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Abstract

This thesis describes several new tools for analyzing supersymmetric quantum field

theories, focusing on theories with four supercharges in three and four dimensions.

In chapter two, we discuss supercurrents, supersymmetry multiplets that include the

energy-momentum tensor. Physically, different supercurrents give rise to different

brane charges in the supersymmetry algebra. They also encode different ways of

placing supersymmetric field theories on a curved manifold. Under certain conditions

this procedure preserves some of the supersymmetry. In chapter three, we explore

these conditions for the case of four-dimensional N = 1 theories with a U(1)R sym-

metry. In particular, we find that a manifold admits a single supercharge if and only

if it is Hermitian.

In chapter four, we shift the focus to three-dimensional field theories. We study

Chern-Simons contact terms – contact terms of conserved currents and the energy-

momentum tensor, which are associated with Chern-Simons terms for background

fields. While the integer parts of these contact terms are ambiguous, their fractional

parts constitute new meaningful observables. In N = 2 supersymmetric theories

with a U(1)R symmetry certain Chern-Simons contact terms can lead to a novel

superconformal anomaly. In chapter five, we use this understanding to elucidate the

structure of the free energy F of these theories on a three sphere. In particular, we

prove the F -maximization principle for N = 2 superconformal theories. We also

explain why computing F via localization leads to a complex answer, even though we

expect it to be real in unitary theories.
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Chapter 1

Introduction

1.1 A Brief Tour of Supersymmetry

1.1.1 Supersymmetry in Particle Physics

The concept of symmetry plays a fundamental role in theoretical physics. The stan-

dard model (SM) of particle physics furnishes a prime example for the central role of

symmetry in defining a physical theory and exploring its consequences. The formula-

tion of the theory in terms of spontaneously broken gauge symmetry is crucial for its

theoretical consistency, and it enables the SM particles to acquire their masses. The

particle that is most closely associated with this effect is the formerly elusive Higgs bo-

son. Recently, the ATLAS and CMS experiments at the Large Hadron Collider (LHC)

have reported the discovery of a Higgs-like particle with mass MH ' 125 GeV [9,10].

Symmetry also plays an important role in many other aspects of the SM. For instance,

our understanding of low-energy QCD is based on the paradigm of spontaneously bro-

ken chiral symmetry.

With the discovery of the Higgs boson, the SM is theoretically and experimentally

complete: it is a consistent theory that explains all known phenomena in particle

physics with impressive precision. Nevertheless, much work in theoretical particle

physics has been dedicated to the exploration of possible SM extensions – physics
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beyond the standard model (BSM). One of the motivations for these efforts is a basic

guiding principle known as naturalness. Originally formalized by ’t Hooft [11], it can

be stated as follows: a physical parameter is naturally small if the theory possesses an

approximate symmetry that becomes exact when the parameter is set to zero. In the

SM, the Higgs mass MH ' 125 GeV, which defines the weak scale, is much smaller

than the Planck mass MP ' 1019 GeV, a natural short-distance scale associated with

quantum gravity. This is known as the SM hierarchy problem. However, there is no

associated approximate symmetry. A closely related fact is that the SM Higgs mass

is subject to large radiative corrections, which render it highly sensitive to short-

distance physics. This constitutes the SM fine-tuning problem. The hierarchy and

fine-tuning problems are manifestations of the fact that the SM Higgs mass is not

natural in the sense defined above. Much of the effort in BSM physics has been

dedicated to constructing extensions of the SM that render the Higgs mass natural.

Supersymmetry (SUSY) is a leading candidate for BSM physics. For each SM par-

ticle, it posits the existence of a superpartner particle of opposite statistics. SUSY

relates particles and their superpartners, i.e. bosons and fermions. The introduction of

the superpartners stabilizes the Higgs mass by eliminating the leading short-distance

contributions, and hence it solves the SM fine-tuning problem. Since the superpart-

ners have not yet been observed, SUSY must be spontaneously broken. This should

happen near the weak scale if we would like to retain SUSY as a solution to the fine-

tuning problem. As pointed out by Witten [12], SUSY also allows for an appealing

solution to the SM hierarchy problem: if SUSY is broken dynamically, i.e. by small,

non-perturbative effects, the scale of SUSY breaking is naturally much lower than the

Planck mass. Explicit models of this type were first realized in the work of Affleck,

Dine, and Seiberg [13]. Dynamical SUSY breaking near the weak scale thus solves

the SM fine-tuning and hierarchy problems, and it renders the theory natural. As

such, it has become a powerful paradigm for BSM physics. For a review, see [14] and

references therein.

The paradigm of weak-scale SUSY leads to the exciting possibility that some of

2



the superpartners could be detected at current or future colliders. However, to date

there is no experimental evidence for the existence of superpartners (or other BSM

physics) near the weak scale. In the years ahead, the LHC is expected to continue

its successful program to explore the energy frontier. In particular, it will probe the

extent to which the principle of naturalness applies to the weak scale. Either outcome

– the presence of additional particles, such as superpartners, to restore naturalness,

or the breakdown of naturalness as a physical principle – will have a profound impact

on our understanding of the fundamental laws of nature.

1.1.2 Supersymmetry in Field Theory and String Theory

In addition to its application in BSM particle physics, supersymmetry has played

an important role in elucidating the dynamics of quantum field theories and string

theories. Supersymmetry dramatically constrains the dynamics of these theories, and

certain quantities that are protected by supersymmetry can often be analyzed exactly.

A typical example is the holomorphic superpotential W in four-dimensional N = 1

theories, which is closely associated with the moduli space of supersymmetric vacua.

Supersymmetry implies that W is not renormalized at any order in perturbation

theory [15,16]. It can receive non-perturbative corrections, but they too are severely

constrained by supersymmetry and can sometimes be determined exactly [13,16,17].

The holomorphy of W has proven to be a powerful handle on the dynamics of

supersymmetric field theories, leading to many exact results. In particular, it has lead

to a detailed understanding of the phase diagram of four-dimensional N = 1 SUSY

QCD, which displays a veritable cornucopia of interesting dynamics: confinement,

chiral symmetry breaking, non-perturbative topology change of the moduli space,

the emergence of a free magnetic phase at long distances, and non-Abelian electric-

magnetic duality [18–20]. In four-dimensional N = 2 gauge theories the analogue

of the superpotential is the holomorphic prepotential F , which encodes the entire

low-energy effective action on the moduli space. In this case the holomoprhy of F is

sufficiently powerful to determine it, and hence the low-energy action, exactly [21,22].
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Similarly, supersymmetry has been a powerful tool in exploring the dynamics of

string theory, to date the only known example of a consistent theory that successfully

incorporates quantum gravity. For instance, the first calculation of black hole entropy

in string theory relied on supersymmetry to reduce the problem to a weak coupling

computation [23]. As in field theory, supersymmetry has played an important role in

establishing proposed dualities, since quantities that are protected by supersymmetry

can often be computed on both sides of the duality. The most prominent example is

the holographic duality between type IIB string theory on AdS5× S5 and maximally

supersymmetric Yang-Mills theory in four dimensions, which is a conformal field

theory (CFT) [24–26]. Many detailed tests of the duality rely heavily on quantities

protected by supersymmetry. Such tests played a crucial role in establishing and

generalizing the AdS/CFT correspondence, which by now has come to be viewed as a

general principle of quantum gravity, including string theory as a particular example.

Supersymmetric quantum field theories display a rich set of phenomena that emu-

late many aspects of more realistic, non-supersymmetric theories. We have mentioned

confinement, chiral symmetry breaking, and electric-magnetic duality in four dimen-

sions. Similarly, supersymmetric theories provide a unique theoretical laboratory

for deepening our understanding of quantum field theory in two and three dimen-

sions, where many qualitatively new phenomena arise. These theories, and their

non-supersymmetric cousins, describe a large variety of phases and phase transitions

in two and three-dimensional materials. They also furnish holographic descriptions

of three- and four-dimensional theories of quantum gravity. Finally, there is a fruitful

connection between supersymmetric field theories and certain problems in mathemat-

ics. These are good reasons to continue studying such theories, and to develop new

and general tools for analyzing their dynamics.
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1.2 Overview and Summary

In the spirit of the preceding discussion, this thesis explores several complementary

tools that have recently emerged in the study of supersymmetric quantum field the-

ories in three and four dimensions.

Chapter 2 is dedicated to a systematic analysis of supercurrents, SUSY multiplets

that include the supersymmetry current Sαµ and the energy-momentum tensor Tµν .

In this overview, we will focus on four-dimensionalN = 1 theories, but in chapter 2 we

also discuss theories in two and three dimensions. We find the most general consistent

supercurrent multiplet that satisfies certain basic physical requirements. It is given

by a real superfield Sαα̇, such that

D
α̇Sαα̇ = χα + Yα ,

Dα̇χα = 0 , Dαχα = Dα̇χ
α̇ ,

DαYβ +DβYα = 0 , D
2Yα = 0 .

(1.2.1)

The component expressions of the superfields Sαα̇, χα, and Yα are given in chap-

ter 2. In addition to the supersymmetry current and the energy-momentum tensor,

the S-multiplet contains several other operators. We interpret some of these as brane

currents – conserved, totally antisymmetric tensor currents associated with charged

branes, such as particles, strings, or domain walls. Upon integration, they give rise

to brane charges that appear in the supersymmetry algebra. The absence of certain

brane charges implies that the corresponding currents are total derivatives and can be

removed by an improvement transformation. In this case the supercurrent multiplet

decomposes into a shorter supercurrent and another decoupled multiplet.

The structure of the S-multiplet leads to non-trivial restrictions on supersymmet-

ric field theories. For instance, we show that U(1) gauge theories with Fayet-Iliopoulos

(FI) terms do not contain magnetic charges. Similarly, the absence of certain brane

charges, i.e. the ability to decompose the S-multiplet into shorter supercurrent mul-

tiplets, constrains the IR behavior of supersymmetric theories. For instance, the

absence of a certain string charge implies that the theory cannot develop a com-

5



pact moduli space of vacua. Similarly, in theories with a U(1)R symmetry, a certain

two-brane charge is absent, so that these theories do not admit BPS domain walls.

The fact that supercurrent multiplets contain the energy-momentum tensor also

means that they encode the necessary information to place a supersymmetric field

theory on a rigid curved background. Following the work of [27–30], which consid-

ered supersymmetric theories on round spheres, it has become clear that studying

these theories on curved manifolds can shed new light on the original flat-space the-

ory. A systematic approach to this subject was developed in [31] using background

supergravity. In ordinary supergravity, the metric gµν is dynamical and belongs to

a supermultiplet that also includes the gravitino ψµα and various auxiliary fields.

Instead, we can view these fields as classical backgrounds and allow arbitrary field

configurations. Rigid supersymmetry corresponds to the subalgebra of supergravity

transformations that leaves a given background invariant.

In chapter 3, we explore this procedure for the case of four-dimensional N = 1

theories with a U(1)R symmetry. The auxiliary fields in the corresponding background

supergravity multiplet consist of an Abelian gauge field Aµ, which couples to the R-

symmetry, and a two-form gauge field Bµν . The dual field strength V µ of Bµν is a

well-defined, conserved vector field,

V µ =
1

2
εµνρλ∂νBρλ , ∇µV

µ = 0 . (1.2.2)

A given configuration of the background fields gµν , Aµ, and Vµ preserves rigid super-

symmetry if and only if we can solve

(∇µ − iAµ) ζ = −iVµζ − iV νσµνζ ,

(∇µ + iAµ) ζ̃ = iVµζ̃ + iV ν σ̃µν ζ̃ ,
(1.2.3)

for some choice of spinors ζ and ζ̃. Note that the presence of rigid supersymmetry

does not depend on the details of the field theory, since these equations only involve

supergravity background fields.

We analyze these equations and classify Riemannian four-manifoldsM that admit

rigid supersymmetry. (The corresponding problem for three-dimensional N = 2
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theories with a U(1)R symmetry was analyzed in [8].) We find thatM admits a single

supercharge if and only if it is a Hermitian manifold. The supercharge transforms

as a scalar on M. We then consider the restrictions imposed by the presence of

additional supercharges. Two supercharges of opposite R-charge exist on certain

fibrations of a two-torus over a Riemann surface. Upon dimensional reduction, these

give rise to an interesting class of supersymmetric geometries in three dimensions. We

further show that compact manifolds admitting two supercharges of equal R-charge

must be hyperhermitian. Finally, four supercharges imply thatM is locally isometric

to M3 × R, where M3 is a maximally symmetric space.

In the second part of this thesis, we study quantum field theories in three dimen-

sions. One of the main goals is to achieve a detailed understanding of the partition

function of three-dimensional N = 2 theories on a round three-sphere, but along the

way we uncover several general phenomena in three-dimensional field theory.

In chapter 4, we study contact terms of conserved currents and the energy-

momentum tensor. They are associated with Chern-Simons terms for background

fields. For concreteness, consider a global, compact U(1) symmetry and couple the

associated current jµ to a background gauge field aµ. A contact term in the two-point

function

〈jµ(x)jν(0)〉 = · · ·+ iκ

2π
εµνρ∂

ρδ(3)(x) (1.2.4)

corresponds to a Chern-Simons term for aµ,

iκ

4π

∫
d3x εµνρaµ∂νaρ . (1.2.5)

Typically, contact terms are scheme-dependent, and hence not well-defined observ-

ables. However, the Chern-Simons term (1.2.5) is not the integral of a gauge-invariant

local density and this restricts the scheme-dependence of κ. One way to see this is to

place the theory on a curved manifold that allows non-trivial bundles for the back-

ground gauge field aµ. Demanding that well-defined counterterms be invariant under

large gauge transformations implies that such counterterms can only shift κ by an

integer. Therefore, the fractional part of κ is physical and does not depend on the
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short-distance cutoff. It is an observable of the field theory.

A careful analysis of Chern-Simons contact terms in N = 2 supersymmetric the-

ories with a U(1)R symmetry reveals the presence of a new superconformal anomaly.

In chapter 5, we consider three-dimensional N = 2 superconformal field theories

on a three-sphere and analyze their free energy F as a function of background gauge

and supergravity fields. A crucial role is played by certain local terms in these back-

ground fields, including the Chern-Simons terms discussed in chapter 4. The presence

of these terms clarifies a number of subtle properties of F .

This understanding allows us to prove that the real part ReF (t) satisfies

∂

∂ta
ReF

∣∣∣∣
t=t∗

= 0 ,
∂2

∂ta∂tb
ReF

∣∣∣∣
t=t∗

= −π
2

2
τab . (1.2.6)

Here, the ta are real parameters that encode the mixing of the R-symmetry with

Abelian flavor symmetries and t = t∗ is the superconformal point, at which the R-

symmetry resides in the N = 2 superconformal algebra. The matrix τab is determined

by the flat-space two-point functions of the Abelian flavor currents jµa corresponding

to the parameters ta at separated points,

〈jµa (x)jνb (0)〉 =
τab

16π2

(
δµν∂2 − ∂µ∂ν

) 1

x2
. (1.2.7)

In a unitary theory τab is a positive definite matrix.

These conditions can be stated as a maximization principle: the superconformal R-

symmetry R(t∗) locally maximizes ReF (t) over the space of trial R-symmetries R(t).

The local maximum ReF (t∗) determines the SCFT partition function on S3. This F -

maximization principle is similar to a-maximization in four dimensions [32]. The first

condition in (1.2.6) is the extremization condition proposed in [29]. The fact that the

extremum should be a maximum was conjectured in [33].

We also explain why computing F via localization leads to a complex answer, even

though we expect it to be real in unitary theories. We discuss several corollaries of

our results and comment on the relation to the F -theorem.
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Chapter 2

Supercurrents and Brane Currents

in Diverse Dimensions

2.1 Introduction

The goal of this chapter is to present a systematic analysis of supercurrents – su-

persymmetry (SUSY) multiplets that include the supersymmetry current and the

energy-momentum tensor. We find the most general consistent supercurrent and we

show under what conditions it can be decomposed into smaller multiplets. Further-

more, we give a physical interpretation of the various supercurrents.

For concreteness, we initially focus on N = 1 theories in four dimensions. Later

we extend our discussion to N = 2 theories in three dimensions, as well as N = (0, 2)

and N = (2, 2) theories in two dimensions.
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In its simplest form, the N = 1 algebra in four dimensions is1

{Qα, Qα̇} = 2σµαα̇Pµ ,

{Qα, Qβ} = 0 .
(2.1.2)

Following [35–37], we can add additional charges Zµ and Zµν to this algebra,

{Qα, Qα̇} = 2σµαα̇ (Pµ + Zµ) ,

{Qα, Qβ} = σµναβZµν .
(2.1.3)

The charges Zµ and Zµν are brane charges. They are nonzero for one-branes (strings)

and two-branes (domain walls) respectively. These brane charges commute with the

supercharges, but they are not central charges of the super-Poincaré algebra, be-

cause they do not commute with the Lorentz generators. Other known modifications

of the supersymmetry algebra (2.1.2) include terms that do not commute with the

supercharges; we do not discuss them here.

The brane charges Zµ and Zµν are generally infinite – only the charge per unit

volume is meaningful. This motivates us to replace the algebra (2.1.3) by its local

version,

{Qα̇, Sαµ} = 2σναα̇ (Tνµ + Cνµ) + · · · ,

{Qβ, Sαµ} = σνραβCνρµ + · · · .
(2.1.4)

Here Cµν and Cµνρ are brane currents. They are the conserved currents correspond-

ing to the brane charges Zµ and Zµν . The SUSY current algebra (2.1.4) implies that

these brane currents are embedded in a supercurrent multiplet, along with the super-

symmetry current Sαµ and the energy-momentum tensor Tµν . The ellipses in (2.1.4)

represent Schwinger terms; they will be discussed below.

1We follow the conventions of Wess and Bagger [34], except that our convention

for switching between vectors and bi-spinors is

`αα̇ = −2σµαα̇`µ , `µ =
1

4
σα̇αµ `αα̇ . (2.1.1)
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In general, both brane charges in (2.1.3) are present and we must study the current

algebra (2.1.4). However, under certain conditions some of these charges are absent.

This means that the corresponding current is a total derivative. In that case we

should be able to set it to zero by an improvement transformation, which modifies

the various operators in (2.1.4) without affecting the associated charges. If this can

be done, then the supercurrent multiplet contains fewer operators.

Supercurrent multiplets have been studied by many authors [38–49]; see also sec-

tion 7.10 of [50]. Our discussion differs from earlier approaches in two crucial respects:

First, some authors view rigid supersymmetric field theory as a limit of a supergrav-

ity theory. Supergravity has several known presentations, which differ in the choice

of auxiliary as well as propagating fields. These different supergravity theories are

closely related to various supercurrents. We will pursue a complementary approach,

focusing on the different supercurrent multiplets in the rigid theory. We then have

the option of gauging these supercurrents to obtain a supergravity theory. One ad-

vantage of this approach is that it can be used to derive constraints on consistent

supergravity theories [43–49,51].

Second, we insist on discussing only well-defined operators. These must be gauge

invariant and globally well-defined, even when the target space of the theory has

nontrivial topology. It is sometimes useful to describe such well-defined operators in

terms of other operators, which are not themselves well-defined. A commonly known

example arises in electrodynamics, where the field strength Fµν is gauge invariant and

well-defined, but it is useful to express it in terms of the gauge non-invariant vector

potential Aµ. We will see that physically distinct supercurrent multiplets appear to

be identical, if we are careless about allowing operators that are not well-defined.

Throughout our discussion of the various supercurrent multiplets, we impose the

following basic requirements:

(a) The multiplet includes the energy-momentum tensor Tµν. Every local quantum

field theory possesses a real, conserved, symmetric energy-momentum tensor
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(see appendix A):

∂νTµν = 0 , Pµ =

∫
dD−1xTµ

0 . (2.1.5)

The energy-momentum tensor is not unique. It can be modified by an improve-

ment transformation

Tµν → Tµν + ∂µUν − ηµν∂ρUρ , ∂[µUν] = 0 . (2.1.6)

More general improvement transformations include operators of higher spin;

they will not be important for us. The improvement term is automatically

conserved, and it does not contribute to the total momentum Pµ. The fact

that Uµ is closed ensures that Tµν remains symmetric. If there is a well-defined

real scalar u such that Uµ = ∂µu, then the improvement (2.1.6) takes the more

familiar form

Tµν → Tµν +
(
∂µ∂ν − ηµν∂2

)
u . (2.1.7)

(b) The multiplet includes the supersymmetry current Sαµ. Every supersymmetric

quantum field theory possesses a conserved supersymmetry current:

∂µSαµ = 0 , Qα =

∫
d3xSα

0 . (2.1.8)

Like the energy-momentum tensor, the supersymmetry current is not unique.

It can be modified by an improvement transformation

Sαµ → Sαµ + (σµν)α
β∂νωβ . (2.1.9)

As before, more general improvements include operators of higher spin; we do

not discuss them. The improvement term is automatically conserved and it

does not affect the supercharges Qα.

(c) The energy-momentum tensor and the supersymmetry current are the only op-

erators with spin larger than one. This can be motivated by noting that when

a rigid supersymmetric field theory is weakly coupled to supergravity, the su-

percurrent is the source of the metric superfield. Since the graviton and the
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gravitino are the only fields of spin larger than one in the supergravity multi-

plet, we demand that Tµν and Sαµ be the only operators of spin larger than one

in the supercurrent.

(d) The multiplet is indecomposable. In other words, it cannot be separated into

two decoupled supersymmetry multiplets. This does not mean that the mul-

tiplet is irreducible. As we will see below, most supercurrents are reducible –

they include a non-trivial sub-multiplet, which is closed under supersymmetry

transformations. However, if the complement of that sub-multiplet is not a

separate supersymmetry multiplet, then the multiplet is indecomposable.

In section 2.2 we show that the most general supercurrent that satisfies the four

basic requirements (a)–(d) is a real superfield Sαα̇ obeying the constraints

D
α̇Sαα̇ = χα + Yα ,

Dα̇χα = 0 , Dαχα = Dα̇χ
α̇ ,

DαYβ +DβYα = 0 , D
2Yα = 0 .

(2.1.10)

This multiplet must exist in every supersymmetric field theory. If there is a well-

defined chiral superfield X such that Yα = DαX, the multiplet (2.1.10) reduces to

the S-multiplet of [46]:

D
α̇Sαα̇ = χα +DαX ,

Dα̇χα = 0 , Dαχα = Dα̇χ
α̇ ,

Dα̇X = 0 .

(2.1.11)

However, the superfield X does not always exist. Throughout this chapter, we will

refer to (2.1.10) as the S-multiplet, and distinguish (2.1.11) as a special case.

The S-multiplet is reducible, because the superfields χα and Yα are non-trivial

sub-multiplets, but in general it is indecomposable. There are, however, special cases

in which the S-multiplet is decomposable, so that we can set either χα, or Yα, or both

to zero by an improvement transformation. This gives rise to smaller supercurrent
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multiplets: the Ferrara-Zumino (FZ) multiplet [38] with χα = 0, the R-multiplet [40,

44–46,50] with Yα = 0, and the superconformal multiplet with χα = Yα = 0.

As an example, we discuss how the different supercurrent multiplets arise in gen-

eral Wess-Zumino models.

In section 2.3 we analyze the supersymmetry current algebra (2.1.4) that follows

from the different supercurrents discussed in section 2.2. We find that the difference

between these multiplets is reflected in the brane currents they contain.

In section 2.4 we repeat the analysis of sections 2.2 and 2.3 for N = 2 theories

in three dimensions. We present the analogue of the S-multiplet, and we explore the

resulting current algebra to identify the different brane currents that can arise. As

we will see, these theories admit space-filling brane currents, which are not present

in four-dimensional theories with N = 1 supersymmetry.

In section 2.5 we discuss the S-multiplet and the resulting current algebra in

two-dimensional N = (0, 2) theories.

In section 2.6 we present additional examples. In particular, we show that there

are no magnetic charges in U(1) gauge theories with a Fayet-Iliopoulos (FI) term.

In section 2.7 we discuss partial supersymmetry breaking and its connection with

space-filling brane currents. We show that these brane currents deform the supersym-

metry current algebra by constants [52]. This highlights the fundamental qualitative

difference between partial supersymmetry breaking and ordinary spontaneous SUSY-

breaking, where the current algebra is not modified.

In section 2.8 we consider the behavior of the supercurrent multiplet under renor-

malization group flow. This allows us to constrain the IR behavior of supersymmetric

field theories. For instance, we can establish whether a given theory admits certain

charged branes. We also comment on the fact that quantum corrections can modify

the supercurrent multiplet and show how these corrections are constrained by the

structure of the multiplet.

Appendix A summarizes some facts about the energy-momentum tensor and its

improvements. Our conventions for two- and three-dimensional theories are summa-
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rized in appendix B. In appendix C, we describe the S-multiplet in two-dimensional

theories with N = (2, 2) supersymmetry. Appendix D explains the relation between

some additional supercurrents, which were discussed in [40,42,47–50], and our general

framework.

2.2 Supercurrents in Four Dimensions

In this section we show that the S-multiplet (2.1.10) is the most general supercurrent

satisfying the general requirements (a)–(d) laid out in the introduction. This multiplet

must exist in any four-dimensional field theory with N = 1 supersymmetry. We then

discuss the allowed improvements of the S-multiplet and we use them to establish

when the multiplet is decomposable. We will illustrate this using general Wess-

Zumino models.

2.2.1 Deriving the S-Multiplet

The most general supercurrent multiplet satisfying (a)–(c) must contain a conserved

supersymmetry current Sαµ, a real, conserved, symmetric energy-momentum ten-

sor Tµν , and possibly other operators of lower spin. Since Tµν is the highest-spin

operator, such a multiplet can be represented by a real superfield Tµ with

Tµ
∣∣
θσνθ
∼ Tνµ + · · · , (2.2.1)

where the ellipsis denotes lower-spin operators and their derivatives. The component

structure of Tµ must be consistent with the supersymmetry current algebra (2.1.4).

A detailed analysis shows that this completely fixes Tµ and the Schwinger terms

in (2.1.4). (We do not describe this arduous computation here.) Furthermore, the

resulting expression for Tµ is always decomposable. It can be separated into a sub-
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multiplet Zα and a smaller supercurrent2

Sαα̇ = Tαα̇ + i
(
DαZ α̇ +Dα̇Zα

)
. (2.2.3)

This is the S-multiplet (2.1.10), which we repeat here for convenience:

D
α̇Sαα̇ = χα + Yα ,

Dα̇χα = 0 , Dαχα = Dα̇χ
α̇ ,

DαYβ +DβYα = 0 , D
2Yα = 0 .

(2.2.4)

Thus, every supersymmetric field theory admits an S-multiplet.

It is straightforward to solve the constraints (2.2.4) in components:

Sµ = jµ − iθ
(
Sµ −

i√
2
σµψ

)
+ iθ

(
Sµ −

i√
2
σµψ

)
+
i

2
θ2Y µ −

i

2
θ

2
Yµ

+
(
θσνθ

)(
2Tνµ − ηνµA−

1

8
ενµρσF

ρσ − 1

2
ενµρσ∂

ρjσ
)

− 1

2
θ2θ

(
σν∂νSµ +

i√
2
σµσ

ν∂νψ

)
+

1

2
θ

2
θ

(
σν∂νSµ +

i√
2
σµσ

ν∂νψ

)
+

1

2
θ2θ

2
(
∂µ∂

νjν −
1

2
∂2jµ

)
.

(2.2.5)

The chiral superfield χα is given by

χα = −iλα(y) + θβ

(
δα

βD(y)− i(σµν)α
βFµν(y)

)
+ θ2σµαα̇∂µλ

α̇
(y) ,

λα = 2σµαα̇S
α̇
µ + 3

√
2iψα ,

D = −4T µµ + 6A ,

Fµν = −Fνµ , ∂[µFνρ] = 0 ,

(2.2.6)

2The superfield Zα satisfies the defining relations

DαZβ +DβZα = 0 ,

D
2Zα + 2Dα̇DαZ

α̇
+DαDα̇Z

α̇
= 0 .

(2.2.2)

See appendix D for a related discussion.
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and the superfield Yα is given by

Yα =
√

2ψα + 2θαF + 2iσµαα̇θ
α̇
Yµ − 2

√
2i
(
θσµθ

)
(σµν)α

β∂νψβ

+ iθ2σµαα̇θ
α̇
∂µF + θ

2
θα∂

µYµ −
1

2
√

2
θ2θ

2
∂2ψα ,

∂[µYν] = 0 ,

F = A+ i∂µjµ .

(2.2.7)

The supersymmetry current Sαµ is conserved, and the energy-momentum tensor Tµν

is real, conserved, and symmetric. The S-multiplet contains 16 + 16 independent real

operators.3

If there is a well-defined complex scalar x such that the complex closed one-form Yµ

in (2.2.7) can be written as Yµ = ∂µx, then we can express

Yα = DαX , Dα̇X = 0 , (2.2.8)

where the chiral superfield X is given by

X = x(y) +
√

2θψ(y) + θ2F (y) . (2.2.9)

In this case the S-multiplet takes the form (2.1.11) discussed in [46]. However, there

are situations in which X does not exist and we must use Yα (for an example, see

subsection 2.2.3).

2.2.2 Improvements and Decomposability

The S-multiplet is not unique. It can be modified by an improvement transformation,

Sαα̇ → Sαα̇ + [Dα, Dα̇]U ,

χα → χα +
3

2
D

2
DαU ,

Yα → Yα +
1

2
DαD

2
U ,

(2.2.10)

3We define the number of independent operators as the number of components

minus the number of conservation laws. For example, the 4 × 5/2 = 10 components

of the energy-momentum tensor lead to 6 independent operators, because there are 4

conservation laws.
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where the real superfield U takes the form

U = u+ θη + θη + θ2N + θ
2
N −

(
θσµθ

)
Vµ + · · · . (2.2.11)

The transformation (2.2.10) preserves the constraints (2.2.4). It modifies the su-

persymmetry current and the energy-momentum tensor by improvement terms as

in (2.1.9) and (2.1.6),

Sαµ → Sαµ + 2(σµν)α
β∂νηβ ,

Tµν → Tµν +
1

2

(
∂µ∂ν − ηµν∂2

)
u ,

(2.2.12)

and it also shifts

Fµν → Fµν − 6 (∂µVν − ∂νVµ) ,

Yµ → Yµ − 2∂µN .
(2.2.13)

In order for the improvement transformation (2.2.10) to be well-defined, the su-

perfield U must be well-defined up to shifts by a real constant. It is possible to express

this transformation entirely in terms of the well-defined superfield ζα = DαU .4 With

this understanding and for ease of notation, we continue to work in terms of U .

As we explained in the introduction, the S-multiplet is reducible, since χα and Yα

are non-trivial sub-multiplets, but it is generally indecomposable. However, there are

4The superfield ζα satisfies the constraints

Dαζβ +Dβζα = 0 ,

D
2
ζα + 2Dα̇Dαζ

α̇
+DαDα̇ζ

α̇
= 0 .

(2.2.14)

In terms of ζα, the improvement transformation (2.2.10) takes the form

Sαα̇ → Sαα̇ +Dαζ α̇ −Dα̇ζα ,

χα → χα +
3

2
D

2
ζα ,

Yα → Yα +
1

2
DαDα̇ζ

α̇
.

(2.2.15)

This is similar, but not identical, to the transformation (2.2.3), which involves the

superfield Zα defined in (2.2.2).
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special cases in which we can use improvements (2.2.10) to decompose the S-multiplet.

This gives rise to smaller supercurrent multiplets:

1.) If there is a well-defined real U such that χα = −3
2
D

2
DαU , then χα can be

improved to zero. In this case the S-multiplet decomposes into χα and a super-

current Jαα̇ satisfying

D
α̇Jαα̇ = Yα ,

DαYβ +DβYα = 0 , D
2Yα = 0 .

(2.2.16)

This is the FZ-multiplet [38]. It contains 12 + 12 independent real operators. If

it is possible to write Yα = DαX as in (2.2.8), then we recover the more familiar

form of the FZ-multiplet,

D
α̇Jαα̇ = DαX ,

Dα̇X = 0 .
(2.2.17)

2.) If there is a well-defined real U such that X = −1
2
D

2
U , then Yα = DαX can

be improved to zero. In this case the S-multiplet decomposes into Yα and a

supercurrent Rαα̇ satisfying

D
α̇Rαα̇ = χα ,

Dα̇χα = 0 , Dαχα = Dα̇χ
α̇ .

(2.2.18)

This is the R-multiplet [40, 44–46, 50]. Like the FZ-multiplet, the R-multiplet

contains 12 + 12 independent real operators. The constraints (2.2.18) imply

that ∂µRµ = 0, so that the bottom component of Rµ is a conserved R-current.

Conversely, any theory with a continuous R-symmetry admits an R-multiplet.

3.) If we can set both χα and Yα to zero by a single improvement transformation,

then the theory is superconformal and the S-multiplet decomposes into χα, Yα,

and an 8 + 8 supercurrent Jαα̇ satisfying

D
α̇Jαα̇ = 0 . (2.2.19)
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The FZ-multiplet and the R-multiplet allow residual improvement transformations,

which preserve the conditions χα = 0 and Yα = 0 respectively.

With the exception of the special cases discussed above, the S-multiplet is in-

decomposable. This is because we insist on discussing only well-defined operators.

Other authors have decomposed the S-multiplet even when it is indecomposable, be-

cause they were willing to consider operators that are either not gauge invariant or

not globally well-defined.

2.2.3 The S-Multiplet in Wess-Zumino Models

As an example, we consider a general Wess-Zumino model with Kähler potential

K(Φi,Φ
i
) and superpotential W (Φi). The Kähler potential and the superpotential

need not be well-defined: K may be shifted by Kähler transformations,

K(Φi,Φ
i
)→ K(Φi,Φ

i
) + Λ(Φi) + Λ(Φ

i
) , (2.2.20)

and W may be shifted by constants. This is because the component Lagrangian of the

theory only depends on the Kähler metric gij = ∂i∂jK of the target space, and on the

derivatives ∂iW of the superpotential. Thus, only gij and ∂iW must be well-defined.

We can use the metric to construct the Kähler form

Ω = igijdΦi ∧ dΦ
j
, (2.2.21)

which is real and closed, dΩ = 0. Locally, it can be expressed as

Ω = dA , A = − i
2
∂iKdΦi +

i

2
∂iKdΦ

i
. (2.2.22)

In general, the Kähler connection A is not globally well-defined.

Using the equations of motion D
2
∂iK = 4∂iW , we can check that the superfields

Sαα̇ = 2gijDαΦiDα̇Φ
j
,

χα = D
2
DαK ,

Yα = 4DαW ,

(2.2.23)
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satisfy the constraints (2.1.10). These operators are well-defined under Kähler trans-

formations (2.2.20) and shifts of W by a constant. Thus, the Wess-Zumino model has

a well-defined S-multiplet, as must be the case in any supersymmetric field theory.

We would like to know under what conditions this multiplet is decomposable, so that

it can be improved to an FZ-multiplet or an R-multiplet.

If we take U = −2
3
K in (2.2.10), then χα is improved to zero and we obtain an

FZ-multiplet. This is allowed only if U ∼ K is well-defined up to shifts by a real

constant. In other words, the Kähler connection A must be globally well-defined [46].

Note that this never happens on a compact manifold, where some power of Ω is

proportional to the volume form, which cannot be exact. As an example, consider a

single chiral superfield Φ with Kähler potential

K = f 2 log
(
1 + |Φ|2

)
, (2.2.24)

where f is a real constant of dimension one and Φ is dimensionless. This Kähler

potential gives rise to the Fubini-Study metric on CP1, which is compact. In this

theory, the S-multiplet cannot be improved to an FZ-multiplet.

If W is not well-defined, then it is not possible to express Yα = DαX as in (2.2.8).

Therefore, such a model cannot have an R-multiplet. A simple example is a cylinder-

valued chiral superfield Φ ∼ Φ + 1, with canonical Kähler potential and superpoten-

tial W ∼ Φ. Going around the cylinder shifts W by a constant, and hence it is not

well-defined.

If W is well-defined, then so is X = 4W . We can improve X to zero and obtain

anR-multiplet if and only if the theory has a continuous R-symmetry. This requires a

basis in which the fields Φi can be assigned R-charges Ri such that the superpotential

has R-charge 2,

2W =
∑
i

RiΦ
i∂iW , (2.2.25)

and the Kähler potential is R-invariant up to a Kähler transformation,

∑
i

(
RiΦ

i∂iK −RiΦ
i
∂iK

)
= Ξ(Φj) + Ξ(Φ

j
) . (2.2.26)
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Using (2.2.25) and the equations of motion, we can write

X = −1

2
D

2
U , U = −

∑
i

RiΦ
i∂iK . (2.2.27)

This U is real as long as the chiral superfield Ξ in (2.2.26) is a constant. In other

words, K must be R-invariant up to shifts by a real constant. Furthermore, U is

well-defined as long as we only perform Kähler transformations that preserve this R-

invariance of K. If both of these conditions are satisfied, then we can use U in (2.2.10)

to obtain an R-multiplet.

For example, the CP1 model (2.2.24) has an R-multiplet. However, the cylinder-

valued superfield Φ ∼ Φ + 1 with canonical K and W ∼ Φ does not have an R-

multiplet. This follows from the fact that the theory does not have a well-defined X.

More explicitly, the superpotential W ∼ Φ forces us to assign RΦ = 2, so that

the R-transformation multiplies the bottom component of Φ by a phase, but this is

incompatible with the cylindrical field space Φ ∼ Φ + 1.

2.3 Physical Interpretation in Terms of

Brane Currents

We have seen that the S-multiplet, though generally indecomposable, can sometimes

be improved to a smaller supercurrent multiplet. This is possible whenever χα or Yα

can be expressed in terms of a real superfield U . The non-existence of such a U is an

obstruction to the decomposability of the S-multiplet. In this section we interpret

this obstruction physically.
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Let us consider the current algebra that follows from the S-multiplet,5

{Qα̇, Sαµ} = σναα̇

(
2Tνµ −

1

8
ενµρσF

ρσ + i∂νjµ − iηνµ∂ρjρ −
1

2
ενµρσ∂

ρjσ
)
,

{Qβ, Sαµ} = 2i (σµν)αβ Y
ν
.

(2.3.1)

Recall from (2.2.6) and (2.2.7) that the real closed two-form Fµν is embedded in χα

and that the complex closed one-form Yµ is embedded in Yα. To elucidate the role of

these operators, we define

Cµν = − 1

16
εµνρσF

ρσ , ∂νCµν = 0 ,

Cµνρ = −εµνρσY
σ
, ∂ρCµνρ = 0 .

(2.3.2)

The current algebra (2.3.1) then takes the form (2.1.4). We see that the Schwinger

terms depend only on jµ and that there are no such terms in {Qβ, Sαµ}. As we

mentioned in the introduction, the two-form current Cµν is associated with strings

and the three-form current Cµνρ is associated with domain walls. The appearance

of such currents in the four-dimensional N = 1 current algebra was pointed out

in [37,53].

We can formally define the string and domain wall charges

Zµ =

∫
d3xCµ

0 , Zµν =

∫
d3xCµν

0 , (2.3.3)

and integrate the current algebra (2.3.1) to obtain the modified supersymmetry alge-

bra (2.1.3), which we repeat here for convenience:

{Qα, Qα̇} = 2σµαα̇ (Pµ + Zµ) ,

{Qα, Qβ} = σµναβZµν .
(2.3.4)

In obtaining this algebra, we have dropped the contributions from the jµ-dependent

Schwinger terms in (2.3.1), which can contribute a boundary term to {Qα, Qα̇}. The

5We use the fact that [ξαQα + ξα̇Q
α̇
, S] = i(ξαQα + ξα̇Q

α̇
)S , for any superfield S.

Here Qα is the supercharge and Qα is the corresponding superspace differential oper-

ator. The additional factor of i is needed for consistency with Hermitian conjugation.
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imaginary part of this boundary term must vanish by unitarity. The real part is

due to the term ∼ εµνρσ∂
ρjσ in (2.3.1), and we assume that it vanishes as well.

(We will revisit this point below.) Note that the string charge Zµ is algebraically

indistinguishable from the momentum Pµ. However, they are distinguished at the

level of the current algebra (2.3.1).

As we mentioned in the introduction, the brane charges Zµ and Zµν are not central

charges of the super-Poincaré algebra. Moreover, they are generally infinite, and only

the charge per unit volume is meaningful. For instance, it determines the tension of

BPS branes. Many authors have studied such BPS configurations (see e.g. [54,55] and

references therein). Our new point here is the relation between the brane currents

and the different supercurrent multiplets.

Under improvements (2.2.10) of the S-multiplet, the shifts of Fµν and Yµ in (2.2.13)

imply that the brane currents also change by improvement terms,

Cµν → Cµν +
3

4
εµνρσ∂

ρV σ ,

Cµνρ → Cµνρ + 2εµνρσ∂
σN ,

(2.3.5)

where Vµ and N belong to the superfield U in (2.2.11). Upon integration, these

improvement terms can contribute boundary terms to the brane charges Zµ and Zµν .

Whether or not such boundary terms arise depends on the behavior of Vµ and N at

spatial infinity. Note that the Schwinger term ∼ εµνρσ∂
ρjσ in (2.3.1) looks like an

improvement term for Cµν with Vµ ∼ jµ. As long as jµ, Vµ, and N are sufficiently

well-behaved at spatial infinity, all boundary terms vanish and the brane charges are

not affected by the improvements (2.3.5). This is the case for isolated branes, as long

as the fields approach a supersymmetric vacuum far away from the brane.6 The fact

6In the presence of more complicated configurations, such as certain brane bound

states, this is no longer true. For instance, the Schwinger term ∼ εµνρσ∂
ρjσ in (2.3.1)

gives rise to a boundary contribution in the presence of domain wall junctions [37,56].

However, the string-like defect on which the domain walls end does not exist in

isolation, and hence this boundary term is not a conventional string charge.
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that improvements of the supersymmetry current do not affect the brane charges was

pointed out in [37,57].

With these assumptions, we conclude that the string charge Zµ must vanish in

theories in which Fµν can be set to zero by an improvement transformation. This is

the case if and only if the S-multiplet can be improved to an FZ-multiplet. Likewise,

the domain wall charge Zµν must vanish in theories in which Yµ can be set to zero

by an improvement transformation, and this happens if and only if the S-multiplet

can be improved to an R-multiplet. Conversely, the existence of strings that carry

charge Zµ is a physical obstruction to improving the S-multiplet to an FZ-multiplet,

and the existence of domain walls that carry charge Zµν is a physical obstruction to

improving the S-multiplet to an R-multiplet.7

This point of view emphasizes the fact that the S-multiplet always exists, but

that it may be decomposable. The existence of brane charges in the supersymmetry

algebra is an obstruction to decomposability, and it forces us to consider different

supercurrents containing the corresponding brane currents: charged domain walls lead

to the FZ-multiplet, and charged strings give rise to the R-multiplet. Theories that

support both domain walls and strings with charges in the supersymmetry algebra

require the S-multiplet.

To illustrate this, we return to the Wess-Zumino models of subsection 2.2.3. If

such a model admits strings with charge Zµ, then χα = D
2
DαK in (2.2.23) cannot

be improved to zero. Therefore, the Kähler form Ω in (2.2.20) is not exact. In

this case, the operator Fµν in the S-multiplet is proportional to the pull-back to

spacetime of Ω, and the string current Cµν ∼ iεµνρσgij∂
ρφi∂σφ

j
is topological. (This

is familiar in the context of two-dimensional sigma models, where the analogues of

four-dimensional strings are instantons.) If the string is oriented along the z-axis in

7This does not apply to branes whose charges do not appear in the supersymmetry

algebra. For instance, there can be strings in theories with FZ-multiplets, provided

the string charge does not appear in the supersymmetry algebra [58]. Clearly, such

strings cannot be BPS.
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its rest frame, then the string charge is given by Zµ = ±TBPSLδµ3, where TBPS > 0

is a constant, L → ∞ is the length of the string, and the sign is determined by the

chirality of the string. From (2.3.4), we see that the mass M of the string satisfies the

BPS bound M ≥ TBPSL. If this bound is saturated, then the string has tension TBPS,

and it preserves two real supercharges. A typical example is the CP1 model (2.2.24),

which supports BPS strings with TBPS ∼ f 2.

If the Wess-Zumino model admits domain walls that carry charge Zµν , then Yα

cannot be improved to zero. Hence, the theory does not have a continuous R-

symmetry. In this case, the operator Yµ in the S-multiplet is proportional to the

pull-back to spacetime of the holomorphic one-form ∂iWdΦi. If the domain wall is at

rest and lies in the xy-plane, then the non-vanishing components of the domain wall

charge are Z12 = −Z21 = 2zBPSA, where zBPS is a complex constant and A→∞ is the

area of the wall. From (2.3.4), we see that the mass M of the wall satisfies the BPS

bound M ≥ |zBPS|A. If this bound is saturated, then the wall has tension |zBPS|, and

it preserves two real supercharges. A simple example is a single chiral superfield Φ

with canonical Kähler potential and superpotential W = m
2

Φ2 + λ
3
Φ3. This model

has two degenerate supersymmetric vacua, and it supports a BPS domain wall, which

interpolates between them. In this case zBPS = −2∆W , where ∆W = ±m3

6λ2 is the

difference of the superpotential evaluated in the two vacua; the sign is determined by

the choice of vacuum on either side of the wall.

2.4 Supercurrents in Three Dimensions

In this section, we discuss the analogue of the S-multiplet in three-dimensional the-

ories with N = 2 supersymmetry. (Our conventions are summarized in appendix B.)

Just as in four-dimensions, this multiplet is the most general supercurrent satisfying

the requirements (a)–(d) laid out in the introduction. Consequently, it exists in every

supersymmetric field theory.

26



2.4.1 The S-Multiplet

In three-dimensional N = 2 theories, the S-multiplet is a real superfield Sµ, which

satisfies the constraints

D
βSαβ = χα + Yα ,

Dαχβ =
1

2
Cεαβ , Dαχα = −Dα

χα ,

DαYβ +DβYα = 0 , D
αYα = −C ,

(2.4.1)

where Sαβ = Sβα is the symmetric bi-spinor corresponding to Sµ, and C is a complex

constant. We will see that C gives rise to a new kind of brane current, which is

qualitatively different from the brane currents we encountered in four dimensions.

It is straightforward to solve the constraints (2.4.1) in components:

Sµ = jµ − iθ
(
Sµ +

i√
2
γµψ

)
− iθ

(
Sµ −

i√
2
γµψ

)
+
i

2
θ2Y µ +

i

2
θ

2
Yµ

−
(
θγνθ

)(
2Tνµ − ηµνA+

1

4
ενµρH

ρ

)
− iθθ

(
1

4
εµνρF

νρ + εµνρ∂
νjρ
)

+
1

2
θ2θ

(
γν∂νSµ −

i√
2
γνγµ∂

νψ

)
+

1

2
θ

2
θ

(
γν∂νSµ +

i√
2
γνγµ∂

νψ

)
− 1

2
θ2θ

2
(
∂µ∂

νjν −
1

2
∂2jµ

)
.

(2.4.2)

The chiral superfield χα is given by

χα = −iλα(y) + θβ

(
δα

βD(y)− γµαβ
(
Hµ(y)− i

2
εµνρF

νρ(y)
))

+
1

2
θαC − θ2γµα

β∂µλβ(y) ,

λα = −2γµα
βSβµ + 3

√
2iψα ,

D = −4T µµ + 4A ,

∂[µHν] = 0 ,

Fµν = −Fνµ , ∂[µFνρ] = 0 ,

yµ = xµ − iθγµθ ,

(2.4.3)
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and the superfield Yα is given by

Yα =
√

2ψα + 2θαF −
1

2
θαC + 2iγµαβθ

β
Yµ +

√
2i
(
θγµθ

)
εµνργ

ν
α
β∂ρψβ

+
√

2iθθγµα
β∂µψβ + iθ2γµαβθ

β
∂µF − θ

2
θα∂

µYµ +
1

2
√

2
θ2θ

2
∂2ψα ,

∂[µYν] = 0 ,

F = A+ i∂µjµ .

(2.4.4)

The supersymmetry current Sαµ is conserved, and the energy-momentum tensor Tµν

is real, conserved, and symmetric. The S-multiplet now contains 12+12 independent

real operators, and the complex constant C.

If there is a well-defined complex scalar x such that the complex closed one-form Yµ

in (2.4.4) can be written as Yµ = ∂µx, then we can express

Yα = DαX , DαDβX = −1

2
Cεαβ , D

2
X = 0 , (2.4.5)

where X| = x. If the constant C vanishes, then X is chiral, just as in four dimensions.

If there is a well-defined real scalar J such that the real closed one-form Hµ

in (2.4.3) can be written as Hµ = ∂µJ , then we can express

χα = iDαJ , D
2J = −iC , (2.4.6)

where J | = J . If the constant C vanishes, then J is a real linear multiplet.8

2.4.2 Improvements and Decomposability

The S-multiplet (2.4.1) can be modified by an improvement transformation

Sαβ → Sαβ +
1

2

(
[Dα, Dβ] + [Dβ, Dα]

)
U ,

χα → χα −D
2
DαU ,

Yα → Yα −
1

2
DαD

2
U ,

(2.4.7)

where the real superfield U takes the form

U = · · ·+ θ2N − θ2
N +

(
θγµθ

)
Vµ − iθθK + · · · . (2.4.8)

8A real linear multiplet O satisfies D
2O = 0 and hence also D2O = 0 .
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The transformation (2.4.7) preserves the constraints (2.4.1), and it changes the su-

persymmetry current and the energy-momentum tensor by improvement terms. It

also shifts

Hµ → Hµ − 4∂µK ,

Fµν → Fµν − 4 (∂µVν − ∂νVµ) ,

Yµ → Yµ − 2∂µN .

(2.4.9)

The constant C is not affected. As in four dimensions, the superfield U in (2.4.7) is

only well-defined up to shifts by a real constant, and we could instead work with the

well-defined superfield ζα = DαU .9

Again, we distinguish cases in which the S-multiplet can be improved to a smaller

supercurrent:

1.) If C = 0 and there is a well-defined real U such that J = 2iDDU , then χα =

iDαJ can be improved to zero and we obtain an FZ-multiplet

D
βJαβ = Yα ,

DαYβ +DβYα = 0 , D
αYα = 0 .

(2.4.11)

This multiplet contains 8 + 8 independent real operators.

2.) If C = 0 and there is a well-defined real U such thatX = 1
2
D

2
U , then Yα = DαX

can be improved to zero and we obtain an R-multiplet

D
βRαβ = χα ,

Dαχβ = 0 , Dαχα = −Dα
χα .

(2.4.12)

9In three dimensions, the superfield ζα satisfies the constraints (compare

with (2.2.14))

D
α
ζα = Dαζα ,

Dαζβ +Dβζα = 0 ,

D
2
ζα + 2D

β
Dαζβ +DαD

β
ζβ = 0 .

(2.4.10)
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Like the FZ-multiplet, it contains 8 + 8 independent real operators. As in four

dimensions, the bottom component of the R-multiplet is a conserved R-current,

and the R-multiplet exists in every theory with a continuous R-symmetry.

3.) If C = 0 and we can set both χα and Yα to zero by a single improvement

transformation, then the theory is superconformal, and it has a 4 + 4 multiplet

satisfying

D
βJαβ = 0 . (2.4.13)

Note that the S-multiplet is decomposable only if the constant C vanishes.

2.4.3 Brane Currents

The current algebra that follows from the S-multiplet takes the form

{Qα, Sβµ} = γναβ

(
2Tνµ +

1

4
ενµρH

ρ + i∂νjµ − iηµν∂ρjρ
)

+ iεαβ

(
1

4
εµνρF

νρ + εµνρ∂
νjρ
)
,

{Qα, Sβµ} =
1

4
Cγµαβ + iεµνργ

ν
αβY

ρ
.

(2.4.14)

This allows us to identify the conserved brane currents

Cµ ∼ εµνρF
νρ , Cµν ∼ εµνρH

ρ , C ′µν ∼ εµνρY
ρ
, Cµνρ ∼ Cεµνρ . (2.4.15)

The current Cµ is associated with zero-branes (it gives rise to a well-defined central

charge Z; see appendix B), while Cµν and C ′µν are associated with one-branes. The

current Cµνρ is associated with space-filling two-branes.

As in four-dimensions, improvement transformations (2.4.7) of the S-multiplet

shift the brane-currents (2.4.15) by improvement terms, so that the corresponding

brane charges are unchanged. (The space-filling brane current Cµνρ is not affected.)

Thus, the zero-brane charge corresponding to Cµ and the one-brane charge corre-

sponding to Cµν must vanish, if the S-multiplet can be improved to an FZ-multiplet.

The one-brane charge corresponding to C ′µν must vanish, if the S-multiplet can be im-

proved to an R-multiplet. Conversely, the existence of branes carrying these charges
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is a physical obstruction to improving the S-multiplet to one of the smaller supercur-

rents.

2.4.4 Relation to Four-Dimensional Supercurrents

It is instructive to reduce the four-dimensional S-multiplet (2.1.10) to three dimen-

sions. Upon reduction, the four-dimensional superfield Sαβ̇ decomposes into a sym-

metric bi-spinor Ŝαβ and a real scalar Ĵ , which arises as the component of the

four-dimensional Sµ in the reduced direction. Thus Ĵ contains a conserved cur-

rent corresponding to translations in the reduced direction. The four-dimensional

superfields χα,Yα reduce to χ̂α, Ŷα. The constraints (2.1.10) then take the form

D
βŜαβ = 2iDαĴ + χ̂α + Ŷα ,

Dαχ̂β = 0 , Dαχ̂α = −Dα
χ̂α ,

DαŶβ +DβŶα = 0 , D
2Ŷα = 0 .

(2.4.16)

These constraints imply that D
αŶα = −C, where C is a complex constant, and thus

D
2Ĵ = −iC

2
. (2.4.17)

The constant C arises from the four-dimensional domain wall current Cµνρ in (2.3.2),

but in three dimensions it represents a space-filling brane current. We identify (2.4.16)

as a three-dimensional S-multiplet (2.4.1) with

χα = χ̂α + 2iDαĴ . (2.4.18)

In general, Ĵ is non-trivial, so that it cannot be set to zero by a three-dimensional

improvement transformation (2.4.7).

We see that the four-dimensional S-multiplet, which has 16 + 16 independent

operators, becomes decomposable upon reduction to three dimensions. It decom-

poses into a three-dimensional S-multiplet, which has 12 + 12 independent operators,

and another 4 + 4 multiplet. Likewise, the reduction of the four-dimensional R-

multiplet (2.2.18) decomposes into a three-dimensional R-multiplet (2.4.12), and an-
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other 4+4 multiplet. This is expected, because a continuous R-symmetry is preserved

by dimensional reduction.

However, the four-dimensional FZ-multiplet (2.2.16), which has 12 + 12 indepen-

dent operators, reduces to a three-dimensional S-multiplet (2.4.1), which is generally

indecomposable. This is because Ĵ gives rise to a non-trivial χα in (2.4.18), even

when χ̂α = 0.

2.5 Supercurrents in Two Dimensions

In this section, we present the analogue of the S-multiplet in two-dimensional theories

with N = (0, 2) supersymmetry. (Our conventions are summarized in appendix B.)

In appendix C we extend our results to theories with N = (2, 2) supersymmetry.

In two-dimensional N = (0, 2) theories, the S-multiplet consists of two real su-

perfields S++, T−−−− and a complex superfield W−, which satisfy the constraints

∂−−S++ = D+W− −D+W− ,

D+T−−−− =
1

2
∂−−W− ,

D+W− = C .

(2.5.1)

Here C is a complex constant. As in three dimensions, it is associated with a space-

filling brane current.

It is straightforward to solve the constraints (2.5.1) in components:

S++ = j++ − iθ+S+++ − iθ
+
S+++ − θ+θ

+
T++++ ,

W− = −S+−− − iθ+

(
T++−− +

i

2
∂−−j++

)
− θ+

C +
i

2
θ+θ

+
∂++S+−− ,

T−−−− = T−−−− −
1

2
θ+∂−−S+−− +

1

2
θ

+
∂−−S+−− +

1

4
θ+θ

+
∂2
−−j++ .

(2.5.2)

The supersymmetry current is conserved, and the energy-momentum tensor is real,

conserved, and symmetric,

∂++S+−− + ∂−−S+++ = 0 ,

∂++T±±−− + ∂−−T±±++ = 0 ,

T++−− = T−−++ .

(2.5.3)
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Thus, the S-multiplet contains 2+2 independent real operators,10 and the constant C.

Note that j++ is not in general accompanied by another real operator j−−.

The improvements of the S-multiplet (2.5.1) take the form

S++ → S++ + [D+, D+]U ,

W− →W− + ∂−−D+U ,

T−−−− → T−−−− +
1

2
∂2
−−U ,

(2.5.4)

where U is a real superfield, whose bottom component is well-defined up to shifts by

a real constant. The transformation (2.5.4) preserves the constraints (2.5.1) and it

changes the supersymmetry current and the energy-momentum tensor by improve-

ment terms. The constant C is not affected.

As before, we distinguish special cases:

1.) If C = 0 and there is a well-defined real superfield R−− such that W− =

iD+R−−, we obtain an R-multiplet

∂−−R++ + ∂++R−− = 0 ,

D+

(
T−−−− −

1

2
∂−−R−−

)
= 0 .

(2.5.5)

Here we have relabeled S++ → R++. The bottom components of R±± form a

conserved R-current with R = −1
4

∫
dx (j++ + j−−). Unlike in higher dimen-

sions, the R-multiplet now includes the same number (2 + 2) of independent

real operators as the S-multiplet: the conserved, symmetric energy-momentum

tensor, the conserved R-current, and two conserved supersymmetry currents.

2.) If C = 0 and we can set W− to zero by an improvement transformation, the

theory is superconformal and the S-multiplet decomposes into the right-moving

supercurrent

∂−−S++ = 0 , (2.5.6)

10We count independent operators according to the rules explained in footnote 3.

This can obscure the counting in two dimensions. For instance, we do not count

left-moving operators, which satisfy ∂++O = 0.
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and the left-moving component T−−−− of the energy-momentum tensor.

The current algebra that follows from the S-multiplet takes the from

{Q+, S+++} = −T++++ −
i

2
∂++j++ ,

{Q+, S+−−} = −T++−− +
i

2
∂−−j++ ,

{Q+, S+++} = 0 ,

{Q+, S+−−} = iC .

(2.5.7)

As in three dimensions, we interpret the constant C as a space-filling brane current.

This brane current is not affected by improvement transformations (2.5.4), and it

must vanish whenever the theory admits an R-multiplet (2.5.5).

2.6 Examples

2.6.1 Fayet-Iliopoulos Terms

Consider a free U(1) gauge theory with an FI-term in four dimensions:

L =
1

4e2

∫
d2θWαWα + c.c.+ ξ

∫
d4θ V . (2.6.1)

Here Wα = −1
4
D

2
DαV is the usual field-strength superfield. Using the equations of

motion DαWα = e2ξ, we find that this theory has an R-multiplet

Rαα̇ = − 4

e2
WαW α̇ ,

χα = −4ξWα .

(2.6.2)

It cannot be improved to an FZ-multiplet. Such an improvement would require U ∼

ξV in (2.2.10), and this is not gauge invariant [43,46]. If we couple (2.6.1) to matter

with a generic superpotential, there will no longer be a continuous R-symmetry. In

this case the theory has an indecomposable S-multiplet; it admits neither an R-

multiplet nor an FZ-multiplet.

We see that χα ∼ ξWα cannot be improved to zero in theories with an FI-term,

and therefore they do not have an FZ-multiplet. From our discussion in section 2.3
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we expect these theories to admit strings carrying charge Zµ. This is indeed the case:

even the simplest nontrivial example, supersymmetric QED with an FI-term, supports

such strings [59]. In this theory they turn out to be BPS, with tension TBPS ∼ ξ.

Note that the real two-form Fµν in χα is proportional to the U(1) field strength

in Wα. Since Fµν must be closed, we conclude that there are no magnetic charges

in U(1) gauge theories with an FI-term.

2.6.2 Chern-Simons Terms

Consider a free U(1) gauge theory with a Chern-Simons term and an FI-term in three

dimensions:

L = − 1

4e2

∫
d4θΣ2 + k

∫
d4θΣV + ξ

∫
d4θ V . (2.6.3)

Here Σ = iDDV is the three-dimensional field strength; it is a real linear superfield.

Using the equations of motion iDDΣ = 2e2ξ + 4e2kΣ , we find that the theory has

an R-multiplet

Rαβ =
1

2e2

(
DαΣDβΣ +DβΣDαΣ

)
,

χα = iDαJ , J = −ξΣ− i

4e2
DD

(
Σ2
)
.

(2.6.4)

If ξ = 0, we can perform an improvement transformation (2.4.7) with U ∼ 1
e2

Σ2 to

obtain an FZ-multiplet

Jαβ =
1

2e2

(
DαΣDβΣ +DβΣDαΣ

)
− 1

16e2

(
[Dα, Dβ] + [Dβ, Dα]

) (
Σ2
)
,

Yα = DαX, X =
1

16e2
D

2 (
Σ2
)
.

(2.6.5)

Note that the Chern-Simons level k does not appear explicitly.

2.6.3 Real Mass Terms

Three-dimensionalN = 2 theories allow real mass terms. Each real mass parameterm

is associated with a U(1) flavor symmetry. The flavor current is usually embedded in

a real linear multiplet Jm, which contributes to the operator χα in the S-multiplet,

χα ∼ imDαJm . (2.6.6)
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Thus χα cannot be improved to zero in theories with real mass terms.

2.6.4 Two-Dimensional N = (0, 2) Kähler Sigma Models

Consider a two-dimensional N = (0, 2) sigma model, whose target space is a Kähler

manifold, such as CP1. The Lagrangian is

L =
i

8

∫
dθ+dθ

+
∂iK∂−−Φi + c.c. , (2.6.7)

where K is the Kähler potential and the Φi are chiral, D+Φi = 0. The classical theory

is superconformal, and it admits an S-multiplet (2.5.1) with S++ ∼ gijD+ΦiD+Φ
j

andW− = 0. Quantum corrections lead to a breakdown of conformal invariance, and

a non-zero W− is generated at one-loop,

W− ∼ Rij ∂−−ΦiD+Φ
j
. (2.6.8)

Here Rij = ∂i∂j log det gkl is the Ricci tensor of the target space. This also shows that

the R-symmetry of the classical theory is anomalous. Note that we can write W− =

iD+R−− withR−− ∼ −i∂i log det gkl ∂−−Φi, which is not globally well-defined. There-

fore, the R-symmetry is not violated in perturbation theory, even though the theory

does not admit a well-defined R-multiplet. In particular, the constant C in (2.5.1)

cannot be generated perturbatively.

Nonperturbatively, instantons activate the anomaly and explicitly break the R-

symmetry. To see this in more detail, let us consider the Euclidean two-point func-

tion 〈S+−−(0)S+++(z, z)〉,11 where S+−− ∼ Rijψ
i
+∂−−φ

j
is generated by the one-loop

anomaly (2.6.8) and S+++ ∼ gijψ
i
+∂++φ

j
. Since this correlation function violates

the R-symmetry by two units, it vanishes in perturbation theory. However, instan-

tons that violate the R-symmetry by the same amount can lead to a nonzero answer.

For instance, this happens in the CP1 model, where the (anti-) instanton of degree −1

has two fermion zero modes, and thus gives rise to a contribution

〈S+−−(0)S+++(z, z)〉instanton ∼
Λ2

z
. (2.6.9)

11Here z, z are the Euclidean continuations of x−−, x++.
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Here Λ is the strong coupling scale of the theory. Upon integration, the residue

at z = 0 gives rise to a contribution C ∼ Λ2 in (2.5.7). We conclude that instantons

generate the constant C in (2.5.1). This was pointed out in [60] and explicitly verified

in [61].

2.6.5 A Quantum Mechanical Example

An interesting class of examples in which the superfield Yα in the S-multiplet cannot

be expressed in terms of a chiral superfield X consists of Wess-Zumino models whose

superpotential W is not well-defined (see subsection 2.2.3). To briefly illustrate the

interesting quantum effects that can arise in such models, we consider the N = 2

quantum mechanics of a real superfield Φ:

L =

∫
dθdθ

(
DΦDΦ +W (Φ)

)
. (2.6.10)

Here the superpotential W is real. Since we are interested in the case where W is not

well-defined, we identify

Φ ∼ Φ + 2π , (2.6.11)

and we choose

W = fΦ + cos Φ , (2.6.12)

where f is a real constant. The classical vacua are determined by the equation

sin Φ = f . (2.6.13)

When |f | > 1, there is no solution to (2.6.13) and SUSY is spontaneously broken at

tree level. When 0 < |f | < 1, there are two classical supersymmetric vacua satisfy-

ing (2.6.13). In this case the system has two different instantons, which interpolate

between these vacua – one for each arc of the circle (2.6.11). These instantons mix the

two vacuum states and lead to spontaneous SUSY-breaking. Thus, the model (2.6.10)

spontaneously breaks SUSY for all non-zero values of f . When f = 0, there are su-

persymmetric vacua at Φ = 0, π. Now the two instantons are still present and each
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one mixes the two vacua, but their contributions exactly cancel and supersymmetry

is unbroken.

Similar effects can arise in two-dimensional N = (2, 2) theories when W is not

well-defined. These models often admit BPS solitons that preserve some of the super-

charges to all orders in perturbation theory. However, just as in the quantum mechani-

cal example above, nonperturbative effects can break the remaining supersymmetries,

so that the BPS property is not maintained in the full quantum theory [62,63].

2.7 Partial Supersymmetry Breaking and Space-

Filling Branes

The goal of this section is to clarify some issues about the phenomenon known as

partial supersymmetry breaking, and to relate it to our previous discussion about

supercurrent multiplets and brane currents.

2.7.1 A Quantum Mechanical Example

Following [52], we consider a quantum mechanical system with N = 2 supersymmetry

{Q,Q} = 2H ,

{Q,Q} = 2Z ,

{Q,Q} = 2Z .

(2.7.1)

Here H is the Hamiltonian and the complex constant Z is a central charge. Note that

the energy E satisfies the BPS bound E ≥ |Z|. Let us study the representations of

the algebra (2.7.1) as a function of Z.

If Z = 0, the algebra has two-dimensional representations with generic energy E >

0, and a one-dimensional representation with E = 0. The one-dimensional represen-

tation is supersymmetric; it is annihilated by both supercharges. If the Hilbert space

includes a state in this representation, N = 2 supersymmetry is unbroken. If there

is no such state in the Hilbert space, supersymmetry is completely broken.
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For Z 6= 0, the situation is more interesting. The representations with generic

energy E > |Z| are two-dimensional, and they are similar to the two-dimensional

representations of the Z = 0 algebra. In particular, both supercharges act non-

trivially. There is also a one-dimensional representation with E = |Z|, which saturates

the BPS bound. It is annihilated by one linear combination of the supercharges, while

the other linear combination acts as a constant. We say that such a state breaksN = 2

to N = 1. In other words, it partially breaks supersymmetry.

Virtually all models have a Z2 symmetry, implemented by (−1)F , under which all

fermions are odd. Let us add this operator to the algebra (2.7.1). Most of the repre-

sentations discussed above easily accommodate this operator. The only exception is

the one-dimensional representation with E = |Z| 6= 0, which must be extended to a

two-dimensional representation.12

There is a fundamental difference between the partial supersymmetry breaking

that can happen when Z 6= 0 and the spontaneous supersymmetry breaking that can

happen when Z = 0.

If Z = 0, the algebra (2.7.1) admits supersymmetric representations. It is a

dynamical question whether or not the Hilbert space of the system includes such

supersymmetric states. Thus, whether or not supersymmetry is spontaneously bro-

ken is a property of the ground state. The high-energy behavior of the system is

supersymmetric.

Turning on a non-zero Z does not spontaneously break N = 2 to N = 1. Instead,

the original N = 2 supersymmetry algebra with Z = 0 is deformed. This deformation

of the algebra is a property of the high-energy theory rather than a property of the

ground state. The ground state is determined by the dynamics. If it saturates the BPS

bound, E = |Z|, then N = 1 is preserved. If all states have E > |Z|, supersymmetry

is completely broken.

12More generally, adding (−1)F to the SUSY algebra doubles the size of a repre-

sentation, whenever the number of supercharges that do not annihilate that repre-

sentation is odd.
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From this point of view, Witten’s argument ruling out spontaneous partial su-

persymmetry breaking [12] is correct. It applies to the algebra with Z = 0. The

observation of [52] is that the algebra can be deformed to admit states that partially

break supersymmetry.

This quantum mechanical discussion also emphasizes the fact that partial super-

symmetry breaking has nothing to do with infinite volume or with the non-existence

of the supercharges. It is simply a consequence of deforming the supersymmetry

algebra.

2.7.2 Relation to Space-Filling Branes

In higher-dimensional systems, a central charge like Z in (2.7.1) is proportional to

the volume of space. For example, integrating the three-dimensional N = 2 current

algebra (2.4.14) gives

{Qα, Qβ} = −2EAγ0
αβ , {Qα, Qβ} =

CA

4
γ0
αβ . (2.7.2)

Here E is the vacuum energy density, and A →∞ is the spatial volume. This leads

to the BPS bound E ≥ |C|/8, so that the vacuum has positive energy whenever C 6=

0. If the BPS bound is saturated, E = |C|/8, then the vacuum breaks half of

the supercharges, preserving only N = 1 supersymmetry. If the BPS bound is not

saturated, then SUSY is completely broken.

The same phenomenon occurs in two-dimensional N = (0, 2) theories. Integrating

the current algebra (2.5.7) leads to

{Q±, Q±} = 2EL , {Q+, Q+} = −CL
4

, (2.7.3)

where L → ∞ is the spatial volume. Just as in three dimensions, we obtain a BPS

bound E ≥ |C|/8. If this bound is saturated, then the vacuum preserves only one real

supercharge and SUSY is partially broken from N = (0, 2) to N = (0, 1). Otherwise,

supersymmetry is completely broken.

It should now be clear that partial supersymmetry breaking can be interpreted in

terms of space-filling brane currents, which give rise to constants in the SUSY current
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algebra [52]. The deformation of the ordinary current algebra by these constants

implies that some of the supersymmetries are always realized non-linearly.

2.7.3 Examples

There are copious known examples of theories with partial supersymmetry breaking.

Many of them arise as effective field theories on various BPS branes in field theory

and string theory.

Perhaps the simplest examples occur in quantum mechanics. The theory of D0-

branes exhibits partial supersymmetry breaking. This was used in the BFSS matrix

model [64] and further explored in [65]. Two-dimensional examples arise on the world

sheet of strings. The standard Green-Schwarz light-cone string exhibits N = 16

supersymmetry broken to N = 8. Other examples in two dimensions were studied

in [52,66].

An interesting phenomenon arises in the two-dimensional N = (0, 2) sigma model

(2.6.7). As we discussed in subsection 2.6.4, the constant C in (2.7.3) cannot be gen-

erated perturbatively. Thus, the theory and its vacuum preserve N = (0, 2) super-

symmetry to all orders in perturbation theory. Nonperturbatively, the constant C is

generated by instantons, and the supersymmetry algebra is deformed [60,61]. There-

fore, the vacuum preserves at most one real supercharge. As was pointed out in

section 2.7.1, BPS vacua that preserve one real supercharge must come in pairs in

order to represent (−1)F . Such pairs of BPS vacua do not constitute short represen-

tations, and consequently it is not easy to establish their existence.

Three-dimensional theories with partial supersymmetry breaking can be found

on the world-volume of BPS domain walls embedded in four dimensions. These

theories admit a three-dimensional S-multiplet (2.4.1) with C ∼ zBPS, which leads

to partial SUSY-breaking [67]. In this class of models, the constants in the SUSY

current algebra arise due to the presence of physical space-filling branes embedded in

a higher-dimensional theory.

Another three-dimensional example is a variant of the two-dimensional model
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studied in [66]. It has a space-filling brane current at tree-level. We start with a

Wess-Zumino model with a single chiral superfield Φ, canonical Kähler potential, and

superpotential

W = ω log Φ . (2.7.4)

Here ω is a complex constant. Note that this W is not globally well-defined. The

model has a U(1) flavor symmetry under which Φ has charge 1 and W is shifted by

a constant,

δU(1)Φ = −iΦ ,

δU(1)W = −iω .
(2.7.5)

The scalar potential leads to runaway behavior and the theory does not have a

ground state. In order to avoid the runaway, we turn on a real mass m for the U(1)

flavor symmetry. This stabilizes the runaway potential and it deforms the superco-

variant derivatives by the action of the U(1) symmetry,

Dα → Dα +mθαδU(1) ,

Dα → Dα +mθαδU(1) .
(2.7.6)

The chiral superfield Φ still satisfies DαΦ = 0. Using the equations of motion D
2
Φ =

−4ω
Φ

, we can check that this model has an S-multiplet (2.4.1) with

Sαβ = DαΦDβΦ +DβΦDαΦ ,

χα = −1

2
D

2
Dα

(
ΦΦ
)
− 4imDα

(
ΦΦ
)
,

Yα = 4ω
DαΦ

Φ
,

C = 16imω .

(2.7.7)

The vacuum saturates the BPS bound and supersymmetry is partially broken from

N = 2 to N = 1.

The interpretation of partial supersymmetry breaking in terms of space-filling

brane currents also applies to four-dimensionalN = 2 theories. Examples of such the-

ories are world-volume theories of BPS three-branes embedded in six dimensions [68],

and gauge theories with magnetic FI-terms [69,70]. At low energies, these models are

described by four-dimensional Born-Infeld actions withN = 1 supersymmetry [71,72].
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2.8 Constraints on Renormalization Group Flow

Consider a supersymmetric quantum field theory with a UV cutoff. This theory must

have a well-defined supercurrent multiplet. In this section we discuss the behavior of

this multiplet under renormalization group flow. This allows us to constrain the IR

behavior of the theory.

All supercurrents furnish short representations of the supersymmetry algebra.

(Equivalently, they satisfy certain constraints in superspace.) As is typical in super-

symmetric theories, short multiplets are protected: they must remain short under

renormalization group flow. Therefore, the structure of the supercurrent multiplet is

determined in the UV. This structure is then preserved at all energy scales along the

renormalization group flow to the IR.

Before presenting specific applications of this reasoning, we would like to empha-

size three important subtleties:

1.) In the extreme UV the theory is superconformal and it has a superconformal

multiplet. As we start flowing toward the IR, the superconformal multiplet

mixes with another multiplet and becomes larger – it turns into one of the

multiplets discussed above. In this section, we would like to discuss the renor-

malization group flow starting at a high, but finite UV cutoff.

2.) The opposite phenomenon happens in the extreme IR, where the theory is again

superconformal and the multiplet becomes shorter. This happens because some

non-trivial operators flow to zero at the IR fixed point. (If the low-energy theory

is completely massive, the entire multiplet flows to zero in the extreme IR.)

Therefore, our conclusions about the low-energy theory will be most interesting

when we consider the theory at long, but finite distances.

3.) The supercurrent multiplet must retain its form under renormalization group

flow. In particular, constants that appear in the multiplet cannot change along

the flow. This does not mean that these constants, or other operators in the
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multiplet, are not corrected in perturbation theory, or even nonperturbatively.

However, these corrections are completely determined by the UV theory.

Consider a four-dimensional theory that admits an FZ-multiplet in the UV. This

FZ-multiplet must exist at all energy scales. Therefore, the theory cannot have strings

carrying charge Zµ. If the low-energy theory is a weakly coupled Wess-Zumino model,

perhaps with some IR-free gauge fields, the existence of the FZ-multiplet in the IR

implies that the target space of the Wess-Zumino model has an exact Kähler form

(in particular, it cannot be compact), and that there is no FI-term for any U(1)

gauge field [43, 46]. This statement is nonperturbatively exact. It holds even if the

topology of the target space or the emergence of U(1) gauge fields at low energies

is the result of strong dynamics. (For earlier related results see [73] as referred to

in [74], and [41,75,76].) This reasoning can also be applied to constrain the dynamics

of SUSY-breaking [6].

Likewise, a four-dimensional theory with a non-anomalous continuousR-symmetry

in the UV admits anR-multiplet, and it must retain this multiplet at all energy scales.

Consequently, a theory with a continuous R-symmetry cannot support domain walls

that carry charge Zµν . (Another application of tracking the R-multiplet from the UV

to the IR was recently found in [77].) A theory that admits both an FZ-multiplet

and an R-multiplet supports neither strings nor domain walls with charges in the

supersymmetry algebra.

Let us demonstrate this in specific examples. Pure SU(Nc) SUSY Yang-Mills

theory admits an FZ-multiplet, but no R-multiplet.13 It has Nc isolated vacua,

and it supports domain walls carrying charge Zµν that interpolate between these

13The situation in this theory is similar to the discussion in subsection 2.6.4. The

superconformal invariance of the classical theory is broken by quantum corrections.

At one-loop we find an FZ-multiplet with X ∼ TrWαWα, so that the R-symmetry

is anomalous. Even though the theory does not admit a well-defined R-multiplet,

the R-symmetry is not violated in perturbation theory. Nonperturbatively, instantons

activate the anomaly and explicitly break the R-symmetry.
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vacua [53]. However, it does not support charged strings. On the other hand, SUSY

QCD withNf ≥ Nc massless flavors has an FZ-multiplet and anR-multiplet, and thus

it supports neither strings carrying charge Zµ nor domain walls carrying charge Zµν .
14

For Nc ≤ Nf ≤ 3
2
Nc, the IR theory is a weakly coupled Wess-Zumino model, in some

cases with IR-free non-Abelian gauge fields [18–20]. The target spaces of these Wess-

Zumino models all have exact Kähler forms [46]. This is particularly interesting in

the case Nf = Nc, when the topology of the IR target space is deformed [18].

Just as in four dimensions, we can use supercurrents to constrain the IR behav-

ior of supersymmetric field theories in two and three dimensions. In particular, we

can establish whether a given theory admits branes, whose charges appear in the

supersymmetry algebra. This is especially interesting for space-filling branes, which

manifest themselves as constants in the various supercurrent multiplets. As such,

they are not affected by renormalization group flow. If they are not present in the

UV theory, they do not arise at low energies.

When comparing the UV and the IR theories, we must use the supercurrents of

the full quantum theories. These may differ from the classical multiplets by pertur-

bative or nonperturbative corrections. For example, we saw in subsection 2.6.4 that

anomalies can modify the multiplet at one-loop. Likewise, the constant C in the

two-dimensional S-multiplet (2.5.1) can be be generated by instantons. However, we

emphasize again that this change in the value of C can be seen by performing an

instanton computation in the UV theory.

One way to constrain the form of these quantum corrections is to follow [16]

and promote all coupling constants to background superfields. For instance, we can

introduce a coupling constant τ in the sigma model (2.6.7) by letting ∂iK → τ∂iK.

We then promote τ to a background superfield. It is clear from (2.5.1) that the

constant C in the S-multiplet can be modified by quantum corrections only if τ is

a chiral superfield, D+τ = 0. This is the case for the CP1 model, since Kähler

14When Nf < Nc, the theory does not have a stable vacuum and we do not discuss

it [13].
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transformations in an instanton background force τ to be chiral, and in this theory C

is indeed generated by instantons [60,61]. In sigma models whose target space has an

exact Kähler form, τ can be promoted to an arbitrary complex superfield, and in this

case C is not generated.15 (For a recent discussion of nonrenormalization theorems

in two-dimensional N = (0, 2) theories see [78].)

2.9 Appendix A: The Energy-Momentum Tensor

In this appendix we review some facts about the energy-momentum tensor. Noether’s

theorem guarantees that any translation invariant local field theory possesses a real,

conserved energy-momentum tensor T̂µν ,

∂νT̂µν = 0 , (2.9.1)

which integrates to the total momentum

Pµ =

∫
dD−1x T̂ 0

µ . (2.9.2)

The energy-momentum tensor is not unique. It can be modified by an improvement

transformation,

T̂µν → T̂µν + ∂ρBµνρ , Bµνρ = −Bµρν . (2.9.3)

The improvement term ∂ρBµνρ is automatically conserved and it does not contribute

to the total momentum (2.9.2). For some choices of Bµνρ, the energy-momentum

tensor T̂µν is not symmetric. (This is emphasized by the hat.) For instance, the

canonical energy-momentum tensor in Lagrangian field theories is not symmetric, if

the theory contains fields with non-zero spin.

15C violates the R-symmetry by two units and therefore it can only be generated

by instantons with two fermionic zero modes. Such instantons must be BPS, and

they only exist in sigma models, whose Kähler form is not exact. (See the related

discussion around (2.6.9).)
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Lorentz invariance guarantees that there is a choice for Bµνρ that leads to a sym-

metric energy-momentum tensor Tµν = Tνµ. This is well-known for Lagrangian field

theories [79], but it holds more generally. Lorentz invariance implies the existence of

a real conserved current jµνρ,

∂ρjµνρ = 0 , jµνρ = −jνµρ , (2.9.4)

which integrates to the Lorentz generators

Jµν =

∫
dD−1x jµν

0 . (2.9.5)

The generators Jµν are time-independent and they satisfy i[Pµ, Jνρ] = ηµνPρ− ηµρPν ,

so that the current jµνρ must take the form

jµνρ = xµT̂νρ − xνT̂µρ + sµνρ , sµνρ = −sνµρ . (2.9.6)

Here sµνρ is a local operator without explicit x-dependence. We can obtain a sym-

metric energy-momentum tensor Tµν by performing an improvement transforma-

tion (2.9.3) with

Bµνρ =
1

2
(sνρµ + sνµρ + sµρν) . (2.9.7)

In terms of Tµν , the currents (2.9.6) can be written as jµνρ = xµTνρ−xνTµρ, up to an

overall improvement term.

The symmetric energy-momentum tensor Tµν is also not unique. It can be modified

by further improvement transformations (2.9.3), as long as Bµνρ satisfies

∂ρBµνρ = ∂ρBνµρ , (2.9.8)

so that Tµν remains symmetric.16 In general Bµνρ has spin-1 and spin-2 components.

If we restrict ourselves to the spin-1 component, we can write

Bµνρ = ηµρUν − ηµνUρ , ∂[µUν] = 0 , (2.9.9)

16Locally, we can express Bµνρ = ∂σYµσνρ, where Yµσνρ has the symmetries of the

Riemann curvature tensor. (It is antisymmetric in each pair µσ and νρ, but symmetric

under the exchange of these pairs). However, Yµσνρ may not be well-defined.
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so that the remaining allowed improvements for Tµν are given by

Tµν → Tµν + ∂µUν − ηµν∂ρUρ . (2.9.10)

If there is a well-defined real scalar u such that Uµ = ∂µu, these improvements take

the more familiar form

Tµν → Tµν +
(
∂µ∂ν − ηµν∂2

)
u . (2.9.11)

2.10 Appendix B: Conventions in Two and Three

Dimensions

In this appendix we summarize our conventions for spinors and supersymmetry in

two and three dimensions. Whenever possible, we use the dimensionally reduced

conventions of Wess and Bagger [34]. In any number D of dimensions, we take the

Minkowski metric to be ηµν = − + · · ·+, where the Lorentz indices µ, ν run from 0

to D− 1. We normalize the totally antisymmetric Levi-Civita symbol as ε01···(D−1) =

−1.

2.10.1 Conventions in Three Dimensions

In D = 3, the Lorentz group is SL(2,R) and the fundamental representation is a real

two-component spinor ψα = ψα (α = 1, 2). There are only undotted indices and as

in D = 4, they are raised and lowered by acting from the left with the antisymmetric

symbols εαβ and εαβ,

ψα = εαβψβ , ψα = εαβψ
β . (2.10.1)

There is now only one way to suppress contracted spinor indices,

ψχ = ψαχα , (2.10.2)

and this leads to some unfamiliar signs, which are absent in D = 4. For instance,

under Hermitian conjugation we have

(ψχ) = −χψ . (2.10.3)
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We work in a basis in which the three-dimensional gamma matrices are given by17

γµαβ =
(
−1, σ1, σ3

)
. (2.10.4)

Here 1 is the 2 × 2 unit matrix, and σ1, σ3 are Pauli matrices. The gamma matri-

ces (2.10.4) are real, and they satisfy the following identities:

γµαβ = γµβα ,

(γµ)α
β(γν)β

λ = ηµνδα
λ + εµνρ(γρ)α

λ ,

(γµ)αβ (γµ)λκ = εαλεκβ + εακελβ .

(2.10.5)

We can use these to switch between vectors and symmetric bi-spinors,

`αβ = −2γµαβ`µ , `µ =
1

4
γαβµ `αβ , `αβ = `βα . (2.10.6)

The conventional N = 2 supersymmetry algebra in D = 3 takes the form

{Qα, Qβ} = 2γµαβPµ + 2iεαβZ ,

{Qα, Qβ} = 0 .
(2.10.7)

The real scalar Z is a central charge. (As in four dimensions, we can extend (2.10.7)

by adding additional brane charges [36].) This algebra admits a U(1)R automorphism

under which Qα has charge −1,

[R,Qα] = −Qα . (2.10.8)

If the central charge Z in (2.10.7) vanishes, then N = 2 superspace in D = 3 is the

naive dimensional reduction of N = 1 superspace in D = 4. The supercharges Qα

are represented on superfields S(x, θ, θ) by differential operators Qα,

[ξαQα − ξ
α
Qα, S] = i

(
ξαQα − ξ

αQα
)
S , (2.10.9)

with

Qα =
∂

∂θα
+ i
(
γµθ
)
α
∂µ ,

Qα = − ∂

∂θ
α − i (γµθ)α ∂µ .

(2.10.10)

17These gamma-matrices are obtained by reducing σµ
αβ̇

along the four-

dimensional 2-direction.
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The corresponding supercovariant derivatives are given by

Dα =
∂

∂θα
− i
(
γµθ
)
α
∂µ ,

Dα = − ∂

∂θ
α + i (γµθ)α ∂µ .

(2.10.11)

They satisfy the identities

{Dα, Dβ} = i∂αβ ,

DαDα = D
α
Dα ,

{Dα, Dβ} = 0 .

(2.10.12)

These formulas can be used to derive other useful identities, such as DαD
β
Dβ =

−1
2
D
β
DβDα. To write supersymmetric actions, we also need the superspace integrals∫

d2θ θ2 = 1 ,

∫
d2θ θ

2
= −1 ,

∫
d4θ θ2θ

2
= −1 . (2.10.13)

2.10.2 Conventions in Two Dimensions

In D = 2, the irreducible representations of the Lorentz group are real and one-

dimensional. There are two inequivalent real spinors ψ±. They can be obtained by

reducing from D = 3 and identifying18

ψα=1 → ψ− , ψα=2 → ψ+ . (2.10.14)

As in (2.10.1), we raise and lower indices according to

ψ+ = −ψ− , ψ− = ψ+ . (2.10.15)

We will only use spinor indices ±, so that every vector `µ is written as a bi-spinor

`±± = `∓∓ = 2 (`0 ± `1) . (2.10.16)

This leads to some unfamiliar numerical factors. For instance,

`2 = −1

8

(
`++`++ + `−−`−−

)
= −1

4
`++`−− . (2.10.17)

18In our conventions, this corresponds to reducing along the three-dimensional 1-

direction.
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The conventional N = (2, 2) supersymmetry algebra in D = 2 takes the form

{Q±, Q±} = −P±± ,

{Q+, Q−} = Z ,

{Q+, Q−} = Z̃ .

(2.10.18)

The complex scalars Z and Z̃ are central charges. This algebra admits a continu-

ous U(1)RV × U(1)RA automorphism

[RV , Q±] = −Q± , [RV , Z] = −2Z ,

[RA, Q±] = ∓Q± , [RA, Z̃] = −2Z̃ ,
(2.10.19)

as well as a Z2 mirror automorphism

Q− ↔ Q− , Z ↔ Z̃ , RV ↔ RA . (2.10.20)

If the central charges in (2.10.18) vanish, then N = (2, 2) superspace in D = 2 is the

naive dimensional reduction of N = 2 superspace in D = 3. The supercharges Q±

are represented on superfields S(x, θ, θ) by differential operators Q±,

[ξ+Q+ + ξ−Q− − ξ
+
Q+ − ξ

−
Q−, S] = i

(
ξ+Q+ + ξ−Q− − ξ

+Q+ − ξ
−Q−

)
S ,

(2.10.21)

with

Q± =
∂

∂θ±
+
i

2
θ
±
∂±± ,

Q± = − ∂

∂θ
± −

i

2
θ±∂±± .

(2.10.22)

The corresponding supercovariant derivatives are given by

D± =
∂

∂θ±
− i

2
θ
±
∂±± ,

D± = − ∂

∂θ
± +

i

2
θ±∂±± .

(2.10.23)

They satisfy the identities

{D±, D±} = i∂±± ,

D2
± = D

2

± = {D±, D∓} = 0 .
(2.10.24)
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The N = (0, 2) subalgebra of (2.10.18) takes the from

{Q+, Q+} = −P++ ,

Q2
+ = 0 .

(2.10.25)

It admits a U(1)R automorphism under which Q+ has charge −1. To obtain N =

(0, 2) superspace, we simply set θ− = 0 in N = (2, 2) superspace.

2.11 Appendix C: The S-Multiplet in

Two-Dimensional N = (2, 2) Theories

The S-multiplet in two-dimensional theories with N = (2, 2) supersymmetry consists

of two real superfields S±±, which satisfy the constraints

D±S∓∓ = ± (χ∓ + Y∓) , (2.11.1)

where

D±χ± = 0 ,

D±χ∓ = ±C(±) ,

D+χ− −D−χ+ = k ,

(2.11.2)

and

D±Y± = 0 ,

D±Y∓ = ∓C(±) ,

D+Y− +D−Y+ = k′ .

(2.11.3)

Here k, k′ and C(±) are real and complex constants respectively.
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It is straightforward to solve the constraints (2.11.1) in components:

S±± = j±± − iθ±S±±± − iθ∓
(
S∓±± ∓ 2

√
2iψ±

)
− iθ±S±±±

− iθ∓
(
S∓±± ± 2

√
2iψ±

)
− θ±θ±T±±±± + θ∓θ

∓
(
A∓ k + k′

2

)
+ iθ+θ−Y ±± + iθ

+
θ
−
Y±± ± iθ+θ

−
G±± ∓ iθ−θ

+
G±±

∓ 1

2
θ+θ−θ

±
∂±±S∓±± ∓

1

2
θ+θ−θ

∓
∂±±

(
S±∓∓ ± 2

√
2iψ∓

)
∓ 1

2
θ

+
θ
−
θ±∂±±S∓±± ∓

1

2
θ

+
θ
−
θ∓∂±±

(
S±∓∓ ∓ 2

√
2iψ∓

)
+

1

4
θ+θ−θ

+
θ
−
∂2
±±j∓∓ .

(2.11.4)

The chiral superfields χ± are given by

χ+ = −iλ+(y)− iθ+G++(y) + θ−
(
E(y) +

k

2

)
+ θ

−
C(−) + θ+θ−∂++λ−(y) ,

χ− = −iλ−(y)− θ+

(
E(y)− k

2

)
+ iθ−G−−(y)− θ+

C(+) − θ+θ−∂−−λ+(y) ,

λ± = ±S∓±± +
√

2iψ± ,

E =
1

2
(T++−− − A) +

i

4
(∂++j−− − ∂−−j++) ,

∂++G−− − ∂−−G++ = 0 ,

y±± = x±± + 4iθ±θ
±
,

(2.11.5)

and the twisted (anti-) chiral superfields Y± are given by

Y+ =
√

2ψ+(ỹ) + θ−
(
F (ỹ) +

k′

2

)
− iθ+

Y++(ỹ)− θ−C(−) +
√

2iθ−θ
+
∂++ψ−(ỹ) ,

Y− =
√

2ψ−(ỹ)− θ+

(
F (ỹ)− k′

2

)
+ θ

+
C(+) − iθ−Y−−(ỹ) +

√
2iθ+θ

−
∂−−ψ+(ỹ) ,

F = −1

2
(T++−− + A)− i

4
(∂++j−− + ∂−−j++) ,

∂++Y−− − ∂−−Y++ = 0 ,

ỹ±± = x±± ± 4iθ±θ
±
.

(2.11.6)

The supersymmetry current is conserved, and the energy-momentum tensor is real,

conserved, and symmetric. The S-multiplet contains 8+8 independent real operators

and the constants k, k′, C(±).
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The mirror automorphism (2.10.20) acts on superspace by exchanging θ− ↔ −θ−

and D− ↔ D−. The constraints (2.11.1), (2.11.2), and (2.11.3) are invariant, if we

accompany this action on superspace by

S±± ↔ ±S±± , χ+ ↔ Y+ , χ− ↔ −Y− ,

k ↔ −k′ , C(+) ↔ C(+) , C(−) ↔ C
(−)

.
(2.11.7)

This implies that Q− ↔ Q−, Z ↔ Z̃, and RV ↔ RA.

The S-multiplet of N = (2, 2) decomposes into multiplets of the N = (0, 2)

subalgebra. This decomposition includes the S-multiplet of N = (0, 2), which is

given by

S++

∣∣
θ−=0

,

W− = i (χ− − Y−)
∣∣
θ−=0

,

T−−−− =
1

2
[D−, D−]S−−

∣∣
θ−=0

.

(2.11.8)

These superfields satisfy the constraints (2.5.1) with C = 2iC(+). After theN = (0, 2)

projection, the constants k, k′ can be eliminated by a shift of T++−−, which amounts

to an unobservable shift in the total energy.

The S-multiplet (2.11.1) can be modified by an improvement transformation

S±± → S±± + [D±, D±]U ,

χ± → χ± −D+D−D±U ,

Y± → Y± −D±D+D−U .

(2.11.9)

Here U is a real superfield, which is well-defined up to shifts by a real constant.

In some cases, the S-multiplet can be improved to a smaller supercurrent:

1.) If k = C(±) = 0 and there is a well-defined real U such that χ± = D+D−D±U ,

then χ± can be improved to zero and we obtain an FZ-multiplet

D±J∓∓ = ±Y∓ ,

D±Y± = 0 , D±Y∓ = 0 ,

D+Y− +D−Y+ = k′ .

(2.11.10)
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This multiplet contains 4+4 independent real operators and the real constant k′.

It follows from (2.11.10) that

∂++J−− − ∂−−J++ = 0 , (2.11.11)

so that the bottom component of the FZ-multiplet gives rise to a conserved RA-

current with RA = −1
4

∫
dx (j++ − j−−).

2.) If k′ = C(±) = 0 and there is a well-defined real U such that Y± = D±D+D−U ,

then Y± can be improved to zero and we obtain an R-multiplet

D±R∓∓ = ±χ∓ ,

D±χ+ = 0 , D±χ− = 0 ,

D+χ− −D−χ+ = k .

(2.11.12)

Like the FZ-multiplet, it contains 4 + 4 real operators, as well as the real con-

stant k. It follows from (2.11.12) that

∂++R−− + ∂−−R++ = 0 , (2.11.13)

so that the bottom component of the R-multiplet is a conserved RV -current

with RV = −1
4

∫
dx (j++ + j−−). Note that the mirror automorphism (2.10.20)

exchanges the R-multiplet and the FZ-multiplet.

3.) If k = k′ = C(±) = 0 and we can set both χ± and Y± to zero by a single improve-

ment transformation, then the theory is superconformal and the supercurrent

satisfies

D±J++ = 0 , D±J−− = 0 . (2.11.14)

The current algebra that follows from the S-multiplet takes the form

{Q±, S±±±} = −T±±±± −
i

2
∂±±j±± ,

{Q±, S±∓∓} = −T++−− ±
1

2
(k − k′) +

i

2
∂∓∓j±± ,

{Q±, S±∓∓} = 2C
(±)

,

{Q+, S−±±} = ∓iY ±± ,

{Q+, S−±±} = ∓iG±± .

(2.11.15)
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This allows us to identify the conserved brane currents. The zero-brane currents∓iY ±±

and ±iG±± give rise to well-defined central charges Z and Z̃. These currents are ex-

changed by the mirror automorphism (2.10.20). The constants C(±) and k − k′ are

interpreted as space-filling brane currents, which can lead to partial SUSY-breaking.

2.12 Appendix D: Additional Supercurrent

Multiplets?

In this appendix we consider certain multiplets that are more general than the S-

multiplet. We show that they are acceptable supercurrents only if they differ from

the S-multiplet by an improvement transformation.

One such multiplet was proposed in [42, 47]; see also [48, 49]. It is a real super-

field Kµ that satisfies the constraints

D
α̇Kαα̇ = χα + iχ′α + Yα ,

Dα̇χα = 0 , Dαχα = Dα̇χ
α̇ ,

Dα̇χ
′
α = 0 , Dαχ′α = Dα̇χ

′α̇ ,

DαYβ +DβYα = 0 , D
2Yα = 0 .

(2.12.1)

If χ′α = 0, we recover the S-multiplet (2.1.10).

It is straightforward to solve the constraints (2.12.1) in components. In particular,

we find that

Kµ
∣∣
θσνθ

= 2T̂νµ − ηµνA−
1

8
ενµρσ (F ρσ + 4∂ρjσ)− 1

2
F ′νµ . (2.12.2)

The operators A,Fµν , jµ are familiar from the S-multiplet, while the real closed two-

form F ′µν comes from the superfield χ′α. The energy-momentum tensor T̂µν is real and

conserved,

∂νT̂µν = 0 , (2.12.3)

but it is not symmetric,

T̂µν − T̂νµ =
1

4
F ′µν . (2.12.4)

56



However, Lorentz invariance guarantees that T̂µν can be improved to a symmetric

energy-momentum tensor Tµν (see appendix A).

The allowed improvements of (2.12.1) take the form

Kαα̇ → Kαα̇ +DαΣα̇ −Dα̇Σα ,

χα → χα +
3

4

(
D

2
Σα − 2Dα̇DαΣ

α̇ −DαDα̇Σ
α̇
)
,

χ′α → χ′α −
i

4

(
D

2
Σα + 2Dα̇DαΣ

α̇
+DαDα̇Σ

α̇
)
,

Yα → Yα +
1

2
DαDα̇Σ

α̇
,

(2.12.5)

where Σα satisfies the constraint

DαΣβ +DβΣα = 0 . (2.12.6)

The transformation (2.12.5) shifts the energy-momentum tensor by an improvement

term of the form (2.1.6),

T̂νµ → T̂νµ + ∂νUµ − ηµν∂ρUρ , ∂[µUν] = 0 . (2.12.7)

If this improvement makes T̂µν symmetric, then (2.12.4) shows that it also sets the

two-form F ′µν to zero, and hence the entire superfield χ′α vanishes. Thus, the mul-

tiplet (2.12.1) is an acceptable supercurrent only if it is decomposable and can be

improved to an S-multiplet.

As an example, we consider a supercurrent that arises in conjunction with non-

minimal supergravity theories [40, 50]. In our conventions it takes the form

D
α̇Gαα̇ = iχ′α +DαX ,

χ′α = − i
6

(
D

2
λα + 2Dα̇Dαλ

α̇
+DαDα̇λ

α̇
)
,

X =
1

3(3n+ 1)
Dα̇λ

α̇
,

(2.12.8)

where

Dαλβ +Dβλα = 0 , (2.12.9)

and n is a complex parameter. We immediately see that it is possible to set χ′α to

zero by an improvement transformation (2.12.5) with Σα = −2
3
λα. This gives rise to
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an S-multiplet

Sαα̇ = Gαα̇ −
2

3

(
Dαλα̇ −Dα̇λα

)
, (2.12.10)

with

χα = −1

2

(
D

2
λα − 2Dα̇Dαλ

α̇ −DαDα̇λ
α̇
)
,

X = − n

3n+ 1
Dα̇λ

α̇
.

(2.12.11)

This form of the multiplet makes manifest two special cases: if n = 0, we obtain an R-

multiplet, and if n→ −1
3
, we obtain an FZ-multiplet. (These values of n correspond

to the new-minimal and the old-minimal limits of non-minimal supergravity.) The S-

multiplet (2.12.10) is decomposable when λα = DαU , where the real superfield U is

well-defined up to shifts by a real constant. Then, it can be improved to either an FZ-

multiplet or an R-multiplet. In particular, in this case the theory has a continuous R-

symmetry.
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Chapter 3

Exploring Curved Superspace

3.1 Introduction

In this chapter, we present a systematic analysis of Riemannian manifolds that admit

rigid supersymmetry, focusing on four-dimensional N = 1 theories with a U(1)R

symmetry. We can place any such theory on a Riemannian manifoldM by minimally

coupling it to the metric. The resulting theory is invariant under supersymmetry

variations with spinor parameter ζ,1 as long as ζ is covariantly constant,

∇µζ = 0 . (3.1.1)

The presence of a covariantly constant spinor dramatically restricts the geometry

of M, and it is not necessary in order to preserve supersymmetry. In many cases it

is possible to place the theory on M in a certain non-minimal way, such that it is

invariant under some appropriately modified supersymmetry variations. In this case

the differential equation satisfied by the spinor ζ is a generalization of (3.1.1).

Several such generalizations have been considered in the literature. For instance,

1The spinor ζ is left-handed and carries un-dotted indices, ζα. Right-handed

spinors are distinguished by a tilde and carry dotted indices, ζ̃ α̇. Our conventions are

summarized in appendix A.
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we can twist by a line bundle L. Given a connection Aµ on L, this leads to

(∇µ − iAµ) ζ = 0 . (3.1.2)

This equation admits a solution if and only if M is Kähler [80]; see also [81]. The

relation between twisting and rigid supersymmetry on Kähler manifolds is discussed

in [82]. A different generalization of (3.1.1) arises if we set only the spin-3
2

component

of ∇µζ to zero,

∇µζ = σµη̃ . (3.1.3)

The spinor η̃ is not independent. Rather, it captures the spin-1
2

component of ∇µζ,

η̃ = −1

4
σ̃µ∇µζ . (3.1.4)

Equation (3.1.3) is known as the twistor equation. It has been studied extensively in

the mathematical literature; see for instance [83, 84] and references therein. Finally,

we can consider the twistor equation (3.1.3) in conjunction with the twist by L,

(∇µ − iAµ) ζ = σµη̃ . (3.1.5)

This equation clearly includes (3.1.1), (3.1.2), and (3.1.3) as special cases. It was

recently studied in the context of conformal supergravity [85].

As we will see below, a systematic approach to supersymmetric field theory on

curved manifolds leads to a different generalization of (3.1.1) and (3.1.2),

(∇µ − iAµ) ζ = −iVµζ − iV νσµνζ . (3.1.6)

Here V µ is a smooth, conserved vector field, ∇µV
µ = 0. This equation is closely

related to (3.1.5), although there are important differences. We can express (3.1.6)

as (
∇µ − iÂµ

)
ζ = − i

2
σµ
(
V ν σ̃νζ

)
, (3.1.7)

where Âµ = Aµ − 3
2
Vµ. Therefore, every solution ζ of (3.1.6) is a solution of (3.1.5).

However, given a solution ζ of (3.1.5), we see from (3.1.7) that it satisfies (3.1.6) only

if η̃ in (3.1.5) can be expressed in terms of a smooth conserved V µ,

η̃ = − i
2
V ν σ̃νζ , ∇µV

µ = 0 . (3.1.8)
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This is always possible in a neighborhood where ζ does not vanish. By counting

degrees of freedom, we see that V µ is determined up to two functions, which must

satisfy a differential constraint to ensure ∇µV
µ = 0. Locally, any solution of (3.1.5) is

therefore a solution of (3.1.6), as long as ζ does not vanish. This is no longer true if ζ

has zeros, since we cannot satisfy (3.1.8) for any smooth V µ. It is known that (3.1.5)

admits nontrivial solutions with zeros; see for instance [83,84]. By contrast, it is easy

to show that every nontrivial solution of (3.1.6) is nowhere vanishing.

We will now explain how (3.1.6) arises in the study of supersymmetric field theories

on Riemannian manifolds. Following [27–30], much work has focused on supersym-

metric theories on round spheres. (See [86, 87] for some earlier work.) Recently, it

was shown that rigid supersymmetry also exists on certain squashed spheres [88–94].

A systematic approach to this subject was developed in [31] using background su-

pergravity. In ordinary supergravity, the metric gµν is dynamical and belongs to a

supermultiplet that also includes the gravitino ψµα and various auxiliary fields. Here,

we would like to view these fields as classical backgrounds and allow arbitrary field

configurations. This can be achieved by starting with supergravity and appropriately

scaling the Planck mass to infinity. Rigid supersymmetry corresponds to the subal-

gebra of supergravity transformations that leaves a given background invariant. This

procedure captures all deformations of the theory that approach the original flat-space

theory at short distances. (There are known modifications of flat-space supersymme-

try, but we will not discuss them here.) See appendix B, which also contains a brief

review of [31].

In this chapter, we will discuss N = 1 theories in four dimensions. The corre-

sponding supergravity has several presentations, which differ in the choice of propa-

gating and auxiliary fields. Since we do not integrate out the auxiliary fields, these

formulations are not equivalent and can lead to different backgrounds with rigid

supersymmetry. We will focus on theories with a U(1)R symmetry, which can be

coupled to the new minimal formulation of supergravity [95,96].2 In this formulation,

2The corresponding analysis for old minimal supergravity [97,98] is described in [7].
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the auxiliary fields in the supergravity multiplet consist of an Abelian gauge field Aµ

and a two-form gauge field Bµν . The dual field strength V µ of Bµν is a well-defined,

conserved vector field,

V µ =
1

2
εµνρλ∂νBρλ , ∇µV

µ = 0 . (3.1.9)

The gauge field Aµ couples to the U(1)R current of the field theory, which leads to

invariance under local R-transformations.

In new minimal supergravity, the variation of the gravitino takes the form

δψµ = −2 (∇µ − iAµ) ζ − 2iVµζ − 2iV νσµνζ ,

δψ̃µ = −2 (∇µ + iAµ) ζ̃ + 2iVµζ̃ + 2iV ν σ̃µν ζ̃ .
(3.1.10)

The spinor parameters ζ and ζ̃ have R-charge +1 and −1 respectively. In Lorentzian

signature, left-handed and right-handed spinors are exchanged by complex conjuga-

tion and the background fields Aµ and Vµ are real. This is not the case in Euclidean

signature, where ζ and ζ̃ are independent and the background fields Aµ and Vµ may

be complex. However, we will always take the metric gµν to be real.

A given configuration of the background fields gµν , Aµ, and Vµ on M preserves

rigid supersymmetry, if and only if both variations in (3.1.10) vanish for some choice

of ζ and ζ̃. Moreover, we can always consider variations of definite R-charge. A

supercharge δζ of R-charge −1 corresponds to a solution ζ of

(∇µ − iAµ) ζ = −iVµζ − iV νσµνζ , (3.1.11)

while a supercharge δeζ of R-charge +1 corresponds to a solution ζ̃ of

(∇µ + iAµ) ζ̃ = iVµζ̃ + iV ν σ̃µν ζ̃ . (3.1.12)

Note that the presence of rigid supersymmetry does not depend on the details of

the field theory, since (3.1.11) and (3.1.12) only involve supergravity background

fields. From the algebra of local supergravity transformations [95, 96], we find that

See also [99,100].
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the commutation relations satisfied by the supercharges corresponding to ζ and ζ̃

take the form

{δζ , δeζ} = 2iδK ,

{δζ , δζ} = {δeζ , δeζ} = 0 ,

[δK , δζ ] = [δK , δeζ ] = 0 .

(3.1.13)

The fact that δ2
ζ = 0 follows from the R-symmetry. If ζ̃ is absent, this comprises the

entire superalgebra. In the presence of ζ̃, we can form a complex vector K = Kµ∂µ

with Kµ = ζσµζ̃ and δK is the variation generated by the R-covariant Lie derivative

along K. When acting on objects of R-charge q, it is given by

δK = LAK = LK − iqKµAµ , (3.1.14)

where LK is the conventional Lie derivative.3 As we will see below, K is a Killing

vector. The fact that δK commutes with δζ and δeζ is required for the consistency

of (3.1.13).4

In this chapter, we will analyze Riemannian four-manifoldsM that admit one or

several solutions of (3.1.11) and (3.1.12). In section 3.2, we will discuss the various

objects that appear in these equations, and comment on some of their general proper-

ties that will be used subsequently. The equations (3.1.11) and (3.1.12) do not admit

solutions for arbitrary values of gµν , Aµ, and Vµ. This is due to the fact that they are

partial differential equations, which are only consistent if the background fields satisfy

3The Lie derivative of ζ along a vector X = Xµ∂µ is given by

LXζ = Xµ∇µζ −
1

2
∇µXνσ

µνζ , (3.1.15)

and similarly for ζ̃. See appendix A.
4If there are other supercharges, which correspond to additional solutions η or η̃

of (3.1.11) or (3.1.12), the Killing vector K need not commute with them,

[δK , δη] = −δLAKη , [δK , δη̃] = −δLAK η̃ . (3.1.16)
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certain integrability conditions. Additionally, there may be global obstructions. We

would like to understand the restrictions imposed by the presence of one or several

solutions, and formulate sufficient conditions for their existence.

In section 3.3, we show that M admits a single scalar supercharge, if and only if

it is Hermitian. In this case, we can rewrite (3.1.11) as

(
∇c
µ − Acµ

)
ζ = 0 , (3.1.17)

where ∇c
µ is the Chern connection adapted to the complex structure and Acµ is simply

related to Aµ. The ability to cast (3.1.11) in this form crucially relies on the presence

of Vµ, which is related to the torsion of the Chern connection. On a Kähler man-

ifold (3.1.17) reduces to (3.1.2). More generally, it allows us to adapt the twisting

procedure of [82] to Hermitian manifolds that are not Kähler. As we will see, the

auxiliary fields Aµ and Vµ are not completely determined by the geometry. This free-

dom, which resides in the non-minimal couplings parametrized by Aµ and Vµ, reflects

the fact that we can place a given field theory on M in several different ways, while

preserving one supercharge (see appendix B).

In section 3.4, we consider manifolds admitting two solutions ζ and ζ̃ of oppositeR-

charge. As was mentioned above, we can use them to construct a complex Killing

vector Kµ = ζσµζ̃. This situation is realized on any Hermitian manifold with metric

ds2 = Ω(z, z)2
(
(dw + h(z, z)dz)(dw + h(z, z)dz) + c(z, z)2dzdz

)
, (3.1.18)

where w, z are holomorphic coordinates. The metric (3.1.18) describes a two-torus

fibered over a Riemann surface Σ with metric ds2
Σ = Ω2c2dzdz. As in the case of a

single supercharge, ζ and ζ̃ turn out to be scalars onM. Upon dimensional reduction,

they give rise to two supercharges on Seifert manifolds that are circle bundles over Σ.

Rigid supersymmetry on such manifolds was recently discussed in [101,102]. Reducing

once more, we make contact with the A-twist on Σ [103,104].

Section 3.5 describes manifolds admitting two supercharges of equal R-charge.

This case turns out to be very restrictive. When M is compact, we will show that
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it must be hyperhermitian. Using the classification of [105], this allows us to con-

strain M to be one of the following: a flat torus T 4, a K3 surface with Ricci-flat

Kähler metric, or S3 × S1 with the standard metric ds2 = dτ 2 + r2dΩ3 and cer-

tain quotients thereof. We also comment on the non-compact case, which is less

constrained.

In section 3.6 we describe manifolds admitting four supercharges. They are locally

isometric to M3 × R, where M3 is one of the maximally symmetric spaces S3, T 3,

or H3. (The size of M3 does not vary along R.) In this case, the auxiliary fields Aµ

and Vµ are tightly constrained.

We conclude in section 3.7 by considering several explicit geometries that illustrate

our general analysis. Our conventions are summarized in appendix A. In appendix B

we review the procedure of [31] to place a four-dimensional N = 1 theory on a

Riemannian manifoldM in a supersymmetric way, focusing on theories with a U(1)R

symmetry. Appendix C contains some supplementary material related to section 3.4.

3.2 General Properties of the Equations

In this section we will lay the groundwork for our discussion of the equations (3.1.11)

and (3.1.12),

(∇µ − iAµ) ζ = −iVµζ − iV νσµνζ ,

(∇µ + iAµ) ζ̃ = iVµζ̃ + iV ν σ̃µν ζ̃ .
(3.2.1)

We will study them on a smooth, oriented, connected four-manifoldM, endowed with

a Riemannian metric gµν . The Levi-Civita connection is denoted by ∇µ. As we have

explained in the introduction, the background fields Aµ and Vµ are generally complex,

and V µ is conserved, ∇µV
µ = 0. Note that the equations (3.2.1) are invariant under

ζ → ζ† , ζ̃ → ζ̃† , Aµ → −Aµ , Vµ → −V µ . (3.2.2)

Under local frame rotations SU(2)+ × SU(2)−, the spinors ζ and ζ̃ transform

as (1
2
, 0) and (0, 1

2
). Additionally, they carry charge +1 and −1 under conventional R-
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transformations. Locally, the equations (3.2.1) are also invariant under complexi-

fied R-transformations, and this is reflected in various formulas below. However, we

will not make use of such transformations. (One reason is that they could lead to

pathologies in the field theory.) Therefore, the real part of Aµ transforms as a gauge

field for the local U(1)R symmetry, while the imaginary part is a well-defined one-

form. In summary, ζ is a section of L⊗ S+, where L is a unitary line bundle and S+

is the bundle of left-handed spinors, and ζ̃ is a section of L−1 ⊗ S− with S− the

bundle of right-handed spinors. The transition functions of L consist of local U(1)R

transformations, and the connection on L is given by the real part of Aµ.

Let us briefly comment on some global properties of the various objects introduced

above. (For a more thorough discussion, see for instance [80].) IfM is a spin manifold,

we can choose well-defined bundles S±. In this case the line bundle L is also well

defined. In general, an oriented Riemannian four manifold does not possess a spin

structure. It does, however, admit a spinc structure. In this case it is possible to

define well-behaved product bundles L ⊗ S+ and L−1 ⊗ S−, even though S± and L

do not exist. However, even powers of L are well defined.

Since the equations (3.2.1) are linear, the solutions have the structure of a complex

vector space, which decomposes into solutions ζ with R-charge +1 and solutions ζ̃

with R-charge −1. The fact that the equations are also first-order, with smooth coeffi-

cients, implies that any solution is determined by its value at a single point. Therefore,

any nontrivial solution is nowhere vanishing, and this will be crucial below. Moreover,

there are at most two solutions of R-charge +1, and likewise for R-charge −1.

The equations (3.2.1) do not admit solutions for arbitrary values of gµν , Aµ, and Vµ.

This is due to the fact that they are partial differential equations, which are only con-

sistent if the background fields satisfy certain integrability conditions. Additionally,

there may be global obstructions. Before attempting to solve the equations in gen-

eral, we will analyze the restrictions on the background fields due to the presence of

one or several solutions. Given one or several spinors satisfying (3.2.1), it is useful to

construct spinor bilinears, and these will feature prominently in our analysis. Here
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we will introduce various interesting bilinears and list some of their properties. These

follow only from Fierz identities and do not make use of the equations (3.2.1). We

will only need the fact that the spinors are non-vanishing.

Given a spinor ζ ∈ L ⊗ S+, its norm |ζ|2 is a scalar. More interestingly, we can

define a real, self-dual two-form,

Jµν =
2i

|ζ|2
ζ†σµνζ , (3.2.3)

which satisfies

JµνJ
ν
ρ = −δµρ . (3.2.4)

Therefore, Jµν is an almost complex structure, which splits the complexified tangent

space at every point into holomorphic and anti-holomorphic subspaces. The holo-

morphic tangent space has the following useful characterization [80]: a vector Xµ is

holomorphic with respect to Jµν if and only if Xµσ̃µζ = 0.5

We can also define another complex bilinear,

Pµν = ζσµνζ , (3.2.5)

which is a section of L2 ⊗ Λ2
+, where Λ2

+ denotes the bundle of self-dual two-forms.

We find that

Jµ
ρPρν = iPµν , (3.2.6)

and hence Pµν is anti-holomorphic with respect to the almost complex structure Jµν .

Suppose we are given another spinor ζ̃ ∈ L−1 ⊗ S−. Then we can define an

anti-self-dual two-form,

J̃µν =
2i

|ζ̃|2
ζ̃†σ̃µν ζ̃ . (3.2.7)

Again, we find that J̃µν J̃
ν
ρ = −δµρ, so that J̃µν is another almost complex struc-

ture. The two almost complex structures Jµν and J̃µν commute,

Jµν J̃
ν
ρ − J̃µνJ

ν
ρ = 0 . (3.2.8)

5To see this, we can multiplyXν σ̃νζ = 0 by ζ†σµ and use (3.2.3) to obtain JµνX
ν =

iXµ. Conversely, if Xµ is holomorphic then ζ†σµσ̃νζX
ν = 0. Multiplying by Xµ we

find |Xµσ̃µζ|2 = 0, and hence Xµσ̃µζ = 0.
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Combining ζ and ζ̃, we can also construct a complex vector K = Kµ∂µ with

Kµ = ζσµζ̃ . (3.2.9)

It squares to zero, KµKµ = 0, and it is holomorphic with respect to both Jµν and J̃µν ,

JµνK
ν = J̃µνK

ν = iKµ . (3.2.10)

The norm of K is determined by the norms of ζ and ζ̃,

K
µ
Kµ = 2|ζ|2|ζ̃|2 . (3.2.11)

It will be useful to express Jµν and J̃µν directly in terms of Kµ,

Jµν = Qµν +
1

2
εµνρλQ

ρλ ,

J̃µν = Qµν −
1

2
εµνρλQ

ρλ ,

Qµν =
i

K
λ
Kλ

(
KµKν −KνKµ

)
.

(3.2.12)

Finally, we consider two spinors ζ, η ∈ L⊗ S+. As above, they give rise to almost

complex structures,

Jµν =
2i

|ζ|2
ζ†σµνζ , Iµν =

2i

|η|2
η†σµνη . (3.2.13)

Their anticommutator is given by

JµνI
ν
ρ + IµνJ

ν
ρ = −2fδµρ ,

f = 2
|ζ†η|2

|ζ|2|η|2
− 1 .

(3.2.14)

It follows from the Cauchy-Schwarz inequality that −1 ≤ f ≤ 1, so that f = 1 if and

only if ζ is proportional to η. In this case Jµν = Iµν . Similarly, f = −1 if and only

if ζ is proportional to η†, so that Jµν = −Iµν . By appropriately choosing independent

solutions ζ and η of (3.2.1) we can always arrange for f 6= ±1 at a given point. This

fact will be used in section 3.5.
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3.3 Manifolds Admitting One Supercharge

In this section we will analyze manifolds M that admit a solution ζ of (3.1.11),

(∇µ − iAµ) ζ = −iVµζ − iV νσµνζ . (3.3.1)

The presence of such a solution implies that M is Hermitian. Conversely, we will

show that a solution exists on any Hermitian manifold.

3.3.1 Restrictions Imposed by ζ

In section 3.2 we used the fact that solutions of (3.3.1) are nowhere vanishing to con-

struct various bilinears out of ζ, and we established some of their properties at a fixed

point on M. Here we will use the fact that ζ satisfies (3.3.1) to study their deriva-

tives. We begin by proving that the almost complex structure Jµν defined in (3.2.3)

is integrable, so thatM is a complex manifold with Hermitian metric gµν . It suffices

to show that the commutator of two holomorphic vector fields is also holomorphic.

Recall from section 3.2 that a vector Xµ is holomorphic with respect to Jµν if and

only if Xµσ̃µζ = 0. By differentiating this formula, contracting with another holo-

morphic vector Y µ, and antisymmmetrizing, one finds that [X, Y ] is holomorphic if

and only if [80]

X [µY ν]σ̃µ∇νζ = 0 . (3.3.2)

Using (3.3.1) and the fact that Xµ, Y µ are holomorphic, we find that this is indeed

the case, and hence Jµν is integrable.

Alternatively, we can use (3.3.1) to compute∇µJ
ν
ρ directly (this is straightforward

but tedious), and show that the Nijenhuis tensor of Jµν vanishes,

Nµ
νρ = Jλν∇λJ

µ
ρ − Jλρ∇λJ

µ
ν − Jµλ∇νJ

λ
ρ + Jµλ∇ρJ

λ
ν = 0 . (3.3.3)

Again, it follows that the almost complex structure Jµν is integrable.

Using the complex structure, we can introduce local holomorphic coordinates

zi (i = 1, 2). We will denote holomorphic and anti-holomorphic indices by un-barred
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and barred lowercase Latin letters respectively. In these coordinates, the complex

structure takes the form,

J ij = iδij , J ij = −iδij . (3.3.4)

Lowering both indices, we obtain the Kähler form of the Hermitian manifold,

Jij = −igij . (3.3.5)

It is a real (1, 1) form. The Kähler form Jµν is not covariantly constant with respect

to the Levi-Civita connection, unless the manifold is Kähler. Instead, we compute

using (3.3.1),

∇µJ
µ
ν = −(Vν + V ν) + i(Vµ − V µ)Jµν . (3.3.6)

This implies that Vµ takes the form

Vµ = −1

2
∇νJ

ν
µ + Uµ , Jµ

νUν = iUµ . (3.3.7)

Since Uµ only has anti-holomorphic components Ui , we see that Vi is not determined

by Jµν . This freedom in Vµ was already mentioned in the introduction, where it

reflected an ambiguity in passing from (3.1.5) to (3.1.6); see also the discussion in

appendix B. Imposing conservation of Vµ leads to

∇µUµ = 0 . (3.3.8)

Recall from (3.1.9) that Vµ is the dual field strength of a two-form gauge field Bµν .

We can then express (3.3.7) as Bµν = 1
2
Jµν+· · · , where the ellipsis denotes additional

terms that reflect the freedom in Vi.

SinceM is Hermitian, it is natural to adopt a connection that is compatible with

both the metric gµν and the complex structure Jµν . As we remarked above, this is

not the case for the Levi-Civita connection ∇µ, unless the manifold is Kähler. We

will instead use the Chern connection ∇c
µ, which has the property that ∇c

µ gνρ = 0

and ∇c
µJ

ν
ρ = 0. This corresponds to replacing the ordinary spin connection ωµνρ by

ωcµνρ = ωµνρ −
1

2
Jµ

λ (∇λJνρ +∇νJρλ +∇ρJλν) . (3.3.9)
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Rewriting the spinor equation (3.3.1) in terms of the Chern connection, we obtain(
∇c
µ − iAcµ

)
ζ = 0 , (3.3.10)

where we have defined

Acµ = Aµ +
1

4
(δµ

ν − iJµν)∇ρJ
ρ
ν −

3

2
Uµ . (3.3.11)

Note that Acµ and Aµ only differ by a well-defined one-form, and hence they shift in

the same way under R-transformations.

To summarize, a solution ζ of (3.3.1) defines an integrable complex structure Jµν

and an associated Chern connection. In turn, the spinor ζ is covariantly constant

with respect to the Chern connection twisted by Acµ in (3.3.11).

WhenM is Kähler, the Chern connection coincides with the Levi-Civita connec-

tion, and Acµ = Aµ if we choose Uµ = 0. In this case (3.3.10) reduces to (3.1.2),

(∇µ − iAµ) ζ = 0 . (3.3.12)

Conversely, it is well-known that this equation admits a solution on any Kähler man-

ifold [80]. Intuitively, this follows from the N = 1 twisting procedure described

in [82]. On a Kähler manifold, the holonomy of the Levi-Civita connection is given

by U(2) = U(1)+×SU(2)− with U(1)+ ⊂ SU(2)+. For an appropriate choice of U(1)R

connection Aµ, we can cancel the U(1)+ component of the spin connection to obtain

a scalar supercharge on M. Similarly, it was shown in [106] that the N = 2 twisting

procedure of [107] can be interpreted in terms of a certain generalization of (3.3.12).

Equation (3.3.10) allows us to generalize this argument to an arbitrary Hermitian

manifold. Given a complex structure Jµν , the holonomy of the Chern connection

is contained in U(2). As above, we can twist by Acµ to obtain a solution ζ, which

transforms as a scalar. This solution is related to the complex structure as in (3.2.3).

Choosing Vµ as in (3.3.7) and Aµ as in (3.3.11), we see that ζ also satisfies (3.3.1).

Therefore, we can solve (3.3.1) on any Hermitian manifold to obtain a scalar super-

charge. We will describe the explicit solution in the next subsection. Here we will

explore some of its properties, assuming that it exists.
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Consider Pµν = ζσµνζ, which was defined in (3.2.5). Note that Pµν locally deter-

mines ζ up to a sign. It follows from (3.2.6) that Pµν is a nowhere vanishing section

of L2 ⊗ K, where K = Λ0,2 is the anti-canonical bundle of (0, 2) forms. This implies

that the line bundle L2 ⊗ K is trivial, and hence we can identify L = (K)−
1
2 , up to

a trivial line bundle. If M is not spin, the line bundle (K)−
1
2 is not globally well

defined. However, it does correspond to a good spinc structure on M.

More explicitly, we work in a patch with coordinates zi and define p = P12. Since

the induced metric on K is given by 1√
g

with g = det(gµν), it follows that 1√
g
|p|2 is a

positive scalar on M. We are therefore led to consider

s = p g−
1
4 , (3.3.13)

which is nowhere vanishing and has R-charge 2. Under holomorphic coordinate

changes s transforms by a phase,

z′i = z′i(z) , s′(z′) = s(z)

(
det

(
∂z′i

∂zj

)) 1
2
(

det

(
∂z′i

∂zj

))− 1
2

. (3.3.14)

We can locally compensate these phase rotations by appropriate R-transformations.

Under these combined transformations s transforms as a scalar. Starting from a

section p of the trivial line bundle L2 ⊗ K and dividing by a power of the trivial

determinant bundle, we have thus produced a scalar s. As we will see in the next

subsection, the scalar s determines the scalar supercharge corresponding to ζ.

We will now solve for Aµ in terms of s. It follows from (3.3.10) that(
∇c
µ − 2iAcµ

)
p = 0 . (3.3.15)

The Chern connection acts on sections of the anti-canonical bundle in a simple way,

∇c
ip = ∂ip , ∇c

i
p = ∂ip−

p

2
∂i log g . (3.3.16)

Substituting into (3.3.15) and using (3.3.13), we obtain Acµ and hence Aµ,

Aµ = Acµ −
1

4
(δµ

ν − iJµν)∇ρJ
ρ
ν +

3

2
Uµ ,

Aci = − i
8
∂i log g − i

2
∂i log s ,

Ac
i

=
i

8
∂i log g − i

2
∂i log s .

(3.3.17)
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Note that s appears in (3.3.17) as the parameter of complexified local R-transfor-

mations.

3.3.2 Solving for ζ on a Hermitian Manifold

We will now show that it is possible to solve the equation (3.3.1) on a general Her-

mitian manifold M, given its metric gµν and complex structure Jµν . The solution is

not completely determined by these geometric structures. It also depends on a choice

of conserved, anti-holomorphic Uµ and a complex, nowhere vanishing scalar s onM.

In terms of this additional data, the background fields Vµ and Aµ are given by (3.3.7)

and (3.3.17).

We will work in a local frame that is adapted to the Hermitian metric onM. This

corresponds to a choice of vielbein e1, e2 ∈ Λ(1,0) and e1, e2 ∈ Λ(0,1), which satisfies

ds2 = e1e1 + e2e2 . (3.3.18)

Any two such frames are related by a transformation in U(2) ⊂ SU(2)+ × SU(2)−.

Since (3.3.18) is preserved by parallel transport with the Chern connection, we see

that its holonomy is contained in U(2). More explicitly, we choose

1√
2
e1 =

√
g11 dz

1 +
g21√
g11

dz2,
1√
2
e2 =

g
1
4

√
g11

dz2 . (3.3.19)

In this frame, the solution of (3.3.1) with our choice of background fields is given by

ζα =

√
s

2

0

1

 . (3.3.20)

The complex structure is then indeed given by ζ as in (3.2.3).

We have specified that s is a scalar onM, yet ζ in (3.3.20) only depends on s. We

will now discuss the transformation properties of ζ, and explain to what extent it can

be considered a scalar as well. Under a holomorphic coordinate change z′i = z′i(z),

the metric and the vielbein transform in the usual way. In the z′-coordinates, we can

also define another frame f ′1, f ′2, which is related to g′
ij

as in (3.3.19). In this frame,
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the spinor ζ ′ takes the same form as in (3.3.20). The frames f ′ and e′ are related by

a matrix U ∈ U(2) via f ′ = Ue′. To relate the spinors ζ ′ and ζ, we will only need the

determinant of U ,6

ζ ′ =
√

detU ζ ,

detU =

(
det

(
∂z′i

∂zj

)) 1
2
(

det

(
∂z′i

∂zj

))− 1
2

.

(3.3.21)

Hence, ζ ′ and ζ only differ by a phase, and this can be undone by an appropriate R-

transformation. Under this combined transformation ζ transforms as a scalar, which

is related to the scalar s via (3.3.20). Note that the phase of s can be removed

by a globally well-defined R-transformation. (If we were to allow complexified R-

transformations, we could set s = 1 everywhere on M.)

3.3.3 Restrictions Imposed by ζ̃

It is straightforward to repeat the analysis above in the presence of a solution ζ̃

of (3.1.12). As before, the complex structure J̃µν in (3.2.7) is integrable and deter-

mines the holomorphic part of Vµ,

Vµ =
1

2
∇ν J̃

ν
µ + Ũµ , J̃µ

ν
Ũν = iŨµ , ∇µŨµ = 0 . (3.3.22)

The gauge field Aµ then takes the form

Aµ = Acµ +
1

4

(
δµ
ν − i J̃µ

ν
)
∇ρ J̃

ρ
ν +

3

2
Ũµ ,

Aci =
i

8
∂i log g +

i

2
∂i log s̃ ,

Ac
i

= − i
8
∂i log g +

i

2
∂i log s̃ .

(3.3.23)

As above, s̃ is a complex scalar that determines ζ̃.

6This follows from the fact that the complex structure Jµν can be written in

terms of ζ as in (3.2.3), which implies that local U(2) frame rotations are identified

with U(1)+ × SU(2)− ⊂ SU(2)+ × SU(2)−.

74



3.4 Manifolds Admitting Two Supercharges of

Opposite R-Charge

In this section we will consider manifolds M on which it is possible to find a pair ζ

and ζ̃ that solves the equations in (3.1.11) and (3.1.12),

(∇µ − iAµ) ζ = −iVµζ − iV νσµνζ ,

(∇µ + iAµ) ζ̃ = iVµζ̃ + iV ν σ̃µν ζ̃ .
(3.4.1)

Again, we begin by analyzing the restrictions imposed by the presence of ζ and ζ̃,

before establishing sufficient conditions for their existence. As discussed in the in-

troduction, the solutions ζ and ζ̃ give rise to a Killing vector field K = Kµ∂µ

with Kµ = ζσµζ̃. Together with its complex conjugate K, it generates part of

the isometry group of M. There are two qualitatively different cases depending

on whether K and K commute. In this section we will discuss the case when they

do commute, and we will show that M can be described as a fibration of a torus T 2

over an arbitrary Riemann surface Σ. The non-commuting case turns out to be very

restrictive. It is discussed in sections 3.6 and 3.7, as well as appendix C.

3.4.1 Restrictions Imposed by ζ and ζ̃

We begin by assuming the existence of two spinors ζ and ζ̃ that solve the equa-

tions (3.4.1). From the analysis of the previous section we know that they give rise to

two complex structures Jµν and J̃µν , both of which are compatible with the metric.

Recall from section 3.2 that the nowhere vanishing complex vector field Kµ = ζσµζ̃

is holomorphic with respect to both complex structures. We can now use the fact

that ζ and ζ̃ satisfy the equations (3.4.1) to show that K is a Killing vector,

∇µKν +∇νKµ = 0 . (3.4.2)

The fact that KµKµ = 0 allows us to constrain the algebra satisfied by K and

its complex conjugate K (see appendix C). When they do not commute, there are

75



additional Killing vectors and the equations (3.4.1) imply that the manifold is locally

isometric to S3 × R with metric

ds2 = dτ 2 + r2dΩ3 . (3.4.3)

Here dΩ3 is the round metric on the unit three-sphere. This case will be discussed in

sections 3.6 and 3.7.

In the remainder of this section we will analyze the case in which the Killing

vector K commutes with its complex conjugate K,

K
ν∇νK

µ −Kν∇νK
µ

= 0 . (3.4.4)

Using the complex structure Jµν , we can introduce holomorphic coordinates w, z.

Since K is holomorphic with respect to Jµν and satisfies (3.4.4), we can choose these

coordinates so that K = ∂w. The metric then takes the form

ds2 = Ω(z, z)2
(
(dw + h(z, z)dz)(dw + h(z, z)dz) + c(z, z)2dzdz

)
. (3.4.5)

The conformal factor Ω2 is determined by the norm of K, which in turn depends on

the norms of ζ and ζ̃ as in (3.2.11),

Ω2 = 2K
µ
Kµ = 4|ζ|2|ζ|2 . (3.4.6)

The metric (3.4.5) describes a two-torus T 2 fibered over a Riemann surface Σ with

metric ds2
Σ = Ω2c2dzdz. As we will see below, the metric (3.4.5) admits a second

compatible complex structure, which can be identified with J̃µν .

We will now constrain the form of the background field Vµ. First note that

∇νJ
ν
µ = −∇ν J̃

ν
µ, which follows from (3.4.2), (3.4.4), and the expressions (3.2.12)

for Jµν and J̃µν in terms of K. Since ζ is a solution of (3.4.1), it must be that Vµ

satisfies (3.3.7). Similarly (3.3.22) must hold because ζ̃ is also a solution. Consistency

of these expressions requires the two conserved vectors Uµ and Ũµ to satisfy

Uµ = Ũµ , Jµ
νUν = iUµ , J̃µ

ν
Ũν = iŨµ . (3.4.7)
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Recall from (3.2.8) that the two complex structures Jµν and J̃µν commute. Moreover,

they have opposite self-duality, so that the space of vectors that are holomorphic under

both is one dimensional. Hence, Uµ = Ũµ must be proportional to Kµ everywhere. In

summary,

Vµ = −1

2
∇νJ

ν
µ + κKµ =

1

2
∇ν J̃

ν
µ + κKµ , Kµ∂µκ = 0 . (3.4.8)

Here κ is a complex scalar function on M, which is constrained by the conservation

of Vµ.

Given the form of Vµ in (3.4.8) and the spinors ζ and ζ̃, the gauge field Aµ

is completely determined. It is given by (3.3.17), or alternatively (3.3.23). It can

be checked that the consistency of these two equations does not impose additional

restrictions on the metric or the background fields. This also follows from the explicit

solution presented in the next subsection.

3.4.2 Solving for ζ and ζ̃

Here we will establish a converse to the results of the previous subsection: we can

find a pair ζ and ζ̃ that solves the equations (3.4.1) whenever the metric gµν admits

a complex Killing vector K that squares to zero, KµKµ = 0, and commutes with its

complex conjugate as in (3.4.4). Note that we do not assume that M is Hermitian.

Instead, we can use K to define Jµν and J̃µν through the formula (3.2.12), without

making reference to ζ and ζ̃. Since KµKµ = 0 these are indeed almost complex

structures, and K is holomorphic with respect to both. Using (3.4.2) and (3.4.4),

we can show that they are integrable, i.e. their Nijenhuis tensor (3.3.3) vanishes.

Choosing complex coordinates adapted to Jµν , the metric takes the same form as

in (3.4.5),

ds2 = Ω(z, z)2
(
(dw + h(z, z)dz)(dw + h(z, z)dz) + c(z, z)2dzdz

)
. (3.4.9)

In order to exhibit the explicit solution for ζ and ζ̃, we introduce a local frame

adapted to the Hermitian metric (3.4.9) as in (3.3.19),

e1 = Ω(dw + hdz) , e2 = Ωcdz . (3.4.10)
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Choosing the background fields Vµ and Aµ as in (3.4.8) and (3.3.17), we solve for ζ

and ζ̃,

ζα =

√
s

2

0

1

 , ζ̃ α̇ =
Ω√
s

0

1

 . (3.4.11)

As before, we have the freedom of choosing a nowhere vanishing complex s, which

transforms as a scalar under holomorphic coordinate changes followed by appropri-

ate R-transformations. Hence, ζ can be regarded as a scalar, and the same is true

for ζ̃, since Ω is a scalar as well. (Recall from (3.4.6) that it is proportional to the

norm of K.) The freedom in choosing s reflects the underlying invariance of the

equations (3.4.1) under complexified R-transformations, and as above we could use

this freedom to set s = 1.

We would like to comment on the isometries generated by K and K. Recall that K

appeared on the right-hand-side of the supersymmetry algebra (3.1.13). This is not

the case for K. Nevertheless, both K and K are Killing vectors, because the metric

is real. However, K need not be a symmetry of the auxiliary fields Vµ and Aµ. For

instance, to ensure that Vµ in (3.4.8) commutes with K we must impose an additional

restriction on κ,

K
µ
∂µκ = 0 . (3.4.12)

Similarly, to ensure that Aµ is invariant under K and K up to ordinary gauge trans-

formations, we must impose

Kµ∂µ|s| = K
µ
∂µ|s| = 0 . (3.4.13)

Note that Aµ is always invariant under K up to complexified gauge transformations.

The conditions (3.4.12) and (3.4.13) ensure that K and K are good symmetries of all

background fields. Although this choice is natural, we are free to consider auxiliary

fields that are not invariant under K.

If we choose to impose (3.4.12) and (3.4.13), we would like to add K to the

supersymmetry algebra (3.1.13). When acting on objects of R-charge q, we define

δK = LA
K

= LK − iqK
µ
Aµ , (3.4.14)
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which is similar to (3.1.14), except that we use Aµ instead of Aµ. This is covariant

under ordinary gauge transformations. With this definition, we find that

[δK , δζ ] = [δK , δeζ ] = 0 ,

[δK , δK ] = 0 .
(3.4.15)

Together with (3.1.13), these commutation relations comprise the two-dimensional

(2, 0) supersymmetry algebra. Here it acts on the T 2 fibers in (3.4.5).

3.4.3 Trivial Fibrations and Dimensional Reduction

Here we will comment on the case when one or both cycles of the torus are trivially

fibered over the base Σ. By reducing along these cycles, we obtain manifolds admitting

two supercharges in three and two dimensions.

Let us consider the case when one of the cycles is trivially fibered, so that the

manifold is of the formM3×S1. The three-manifoldM3 is itself a circle bundle over

the Riemann surface Σ. Let us choose K = ∂τ + i∂ψ, where the real coordinates τ

and ψ parametrize the trivial S1 and the circle fiber ofM3 respectively. In this case,

the metric takes the form

ds2 = Ω2(z, z)dτ 2 + ds2
M3

,

ds2
M3

= Ω2(z, z)
((
dψ + a(z, z)dz + a(z, z)dz

)2
+ c2(z, z)dzdz

)
.

(3.4.16)

Since K = ∂τ + i∂ψ squares to zero and commutes with its complex conjugate, this

metric is in the class considered in the previous subsection. Hence, we can find two so-

lutions ζ and ζ̃. Imposing the additional conditions (3.4.12) and (3.4.13) ensures that

the spinors and the background fields do not vary along the two circles parametrized

by τ and ψ.

We can now reduce along τ to obtain two scalar supercharges on Seifert manifolds

that are circle bundles over a Riemann surface Σ, as long as the metric is invariant un-

der translations along the fiber. Rigid supersymmetry on such manifolds was recently

discussed in [101,102]. The supercharges we find exist in any three-dimensionalN = 2

theory with a U(1)R symmetry.
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If we choose the circle bundle to be trivial, we can reduce once more and obtain

two scalar supercharges on any Riemann surface Σ. They are analogous to the ones

obtained by the A-twist of a two-dimensional N = (2, 2) theory on Σ [103,104].

3.5 Manifolds Admitting Two Supercharges

of Equal R-Charge

In this section we analyze manifolds that admit two independent solutions of (3.1.11).

The presence of these two solutions turns out to be very restrictive. IfM is compact,

we will prove that it must be one of the following:

• A torus T 4 with flat metric.

• A K3 surface with Ricci-flat Kähler metric.

• Certain discrete quotients of S3×S1 with the standard metric ds2 = dτ 2+r2dΩ3.

Given two independent solutions ζ and η of (3.1.11), we derive a set of consistency

conditions for the metric and the auxiliary fields. Using 1
2
Rµνκλσ

κλζ = [∇µ,∇ν ]ζ and

the fact that ζ satisfies (3.1.11), we obtain

1

2
Rµνκλσ

κλζ = V ρVρσµνζ + i(∂µ(Aν − Vν)− ∂ν(Aµ − Vµ))ζ

− i(∇µ + iVµ)V ρσνρζ + i(∇ν + iVν)V
ρσµρζ ,

(3.5.1)

and similarly for η. Since ζ and η are independent at every point, we arrive at the

following integrability conditions:

1.) The Weyl tensor is anti-self-dual, Wµνρλ = −1
2
εµνκσW

κσ
ρλ.

2.) The curl of Vµ is anti-self-dual, ∂µVν − ∂νVµ = −1
2
εµνρλ(∂

ρV λ − ∂λV ρ).

3.) The difference Aµ − Vµ is closed, ∂µ(Aν − Vν)− ∂ν(Aµ − Vµ) = 0.

4.) The Ricci tensor is given by

Rµν = i(∇µVν +∇νVµ)− 2(VµVν − gµνVρV ρ) . (3.5.2)
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If we instead consider two independent solutions ζ̃ and η̃ of (3.1.12), the Weyl tensor

and the curl of Vµ in 1.) and 2.) are self-dual rather than anti-self-dual, and the Ricci

tensor is given by (3.5.2) with Vµ → −Vµ.

These conditions locally constrain the geometry of the manifold. They take a

particularly simple form on manifolds of SU(2) holonomy, which are Ricci-flat and

have anti-self-dual Weyl tensor. In this case, we can satisfy the integrability conditions

by choosing Vµ = Aµ = 0. Indeed, such manifolds admit two independent covariantly

constant spinors. Further examples are discussed in sections 3.6 and 3.7.

Here we will not attempt to classify all manifolds that satisfy the conditions above.

Instead, we will focus on the case whenM is compact, and prove the following global

result: the existence of two spinors ζ and η that satisfy (3.1.11) everywhere on a

compact manifold M implies that M is hyperhermitian. Compact hyperhermitian

four-manifolds have been classified in [105]. Up to a global conformal transformation,

they are given by the manifolds listed at the beginning of this section.7 Using the

fact that Vµ is conserved, we will find that the conformal factor must be a constant.

A hyperhermitian structure on M arises whenever there are two anti-commuting

hermitian structures J (1) and J (2). Together with their commutator J (3) they satisfy

the quaternion algebra,

{J (a), J (b)} = −2δab , (a, b = 1, 2, 3) . (3.5.3)

This implies that there is an entire S2 of Hermitian structures parametrized by

J(~n) =
∑
a

naJ (a) , |~n| = 1 . (3.5.4)

Since ζ and η satisfy (3.1.11), the almost complex structures Jµν and Iµν con-

structed in (3.2.13) are integrable. Recall from (3.2.14) that the anticommutator

of Jµν and Iµν gives rise to a real function f , which is determined in terms of ζ

7See also the discussion in [108], where these manifolds are identified with compact

Hermitian surfaces for which the restricted holonomy of the Bismut connection is

contained in SU(2).
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and η. Moreover, we are free to choose ζ and η such that f 6= ±1 at a given point;

at this point Jµν 6= ±Iµν . We will now prove that Jµν and Iµν are elements of a

hyperhermitian structure on M.

In order to establish this result, we will consider the Lee forms associated with Jµν

and Iµν ,

θJµ = Jµ
ρ∇νJ

ν
ρ ,

θIµ = Iµ
ρ∇νI

ν
ρ .

(3.5.5)

Using (3.3.6) they can be expressed as follows:

θJµ = i(Vµ − V µ)− Jµρ(Vρ + V ρ) ,

θIµ = i(Vµ − V µ)− Iµρ(Vρ + V ρ) .
(3.5.6)

We will also need the following formula, which follows from (3.1.11) by direct com-

putation:

∂µ log
|ζ|2

|η|2
= −1

2
(Jµν − Iµν)

(
V ν + V

ν)
. (3.5.7)

Subtracting the two equations in (3.5.6) and using (3.5.7), we find that the Lee forms

differ by an exact one-form,

θJµ − θIµ = ∂µh , h = 2 log
|ζ|2

|η|2
. (3.5.8)

Recall from the first integrability condition listed above that the Weyl tensor must

be anti-self-dual. We thus have a compact four-manifoldM with anti-self-dual Weyl

tensor that admits two Hermitian structures J and I such that J 6= ±I somewhere

on M. Applying proposition (3.7) in [109], it follows that

a) The function h in (3.5.8) is constant.

b) The manifold admits a hyperhermitian structure as in (3.5.3). Moreover, J

and I belong to it, and hence they can be expressed in terms of the J (a) as

in (3.5.4).

We conclude that M is one of the manifolds listed at the beginning of this section,

up to a global conformal rescaling of the metric. In order to fix the conformal factor,

82



we use the fact that Vµ is conserved. Observe that since Jµν and Iµν are independent

elements of the hyperhermitian structure, Jµν − Iµν is invertible. It therefore follows

from (3.5.7) and (3.5.8) with ∂µh = 0 that Vµ is purely imaginary. Hence, we see

from (3.5.6) that

θJµ = θIµ = i(Vµ − V µ) . (3.5.9)

Since Vµ is conserved, θIµ and θJµ are conserved as well. To see that this fixes the

conformal factor, consider a conformal rescaling of the metric, ĝµν = eφgµν . It follows

from (3.5.5) that the Lee forms shift by an exact one-form,

θ̂Jµ = θJµ + ∂µφ , (3.5.10)

and similarly for θIµ. Since θJµ is conserved, θ̂Jµ can only be conserved if φ is harmonic.

On a compact manifold, this is only possible for constant φ. It can be checked

that the manifolds listed at the beginning of this section all have conserved Lee

forms, and hence they are the correct hyperhermitian representatives within each

conformal class. This is trivial for a flat T 4 or a K3 surface with Ricci-flat metric,

since both are hyperkähler manifolds and hence the Lee forms (3.5.5) vanish. Even

though S3 × S1 is not Kähler, it can be checked that the Lee forms are conserved

if we choose the standard metric ds2 = dτ 2 + r2dΩ3. This case will be discussed in

section 3.7.

3.6 Manifolds Admitting Four Supercharges

In this section we will formulate necessary conditions for the existence of four super-

charges. These follow straightforwardly from the integrability conditions discussed in

section 3.5. Assuming the existence of two independent solutions of (3.1.11), we found

that the Weyl tensor and the curl of Vµ must be anti-self-dual. Similarly, two solutions

of (3.1.12) imply that they are also self-dual, and hence they must vanish. It follows

thatM is locally conformally flat and that Vµ is closed. Since Aµ− Vµ is also closed,

it follows that the gauge field Aµ is flat. Finally, the Ricci tensor must satisfy (3.5.2)
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and the same relation with Vµ → −Vµ. This implies that ∇µVν + ∇νVµ = 0, and

since Vµ is also closed, it must be covariantly constant,

∇µVν = 0 . (3.6.1)

The Ricci tensor is then given by

Rµν = −2(VµVν − gµνVρV ρ) . (3.6.2)

Since Vµ is covariantly constant, M is locally isometric to M3 × R. It follows

from (3.6.2) that M3 is a space of constant curvature. Let r be a positive constant.

There are three possible cases:

1.) If V µVµ = − 1
r2

then M3 is locally isometric to a round S3 of radius r. In this

case V µ is purely imaginary and points along R.

2.) If Vµ = 0 then M is locally isometric to flat R4. This is the case of ordinary

N = 1 supersymmetry in flat space.

3.) If V µVµ = 1
r2

then M3 is locally isometric to H3, the three-dimensional hyper-

bolic space of radius r and constant negative curvature. In this case V µ is real

and points along R.

We will discuss cases 1.) and 3.) below.

3.7 Examples

3.7.1 S3 × R

Consider S3 × R with metric

ds2 = dτ 2 + r2dΩ3 , (3.7.1)

where dΩ3 is the round metric on a unit three sphere. As we saw in section 3.6,

this manifold admits four supercharges. Supersymmetric field theories on this space
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have been studied in [110, 111] and more recently in [31]. Here we will examine this

example from the point of view of the preceding discussion.

Since this manifold admits rigid supersymmetry, it must be Hermitian. We can

introduce holomorphic coordinates w, z, so that the metric (3.7.1) takes the form

ds2 =
(
dw − rz

r2 + |z|2
dz
)(
dw − rz

r2 + |z|2
dz
)

+
r4

(r2 + |z|2)2
dzdz . (3.7.2)

Here the imaginary part of w is periodic, w ∼ w + 2πir.8 The vector ∂w + ∂w

is covariantly constant and points along R, while i(∂w − ∂w) generates translations

along a Hopf fiber of S3. Since the metric (3.7.2) is of the form (3.4.5), it allows

for two supercharges ζ and ζ̃ such that K = ζσµζ̃∂µ is equal to the holomorphic

Killing vector ∂w. With the choice of frame in (3.4.10), these two solutions are given

by (3.4.11).

As discussed in section 3.6, it is possible to choose the auxiliary fields Aµ and Vµ

to obtain four supercharges on S3 × R. Up to a sign, this fixes

V = − i
r

(∂w + ∂w) . (3.7.4)

We will comment on the other choice of sign below. The gauge field Aµ must be flat,

but it is otherwise undetermined, and hence we can add an arbitrary complex Wilson

line for Aµ along R. In general, the resulting supercharges vary along R. This is

not the case if we choose Aµ = Vµ, so that we can compactify to S3 × S1. In the

frame (3.4.10) the supercharges take the form

ζα =

 a1e
−(w−w)/2r

a2e
(w−w)/2r

 , ζ̃ α̇ =

 a3e
(w−w)/2r

a4e
−(w−w)/2r

 , (3.7.5)

8The point z =∞ is covered by different coordinates w′, z′,

z′ =
r2

z
, w′ = w − r log

z

r
, (3.7.3)

as long as z 6= 0. In these coordinates, the metric takes the same form as in (3.7.2).

Due to the periodicity of w, we do not need to choose a specific branch for the

logarithm in (3.7.3).
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where the ai are arbitrary complex constants. Setting a1 = a3 = 0, we obtain the

two supercharges ζ and ζ̃ discussed above, which are of the form (3.4.11). Since Aµ

and Vµ are purely imaginary, we can use (3.2.2) to obtain two other supercharges ζ†

and ζ̃†. They correspond to setting a2 = a4 = 0 in (3.7.5).

Setting a3 = a4 = 0, we obtain two supercharges of equal R-charge on the compact

manifold S3 × S1. This manifold is hyperhermitian but not Kähler. If V is given

by (3.7.4), the Lee forms in (3.5.9) are non-vanishing but conserved, in accord with

the general discussion in section 3.5.

Using the spinors ζ and ζ̃ in (3.7.5), we can construct four independent complex

Killing vectors of the form Kµ = ζσµζ̃. Since the supercharges are related by ζ ↔ ζ†

and ζ̃ ↔ ζ̃†, these vectors are linear combinations of four real, orthogonal Killing

vectors La (a = 1, 2, 3) and T , which satisfy the algebra

[La, Lb] = εabcLc , [La, T ] = 0 . (3.7.6)

The La generate the SU(2)l inside the SU(2)l×SU(2)r isometry group of S3, while T

generates translations along R. The supercharges form two SU(2)l doublets that carry

opposite R-charge and are invariant under SU(2)r. (If we choose the opposite sign

for V in (3.7.4), the spinors are invariant under SU(2)l and transform as doublets

under SU(2)r.) Using (3.1.13) and (3.1.16) we find that the supersymmetry algebra

is SU(2|1).

If we remain on S3 × S1 but only require two supercharges ζ and ζ̃, the auxiliary

fields Vµ and Aµ are are less constrained. For instance, we can choose ζ and ζ̃

corresponding to a1 = a3 = 0 in (3.7.5). As discussed above, they give rise to the

holomorphic Killing vector K = ∂w, which commutes with its complex conjugate K.

According to the discussion in section 3.4, we can preserve ζ and ζ̃ for any choice

V =
i

r
(∂w + ∂w) + κK , A =

i

r
(∂w + ∂w) +

3

2
κK , (3.7.7)

where κ is a complex function that satisfies Kµ∂µκ = 0, so that V µ is conserved.

If we instead choose ζ and ζ̃ corresponding to a1 = a4 = 0 in (3.7.5), the resulting
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Killing vector K points along the S3. Together with its complex conjugate K, it

generates the SU(2)l isometry subgroup. For generic choices of ai we find that K

and K generate the SU(2)l ×U(1) isometry subgroup that also includes translations

along S1. These possibilities for the algebra of Killing vectors are precisely the ones

discussed in appendix C.

3.7.2 H3 × R

Consider H3 × R, where H3 is the three-dimensional hyperbolic space of constant

negative curvature. This manifold also admits four supercharges, and in some respects

it is similar to the previous example S3×R, but there are also qualitative differences.

As before, we can introduce holomorphic coordinates w, z and write the metric in

the form,

ds2 = e(z+z)/r dwdw + dzdz , (3.7.8)

where r is the radius of H3. Now the coordinates w, z cover the entire space. The

covariantly constant vector i(∂z − ∂z) points along R. In order to preserve four

supercharges, we must choose

V =
i

r
(∂z − ∂z) , (3.7.9)

up to a sign (see below). As in the previous example, we are free to add an arbitrary

complex Wilson line for Aµ along R. Setting Aµ = Vµ and choosing the frame (3.4.10),

the four supercharges are given by

ζα =

 a1e
−(z+z)/4r

(a2 − a1
w
r
) ez+z/4r

 , ζ̃ α̇ =

 a3e
−(z+z)/4r

(a4 − a3
w
r
) e(z+z)/4r

 . (3.7.10)

As before, the ai are arbitrary complex constants. Since the metric (3.7.8) is of

the form (3.4.5), two of the supercharges are given by (3.4.11). They correspond

to a1 = a3 = 0 in (3.7.10). Note that the spinors in (3.7.10) do not depend on z − z,

so that we can compactify to H3 × S1.

In contrast to S3 × S1, the supercharges ζ† and ζ̃† correspond to choosing the

opposite sign in (3.7.9). Now the four independent complex Killing vectorsKµ = ζσµζ̃

87



constructed from ζ and ζ̃ in (3.7.10) give rise to seven independent real Killing vectors,

which comprise the full SL(2,C)×U(1) isometry group of H3×S1. The four complex

Killing vectors K commute with all four complex conjugates K.

3.7.3 Squashed S3 × R

We now consider S3×R, where the S3 is one of the squashed three-spheres discussed

in [88]. They are defined by their isometric embedding in flat R4, where they satisfy

the constraint
1

a2

(
x2

1 + x2
2

)
+

1

b2

(
x2

3 + x2
4

)
= 1 . (3.7.11)

Rotations in the x1x2 and x3x4 planes generate a U(1)× U(1) isometry. Introducing

angular coordinates θ ∈ [0, π/2], α ∼ α + 2π, and β ∼ β + 2π for the squashed S3

and a coordinate τ along R, we can write the metric in the form

ds2 = dτ 2 + F (θ)2dθ2 + a2 cos2θdα2 + b2 sin2θdβ2 ,

F (θ) =
√
a2 sin2θ + b2 cos2θ .

(3.7.12)

In these coordinates, the U(1)×U(1) isometry of the squashed sphere is generated by

the real Killing vectors ∂α and ∂β. By combining them with translations ∂τ along R,

we obtain a complex Killing vector K, which squares to zero and commutes with its

complex conjugate,

K = ∂τ −
i

a
∂α −

i

b
∂β . (3.7.13)

According to the discussion in section 3.4, this guarantees the existence of two

supercharges ζ and ζ̃. Introducing the frame

e1 = dτ , e2 = F (θ) dθ , e3 = a cos θ dα , e4 = b sin θ dβ , (3.7.14)

they are given by

ζα = − i√
2

 e
i
2

(α+β−θ)

ie
i
2

(α+β+θ)

 , ζ̃ α̇ = − i√
2

 e−
i
2

(α+β−θ)

ie−
i
2

(α+β+θ)

 . (3.7.15)
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The auxiliary fields take the form

Vµdx
µ = − i

F (θ)
dτ + κKµdx

µ , Kµ∂µκ = 0 ,

Aµdx
µ = − 1

2F (θ)

(
2idτ + adα + bdβ

)
+

1

2
(dα + dβ) +

3

2
κKµdx

µ .
(3.7.16)

As in section 3.4, we can use K to define a complex structure compatible with the

metric (3.7.12). In the corresponding holomorphic coordinates, the metric is of the

form (3.4.5) and the supercharges are given by (3.4.11).

We can again fix the metric (3.7.12) and obtain two supercharges for different

choices of the auxiliary fields Aµ and Vµ. For instance, we can obtain a second

solution by replacing τ → −τ and β → π − β in (3.7.13) and repeating the previous

construction. Note that this does not change the orientation of the manifold. From

these two solutions, we can obtain two more by using (3.2.2).

3.8 Appendix A: Conventions

We follow the conventions of [34], adapted to Euclidean signature. This leads to some

differences in notation, which are summarized here, together with various relevant

formulas.

3.8.1 Flat Euclidean Space

The metric is given by δµν , where µ, ν = 1, . . . , 4. The totally antisymmetric Levi-

Civita symbol is normalized so that ε1234 = 1. The rotation group is given by SO(4) =

SU(2)+ × SU(2)−. A left-handed spinor ζ is an SU(2)+ doublet and carries un-

dotted indices, ζα. Right-handed spinors ζ̃ are doublets under SU(2)−. They are

distinguished by a tilde and carry dotted indices, ζ̃ α̇. In Euclidean signature, SU(2)+

and SU(2)− are not related by complex conjugation, and hence ζ and ζ̃ are indepen-

dent spinors.

The Hermitian conjugate spinors ζ† and ζ̃† transform as doublets under SU(2)+
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and SU(2)− respectively. They are defined with the following index structure,

(ζ†)α = (ζα) , (ζ̃†)α̇ = (ζ̃ α̇) , (3.8.1)

where the bars denote complex conjugation. Changing the index placement on both

sides of these equations leads to a relative minus sign,

(ζ†)α = −(ζα) , (ζ̃†)α̇ = −(ζ̃α̇) . (3.8.2)

We can therefore write the SU(2)+ invariant inner product of ζ and η as ζ†η. Similarly,

the SU(2)− invariant inner product of ζ̃ and η̃ is given by ζ̃†η̃. The corresponding

norms are denoted by |ζ|2 = ζ†ζ and |ζ̃|2 = ζ̃†ζ̃.

The sigma matrices take the form

σµαα̇ = (~σ,−i) , σ̃µα̇α = (−~σ,−i) , (3.8.3)

where ~σ = (σ1, σ2, σ3) are the Pauli matrices. We use a tilde (rather than a bar)

to emphasize that σµ and σ̃µ are not related by complex conjugation in Euclidean

signature. The sigma matrices (3.8.3) satisfy the identities

σµσ̃ν + σν σ̃µ = −2δµν , σ̃µσν + σ̃νσµ = −2δµν . (3.8.4)

The generators of SU(2)+ and SU(2)− are given by the antisymmetric matrices

σµν =
1

4
(σµσ̃ν − σν σ̃µ) , σ̃µν =

1

4
(σ̃µσν − σ̃νσµ) . (3.8.5)

They are self-dual and anti-self-dual respectively,

1

2
εµνρλσ

ρλ = σµν ,
1

2
εµνρλσ̃

ρλ = −σ̃µν . (3.8.6)

3.8.2 Differential Geometry

We will use lowercase Greek letters µ, ν, . . . to denote curved indices and lowercase

Latin letters a, b, . . . to denote frame indices. Given a Riemannian metric gµν , we can

define an orthonormal tetrad eaµ. The Levi-Civita connection is denoted ∇µ and the

corresponding spin connection is given by

ωµa
b = ebν∇µea

ν . (3.8.7)
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The Riemann tensor takes the form

Rµνa
b = ∂µωνa

b − ∂νωµab + ωνa
cωµc

b − ωµacωνcb . (3.8.8)

The Ricci tensor is defined by Rµν = Rµρν
ρ, and R = Rµ

µ is the Ricci scalar. Note

that in these conventions, the Ricci scalar is negative on a round sphere.

The covariant derivatives of the spinors ζ and ζ̃ are given by

∇µζ = ∂µζ +
1

2
ωµabσ

abζ , ∇µζ̃ = ∂µζ̃ +
1

2
ωµabσ̃

abζ̃ . (3.8.9)

We will also need the commutator of two covariant derivatives,

[∇µ,∇ν ]ζ =
1

2
Rµνabσ

abζ , [∇µ,∇ν ]ζ̃ =
1

2
Rµνabσ̃

abζ̃ . (3.8.10)

Finally, the Lie derivatives of ζ and ζ̃ along a vector field X = Xµ∂µ are given by [112],

LXζ = Xµ∇µζ −
1

2
∇µXνσ

µνζ ,

LX ζ̃ = Xµ∇µζ̃ −
1

2
∇µXν σ̃

µν ζ̃ .
(3.8.11)

3.9 Appendix B: Review of Curved Superspace

In this appendix we explain how to place a four-dimensional N = 1 theory on a

Riemannian manifold M in a supersymmetric way. We review the procedure of [31]

and comment on several points that play an important role in our analysis.

3.9.1 Supercurrents

Given a flat-space field theory, we can place it onM by coupling its energy-momentum

tensor Tµν to the background metric gµν on M. In a supersymmetric theory, the

energy-momentum tensor resides in a supercurrent multiplet Sµ, which also contains

the supersymmetry current Sµα and various other operators. In the spirit of [16]

we can promote the background metric gµν to a background supergravity multiplet,

which also contains the gravitino ψµα and several auxiliary fields. They couple to the

operators in Sµ.
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In general, the supercurrent multiplet Sµ contains 16 + 16 independent opera-

tors [1, 46]. In many theories, it can be reduced to a smaller multiplet, which only

contains 12 + 12 operators. There are two such 12 + 12 supercurrents: the Ferrara-

Zumino (FZ) multiplet [38] and the R-multiplet (see for instance [50]). The R-

multiplet exists whenever the field theory possesses a U(1)R symmetry, and this is

the case we will focus on here.

The R-multiplet satisfies the defining relations9

D̃α̇Rαα̇ = χα , D̃α̇χα = 0 , Dαχα = D̃α̇χ̃
α̇ . (3.9.2)

Here Rαα̇ = −2σµαα̇Rµ is the bi-spinor corresponding to Rµ. In components,

Rµ = j(R)
µ − iθSµ + iθ̃S̃µ + θσν θ̃

(
2Tµν +

i

2
εµνρλFρλ −

i

2
εµνρλ∂

ρj(R)λ
)

− 1

2
θ2θ̃ σ̃ν∂νSµ +

1

2
θ̃

2
θσν∂νS̃µ −

1

4
θ2θ̃

2
∂2j(R)

µ ,

χα = − 2i(σµS̃µ)α − 4θβ

(
δα

β Tµ
µ − i(σµν)α

βFµν
)
− 4θ2(σµν∂µSν)α + · · · .

(3.9.3)

Here j
(R)
µ isR-current, Sµα is the supersymmetry current, Tµν is the energy-momentum

tensor, and Fµν is a closed two-form, which gives rise to a string current εµνρλFρλ. All

of these currents are conserved. Note that (3.9.3) contains several unfamiliar factors

of i, because we are working in Euclidean signature. In Lorentzian signature, the

superfield Rµ is real.

It is convenient to express the closed two-form Fµν in terms of a one-form Aµ,

Fµν = ∂µAν − ∂νAµ . (3.9.4)

In general Aµ is not well defined, because it can shift by an exact one-form, Aµ →

Aµ + ∂µα. An exception occurs if the theory is superconformal, in which case Aµ is

9The supercovariant derivatives Dα and D̃α̇ are given by

Dα =
∂

∂θα
+ iσµαα̇θ̃

α̇∂µ , D̃α̇ = − ∂

∂θ̃α̇
− iθασµαα̇∂µ . (3.9.1)

92



a well-defined conserved current. The superfield χα can then be set to zero by an

improvement transformation. Below, we will need the variation of the bosonic fields

in the R-multiplet under ordinary flat-space supersymmetry transformations,

δj(R)
µ = −iζSµ + iζ̃S̃µ ,

δTµν =
1

2
ζσµρ∂

ρSν +
1

2
ζ̃ σ̃µρ∂

ρS̃ν + (µ↔ ν) ,

δAµ = − i
2

(
ζSµ − ζ̃S̃µ − 2ζσµρS

ρ + 2ζ̃ σ̃µρS̃
ρ
)

+ ∂µ (· · · ) .

(3.9.5)

The ellipsis denotes a possible ambiguity in the variation of Aµ due to shifts by an

exact one-form.

3.9.2 Background Supergravity and the Rigid Limit

We would like to place a supersymmetric flat-space theory on a curved manifoldM by

coupling it to background supergravity fields. A straightforward but tedious approach

is to follow the Noether procedure. This can be avoided if an off-shell formulation of

dynamical supergravity is available. As explained in [31], we can couple this super-

gravity to the field theory of interest and freeze the supergravity fields in arbitrary

background configurations by rescaling them appropriately and sending the Planck

mass to infinity. This was termed the rigid limit in [31]. In this limit, the fluctuations

of the supergravity fields decouple and they become classical backgrounds, which can

be chosen arbitrarily. In particular, we do not eliminate the auxiliary fields via their

equations of motion.

We will apply this procedure to N = 1 theories in four dimensions, which admit

different supercurrent multiplets. These give rise to different off-shell formulations

of supergravity, which differ in the choice of propagating and auxiliary fields. For

instance, the FZ-multiplet couples to the old minimal formulation of supergravity [97,

98], while the R-multiplet couples to new minimal supergravity [95, 96]. We will

focus on the latter. In addition to the metric gµν and the gravitino ψµα, new minimal

supergravity contains two auxiliary fields: an Abelian gauge field Aµ and a two-form
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gauge field Bµν . The dual field strength V µ of Bµν is a conserved vector field,

V µ =
1

2
εµνρλ∂νBρλ , ∇µV

µ = 0 . (3.9.6)

In an expansion around flat space, gµν = δµν + 2hµν , the linearized couplings to

new minimal supergravity are determined by the operators in the R-multiplet (3.9.3),

L = Tµνh
µν − j(R)

µ

(
Aµ − 3

2
V µ
)
−AµV µ + (fermions) . (3.9.7)

Here Aµ and V µ both have dimension 1, while gµν and Bµν are dimensionless. The

fermion terms contain the couplings of the gravitino to the supersymmetry current,

which will not be important for us. We see from (3.9.7) that Aµ is the gauge field

associated with local U(1)R transformations. Under these transformations the grav-

itino ψµα has R-charge +1. Note that the couplings in (3.9.7) are well defined under

shifts of Aµ by an exact one form, because V µ is conserved. The fact that Aµ and V µ

couple to j
(R)
µ and Aµ is a general feature of the rigid limit that persists beyond

the linearized approximation around flat space. At higher order there are also terms

quadratic in the auxiliary fields, as well as curvature terms, which are described

in [31].

Note that the couplings (3.9.7) do not modify the short-distance structure of the

field theory, which is the same as in flat space. To see this, we can choose a point

on M and examine the theory in Riemann normal coordinates around this point. If

the curvature scale is given by r, the metric is flat up to terms of order 1
r2

. In these

coordinates, the deformation (3.9.7) of the flat-space Lagrangian reduces to operators

of dimension 3 or less, and hence the short-distance structure is not affected.

We are interested in configurations of the bosonic supergravity background fields

that preserve some amount of rigid supersymmetry. The gravitino is set to zero. Such

backgrounds must be invariant under a subalgebra of the underlying supergravity

transformations. This subalgebra must leave the gravitino invariant,

δψµ = −2 (∇µ − iAµ) ζ − 2iVµζ − 2iV νσµνζ ,

δψ̃µ = −2 (∇µ + iAµ) ζ̃ + 2iVµζ̃ + 2iV ν σ̃µν ζ̃ .
(3.9.8)
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Since the variations of the bosonic supergravity fields are proportional to the grav-

itino, they vanish automatically. Therefore, any nontrivial choice of ζ and ζ̃ that

satisfies (3.9.8) gives rise to a rigid supercharge. In general, the algebra satisfied

by these supercharges differs from the ordinary supersymmetry algebra in flat space.

Rather, it is a particular subalgebra of the local supergravity transformations that is

determined by the background fields.

3.9.3 Freedom in the Auxiliary Fields

In section 3.3 we found that the auxiliary fields Aµ and Vµ are not completely deter-

mined by the geometry of the underlying Hermitian manifold. For instance, it follows

from (3.3.7) that we have the freedom of shifting V µ by a conserved holomorphic

vector Uµ. Here we would like to elucidate the origin of this freedom by lineariz-

ing the metric around flat space, so that the deformation of the Lagrangian is given

by (3.9.7), and using our knowledge of the R-multiplet.

We can choose

ζα =
1

2

0

1

 , (3.9.9)

and use holomorphic coordinates w, z adapted to the complex structure defined by ζ

as in (3.2.3). In these coordinates, the linearized Hermitian metric only has compo-

nents hij. We would like to determine the values of the auxiliary fields Aµ and Vµ

for which the bosonic terms in (3.9.7) are invariant under the supercharge δζ corre-

sponding to ζ in (3.9.9). This amounts to finding combinations of Tij and the other

bosonic operators j
(R)
µ , Aµ in the R-multiplet that are invariant under δζ . Since we

are working to linear order, we can use the flat-space transformations (3.9.5) to find

δζ

(
Tww −

i

2
Fzz −

i

4

(
∂wj

(R)
w − ∂wj(R)

w

)
+
i

2
∂zj

(R)
z

)
= 0 ,

δζ

(
Twz +

i

2
Fwz −

3i

4
∂wj

(R)
z +

i

4
∂zj

(R)
w

)
= 0 ,

(3.9.10)

and two more with w ↔ z , w ↔ z. Moreover, up to shifts of Aµ by an exact

one-form,

δζAw = δζAz = 0 . (3.9.11)
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We can therefore add Aw and Az with coefficients that are arbitrary functions of the

coordinates, as long as we ensure that the Lagrangian is invariant under shifts of Aµ.

Hence, the following Lagrangian is invariant under δζ ,

L =
(

2hww
(
Tww −

i

2
Fzz −

i

4
(∂wj

(R)
w − ∂wj(R)

w ) +
i

2
∂zj

(R)
z

)
+ 2hwz

(
Twz +

i

2
Fwz −

3i

4
∂wj

(R)
z +

i

4
∂zj

(R)
w

))
+ (w ↔ z , w ↔ z)

− UwAw − U zAz .

(3.9.12)

Here Uw,z is a holomorphic vector field. Invariance under shifts of Aµ by an exact

one-form implies that it must be conserved,

∂wU
w + ∂zU

z = 0 . (3.9.13)

We can now determine the auxiliary fields Vµ and Aµ by comparing (3.9.12) to (3.9.7),

Vw = −2i (∂whzz − ∂zhwz) , Vw = 2i (∂whzz − ∂zhzw) + Uw ,

Aw = −i∂w (hww + hzz) , Aw = i∂w (hww + hzz) + Vw +
1

2
Uw ,

(3.9.14)

and four more with w ↔ z , w ↔ z. This exactly agrees with (3.3.7) and (3.3.17).

We see that the freedom in Ui is the result of (3.9.11), which allows us to add Aw

and Az with coefficients that are arbitrary functions of the coordinates, as long as we

ensure invariance under shifts of Aµ by an exact one-form.

3.10 Appendix C: Solutions with [K,K] 6= 0

In this appendix we analyze the constraints due to a complex Killing vector K that

squares to zero, KµKµ = 0, and does not commute with its complex conjugate,

[K,K] 6= 0. In this case, we will show that M is locally isometric to S3 × R with

warped metric

ds2 = dτ 2 + r(τ)2dΩ3 . (3.10.1)

Here dΩ3 is the round metric on a unit three-sphere. If K is constructed from solu-

tions ζ and ζ̃ of (3.4.1), we further prove that r(τ) must be a constant.
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3.10.1 Algebra of Killing Vectors

For ease of notation, we will write 〈X, Y 〉 = XµYµ for any two complex vectors X

and Y , and refer to it as their inner product even though the vectors are complex.

Since the complex conjugate K of the Killing vector K is also a Killing vector, their

commutator gives rise to a third Killing vector L, which must be real,

[K,K] = −iL . (3.10.2)

The case L = 0 was analyzed in section 3.4. Here we assume that L 6= 0. In

order to constrain the algebra generated by K,K, and L, we will differentiate their

inner products along the vectors themselves. For instance, differentiating 〈K,K〉 = 0

along K gives

0 = LK〈K,K〉 = 2i〈L,K〉 . (3.10.3)

Since L is real, this implies that the three real Killing vectors K + K, i(K − K),

and L are orthogonal.

We will now consider two distinct cases. If K,K, and L form a closed algebra,

it follows from constraints similar to (3.10.3) that this algebra must be SU(2) in its

usual compact form. If the algebra does not close, we find a fourth real Killing vector,

which is orthogonal to the first three. In this case the algebra is SU(2)× U(1).

In the first case, we can introduce SU(2)-invariant one-forms ωa and write the

metric as ds2 = dτ 2 + hab(τ)ωaωb. The fact that the three Killing vectors are orthog-

onal implies that hab(τ) = r(τ)2δab, see for instance [113]. The metric is therefore

given by (3.10.1) and the isometry group is enhanced to SU(2)×SU(2). So far, r(τ)

is an arbitrary positive function.

In the second case, we can similarly show that the metric must take the form

(3.10.1), but in this case the presence of the additional U(1) isometry corresponds to

translations along τ , and hence r(τ) is a constant.
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3.10.2 Proof that r(τ) is a Constant

As we saw above, the algebra of Killing vectors is not always sufficient to prove

that r(τ) is constant. We will now show that this must be the case if Kµ = ζσµζ̃,

where ζ and ζ̃ are solutions of (3.4.1). If we demand that the auxiliary fields Aµ

and Vµ respect the SU(2)× SU(2) isometry of (3.10.1), the equations (3.4.1) can be

analyzed explicitly and a solution exists if and only if r(τ) is a constant. We will now

give a proof that does not rely on this additional assumption.

Recall that ζ and ζ̃ give rise to integrable complex structures Jµν and J̃µν , which

can be expressed in terms of K and K as in (3.2.12). Using (3.3.7) and (3.3.22), we

find that

Vµ = −1

2
∇νJ

ν
µ + Uµ =

1

2
∇ν J̃

ν
µ + Ũµ . (3.10.4)

The vectors Uµ and Ũµ are conserved and holomorphic with respect to Jµν and J̃µν

respectively. We can use the Killing vectors to parametrize them at every point:

Uµ = κKµ + σ(Lµ − iTµ) ,

Ũµ = κ̃Kµ − σ̃(Lµ + iTµ) ,
(3.10.5)

where κ, σ and κ̃, σ̃ are complex functions onM. Here we have defined an additional

vector,10

T =
i

〈K,K〉
εµνρλLνKρKλ∂µ ∼ r(t)∂τ . (3.10.6)

The fact that K,L− iT and K,L+ iT are holomorphic with respect to Jµν and J̃µν

respectively follows from (3.2.12).

Substituting (3.10.5) into (3.10.4) and demanding consistency leads to

σ = σ̃ ∼ 1

r(τ)2
, κ = κ̃ . (3.10.7)

Here we have used the fact that

∇µ(Jµν + J̃µν) =
2

〈K,K〉
Lν ∼

1

r(τ)2
Lν , (3.10.8)

10It follows from the form of the metric (3.10.1) that 〈K,K〉 is proportional to r2(τ).

For ease of notation, we will omit an overall real constant in some of the formulas

below. This will be indicated by a tilde.
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which follows from (3.2.12) and the commutation relation (3.10.2). Substituting

(3.10.7) into (3.10.5) and using the fact that Uµ is conserved, we find that

∇µ(κKµ) ∼ i
r′(τ)

r(τ)2
. (3.10.9)

The orbits of K,K,L are given by surfaces of constant τ . Since the isometry is SU(2),

they must be compact. Integrating (3.10.9) over such an orbit, we find that∫
d3x
√
g∇µ(κKµ) ∼ ir′(τ)r(τ) = 0 . (3.10.10)

Therefore r(τ) is a constant.
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Chapter 4

Comments on Chern-Simons

Contact Terms in Three

Dimensions

4.1 Introduction

In quantum field theory, correlation functions of local operators may contain δ-

function singularities at coincident points. Such contributions are referred to as

contact terms. Typically, they are not universal. They depend on how the oper-

ators and coupling constants of the theory are defined at short distances, i.e. they

depend on the regularization scheme. This is intuitively obvious, since contact terms

probe the theory at very short distances, near the UV cutoff Λ. If Λ is large but finite,

correlation functions have features at distances of order Λ−1. In the limit Λ → ∞

some of these features can collapse into δ-function contact terms.

In this chapter, we will discuss contact terms in two-point functions of conserved

currents in three-dimensional quantum field theory. As we will see, they do not suffer

from the scheme dependence of conventional contact terms, and hence they lead to

interesting observables.

It is convenient to promote all coupling constants to classical background fields
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and specify a combined Lagrangian for the dynamical fields and the classical back-

grounds. As an example, consider a scalar operator O(x), which couples to a classical

background field λ(x),

L = L0 + λ(x)O(x) + cλ2(x) + c′λ(x)∂2λ(x) + · · · . (4.1.1)

Here L0 only depends on the dynamical fields and c, c′ are constants. The ellipsis

denotes other allowed local terms in λ(x). If the theory has a gap, we can construct

a well-defined effective action F [λ] for the background field λ(x),

e−F [λ] =
〈
e−

R
d3xL

〉
, (4.1.2)

which captures correlation functions of O(x). (Since we are working in Euclidean

signature, F [λ] is nothing but the free energy.) At separated points, the connected

two-point function 〈O(x)O(y)〉 arises from the term in (4.1.1) that is linear in λ(x).

Terms quadratic in λ(x) give rise to contact terms: cδ(3)(x−y)+c′∂2δ(3)(x−y)+ · · · .

A change in the short-distance physics corresponds to modifying the Lagrangian

(4.1.1) by local counterterms in the dynamical and the background fields. For in-

stance, we can change the constants c, c′ by modifying the theory near the UV cutoff,

and hence the corresponding contact terms are scheme dependent. Equivalently, a

scheme change corresponds to a field redefinition of the coupling λ(x). This does not

affect correlation functions at separated points, but it shifts the contact terms [114].

A related statement concerns redundant operators, i.e. operators that vanish by the

equations of motion, which have vanishing correlation functions at separated points

but may give rise to non-trivial contact terms.

Nevertheless, contact terms are meaningful in several circumstances. For example,

this is the case for contact terms associated with irrelevant operators, such as the mag-

netic moment operator. Dimensionless contact terms are also meaningful whenever

some physical principle, such as a symmetry, restricts the allowed local counterterms.

A well-known example is the seagull term in scalar electrodynamics, which is fixed

by gauge invariance. Another example is the trace anomaly of the energy-momentum
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tensor Tµν in two-dimensional conformal field theories. Conformal invariance implies

that T µµ is a redundant operator. However, imposing the conservation law ∂µTµν = 0

implies that T µµ has non-trivial contact terms. These contact terms are determined by

the correlation functions of Tµν at separated points, and hence they are unambiguous

and meaningful. This is typical of local anomalies [115–117].

If we couple Tµν to a background metric gµν , the requirement that Tµν be con-

served corresponds to diffeomorphism invariance, which restricts the set of allowed

counterterms. In two dimensions, the contact terms of T µµ are summarized by the

formula 〈T µµ 〉 = c
24π
R, where c is the Virasoro central charge and R is the scalar

curvature of the background metric.1 This result cannot be changed by the addition

of diffeomorphism-invariant local counterterms.

The contact terms discussed above are either completely arbitrary or completely

meaningful. In this chapter we will discuss a third kind of contact term. Its integer

part is scheme dependent and can be changed by adding local counterterms. However,

its fractional part is an intrinsic physical observable.

Consider a three-dimensional quantum field theory with a global U(1) symmetry

and its associated current jµ. We will assume that the symmetry group is compact,

i.e. only integer charges are allowed. The two-point function of jµ can include a

contact term,

〈jµ(x)jν(0)〉 = · · ·+ iκ

2π
εµνρ∂

ρδ(3)(x) . (4.1.3)

Here κ is a real constant. Note that this term is consistent with current conserva-

tion. We can couple jµ to a background gauge field aµ. The contact term in (4.1.3)

corresponds to a Chern-Simons term for aµ in the effective action F [a],

F [a] = · · ·+ iκ

4π

∫
d3x εµνρaµ∂νaρ . (4.1.4)

We might attempt to shift κ→ κ+ δκ by adding a Chern-Simons counterterm to the

1In our conventions, a d-dimensional sphere of radius r has scalar curvature

R = −d(d−1)
r2

.
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UV Lagrangian,

δL =
iδκ

4π
εµνρaµ∂νaρ . (4.1.5)

However, this term is not gauge invariant, and hence it is not a standard local coun-

terterm.

We will now argue that (4.1.5) is only a valid counterterm for certain quantized

values of δκ. Since counterterms summarize local physics near the cutoff scale, they

are insensitive to global issues. Their contribution to the partition function (4.1.2)

must be a well-defined, smooth functional for arbitrary configurations of the back-

ground fields and on arbitrary curved three-manifolds M3. Since we are interested

in theories with fermions, we require M3 to be a spin manifold. Therefore (4.1.5) is

an admissible counterterm if its integral is a well-defined, smooth functional up to

integer multiples of 2πi. This restricts δκ to be an integer.

Usually, the quantization of δκ is said to follow from gauge invariance, but this

is slightly imprecise. If the U(1) bundle corresponding to aµ is topologically trivial,

then aµ is a good one-form. Since (4.1.5) shifts by a total derivative under small gauge

transformations, its integral is well defined. This is no longer the case for non-trivial

bundles. In order to make sense of the integral, we extend aµ to a connection on a

suitable U(1) bundle over a spin four-manifoldM4 with boundaryM3, and we define

i

4π

∫
M3

d3x εµνρaµ∂νaρ =
i

16π

∫
M4

d4x εµνρλFµνFρλ , (4.1.6)

where Fµν = ∂µaν − ∂νaµ is the field strength. The right-hand side is a well-defined,

smooth functional of aµ, but it depends on the choice ofM4. The difference between

two choices M4 and M′
4 is given by the integral over the closed four-manifold X4,

which is obtained by properly gluingM4 andM′
4 along their common boundaryM3.

Since X4 is also spin, we have

i

16π

∫
X4

d4x εµνρλFµνFρλ = 2πin , n ∈ Z . (4.1.7)

Thus, if δκ is an integer, the integral of (4.1.5) is well defined up to integer multiples
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of 2πi.2

We conclude that a counterterm of the from (4.1.5) can only shift the contact

term κ in (4.1.3) by an integer. Therefore, the fractional part κmod 1 does not

depend on short-distance physics. It is scheme independent and gives rise to a new

meaningful observable in three-dimensional field theories. This observable is discussed

in section 4.2.

In section 4.2, we will also discuss the corresponding observable for the energy-

momentum tensor Tµν . It is related to a contact term in the two-point function

of Tµν ,

〈Tµν(x)Tρσ(0)〉 = · · · − iκg
192π

((
εµρλ∂

λ(∂ν∂σ − ∂2δνσ) + (µ↔ ν)
)

+ (ρ↔ σ)
)
δ(3)(x) .

(4.1.8)

This contact term is associated with the gravitational Chern-Simons term, which is

properly defined by extending the metric gµν to a four-manifold,

i

192π

∫
M3

√
g d3x εµνρ Tr

(
ωµ∂νωρ+

2

3
ωµωνωρ

)
=

i

768π

∫
M4

√
g d3x εµνρσRµνκλRρσ

κλ .

(4.1.9)

Here ωµ is the spin connection and Rµνρσ is the Riemann curvature tensor. Note

that we do not interpret the left-hand side of (4.1.9) as a Chern-Simons term for

the SO(3) frame bundle. (See for instance the discussion in [118].) As above, two

different extensions of M3 differ by the integral over a closed spin four-manifold X4,

i

768π

∫
X4

√
g d3x εµνρσRµνκλRρσ

κλ = 2πin , n ∈ Z . (4.1.10)

Therefore, the gravitational Chern-Simons term (4.1.9) is a valid counterterm, as

long as its coefficient is an integer.3 Consequently, the integer part of the contact

term κg in (4.1.8) is scheme dependent, while the fractional part κg mod 1 gives rise

to a meaningful observable.

2In a purely bosonic theory we do not requireM3 to be spin. In this case δκ must

be an even integer.
3If M3 is not spin, then the coefficient of (4.1.9) should be an integer multiple

of 16.
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We would briefly like to comment on another possible definition of Chern-Simons

counterterms, which results in the same quantization conditions for their coefficients.

It involves the Atiyah-Patodi-Singer η-invariant [119–121], which is defined in terms

of the eigenvalues of a certain Dirac operator on M3 that couples to aµ and gµν .

(Loosely speaking, it counts the number of eigenvalues, weighted by their sign.)

Therefore, η[a, g] is intrinsically three-dimensional and gauge invariant. The Atiyah-

Patodi-Singer theorem states that iπη[a, g] differs from the four-dimensional integrals

in (4.1.6) and (4.1.9) by an integer multiple of 2πi. Hence, its variation gives rise to

contact terms of the form (4.1.3) and (4.1.8). Although η[a, g] is well defined, it jumps

discontinuously by 2 when an eigenvalue of its associated Dirac operator crosses zero.

Since short-distance counterterms should not be sensitive to zero-modes, we only

allow iπη[a, g] with an integer coefficient.

In section 4.3, we discuss the observables κmod 1 and κg mod 1 in several examples.

We use our understanding of these contact terms to give an intuitive proof of a non-

renormalization theorem due to Coleman and Hill [122].

In section 4.4 we extend our discussion to three-dimensional theories with N = 2

supersymmetry. Here we must distinguish between U(1) flavor symmetries and U(1)R

symmetries. Some of the contact terms associated with the R-current are not con-

sistent with conformal invariance. As we will see in section 4.5, this leads to a new

anomaly in N = 2 superconformal theories, which is similar to the framing anomaly

of [123]. The anomaly can lead to violations of conformal invariance and unitarity

when the theory is placed on curved manifolds.

In section 4.6, we explore these phenomena in N = 2 supersymmetric QED

(SQED) with a dynamical Chern-Simons term. For some range of parameters, this

model is accessible in perturbation theory.

In supersymmetric theories, the observables defined in section 4.4 can be computed

exactly using localization [4]. In section 4.7, we compute them in several theories that

were conjectured to be dual, subjecting these dualities to a new test.

Appendix A contains simple free-field examples. In appendix B we summarize
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relevant aspects of N = 2 supergravity.

4.2 Two-Point Functions of Conserved Currents in

Three Dimensions

In this section we will discuss two-point functions of flavor currents and the energy-

momentum tensor in three-dimensional quantum field theory, and we will explain in

detail how the contact terms in these correlators give rise to a meaningful observable.

4.2.1 Flavor Currents

We will consider a U(1) flavor current jµ. The extension to multiple U(1)’s or to non-

Abelian symmetries is straightforward. Current conservation restricts the two-point

function of jµ. In momentum space,4

〈jµ(p)jν(−p)〉 = τ

(
p2

µ2

)
pµpν − p2δµν

16|p|
+ κ

(
p2

µ2

)
εµνρp

ρ

2π
. (4.2.2)

Here τ (p2/µ2) and κ (p2/µ2) are real, dimensionless structure functions and µ is an

arbitrary mass scale.

In a conformal field theory (CFT), τ = τCFT and κ = κCFT are independent of p2.

(We assume throughout that the symmetry is not spontaneously broken.) In this

case (4.2.2) leads to the following formula in position space:5

〈jµ(x)jν(0)〉 =
(
δµν∂

2 − ∂µ∂ν
) τCFT

32π2x2
+
iκCFT

2π
εµνρ∂

ρδ(3)(x) . (4.2.3)

4Given two operators A(x) and B(x), we define

〈A(p)B(−p)〉 =

∫
d3x eip·x 〈A(x)B(0)〉 . (4.2.1)

5A term proportional to εµνρ∂
ρ|x|−3, which is conserved and does not vanish at

separated points, is not consistent with conformal invariance.
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This makes it clear that τCFT controls the behavior at separated points, while the term

proportional to κCFT is a pure contact term of the form (4.1.3). Unitarity implies

that τCFT ≥ 0. If τCFT = 0 then jµ is a redundant operator.

If the theory is not conformal, then κ (p2/µ2) may be a non-trivial function of p2.

In this case the second term in (4.2.2) contributes to the two-point function at sepa-

rated points, and hence it is manifestly physical. Shifting κ (p2/µ2) by a constant δκ

only affects the contact term (4.1.3). It corresponds to shifting the Lagrangian by

the Chern-Simons counterterm (4.1.5). As explained in the introduction, shifts with

arbitrary δκ may not always be allowed. We will return to this issue below.

It is natural to define the UV and IR values

κUV = lim
p2→∞

κ

(
p2

µ2

)
, κIR = lim

p2→0
κ

(
p2

µ2

)
. (4.2.4)

Adding the counterterm (4.1.5) shifts κUV and κIR by δκ. Therefore κUV− κIR is not

modified, and hence it is a physical observable.

We will now assume that the U(1) symmetry is compact, i.e. only integer charges

are allowed. (This is always the case for theories with a Lagrangian description, as

long as we pick a suitable basis for the Abelian flavor symmetries.) In this case, the

coefficient δκ of the Chern-Simons counterterm (4.1.5) must be an integer. Therefore,

the entire fractional part κ(p2/µ2) mod 1 is scheme independent. It is a physical

observable for every value of p2. In particular, the constant κCFT mod 1 is an intrinsic

physical observable in any CFT.

The fractional part of κCFT has a natural bulk interpretation for CFTs with

an AdS4 dual. While the constant τCFT is related to the coupling of the bulk gauge

field corresponding to jµ, the fractional part of κCFT is related to the bulk θ-angle. The

freedom to shift κCFT by an integer reflects the periodicity of θ, see for instance [124].

In order to calculate the observable κCFT mod 1 for a given CFT, we can embed the

CFT into an RG flow from a theory whose κ is known – for instance a free theory. We

can then unambiguously calculate κ(p2/µ2) to find the value of κCFT in the IR. This

procedure is carried out for free massive theories in appendix A. More generally, if
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the RG flow is short, we can calculate the change in κ using (conformal) perturbation

theory. In certain supersymmetric theories it is possible to calculate κCFT mod 1

exactly using localization [4]. This will be discussed in section 4.7.

We would like to offer another perspective on the observable related to κ(p2).

Using (4.2.2), we can write the difference κUV − κIR as follows:

κUV − κIR =
iπ

6

∫
R3
−{0}

d3x x2 εµνρ ∂µ〈jν(x)jρ(0)〉 . (4.2.5)

The integral over R3 − {0} excludes a small ball around x = 0, and hence it is

not sensitive to contact terms. The integral converges because the two-point func-

tion εµνρ∂µ〈jν(x)jρ(0)〉 vanishes at separated points in a conformal field theory, so

that it decays faster than 1
x3 in the IR and diverges more slowly than 1

x3 in the UV.

Alternatively, we can use Cauchy’s theorem to obtain the dispersion relation

κUV − κIR =
1

π

∫ ∞
0

ds

s
Imκ

(
− s

µ2

)
. (4.2.6)

This integral converges for the same reasons as (4.2.5). Since it only depends on the

imaginary part of κ(p2/µ2), it is physical.

The formulas (4.2.5) and (4.2.6) show that the difference between κUV and κIR

can be understood by integrating out massive degrees of freedom as we flow from

the UV theory to the IR theory. Nevertheless, they capture the difference between

two quantities that are intrinsic to these theories. Although there are generally many

different RG flows that connect a pair of UV and IR theories, the integrals in (4.2.5)

and (4.2.6) are invariant under continuous deformations of the flow. This is very

similar to well-known statements about the Virasoro central charge c in two dimen-

sions. In particular, the sum rules (4.2.5) and (4.2.6) are analogous to the sum rules

in [125,126] for the change in c along an RG flow.

4.2.2 Energy-Momentum Tensor

We can repeat the analysis of the previous subsection for the two-point function of

the energy-momentum tensor Tµν , which depends on three dimensionless structure
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functions τg(p
2/µ2), τ ′g(p

2/µ2), and κg(p
2/µ2),

〈Tµν(p)Tρσ(−p)〉 = −(pµpν − p2δµν)(pρpσ − p2δρσ)
τg (p2/µ2)

|p|

−
(
(pµpρ − p2δµρ)(pνpσ − p2δνσ) + (µ↔ ν)

) τ ′g (p2/µ2)

|p|

+
κg (p2/µ2)

192π

((
εµρλp

λ(pνpσ − p2δνσ) + (µ↔ ν)
)

+ (ρ↔ σ)
)
.

(4.2.7)

Unitarity implies that τg(p
2/µ2) + τ ′g(p

2/µ2) ≥ 0. If the equality is saturated, the

trace T µµ becomes a redundant operator. This is the case in a CFT, where τg =

−τ ′g and κg are constants. The terms proportional to τg determine the correlation

function at separated points. The term proportional to κg gives rise to a conformally

invariant contact term (4.1.8). It is associated with the gravitational Chern-Simons

term (4.1.9), which is invariant under a conformal rescaling of the metric. Unlike

the Abelian case discussed above, the contact term κg is also present in higher-point

functions of Tµν . (This is also true for non-Abelian flavor currents.)

Repeating the logic of the previous subsection, we conclude that κg,UV − κg,IR is

physical and can in principle be computed along any RG flow. Moreover, the quan-

tization condition on the coefficient of the gravitational Chern-Simons term (4.1.9)

implies that the fractional part κg(p
2/µ2) mod 1 is a physical observable for any value

of p2. In particular κg,CFT mod 1 is an intrinsic observable in any CFT.

4.3 Examples

In this section we discuss a number of examples that illustrate our general discussion

above. An important example with N = 2 supersymmetry will be discussed in

section 4.6. Other examples with N = 4 supersymmetry appear in [127].

4.3.1 Free Fermions

We begin by considering a theory of N free Dirac fermions of charge +1 with real

masses mi. Here we make contact with the parity anomaly of [117, 128, 129]. As is
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reviewed in appendix A, integrating out a Dirac fermion of mass m and charge +1

shifts κ by −1
2

sign(m), and hence we find that

κUV − κIR =
1

2

N∑
i=1

sign (mi) . (4.3.1)

If N is odd, this difference is a half-integer. Setting κUV = 0 implies that κIR is a

half-integer, even though the IR theory is empty. In the introduction, we argued that

short-distance physics can only shift κ by an integer. The same argument implies

that κIR must be an integer if the IR theory is fully gapped.6 We conclude that it is

inconsistent to set κUV to zero; it must be a half-integer. Therefore,

κUV =
1

2
+ n , n ∈ Z ,

κIR = κUV −
1

2

N∑
i=1

sign(mi) ∈ Z .
(4.3.2)

The half-integer value of κUV implies that the UV theory is not parity invariant, even

though it does not contain any parity-violating mass terms. This is known as the

parity anomaly [117,128,129].

We can use (4.3.2) to find the observable κCFT mod 1 for the CFT that consists

of N free massless Dirac fermions of unit charge:

κCFT mod 1 =


0 N even

1
2

N odd

(4.3.3)

This illustrates the fact that we can calculate κCFT, if we can connect the CFT of

interest to a theory with a known value of κ. Here we used the fact that the fully

gapped IR theory has integer κIR.

We can repeat the above discussion for the contact term κg that appears in the

two-point function of the energy-momentum tensor. Integrating out a Dirac fermion

of mass m shifts κg by − sign(m), so that

κg,UV − κg,IR =
∑
i

sign(mi) . (4.3.4)

6We refer to a theory as fully gapped when it does not contain any massless or

topological degrees of freedom.
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If we instead consider N Majorana fermions with masses mi, then κg,UV−κg,IR would

be half the answer in (4.3.4). Since κg,IR must be an integer in a fully gapped theory,

we conclude that κg,UV is a half-integer if the UV theory consists of an odd number of

massless Majorana fermions. This is the gravitational analogue of the parity anomaly.

4.3.2 Topological Currents and Fractional Values of κ

Consider a dynamical U(1) gauge field Aµ, and the associated topological current

jµ =
ip

2π
εµνρ∂

νAρ , p ∈ Z . (4.3.5)

Note that the corresponding charges are integer multiples of p. We study the free

topological theory consisting of two U(1) gauge fields – the dynamical gauge field Aµ

and a classical background gauge field aµ – with Lagrangian [51,124,127,130–132]

L =
i

4π
(k εµνρAµ∂νAρ + 2 p εµνρaµ∂νAρ + q εµνρaµ∂νaρ) , k, p, q ∈ Z . (4.3.6)

The background field aµ couples to the topological current jµ in (4.3.5). In order

to compute the contact term κ corresponding to jµ, we naively integrate out the

dynamical field Aµ to obtain an effective Lagrangian for aµ,

Leff =
iκ

4π
εµνρaµ∂νaρ , κ = q − p2

k
. (4.3.7)

Let us examine the derivation of (4.3.7) more carefully. The equation of motion

for Aµ is

kεµνρ∂νAρ = −pεµνρ∂νaρ . (4.3.8)

Assuming, for simplicity, that k and p are relatively prime, this equation can be solved

only if the flux of aµ through every two-cycle is an integer multiple of k. When this

is not the case the functional integral vanishes. If the fluxes of aµ are multiples of k,

the derivation of (4.3.7) is valid. For these configurations the fractional value of κ is

harmless.

This example shows that κ is not necessarily an integer, even if the theory contains

only topological degrees of freedom. Equivalently, the observable κmod 1 is sensitive

to topological degrees of freedom. We would like to make a few additional comments:

111



1.) The freedom in shifting the Lagrangian by a Chern-Simons counterterm (4.1.5)

with integer δκ amounts to changing the integer q in (4.3.6).

2.) The value κ = q − p2

k
can be measured by making the background field aµ

dynamical and studying correlation functions of Wilson loops for aµ in flat

Euclidean space R3. These correlation functions can be determined using either

the original theory (4.3.6) or the effective Lagrangian (4.3.7).

3.) Consider a CFT that consists of two decoupled sectors: a nontrivial CFT0 with

a global U(1) current j
(0)
µ and a U(1) Chern-Simons theory with level k and

topological current ip
2π
εµνρ∂

νAρ. We will study the linear combination jµ =

j
(0)
µ + ip

2π
εµνρ∂

νAρ. Denoting the contact term in the two-point function of j
(0)
µ

by κ0, the contact term κ corresponding to jµ is given by

κ = κ0 −
p2

k
+ (integer) . (4.3.9)

Since the topological current is a redundant operator, it is not possible to ex-

tract κ by studying correlation functions of local operators at separated points.

Nevertheless, the fractional part of κ is an intrinsic physical observable. This is

an example of a general point that was recently emphasized in [133]: a quan-

tum field theory is not uniquely characterized by its local operators and their

correlation functions at separated points. The presence of topological degrees

of freedom makes it necessary to also study various extended objects, such as

line or surface operators.

4.3.3 A Non-Renormalization Theorem

Consider an RG flow from a free theory in the UV to a fully gapped theory in the IR.

(Recall that a theory is fully gapped when it does not contain massless or topological

degrees of freedom.) In this case, we can identify κIR with the coefficient of the

Chern-Simons term for the background field aµ in the Wilsonian effective action.

Since the IR theory is fully gapped, κIR must be an integer. Depending on the
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number of fermions in the free UV theory, κUV is either an integer or a half-integer.

Therefore, the difference κUV − κIR is either an integer or a half-integer, and hence

it cannot change under smooth deformations of the coupling constants. It follows

that this difference is only generated at one-loop. This is closely related to a non-

renormalization theorem due to Coleman and Hill [122], which was proved through a

detailed analysis of Feynman diagrams. Note that our argument applies to Abelian

and non-Abelian flavor currents, as well as the energy-momentum tensor.

When the IR theory has a gap, but contains some topological degrees of freedom, κ

need not be captured by the Wilsonian effective action. As in the previous subsection,

it can receive contributions from the topological sector. If the flow is perturbative,

we can distinguish 1PI diagrams. The results of [122] imply that 1PI diagrams only

contribute to κ associated with a flavor current at one-loop. (The fractional contri-

bution discussed in the previous subsection arises from diagrams that are not 1PI.)

However, this is no longer true for κg, which is associated with the energy-momentum

tensor. For instance, κg receives higher loop contributions from 1PI diagrams in pure

non-Abelian Chern-Simons theory [123].

4.3.4 Flowing Close to a Fixed Point

Consider an RG flow with two crossover scales M � m. The UV consists of a free

theory that is deformed by a relevant operator. Below the scale M , the theory flows

very close to a CFT. This CFT is further deformed by a relevant operator, so that it

flows to a gapped theory below a scale m�M .

If the theory has a U(1) flavor current jµ, the structure functions in (4.2.2) inter-
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polate between their values in the UV, through the CFT values, down to the IR:

τ ≈


τUV p2 �M2

τCFT m2 � p2 �M2

τIR p2 � m2

κ ≈


κUV p2 �M2

κCFT m2 � p2 �M2

κIR p2 � m2

(4.3.10)

Since the UV theory is free, τUV is easily computed (see appendix A). In a free

theory we can always take the global symmetry group to be compact. This implies

that κUV is either integer or half-integer, depending on the number of fermions that

are charged under jµ. If jµ does not mix with a topological current in the IR, then τIR

vanishes and κIR must be an integer. This follows from the fact that the theory is

gapped.

Since we know κUV and κIR, we can use the flow to give two complementary

arguments that κCFT mod 1 is an intrinsic observable of the CFT:

1.) The flow from the UV to the CFT: Here we start with a well- defined κUV,

which can only be shifted by an integer. Since κUV−κCFT is physical, it follows

that κCFT is well defined modulo an integer.

2.) The flow from the CFT to the IR: We can discuss the CFT without flowing

into it from a free UV theory. If the CFT can be deformed by a relevant

operator such that it flows to a fully gapped theory, then κIR must be an integer.

Since κCFT − κIR is physical and only depends on information intrinsic to the

CFT, i.e. the relevant deformation that we used to flow out, we conclude that

the fractional part of κCFT is an intrinsic observable of the CFT.

Below, we will see examples of such flows, and we will use them to compute κCFT mod 1.

For the theory discussed in section 4.6, we will check explicitly that flowing into or

out of the CFT gives the same answer for this observable.
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4.4 Theories with N = 2 Supersymmetry

In this section we extend the previous discussion to three-dimensional theories with

N = 2 supersymmetry. Here we must distinguish between U(1) flavor symmetries

and U(1)R symmetries.

4.4.1 Flavor Symmetries

A U(1) flavor current jµ is embedded in a real linear superfield J , which satis-

fies D2J = D
2J = 0. In components,

J = J+ iθj+ iθj+ iθθK−
(
θγµθ

)
jµ−

1

2
θ2θγµ∂µj−

1

2
θ2θγµ∂µj+

1

4
θ2θ2∂2J . (4.4.1)

The supersymmetry Ward identities imply the following extension of (4.2.2):7

〈jµ(p)jν(−p)〉 = (pµpν − p2δµν)
τ̂ff
8|p|

+ εµνρp
ρκff

2π
,

〈J(p)J(−p)〉 =
τ̂ff
8|p|

,

〈K(p)K(−p)〉 = −|p|
8
τ̂ff ,

〈J(p)K(−p)〉 =
κff
2π

.

(4.4.2)

Here we have defined τ̂ff = 1
2
τ , so that τ̂ff = 1 for a free massless chiral superfield

of charge +1, and we have also renamed κff = κ. The subscript ff emphasizes the

fact that we are discussing two-point functions of flavor currents.

As in the non-supersymmetric case, we can couple the flavor current to a back-

ground gauge field. Following [16, 134], we should couple J to a background vector

superfield,

V = · · ·+
(
θγµθ

)
aµ − iθθσ − iθ2θλ+ iθ2θλ− 1

2
θ2θ2D . (4.4.3)

7Supersymmetry also fixes the two-point function of the fermionic operators jα

and jα in terms of τ̂ff and κff , but in order to simplify the presentation, we will

restrict our discussion to bosonic operators.
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Background gauge transformations shift V → V + Λ + Λ with chiral Λ, so that σ

and D are gauge invariant, while aµ transforms like an ordinary gauge field. (The

ellipsis denotes fields that are pure gauge modes and do not appear in gauge-invariant

functionals of V .) The coupling of J to V takes the form

δL = −2

∫
d4θJV = −jµaµ −Kσ − JD + (fermions) . (4.4.4)

As before, it may be necessary to also add higher-order terms in V to maintain gauge

invariance.

We can now adapt our previous discussion to κff . According to (4.4.2), a constant

value of κff gives rise to contact terms in both 〈jµ(p)jν(−p)〉 and 〈J(p)K(−p)〉. These

contact terms correspond to a supersymmetric Chern-Simons term for the background

field V ,

Lff = −κff
2π

∫
d4θΣV =

κff
4π

(iεµνρaµ∂νaρ − 2σD + (fermions)) . (4.4.5)

Here the real linear superfield Σ = i
2
DDV is the gauge-invariant field strength corre-

sponding to V . If the U(1) flavor symmetry is compact, then the same arguments as

above imply that short-distance counterterms can only shift κff by an integer, and

hence the analysis of section 4.2 applies. In particular, the fractional part κff mod 1

is a good observable in any superconformal theory with a U(1) flavor symmetry.

4.4.2 R-Symmetries

Every three-dimensional N = 2 theory admits a supercurrent multiplet Sµ that con-

tains the supersymmetry current and the energy-momentum tensor, as well as other

operators. A thorough discussion of supercurrents in three dimensions can be found

in [1]. If the theory has a U(1)R symmetry, the S-multiplet can be improved to a

multiplet Rµ, which satisfies

D
βRαβ = −4iDαJ (Z) , D2J (Z) = D

2J (Z) = 0 . (4.4.6)

HereRαβ = −2γµαβRµ is the symmetric bi-spinor corresponding toRµ. Note that J (Z)

is a real linear multiplet, and hence Rµ is also annihilated by D2 and D
2
. In compo-

116



nents,

Rµ = j(R)
µ − iθSµ − iθSµ − (θγνθ)

(
2Tµν + iεµνρ∂

ρJ (Z)
)

− iθθ
(
2j(Z)
µ + iεµνρ∂

νj(R)ρ
)

+ · · · ,

J (Z) = J (Z) − 1

2
θγµSµ +

1

2
θγµSµ + iθθT µµ − (θγµθ)j(Z)

µ + · · · ,

(4.4.7)

where the ellipses denote terms that are determined by the lower components as

in (4.4.1). Here j
(R)
µ is the R-current, Sαµ is the supersymmetry current, Tµν is the

energy-momentum tensor, and j
(Z)
µ is the current associated with the central charge in

the supersymmetry algebra. The scalar J (Z) gives rise to a string current iεµνρ∂
ρJ (Z).

All of these currents are conserved. Note that there are additional factors of i in (4.4.7)

compared to the formulas in [1], because we are working in Euclidean signature. (In

Lorentzian signature the superfield Rµ is real.)

The R-multiplet is not unique. It can be changed by an improvement transfor-

mation,

R′αβ = Rαβ −
t

2

(
[Dα, Dβ] + [Dβ, Dα]

)
J ,

J ′(Z) = J (Z) − it

2
DDJ ,

(4.4.8)

where J is a flavor current and t is a real parameter. In components,

j′(R)
µ = j(R)

µ + tjµ ,

T ′µν = Tµν −
t

2
(∂µ∂ν − δµν∂2)J ,

J ′(Z) = J (Z) + tK ,

j′(Z)
µ = j(Z)

µ − itεµνρ∂νjρ .

(4.4.9)

Note that the R-current j
(R)
µ is shifted by the flavor current jµ. If the theory is

superconformal, it is possible to set J (Z) to zero by an improvement transformation,

so that J (Z), T µµ , and j
(Z)
µ are redundant operators.

We first consider the two-point functions of operators in the flavor current mul-

tiplet J with operators in the R-multiplet. They are parameterized by two dimen-

sionless structure functions τ̂fr and κfr, where the subscript fr emphasizes the fact
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that we are considering mixed flavor-R two-point functions:

〈jµ(p)j(R)
ν (−p)〉 = (pµpν − p2δµν)

τ̂fr
8|p|

+ εµνρp
ρκfr

2π
,

〈jµ(p)j(Z)
ν (−p)〉 = (pµpν − p2δµν)

κfr
2π
− εµνρpρ

|p|τ̂fr
8

,

〈J(p)J (Z)(−p)〉 =
κfr
2π

,

〈K(p)J (Z)(−p)〉 = −|p|τ̂fr
8

,

〈J(p)Tµν(−p)〉 = (pµpν − p2δµν)
τ̂fr

16|p|
,

〈K(p)Tµν(−p)〉 = (pµpν − p2δµν)
κfr
4π

.

(4.4.10)

Under an improvement transformation (4.4.9), the structure functions shift as

follows:

τ̂ ′fr = τ̂fr + t τ̂ff ,

κ′fr = κfr + t κff .
(4.4.11)

As explained above, in a superconformal theory there is a preferred R′αβ, whose

corresponding J ′(Z) is a redundant operator. Typically, it differs from a natural

choice Rαβ in the UV by an improvement transformation (4.4.8). In order to find

the value of t that characterizes this improvement, we can use (4.4.10) and the fact

that the operators in J ′(Z) are redundant to conclude that τ̂ ′fr must vanish [135].

Alternatively, we can determine t by applying the F -maximization principle, which

was conjectured in [29,33] and proved in [4].

We will now discuss two-point functions of operators in the R-multiplet. They

are parameterized by four dimensionless structure functions τ̂rr, τ̂zz, κrr, and κzz,

〈j(R)
µ (p)j(R)

ν (−p)〉 = (pµpν − p2δµν)
τ̂rr
8|p|

+ εµνρp
ρκrr

2π
,

〈j(Z)
µ (p)j(Z)

ν (−p)〉 = (pµpν − p2δµν)
|p|τ̂zz

8
+ εµνρp

ρp2κzz
2π

,

〈j(Z)
µ (p)j(R)

ν (−p)〉 = −(pµpν − p2δµν)
κzz
2π

+ εµνρp
ρ |p|τ̂zz

8
,

〈J (Z)(p)J (Z)(−p)〉 =
|p|τ̂zz

8
,

〈J (Z)(p)Tµν(−p)〉 = −κzz
4π

(pµpν − p2δµν) .

(4.4.12)
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The two-point function 〈Tµν(p)Tρλ(−p)〉 is given by (4.2.7) with

τg =
τ̂rr + 2τ̂zz

32
, τ ′g = − τ̂rr + τ̂zz

32
, κg = 12 (κrr + κzz) . (4.4.13)

The subscripts rr and zz are associated with two-point functions of the currents j
(R)
µ

and j
(Z)
µ . Note that τg + τ ′g = bτzz

32
, which is non-negative and vanishes in a supercon-

formal theory. As before, an improvement transformation (4.4.8) shifts the structure

functions,

τ̂ ′rr = τ̂rr + 2t τ̂fr + t2 τ̂ff ,

τ̂ ′zz = τ̂zz − 2t τ̂fr − t2 τ̂ff ,

κ′rr = κrr + 2t κfr + t2 κff ,

κ′zz = κzz − 2t κfr − t2 κff .

(4.4.14)

Note that τ ′g and κg in (4.4.13) are invariant under these shifts.

In a superconformal theory, the operators J (Z), T µµ , and j
(Z)
µ are redundant. How-

ever, we see from (4.4.10) and (4.4.12) that they give rise to contact terms, which

are parameterized by κfr and κzz. These contact terms violate conformal invariance.

Unless κfr and κzz are properly quantized, they cannot be set to zero by a local coun-

terterm without violating the quantization conditions for Chern-Simons counterterms

explained in the introduction. This leads to a new anomaly, which will be discussed

in section 4.5.

4.4.3 Background Supergravity Fields

In order to get a better understanding of the contact terms discussed in the previ-

ous subsection, we couple the R-multiplet to background supergravity fields. (See

appendix B for relevant aspects of N = 2 supergravity.) To linear order, the R-

multiplet couples to the linearized metric superfield Hµ. In Wess-Zumino gauge,

Hµ =
1

2

(
θγνθ

)
(hµν − iBµν)−

1

2
θθCµ−

i

2
θ2θψµ+

i

2
θ2θψµ+

1

2
θ2θ2 (Aµ − Vµ) . (4.4.15)

Here hµν is the linearized metric, so that gµν = δµν + 2hµν . The vectors Cµ and Aµ

are Abelian gauge fields, and Bµν is a two-form gauge field. It will be convenient to
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define the following field strengths,

Vµ = −εµνρ∂νCρ , ∂µVµ = 0 ,

H =
1

2
εµνρ∂

µBνρ .
(4.4.16)

Despite several unfamiliar factors of i in (4.4.15) that arise in Euclidean signature,

the fields Vµ and H are naturally real. Below, we will encounter situations with

imaginary H, see also [4, 31].

If the theory is superconformal, we can reduce the R-multiplet to a smaller su-

percurrent. Consequently, the linearized metric superfield Hµ enjoys more gauge

freedom, which allows us to set Bµν and Aµ− 1
2
Vµ to zero. The combination Aµ− 3

2
Vµ

remains and transforms like an Abelian gauge field.

Using Hµ, we can construct three Chern-Simons terms (see appendix B), which

capture the contact terms described in the previous subsection. As we saw there, not

all of them are conformally invariant.

• Gravitational Chern-Simons Term:

Lg =
κg

192π

(
iεµνρ Tr

(
ωµ∂νωρ +

2

3
ωµωνωρ

)
+ 4iεµνρ

(
Aµ −

3

2
Vµ
)
∂ν
(
Aρ −

3

2
Vρ
)

+ (fermions)
)
.

(4.4.17)

We see that the N = 2 completion of the gravitational Chern-Simons term

(4.1.9) also involves a Chern-Simons term for Aµ − 3
2
Vµ. Like the flavor-flavor

term (4.4.5), the gravitational Chern-Simons term (4.4.17) is conformally in-

variant. It was previously studied in the context of conformal N = 2 super-

gravity [136], see also [137,138].

• Z-Z Chern-Simons Term:

Lzz = −κzz
4π

(
iεµνρ

(
Aµ −

1

2
Vµ
)
∂ν
(
Aρ −

1

2
Vρ
)

+
1

2
HR + · · ·+ (fermions)

)
.

(4.4.18)

Here the ellipsis denotes higher-order terms in the bosonic fields, which go

beyond linearized supergravity. The presence of the Ricci scalar R and the

fields H, Aµ − 1
2
Vµ implies that (4.4.18) is not conformally invariant.
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• Flavor-R Chern-Simons Term:

Lfr = −κfr
2π

(
iεµνρaµ∂ν

(
Aρ −

1

2
Vρ
)

+
1

4
σR−DH + · · ·+ (fermions)

)
.

(4.4.19)

The meaning of the ellipsis is as in (4.4.18). Again, the presence of R, H,

and Aµ − 1
2
Vµ shows that this term is not conformally invariant. The relative

sign between the Chern-Simons terms (4.4.5) and (4.4.19) is due to the different

couplings of flavor and R-currents to their respective background gauge fields.

Note that both (4.4.17) and (4.4.18) give rise to a Chern-Simons term for Aµ. Its

overall coefficient is κrr = κg
12
− κzz, in accord with (4.4.13).

It is straightforward to adapt the discussion of section 4.2 to these Chern-Simons

terms. Their coefficients can be modified by shifting the Lagrangian by appropriate

counterterms, whose coefficients are quantized according to the periodicity of the

global symmetries. Instead of stating the precise quantization conditions, we will

abuse the language and say that the fractional parts of these coefficients are physical,

while their integer parts are scheme dependent.

4.5 A New Anomaly

In the previous section, we have discussed four Chern-Simons terms in the back-

ground fields: the flavor-flavor term (4.4.5), the gravitational term (4.4.17), the Z-Z

term (4.4.18), and the flavor-R term (4.4.19). They correspond to certain contact

terms in two-point functions of operators in the flavor current J and the R-multiplet.

As we saw above, the flavor-flavor and the gravitational Chern-Simons terms are su-

perconformal, while the Z-Z term and the flavor-R term are not. The latter give rise

to non-conformal contact terms proportional to κzz and κfr.

The integer parts of κzz and κfr can be changed by adding appropriate Chern-

Simons counterterms, but the fractional parts are physical and cannot be removed.

This leads to an interesting puzzle: if κzz or κfr have non-vanishing fractional parts
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in a superconformal theory, they give rise to non-conformal contact terms. This is

similar to the conformal anomaly in two dimensions, where the redundant operator T µµ

has nonzero contact terms. However, in two-dimensions the non-conformal contact

terms arise from correlation functions of the conserved energy-momentum tensor at

separated points, and hence they cannot be removed by a local counterterm. In our

case, the anomaly is a bit more subtle.

An anomaly arises whenever we are unable to impose several physical requirements

at the same time. Although the anomaly implies that we must sacrifice one of these

requirements, we can often choose which one to give up. In our situation we would

like to impose supersymmetry, conformal invariance, and compactness of the global

symmetries, including the R-symmetry. Moreover, we would like to couple the global

symmetries to arbitrary background gauge fields in a fully gauge-invariant way. As

we saw above, this implies that the corresponding Chern-Simons counterterms must

have integer coefficients.8 If the fractional part of κzz or κfr is nonzero, we cannot

satisfy all of these requirements, and hence there is an anomaly. In this case we have

the following options:

1.) We can sacrifice supersymmetry. Then we can shift the Lagrangian by non-

supersymmetric counterterms that remove the non-conformal terms in (4.4.18)

and (4.4.19) and restore conformal invariance. Note that these counterterms

are gauge invariant.

2.) We can sacrifice conformal invariance. Then there is no need to add any

counterterm. The correlation functions at separated points are superconfor-

mal, while the contact terms are supersymmetric but not conformal.

3.) We can sacrifice invariance under large gauge transformations. Now we can

8Here we will abuse the language and attribute the quantization of these coeffi-

cients to invariance under large gauge transformations. As we reviewed in the intro-

duction, a more careful construction requires a choice of auxiliary four-manifold. The

quantization follows by demanding that our answers do not depend on that choice.
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shift the Lagrangian by supersymmetric Chern-Simons counterterms with frac-

tional coefficients to restore conformal invariance. These counterterms are not

invariant under large gauge transformations, if the background gauge fields are

topologically non-trivial.

The third option is the most conservative, since we retain both supersymmetry

and conformal invariance. If the background gauge fields are topologically non-trivial,

the partition function is multiplied by a phase under large background gauge trans-

formations. In order to obtain a well-defined answer, we need to specify additional

geometric data.9 By measuring the change in the phase of the partition function as

we vary this data, we can extract the fractional parts of κzz and κfr. Therefore, these

observables are not lost, even if we set the corresponding contact terms to zero by a

counterterm.

This discussion is similar to the framing anomaly of [123]. There, a Lorentz

Chern-Simons term for the frame bundle is added with fractional coefficient, in order

to make the theory topologically invariant. This introduces a dependence on the triv-

ialization of the frame bundle. In our case the requirement of topological invariance

is replaced with superconformal invariance and we sacrifice invariance under large

gauge transformations rather than invariance under a change of framing.

Finally, we would like to point out that the anomaly described above has im-

portant consequences if the theory is placed on a curved manifold [4]. For some

configurations of the background fields, the partition function is not consistent with

conformal invariance and even unitarity.

9More precisely, the phase of the partition function depends on the choice of

auxiliary four-manifold, which is the additional data needed to obtain a well-defined

answer.
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4.6 A Perturbative Example: SQED with a Chern-

Simons Term

Consider N = 2 SQED with a level k Chern-Simons term for the dynamical U(1)v

gauge field and Nf flavor pairs Qi, Q̃ei that carry charge ±1 under U(1)v. The theory

also has a global U(1)a flavor symmetry under which Qi, Q̃ei all carry charge +1.

Here v and a stand for ‘vector’ and ‘axial’ respectively. The Euclidean flat-space

Lagrangian takes the form

L = −
∫
d4θ

(
Qie

2bVvQi + Q̃eie−2bVvQ̃ei − 1

e2
Σ̂2
v +

k

2π
V̂vΣ̂v

)
, (4.6.1)

where e is the gauge coupling and V̂v denotes the dynamical U(1)v gauge field. (The

hat emphasizes the fact that it is dynamical.) Note that the theory is invariant under

charge conjugation, which maps V̂v → −V̂v and Qi ↔ Q̃ei. This symmetry prevents

mixing of the axial current with the topological current, so that some of the subtleties

discussed in section 4.3 are absent in this theory.

The Chern-Simons term leads to a mass for the dynamical gauge multiplet,

M =
ke2

2π
. (4.6.2)

This mass is the crossover scale from the free UV theory to a non-trivial CFT labeled

by k and Nf in the IR. We will analyze this theory in perturbation theory for k � 1.

In particular, we will study the contact terms of the axial current,

J = |Qi|2 + |Q̃ei|2 , (4.6.3)

and the R-multiplet,

Rαβ =
2

e2

(
DαΣ̂vDβΣ̂v +DβΣ̂vDαΣ̂v

)
+Rm

αβ ,

J (Z) =
i

4e2
DD

(
Σ̂2
v

)
.

(4.6.4)

Here Rm
αβ is associated with the matter fields and assigns canonical dimensions to

Qi, Q̃ei . In the IR, the R-multiplet flows to a superconformal multiplet, up to an
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Figure 4.1: Feynman diagrams for flavor-flavor.

improvement by the axial current J . Therefore, at long distances J (Z) is proportional

to iDDJ .

We begin by computing the flavor-flavor contact term κff,CFT in the two-point

function of the axial current (4.6.3), by flowing from the free UV theory to the CFT

in the IR. Using (4.4.2), we see that it suffices to compute the correlation func-

tion 〈J(p)K(−p)〉 at small momentum p2 → 0. In a conformal field theory, the

correlator 〈J(x)K(0)〉 vanishes at separated points, and hence we must obtain a pure

contact term. More explicitly, we have

J = |qi|2 + |q̃ei|2 , K = −iψiψi − iψ̃eiψ̃ei . (4.6.5)

There are two diagrams at leading order in 1
k
, displayed in figure 4.1.10 The first

diagram, with the intermediate gaugino, is paired with a seagull diagram, which

ensures that we obtain a pure contact term. The second diagram vanishes by charge

conjugation. Evaluating these diagrams, we find

lim
p2→0
〈J(p)K(−p)〉 =

πNf

8k
+O

(
1

k3

)
, (4.6.6)

and hence

κff,CFT =
π2Nf

4k
+O

(
1

k3

)
. (4.6.7)

10The solid dots denote the appropriate operator insertions. The dashed and solid

lines represent scalar and fermion matter. The double line denotes the scalar and the

auxiliary field in the vector multiplet, while the zigzag line represents the gaugino.
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Figure 4.2: Feynman diagrams for flavor-gravity.

We similarly compute the flavor-R contact term κfr,CFT by flowing into the CFT

from the free UV theory. It follows from (4.4.10) that it can be determined by comput-

ing the two-point function 〈J(p)J (Z)(−p)〉 at small momentum p2 → 0. Using (4.6.4),

we find

J (Z) = − 1

e2

(
σ̂vD̂v −

i

2
λ̂vλ̂v

)
. (4.6.8)

Since J (Z) is proportional to iDDJ at low energies, the operator J (Z) flows to an

operator proportional to K. The coefficient is determined by the mixing of the R-

symmetry with the axial current J , which occurs at order 1
k2 . Since 〈J(x)K(0)〉

vanishes at separated points, the two-point function of J and J (Z) must be a pure

contact term. Unlike the flavor-flavor case, several diagrams contribute to this corre-

lator at order 1
k

(see figure 4.2). Each diagram gives rise to a term proportional to 1
|p| .

However, these contributions cancel, and we find a pure contact term,

lim
p2→0
〈J(p)J (Z)(−p)〉 = − Nf

4πk
+O

(
1

k3

)
, (4.6.9)

so that

κfr,CFT = −Nf

2k
+O

(
1

k3

)
. (4.6.10)

Since this value is fractional, it implies the presence of the anomaly discussed in the

previous section.

We have computed κff,CFT and κfr,CFT by flowing into the CFT from the free UV

theory. It is instructive to follow the discussion in subsection 4.3.4 and further deform

the theory by a real mass m�M . In order to preserve charge conjugation, we assign

the same real mass m to all flavors Qi, Q̃ei. This deformation leads to a gap in the IR.

Even though a topological theory with Lagrangian proportional to iεµνρv̂µ∂ν v̂ρ can
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remain, it does not mix with J or Rαβ because of charge conjugation. Therefore, the

contact terms κff and κfr must be properly quantized in the IR. (Since the matter

fields in this example have half-integer R-charges, this means that κfr should be a

half-integer.)

For the axial current, we have

τ̂ff ≈


2Nf p2 �M2

τ̂ff,CFT = 2Nf −O
(

1
k2

)
m2 � p2 �M2

0 p2 � m2

(4.6.11)

The fact that τ̂ff = 0 in the IR follows from the fact that the theory is gapped.

Similarly,

κff ≈


0 p2 �M2

κff,CFT =
π2Nf

4k
+O

(
1
k3

)
m2 � p2 �M2

−Nf sign(m) p2 � m2

(4.6.12)

Note that parity, which acts as k → −k, m→ −m, κff → −κff , with τ̂ff invariant,

is a symmetry of (4.6.11) and (4.6.12).

For the two-point function of the axial current and the R-multiplet, we find

τ̂fr ≈


0 p2 �M2

τ̂fr,CFT = O
(

1
k2

)
m2 � p2 �M2

0 p2 � m2

(4.6.13)

Here τ̂fr,CFT measures the mixing of the axial current with the UVR-multiplet (4.6.4).

For the superconformal R-multiplet of the CFT, we would have obtained τ̂fr,CFT = 0,

as explained after (4.4.11). Similarly,

κfr ≈


0 p2 �M2

κfr,CFT = −Nf
2k

+O
(

1
k3

)
m2 � p2 �M2

Nf
2

sign(m) p2 � m2

(4.6.14)
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As before, (4.6.13) and (4.6.14) transform appropriately under parity.

Let us examine the flow from the CFT to the IR in more detail, taking the UV

crossover scale M → ∞. In the CFT, the operator J (Z) is redundant, up to O
(

1
k2

)
corrections due to the mixing with the axial current. Once the CFT is deformed by

the real mass m, we find that

J (Z) = mJ +O
(

1

e2
,

1

k2

)
, (4.6.15)

where J is the bottom component of the axial current (4.6.3), which is given by (4.6.5).

(As always, the operator equation (4.6.15) holds at separated points.) Substituting

into (4.4.10), we find that

κfr
2π

=
κfr,CFT

2π
+m〈J(p)J(−p)〉+O

(
1

e2
,

1

k2

)
=
κfr,CFT

2π
+

m

8|p|
τ̂ff +O

(
1

e2
,

1

k2

)
.

(4.6.16)

Here it is important that the two-point function of J does not have a contact term

in the CFT. Explicitly computing τ̂ff , we find that

τ̂ff =


2Nf −O

(
1
k2

)
p2 � m2

|p|
|m|

2Nf
π

(
1 + 1

k
sign(m)

)
+O

(
1
k2

)
p2 � m2

(4.6.17)

This is consistent with (4.6.14) and (4.6.16).

4.7 Checks of Dualities

In this section we examine dual pairs of three-dimensional N = 2 theories, which are

conjectured to flow to the same IR fixed point. In this case, the various contact terms

discussed above, computed on either side of the duality, should match.

First, as in [139–143], the three-sphere partition functions of the two theories

should match, up to the contribution of Chern-Simons counterterms in the back-

ground fields. Denote their coefficients by δκ.

Second, as in the parity anomaly matching condition discussed in [134], the frac-

tional parts of these contact terms are intrinsic to the theories. Therefore, the Chern-
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Simons counterterms that are needed for the duality must be properly quantized.

This provides a new non-trivial test of the duality.

Finally, these counterterms can often be determined independently. Whenever

different pairs of dual theories are related by renormalization group flows, the coun-

terterms for these pairs are similarly related. In particular, given the properly quan-

tized Chern-Simons counterterms that are needed for one dual pair, we can determine

them for other related pairs by a one-loop computation in flat space. This constitutes

an additional check of the duality.

In this section we demonstrate this matching for N = 2 supersymmetric level-

rank duality and Giveon-Kutasov duality [144]. We compute some of the relative

Chern-Simons counterterms, both in flat space and using the three-sphere partition

function, and verify that they are properly quantized.

4.7.1 Level-Rank Duality

Consider an N = 2 supersymmetric U(n) gauge theory with a level k Chern-Simons

term. We will call this the ‘electric’ theory and denote it by U(n)k. In terms of

the SU(n) and U(1) subgroups, this theory is equivalent to (SU(n)k × U(1)nk) /Zn,

where we have used the conventional normalization for Abelian gauge fields. This

theory flows to a purely topological U(n) Chern-Simons theory with shifted levels,

denoted by U(n)topsign(k)(|k|−n), kn. The first subscript specifies the level of the SU(n)

subgroup, which is shifted by integrating out the charged, massive gauginos (recall

that their mass has the same sign as the level k), and the second subscript denotes

the level of the U(1) subgroup, which is not shifted.

The dual ‘magnetic’ theory is a supersymmetric U(|k| − n)−k Yang-Mills Chern-

Simons theory. It flows to the purely topological theory U(|k| − n)top− sign(k)n,−k(|k|−n) .

This theory is related to the other topological theory described above by conventional

level-rank duality for unitary gauge groups [145].11

11The authors of [145] restricted n to be odd and k to be even. This restriction

is unnecessary on spin manifolds. Furthermore, we reversed the orientation on the
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These theories have two Abelian symmetries: a U(1)R symmetry under which

all gauginos have charge +1, and a topological symmetry U(1)J . The topological

symmetry corresponds to the current jµ = i
2π
εµνρ TrF νρ on the electric side, and

to jµ = − i
2π
εµνρ TrF νρ on the magnetic side.

We can integrate out the gauginos to obtain the contact term κrr in the two-point

function (4.4.12) of the R-current. On the electric side, we find κrr,e = −1
2

sign(k)n2,

and on the magnetic side we have κrr,m = 1
2

sign(k)(|k| −n)2. We must therefore add

a counterterm

δκrr = −1

2
sign(k)

(
(|k| − n)2 + n2

)
, (4.7.1)

to the magnetic theory. Taking into account possible half-integer counterterms that

must be added on either side of the duality because of the parity anomaly, what

remains of the relative counterterm (4.7.1) is always an integer.

In order to compute the contact term associated with U(1)J , we follow the dis-

cussion in subsection 4.3.2 and integrate out the dynamical gauge fields to find the

effective theory for the corresponding background gauge field. In the electric theory,

this leads to κJJ,e = −n
k
, and in the magnetic theory we find κJJ,m = |k|−n

k
. Hence we

need to add an integer Chern-Simons counterterm to the magnetic theory,

δκJJ = − sign(k) . (4.7.2)

4.7.2 Giveon-Kutasov Duality

Consider the duality of Giveon and Kutasov [144]. The electric theory consists of

a U(n)k Chern-Simons theory with Nf pairs Qi, Q̃ei of quarks in the fundamental

and the anti-fundamental representation of U(n). The global symmetry group is

SU(Nf )×SU(Nf )×U(1)A×U(1)J×U(1)R. The quantum numbers of the fundamental

fields are given by

The magnetic dual is given by a U(ñ = Nf + |k| − n)−k Chern-Simons theory. It

contains Nf pairs qi, q̃ei of dual quarks and N2
f singlets Mi

ei, which interact through a

magnetic side.
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Fields U(n)k SU(Nf ) SU(Nf ) U(1)A U(1)J U(1)R

Q � � 1 1 0 1
2

Q̃ � 1 � 1 0 1
2

Table 4.1: Quantum numbers of the electric fundamental fields

superpotential W = qiMi
eiq̃ei. The quantum numbers in the magnetic theory are given

by

Fields U(ñ)−k SU(Nf ) SU(Nf ) U(1)A U(1)J U(1)R

q � � 1 −1 0 1
2

q̃ � 1 � −1 0 1
2

M 1 � � 2 0 1

Table 4.2: Quantum numbers of the magnetic fundamental fields

As before, the topological symmetry U(1)J corresponds to jµ = i
2π
εµνρ TrF νρ on

the electric side, and to jµ = − i
2π
εµνρ TrF νρ on the magnetic side. Note that none of

the fundamental fields are charged under U(1)J .

This duality requires the following Chern-Simons counterterms for the Abelian

symmetries, which must be added to the magnetic theory:12

δκAA = − sign(k)Nf (Nf − |k|) ,

δκJJ = − sign(k) ,

δκAr =
1

2
sign(k)Nf (Nf + |k| − 2n) ,

δκrr = −1

4
sign(k)

(
2k2 − 4|k|n+ 3|k|Nf + 4n2 − 4nNf +N2

f

)
.

(4.7.3)

This was derived in [143] by flowing into Giveon-Kutasov duality from Aharony dual-

ity [146] via a real mass deformation.13 Note that these Chern-Simons counterterms

12Similar counterterms are required for the SU(Nf ) × SU(Nf ) flavor symme-

try [140–143].
13The R-symmetry used in [143] assigns R-charge 0 to the electric quarks Qi, Q̃ei .

Therefore, our results for δκAr and δκrr differ from those of [143] by improve-
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are properly quantized: δκAA and δκJJ are integers, while δκAr is half-integer and δκrr

is quantized in units of 1
4
. This is due to the presence of fields with R-charge 1

2
.

We can also understand (4.7.3) by flowing out of Giveon-Kutasov duality to a

pair of purely topological theories. If we give a real mass to all electric quarks, with

its sign opposite to that of the Chern-Simons level k, we flow to a U(n)k+sign(k)Nf

theory without matter. The corresponding deformation of the magnetic theory flows

to U(|k| − n)−(k+sign(k)Nf ). Level-rank duality between these two theories without

matter was discussed in the previous subsection. Given the counterterms (4.7.1)

and (4.7.2) that are needed for this duality and accounting for the Chern-Simons

terms generated by the mass deformation, we reproduce (4.7.3).

4.7.3 Matching the Three-Sphere Partition Function

As explained in [4], we can read off the contact terms κff and κfr from the dependence

of the free energy FS3 on a unit three-sphere on the real mass parameter m associated

with the flavor symmetry:

κff = − 1

2π

∂2

∂m2
ImFS3

∣∣∣∣
m=0

, κfr =
1

2π

∂

∂m
ReFS3

∣∣∣∣
m=0

. (4.7.4)

We can use this to rederive some of the relative Chern-Simons counterterms

in (4.7.3). Let us denote by m and ξ the real mass parameters corresponding to U(1)A

and U(1)J . (Equivalently, ξ is a Fayet-Iliopoulos term for the dynamical gauge fields.)

Using the results of [147], it was shown in [142] that the difference between the

three-sphere partition functions of the electric and the magnetic theories requires a

counterterm

δFS3 = sign(k)
(
πiNf (Nf − |k|)m2 + πiξ2 + πNf (Nf + |k| − 2n)m

)
+ · · · . (4.7.5)

where the ellipsis represents terms that are independent of m and ξ. (Our conventions

for the Chern-Simons level k differ from those of [142] by a sign.) An analogous result

was obtained in [143] for a different choice of R-symmetry. Using (4.7.4), we find the

ments (4.4.11) and (4.4.14).
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same values for δκAA, δκJJ , and δκAr as in (4.7.3). Note that the counterterm (4.7.5)

does not just affect the phase of the partition function, because the term linear in m

is real.

Many other dualities have been shown to require relative Chern-Simons countert-

erms [139–143, 148, 149]. It would be interesting to repeat the preceding analysis in

these examples.

4.8 Appendix A: Free Massive Theories

Consider a complex scalar field φ of mass m,

L = |∂µφ|2 +m2|φ|2 . (4.8.1)

This theory is invariant under parity and has a U(1) flavor symmetry under which φ

has charge +1. The corresponding current is given by

jµ = i
(
φ∂µφ− φ∂µφ

)
. (4.8.2)

In momentum space, the two-point function of jµ is given by (4.2.2) with

τ

(
p2

m2

)
=

2

π

[(
1 +

4m2

p2

)
arccot

(
2|m|
|p|

)
− 2|m|
|p|

]
,

κ = 0 .

(4.8.3)

The fact that κ = 0 follows from parity. The function τ(p2/m2) interpolates be-

tween τ = 1 in the UV and the empty theory with τ = 0 in the IR,

τ

(
p2

m2

)
=


1 +O

(
|m|
|p|

)
p2 � m2

2|p|
3π|m| +O

(
|p|3
|m|3

)
p2 � m2

(4.8.4)

Now consider a Dirac fermion ψ with real mass m,

L = −iψγµ∂µψ + imψψ . (4.8.5)

The mass term explicitly breaks parity. The U(1) flavor symmetry that assigns

charge +1 to ψ gives rise to the current

jµ = −ψγµψ , (4.8.6)

133



whose two-point function is given by (4.2.2) with

τ

(
p2

m2

)
=

2

π

[(
1− 4m2

p2

)
arccot

(
2|m|
|p|

)
+

2|m|
|p|

]
,

κ

(
p2

m2

)
= −m
|p|

arccot

(
2|m|
|p|

)
.

(4.8.7)

Note that m → −m under parity, so that τ is invariant and κ → −κ. Again, the

function τ (p2/m2) interpolates between τ = 1 in the UV and τ = 0 in the IR,

τ

(
p2

m2

)
=


1 +O

(
m2

p2

)
p2 � m2

4|p|
3π|m| +O

(
|p|3
|m|3

)
p2 � m2

(4.8.8)

The function κ (p2/m2) interpolates from κ = 0 in the UV, where the theory is

massless and parity invariant, to κ = −1
2

sign(m) in the empty IR theory,

κ

(
p2

m2

)
= sign(m)


−π|m|

2|p| +O
(
m2

p2

)
p2 � m2

−1
2

+O
(

p2

m2

)
p2 � m2

(4.8.9)
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Figure 4.3: Functions τ, |κ| for the free scalar and fermion.

The function τ (p2/m2) in (4.8.3) for a free scalar (blue, dotted) and the func-

tions τ (p2/m2) and κ (p2/m2) in (4.8.7) for a free fermion (red, dashed and solid) are

shown in figure 4.3. At the scale p2 ≈ m2 these functions display a rapid crossover

from the UV to the IR.
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In theories withN = 2 supersymmetry, we can consider a single chiral superfield Φ

with real mass m. This theory has a global U(1) flavor symmetry, and the associated

conserved current jµ, which resides in the real linear multiplet J = Φe2imθθΦ, is the

sum of the currents in (4.8.2) and (4.8.6). Therefore, the function τ
(
p2

m2

)
is the

sum of the corresponding functions in (4.8.3) and (4.8.7). Since κ
(
p2

m2

)
only receives

contributions from the fermion ψ, it is the same as in (4.8.7). From (4.8.4) and (4.8.8),

we see that the total τ
(
p2

m2

)
≈ 2 when p2 � m2. In supersymmetric theories it is

thus convenient to define τ̂ = τ
2
, so that that τ̂

(
p2

m2

)
≈ 1 when p2 � m2 for a chiral

superfield of charge +1 and real mass m.

4.9 Appendix B: Supergravity in Three

Dimensions

In this appendix we review some facts about three-dimensional N = 2 supergrav-

ity, focusing on the supergravity theory associated with the R-multiplet. It closely

resembles N = 1 new minimal supergravity in four dimensions [95]. For a recent

discussion, see [150,151].

4.9.1 Linearized Supergravity

We can construct a linearized supergravity theory by coupling the R-multiplet to the

metric superfield Hµ,

δL = −2

∫
d4θRµHµ . (4.9.1)

The supergravity gauge transformations are embedded in a superfield Lα,

δHαβ =
1

2

(
DαLβ −DβLα

)
+ (α↔ β) . (4.9.2)

Demanding gauge invariance of (4.9.1) leads to the following constraints:

DαD
2
Lα +D

α
D2Lα = 0 . (4.9.3)
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In Wess-Zumino gauge, the metric superfield takes the form14

Hµ =
1

2

(
θγνθ

)
(hµν − iBµν)−

1

2
θθCµ−

i

2
θ2θψµ+

i

2
θ2θψµ+

1

2
θ2θ2 (Aµ − Vµ) . (4.9.4)

Here hµν is the linearized metric, so that gµν = δµν + 2hµν . The vectors Cµ and Aµ

are Abelian gauge fields, and Bµν is a two-form gauge field. The gravitino ψµ will not

be important for us. We will also need the following field strengths,

Vµ = −εµνρ∂νCρ , ∂µVµ = 0

H =
1

2
εµνρ∂

µBνρ .
(4.9.5)

We can now express the coupling (4.9.1) in components,

δL = −Tµνhµν + j(R)
µ

(
Aµ − 3

2
V µ
)
− ij(Z)

µ Cµ + J (Z)H + (fermions) . (4.9.6)

Since the gauge field Aµ couples to the R-current, we see that the gauge trans-

formations (4.9.2) include local R-transformations. This supergravity theory is the

three-dimensional analog of N = 1 new minimal supergravity in four dimensions [95].

It will be convenient to introduce an additional superfield,

VH =
1

4
γαβµ [Dα, Dβ]Hµ , (4.9.7)

which transforms like an ordinary vector superfield under (4.9.2). Up to a gauge

transformation, it takes the form

VH =
(
θγµθ

) (
Aµ −

1

2
Vµ
)
− iθθH +

1

4
θ2θ2

(
∂2hµµ − ∂µ∂νhµν

)
+ (fermions) . (4.9.8)

The corresponding field strength ΣH = i
2
DDVH is a gauge-invariant real linear su-

perfield. The top component of VH is proportional to the linearized Ricci scalar,

R = 2
(
∂2hµµ − ∂µ∂νhµν

)
+O

(
h2
)
. (4.9.9)

With this definition, a d-dimensional sphere of radius r has scalar curvature R =

−d(d−1)
r2

.

14Like the R-multiplet in (4.4.7), the metric superfield contains factors of i that

are absent in Lorentzian signature.
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In a superconformal theory, the R-multiplet can be improved to a superconformal

multiplet with J (Z) = 0, as discussed in subsection 4.4.2. In this case the superfield Lα

is no longer constrained by (4.9.3), and hence Hµ enjoys more gauge freedom. In

particular, this allows us to set H and Aµ − 1
2
Vµ to zero. The combination Aµ − 3

2
Vµ

remains and transforms like an Abelian gauge field.

4.9.2 Supergravity Chern-Simons Terms

We will now derive the Chern-Simons terms (4.4.17), (4.4.18), and (4.4.19) in lin-

earized supergravity. We begin by considering terms bilinear in the gravity fields,

δL = −2

∫
d4θHµWµ(H) . (4.9.10)

Here Wµ(H) is linear in H. By dimensional analysis, it contains six supercovari-

ant derivatives. Comparing to (4.9.1), we see that Wµ(H) should be invariant un-

der (4.9.2) and satisfy the defining equation (4.4.6) of the R-multiplet. It follows that

the bottom component of Wµ(H) is a conserved current.

There are two possible choices for Wµ(H),

W(g)
µ = i

(
δµν∂

2 − ∂µ∂ν
)
DDHν +

1

4
γαβµ [Dα, Dβ]ΣH ,

W(zz)
µ =

1

8
γαβµ [Dα, Dβ]ΣH .

(4.9.11)

The first choiceW(g)
µ leads to theN = 2 completion of the gravitational Chern-Simons

term (4.4.17),

L (g) =
i

4
εµνρ Tr

(
ωµ∂νωρ +

2

3
ωµωνωρ

)
+ iεµνρ

(
Aµ −

3

2
Vµ
)
∂ν
(
Aρ −

3

2
Vρ
)

+ (fermions) .
(4.9.12)

Here (ωµ)νρ = ∂νhρµ − ∂ρhνµ + O(h2) is the spin connection. Note that we have

included terms cubic in ωµ, even though they go beyond second order in linearized

supergravity, because we would like our final answer to be properly covariant. Both

terms in (4.9.12) are conformally invariant and only the superconformal linear com-

bination Aµ − 3
2
Vµ appears. This is due to the fact that (4.9.12) is actually invariant

under the superconformal gauge freedom (4.9.2) without the constraint (4.9.3).
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Upon substituting the second choice W(zz)
µ , we can integrate by parts in (4.9.10),

L (zz) = −
∫
d4θ VHΣH , (4.9.13)

to obtain the Z-Z Chern-Simons term (4.4.18),

L (zz) = iεµνρ
(
Aµ −

1

2
Vµ
)
∂ν
(
Aρ −

1

2
Vρ
)

+
1

2
HR + · · ·+ (fermions) . (4.9.14)

Here the ellipsis denotes higher-order terms in the bosonic fields, which go beyond

linearized supergravity. This term contains the Ricci scalar R, as well as H and

Aµ − 1
2
Vµ, and thus it is not conformally invariant.

It is now straightforward to obtain the flavor-gravity Chern-Simons term (4.4.19)

by replacing ΣH → Σ in (4.9.13). This amounts to shifting the R-multiplet by an

improvement term δRµ = 1
8
γαβµ [Dα, Dβ]Σ. In components,

L (fr) =
i

2
εµνρaµ∂ν

(
Aρ −

1

2
Vρ
)

+
1

8
σR− 1

2
DH + · · ·+ (fermions) . (4.9.15)

As above, the ellipsis denotes higher-order terms in the bosonic fields and the presence

of R, H, and Aµ − 1
2
Vµ shows that this term is also not conformally invariant.
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Chapter 5

Contact Terms, Unitarity, and

F -Maximization in Three-

Dimensional Superconformal

Theories

5.1 Introduction

Any conformal field theory (CFT) in d dimensions can be placed on the d-sphere Sd

in a canonical, conformally invariant way, by using the stereographic map from flat

Euclidean space. It is natural to study the partition function ZSd of the CFT com-

pactified on Sd, or the associated free energy,

Fd = − logZSd . (5.1.1)

Since the sphere is compact, Fd does not suffer from infrared (IR) ambiguities. How-

ever, it is generally divergent in the ultraviolet (UV). For instance, it may contain

power divergences,

Fd ∼ (Λr)d + · · · , (5.1.2)
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where r is the radius of the sphere and Λ is a UV cutoff. (The ellipsis denotes

less divergent terms.) These power divergences depend on r and are inconsistent

with conformal invariance. They should be set to zero by a local counterterm. In

the example (5.1.2) the divergence can be canceled by adjusting the cosmological

constant counterterm
∫
Sd
√
g ddx .

What remains after all power divergences have been eliminated depends on whether

the number of dimensions is even or odd. If d is even, the free energy contains a log-

arithmic term in the radius,

Fd ∼ a log (Λr) + (finite) , (5.1.3)

which cannot be canceled by a local, diffeomorphism invariant counterterm. It reflects

the well-known trace anomaly. The coefficient a is an intrinsic observable of the CFT,

while the finite part of Fd depends on the choice of UV cutoff.

If d is odd, there are no local trace anomalies and we remain with a pure num-

ber Fd. In unitary theories Fd is real.1 There are no diffeomorphism invariant coun-

terterms that can affect the value of Fd, and hence any UV cutoff that respects dif-

feomorphism invariance leads to the same answer. For this reason, Fd is an intrinsic

observable of the CFT.

In two and four dimensions, it was shown [125,152–154] that every unitary renor-

malization group (RG) flow connecting a CFTUV at short distances to a CFTIR at

long distances must respect the inequality

aUV > aIR . (5.1.4)

See [155] for a discussion of the six-dimensional case. (Another quantity conjectured

to decrease under RG flow was recently discussed in [156].) It has been proposed [33,

157–160] that a similar inequality should hold in three dimensions,

FUV > FIR . (5.1.5)

1Since our entire discussion is in Euclidean signature, we will not distinguish be-

tween unitarity and reflection positivity.
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(Since we will remain in three dimensions for the remainder of this chapter, we have

dropped the subscript d = 3.) This conjectured F -theorem has been checked for a

variety of supersymmetric flows, and also for some non-supersymmetric ones; see for

instance [143, 161–166]. Moreover, the free energy F on a three-sphere corresponds

to a certain entanglement entropy [158]. This relation has been used recently [167]

to argue for (5.1.5).

In practice, the free energy F is not easy to compute. Much recent work has

focused on evaluating F in N = 2 superconformal theories (SCFTs). (The flat-space

dynamics of N = 2 theories in three dimensions was first studied in [134, 168].) In

such theories, it is possible to compute F exactly via localization [107], which reduces

the entire functional integral to a finite-dimensional matrix model [28–30]. In this

approach, one embeds the SCFT into the deep IR of a renormalization group flow from

a free UV theory. The functional integral is then computed in this UV description

and reduces to an integral over a finite number of zero modes. (A similar reduction

of the functional integral occurs in certain four-dimensional field theories [27].)

Since this procedure breaks conformal invariance, the theory can no longer be

placed on the sphere in a canonical way. Nevertheless, it is possible to place the the-

ory on S3 while preserving supersymmetry, and explicit Lagrangians were constructed

in [28–30]. A systematic approach to this subject was developed in [31], where super-

symmetric Lagrangians on curved manifolds were described in terms of background

supergravity fields. This point of view will be important below. One finds that if the

non-conformal theory has a U(1)R symmetry, it is possible to place it on S3 while

preserving an SU(2|1) × SU(2) symmetry. This superalgebra is a subalgebra of the

superconformal algebra on the sphere, but as emphasized in [31], its presence is not

related to superconformal invariance.

The choice of SU(2|1) × SU(2) symmetry is not unique. It depends on a con-

tinuous choice of R-symmetry in the UV, as well as a discrete choice of orientation

on the sphere.2 Given any reference R-symmetry R0, the space of R-symmetries is

2The orientation determines whether the bosonic SU(2) ⊂ SU(2|1) is the SU(2)l
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parameterized by the mixing with all Abelian flavor symmetries Qa,

R(t) = R0 +
∑
a

taQa . (5.1.6)

The free energy F (t) explicitly depends on the real parameters ta. Surprisingly, the

function F (t) is complex-valued [28–30], even though we expect it to be real in a

unitary theory. This will be discussed extensively below. In order to make contact

with the free energy of the SCFT, we must find the values ta = ta∗, such that R(t∗) is

the R-symmetry that appears in the N = 2 superconformal algebra.

In this chapter, we will show that the real part ReF (t) satisfies

∂

∂ta
ReF

∣∣∣∣
t=t∗

= 0 ,
∂2

∂ta∂tb
ReF

∣∣∣∣
t=t∗

= −π
2

2
τab . (5.1.7)

The matrix τab is determined by the flat-space two-point functions of the Abelian

flavor currents jµa at separated points,

〈jµa (x)jνb (0)〉 =
τab

16π2

(
δµν∂2 − ∂µ∂ν

) 1

x2
. (5.1.8)

In a unitary theory τab is a positive definite matrix.

These conditions can be stated as a maximization principle: the superconformal R-

symmetry R(t∗) locally maximizes ReF (t) over the space of trial R-symmetries R(t).

The local maximum ReF (t∗) is the SCFT partition function on S3. This F -maximi-

zation principle is similar to a-maximization in four dimensions [32]. Analogously, it

leads to (5.1.5) for a wide variety of renormalization group flows. The first condition

in (5.1.7) is the extremization condition proposed in [29]. The fact that the extremum

should be a maximum was conjectured in [33].

A corollary of (5.1.7) is that τab is constant on conformal manifolds. It does

not depend on deformations of the SCFT by exactly marginal operators, as long as

these operators do not break the associated flavor symmetries. Another consequence

of (5.1.7) is that τab can be obtained from the same matrix integral that calculates

or the SU(2)r subgroup of the SU(2)l×SU(2)r isometry group. Below, we will always

assume the former.
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the free energy, adding to the list of SCFT observables that can be computed exactly

using localization. Below, we will discuss several new observables that can also be

extracted from F (t).

We will establish (5.1.7) by studying the free energy of the SCFT as a function

of background gauge fields for the flavor currents jµa , as well as various background

supergravity fields. In theories with N = 2 supersymmetry, every flavor current is

embedded in a real linear superfield Ja and the corresponding background gauge field

resides in a vector superfield Va. The supergravity fields are embedded in a multiplet

H. The free energy F [Va,H] of the SCFT now depends on these sources.

Localization allows us to compute F [Va,H] for certain special values of the back-

ground fields Va,H. On a three-sphere, the answer turns out to violate several

physical requirements: it is not real, in contradiction with unitarity, and it is not

conformally invariant. The imaginary part arises because we must assign imaginary

values to some of the background fields in order to preserve rigid supersymmetry on

the sphere [31]. The lack of conformal invariance is more subtle. It reflects a new

anomaly in three-dimensional N = 2 superconformal theories [3].

As we will see below, F [Va,H] may contain Chern-Simons terms in the background

fields, which capture contact terms in correlation functions of various currents. For

instance, a contact term

〈jµa (x)jνb (0)〉 = · · ·+ iκab
2π

εµνρ∂ρδ
(3)(x) , (5.1.9)

corresponds to a Chern-Simons term for the background gauge fields Va and Vb. Such

contact terms are thoroughly discussed in [3], where it is shown that they lead to new

observables in three-dimensional conformal field theories. Here we will use them to

elucidate various properties of the three-sphere partition function in N = 2 super-

conformal theories. In particular, we explain why some of these terms are responsible

for the fact that F [Va,H] is not conformally invariant. Moreover, we show how the

observables related to κab in (5.1.9) can be computed exactly using localization.3

3In this chapter we explain how to compute the quantities τab and κab, which are
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The outline of this chapter is as follows. Section 5.2 summarizes necessary material

from [3]. We introduce the background fields Va, H and present various Chern-Simons

terms in these fields. We explain why they give rise to new observables and how some

of them lead to a violation of conformal invariance. In section 5.3 we place the theory

on a three-sphere and review the relevant supergravity background that leads to rigid

supersymmetry [31]. We then relate the linear and quadratic terms in the background

gauge fields Va to the flat-space quantities introduced in section 5.2. In section 5.4

we derive (5.1.7) and clarify the relation to (5.1.5). Section 5.5 contains some simple

examples.

5.2 Background Fields and Contact Terms

In this section we discuss contact terms in two-point functions of conserved currents.

In theories with N = 2 supersymmetry, we distinguish between U(1) flavor currents

and U(1)R currents. These contact terms correspond to Chern-Simons terms in back-

ground gauge and supergravity fields. Their fractional parts are meaningful physical

observables and some of them lead to a new anomaly in N = 2 superconformal the-

ories. This section is a summary of [3], which is the basis for chapter 4 of this thesis.

We include it here to render the present chapter self-contained.

5.2.1 Non-Supersymmetric Theories

Consider a three-dimensional conformal field theory with a global, compact U(1)

symmetry, and the associated current jµ. We can couple it to a background gauge

field aµ, and consider the free energy F [a], which is defined by

e−F [a] =

〈
exp

(∫
d3x jµa

µ + · · ·
)〉

. (5.2.1)

associated with global flavor symmetries, using localization. The corresponding ob-

servables for the R-symmetry, and other closely related objects, can also be computed

exactly [8].
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Here the ellipsis denotes higher-order terms in aµ that may be required in order to

ensure invariance of F [a] under background gauge transformations of aµ. A familiar

example is the seagull term aµa
µ|φ|2, which is needed when a charged scalar field φ

is coupled to aµ.

We see from (5.2.1) that F [a] is the generating functional for connected correla-

tion functions of jµ. The two-point function 〈jµ(x)jν(0)〉 is constrained by current

conservation and conformal symmetry, so that

〈jµ(x)jν(0)〉 =
τ

16π2

(
∂2δµν − ∂µ∂ν

) 1

x2
+
iκ

2π
εµνρ∂

ρδ(3)(x) . (5.2.2)

Here τ and κ are dimensionless real constants. At separated points, only the first

term contributes, and unitarity implies that τ ≥ 0. (If τ = 0, then jµ is a redundant

operator.) The correlation function at separated points gives rise to a non-local term

in F [a]. The term proportional to κ is a contact term, whose sign is not constrained

by unitarity. It corresponds to a background Chern-Simons term in F [a],

iκ

4π

∫
d3x εµνρaµ∂νaρ . (5.2.3)

This term explicitly breaks parity.

Correlation functions at separated points are universal. They do not depend on

short-distance physics. By contrast, contact terms depend on the choice of UV cutoff.

They can be changed by adjusting local terms in the dynamical or background fields.

Some contact terms are determined by imposing symmetries. For instance, the seagull

term discussed above ensures current conservation. The contact term proportional

to κ in (5.2.2) is not of this type. Nevertheless, it possesses certain universality

properties, as we will now review.

The Chern-Simons term (5.2.3) is invariant under small background gauge trans-

formations, as required by current conservation. However, it is not the integral of a

gauge-invariant local density and this restricts the freedom in changing κ by adding

a local counterterm in the exponent of (5.2.1). This restriction arises because we

can place the theory on a curved manifold that allows non-trivial bundles for the
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background gauge field aµ. Demanding invariance under large gauge transformations

implies that κ can only be shifted by an integer.4 Therefore, the fractional part of κ

is universal and does not depend on the short-distance physics. It is an intrinsic

observable of the CFT. If we choose to set κ to zero by a local counterterm, then F [a]

is no longer invariant under large background gauge transformations: its imaginary

part shifts by an amount that is determined by the observable described above and

the topology of the gauge bundle.

As described in [3], there are different ways to calculate this observable in flat

space. Below, we will discuss its importance for supersymmetric theories on a three-

sphere.

5.2.2 Supersymmetric Theories

In theories with N = 2 supersymmetry, we distinguish between U(1) flavor symme-

tries and U(1)R symmetries. A global U(1) flavor current jµ is embedded in a real

linear superfield J , which satisfies D2J = D
2J = 0.5 In components,

J = J + iθj + iθj + iθθK −
(
θγµθ

)
jµ + · · · . (5.2.4)

Superconformal invariance implies that J,K, and jµ are conformal primaries of di-

mension ∆J = 1, ∆K = 2, and ∆jµ = 2. (Only J is a superconformal primary.) It

4Here we follow the common practice of attributing the quantization of Chern-

Simons levels to invariance under large gauge transformations. A more careful treat-

ment involves a definition of the Chern-Simons term (5.2.3) using an extension of the

gauge field aµ to an auxiliary four-manifold. Demanding that the answer be indepen-

dent of how we choose this four-manifold leads to the same quantization condition as

above.
5We follow the conventions of [1], continued to Euclidean signature. The gamma

matrices are given by (γµ)α
β = (σ3,−σ1,−σ2), where σi are the Pauli matrices. The

totally antisymmetric Levi-Civita symbol is normalized so that ε123 = 1. Note the

identity γµγν = δµν + iεµνργ
ρ.
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follows that the one-point functions of J and K vanish, while their two-point functions

are related to the two-point function (5.2.2) of jµ with τ = τff and κ = κff ,

〈J(x)J(0)〉 =
τff

16π2

1

x2
,

〈K(x)K(0)〉 =
τff
8π2

1

x4
,

〈J(x)K(0)〉 =
κff
2π

δ(3)(x) .

(5.2.5)

The subscript ff emphasizes the fact that we are considering the two-point function

of a flavor current. The constant τff is normalized so that τff = 1 for a free chiral

superfield of charge +1.

We can couple J to a background vector superfield,

V = · · ·+
(
θγµθ

)
aµ − iθθσ − iθ2θλ+ iθ2θλ− 1

2
θ2θ2D . (5.2.6)

Here aµ, σ, and D are real. Background gauge transformations shift V → V + Ω + Ω

with chiral Ω, so that σ and D are gauge invariant, while aµ transforms like an

ordinary gauge field. (The ellipsis denotes fields that are pure gauge modes and do

not appear in gauge-invariant functionals of V .) The coupling of J to V takes the

form

2

∫
d4θJV = JD + jµa

µ +Kσ + (fermions) . (5.2.7)

Now the free energy F [V ] is a supersymmetric functional of the background gauge

superfield V . The supersymmetric generalization of the Chern-Simons term (5.2.3)

takes the form

Fff = −κff
2π

∫
d3x

∫
d4θΣV =

κff
4π

∫
d3x (iεµνρaµ∂νaρ − 2σD) + (fermions) .

(5.2.8)

Here the real linear superfield Σ = i
2
DDV is the gauge-invariant field strength corre-

sponding to V . This Chern-Simons term captures the contact terms in the two-point

functions (5.2.2) and (5.2.5). It is conformally invariant.

A U(1)R current j
(R)
µ is embedded in a supercurrent multiplet Rµ, which also

contains the supersymmetry current Sµα, the energy-momentum tensor Tµν , a cur-

rent j
(Z)
µ that corresponds to the central charge Z in the supersymmetry algebra, and
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a string current εµνρ∂
ρJ (Z). All of these currents are conserved. See [1] for a thorough

discussion of supercurrents in three dimensions. In components,

Rµ = j(R)
µ − iθSµ − iθSµ −

(
θγνθ

) (
2Tµν + iεµνρ∂

ρJ (Z)
)

− iθθ
(
2j(Z)
µ + iεµνρ∂

νj(R)ρ
)

+ · · · .
(5.2.9)

Note that there are additional factors of i in (5.2.9) compared to the formulas in [1],

because we are working in Euclidean signature. (In Lorentzian signature the super-

field Rµ is real.)

The R-multiplet couples to the linearized metric superfield Hµ. In Wess-Zumino

gauge,

Hµ =
1

2

(
θγνθ

)
(hµν − iBµν)−

1

2
θθCµ−

i

2
θ2θψµ+

i

2
θ2θψµ+

1

2
θ2θ2 (Aµ − Vµ) . (5.2.10)

Here hµν is the linearized metric, so that gµν = δµν + 2hµν , and ψµα is the gravitino.

The vectors Cµ and Aµ are Abelian gauge fields, and Bµν is a two-form gauge field.

We will also need the following field strengths,

Vµ = −εµνρ∂νCρ , ∂µVµ = 0 ,

H =
1

2
εµνρ∂

µBνρ .
(5.2.11)

As above, there are several unfamiliar factors of i in (5.2.10) that arise in Euclidean

signature. The coupling of Rµ to Hµ takes the form

2

∫
d4θRµHµ = Tµνh

µν− j(R)
µ

(
Aµ− 3

2
V µ
)

+ ij(Z)
µ Cµ−J (Z)H+(fermions) . (5.2.12)

Since the gauge field Aµ couples to the R-current, we see that the gauge freedom in-

cludes local R-transformations. This is analogous toN = 1 new minimal supergravity

in four dimensions [95,96]. For a recent discussion, see [150,151].

If the theory is superconformal, theR-multiplet reduces to a smaller supercurrent.

Consequently, the linearized metric superfield Hµ enjoys more gauge freedom, which

allows us to set Bµν and Aµ − 1
2
Vµ to zero. The combination Aµ − 3

2
Vµ remains and

transforms like an Abelian gauge field.
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Using Hµ, we can construct three Chern-Simons terms. They are derived in [3].

Surprisingly, not all of them are conformally invariant.6

• Gravitational Chern-Simons Term:

Fg =
κg

192π

∫
√
g d3x

(
iεµνρ Tr

(
ωµ∂νωρ +

2

3
ωµωνωρ

)
+ 4iεµνρ

(
Aµ −

3

2
Vµ
)
∂ν
(
Aρ −

3

2
Vρ
))

+ (fermions) .

(5.2.13)

Here ωµ is the spin connection. We see that the N = 2 completion of the

usual gravitational Chern-Simons term also involves a Chern-Simons term for

Aµ − 3
2
Vµ. Like the flavor-flavor term, the gravitational Chern-Simons term

is conformally invariant. It was previously studied in the context of N = 2

conformal supergravity [136], see also [137,138].

• Z-Z Chern-Simons Term:

Fzz =− κzz
4π

∫
√
g d3x

(
iεµνρ

(
Aµ −

1

2
Vµ
)
∂ν
(
Aρ −

1

2
Vρ
)

+
1

2
HR + · · ·

)
+ (fermions) .

(5.2.14)

Here R is the Ricci scalar.7 The ellipsis denotes higher-order terms in the

bosonic fields, which go beyond linearized supergravity. The Z-Z Chern-Simons

term is not conformally invariant, as is clear from the presence of the Ricci

scalar. This lack of conformal invariance is related to the following fact: in a

superconformal theory, the R-multiplet reduces to a smaller supercurrent and

the operators conjugate to R, H and Aµ − 1
2
Vµ are redundant.

6In order to write suitably covariant formulas, we will include some terms that go

beyond linearized supergravity, such as the measure factor
√
g. We also endow εµνρ

with a factor of
√
g, so that it transforms like a tensor. Consequently, the field

strength Vµ = −εµνρ∂νCρ is covariantly conserved, ∇µV
µ = 0.

7In our conventions, a d-dimensional sphere of radius r has scalar curvature

R = −d(d−1)
r2

.
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• Flavor-R Chern-Simons Term:

Ffr =− κfr
2π

∫
√
g d3x

(
iεµνρaµ∂ν

(
Aρ −

1

2
Vρ
)

+
1

4
σR−DH + · · ·

)
+ (fermions) .

(5.2.15)

The meaning of the ellipsis is as in (5.2.14) above. Again, the presence of R, H,

and Aµ − 1
2
Vµ shows that this term is not conformally invariant. The relative

sign between the Chern-Simons terms (5.2.8) and (5.2.15) is due to the different

couplings (5.2.7) and (5.2.12) of jµ and j
(R)
µ to their respective background gauge

fields. Unlike the conformal Chern Simons terms (5.2.8) and (5.2.13), the Z-Z

term (5.2.14) and the flavor-R term (5.2.15) are novel. Their lack of conformal

invariance will be important below.

The Chern-Simons terms (5.2.8), (5.2.13), (5.2.14), and (5.2.15) summarize con-

tact terms in two-point functions of J and Rµ. As we stated above, the fractional

parts of these contact terms are meaningful physical observables. This is thoroughly

explained in [3]. Using the background fields V and Hµ, we can construct two addi-

tional local terms: the Fayet-Iliopoulos (FI) term,

FFI = Λ

∫
√
g d3x (D + · · · ) + (fermions) , (5.2.16)

and the Einstein-Hilbert term,

FEH = Λ

∫
√
g d3x (R + · · · ) + (fermions) . (5.2.17)

These terms are not conformally invariant, and they are multiplied by an explicit

power of the UV cutoff Λ. They correspond to conventional contact terms, which can

be adjusted at will. Below we will use them to remove certain linear divergences. A

finite coefficient of (5.2.16) leads to a one-point function for J . In a scale-invariant

theory it is natural to set such a dimensionful finite coefficient to zero. More generally,

the dynamical generation of FI-terms is very constrained. For a recent discussion,

see [1, 43, 46] and references therein. Note that a cosmological constant counterterm

proportional to Λ3 is not allowed by supersymmetry.
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5.2.3 A Superconformal Anomaly

As we have seen above, the two Chern-Simons terms (5.2.14) and (5.2.15) are not

conformally invariant. Moreover, we have argued that the fractional parts of their

coefficients κzz and κfr are meaningful physical observables. If these fractional parts

are non-vanishing, certain correlation functions have non-conformal contact terms. If

we want to preserve supersymmetry, we have to choose between the following:

1.) Retain these Chern-Simons terms at the expense of conformal invariance. In this

case, the free energy is invariant under large background gauge transformations.

2.) Restore conformal invariance by adding appropriate Chern-Simons countert-

erms with fractional coefficients. In this case the free energy in the presence

of topologically nontrivial background fields is not invariant under large gauge

transformations. Its imaginary part, which encodes the fractional parts of κzz

and κfr, is only well defined if we specify additional geometric data. This is

similar to the framing anomaly of [123].

This understanding is essential for our discussion below. A detailed explanation can

be found in [3]. The second option above is the less radical of the two (the idea of

adding Chern-Simons terms to a theory in order to ensure some physical requirements

has already appeared long ago in several contexts [117, 123, 128, 129], but we will

explore both alternatives.

5.3 The Free Energy on a Three-Sphere

Coupling the flat-space theory to the background supergravity multiplet H renders

it invariant under all background supergravity transformations. For certain expecta-

tion values of the fields in H, the theory also preserves some amount of rigid super-

symmetry [31]. Here we are interested in round spheres [28–31].8 In stereographic

8Recently, it was found that various squashed spheres also admit rigid supersym-

metry [88–94]. Many of our results can be generalized to these backgrounds.
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coordinates, the metric takes the form

gµν =
4r4

(r2 + x2)2
δµν , (5.3.1)

where r is the radius of the sphere. In order to preserve supersymmetry, we must also

turn on a particular imaginary value for the background H-flux [31],

H = − i
r
. (5.3.2)

This expectation value explicitly violates unitarity, since H is real in a unitary the-

ory. Given a generic N = 2 theory with a choice of R-symmetry, the background

fields (5.3.1) and (5.3.2) preserve an SU(2|1)× SU(2) superalgebra. If the theory is

superconformal, this is enhanced to the full superconformal algebra and the coupling

to the background fields in H reduces to the one obtained by the stereographic map

from flat space. In this case the imaginary value for H in (5.3.2) is harmless and does

not lead to any violations of unitarity [31].

In this section, we will study an N = 2 SCFT on a three-sphere and consider its

free energy F [V ] in the presence of a background gauge field V for the current J . For

our purposes, it is sufficient to analyze F [V ] for constant values of the background

fields D and σ. The other fields in V are set to zero. We will study F [V ] as a power

series expansion in D and σ around zero, starting with the free energy F [0] itself.

As we saw in the previous section, superconformal invariance may be violated by

certain Chern-Simons contact terms. We can restore it by adding bare Chern-Simons

counterterms with appropriate fractional coefficients, but this forces us to give up

on invariance under large background gauge transformations. Here we will choose to

retain the non-conformal terms and preserve invariance under large gauge transfor-

mations, since this setup is natural in calculations based on localization. Only the

Z-Z Chern-Simons term (5.2.14) and the gravitational Chern-Simons term (5.2.13)

can contribute to F [0]. On the sphere, the imaginary value of H in (5.3.2) implies

that Fzz reduces to a purely imaginary constant, since the coefficient κzz in (5.2.14)

is real. The value of this constant depends on non-linear terms in the gravity fields,
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which are not captured by the linearized formula (5.2.14). The gravitational Chern-

Simons term is superconformal and it does not contribute on the round sphere. In

general, we will therefore find a complex F [0]. Its real part is the conventional free

energy of the SCFT, which must be real by unitarity. The imaginary part is due to

a Chern-Simons term in the supergravity background fields.

The terms linear in D and σ reflect the one-point functions of J and K. If our

theory were fully conformally invariant, these terms would be absent. However, in

the presence of the non-conformal flavor-R Chern-Simons term (5.2.15) this is not

the case. On the sphere, this term reduces to

Ffr =
κfr
2π

∫
S3

√
g d3x

(
σ

r2
− iD

r

)
. (5.3.3)

The explicit factor of i, which violates unitarity, is due to the imaginary value of H

in (5.3.2). The relative coefficient between σ and D depends on both the linearized

terms that appear explicitly in (5.2.15) and on non-linear terms, denoted by an ellipsis.

Instead of computing them, we can check that (5.3.3) is supersymmetric on the sphere.

This term leads to non-trivial one-point functions for J and K. However, the fact

that κfr is real implies that

∂σ ImF
∣∣
V=0

= 0 , ∂D ReF
∣∣
V=0

= 0 . (5.3.4)

In order to understand the terms quadratic in D and σ, we must determine the

two-point functions of J and K on the sphere. At separated points, they are easily

obtained from the flat-space correlators (5.2.5) using the stereographic map,

〈J(x)J(y)〉S3 =
τff

16π2

1

s(x, y)2
,

〈K(x)K(y)〉S3 =
τff
8π2

1

s(x, y)4
,

〈J(x)K(y)〉S3 = 0 .

(5.3.5)

Here s(x, y) is the SO(4) invariant distance function on the sphere. In stereographic

coordinates,

s(x, y) =
2r2|x− y|

(r2 + x2)1/2(r2 + y2)1/2
. (5.3.6)
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Since we are discussing constant values of D and σ, we need to integrate the two-point

functions in (5.3.5) over the sphere, and hence we will also need to understand possible

contact terms at coincident points. Contact terms are short-distance contributions,

which can be analyzed in flat space, and hence we can use results from section 5.2.

We begin by studying ∂2
DF
∣∣
V=0

. Since 〈J(x)J(y)〉 does not contain a contact

term on dimensional grounds, we can calculate ∂2
DF
∣∣
V=0

by integrating this two-point

function over separated points on the sphere,

1

r4

∂2F

∂D2

∣∣∣∣
V=0

= − τff
16π2r4

∫
S3

√
g d3x

∫
S3

√
g d3y

1

s(x, y)2
= −π

2

4
τff < 0 . (5.3.7)

The answer is finite and only depends on the constant τff . The sign follows from

unitarity.

The second derivative ∂2
σF
∣∣
V=0

involves the two-point function 〈K(x)K(y)〉S3 ,

which has a non-integrable singularity at coincident points. Since the resulting diver-

gence is a short-distance effect, it can be understood in flat space. We can regulate the

divergence by excising a small sphere of radius 1
Λ

around x = y. Now the integral con-

verges, but it leads to a contribution proportional to Λ. This contribution is canceled

by a contact term 〈K(x)K(0)〉 ∼ Λδ(3)(x − y). The divergence and the associated

contact term are related to the seagull term discussed in section 5.2. The removal of

the divergence is unambiguously fixed by supersymmetry and current conservation,

so that the answer is finite and well defined.9 This leads to

1

r2

∂2F

∂σ2

∣∣∣∣
V=0

= − τff
8π2r2

∫
S3

√
g d3x

∫
S3

√
g d3y

1

s(x, y)4
=
π2

4
τff > 0 . (5.3.8)

9To see this, note that in momentum space 〈J(p)J(−p)〉 ∼ 1
|p| . Supersymmetry

implies that 〈K(p)K(−p)〉 ∼ p2〈J(p)J(−p)〉 ∼ |p|. Thus, a contact term propor-

tional to Λ in 〈K(p)K(−p)〉 is incompatible with the two-point function of J at

separated points. This shows that any UV cutoff that preserves supersymmetry does

not allow a contact term, and hence it must lead to a finite and unambiguous answer

for
∫
d3x 〈K(x)K(0)〉. By contrast, excising a sphere of radius 1

Λ
does not respect

supersymmetry, and thus it requires a contact term.
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Alternatively, we can evaluate the integral by analytic continuation of the exponent 4

in the denominator from a region in which the integral is convergent. Note that we

have integrated a negative function to find a positive answer. This change of sign is

not in conflict with unitarity, because we had to subtract the divergence.

Finally, the mixed derivative ∂D∂σF
∣∣
V=0

is obtained by integrating the two-point

function 〈J(x)K(y)〉S3 , which vanishes at separated points. However, it may contain

a non-vanishing contact term (5.2.5), and hence it need not integrate to zero on the

sphere. Such a contact term gives rise to

1

r3

∂2F

∂D ∂σ

∣∣∣∣
V=0

= −πκff . (5.3.9)

As we explained in section 5.2, the fractional part of κff is a well-defined observable

in the SCFT.

5.4 Localization and F -Maximization

As we have explained in the introduction, localization embeds the SCFT of interest

into the deep IR of an RG flow from a free theory in the UV. We can then com-

pute F [V ] on a three-sphere for certain supersymmetric choices of V ,

σ = m , D =
im

r
, (5.4.1)

with all other fields in V vanishing. Here m is a real constant that can be thought

of as a real mass associated with the flavor symmetry that couples to V . Hence D is

imaginary. In order to place the theory on the sphere, we must choose an R-symmetry.

As explained in [29–31], the real parameter m can be extended to complex values,

m→ m+
it

r
, (5.4.2)

where t parameterizes the choice of R-symmetry in the UV. The free energy computed

via localization is then a holomorphic function of m+ it
r
.

In general, the UV R-symmetry parametrized by t does not coincide with the

superconformal R-symmetry in the IR. This only happens for a special choice, t = t∗.
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In this case F [m+ it∗
r

] encodes the free-energy and various current correlation functions

in the SCFT on the sphere, exactly as in section 5.3. Expanding around m = 0, we

write

F
[
m+

it∗
r

]
= F0 +mrF1 +

1

2
(mr)2F2 + · · · . (5.4.3)

As we explained in section 5.3, the Chern-Simons term (5.2.14) in the background

gravity fields leads to complex F0, but it only affects the imaginary part. This ex-

plains the complex answers for F0 found in the localization computations of [28–30].

Alternatively, we can remove the imaginary part by adding a Chern-Simons countert-

erm with appropriate fractional coefficient, at the expense of invariance under large

background gauge transformations. The real part of F0 is not affected. It appears in

the F -theorem (5.1.5).

The first order term F1 arises because of the flavor-R Chern-Simons term (5.2.15),

which reduces to (5.3.3) on the three-sphere. Restricting to the supersymmetric

subspace (5.4.1), we find that

F1 = 2πκfr . (5.4.4)

This accounts for the non-vanishing, real F1 found in [28–30] and shows that κfr can

be computed using localization. As we explained above, this term is not compatible

with conformal symmetry. We can set it to zero and restore conformal invariance by

adding an appropriate flavor-R Chern-Simons counterterm, at the expense of invari-

ance under large background gauge transformations.

The imaginary part of F1 always vanishes, in accord with conformal symmetry.

Using holomorphy in m+ it
r
, we thus find

∂

∂t
ReF

∣∣∣∣
m=0,t=t∗

= −1

r

∂

∂m
ImF

∣∣∣∣
m=0,t=t∗

= 0 . (5.4.5)

This is the condition proposed in [29].

The real part of F2 arises from (5.3.7) and (5.3.8),

ReF2 =
1

r2

∂2

∂m2
ReF

∣∣∣∣
m=0,t=t∗

=
π2

2
τff , (5.4.6)
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while the imaginary part is due to the flavor-flavor Chern-Simons term (5.2.8). Us-

ing (5.3.9), we obtain

ImF2 =
1

r2

∂2

∂m2
ImF

∣∣∣∣
m=0,t=t∗

= −2πκff . (5.4.7)

Combining the real and imaginary parts,

F2 =
π2

2
τff − 2πiκff . (5.4.8)

Thus, both τff and κff are computable using localization.

If we denote by F (t) = F [0 + it
r
] the free energy for m = 0, we can summa-

rize (5.4.5) and (5.4.6) as follows,

∂

∂t
ReF

∣∣∣∣
t=t∗

= 0 ,
∂2

∂t2
ReF

∣∣∣∣
t=t∗

= −π
2

2
τff < 0 . (5.4.9)

The generalization to multiple Abelian flavor symmetries is straightforward and leads

to (5.1.7),
∂

∂ta
ReF

∣∣∣∣
t=t∗

= 0 ,
∂2

∂ta∂tb
ReF

∣∣∣∣
t=t∗

= −π
2

2
τab , (5.4.10)

where the matrix τab is determined by the flat-space two-point functions of the Abelian

flavor currents jµa at separated points,

〈jµa (x)jνb (0)〉 =
τab

16π2

(
δµν∂2 − ∂µ∂ν

) 1

x2
. (5.4.11)

Unitarity implies that τab is a positive definite matrix. Note that our condition on the

second derivatives is reminiscent of a similar condition in [135]. However, the precise

relation of [135] to the three-sphere partition function is not understood.

As an immediate corollary, we obtain a non-renormalization theorem for the two-

point function coefficients τab and κab. Since localization sets all chiral fields to zero,

the free energy is independent of all superpotential couplings, and hence all exactly

marginal deformations. Thus τab and κab are independent of exactly marginal defor-

mations.

We would briefly like to mention the connection of (5.4.10) to the F -theorem (5.1.5).

It is analogous to the relationship between a-maximization and the a-theorem in four
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dimensions [32]. Since relevant deformations in the UV generally break some flavor

symmetries, there are more flavor symmetries in the UV than in the IR. Maximizing

over this larger set in the UV should result in a larger value of F , thus establish-

ing (5.1.5). This simple argument applies to a wide variety of RG flows, but there are

several caveats similar to those discussed in [135]. An important restriction is that

the argument only applies to flows induced by superpotential deformations. For such

flows, the free energy is the same function in the UV and in the IR, since it is inde-

pendent of all superpotential couplings. One can say less about RG flows triggered

by real mass terms, since the free energy depends on them nontrivially.

One of the caveats emphasized in [135] is the existence of accidental symmetries in

the IR of many RG flows. Similarly, to use localization at the point t = t∗, we need to

find an RG flow with anR-symmetry that connects the SCFT in the IR to a free theory

in the UV. This is generally impossible if there are accidental symmetries in the IR.

Nevertheless, the maximization principle (5.4.10) holds. It would be interesting to

find a three-dimensional analog of [169], which would enable exact computations in

the presence of accidental symmetries. See [170] for recent work in this direction.

5.5 Examples

5.5.1 Free Chiral Superfield

Consider a free chiral superfield Φ of charge +1, coupled to σ and D in a background

vector multiplet. The action on the sphere is given by

S =

∫
S3

√
g d3x

(
|∇φ|2 − iψγµ∇µψ + σ2|φ|2 −D|φ|2 + iσψψ +

3

4r2
|φ|2
)
. (5.5.1)

For constant σ and D, we can compute the partition function by performing the

Gaussian functional integral over φ and ψ,

F =
∞∑
n=1

n2 log

(
n2 − 1

4
+ (σ2 −D)r2

)
−
∞∑
n=1

n(n+ 1) log

(
(n+

1

2
)2 + (σr)2

)
.

(5.5.2)
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The two sums arise from the bosonic and the fermionic modes respectively. (The

eigenvalues of the relevant differential operators on S3 can be found in [164].) As

expected, the leading divergence cancels due to supersymmetry, but there are lower-

order divergences.

Instead of evaluating (5.5.2), we will calculate its derivative,

1

r2

∂F

∂D
=
∞∑
n=1

(σ2 −D)r2 − 1
4

n2 − 1
4

+ (σ2 −D)r2
−
∞∑
n=1

1

=
π

2

√
(σ2 −D)r2 − 1

4
coth

[
π

√
(σ2 −D)r2 − 1

4

]
,

(5.5.3)

where we set
∑

n 1→ −1
2

by zeta function regularization.10 Similarly, we find

1

r

∂F

∂σ
= − πσr

√
(σ2 −D)r2 − 1

4
coth

[
π

√
(σ2 −D)r2 − 1

4

]

+ π

(
(σr)2 +

1

4

)
tanh(πσr) .

(5.5.4)

Note that (5.5.3) and (5.5.4) both vanish when σ = D = 0, as required by conformal

invariance. The derivative of the free energy on the supersymmetric subspace (5.4.1)

is given by
1

r

∂F

∂m
= π

(
1

2
+ imr

)
tanh (πmr) . (5.5.5)

This exactly matches the result obtained via localization [29,30].

We can also compute the second derivatives

1

r4

∂2F

∂D2

∣∣∣∣
σ=D=0

= −π
2

4
,

1

r2

∂2F

∂σ2

∣∣∣∣
σ=D=0

=
π2

4
, (5.5.6)

and therefore,
1

r2

∂2

∂m2
ReF

∣∣∣∣
m=0

=
π2

2
. (5.5.7)

Since τff = 1 for a free chiral superfield of charge +1, these results are consistent

with (5.3.7), (5.3.8), and (5.4.6).

10Equivalently, we can remove the divergence by an appropriate FI countert-

erm (5.2.16) for the background vector multiplet.
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Finally, we discuss the mixed second derivatives,

1

r3

∂2F

∂D∂σ

∣∣∣∣
σ=D=0

= 0 , lim
σr→±∞

1

r3

∂2F

∂D ∂σ

∣∣∣∣
D=0

= ±π
2
. (5.5.8)

Comparing with (5.3.9), we see that κff vanishes in the UV theory. If we give the

chiral superfield a real mass by turning on a non-zero value for σ, the RG flow to the

IR will generate a contact term κff = −1
2

sgn(σ). This corresponds to the half-integer

Chern-Simons term that arises when we integrate out a massive fermion [128, 129].

Therefore the free energy is not invariant under all large gauge transformations of the

background vector multiplet on arbitrary manifolds. In order to preserve invariance

under large gauge transformations, we must add a half-integer Chern-Simons term

for the background gauge field to (5.5.1).

Note that the first derivative (5.5.5) has infinitely many zeros. By holomorphy,

this means that F (t) has infinitely many extrema, even for a free chiral superfield.

However, only one physically acceptable extremum is a local maximum. The F -

maximization principle may help resolve similar ambiguities in less trivial examples.

5.5.2 Pure Chern-Simons Theory

Consider a dynamical N = 2 Chern Simons theory with gauge group U(1) and integer

level k,
k

4π
(iεµνρAµ∂νAρ − 2σD) + (fermions) . (5.5.9)

Here Aµ denotes the dynamical gauge field rather than a background supergravity

field. This theory has an Abelian flavor symmetry with topological current jµ =

i
2π
εµνρ∂νAρ, whose correlation functions vanish at separated points. We can couple jµ

to a background gauge field aµ, which resides in a vector multiplet that also contains

the bosons σa, Da, and we also add a background Chern-Simons term for aµ,

1

2π
(iεµνρaµ∂νAρ − σaD −Daσ) +

q

4π
(iεµνρaµ∂νaρ − 2σaDa) + (fermions) . (5.5.10)

Here q is an integer. This example is discussed at length in [3].
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Naively integrating out Aµ generates a Chern-Simons term for aµ with fractional

coefficient

κff = q − 1

k
. (5.5.11)

On the supersymmetric subspace (5.4.1) appropriate to the three-sphere, this term

evaluates to Fff = −iπκff (mr)2. We can compare it to the answer obtained via

localization. Following [28], we find that

e−F =

∫
d(σr) exp(iπr2(kσ2 + 2σm+ qm2)) =

1√
|k|
ei sgn(k)π/4 exp(iπκff (mr)

2) .

(5.5.12)

We see that the term in F proportional to m2 agrees with the flat-space calculation.

5.5.3 SQED with a Chern-Simons Term

Consider N = 2 SQED with an integer level k Chern-Simons term for the dynam-

ical U(1)v gauge field and Nf chiral flavor pairs Qi, Q̃ei (i, ĩ = 1, . . . , Nf ) that carry

charge ±1 under U(1)v. The theory also has a global U(1)a flavor symmetry J under

which Qi, Q̃ei all carry charge +1. Here v and a stand for vector and axial respec-

tively. The theory is invariant under charge conjugation, which flips the sign of the

dynamical U(1)v gauge field and interchanges Qi ↔ Q̃ei. In the IR, the theory flows

to an SCFT, which is labeled by the integers k and Nf .

In [3], this model is analyzed in perturbation theory for k � 1. Computing the

appropriate two-point functions of the axial flavor current and the R-current leads to

κff =
π2Nf

4k
+O

(
1

k3

)
, κfr = −Nf

2k
+O

(
1

k3

)
. (5.5.13)

We can now compare these flat-space calculations to the result obtained via localiza-

tion [29,30]. In the notation of (5.4.3), we find

F0 = Nf log 2 +
1

2
log |k| − iπ

4

(
sgn(k)− Nf

k

)
+O

(
1

k2

)
,

F1 = −πNf

k
+O

(
1

k3

)
,

F2 = π2Nf −
iπ3Nf

2k
+O

(
1

k2

)
.

(5.5.14)
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The real part of F0 is the conventional free energy for the SCFT in the IR. The

imaginary part of F0 corresponds to (5.2.14), whose coefficient we will not discuss

here. The first order term F1 exactly matches the contribution of the flavor-R term

as in (5.4.4), while the imaginary part vanishes to this order in 1
k
. This is due to

the fact that the mixing of the R-current and the axial current only arises at O
(

1
k2

)
.

Likewise, the imaginary part of F2 is captured by the flavor-flavor term as in (5.4.7).

Finally, the real part of F2 is in agreement with (5.4.6), since the two-point function

coefficient of J is given by τff = 2Nf +O
(

1
k2

)
.

5.5.4 A Theory with a Gravity Dual

Equation (5.1.7) can be checked in N = 2 SCFTs with AdS4 supergravity duals. The

AdS/CFT correspondence [24–26] relates global symmetries of the boundary theory to

gauge symmetries in the bulk. The boundary values aaµ of the bulk gauge fields Aaµ act

as background gauge fields for the global symmetry currents jµa on the boundary. The

boundary free energy F [a] in the presence of these background fields is equal to the

on-shell supergravity action computed with the boundary conditions Aaµ(x, z)|z=0 =

aaµ(x). The matrix τab defined by the two-point functions (5.1.8) of global currents

on the boundary is proportional to the matrix 1
g2ab

of inverse gauge couplings that

appears in the bulk Yang-Mills term [171].

Consider M-theory on AdS4 × X7, where X7 is a Sasaki-Einstein seven mani-

fold. This background preserves N = 2 supersymmetry on the three-dimensional

boundary. The isometries of X7 lead to AdS4 gauge fields upon KK reduction from

11-dimensional supergravity. Hence, they correspond to global symmetries of the dual

SCFT3. Given a set of Killing vectors Ka on X7 that are dual to the global symmetry

currents jµa , the matrix τab is given by [172]

τab =
32πN

3
2

3
√

6(Vol(X7))
3
2

∫
G(Ka, Kb) vol(X7) . (5.5.15)

Here G is the Sasaki-Einstein metric on X7 and vol(X7) is the corresponding volume

form. There are N units of flux threading X7. We can use (5.5.15) to compute τab in
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the gravity dual and compare to the answer obtained via localization on the boundary,

providing a check of (5.1.7).

Figure 5.1: Flavored conifold quiver dual to M2-branes on the cone over Q1,1,1.

Consider, for instance, the theory depicted in figure 5.1. It is the well-known

conifold quiver with gauge group U(N) × U(N) and vanishing Chern-Simons levels,

coupled to two U(Nf ) flavor groups. The superpotential is given by

W = A1B1A2B2 − A1B2A2B1 +

Nf∑
l=1

(
p1lA1q

l
1 + p2lA2q

l
2

)
. (5.5.16)

This theory describes N M2 branes on a ZNf orbifold of the cone over Q1,1,1 ∼=
SU(2)×SU(2)×SU(2)

U(1)×U(1)
. It is expected to flow to the SCFT dual to AdS4 × Q1,1,1/ZNf in

the infrared [173,174].

The large-N partition function of this theory as a function of the trial R-charges

was computed in [33]. For simplicity, we consider the free energy F (t) as a function

of a single mixing parameter t, which corresponds to the diagonal topological cur-

rent11 jµ∼εµνρ
(

TrF
(1)
νρ + TrF

(2)
νρ

)
. Here F

(1)
µν and F

(2)
µν are the field strengths of the

two U(N) gauge groups. The function F (t) is maximized at t = 0 and its second

11The current is normalized so that certain diagonal monopole operators have

charge ±1.
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derivative is given by

∂2F

∂t2

∣∣∣∣
t=0

= − 20π

9
√

3

(
N

Nf

) 3
2

. (5.5.17)

We will now compute the two-point function coefficient τff of jµ via the AdS/CFT

prescription (5.5.15). The Sasaki-Einstein metric on Q1,1,1 takes the form

ds2 =
1

16
(dψ +

3∑
i=1

cos θidφi)
2 +

1

8

3∑
i=1

(dθ2
i + sin2 θidφ

2
i ) , (5.5.18)

with ψ ∈ [0, 4π), φi ∈ [0, 2π), θi ∈ [0, π]. Using the results of [173], one can show that

the Killing vector of Q1,1,1 that corresponds to the current jµ is given by12

K =
1

Nf

(−∂φ1 + ∂φ2) . (5.5.19)

Substituting into (5.5.15) and using Vol(Q1,1,1/ZNf ) = π4

8Nf
, we find

τff =
40

9
√

3π

(
N

Nf

) 3
2

. (5.5.20)

Comparing (5.5.17) and (5.5.20), we find perfect agreement with (5.1.7).

As was pointed out in [33,175], the F -maximization principle is closely related to

the volume minimization procedure of [176,177]. It is natural to conjecture that the

two procedures are in fact identical. In other words, the two functions that are being

extremized should be related, even away from their critical points. (A similar relation

between a-maximization in four dimensions and volume minimization was established

in [178, 179].) The example discussed above is consistent with this conjecture: both

the free energy at the critical point [33,175] and its second derivative match.

12This identification relies on a certain chiral ring relation involving two diagonal

monopole operators, which was conjectured in [173, 174]. Our final result below can

be viewed as additional evidence for this conjecture.
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[112] Y. Kosmann, Dérivées de lie des spineurs, Ann. di Matematica Pura e Appl.

91 (1972) 317–395.

[113] H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselaers, and E. Herlt,

Exact solutions of Einstein’s field equations. Cambridge University Press,

2003.

[114] D. Kutasov, Geometry on the space of conformal field theories and contact

terms, Phys.Lett. B220 (1989) 153.

[115] Y. Frishman, A. Schwimmer, T. Banks, and S. Yankielowicz, The Axial

Anomaly and the Bound State Spectrum in Confining Theories, Nucl.Phys.

B177 (1981) 157.

[116] S. R. Coleman and B. Grossman, ’t Hooft’s Consistency Condition as a

Consequence of Analyticity and Unitarity, Nucl.Phys. B203 (1982) 205.

[117] L. Alvarez-Gaume and E. Witten, Gravitational Anomalies, Nucl.Phys. B234

(1984) 269.

[118] E. Witten, Three-Dimensional Gravity Revisited, arXiv:0706.3359.

175



[119] M. Atiyah, V. Patodi, and I. Singer, Spectral asymmetry and Riemannian

Geometry 1, Math.Proc.Cambridge Phil.Soc. 77 (1975) 43.

[120] M. Atiyah, V. Patodi, and I. Singer, Spectral asymmetry and Riemannian

geometry 2, Math.Proc.Cambridge Phil.Soc. 78 (1976) 405.

[121] M. Atiyah, V. Patodi, and I. Singer, Spectral asymmetry and Riemannian

geometry. III, Math.Proc.Cambridge Phil.Soc. 79 (1976) 71–99.

[122] S. R. Coleman and B. R. Hill, No More Corrections to the Topological Mass

Term in QED in Three-Dimensions, Phys.Lett. B159 (1985) 184.

[123] E. Witten, Quantum Field Theory and the Jones Polynomial,

Commun.Math.Phys. 121 (1989) 351.

[124] E. Witten, SL(2,Z) action on three-dimensional conformal field theories with

Abelian symmetry, hep-th/0307041.

[125] A. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in

a 2D Field Theory, JETP Lett. 43 (1986) 730–732.

[126] A. Cappelli, D. Friedan, and J. I. Latorre, C theorem and spectral

representation, Nucl.Phys. B352 (1991) 616–670.

[127] D. Gaiotto and E. Witten, S-Duality of Boundary Conditions In N=4 Super

Yang-Mills Theory, Adv.Theor.Math.Phys. 13 (2009) [arXiv:0807.3720].

[128] A. Redlich, Gauge Noninvariance and Parity Violation of Three-Dimensional

Fermions, Phys.Rev.Lett. 52 (1984) 18.

[129] A. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge

Field Action in Three-Dimensions, Phys.Rev. D29 (1984) 2366–2374.

[130] J. M. Maldacena, G. W. Moore, and N. Seiberg, D-brane charges in five-brane

backgrounds, JHEP 0110 (2001) 005, [hep-th/0108152].

176



[131] D. Belov and G. W. Moore, Classification of Abelian spin Chern-Simons

theories, hep-th/0505235.

[132] A. Kapustin and N. Saulina, Topological boundary conditions in abelian

Chern-Simons theory, Nucl.Phys. B845 (2011) 393–435, [arXiv:1008.0654].

[133] N. Seiberg, Modifying the Sum Over Topological Sectors and Constraints on

Supergravity, JHEP 1007 (2010) 070, [arXiv:1005.0002].

[134] O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg, and M. Strassler,

Aspects of N=2 supersymmetric gauge theories in three-dimensions,

Nucl.Phys. B499 (1997) 67–99, [hep-th/9703110].

[135] E. Barnes, E. Gorbatov, K. A. Intriligator, M. Sudano, and J. Wright, The

Exact superconformal R-symmetry minimizes tau(RR), Nucl.Phys. B730

(2005) 210–222, [hep-th/0507137].

[136] M. Rocek and P. van Nieuwenhuizen, N ≥ 2 supersymmetric Chern-Simons

terms as d = 3 extended conformal supergravity, Class.Quant.Grav. 3 (1986)

43.

[137] A. Achucarro and P. Townsend, A Chern-Simons Action for

Three-Dimensional anti-De Sitter Supergravity Theories, Phys.Lett. B180

(1986) 89.

[138] A. Achucarro and P. Townsend, Extended supergravities in d = (2+1) as

Chern-Simons theories, Phys.Lett. B229 (1989) 383.

[139] A. Kapustin and M. J. Strassler, On mirror symmetry in three-dimensional

Abelian gauge theories, JHEP 9904 (1999) 021, [hep-th/9902033].

[140] A. Kapustin, B. Willett, and I. Yaakov, Nonperturbative Tests of

Three-Dimensional Dualities, JHEP 1010 (2010) 013, [arXiv:1003.5694].

177



[141] A. Kapustin, B. Willett, and I. Yaakov, Tests of Seiberg-like Duality in Three

Dimensions, arXiv:1012.4021.

[142] B. Willett and I. Yaakov, N=2 Dualities and Z Extremization in Three

Dimensions, arXiv:1104.0487.

[143] F. Benini, C. Closset, and S. Cremonesi, Comments on 3d Seiberg-like

dualities, JHEP 1110 (2011) 075, [arXiv:1108.5373].

[144] A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory,

Nucl.Phys. B812 (2009) 1–11, [arXiv:0808.0360].

[145] S. G. Naculich and H. J. Schnitzer, Level-rank duality of the U(N) WZW

model, Chern-Simons theory, and 2-D qYM theory, JHEP 0706 (2007) 023,

[hep-th/0703089].

[146] O. Aharony, IR duality in d = 3 N=2 supersymmetric USp(2N(c)) and

U(N(c)) gauge theories, Phys.Lett. B404 (1997) 71–76, [hep-th/9703215].

[147] F. van de Bult, Hyperbolic Hypergeometric Functions,

http://www.its.caltech.edu/ vdbult/Thesis.pdf.

[148] D. Jafferis and X. Yin, A Duality Appetizer, arXiv:1103.5700.

[149] T. Dimofte, D. Gaiotto, and S. Gukov, Gauge Theories Labelled by

Three-Manifolds, arXiv:1108.4389.

[150] S. M. Kuzenko, U. Lindstrom, and G. Tartaglino-Mazzucchelli, Off-shell

supergravity-matter couplings in three dimensions, JHEP 1103 (2011) 120,

[arXiv:1101.4013].

[151] S. M. Kuzenko and G. Tartaglino-Mazzucchelli, Three-dimensional N=2

(AdS) supergravity and associated supercurrents, JHEP 1112 (2011) 052,

[arXiv:1109.0496].

178



[152] J. L. Cardy, Is There a c Theorem in Four-Dimensions?, Phys.Lett. B215

(1988) 749–752.

[153] Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in

Four Dimensions, JHEP 1112 (2011) 099, [arXiv:1107.3987].

[154] Z. Komargodski, The Constraints of Conformal Symmetry on RG Flows,

JHEP 1207 (2012) 069, [arXiv:1112.4538].

[155] H. Elvang, D. Z. Freedman, L.-Y. Hung, M. Kiermaier, R. C. Myers, et al.,

On renormalization group flows and the a-theorem in 6d, JHEP 1210 (2012)

011, [arXiv:1205.3994].

[156] M. Buican, A Conjectured Bound on Accidental Symmetries, Phys.Rev. D85

(2012) 025020, [arXiv:1109.3279].

[157] R. C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions,

JHEP 1101 (2011) 125, [arXiv:1011.5819].

[158] H. Casini, M. Huerta, and R. C. Myers, Towards a derivation of holographic

entanglement entropy, JHEP 1105 (2011) 036, [arXiv:1102.0440].

[159] R. C. Myers and A. Singh, Comments on Holographic Entanglement Entropy

and RG Flows, JHEP 1204 (2012) 122, [arXiv:1202.2068].

[160] H. Liu and M. Mezei, A Refinement of entanglement entropy and the number

of degrees of freedom, arXiv:1202.2070.

[161] S. Minwalla, P. Narayan, T. Sharma, V. Umesh, and X. Yin, Supersymmetric

States in Large N Chern-Simons-Matter Theories, JHEP 1202 (2012) 022,

[arXiv:1104.0680].

[162] A. Amariti and M. Siani, Z-extremization and F-theorem in Chern-Simons

matter theories, JHEP 1110 (2011) 016, [arXiv:1105.0933].

179



[163] A. Amariti and M. Siani, F-maximization along the RG flows: A Proposal,

JHEP 1111 (2011) 056, [arXiv:1105.3979].

[164] I. R. Klebanov, S. S. Pufu, and B. R. Safdi, F-Theorem without

Supersymmetry, JHEP 1110 (2011) 038, [arXiv:1105.4598].

[165] T. Morita and V. Niarchos, F-theorem, duality and SUSY breaking in

one-adjoint Chern-Simons-Matter theories, Nucl.Phys. B858 (2012) 84–116,

[arXiv:1108.4963].

[166] I. R. Klebanov, S. S. Pufu, S. Sachdev, and B. R. Safdi, Entanglement

Entropy of 3-d Conformal Gauge Theories with Many Flavors, JHEP 1205

(2012) 036, [arXiv:1112.5342].

[167] H. Casini and M. Huerta, On the RG running of the entanglement entropy of

a circle, Phys.Rev. D85 (2012) 125016, [arXiv:1202.5650].

[168] J. de Boer, K. Hori, and Y. Oz, Dynamics of N=2 supersymmetric gauge

theories in three-dimensions, Nucl.Phys. B500 (1997) 163–191,

[hep-th/9703100].

[169] D. Kutasov, A. Parnachev, and D. A. Sahakyan, Central charges and U(1)(R)

symmetries in N=1 superYang-Mills, JHEP 0311 (2003) 013,

[hep-th/0308071].

[170] P. Agarwal, A. Amariti, and M. Siani, Refined Checks and Exact Dualities in

Three Dimensions, JHEP 1210 (2012) 178, [arXiv:1205.6798].

[171] D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli, Correlation

functions in the CFT(d) / AdS(d+1) correspondence, Nucl.Phys. B546 (1999)

96–118, [hep-th/9804058].

[172] E. Barnes, E. Gorbatov, K. A. Intriligator, and J. Wright, Current correlators

and AdS/CFT geometry, Nucl.Phys. B732 (2006) 89–117, [hep-th/0507146].

180



[173] F. Benini, C. Closset, and S. Cremonesi, Chiral flavors and M2-branes at toric

CY4 singularities, JHEP 1002 (2010) 036, [arXiv:0911.4127].

[174] D. L. Jafferis, Quantum corrections to N=2 Chern-Simons theories with flavor

and their AdS(4) duals, arXiv:0911.4324.

[175] D. Martelli and J. Sparks, The large N limit of quiver matrix models and

Sasaki-Einstein manifolds, Phys.Rev. D84 (2011) 046008, [arXiv:1102.5289].

[176] D. Martelli, J. Sparks, and S.-T. Yau, The Geometric dual of a-maximisation

for Toric Sasaki-Einstein manifolds, Commun.Math.Phys. 268 (2006) 39–65,

[hep-th/0503183].

[177] D. Martelli, J. Sparks, and S.-T. Yau, Sasaki-Einstein manifolds and volume

minimisation, Commun.Math.Phys. 280 (2008) 611–673, [hep-th/0603021].

[178] A. Butti and A. Zaffaroni, R-charges from toric diagrams and the equivalence

of a-maximization and Z-minimization, JHEP 0511 (2005) 019,

[hep-th/0506232].

[179] R. Eager, Equivalence of a-Maximization and Volume Minimization,

arXiv:1011.1809.

181


