 

notation, (10) reads Im= 81~~,!0j") -1, since mo(A) = Bo(a)/a and A=l/a. Im is also 

represented as 
Im=-=!:_ 8log Bo _ l 

log A 8tG 

For ,81 values in question, ( 9) leads to 

Im ~ c(,81)/ log A - 1. 

(11). 

(12) 

For A= 3, Im reads -0.22, -0.41, -0.61 and -0.71 for ,81=2.5, 3.0, 5.0 and 10.0 in turn. 

This result seems queer, since it is expected that Im is positive and becomes vanishing as ,81 
goes to infinity, where the theory becomes free. This is due to the quantitative roughness of 

the approximation. In the free theory, for example, the mass M ought to change to AM by 

a scale transformation by A. However, in the MK framework, or rather generally in approx

imated RG transformations, M does not transform properly 
4 

but by Aet f ( ::f: A). Therefore 

we normalize Im in (12) so that Im = 0 is correctly reproduced in the weak gauge coupling 

limit. Namely, we take A to be Aett which is fixed at a large ,81. We choose ,81 = 10.0 (some 

other choice, say, {31 = 15.0 does not make much difference ). The estimated value of Aef f is 

1.39. This leads to I= = 1.64, 1.0, 0.36 and 0.0 for ,81 = 2.5, 3.0, 5.0 and 10.0 (see Fig.10). 
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FIGURE CAPTIONS 

Fig. 1. Gauge plaquette decimation. The vacuum polarization is contained. Crosses denote 

the fermion decimations. 

Fig. 2. (a)Link function. (b)Fermion self-energy correction. 

Fig. 3. Flow diagrams of gauge coupling constants projected onto (/31,/32) plane. 

Fig. 4. RG :flow projected onto /31-G plane. 

Fig. 5. RG :flow projected onto M-G plane. Strong gauge coupling case with /31 = 1.0 and 

C0 =0.0(o), 1.0 (a) and 2.0 (.c..). Intermediately strong gauge coupling case with (31 = 
2.0 and Co=O.O( <> ), 1.0{ +) and 2.0( x ). 

Fig. 6. RG flow projected onto M-G plane. Weak gauge coupling case with /31 = 5.0 and 

Co= O.O(o), 0.4(a), 0.6(.c..), 0.9(<>) and 1.0(+). 

Fig. 7. Phase diagram in /31-Co plane. 

Fig. 8. < -{np > vs. /31. Co = 0.0. With fermion self energy correction( o) and without 

it( a). The former is :fitted by aexp(--y / y'/31<: - /3i) with /31c = 2.3, a = 18.14, a.nd 

/ = 12.50(bold line). 

Fig. 9. RG fl.ow projected onto logM-logG plane for B0 =0.01( o ), 0.025(a), 0.05(.c..) and 0.1( + ). 

/31 and Co is chosen to be 5.0 and 0.0, respectively. 

Fig. 10. /m vs. /31 for Co = 0.0. 
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ABSTRACT 

The lattice QED theory with chiral-invariant four-fermion inter
action is investigated analytically, through the effective model, which 
consist of mesons originated in bi-linear fermi fields. We further study 
this model using the renormalization group method, for taking the 
continuum limit as critical phenomena on lattice regularized space. 
We study the existence of fixed points and their scaling properties, 
and we discuss the properties of theories defined on such fixed points 
with respect to the triviality. 

1. Introduction. QED as the perturbatively defined theory leads to the serious field 

theoretical problem, known as Landau ghost. 111 The possibilities of solving this problem 

lies on the non-trivial structure in the strong coupling regime. In the viewpoint of the 

Wilsonian renormalization group (RG) approach 12
'
31 

, the questions are whether non-trivial 

fixed point(F.P.) , which may be ultra-violet F.P., or another relevant operators really exist. 

These questions are related to the non-perturbative dynamical effects. For this purpose we 

choose the lattice QED model with chiral invariant four fermi interactions. We investigate 

this model analytically, through the effective model. The method is based on the strong 

coupling expansion and integration of the gauge fields, which derives the local boson system 

originated in bilinear fermi fields. This method is usually performed to lattice QCD. We 

further study this model using the renormalization group method, in the viewpoint of the 

construction of the field theory in the continuum space as critical phenomena on lattice 

regularized space. We study the existence of trivial and non-trivial fixed points and its 

scaling properties. Such F.P.s are interpreted in terms of the original lattice QED model 

and the model including the four fermi interaction and we discuss the properties of theories 

defined on such fixed points with respect to the triviality. 

t Addres after April 1990; Division of Ma.thema.tical Science, City College of Mie, Isshinden-Na.ka.no, 
Tsu 514, Ja.pa.n 



2. The Effective Model of Lattice QED. The original model is the 4-dimensional 

QED with chiral invariant four fermi interaction. 

S = -
2
!2 L U14(z)Uv(z + fa)UZ(z + zi)US(z) + h.c. 

x,µ>v 

- L ~[tfa(z)/14U14 (z)t/l(z + µ) - tfa(z + j1)-y14 UZ(z)tfa(x)] 
x,µ (1) 

+m L t/i(z)t/l(z) 

The first term denote the gauge action, which we use the compact U(l) action. 1/e2 is the 

gauge coupling. tfa( x) denotes the naive Dirac fermion with bare mass m. We have kept the 

naive form of the fermion for chiral invariance in the limit m = 0. The last term is the chiral 

invariant four fermi interaction. If we switch off the gauge interaction the model reduce to 

the well-known Nambu Jona-Lasinio(NJL) modelY1 We can study lattice QED as well as 

the gauged N JL model. 

Many analytical studies have been made to the gauge systems interacting with fermions 

on lattice such as QCD or large N model( as the limiting model of QCD) in the similar way. [a,91 

The basic idea is as follows. The models are reduced to the system of the elementary 

excitations on the vacuum of the strong coupling limit, those are several kinds of gauge 

singlet composite bosons i.e. meson fields. As the gauge coupling becomes weaker, such 

mesons begin to interact with ea.ch other. The similar method is adopted to the QED+NJL 

model. We survey the process of constructing the effective model. We first make the strong 

coupling expansion of the partition function, and integrate out the gauge variables. But the 

exact calculation is so difficult even in the limit of 1/e2 = 0. We technically change the 

dynamical variable U14 ( x) to the random variable. This change makes the integration of the 

gauge degrees of freedom easy. As the model is deformed through this process, there is no 

essential difference whether action is compact or not, with respect to the chiral symmetry 

breaking. In practice the strong coupling limit, the models are just the same. That produces 

the sequence of the interaction terms, which consist of bilocal composite fermion fields, such 

as t/i(x)/14 '1/;(z + µ). Second, we perform Fierz rearrangement[aJ of all interaction terms, and 

we get the action rewritten in terms of the local composite fields such as 1/i(x)I't/;(x), where 

r denotes the 16-Dira.c gamma matrices. We finally rewrite the effective action with local 

hose fields using the auxiliary field method, such as scalar : tfa( x )'if;( x) -+ cr( x ), pseudoscalar : 

itfa(x)Jstfa(x)-+ 7r(x), vector: {;(x)'y14 t/;(x)-+ V14 (x), etc. We note that the process preserve 

gauge invariance. The obtained effective model is given as follows. 
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where 

Self= - ~ L u(x)u(x +fl.) - g L u(x) 2 
- ~ L 1r(x)1r(x +fl.) - g L 1r(x) 2 

~ z ~ z 

- ~ L Vµ(x)(l - 28µv)Vµ(x + zl) +[A, T] 
x,µ,v 

+ ~ I:1n{ [L u(x + {;.) + 8gu(x) + 4m] 
2 [L 1r(x + {;.) + 8g1r(x)] 

2 

z µ µ 

+ 2:[2:(l-2sµv)Vµ(x+z1)J2 + .... } 
µ v 

1 
- (4)3,BV,,[u, 11'] 

+ o(,B2)Vi;[u, 11',] + higher order terms .... 

+ other interaction terms 

vp[u, 11'] = L { u(x)u(x + f;.)u(x + {;. + zl)u(x + z/) 
z,µ>v 

+1r(x)1r(x + f;.)1r(x + µ + zt)1r(x + v) 

+I: c-(conb.)u(x)u(x + ji.)1r(x + µ + v)1r(x + i1)} 
conb. 

(2) 

where A and Tare axial vector and tensor fields, respectively. The logarithmic potential is the 

contribution from the fermionic determinant. This effective action has infinite series of non

local polynomial interactions, those are derived from the plaqutte type gauge interactions, 

and they are very complicated. But fortunately, from the point of view the RG method, 

almost all the terms must be irrelevant operators, and the leading contributions to the scaling 

behavior comes from the lower power polynomial interactions. Besides the contributions of 

the higher spin variables will not be so important. In the following discussion, only the scalar 

and the pseudo-scalar fields <T,11' will be considered as dynamical variables. Vector fields are 

replaced by some constant values as the mean fields and others are neglected.* The reduced 

system of <T and 11' maintains the chiral invariance within this part. We can study the chiral 

phase transition of the original QED+ N JL model by the effective model. 

3. The Mean Field Study of the Effective Model. In order to check whether the 

obtained effective model correctly shows the physical content, we study mean field (MF) 

action of this model. MF theory assumes that <T and 11' are uniformly distributed, i.e.,u(x )=u, 

7r(x)=7r. 

(3) 

* If we use staggered fermions the same effective model can be derived within this approximation. 



where 

h=d+8g 

1 
I =(-)32d(d-1)/e2 

4 

Set the 7r = 0 in the chiral limit m = 0, the chiral condensate < u >, which corresponds to 

< '¢;1/; >, is given by the minimum of the resulting effective action. MF action gives us the 

physical picture of mechanism of the chiral transition in the simple way. The contributions 

of the anti-ferro spin system induced by Fierz rearrangement of the fermi fields, and the 

plaquett interaction term induced from the gauge interaction determine the chiral symmetry 

breaking. The obtained phase diagram a.re consistent with the results of Schwinger-Dyson 

approach. The logarithmic potential make the action unbounded and < u > is unstable 

in the weak coupling region, which causes the difficulty in studying by the RG method. 

Then, in the effective action vector fields a.re replaced by some constant values V as the MF 

and the logarithmic potential is expanded with respect to l/2d(d - l)V2, where dis the 

spacetime dimension. Again, the MF method is applied this apploximated effective action. 

The resulting phase diagram is not changed in the qualitative feature, but the stability of 

the field is improved. 

4. The Renormalization Group Study of the Effective Model. For the purpose of 

using the RG method, we rewrite the model in momentum space for small p2
, then any 

kind of non-local polynomial interaction derived from eq.(2) reduces to the following much 

simpler form. 

Seff = -~ J dp(p2 + r)(u(p)u(-p) + 7r(p)7r(-p)) 

4 4 -J lJ dpib(~pi)(u(pi)u(p2) + 7r(p1)7r(p2))(u(pa)u(p4) + 7r(p3)7r(p4)) 
s=l s=l (4) 

4 

<P1 + P2 I>D 
i=l 

- higher power polynomial interactions .... 

We remark that interaction kernel has momentum dependence. This shows that the inter

actions are non-local. The parameters r,,81 and ,82 are the polynomials of l/e~ and g. Here, 

we take the chiral limit, then all the odd polynomial interaction terms are dropped. The 

RG equations are derived by diagrammatic expansionr
3
J with respect to /31 and /32. The 

later investigations a.re based on the algebraic equations for the coupling parameters of the 

RG steps as diagrammatically shown. In the case ,82 ~ 0, the situation is the same as 

the scalar models, which has only the trivial fixe point; r*, ,a;, ,81, = 0 . If we spread the 

parameter space to the negative region of /32, the small value of ,81, at the non-trivial fixed 
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point is indicated by the solution of the RG equations. Choosing /32 ,...., -r for the expansion 

parameter, the investigations are performed similar to the well-kown €-expansion method. (JJ 

The contributions from higher power terms are evaluated systematically, and the results are 

consistent within the order r 

5. Fixed Points, Scaling properties and Triviality For the purpose of studying the 

scaling properties of the F .P.s, we linearized the RG equations near the fixed points, and 

calculate the eigenvalues of their transition matrix, which provides the eigenvalues of the 

scaling operators. 

When the parameter space is restricted to the /32=0 plane, only the trivial F.P.;r*, /3i = 0 

exists, the corresponding F.P. of the original QED+NJL model is g* = -(d - v/I6)/8, 

e*2 = 2 x 42d(d- I)/v2 where v = d(d- 2)2V, which ha.s the eigenvalues are )q = 4, A2 = I,. 

This shows this F .P. ha.s I-relevant opera.tor, which corresponds to the mass opera.tor <J'
2 + 7!"

2 

and this is just the MF value. Besides, there is I-marginal opera.tor, which is the contribution 

beyond the linearized RG equations. This contribution is essential in this model. This leads 

to the logarithmic correction to the MF scaling behavior a.s long a.s /31 is small. According to 

the investigation of the constructive field theory of scalar models, 1101 the scaling properties 

result in the trivial theory. Here 'triviality' means the renormalized O' - 71" 4-body coupling 

goes to zero in the limit of the cutoff-infinity within the domain of this F.P. The situation is 

not changed, even if the parameter space is extended to the /32-a.xis. Only the I-irrelevant 

operator is added. 

But in the negative /32 region, another F .P. seems to exist, that is r* = - ~or, /3i = 
4
9
8 r, /32 ,...., -~r and the eigenvalues are .A1 = 4(1 - 4r), A2 = 1 - 48r, A3 = *, where 

the third eigenvalue is unknown in the framework of this trial analysis. But the qualitative 

considerations of the RC-equations and the scaling properties of the trivial fixed point imply 

that the third scaling operator may be relevant. This F.P. has clearly different properties , 

which should have two relevant operators, so called tri-critical. [llJ This F .P. ha.s the pos

sibility leading to the non-trivial theory. In order to understand this F.P. in the original 

QED+ N JL model, another parameter a.xis is needed, corresponding to some kind of interac

tion. For example, the chiral invariant eight-fermion interaction can be imposed. Any wa.y 

non trivial F.P. exist beyond the e2 - g plane. 

4. Summary and Discussion. We derive the effective theory for lattice QED. The ob

tained effective model is the local bosonic system with non-local interactions. This model 

preserves gauge invariance. Using the RG method we investigate the existence of F.P.s 

and their critical behaviors for the purpose of constructing the continuum theory associ

ated with their F.P.s. The analysis in this report imply the contribution of the scalar and 

pseudoscalar part are relevant. When the coupling parameter space is restricted to gauge 

coupling or gauge and four-fermion couplings, each case imply that theory is well described 

by gaussian model of non-interacting <J' and 71" fields, which correspond to the gauge singlet 



bound states of fermions. The similar picture is proposed by several investigations: Monte 

Calro simulations[uJ and Schwinger-Dyson approach.c' 2
•
131 Further, we studied the non

trivial F.P.,which scaling property may save the triviality of the theory. The analysis of this 

work is preliminary. The contributions from the vector and higher spin variables should be 

included. Such contributions will make the analysis fully systematic. But the important fea

ture of the scaling behavior don't depend heavily on higher spin variables. The results show 

the basic property of F .P.s, which is the first step for constructing the consistent non-trivial 

continuum theory. 

The author is grateful to Professors T.Maskawa, K. Yamawaki and K.I. Kondo for their 

interest in this work. 
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Ultraviolet Fixed Point Structure of Renormalizable 
Four-Fermion Theory in Less Than Four Dimensions* 

Yoshio Kikukawa 

Department of Physics, Nagoya University, Nagoya 464-01,Japan 

Abstract 

We study the renormalization properties of the four-fermion theory in less than four dimen
sions (D < 4) in 1/N expansion scheme. It is shown that /3 function of the bare coupling has a 
nontrivial ultraviolet fixed point with a large anomalous dimension ( 'Yti;.p = D - 2) in a similar 
manner to QED and gauged Nambu-Jona-Lasinio (NJL) model in ladder approximation. The 
anomalous dimension has no discontinuity across the fixed point in sharp contrast to gauged NJL 
model. The operator product expansion of the fermion mass function is also given. 

Introduction 

Recently the possibility that QED may have a nontrivial ultraviolet(UV) fixed point has been 
paid much attention from the viewpoints of "zero charge" problem in QED and raising condensate 
in technicolor model. Actually such a possibility was pointed out in ladder approximation in which 
the cutoff Schwinger-Dyson equation for the fermion self-energy possesses a spontaneous-chiral
symmetry-breaking solution for the bare coupling larger than a non-zero value ( ao = eij/ 411" > 
?r/3 = ac)- We can make this solution finite by letting ao have a cutoff dependence in such 
a way that ao( I\) _,. ac + 0 (I\ - oo ), ac being identified as the critical point with scaling 
behavior of essential-singularity type. At the critical point, fermion mass operator ;j;'lj; has a large 
anomalous dimension 'Yti;.p = 1, which is indeed crucial to the technicolorJ2l 

This problem was further analyzed in ladder approximation in the two-coupling space of the 
gauged Nambu-Jona-Lasinio (NJL) model, i.e., QED plus a (possibly "induced") four-fermion 
interaction whose physical dimension becomes 4( =6-2"fti;.p) at the critical point due to a large 'Yti;.p 

(=1).l31 Quite recently a critical line of this model was discovered in the whole prameter space of 
two couplings (ao(I\), go(/\)), with go(/\) being the dimensionless bare four-fermion coupling.l4H5l 
The most striking feature of the model is the appearance of an even larger anomalous dimension 
'Yti;.p = 1 + y'l - ao/ac (2: 1) at the critical line, which in fact suggests the four-fermion 
interaction may become a relevant operator and renormalizable, in sharp contrast to the symmetric 
phase where one obtains a smaller 'Yti;.p = 1-y'l - ao/ac ( < 1) and accordingly the four-fermion 

interaction is irrelevant.l6l 
An important application of this dynamical symmetry breaking with a very large 'Yti;.µ(-::::. 2 for 

ao -::::. 0) is a "top-mode standard model" in which a top quark condensate is responsible for the 
electroweak symmetry breaking.l7l 

However the existence of a critical point for the bare coupling ao(I\) does not necessarily 
imply the UV fixed point for the renormalized one a(µ) in the continuum theory. In fact the j3 

* This talk is based on the work done in collaboration with K. Yamawaki.l1l 
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function was argued to be non-negative, ,8( a(µ)) ;::: 0, based on the spectral representationJ8] 

In ladder approximation, there is no simple way to compute ,B(a(µ)) and/or ,B(g(µ)) through 

the calculation of vertex Green functions and hence no direct comparison with ,B( ao(!\)) and/or 
P(go(!\)) obtained through the gap equation (ladder Schwinger-Dyson equation) for the fermion 
propagator. Also the above discontinuity of 'Y~<ti·l±Jl - ao/ac, across the critical line seems to 
be rather paradoxical (an artifact of ladder approximation ?), though not obviously in contradiction 
to the operator product expansion (OPE)J9] 

In this talk, we wish to clarify these issues by explicitly calculating ,B(g ), 'Y~<ti(g) and the 

corresponding "bare" quantities ,B(go). :Y~"'(go) of the four-fermion theory in less than four 
dimensions (2 < D < 4) in 1/N expansion; the theory in fact was shown to be renormalizable 
and was also demonstrated to have a nontrivial UV fixed point for the renormalized coupling, 
9(µ) = g* f 0, and a large anomalous dimension 'Y~<ti(g*) = D - 2 at the fixed pointJlO] We 

shall show ,B(go) and :Y~</J(go) are very similar to ,B(g) and 'Y~<ti(g), respectively; ,B(go) possesses 
a UV fixed point go(!\) = 9c in much the same way as the ladder QED and the gauged NJL 
model, while :Y~</J(go) becomes large, :Y~</J(gc) = D - 2, although having no discontinuity across 
the fixed point in contrast to the gauged NJL model. The discontinuity of :Y~</J(go) may be traced 
to the fact that usually in ladder approximation go(/\) is not renormalized in the symmetric phase 
: Taking account of the renormalization of go(/\) in our model indeed fill in the gap of :Y~<ti· 

The large anomalous dimension without discontinuity will be shown to be consistent with the 
operator product expansion of the fermion mass function, which actually holds in a quite nontrivial 
fashionJ1l 

1/N expansion and Renormalized theory 

let us start with the following four-fermion theory, 

where 'if;a( x) is a four-component Dirac fermion and the suffix runs from one to N. The space-time 
dimension is less than four. This system has a symmetry under discrete chiral transformation; 
'if;a(x) -+ 151/Ja( x ). By introducing an auxiliary field a( x ), we rewrite the Lagrangian into 

.Cu(x) = ;pai~'if;a - M¢a'ifJa -(N/2Go)0-2 - 0-;pa'if;a -(NM/Go)O-, 

where the a field has been shifted to 0- by a vacuum expectation value (a) = M determined 
through a self-consistent equation, the gap equation, which is derived from the condition that 
the new variable has no vacuum expectation value. 

We now perform 1/N expansion to evaluate Green functions. The fermion propagator and 
the vertex are of order O(N°), while the boson propagator and the tadpole are of order 0(1/N) 
and O(N), respectively. The boson propagator, the gap equation and the scalar vertex in 1/N 
leading order are given by, 

/\ D 

(O-) <X M(l - iG0 j (~1l")~ k2 ~ M2 ) = o, (1) 

r~"'(p, q) = iN D"(p - q)/Go. 
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The gap equation has two solutions, a symmetric solution M = 0 and a spontaneously broken 
one M -f 0. 

This model can be simultaneously renormalized for both solutions as follows. We define the 
renormalized coupling G(µ)(= g(µ)µ2-D); 

r..D-2 µD-2 
Zo = 1 - Go(-- - --), 

9c g* 
(2) 

where 

* (47r)Df2(D - 2) 
g = [8(D - l)f(2 - D/2)B(D/2, D/2)]' 

with f(B) being the gamma (beta) function. Notice that the renormalization constant Zo can be 
defined to be mass-independent (Zero Mass Renormalization Procedure)i11] even for the broken 
solution M -f 0, and also that Z.p = Z17 = 1 in 1/N leading order. 

The fJ function of the renormalized coupling, fJ(g) = µ 
0~~), is calculated from (2); 

fJ(g) = (D - 2) !!.._ (g* -"- g ), 
g* 

which is valid in both phases (solid line in Fig.1). It is now evident that g* is the UV fixed point 
which separates the symmetric and broken phases of the symmetry. In 0=2 we have g* = 0 
((D - 2)/g* - 2/7r), which is just the asymptotic freedom of Gross-Neveu model. 

0 
9c \ 

\ 
\ 
\ 
\ 

Fig. 1. fJ functions of renormalized coupling (solid line), and of bare coupling (dashed line). 

For the scalar vertex, we can take Z;j,,µ = Zc. Thus the anomalous dimension of the mass 
_ olnZ-

operator '1/;a'l/;a. r;j,.p = µ a/t/;. is also obtained from (2), 

(solid line in Fig.2). There is no discontinuity at g(µ) = g*. 
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Fig. 2. Anomalous dimensions of mass operator, renormalized one (solid line) and bare one 
(dashed line). 

Bare quantities 

Let us now turn to the cutoff dependence of the bare coupling in the present model. From 
(2) we obtain, for/\~µ, 

a fJ I go µ(go) = /\
0

/\go G 
1

. d :::= (D - 2) - (gc - go), 
µ, (µ.)- sze gc 

(3) 

where go= Go/\D-2 (dashed line in Fig.I). Since the gap equation (1) leads to a relation, 

/\D-2 gc _go(/\) µD-2 g* _ g(µ) 
= 9c go(/\) g;- g(µ) 

gc turns out to be the critical point which divides the two phases, corresponding to g*. On the 
other hand, from the gap equation (1), we obtain (for go> gc) 

A 8 I go go 
f3(go) = /\f)/\go M-fi:z:ed :::= (D- 2) gc (gc - (1 + M2//\2)), 

which is actually the f3 function widely discussed in the ladder QED and the gauged NJL model. 
In the limit M / (\ ~ 1, this reduces to (3). This reflects the fact that we can renormalize 
simultaneously the gap equation and the boson propagator by the renormalization of the coupling. 

fJlnZ-
The anomalous dimension :Y;j,.µ(go(/\)) = -/\ alp is also calculated from (2), 

(dashed line in Fig.2). This does not have a discontinuity at go(f\) = gc in contrast to the gauged 
NJL model. 

Note that (3) is valid both in the symmetric and the broken phases. This is contrasted with 
the ladder QED in which the renormalization of ao is performed only through the gap equation 
for the fermion propagator, which is trivial in the symmetric phase (lJ( ao) = 0), but not through 
that of other Green functions such as fermion-photon vertex and fermion four-point function. 
The lack of renormalization of the bare coupling in the symmetric phase is also shared by the 
ladder gauged NJL model (lJ(go) = lJ(ao) = 0 below the critical line). 

It may be this non-renormalization of the bare coupling in the symmetric phase that caused 
the discontinuity of the anomalou,s dimension, 'Y;j,.p = 1 ±Ji - a0 /ac, across the critical line 
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in the gauged NJL model. In order to clarify this point in our model, we incorporate a fermion 
bare mass mo into the gap equation ( 1 ); 

(4) 

where M is defined as Sj;1(p) = p- M. mo is renormalized as mo= Z;j,.pmR. In the symmetric 
phase, {4) itself does not require the renormalization of 90· Were it not for any renormalization 
of 90 through other Green functions than the fermion propagator, one would conclude that 

mo "' M(l - A£~2 A::2
) "' Ao. This is indeed what happened to the ladder gauged NJL 

model. However, in the case at hand, 90 is actually renormalized through the boson propagator 
renormalization (2) in such a way that 1- 9o(A)/9c"' A2-D; namely mo,..., 1/AD-2. 

Mass function and OPE 

We define mass function of fermions, the effective coupling and the effective mass as follows, 

and 

L.(q;9R,mR,µ) = B(q;9R,mR,µ)/A(q;9R,mR,µ), 

S(/(q;9R,mR,µ) = A(q;9R,mR,µ)<f.- B(q;9R,mR,µ), 

dm(Q) 
Q~ = --Y;j,.pm(Q); m(µ) = mR, 

Qd~~) = /3(9); 9(µ) = 9R, 

1Q dQ' 
m(Q) = mR exp{- µ -Y;j,.p Q' }. 

Based on OPE and renormalization group equation, the general formula of the asymptotic be
havior of the mass function is; 

(5) 

where -q2 = Q2 ~ µ2, m~. The second term in R.H .S. is a dynamical mass associated with the 

spontaneous chiral symmetry breaking, which was given by Politzer.l12] The first term, a current 
mass with the explicit chiral symmetry breaking, can be obtained as follows. In the scheme of 
ZMRP, we straightforwardly have 

- () 
r~.P(q;9R,mR,µ) = --!:l-S[/(q;9R,mR,µ), 

vmR 

from the corresponding formula in terms of bare quantities. There is no singularity in the limit 
that the renormalized mass goes to zero, so that, we next expand each term in both sides with 
respect to the renormalized mass mR. Then, 



The first term in the expansion of B function is a dynamical mass in broken phase, or is equal to 
zero in symmetric phase because of chiral symmetry. Here we take the explicit breaking term as 
perturbation to broken phase, so that, 

'!;""( ) B'(q;gR,O,µ) 0( 2) (D . l ) 
L q;gR, mR,µ ~ mR A( . 

0 
) + mR + ynamica Mass , 

q,gR, ,µ 

mR { ~t/;( }/ . ~A(. O )Tr f R q,q;gR,O,µ) 4+(Dynamical Mass). 
q,gR, ,µ 

(6) 

Renormalization group equations for A(q; gR, 0, µ)and r~t/;(q, q; gR, 0, µ)can be solved as follows. 

(7) 

(8) 

where -q2 = q2. What we want follows from eq.(6),(7),and (8). 
In the case of the four-fermion theory considered, the scalar vertex and the Wilson coefficient 

function in the zero mass limit are 

- g* 
r~t/J(q,q;g(Q),O,Q) = iND11(0;g(Q),O,Q)/G(Q) = g* _ g(Q)' 

iG(Q) 
C~t/J(q;g(Q),O,Q) = NQ2. 

Thus we obtain the asymptotic form of the fermion mass, 

g* G(Q) { {Q dQ'} -
M ~ m(Q) g* _ g(Q) - ~ exp + }µ 'Y~tJ; Q' (Ol 1/17/J IO)(µ), 

g* G(µ) -
~ mR g* _ g(µ) - N (Ol 1/17/J IO)(µ). 

In the second equality, we use the relation 

G(µ) g* - g(µ) { 1Q dQI} 
G(Q) = g* - g(Q) =exp + µ 'Y~t/J Q' ' 

(9) 

which follows from Za = Z~tJ;· Eq.(9) in fact agrees with the gap equation (1), if it is expanded 
in the renormalized mass, and the subtraction of the operator ~7/; is considered. The subtraction 
procedure is as follows,[13] 

by means of which ~1/1 can be renormalized by Z~t/J defined through the scalar vertex and does 
not mix with the operator 1. Note that the effective mass m(Q) is multiplied by the nontrivial 

factor g* /(g* -g( Q)), which precisely compensates rapid damping of m(Q) ""q-7-i;,(g*) to yield 
the first term of (9), a constant mass. This is a remarkable difference from that in QCD-like 
theories. 
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Summary 

The four-fermion theory in D < 4 dimensions is an explicit example of the model possessing 
a nontrivial UV fixed point in both the bare and the renormalized couplings. It shares many 
interesting features with QED and gauged NJL model in ladder approximation in four dimensions. 
The gap in the anomalous dimension across the fixed point in the gauged NJL model may be 
caused by the non-renormalization of the coupling in the symmetric limit. The large anomalous 
dimension is consistent with the OPE formula of mass function including the nontrivial coefficient. 
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Abstract 

PHOTON PAIRING IN QUANTUM ELECTRODYNAMICS 

T. Inagaki 
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Keio University, Yokohama 223, Japan 

In this talk, we discuss photon pairing phenomenon in the strong coupling phase of mas

sive Quantum Electrodynamics (QED) through the analysis of the Cooper equation. Using 

the well known low energy effective Lagrangian for photon, it is shown that when the cou

pling constant exceeds some finite value, the normal vacuum of QED becomes unstable with 

respect to the formation of the photon pair. It is also found that the pairing instability is en

hanced and the critical coupling has a tendency to become smaller in the presence of the weak 

constant electric field. This may give a theoretical basis for the anomalous GSI e+ e- events. 

1. Introduction 

A number of observations based on the computer simulations using the lattice gauge the

ory and on the Schwinger-Dyson equation suggest that there exists the strong coupling phase 

in Quantum Electrodynamics (QED) when the coupling constant o: = ( e2 / 47r) becomes 

larger than some critical value. 1>2>3> Much effort has been paid to investigate the character

istics of this new phase of QED, because it is hoped that it may give a theoretical basis for 

explaining the GSI peak4) and may resolve the Flavour-Changing Neutral Current (FCNC) 

problem in the technicolour theory.1> The purpose of this talk is to give some discussions on 

the photon pairing phenomenon in the strong coupling phase of massive QED with the help 

of the Cooper equation that is well known in the theory of the superconductivity. The talk 

is based on the paper listed ref.5). 

2. The low energy effective Lagrangian and the Hamiltonian for photon 

Let us begin with the Euler Heisenberg effective Lagrangian for photon Ceff 6) 

(1) 
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the completely anti-symmetric tensor with c0123 = +1 , Aµ the renormalized photon field, 

m the electron mass and a= (e2/47r) the renormalized fine structure constant. Here and 

in the following the indices µ, v, ... run from 0 to 3 and the indices i, j, ... run 

from 1 to 3 . 

The effective Lagrangian in the presence of the external field A~ can be obtained the 

deviding the photon field Aµ in (1) into two parts, 

(2) 

(We use the same notation Aµ as in (1), since there may be no confusions.) Here we define 

the A~ by [oS/oAµ]A=Ac = 0 , where S is the action given by S = J d4xCeff . Then 

we get Leff as the sum of three terms, i.e. Leff = Le+ C +Ca , where 

Ce=-~GµvGµv + a(GµvG,,v) 2 + b(G,,"Gµv) 2 , 

c = -~Fµv Fµv + a(Fµv Fµv) 2 + b(Fµv Fµv) 2 ' 

Ca= 2a( Gl'VGµv)(Fp<r F po-)+ 2b( Gµv{Jµv)(Fp<r Fpu) 

+4a( Gµv Fµv )2 + 4b( Gµv Fµv )2 

+2a( aµv Fµv)(FptrF ptr) + 2b( aµv F,,v)(FPtl' F ptr) ' (3) 

and Gµv = 13µ A~ - av A~ , (Jµv = ~cµvpuaptr . We can neglect Ce since it has no effect on 

our problem. 

From now on, we choose the Feynman gauge for convenience by adding Cap = -H 8µAµ )2 

to Leff but our arguments are gauge invariant, of cource. 

The canonical momentum IIµ defined by IIµ = ( ac~ff I 8Aµ) ( .c~ff = Leff+ LaF ) is 

given by II0 = -(8µAµ) , Ilk= II(i)k + II(2)k , where 

II(l)k = _pOk + 8a(Fµv Fµv)FOk + 8b(Fµv Fµv)FOk ' 

II(2)k =Ba( Gµv G µv) pOk + 8b( Gµv {J µv) pOk + l 6a( Gµv Fµv) GOk 

+l6b(Gµv Fµv){JOk + l6a(Gµv Fµv)F 0k + l6b(Gµv Fµv)fOk 

+8a(Fµv Fµv)GOk + 8b(Fµv Fµv){JOk . (4) 

Therefore, the Hamiltonian density 1ieff = IIµAµ - C~ff = 1i0 +1i1 +1ia is obtained 

up to O(o:2
) as follows; 
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k . . 2 . 'k)2 1£1=-a(2II.Ih - F'1 F;i) - b(2co;fkII'F1 , 

1to = -8a( Gµ"Gµv)(2IIkIIk - pii F;;) - 8b( GµvGµv)(2co;;kIT; pik)2 

-4a( Gii F;; - 2G0i Fo; )2 - 4b[co;;k( G°' pik - IIiGfk)J2 

k ·· ·· o· -4a( 2II Ilk - F'1 F;;) ( G'1 F;; - 2G 1 Fo;) 

-4b(2co;;kII; pik)[co;;k( G0; pik - IIiGfk)] 

3. The Cooper equation 

(5) 

Now if we introduce a<A>t(k) as the creation operator for photon with momentum k 

and helicity A , the Cooper state we use in the following is given as 

IC)= L j d
3

3
k j(k)a<A>t(k)a<A)t(-k)I0)[26<3>(o)t112 , (6) 

A=R,L (27r) 2ko 

where ko = !kl , 5(3)(0) = (27r}-3 J d3x = (27r}-3V ( V is the volume of this system.), 

ID) is the normal vacuum of QED and /(k) the weight function which is determined by 

the variational principle. 

Then, the expectation value of the Hamiltonian H( = J d3x1ietf) under the constant 

electric field only (Go; = E; = const, G;; = 0) , can be written as the sum of three terms; 

(Cl: H: IC)=(CI: Ho: IC)+ (Cl: H1: IC)+ (Cl: Ho: IC) , 

(Cl: Ho: IC)=2 j d3kko IJ(k)l 2 
, 

(Cl: H1: IC)=- : 3 j d3kd3k' kok'of*(k)f(k'){a[4 + (1 + cos8)2
] - b(l + cos8)2

} , 

(Cl: Ho: IC)= j d3k k0"1x(k)lf(k)l 2 
, (7) 

where ": . . . :" stands for the normal ordering and Ho = J d3x1to , H1 = J d3 x1£1 , 

Ho = f d3x1£0 and 8 is the angle between k and k' . If we denote the angle between k 

and the electric field vector E as cp, the function x(k) in (7) can be described as follows, 

x(k) = -16(a + b)k~IEl 2 sin2 cp • (8) 

In order to minimize the expectation value of the normal ordered Hamiltonian under the 

normalization condition (CIC)= J d3kl/(k)l2 = 1 , we take the variation of 

(Cl : H: IC) - &(CIC) with respect to f"(k) . Thus we get the Cooper equation; 

(2ko + x(k) -e)f(k)=~kojd3kd3k'k'of(k') 
ko 11"3 

x { a[4 + (1+cos8)2
] - b(l +cos 8)2

} , (9) 
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where £ is the energy of our Cooper state. 

In the following discussion, we analyze this Cooper equation in two cases separately; 

without or with the external electric field. 

(i) Photon pairing in the absence of the external field. 

In this case, we denote the solution of the Cooper equation as fo(k) and the energy of 

the Cooper state as £0 • Then we obtain the following integral equation. We assume here 

that the solution of this Cooper state depends only on k0 , because the system has the 

rotational symmetry. Therefore, the Cooper equation takes the form, 

(2ko - Eo)fo(ko) = 
21

2
(4a - b)ko f" dk~k'~fo(k'o) , 

371'" lo (10) 

where A is the ultraviolet cut off. Since b = (7 /4)a > 0 , photon-photon interaction in 

massive QED is attractive in the low energy region. 

The solution of (10) has obviously the form f 0 (k0 ) oc k0 (2k0 - £0)-1 and the energy 

eigenvalue of the Cooper state is determined by the following equation, 

g 1" k~dko 1=- ' m4 o 2ko - Eo 
(11) 

where g = (16/15)7r2o:2 . Equation (11) shows that there exists negative energy eigenvalue 

state (£ < 0) when 

[ A ]-1 
g > 90 = 2m4 1 dkok~ = 8(m/A)4 (12) 

This means that when o: > O:c = J15/27r(m/A)2 
, the normal vacuum of massive QED 

becomes unstable with respect to the formation of the photon pair (Cooper instability) and 

the new condensed vacuum is realized after the condensation of these pairs. 

The above results agree qualitatively with those obtained in ref.3) using the B-S equation. 

(ii) Photon pairing under the electric field. 

By assuming that E is small, we solve (9) perturbatively in E . We expand the energy 

£ of the Cooper state and the weight function f (k) with respect to E , 

E=l'o + l'1jEj 2 + ... , 

f(k) = fo(ko) + fi(ko)(k · E)2 + h(ko)IEl 2 + ... (13) 
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e0 and f 0 (k0 ) satisfy (10), of cource. The energy shift e1IEl2 caused by the external 

electric field is calculated easily and is given by, 

2 32 [ (A kgdk0 ] [ (A k~dko ]-l 0 ei!EI = -3(a + b) lo (2ko - e0 ) 2 lo (2ko - eo)2 < . (14) 

Equation (14) means that if we consider up to O(IEl2), the energy eigenvalue of the Cooper 

state becomes smaller, therefore the critical coupling a~ for E # 0 has the tendency to 

become smaller than ac for E = 0 . (Fig.1) 

£/A 

E= 0 

Fig.1 The relation between the energy e /A and the fine structure constant a in the 

absence of the electric field (E = 0) and under the presence of the electric field 

(E = 0). 

4. Comments 

In this talk, we have seen the Cooper instability of photon can occur in the massive 

QED. Therefore, the next task, which is of great interest, is to consider the characteristics 

of the stable condensed vacuum just as in the theory of the superconductivity. Since many 

observable phenomena in this strong coupling phase would be dependent upon the con

denced nature of the vacuum, the formulation has to be established just like the Bogoliubov 

transformation in the superconductor theory, to discuss the characteristics of this phase. 

Especially in connection with the chiral symmetry breaking, it is also very interesting 

whether the photon pairing phenomenon occurs in massless QED because this theory is 
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very unstable in the infrared region. If this phenomenon occurred, what would the critical 

coupling be? 

Although our results bring us a hope for explaining the anomalous GSI event, the photon 

pairing under the strong electromagnetic field should be studied of cource before applying 

our conclusions to the real experiment. 

References 

1) K. Yamawaki; "Rescurrecting Technicolour - Scale invariant Technicolor and a Tech

nidilaton", in the Proceeding of the "International Workshop on the New Trends in 

Strong Coupling Gauge Theories", Nagoya Aug. 1988, ed. by M. Bando, T. Muta and 

K.Yamawaki, World Scientific Pub., Singapole, 1988. and the references therein. 

2) P. Fomin, V. Gusynin, V. Miransky and Yu. Sitnenko; Riv. Nuovo.Ciment . .Q, (1983), 

1. and the references therein. 

3) R. Fukuda; Phys. Rev. Lett. fil, (1988), 482. 

4) Y. J. Ng and Y. Kikuchi; Phys. Rev. 036,(1987), 2880. 0. G. Caldi and A. Chodos; 

Phys. Rev. D36, (1987), 2876. C. W. Wong; Phys. Rev. 037, (1988), 3206. R. 0. 

Peccei, J. Sola and C. Watterrich; Phys. Rev. 037, (1988), 2492. L. S. Celenza, A. 

Pantrizis, C. M. Shakin and Hui-Wen Wang; Nucl. Phys. A489, (1988), 751. 

5) T. Inagaki, M. Komachiya and R. Fukuda; Keio Univ Preprint (1989). to appear in 

Mod. Phys. Lett. A. 

6) H. Euler; Ann. d. Phys. 2.Q, (1936), 398. W. Heisenberg and H. Euler; Zeit. fiir 

Phys. 98, (1936), 714. J. Schwinger; Phys. Rev. ~' (1951), 664. J. Schwinger; 

"Particles, Sources and Fields", Addison-Wesley, Reading, MA, 1973. R. Karplus and 

M. Neumann; Phys. Rev . .?ill., (1950), 380. J. M. Jauch and F. Rohlich; "The Theory 

of Photons and Electrons; the relativistic quantum field theory of charged particles 

with spin one-half", Springer Verlag, New York, 1976. 



174 

A Search for correlated e+e- pairs in the decay of 241 Am 

T. Asanuma, M. Minowa, T. Tsukamoto, S. Orito, and T. Tsunoda 

Department of Physics, Faculty of Science, University of Tokyo, Tokyo 113, Japan 

ABSTRACT 

Correlated electron-positron pairs are searched for in a-decay of 241Am 

using a pair of germanium detectors and plastic scintillation counters. A 

stringent upper limit of l.SxlQ-9 I a-decay is obtained at the 95% confidence 

level to the e+e- pair of invariant mass above l.4MeV I c2, which might come 

from hypothetical neutral particles produced in the a decay of 241 Am. 

The final result of this experiment has been published in ref.[ 1 ]. Please 

refer to it for the detail. 

Referrence 

l.T.Asanuma,M.Minowa,T.Tsukamoto,.S.Orito,andT.Tsunoda, 

Phys.Lett.8237(1990)588 



A Search for Correlated e+ e · pairs in the fission process 

T. Tsunoda, S. Nakamura, M. Minowa, and S. Orito 

Department of Physics 

Faculty of Science 

University of Tokyo, 113 Japan 

abstract 

Correlated electron-positron pairs are searched for in fission 

decay process of 2 5 2 Cf source. A stringent upper limit of (9-

20) x 1 o-9 /fission( depending on the mass) is obtained at the 95% 

confidence level to the e+ e - pair of invariant mass above 40 

Me V / c 2, which could come from hypothetical neutral particles 

produced in the fission process of 252cf. 
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Recent observations of peculiar narrow peaks[ I] in the spectrum 

of electrons and positrons emitted from heavy-ion-collisions at 

Gesellschaft fur Schwerionenforschung(GSI) promoted a series of 

searches for hypothetical neutral particles in e+e- collisions[2,3J, and 

e+-nucleus collisions[4,5,6]. While resonance searches in the e+e

interactions all gave essentially negative results, two experiments at 

Oak Ridge National Lab. by Erb et al.[4} and at Institute for Nuclear 

Study of the University of Tokyo(INS) by Sakai et al.[5] gave 

indications of a similar peak as observed at GSI in the energy 

spectra of final state electrons or positrons emitted in the e+ -U and 

e+-Th collisions. We also became aware of a nuclear emulsion 

study[7] where e+ e- pairs were reported. In independent 

analysis[8,9] three event clusters appeared around masses of 1.2, 

2.1 and 9.2 MeV/c2. These results imply that the origin of the 

narrow spectrum is not a simple neutral particle, but is closely 

related to the dynamical motions of nuclei in the collision. Peccei et 

al.(10] suggested that such dynamical motions of nuclei could 

produce a new phase of strong coupling of QED, and the exotic 

particle in this new phase might decay into e+e- pair. And the data 

of emulsion study suggest that this particle might have excited 

states. 

A spontaneous fission process (of e.g.252Cf) is very similar to the 

heavy-ion-collisions in the following points; 

1. Heavy nucleus (Total Z=98) breaks up like the heavy-ion

collisions just after the collisions occur. 

2. ~Q=200MeV. Each fission fragment accelerates to high 

relative velocity (~"".08) in 10-21 sec. This time span is similar 

to the time span of the heavy-ion-collisions. 

This process is illustrated in Fig. l 



Fission process ; Heavy-ion-collision 
I ft?\ 
I~ 

Z=98 I 

t : 2=92 

CD 
Q=200MeV I 

z~40 1 I 

l lOMeV '/j_ ; 

D•~ 
"/ z~ss 1 

85MeV. 

x -- e+e-

Z=96 

'e t 6.05MeV/u 

Fig.I Fission process and heavy-ion-collision 

We searched for back-to-back e+ e- pairs which might be 

emitted from the decay of the postulated bound state or, more 

generally, neutral particle (X) during the fission of 252Cf source. Our 

experimental set up is sketched in Fig.2. Electrons and positrons are 

detected by four layers of plastic scintillation counters of thickness 

I mm, a I Omm thick lucite Cerenkov counter, and a lead glass 

counter of 4.7 radiation length on each side of the source. Electrons 
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and positrons of 20-100 MeV(total mass equal to 40-200 MeV/c2) 

can be detected by lead glass counters. The linearity and the 

efficiency of these detectors were obtained by a beam calibration at 

Institute for Nuclear Study of the University of Tokyo(INS). 

Lead Glass 

4.7Xo = 80 mm 

Lucite 
lOmmt 

Plastic Scintillators 1 mm t 

:ZSl 

Cf 

Fig.2 Set up 

Lead Glass 

4.7Xo = 80 mm 

Lucite 
lOmmt 

The data were accumulated for a total of 106 sec with a 2µ C i 

252Cf source. No candidate with Ee> 10 Me V was observed. Taking 

into account the detectors' acceptance, we have obtained a stringent 

upper limit of (9-20)x I o-9 /fission (depending on the mass as is 

shown in Fig.3) at the 95% confidence level to the probability of the 

production and e+e- decay of the hypothetical neutral particle with 

mass above 40 Me V /c2. 



xl0-8 

3 

2 

1 

0 
40 80 120 160 200 

Mass(Me V /c'J.) 

Fig.3 Upper limit to the production and e+e- decay of the 

hypothetical neutral particle 
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STRONG COUPLING QED AND GAMMA-RAY BURSTS 

Tomoyuki Hanawa 

Department of Astrophysics, Nagoya University 

Abstract 

This paper reviews observations of gamma-ray bursts (GRB) and their mod

els. GRB is the phenomenon that 1-ray emission from a certain direction increases 

suddenly for a short duration of 48 ms to 1000 s. The GRB sources have not been 

identified yet with known celestial objects. The theories of 1-ray bursts are still con

trovertial and one of them is based on the theory of the phase transition of QED 

under strong electromagnetic fields. 

1. Introduction 

Gamma-ray burst (GRB) is still a mystery in astrophysics although it has 

passed more than 15 years since their discovery. No celestial object has been identified 

with a GRB source. No confident theory has been proposed for the GRB production. 

GRB may involve several different types of phenomena. 

This paper summarizes observations of GRB and describes the constraints de

rived from the observations briefly. Several models of GRB are introduced with 

emphasis on the model by Accetta, Caldi and Chodos1), where 1-rays are produced 

by the phase transition of QED in a strongly magnetized neutron star. See the 

references2l listed at the end of this paper for further study on GRB. 
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2. Observations of GRB 

Gamma-ray bursts are detected with 1-ray and x-ray detectors on board orbit

ing satellites. A typical GRB spectrum is continuous and ranges from several keV to 

100 MeV. Absorption and emission features are reported for several GRBs. Absorp

tion lines3) are found around E = 20 ke V and 40 ke V and intepreted as cyclotron 

absorption by strong magnetic fields of several 1012 G. A possible emission feature 

around 400 keV4) is thought to be a gravitationally redshifted e+ e- annihilation 

line. Both the features imply that a GRB source has strong gravity and is likely to 

be a neutron star. 

The duration of GRB ranges 48 ms to 1000 sand its rise time from 10 ms to 1 

s. Pulsations are found in the time histories of several GRBs. These short timescale 

variations give a constraint that GRB sources should be compact (r < c8t). Again 

a neutron star is a probable GRB source candidate. 

The spatial direction of a GRB source is determined by simultaneous obser

vation of GRB with more than three satellites. GRB arrival time depends on the 

direction of the GRB source and the position of the observing satellite. The celestial 

position of GRB source is derived from the difference in the arrival time. No optical 

counterpart has been found in the region specified by the arrival time analysis. G RB 

sources are distributed isotropically and have no spatial concentrations. This isotropc 

distribution suggests at leaset three possibilities that GRB sources are located (1) in 

the disk of our galaxy, (2) in the halo of our galaxy, or (3) in the cosmological dis-



tance. The first possibility is the most conservative among the three and the distance 

to a GRB source is shorter than 1 kpc if we take the first possibility. 

3. GRB Models 

The plausible hypothesis that GRB sources are strongly magnetized neutron 

stars populated in the galactic disk, is derived from the observational constraints 

shown in the previous section. Most of G RB models are based on this hypothesis 

and called TGNS (Tera Gauss Neutron Star) models. The model by Accetta, Caldi 

and Chodos1) is one of TGNS models. 

TGNS models are classified into several groups according to the 1-ray pro

duction mechanism. The first generation TGNS models5) interprete GRB as the 

accretion of a solid object (comet) onto a neutron star. In their models 1-rays are 

produced by the gravitational energy release of the accreting object. Other TGNS 

models consider thermonuclear runaway on a neutron star6), starquake of a spinning 

neutron star7), and ejection of super dense material from a neutron star8), as GRB 

triggering mechanism. 

In Accetta, Galdi and Chodos's model1) GRB is triggered by starquake. When 

a spinning neutron star is decelerated by the interaction with the surrounding, the 

deceleration is non-uniform and the neutron star is stressed. When the stress reaches 

a critical level, starquake happens and liberates the stress. By the starquake the 

phase transition from the ordinary phase to a new pahse of QED happens. In the 
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new phase of QED the eigenstates are positronium-like e+ e- bound states. Gamma

rays are produced when the new phase decays back to the ordinary phase. 

All the GRB models are still speculative. It is a future problem to construct 

more sophisticated models of GRB. 
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abstract 

FERMION MASS GENERATION 

IN CHIRAL-SYMMETRIC GAUGE THEORIES 

K. Nishijima. 

Research Institute for Fundamental Physics 

Kyoto University, Kyoto 606 

The possibility of generating fermion masses in chiral-symmetric gauge theories has been 

examined with the help of renormalization group equations. 

1. Renormalization Group Equations 

In discussing dynamical generation of fermion masses the most useful tool is the renor

malization group (RG) method, and we shall briefly recapitulate essential features of this 

method. 

Green's functions in ga.uge theories with exponentiated mass-insertion l) a.re defined by 

a(n,m)(x, ... , y, ... , z, ... : I<) 

=< O!T[1fa(x) ... '.ifj'(y) ... q)A(z) ... exp (iI{m J d4uS(u))]IO >, 
(1.1) 

where the scalar density Sis bilinear in the fermion fields and is normalized by 

< plSlp >= u(p)u(p). (1.2) 

u(p) and u(p) denote the Dirac spinors of the fermion fields corresponding to a single fermion 

state IP > of momentum p. Also, for a. given loca.l opera.tor A( w) we can define Green's 

functions of the form: 

A(n,m)(w; x, .. ., y, ... , z, ... : K) 

=< OIT[A(w)1/J(x) ... ~(y) ... q)A(z) ... exp(iKm J d4uS(u))] IO>. 
(1.3) 
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These Green's functions satisfy homogeneous Callan-Symanzik (CS) equations of the form: l) 

('D + n''/F + mJv)G(n,m)( ... ;g, m, a: K) = 0, (1.4) 

where n and m denote the numbers of the fermion fields and of the gauge fields in the 

T-product, respectively, and 

a a a a 
'D = m-+ /3- - 2aJv- - (1 + (l - Js)K)-. om og oa 8K 

(1.5) 

JF• Jv and JS denote, respectively, the anomalous dimensions of the operators ,,P, q,,. and S. 

For practical purposes it is convenient to change the set of parameters from g, m, a and 

K tog, m, a and mn, where mR is called the effective mass and is defined b/) 

(1.6) 

where B(g) is characterized by the following equation: 

dB 
/3 dg + (l - Js)B = l. (1.7) 

In terms of the new set of parameters the differential operator 1J assumes the following 

form: 3
) 

(1.8) 

where JS is related to B through 

1 +JS= B-1. (1.9) 

2. Chiral Symmetry 
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In classical gauge theories the concept of chiral symmetry is equivalent to the vanishing 

of the bare fermion mass mo. The classical Dirac equation for the fermion 

(2.1) 

is invariant under the chiral transformation 

(2.2) 

provided that the bare mass mo vanishes, 

m 0 =0. (2.3) 

The equivalence ceases to be valid in quantum theory, however, because of the divergent 

character of the theory. Indeed, in quantum field theory we often encounter a tricky relation: 

0 x oo = finite, (2.4) 

which is reminiscent of anomalies characteristic of quantum field theory. We shall elucidate 

on this point in Q CD. 

Let us decompose the quark propagator as 

(2.5) 

and let us assume a spectral representation of .6.i(X) as 

(2.6) 

where .6.p(x, µ 2
) denotes the free propagator for massµ. Then the physical mass mis related 

to the bare mass m 0 through 2) 

(2.7) 

provided that < </>~ >= 0. In the Landau gauge the RG analysis leads us to the following 

relationships 2) in QCD: 

(2.8) 



(2.9) 

Then we can deduce on the basis of Eqs.(2.7), (2.8) and (2.9) that 

mo/m=O. (2.10) 

This result poses a serious doubt on the equivalence between chiral symmetry and the van-

ishing bare mass. Suppose that the physical mass mis finite, then Eq.(2.10) implies mo= 0, 

and consequently the resulting theory should be chiral-symmetric no m< tter how we choose 

the physical mass if we should insist on the classical equivalence. This sounds very unlikely, 

however. We must admit, therefore, that the classical equivalence should be broken by quan-

tum corrections, and we must look for a proper definition of chiral symmetry expressed in 

terms of renormalized quantities alone. 

3. Dynamical Breakdown of Chiral Symmetry 

In an attempt to define chiral symmetry we propose to define it by the existence of an 

axial-vector current X>. satisfying the following two conditions: 

fJ>.X>. = 0, 

and the equal-time commutation relations (ETCR): 

8(xo - Yo)[Xo(x), 7/i(y)] = -/s1/i(y)84 (x - y), 

8(xo - Yo)[Xo(x), ~(y)] = ~~(Yhs84 (x - y). 

(3.2a.) 

(3.2b) 

In what follows we shall look for the condition for the existence c f such a current in 

QCD. For this purpose we introduce some unrenormalized expressions f rst. 

A(O) _ .~O) .J,(0) 
).. -Z'I' /~/s'f' ' 

p(O) =i~O)/s?/i(O), (3.3) 

S(O) =~O) 1/J(O). 
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Then we have 

(3.4) 

A flavor-changing current xi0
) can be identified with A~o), but for a flavor-conserving current 

as (3.3) we have. to identify xi0
) with the following combination: 

4
) 

X <o) _ A<o) _ c<o> 
,\ - ,\ ,\' (3.5) 

where ci0) denotes the Chern-Simons term whose explicit form is irrelevant in what follows. 

The current satisfies the ETCR (3.2) so that we may assume non-renormalization of xi0
), 

and it may be identified with the renormalized one: 

(3.6) 

The scalar density is renormalized as in Eq.(1.2), but the pseudoscalar density will be renor

malized by 

moP(o) = mP, (3.7) 

in conformity with the renormalization prescription adopted by Adler and Bardeen~) ,Then 

we have 

(3.8) 

Here we have assumed that all flavors of quarks carry the same physical mass for simplic

ity. This is not the only way of renormalizing p(O), and we shall introduce an alternative 

prescription in what follows. 

The unrenormalized currents satisfy the following ETCR: 

(3.9) 

so that its renormalized version is given by 

5(xo - yo)[Xo(x ), S(y)] = 2ibP(y)84 (x - y), (3.10) 
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where 

(3.11) 

Now we introduce P by 

P = bP, p(o) = ZsF. (3.12) 

The RG equation for b in the Landau gauge reads as 

(3.13) 

and the renormalization prescription (3.7) gives 4 ) 

b = 1- JP• (3.14) 

We can easily find that this bis related to B, with the help of Eq.(1.7), through 

(3.15) 

and 

(3.16) 

Combining these relationships we finally arrive at 

(3.17) 

A relationship indicating the anomalous character of the theory is illustrated by 

mB(g) = moZs. (3.18) 

The bare mass mo is zero and Zs is divergent, whereas the /.h.s. is finite in general, so that 

this relationship is an avatar of the anomalous relation (2.4). 
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Thus, in order for the theory to be chiral-symmetric Eq.(3.1) must be satisfied. This in 

turn implies 

mB(g) = 0. (3.19) 

There a.re two ways of satisfying Eq.(3.19), namely, either m = 0 or B(g) = 0. In the former 

case the fermion is massless and the theory is trivially chiral-symmetric, but in the latter 

case chiral symmetry is dynamically broken thereby generating the NG boson. 

Next, by starting from Eq.(3.8) and the ETCR (3.2) we can derive the Ward-Takahashi 

identity in an obvious notation: 

(3.20) 

where p and q are outgoing and incoming momenta, respectively. In the lowest order pertur

bation theory, rs,..(p,q),rs(p,q) and s;1(p) reduce to />.%,/a and (ip·1+m), respectively. 

Let us assume that m-:/:- 0 and B(g) = 0, corresponding to Eq.(3.1), so that r 5 = 0 in 

Eq.(3.20), and then let us take the limit g ._.. p to find 

(3.21) 

The non-vanishing of the r.h.s. for m -:/:- 0 implies the existence of a massless pole, in the 

vertex rs,..(p, q), of the form 

(3.22) 

indicating generation of a massless NG boson. 

4. The Schwinger-Dyson Equation 

When mB(g) -:/:- 0, the theory is not chiral-symmetric. First, we shall study the 

Schwinger-Dyson (SD) equation in this case. Then the massless NG boson is absent, and 
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Eq.(3.20) reduces, in the limit q--> p, to 

{f&,S_F1(p)} = 2mrs(p,p). (4.1) 

The vertex function rs (p, p) satisfies a Bethe-Sal peter (BS) equation of the following form: 

(4.2) 

where spinor indices have been suppressed. By combining Eqs.(4.1) and (4.2) we also have 

a BS equation for the l.h.s of Eq.(4.1): 

(4.3) 

Because of the divergent character of the theory we find 2) 

z;1 = o, mo = O, Z2 = finite, (4.4) 

and both Eqs.(4.2) and (4.3) reduce to homogeneous ones. 

The so-called SD equation is then given by 

(4.5) 

Although mo has been put equal to zero, the system described by this equation is not chiral

symmetric. In wha.t follows we shall study the behavior of {1'5 ,Sj;1 (p)} for large values of 

p2 with the help of the RG equation: 

The anomalous dimensions are given in QCD by 

b 3 
/3(g)=-2g + .. . 

/s(g) = - cg2 + .. . 

/8(g) = - /p(g), 

/F(g) "'0(g4
), 

. b = - 1
-(33 - 2i'l1) 

' 241r2 ' 

. c = 1/21r2 

' ' 

(4.6) 

(4.7) 

in the Landau gauge. By solving Eq.( 4.6) we find the asymptotic form of rs for large values 
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of p2 as 

( 
p2 )-c/b 

f 5(p,p;g, m, mR),...., /aB(g)Z2(g)C(g) ln m 2 , (4.8) 

and consequently 

(4.9) 

This corresponds to Lane's G+ solution~) 

Next we shall study what will become of the NG boson when mB(g) -:/= 0. The operator 

Pis BRS invariant, and we expect 

< OjF(x)F(y)jO >-:/= 0. (4.10) 

When color confinement is realized, composite hadron states saturate the intermediate 

states.
7

) In particular, we pick out a single particle state Irr > satisfying 

< OIF(x)lrr >-:/= 0. (4.11) 

Then Eq.(3.17) implies< OIXA(x)lrr >-:/= 0 and we may put 

(4.12) 

which defines the proportionality constant M(g). Combination of Eqs.(3.17) and (4.12) 

yields 

(D- µ 2
) < OIF(x)lrr >= 0, (4.13) 

where 

µ 2 = mM(g)B(g). (4.14) 

Thus, in genera.I, we have a massive pseudoscala.r bound state instead of the massless NG 
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boson unless B(g) = 0. We shall study the high p2 behavior of the BS amplitude 

(4.15) 

For this purpose we introduce the operator product expansion and assume that it is domi-

nated by the pseudoscalar term: 

so that we have 

The RG equation for f(x) is given by 

('D + 2/F - /s)f(x) = 0, 

and the high p2 behavior of f(p), Fourier transform of f(x), is given by 

The amputated BS amplitude r(p) for p2 - oo is related to f(p) through 

so that we have for p2 - oo the asymptotic form of r(p) as 

1 ( p2 )c/b 
r(p) rv p2 ln m2 

This corresponds to Lane's G _ solution.6) 

(4.16) 

(4.18) 

(4.19) 

(4:20) 

(4.21) 



196 

So far we have assumed mB(g) =f 0 and have obtained massive pseudoscalar bound 

state, but what will happen when m =f 0 and B(g) = O? Let us assume that B(g) vanishes 

for g = 9x, 

B(gx) = 0, (4.22) 

then Eq.( 4.14) indicates that the massive pseudoscalar boson reduces to the massless NG 

boson. Causality implies 

µ 2 = mB(g)M(g);::: 0. (4.23) 

Since B(g) changes its sign at g = 9x, so does M(g), too, by causality. Namely, we have 

M(gx) = 0, (4.24) 

and hence Eq.(4.12) leads us to 

< OIP(x )I'll" >= 0, for g = 9x· (4.25) 

In this case we are aware that the r.h.s. of Eq.(4.17) vanishes, and Eq.(4.17) must be 

modified as 

Non-renormalization of X>.., expressed by Eq.(3.6), implies 

Ix= O, (4.27) 

and the RG equation for h(x) is given by 

(1J + 2/F)h(x) = 0. (4.28) 

The high p2 behavior of h(p) is then given by 

(4.29) 

The amputated BS amplitude u(p) defined by an equation similar to Eq.(4.20) behaves for 



large p2 as 

( ) 
const 

up ""·-2-· 
p 

u(p) is proportional to Eq.(3.21) so that we find 

_ 1 const 
bs, SF (p)}"" - 2-, for g =Ox· 

p 

This is quite distinct from Eq.( 4.9). 
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STABILITY AT THE ORIGIN IN (2+1)-DIMENSIONAL QED 

Ta.ka.yuki Ma.tsuki 

Abstract 

Tsukuba. Institute of Science a.nd Technology 

1601 Ka.mita.ka.tsu, Tsuchiura., 300 Ja.pa.n. 

Sta.bility at the origin in (2+1)-dimensional QED is studied in the leading order of the 

1/ N expa.nsion with N four-component Dirac fermions. It is found that there are two critical 

flavor numbers: one is for fermion self-energy a.nd a.nother for wave-function renormalization. 

It is shown that the effective potential in the direction of fermion wave-function renormal

ization is always unstable for a.ny flavor number N, which reconfirms that chiral symmetry 

is broken for a.ny N. 

1. Introduction 

Qua.ntum Electrodynamics in 2+1 dimensions (QED3) has been extensively studied by 

many people1
"'

7 with a hope that this might be a.nother exa.mple ha.ving a nontrivial critical 

behavior as (3+ 1 )-dimensional QED does. 

The existence of a critical flavor number in this model was first suggested in Refs. 3) 

a.nd 4) claiming that the leading order terms in 1/ N are kept inta.ct. This conclusion seemed 

to be also supported by the Monte Carlo calculation. 5 On the other hand there appeared a. 

couple of pa.pers in which it was cla.imed that chiral symmetry is always broken for any N, 

i.e., there is no critical flavor number at all by ta.king fermion wave-function renorma.liza.tion 

into account properly.6•7 

In this pa.per I will show that the la.tter statement is true by studying sta.bility at the 

origin in QED3. Tha.t is, a quasi-origin, which is defined to be fermion self-energy B(p) = 0 

and wave-function renormalization A(p) = 1, is always unstable and hence chira.l symmetry 

is broken for any N. An unstable quasi origin is attributable to instability of the effective 

potentia.l for any N in the direction of fermion wave-function renormalization. There is the 

same critical flavor number in the direction of fermion self-energy as that in Refs. 3) and-±). 
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2. Stability at the origin in QED3 

In the following I will apply to QED3 the effective potential proposed by Cornwall, Jackiw 

and Tomboulis (CJT)8 but the results would not change if an alternative effective potential 

would be used (see, for instance, Ref. 9). Let us consider the case of N fermion flavors in 

the Landau gauge. Then the CJT effective potential defined as 

VcJT = -i J (dp)Tr (lnS01 (p)S(p) - S01(p)S(p) + 1) 

igZJ J + 2 (dp) (dq)Tr [S(p)'r"S(q)rvJ Dµ.v(P - q), (1) 

is calculated to be 

00 

v; _ 2N id 2A(p)(A(p) -1) p2 + B2(p) 
CJT - 11"z PP A2(p)p2 + B2(p) 

0 
00 00 

a j j 1 1 
- 11"4 pdp qdq A2(p)p2 + B2(p) A2(q)q2 + B2(q) G(p, q) 

0 0 

x [-4B(p)B(q)ln c~~:I:~) +A(p)A(q)I(p,q)], (2) 

where 

i i 

Sa(p) =fl' S(p) = A(p)p - B(p)' 

and the form of the vertex function is assumed to be 

e2N a=-, 
8 

r µ. = /µ.G(p, q) = /µ. [A(p)B(p - q) + A(q)O(q - p)J. 

(3) 

(4) 

(5) 

Since spontaneous symmetry breakdown is a phenomenon in a global configuration space, 

study of infrared behavior of physical quantities in the momentum space is necessary and 
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enough. Henceforth I will use the following approximation which leaves only terms dominant 

in the infrared region: 

ln P + q +a = 2B( - ) (! - pq + £ (!)3 + p2q] 
I I - p q - -2 3 - !'_'l p-q+a a a a ~ 

[
p pq 1 (p)3 pq2] + 2fJ( q - p) ~ - &2 + 3 ~ + a3 . (6) 

The Schwinger-Dyson equation for QED3 is decomposed into 

00 

8 lj ~ 3 ] A(p) = 1 + 37r2 N p3 A(q)q G(p, q.) [q3B(p - q) + P fJ(q - p) (7) 

0 

and 
00 

8 1 J dq B(p) = 7r2 NP A2(q)q B(q)G(p, q)[qfJ(p - q) + pfJ( q - p)J, (8) 

0 

which are obtained by functionally differentiating the CJT effective potential, (2), and by 

retaining only terms of all order in A(p) and linear in B(p ). All order terms in A(p) are 

kept since the vacuum expectation value of A(p) is not known a priori. When the effective 

potential is expanded around the stationary point which is obtained by solving the Schwinger

Dyson equation, one can study stability at the stationary point. 

1 j j 5
2
VcJT I VcJT [A(p),B(p)] = VcJTls.P. + 2 dp dqoA(p) 8A(p)8A(q) S.P. 8A(q) 

1 j j 02VcJT I + 2 dp dqoB(p) oB(p)oB(q) s.P. 8B(q). (9) 

There appears no term like 01::i~'fl(q) ls.P. since it vanishes for the stationary point, B(p) = 0. 

It is a prerequisite for finding the stationary point to numerically solve the Schwinger-Dyson 

equation. Here I would like to show a qualitative feature of what happens in the vicinity of 

the stationary point and hence I will substitute the quasi-stationary point for the true one 

to estimate the second derivatives of the CJT effective potential. The quasi-stationary point 

adopted in this pa.per is defined to be 

Ao(p) = 1, Bo(p) = 0. (10) 

Here only Ao(p) deviates from the stationary point in the amount of order of l / N and hence 

I would expect the results derived from this quasi-stationary point would not significantly 



differ from the one derived from the true origin. Then the second derivatives are given by 

8
2

VcJT I 2N [ 2 ( ) 8 1 { 3 3 ] 
8A(p)8A(q) Q.s.P. = --;z p 8 p - q - 3tr2 N pq q B(p - q) + p B(q -.p)} ' (11) 

8
2
VcJT I 2N [ 8 1 ] 

8B(p)8B(q) =-;z o(p-q)-tr2Npq{qO(p-q)+pB(q-p)} · 
Q.S.P. 

(12) 

Therefore the second and the third terms in the expanded effective potential, (9), are given 

by 

1 j j 02VcJT I 2 dp dq8A(p) 8A(p)8A(q) Q.S.P. 8A(q) 

00 

N J u
2 +w2 

= - 2-;rJ duo'ifJA(-u) uZ + f O'l/JA(u), 
-oo 

1 j j OZVcJT I 2 dp dqoB(p) 8B(p)oB(q) Q.S.P. oB(q) 

00 

N J u
2 +w2 

= 2tr3 du81/;a(-u) u2 +; o'l/Ja(u), 
-oo 

where t = In(p/a) and 

3. Discussions 

2 1 8 
WB =----. 

4 7r2N 

(13) 

(14) 

(15) 

(16) 

Let us discuss stability at the quasi-stationary point by using the results derived in 

the former section. When w~ > 0, the second term in (9) becomes negative definite and 

when w~ < 0, it becomes indefinite. In either case, the potential becomes unstable in the 

A-direction even though it gives one critical flavor number NA = 32/9tr2• On the other 

hand when w1 > 0, the third term in (9) becomes positive definite and when w1 < 0, 

it becomes indefinite, which means the potential becomes stable in the B-direction when 
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N > NB = 32/7r2• This critical flavor number, NB, is nothing but the one discovered in 

Refs. 3) and 4). In any case since the A-direction is always unstable, chiral symmetry is 

broken for any N. These critical flavor numbers are related to the convergence condition for 

solving the Schwinger-Dyson equation given by (7) and (8). This confirms the results of Ref. 

6) in which numerical calculations showed the broken chiral symmetry for any N. Reference 

7) also derived the same conclusion as Ref. 6) by analytically solving the approximate 

Schwinger-Dyson equation. 

The accounts in this pa.per of chiral symmetry breakdown in QEDs for any N using 

stability a.t the origin explain why the Monte Carlo calculation obtained the same conclusion 

as Refs. 3) and 4). It is because the effects of fermion wave-function renormalization a.re 

completely neglected and because the lattice calculation deals with only bare quantities. 

I have used the quasi-stationary point to show instability of the effective potential in the 

direction of fermion wave-function renormalization. The details using the true origin will be 

published in a separate pa.per.10 
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abstract 

EFFECTIVE ACTION ANDS MATRIX 

- THE ON-SHELL EXPANSION -

M. Ukita 

Department of Physics, Faculty of Science and Technology, 

Keio University, Yokohama 223, Japan 

The on-shell expansion of the effective action is discussed from a new standpoint 

and its close relationship to the S matrix is revealed. The coherent states naturally 

appear in the course of the argument and play an important role in understanding the 

equivalence between the on-shell expansion of the effective action and the generating 

functional of the S matrix elements. 

1. Introduction 

The effective action(EA) is both an important concept and a useful tool in quan

tum theory by which we can grasp the physical content of the quantum system by 

analogy with the classical action. Recently, we have derived in Ref. l(called I 

hereafter) the on-shell expansion of the EA and discussed its relation to the S matrix 

elements. Here we consider the meaning of each step taken in I to understand the on

shell expansion more closely. 

In Sec. 2, we review some results of I and consider the meaning of it m Sec. 3. 

Sec. 4 is devoted to the summary. 

2. The On-Shell Expansion of the Effective Action 

In this section, we will give some brief summary of the results of I which are con

nected with the present arguments. Throughout this article, we take the theory of the 

real scalar field <I> as an example, however, it is possible to extend the investigations 

here to other systems. 

The generating functional W[J] of the connected Green's function yy(n)(x
1
,x

2
, ••• ,xn) 

is defined by the functional integral, 



exp( iW[ J])=: J D<.Pexp( i J d4x[L,( <.P )+J( x )if?( x)]), (1) 

where L,(<.P) is the Lagrangian and J(x) is an external source. w<n) is obtained from 

W[J] by the functional differentiation as follows: 

(2) 

The EA r[¢] is defined by the Legendre transform of W[J], 

r[¢]=:W[J]-f d4xJ(x)<f>(x), (3) 

where ¢(x)=:8W[J]/8J(x) and the proper vertex function or the one-particle

irreducible(lPI) Green's function r<nl(x1,x2, ••• ,xn) is given as 

(4) 

where ¢0( x) is the vacuum expectation value of the field operator ~ and is determined 

by the stationary condition of the EA (or the equation of motion of</>), 

b"r[</>] =0, 
6</>( X) <f>(z)=</>o(z) 

(5) 

which is equivalent to the requirement that the external source vanishes. 

We can get a solution of (5) different from <f>0(x) by the following perturbative cal-

culations. 

Expanding <f>(x) into the series <f>(x)=¢0(x)+L;~1~q,(n)(x) and substituting this 

series in (5), instead of ¢0(x), we get the equation 

=0, (7) 

where the integration with the repeated arguments are understood and the first term is 

omitted because of (5). We regard ~q,(n) as the quantity of the magnitude (~</>(llt, 
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and determine it successively. 

The first order equation, 

(8) ' 

is a wave equation, which gives the particle spectrum of the theory, and we call it an 

on-shell condition. It has been used to discuss the stability of the vacuum in Ref. 2. 

As for the higher order equation, it determines .6.<P(n)(x) in terms of .6.<P(ml(x) with 

m< n and we reach a simple expression, 

where w<n+l) is the connected Green's function whose external legs a.re amputated by 

the inverse of the propagator, [ w<2)r1• When we evaluate r[¢] at this new solution 

<P=<Po+ :~::>~<P(n), we have obtained in I the on-shell expansion. 

3. Meanings of the On-Shell Expansion 

In the preceding section, we have got the two different functions which satisfy the 

stationary condition of the EA, namely, ¢0 and ¢0+L:>~¢(n). We will consider the 

meanings of them in the following, in order to clarify the relationship between the on-

shell expansion of the EA and the S matrix elements. 

The former solution ¢0(x) has been regarded as the vacuum expectation value of 

the field operator cl>(x), but this interpretation is justified only when the vacuum state 

is chosen as the boundary states in the definition (1). Usually, we adopt the '-ie' 

prescription3•
4

) which guarantees the boundary states to be the vacuum. Here we 

adopt this convention and regard ¢0 as the vacuum expectation value and hereafter it 

is assumed to be a space-time independent constant because of the translational invari-

ance of the vacuum. 

As for the latter, ¢0+ }}6.¢(n), we cannot adopt the '-ie' prescription, since it will 

make ¢0+~:~.6.¢(n) and ¢0 identical, which implies .6.¢(1)=0. Therefore, in the following, 

we will look for the boundary states corresponding to .6.¢(1)*0, which is not the 

vacuum. 



The wave function ti.¢<1>(x) determined by the wave equation (8) can be expanded 

as 

(10} 

where /,.( x) is given by 

(11} 

where k0=(k2+m2
) 112 (m is the mass of the particle), kx=k0x0-k·:r:, and c<±)(k) are 

arbitrary function of the spatial momentum k. These are determined by the boundary 

conditions imposed by the initial or the final states. 

Substituting (10) into (9), we integrate over x;'s by the use of the (inverse of the) 

Lehman-Symanzik-Zimmermann(LSZ) reduction formula. After some calculations, 

we get 

where the asymptotic fields, 

(13) 

are defined by the LSZ asymptotic condition with the weak limit 

(x0-+(-)oo) . (14) 

The subscript 'c' in (12) implies that only the connected parts are taken. Then we 

finally evaluate the sum </>o+:Eti.</>(n) with (12) as 

<Po+~ ti.¢>(n) = <0 I e z-112f d3k(f+)(k)ii-(J:) <f.( x )e z-112f d3pd-)(p)ii~(p) I 0> c 

n=l 

(15) 
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From (15), we find that the solution ¢0+~.6.¢<,.l(x) is the expectation value of the field 

operator cf?( x) with respect to the coherent states J c<±» characterized by the functions 

In terms of these coherent states, the physical meaning of the on-shell expansion 

can be made clear as follows. We use these coherent states as the boundary states in 

the definition of W( J] as 

exp( iW(J])=< c<+>Jexp( i J d4xJ( x)cf?( x)) I c<-», {16) 

which of course gives the relation 

{17) 
1=0 

The Legendre transformation from this generating functional provides the EA 

defined through the coherent states. On the other hand, the generating functional of 

the S matrix elements is given by the amplitude between the coherent states as 

related to the generating functional of the connected S matrix elements as seen from 

the equation 

{18) 

Of course, we can obtain all the S matrix elements by the functional differentiation 

ir[¢0+~.6.¢(n)] with respect to c(±l(k) as 



(19) 

We have now accomplished our purpose: to understand the meaning of the on

shell expansion of the EA and to clarify its relation to the S matrix. The details of the 

above arguments will soon appear. 5) 

4. Summary 

We have found that the on-shell expansion of the EA is directly related to the gen

erating functional of the connected S matrix elements. This shows a new aspect of the 

EA, that is, it provides all the S matrix elements in addition to the vacuum expectation 

value of the field operator, the spectrum of the particle excited above this vacuum. In 

other words, all the observables are calculable through the on-shell expansion. 
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INVERSION METHOD AND ITS APPLICATIONS 

R. Fukuda 

Department of Physics, Faculty of Science and Technology, 

Keio University, Yokohama, 223 Japan 

Abstract: 

The inversion method, which is the generalization of the method of the 

free energy, and the effective potential (or the action), is explained and 

applied to several problems. These include strong coupling QED and the 

confining parameter in QCD. 

Introduction In various fields of physics, we encounter the situation 

where the ground state which is realized in nature is not that of the naive 

perturbative one. It is realized after the "condensation" of the objects which 

behave as normal particles in the perturbative phase. The attractive interac

tion between normal particles is the driving force of the condensation. The 

usual way to study the phenomenon is to introduce the free energy and find 



its minimum. For the field theory of zero temperature, the effective potential 

or the action plays the role. Let us recall the way how they are defined. 

First the Lagrangian L of the system is changed into L1 = L+JO where 

J is the artificial source and the operator 0 is chosen to break the symmetry 

of L so that the order parameter < 0>=4> calculated by L1 is non-zero even 

in the perturbation theory. Calculate the vacuum action functional W[J] in 

the theory governed by L1 and the effective action r[¢] is defined, through 

the Legendre transformation, as 

r[¢J = W[J]-Jaw/aJ, 8Wj8J = ¢. (1) 

The relation </> = 8W/8J is inverted to express J as the function of¢. The 

stationarity condition ar / o<f> = -J = o assures the recovery of the original 

theory at this point. 

Inversion Method We can generalize the above procedure to the 

case where </> is not written as the expectation value of some operator. 

Change L to L1 where L1=0=L, which is the only requirements for L1 . It 

need not be L+JO. Then the order parameter </> is calculated in perturba

tive series; 

00 

</> = ~ (g2)nhn(J) (2) 
n=O 

where g is the coupling strength and hn( J) is calculable diagrammatically. 

The modified Lagrangian L1 is so chosen as to get the non-zero series (2). 

Now we invert (2) to get 

00 

J = ~ (g2rtm(<f>). (3) 
m=O 
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The co-efficient function f m( ¢>) for m-5,N are obtainable from hn(J) with 

n5,N. The solution to 1=0 is looked for in the inverted form (3). We can 

get the non-perturbative solution, if it exists at all, by this method besides 

the trivial solution ¢=0. 

Illustration The ladder Schwinger-Dyson equation is derived by 

this method as an example. Take the Lagrangian LqED of the Quantum 

Electrodynamics (QED) and consider the electron self-energy function 

Sp(p). Here g=e, the charge of the electron , and the source term is intro

duced by changing the action of QED by adding J d4pJ(p )1/j(-p )1/J(p) where 

'1jJ is the electron field. The original series (2) up to e2 is 

where Dl) is the photon propagator and (St)-1(p) = S01(p)-iJ(p) is the 

inverse of the free electron propagator in the presence of J. The lowest 

inversion (e2=0) gives us J(p) = iSp1(p)-iS01(p) so that the inverted series 

up to e2 is 

which is just the ladder Schwinger-Dyson equation if we set J=O. 

Strong Coupling QED2) Consider the gauge invariant order param

eter </>=<1/J(x)'l/J(x)> and the term J f d4 iif(x)1/J(x) is added to the action of 

QED. The vacuum action function W[J] is calculated. It has the form 



00 

W[J] = -iTrln(S~)-1 + (i/2)TrlnD01 - iL; (e2)nw}n>, (6) 
n=l 

where (St)-1 = p+J and w}n) is the vacuum graphs of the order ( e2 )n in the 

presence of J. We calculate</> by the formula</>= fJW/8Jjfl. where fl is the 

space-time volume. The term up to e2 is calculated below. It involves the 

two loop diagram having one photon propagator and is evaluated by opening 

the photon propagator, which is nothing but the vacuum polarization graph 

with mass insertion of the electron. This produces the gauge invariant results. 

The original series is obtained in this way which is given for small J as; 

where A/Ap) is the electron (photon) momentum cut-off. The inverted series 

is 

where a=e2/47r and ac=27r/3TJ, TJ=Ap/A1. This is noting but the negative of 

the derivative of the effective potential. Equation (8) has the same form, 

except for the (ln</>2) 2 term, as the Landau theory of the phase transition. 

We conclude; for a>ac the chiral condensation (</>-::PO) is realized. Our theory 

predicts the mean field type behavior near a=ac; ¢>"-'( a-ac)112 /ln( a-ac). 

QCD and string tension For Quantum Chromodynamics ( QCD), 

the expected non- perturbative solution behaves near g=O as 

¢> 118,..,µexp(l/2b0g2), where all the quantities are the renormalized ones and µ 

is the subtraction point. The index 8>0 is the dimension of </> in mass unit 
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and f3(g)=b0g3+b1g5+ · · · . We change the variable from </> to t=.g2ln¢116 
/ µ 

which is of the order unity near the solution. The source J is assumed to 

have the dimension of mass and consider the following inverted series by 

extracting the factor ¢116. This factor is always present since <P=O is one of 

the solution to J =0; 

00 

J = ¢1//iL, (g2)nfn(t)=.¢1fliJ(t,g2). (9) 
n=O 

Before calculating f n( t) explicitly, the renormalization group equation tells us 

much about the form off n( t). 

In order to see this, we choose J in such a way that J is independent of 

the subtraction parameter µ: µ dJ =0. This can always be done by multiply
dµ 

ing a suitable factor in front of J. By noting that when applied to the right 

hand side of (9), 

d a a d¢116 a 
µ- = µ-+f3(g)-+µ----, 

dµ {)µ 8g dµ 8¢1/li 

and by requiring that the each coefficient of (g2)n vanishes, we get the set of 

ordinary differential equations for fn( t). The first member of this set is 

dfo 
where f 0 ' =-- and 

dt 

The solution is 

(2b0t-l)/0 ' (t)+~f0(t) = 0, 
8 

1 d</> 
-µ- = 1(9) = 11l+r2l+ · · · · 

</> dµ 

(10) 

(11) 

(12) 



where C is the integration constant. Since b0<0, 8>0, the non-trivial solu

tion to J=O is present if 11>0. 

The sign 11>0 has the physical meaning. For the two quark field </Jrvqq 

or qq for instance, the first term of the anomalous dimension is calculated by 

the one gluon exchange diagram between two quarks or antiquark which 

determines whether the force acting between two fermions is attractive or 

repulsive. The correspondence is indeed1) 

11>0 +-+ attractive, 

11<0 +-+ repulsive, 

therefore our conclusion is that ¢ condenses as long as we have the attractive 

force between two particles. The condition 11>0 for the condensation of ¢ 

can be used as a generalized criterion in the case where ¢ is not written as 

the product of two fields. 

Now we know that the correct non-perturbative value of¢ is 

¢1/6 =µexp/ l-1(x)/8 dx. 
(3( x) 

Thus the variable t has the expansion 

2 ¢116 1 1 { 11 bl 2 2 t = g ln-- = --- -+-}g Ing-
µ 2b0 2b0 8 b0 

+ cg2+dg4+ · · · , 

(13) 

(14) 

where C, d etc. are some constants. The solution (12) to the lowest trunca

tion reproduces the first term of the expansion (14). In order to discuss the 

higher truncation systematically and most conveniently, we define 7( t,g2) as 

where 

l(t,g) = K(g)-1f(t,g)1f11, 

g dx1(x) 
K(g) = lim g5exp-1 

90->0 90 8ry(3( x) 

(15) 

(16) 
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12 bl 
= g2{1+(---)g2+ ... }, 

11 bo 
(17) 

11 
1J = ---. 

2c5b0 

(18) 

Remember that K(g) has the Taylor expansion about g=O. The merit of 

using 7( t,g) is that it satisfies a simple equation; 

(19) 

where <fa is fixed in this equation and 

/3• (g) = ,6(g) = b g3+b gs+ ... 
l--y(g)/c5 0 1 ' 

(20) 

• /1bo 
bl = bi + -c5-. {21) 

The function ]has the expansion 

W_1(t) 2 
1(t,g2) = + W0(t)+g W1(t)+ .... 

g2 
(22) 

and W1(t) (Z~-l) satisfies 

(l-2b0t)W1'-2b0ZW1-2b1[tW1_ 1 '+(l-l)W1_ 1] = 0, (23) 

where W _2:=0. The solution up to W0 is given as 

2 C_1 1 C_1b1 
7(t,g) = -(t--) - --ln(l-2b0 t) + C0 (24) 

g2 2b0 2b5 

with C_1 and C0 being the integration constants which are calculated 

through the series (9) diagrammatically. The zero of (24) is slightly modified 

compared with the lowest value -
1
-, and it behaves for small g2 as 

2b0 

t = - 1-· _ lg2lng-2 + O(g2lnlng-2) 

2b0 2bJ 
(25) 



so that we have recovered the second term of the correct expansion (14) but 

the term O(g21nlng-2) should be O(g2). The discrepancy is of course due to 

the truncation (24) and we have for ¢116, the solution to 7=0, the scale non

invariant behavior under the variation ofµ 

b, 

¢1fc(g2).., ex: (lng-2) 2b~. (26) 

The right hand side should be constant for the correct solution since the left 

hand side is the scale invariant quantity. 

We can improve the situation by taking into more terms of W1• This 

can most conveniently be done by deriving the partial differential equation 
-2b0 

for K(t,g2)=::--x(W0+g2W1+g4W2+ · · · ). By multiplying (g2) 1 to (23) 
C_1 

and summing up from l=-1, we get 

(27) 

b 1 "' bo 
where e2=g2-, K(s,e2)=-~-K(t,g2) and s=l-2b0t. We sum up the term 

bo b 1 

(ln~)m with l::;m::;Z appearing in W1 which are the most singular terms in 
s 

W1. This can be accomplished by looking for the solution to (27) with l+e2 

replaced by unity. So that we solve 

(28) 

and get the solution in the implicit form, 

- ~ ) K0 =" ln( s+e K0 ) (29 

= ln(s+e2ln(s+e2ln(s+e2ln · · · ))). (30) 

The lowest solution K0=lns reproduces (24). The next truncation gives 

K0=ln( s+e2lns) which leads to the solution 

t = -
1
- - ~g2lng-2 + O(g2lnlnlng-2) 

2b0 2b5 
(31) 
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and for ¢>118 

(32) 

The situation is improved but still it is not scale invariant. 

In order to obtain the scale invariant formula for the solution ¢>, we have 

to use the exact solution K0 given by (29). Therefore we solve (29) and the 

equation 

s b1 - 'X - + -Ko + <Jo = 0 
g2 bo 

simultaneously where C0=-2b0 C0/ C_1• By inserting 

obtained from (29) into (33), K0 is given by 

rv 2'X K0 = ln(-g 0 0) 

which leads to 

so that 

(33) 

(34) 

(35) 

(36) 

The scale parameter µ is eliminated using the QCD scale parameter A QCDi 

1 b1 -bog2 
AqcD = µexp{-- - -In( ) } 

2b0g2 2b5 b1 2 1+-g 
bo 

(37) 

which is the expression assuming f3(g)=b0g3+b1g5. From (36) and (37) we 

finally get, by taking the limit g-tO, 



(38) 

where D is the numerical constant given by 

Co bi Co 1'1 
D = exp{-+-ln(-)+--ln(-C0)} 

2b0 2b5 b0 2c5b0 
(39) 

Co 11 Co 1'1 
= exp{-+-ln(-)+--ln(-b0)}. 

2b0 2b5 b0 2c5b0 
(39') 

The above two expressions are equivalent. These formulas suggest that the 

solution exists as long as C0<0. The numerical evaluation of C0 for the case 

of 

<P=<7f1/J>, _!_x(string tension), 
g2 

in QCD is under way but the sign of C0 for these quantities is indeed nega

tive. 

Finally the formula for the energy density, more exactly the difference of 

the energy density t::i.E between the normal and the condensed vacuum, is 

given below. t::i.E has no anomalous dimension so it needs a separate discus

sion. The source should be introduced in such a way that the energy is 

lowered, i.e. !:J.E<O. Let us write !:J.E=-a.I4( a>O) then the inverted series 
e:l/4 

has the form, with e:=-!:i.E/ a and t=g2ln--, 
µ 

J = e;l/4{1+g2f1(t)+g4/2(t)+ ... }. (40) 

Define W( t,g2) by 

W( t,g2
) = {g2f1 ( t)+g4f 2( t)+ · · · }-1 

W_1(t) = + W0(t)+g2W1(t)+ · · ·, 
g2 

then by the same arguments as before, we have up to W0 

( 41) 
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The scale invariant formula for c1/ 4 is now 

cl/4 _ lJA 
- QCD• 

1+0'0 b1 2(1+0'0) 
l5 =exp[---+ -ln{ }]. 

V_1 2b5 -V_1 

For the real solution to exist (1+0'0)/0'_1<0 should be satisfied. The calcu

lation of 0'0 requires two loop vacuum diagrams under the presence of the 

suitable source which is not yet carried out. 
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Abstract 

EFFECTIVE ACTION AND THE ENERGY LEVELS OF 
HYDROGEN-, HELIUM-, AND LITIDUM-LIKE ATOMS 

M. K omachiya 

Department of Physics, Faculty of Science and Technology, 
Keio University, Yokohama 223, Japan 

A systematic derivation of the energy eigenvalue equations for one-, two-, and 

three-electron atoms is presented in terms of the effective action. By using this 

method, one can naturally include the field theoretical corrections into the wave 

equations. 

1. Introduction 

In this talk we present an application of the generalized on-shell condition,l),Z) 

which is obtained by the second derivative of the effective action, and we want to 

start with a quick review of this formalism. The talk is based on the work with 

R.Fukuda. 3) 

For simplicity, let us consider the scalar field <P{x) and the Lagrangian density 

L( <P) of a system. The generating functional W[ J] of the connected Green's function 

is introduced as 

+oo 
exp(iW[J]) = J [d<P] exp[ if a;ix { L(<P) + J(x)<P(x)) ], 

-oo 
(1) 

and the effective action r(<f>] is defined by the Legendre transformation, 

r[¢] :: W[J] - f d4x J(x)<f>(x), (2) 
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<f>(x) = 6W[J]j6J(x). (3) 

The stationary condition, 

cr[¢>]/6¢>(x) = -J(x) = 0, (4) 

determines the ground state expectation value of P(x), <P(x)> J=O = </>(o)(x). We 

then look for another solution of (4) in the form of <f>(x)= ¢><0\x)+.6.<f>(x) and, by 

assuming .6.<f>(x) is small, we find the following eigenvalue equation for .6.<f>(y) (the 

generalized on-shell condition), 

f d4 [ c
2
r[¢>J 1 ( ) 

y 6¢>(x)6¢>(y) 0 .6.¢> y = O, (5) 

where [ ]0 denotes the value of []evaluated at <f>(x)=<f>(O)(x). 

If we take the space-time translational-invariant case, the zero of the kernel in 

(5) coincides with the pole of the Green's function by the relation, 

f d4y [ c2r[¢>] l [ 52 W[.J] l = - 54(x - z) 
6¢>(x)6¢>(y) 0 6J(y)6J(z) J=O · 

{6) 

So, eq.(5) determines the particle spectrum or the mode. In the same way, if we 

study the case where the time-independent external field exists (e.g. the nuclear 

Coulomb field), eq.(5) is expected to determine the energy eigenvalue and its eigen-

function ( <X.6.</>( x)) of the excited level. We utilize this fact and study the systemati-

cal derivation of the equations that determine the energy levels of hydrogen-, helium-, 

and lithium-like atoms. 

2. One-Electron Atoms 

We consider QED under the external field and use the Lagrangian density of the 

form, 



where j(x)=:( ZI el83(x), 0, 0, 0) is the source of the nuclear Coulomb field with the 

atomic number Z. The last three source terms are used as probes. If we want to dis-

cuss the finite nuclear size and/or the nuclear magnetic moment, they can be 

included as the modification of jµ. Here we notice that the term J,p 1/; ( or J;p 7jj ) is 

necessary for the investigation of the one fermion-number channel, while the term 

Ji Aµ is used for convenience. 

The effective action r can be obtained with the help of the Legendre transforma

tion formula given by De Dominicis and Martin 4
) but with a small modification. For 

the Grassmann variables, we employ the following definitions of r and its functional 

derivatives, s) 

(8) 

(9) 

The expression of r is then summarized as follows, 

r[A 1/; 7fl W[JAJ,pJ]-JA8W_J,p1w_J1w < >,< >,< > = 
' ' ;p 8JA 8J,p ;p 8J;p 

(10) 

where D0 ( S0) is the bare photon (electron) propagator and 11:(1) denotes the sum of 

the one-particle irreducible (1-PI) vacuum diagrams. Graphically <1/;>, <1f>, and 

<Aµ> are expressed by the broken lines which directly connect to the vertices 

(Fig.I). 

As the solution of the stationary condition of r, we can choose <1/;>=<7f>=0 

and, after substituting them, the on-shell condition for D..<1/;> is obtained in the fol-

.lowing form, 
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(11) 

This is the equation that determines the full energy levels of the hydrogen-like a.toms. 

For example, if we concentrate ourselves on the tree diagram of x:(1>, we get 

<A"> = -iDlf"j., = A~ as the stationary solution and eq.(11) becomes, 

Ze2 

[ ifl:. - m +lo I I ] !::.<t/J>,, = 0. 
47r x 

(12) 

This is nothing but the Dirac equation under the Coulomb potential. In the same 

way, if we choose the diagrams shown in Fig.1, the lowest-order radiative corrections 

are properly taken into account and we get the modified Dirac equation from (11) as 

(13) 

where wµp• -i:E, and -ieAµ denote the lowest-order contribution of the vacuum 

polarization, the electron self-energy, and the vertex correction, respectively. In this 

way, we can systematically include the quantum field theoretical corrections into the 

relativistic wave equation. 

(1) 

~ 

<A> . . . 
I 
I 

......... • ...... , ... 
,,... "" ... 

<Vi> <t/J> 

<A> 

Fig.1 Some of the diagrams included in x;(l), which contribute to the modified Dirac 

equation (13}. The wavy line is the photon propagator. The solid line with an arrow 

denotes the electron one. 



3. Two- and Three-Electron Atoms 

Next we consider the helium- and lithium-like atoms. In the case of the helium-

like atoms, we start with the Lagrangian density (7) plus new source term 

(1/2!)K(a,b)<I>(a)<I>(b) where <I>= [ '¢, 1fj, A J and a,b denote the species of the fields 

as well as the other degrees of freedom. (Summations over the repeated indices are 

implied.) In the same way, for the lithium-like atoms, we further use the source term 

(1/3!)M(a,b,c)<I>(a)<I>(b)<I>(c). Each source is to be antisymmetrized for Grassmann 

components and to be symmetrized for the others. We notice that the sources 

K( 'If;, 'If;) ( ,K(1fj,1fj)) and M( '¢,'If;, 'If;) (,M(1fj,1fj,1fj)) are necessary for the investigations of 

two and three fermion-number channels. Other sources are employed in order to use 

the (modified) De Dominicis-Martin rules. For the new arguments of r, we introduce 

the notations <ab> and <abc>. They are defined as the connected part of 

2!bW/8K(a,b) and 3!bW/8M(a,b,c), respectively. 

As the stationary solutions, <'¢>, <tf>, <'¢'¢>, <tf "i/i>, <1/J'l/J'l/J>, <tf 1fj tf>, 

and other variables which couple to them can be set equal to zero. Then we get the 

on-shell conditions in the form of the Nambu-Bethe-Salpeter type wave equations. 

The result is summarized for helium-like atoms, 

(14) 

and for lithium-like atoms, 

_!_ s-:-:.1 s-:: ~ sk-k~ t::.. < ·1· .. ·'· · · ·'·k-> 3 ! " )) 'f'' 'f' J 'f' 

(15) 

where sij denotes the full fermion propagator ( i.e. the stationary solution of 

<7/l;tfi> ). In (14), x;(Z) represents the sum of the one- and two-particle irreducible 

(1,2-PI) vacuum diagrams constructed out of <a>, <ab> (propagator), and the 
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original QED vertex. Similarly, ,pl in (15) denotes the sum of the one-, two-, and 

three-particle irreducible (1,2,3-PI) vacuum graphs made up of <a>, <ab>, and 

<abc>. Graphically, each <abc> is represented by the full vertex with the full pro

pagators.5) The term "three-particle irreducible (3-PI)" usually means the graphs 

which cannot be disconnected by cutting any three internal lines. But even when the 

graph is disconnected by this process, if one (and only one) of the disconnected part 

is the full vertex itself, we also call it the 3-PI graph by the conventions adopted in 

Ref.4. 

4. Comments 

Nuclear recoil corrections can be included into our formalism by considering the 

on-shell condition for !:::.. <1/J N 'l/; · · · 'l/;>, where 'l/; N denotes the nucleon field operator 

and 'ljJ is that of the electron. 

Our method is also available for the non-relativistic models. For example, we 

can derive the Schrodinger equation under the external potential instead of the Dirac 

equation (12). The extensions for other cases are straightforward. 
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Abstract 

We investigate the spontaneous generation of fermion mass in QED3 with two com-

ponent Dirac fermions by using the Schwinger-Dyson technique. In the ladder approx-

imation, we show that the single two-component fermion becomes massive, thus the 

parity symmetry is broken dynamically. In the case with many flavor, an effect of 

vacuum polarization on the mass generation is studied in l/N approximation. 

1. Introduction 

( 2+ 1 )-dimensional quantum electrodynamics ( QED3) has attracted widespread at-

tention. The theory has highly non-trivial structures which are not seen in theories in 

even space-time dimensions. One of the typical aspects of the (2+ 1)-dimensional gauge 

theories is that the Chern-Simons term is allowed in the Lagrangian and the gauge field 

becomes (topologically) massive without violating the gauge invariance.1) From the 

practical aspects, QED3 or the variants of it are expected to be important as effective 

theories of solid-state-physical phenomena in 2-dimensional space, e.g., the quantum 

Hall effect, the high-Tc superconductivity and so on. Keeping these status in mind, we 

proceed the investigation of a dynamical symmetry breaking in QED3. 

* This work is partially supported by the Grant-in-Aid for Scientific Research from the Ministry of 
Education, Science and Culture ( #63790162). 

t Fellow of the Japan Society for the Promotion of Science for Japanese Junior Scientists 
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Previously Appelquist et al.2) investigated QED3 with four-component fermions 

by analyzing the Schwinger-Dyson (S-D) equation. The vacuum polarization effect is 

included in the 1/N approximation (N is the number of fermion flavor). The integral 

kernel is linearized in introducing a cut off and the integral S-D equation is rewritten to a 

differential equation. Further they set the wave function renormalization to unit. Then 

they discovered a critical number of the flavor (Ne = # ). Thus the chiral symmetry 

is broken below N c and unbroken above N c· On the other hand, Dagotto et al~) also 

found the critical value Ne ~ 3.5 in the lattice calculation. 

These works inspire the more detailed investigations of the dynamics of QED3. 
4
l 

In the analyses of Appelquist et al.
2

) , two drastic approximations have been done as 

mentioned above. The first is the linearization of the integral kernel. An infrared 

behavior of the kernel is crucial to the dynamical mass generation. The linearization 

procedure might disturb the infrared behavior. The second is to neglect the effect of the 

wave function renormalization. When the effect of the vacuum polarization is included, 

the wave function renormalization cannot be put to unit even in the Landau gauge. 

In this paper, we reanalyze the S-D equation for QED3 without using the above two 

approximations. We do not linearize the integral kernel and include the effect of the 

wave function renormalization. We solve the coupled integral equation directly without 

introducing any cut off. At first, the ladder S-D equation for single two-component 

Dirac fermion is solved in the Landau gauge. We find a non-trivial solution so that 

single two-component Dirac fermion becomes massive dynamically. Next we analyze 

the case with N two-component fermions including the effect of the vacuum polarization 

in 1/N approximation. The dynamically generated mass is estimated. 

2. Lowest ladder analysis 

In this section, we study the lowest ladder S-D equation for single two-component 



fermion in the Landau gauge. The lowest ladder S-D equation is given as 

00 

e
2 1/ B(k)k (p+k)2( 1) 

B(p) =411"2 p dk A(k)2k2 + B(k)2en p - k 1 + 2T/ ' (la) 

0 

e2 1 /
00 

k2 A( k) ( p2 + k2 p + k 2 
A(p)=l+TJfr2p2 dkA(k)2k2+B(k)2 l- 2pk )en(p-k) (lb) 

0 

where the fermion propagator 5 1 has been defined by s'-1(p) = A(p2 )p - B(p2) = 

p - il:(p). 1J is the covariant gauge fixing parameter. We choose the Landau gauge 

1J = 0. Then eq. (lb) gives us A= 1 and eq. (la) becomes 

00 

e
2 1/ B(k)k (p+k)2 

B(p) = 411"2 p dk A(k)2k2 + B(k)2en p - k . (2) 

0 

The kernel has the singularity at p = k and it seems that eq.(2) does not have a solution 

except the trivial solution. But the integral formula J; dx 1..;x2 en ( ~) 
2 

= "; strongly 

suggests that there exists a non-trivial solution. We solve eq.(2) by using a numerical 

method. Inputting an initial trial function, we seek a convergent solution by an iteration 

method. 

0.0! 0.1 I lO 100 

Momentum 

Figure 1. The non-trivial solution in lowest ladder approximation in the 

ez 
2" = 1 unit 
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The results are as follows. We find a non-trivial solution (Fig 1.). The generated 

mass is E(O) = ~ . Then the effective potential
5

) has the value Veff = -0.033(;:)3 

so that the non-trivial solution is stable. The vacuum expectation value < ";j'lj; > is 

1.04(;:)2 . Thus we have discovered that the parity-violating effective mass of single 

two-component fermion is generated dynamically in the lowest ladder approximation. 

3. 1/N Analysis 

We include the vacuum polarization effect in l/N approximation in this section. 

As was known, the vacuum polarization of a two-component fermion contains a parity

violating part as the parity anomaly~) The affect of the part on the mass generation 

is a very important issue that should be investigated. The topological consideration 

suggests a fruitful structure of the dynamics in QED3:) But in this paper, we ignore 

the part only for the simplicity as was done in the previous analysis. The analysis of 

the case including the parity-violating part is now progress and will appear in future. 

The S-D equation including the effect of the vacuum polarization in I/N approxi-

mation is 

00 

I e2 
I J k A(k) { 2 (Y + c) 

A(p)=l- N27r47r dkp3A(k)2k2+B(k)2 2pk+c(x-y)+c en x+c 
0 

+ ~xy(x - y) + :2 (xy)2£n(~~:: ~~) + TJ(2pk + (p2 + k2
)J.n(;)) }, (3a) 

? 00 

I e· I J kB(k) { (Y + c) y } 
B(p)=N27r27r dkA(k)2k2+B(k)2 2£n x+c +1]£n(;)' (3b) 

0 

where we have defined variables as c = ~~ N, x = [p - kl, y = p + k. Here we should 

notice that A does not equal to unit even in the Landau gauge. So we solve the coupled 

integral equations in the Landau gauge 1J = 0. The method of solving the equations is 

the same as the lowest ladder case. We have used the numerical iteration method. 



As the result, we have found a flavor dependence of the generated mass( Fig. 2). We 

can see that the effective mass decreases as the flavor number increases. This is due to 

the screening effect by the vacuum polarization . 

.. . • 
::. I ... .. 
~ 2 

.s. 
0 

I 

F. ~ igure 2. The :flavor dependence of the generated mass in the 2,.. = 1 unit: 

The dot indicates the value of the lowest ladder case. 

The most important problem that should be answered is whether there exists the 

critical flavor number or not. Within the precision of the numerical calculation at 

present, it is difficult to give a definite conclusion. Now we proceed to improve the 

precision. 

4. Conclusion and discussion 

We have investigated the dynamical fermion mass generation in QED3 by solving 

S-D equation. In the lowest ladder approximation, we have found the non-trivial solu-

tion. Thus the single two-component fermion becomes massive dynamically breaking 

the parity symmetry. Further we have included the vacuum polarization effect in the 

l/N approximation. We have estimated the effective fermion mass under the screening 

effect by the vacuum polarization. 

The important point of our analyses is that we do not linearize the integral kernel 

and include the effect of wave function renormalization. And also, we have done the 

analyses in the two-component formalism. The symmetry to which we concentrate is 

.the parity symmetry, besides the four-component formalism treats the chiral symmetry. 
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The crucial problems are still remained. The first is whether the critical number of 

the flavor can be found in our approaeh. The second is how the parity anomaly affects 

the dynamical mass generation. The studies on these subjects are proceeding. 

More details of this work and a development after this workshop are appeared in 

Refs. 8 and 9. 
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The Critical Behavior of QED in any dimension 

ABSTRACT 

HAJIME NAKATANI 

Department of Physics, Nagoya University, 

Nagoya 464-01, Japan 

We consider the critical behavior of QED in 3 ('.) 6 dimensional space-time. We 

obtain the chiral-symmetry-breaking solutions of the Schwinger-Dyson equation in 

d-dimensional QED in the quenched ladder approximation and show that for d > 4 

the sclaing law is the mean-field type. We also study QED3 beyond the quenched 

ladder approximation and show that the scaling law is dependent of the value of 

the infrared cutoff. 

In this report, we consider the critical behavior of the d-dimensional Quantum 

Electromagnenic Dynamics ( QEDd)· (MJ Especially we study QEDd where dis not 

equal to 4 ~ . In QED!, it is well-known that in the quenched ladder approximation, 

the scaling behavior is the singurality-type or so called "Miransky scaling" _r+J Is 

this scaling cormnon irrespective of the space-time dimensions? Is this scaling also 

correct even if there is vacuum polarization included.'? Here we try to answer these 

questions in the framework of the Schwinger-Dyson equation. 

* For QED4 , see Kondo's reprot in this proceedings. 
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First, we consier the scaling law of the dynamical mass and the coupling in 

QED d in the quenched ladder approximation, that is, the vertex r µ (p, k) is bare 

and the vacuum polarization function IT(k) is zero; 

rµ(p,k) = f'µ and IT(k) = O . (1) 

We write the fermion propagator S(p) as 

(2) 

Then the Schwinger-Dyson equation for A(p2 ) and B(p2) is written by 

(3) 

(4) 

where x := p2, y := k2, € is the infrared cutoff, A the ultraviolet cutoff and 

(5) 

L4(x,y) and I\4(.x,y) are kernels. As proved in ref.[2], in quenched planar ap

proximationan and in the Landau gauge La(x,y) is simply zero so that the wave 

renormalization function A( x) = 1. Note that this is consisitent with the Ward

Takahashi identity. Kd( x, y )' s in 3 rv 6 dimensions are the following1 

, 2 vx+vv 
J\3(.x,y)= ;;;;-;;lnlvx-vvl' 

yXY x y 
(6) 

311" 
K!(x,y) = I I ' xtyt x-y 

(7) 

I , ( ) _ 2( x + y) _ ( x - y )2 

1 vx + v'Y 
i.5 x,y - ( )31 , n I r,;: ,_

1 
, 

xy xy 2 yx - ,;y 
(8) 



51!" [3.x - y 
K5(.x,y) = 8 ~O(.x -y) t O(y - .x)] . (9) 

We solve numerically the above SD equation ·with kernels (6) ,..., (9) to obtain the 

scalinEJ laws against the dimensionless coupling /3a, 

The dynamical mass can be writen using f3d as 

m = Af(f3a) , 

where f (f3d) is defined as the scaling function. 

The numerical results show the following scaling functions, 

1 
h(f3a) a:: f3rJ. , 

11' 

fi,(/3d) a:: exp(- Jt1d/I~~ - 1) , 

fs(f3d) a:: / f3'a - f3d ' 

f6(/3d) a:: v /3J - /1d . 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

where /3~ is the critical coupling. In QEDi, the scaling law is singularicy type. 

On the other hand, in QED3 there is no phase transition, that means that only 

symrnery-breaking phase survives. This is also confirmed by the analytical solution 

in the bifurcation method. And in QEDd(d > 4) the scaling law is the mean-field 

type. Although we have no analytical proof, in any higher dimensions than 4 the 

scaling would be the mean-field type. So these results imply that the singularify

type scaling is rather spacial one in QED, and to confirm the scaling type we should 

study more details in QED beyond the quenched ladder approximation. 

As one of examples beyond the quenched ladder approximation, we consider 

the vacuum polarization effect in QED3. 
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QED3 is an interesting model which is superrenormalizable and have a simi

larity with QED~. And also it seems to be related to the recent study for high Tc 

superconductor, the quark confinement and so on. Furthermore, the calculability 

of the angular integration in SD equation without any approximation makes easy 

to analyze the flavor dependence of the model. 

So far many pepole has been discussing this model, in the framework of the 

Schwinger-Dyson(SD) equation combined with the 1/N expansion for the vacuum 

polarization.rsNsJ There are two claims about the question, whether or not there 

exists the critical point of the fermion number Ne in QED3. Appelquist, Nash 

and Wijewardhana['l (ANW) pointed out that there exists the finite critical point, 

Ne = 32/1i2, using Appelquist et al.'s assumption[sJ that the wave function renor

malization would be negligible in the large N limit. Matsuki et al.[
9
l also obtained 

the same result from the viewpoint of the effective potential. The existence of the 

critical point is also supported by the Monte Carlo(MC) calculation by Dagotto et 

al. [ioJ On the other hand, Pennington and Webb r71 (PW) and Atkinson, Jhonson and 

Pennington[sJ (AJP) claimed that if one takes into account the 1/N correction to 

the wave-function renormalization, the critical point Ne in the infinite cutoff limit 

goes away to infinity against ANW's result. This means that only the syrnmetry

breaking-phase survives in QED3. 

Generally, in QED the wave-function renormalization is unavoidable if the vac

uum polarization in photon propagator is included. This is in sharp contrast with 

the quenched planar QED in the Landau gauge. fll In fact, the one-loop correction 

to the photon propagator leads to the non-trivial wave-function renormalization 

even in the Landau gaug-e. Therefore Appelquist et al.'s assumption is not justified 

a priori, if the effect of the fermion loop is included. 

We solve the SD gap equation in QED3 combined with the 1/N expansion 

for the vacuum polariz~tion without using the Appelquist et al. 's assumption.r5
'
6
l 

Actual calculation have been done with the approximately equivalent differntial 

equationY1 We consider the leading correction in the 1/N expansion, i.e. the·one-



loop correction in the photon propagator for massless fermion, [iiJ 

TI(p) = 
a 

(16) -
' p 

where 

e'1N 
(~:=-. (17) 

8 

The SD equation for the fermion propagator in Landau gauge is written by 

[ ~2 p+k+& 
x a lnl kl ~ -a(p+k-IP-kl)+2pk p-·+o: . 

-~!P2 - kzl(P + k - IP - kl) 
a 

_2_(p2 - k2) 2{ln p + k + & - In p + k }] (18) 
&2 [p-k[+& [p-1~1' 

B(p) (19) 

We have paid special attention to the critical value Ne of the fermion flavor and 

the scaling law in the neighborhood of Ne. We showed that the scaling behavior 

of the dynamical mass is restricted by the inequality and discussed the relation 

between the scaling law and the "generalized vertex ansatz", 

(20) 

Our numerical results show that the scaling law depends on the infrared cutoff. 

Actually in the limit of the infrared cutoff i: -+ 0, we have three types of the 

scaling law depending on the vertex ansatz, i.e. the exponential type, the essential

singularity type and the power-law type, 

f(N) ex exp(-C N) , for n < 2 , (21) 
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f(N) ex: exp(-2x) }Nc/N - 1) , for n = 2 , 

f(N) ex (Ne - N)>. for n > 2. 

(22) 

(23) 

We can give an explanation on this difference based on the concept of the effective 

coupling. The result of the exponential type would be the physical one and agrees 

with the previous result obtained by PW and AJP. Recent works by Atkinson, 

Johnson and Maris[HJ proposed the n = 2 case as the physical one from the analysis 

of the anomalous dimensions. 

On the other hand, in the presence of the finite infrared. cutoff, the scaling 

obeys the mean-field type independent of the vertex ansatz, 

f(N) ex (Ne - N)1/ 2 , (24) 

and Ne has a finite value which depends on the infrared cutoff. According to MC 

results, there exists a finite critical value for fermion flavor. It is, however, still 

an open question what the scaling type really is in QED3. It should be remarked 

that infrared cutoff introduced in our framework may correspond to the lattice size 

in MC simulation, while the ultraviolet cutoff corresponds to the lattice spacing. 

It appears that our framework provides us with a possibility, which enables us to 

explain apparently conflicting results based. on the SD equation[r.aJ and the MC 

simulation.£101 It is quite interesting that resent MC simulation by DESY group£13
l 

is fit with the analysis of the mena-field method. 

Our investigation 11ave been restiricted in the Landau gauge and quenched 

ladder apporximation or atmost including the one-loop correction in the vacuum 

polarigation. Beyond these restriction we plan to perform the numerical calculation 

of the SD equation beyond one-loop corrction [nJ to the vacuum plarizationincluding 

the improvement of the vertex. [lsJ 
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