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Abstract. In this manuscript the potential existence of self-gravitating complex
scalar field configurations is explored. Stable boson stars are presented as
potential black hole candidates, and the strengths and weaknesses of such idea are
described. On the other hand, Newtonian boson systems are also studied because
they are the bricks of the structure within the scalar field dark matter model or
the Bose condensate dark matter; the collapse of density fluctuations is described;
also the interaction between two structures is shown to allow solitonic behavior,
which in turn allows the formation of ripples of dark matter. The processes related
to potential observations are also discussed.

1. Introduction

Scalar fields appear in several branches of theoretical physics and topics related to
theories of gravity and a complete presentation of results related to astrophysics for
all the types of scalar fields would not be practical. That is why in this manuscript
we deal only with scalar fields minimally coupled to gravity, that is, the scalar field
itself has an identity, and is not a scalar field used within scalar-tensor theories as an
artifact to modify the gravitational field. That is, it is assumed here that scalar fields
might be of fundamental nature, either obtained from the low energy limit of higher
dimensional theories or as a field that represents the mean field approximation of a
condensate made of spin-less particles at zero temperature.

One more restriction is that we deal with complex scalar fields. Therefore the
Lagrangian density of our system reads:

L = − R

16πG
+ gµν∂µφ

∗∂νφ+ V (|φ|2), (1)

which corresponds to a complex scalar field minimally coupled to gravity. Lagrangian
(1) enjoys a global U(1) symmetry, which indicates the existence of a conserved scalar
charge. An interesting property of this system is that there are solutions for a harmonic
time dependent scalar field on a static space-time, the so called boson stars (BSs),
which will play a main role in this manuscript. The reason is that BSs have been the
most widely studied scalar field objects in astrophysically related grounds.

In the real scalar field case the Lagrangian does not show a global symmetry.
However equilibrium configurations called oscillatons have been constructed for the
potentials of BSs [1, 2, 3, 4], astrophysical applications have been pointed out in
the dark matter problem [5], and the geodesics of such solutions have been also
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studied in order to establish predictions about their potential existence [4]. However,
oscillatons present a very dynamical geometry, which makes it more difficult to study
in astrophysical applications involving time scales of the order of the oscillations of the
geometry. This is why we do not deal with these solutions in the present manuscript
and would be analyzed elsewhere.

2. Boson stars

2.1. Basics of boson stars

The equations obtained from the Lagrangian above are Einstein’s equations Gµν =
8πGTµν with the stress-energy tensor

Tµν =
1

2
[∂µφ

∗∂νφ+ ∂µφ∂νφ
∗] − 1

2
gµν [φ∗,αφ,α + V (|φ|2)]. (2)

The equation for the scalar field is the Klein-Gordon equation
(

� − dV

d|φ|2
)

φ = 0, (3)

where �φ = 1√
−g
∂µ[

√−ggµν∂νφ]. Boson stars are characterized by the potential

V = m2|φ|2 + λ
2
|φ|4, where m is understood as the mass of the boson and λ is the

coefficient of a two body self-interaction mean field approximation between bosons.
Boson stars (BSs) are spherically symmetric solutions to the above set of equations

under a particular condition: the scalar field has a harmonic time dependence
φ(r, t) = φ0(r)e

−iωt, where r is the radial spherical coordinate. This condition
implies that the stress energy tensor in (2) is time-independent, which implies through
Einstein’s equations that the geometry is also time-independent. That is, there is a
time-dependent scalar field oscillating upon a time-independent geometry whose source
is the scalar field itself. It is possible to construct solutions for boson stars assuming
that the metric can be written in Schwarzschild coordinates as

ds2 = −α(r)2dt2 + a(r)2dr2 + r2dΩ2. (4)

The resulting Einstein-Klein-Gordon equations are ordinary on the radial coordinate
and define an eigenvalue problem for the frequency ω, provided the conditions of
spatial flatness at the origin and asymptotic flatness for large r. BS solutions are
constructed by solving the eigenvalue problem for ω, knowing that for each value of
the central scalar field φ0(0) there is a unique ω. The resulting configurations are
presented in Fig. 1a for two different values of λ. When constructing such diagrams it
is usually assumed the rescaling of variables given by: φ̃0 =

√
4πGφ0, r̃ = mr, t̃ = ωt,

α̃ = m
ω α and Λ = 2λ

8πGm2 , which is also the convention used here.
The stability-instability analysis of these solutions has been performed using

perturbation theory [6] and full non-linear numerical relativity [7, 8, 9]. Configurations
in Fig. 1a are assumed to posses nodeless φ0(r) profiles, and solutions with nodes
(called excited states) can also be constructed, although they have been shown to be
unstable [10] and cannot be considered as astrophysically relevant.

Besides the instability branch that brings a configuration to collapse into a black
hole (see caption of Fig. 1a), there is another instability that makes the star to
explode. The reason argued is that such configurations have a positive binding energy
(EB = M −mN), where N is the conserved charge of (1) and M is the mass function

VII Mexican School on Gravitation and Mathematical Physics IOP Publishing
Journal of Physics: Conference Series 91 (2007) 012003 doi:10.1088/1742-6596/91/1/012003

2



M = r
2

(

1 − 1

a2

)

[6]. Recently in [9] an exploding BS was shown for a Λ = 0
configuration and in [11] it has been shown that such behavior is generic also for
Λ > 0.
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Figure 1. (a) Sequences of equilibrium configurations for two values of Λ are
shown as a function of the central value of the scalar field φ0(0); each point in
the curves corresponds to a solution of the eigenvalue problem and represents
a boson star configuration. The filled circles indicate the critical solution that
separates the stable from the unstable branch. Those configurations to the
left of the maxima, like the white circles, represent stable configurations. The
inverted triangles indicate the point at which the binding energy is zero. Those
configurations between the filled circles and the inverted triangles (along each
sequence) like the white squares, collapse into black holes as a response to a
perturbation. Configurations to the right of the inverted triangles, like the
white triangles, disperse away. (b) Emission spectra from an accretion disk
around a black hole and three BSs with different values of Λ and the same mass
M = 0.633(M2

pl
/m).

2.2. Boson stars as black hole candidates

BS solutions have been found to match astrophysical parameters that mimic those
of some neutron star models, in fact, the self-interaction term of the scalar field
(Λ 6= 0) was originally introduced with this purpose [12]. Such results inspired the
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search for observable predictions that could determine the existence of boson stars.
Among those proposals, BS were used as black hole candidates (BHC) and some effects
were predicted. The method included the use of a simple accretion disk model. The
accretion disk model is that of a geometrically thin, optically thick, steady accretion
disk. The power per unit area generated by such a disk rotating around a central
object is given by [13, 14]:

D(r) =
Ṁ

4πr

α

a

(

−dΩ
dr

)

1

(E − ΩJ)2

∫ r

ri

(E − ΩJ)
dJ

dr
dr, (5)

where Ṁ is the accretion mass rate, ri is the inner edge of the disk, α and a are
the metric functions in (4), E, J,Ω are the energy, angular momentum and angular
velocity per unit of mass of a test particle in the accretion disk. For black holes ri is
assumed to be at the ISCO (r = 6M) of the hole. Since BSs allow circular orbits in
the whole spatial domain it can be considered that ri = 0 for BSs, or any other finite
number less than 6M without modifying the behavior of the spectrum. Furthermore,
by assuming it is possible to define a local temperature we use the Stefan-Boltzmann
law so that D(r) = σT 4, where σ = 5.67 × 10−5 erg s−1 cm−2 K−4 is the Stefan-
Boltzmann constant. Now, considering the disk emits as a black body, the dependence
of T on the radial coordinate is used to calculate the luminosity L(ν) of the disk and
the flux F (ν) through the expression for the black body spectral distribution:

L(ν) = 4πd2F (ν) =
16πh

c2
cos(ζ)ν3

∫ rf

ri

rdr

ehν/kT − 1
, (6)

where d is the distance to the source, ri and rf indicate the location of the inner
and outer edges of the disk, h = 6.6256 × 10−27 erg s is the Planck constant,
k = 1.3805× 10−16 erg K−1 is the Boltzmann constant and ζ is the disk inclination.

The steps carried out to look at the effects of a boson star acting as a BHC are
as follows:

(i) Assume the metric of the space-time is given by (4).

(ii) Define the space-time functions a and α by choosing one of the equilibrium
configurations in Fig. 1a and calculate M .

(iii) Define the metric of the equivalent Schwarzschild black hole through αBH =
√

1 − 2M/r and aBH = 1/αBH .

(iv) Calculate the angular velocity, angular momentum and energy of a test particle
for both space-times ΩBS,BH , LBS,BH, EBS,BH .

(v) Use such quantities to calculate the power emitted in both cases DBS(r) and
DBH(r) defined in (5).

(vi) Calculate the temperature of the disk in both cases TBS(r) = (DBS(r)/σ)1/4 and
TBH(r) = (DBH(r)/σ)1/4.

(vii) Use such temperature to integrate the luminosity LBS(ν) and LBH(ν) using (6)
for several values of ν. We use rf = 50M and a wide range of values of rf can be
used that keep the qualitative properties of the spectra.

What we do here is to repeat our algorithm for the same mass of the object but
different values of Λ. The result can be found in Fig. 1b, where the spectrum is
softened at high frequencies when increasing Λ; in fact we notice that for Λ = 20 the
spectrum could be that of the equivalent black hole. Therefore, it would be difficult to
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distinguish between a black hole and such boson star assuming the model of accretion
disk used here. The configurations whose spectra appear in Fig. 1b, in physical units,
are equivalent to consider that the mass of the boson is m = 1.2 × 10−25GeV, which
implies a mass M = 2.8 × 106M� and various values of Λ. In fact, it would be a sort
of super massive black hole or boson star [15, 16].

It is usually thought that the more compact a boson star is, the more similar to
a BH it should be. However, the bigger the value of Λ, the less compact the boson
star [16]. That is the reason why originally BS were proposed as BHC using the case
Λ = 0 in Fig. 1b, which is a stable configuration very near the peak of instability and
the most compact; then it was possible to observe that νL(ν) is orders of magnitude
bigger for the BS than for the BH around the 1016Hz window. This hardening of the
spectrum was expected to be a signal of the existence of BSs, however not observed.

The results in Fig. 1b indicate the following set of conclusions: 1) the boson star
configuration used in [14] (Λ = 0 here) shows the hardening of the spectrum at high
frequencies and it was expected to be a signal of the existence of BSs. However those
observations have not been reported, 2) among the spectra shown in Fig. 1b, the
one with self-interaction Λ = 20 mimics the spectrum of an accretion disk produced
by a Schwarschild black hole with the same mass, 3) this idea that an accretion disk
model could help to distinguish a BS from a BH is not valid anymore when the self-
interaction coefficient gets into the game, 4) apart of the mass of the boson m, it
suffices to add the self-interaction parameter Λ to mimic the spectrum produced by a
black hole, which provides more freedom to the BS solutions, 5) therefore, boson stars
are still able to play the role of BHCs.

2.3. Boson stars as sources of gravitational waves

Another -still less studied- way to determine the existence of boson stars is the
observation of gravitational waves. At this point there are various approaches: studies
related to perturbation theory and the analysis of the quasi-normal modes of BS
[17, 18], studies using full numerical relativity applied to single perturbed boson stars
[19] and also for the collision of boson stars [20].

In the case of perturbed single boson stars, it is known that aside of the emission
of gravitational waves there is also emission of scalar field matter and the modes show
a damping effect on the gravitational wave modes that is not expected in the emission
of gravitational radiation from single perturbed perfect fluid stars [17].

3. Scalar field dark matter

3.1. The scalar field dark matter model

The most widely studied dark matter hypothesis consists in assuming that it is made
of point-like cold particles that are responsible for the formation of structure in the
universe; among the most studied candidates nowadays are the super symmetric
particles that would behave as a cold fluid made of particles. However, two
problems associated to the point-like nature of dark matter are: i) that the resulting
gravitational collapse shows a central density profile that is not flat and ii) it predicts
a non-observed amount of small structures. An alternative to ameliorate these two
problems consists in assuming that the dark matter is made of an ultra light spin-less
particle, the so called Scalar Field Dark Matter Model (SFDM). In the cosmological
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frame, the analysis of such hypothesis indicated that the mass power spectrum of
structures could be controlled through a parameter in the model, that parameter is
the mass of the scalar field representing a spin-less particle [21, 22]. Once the mass
m of the boson is fixed, the power spectrum suffers a cut-off according to the mass
of the smallest structure desired. An interesting assumption in such analysis is that
the scalar field potential was a cosh-like potential, that behaved as an exponential at
early times and as a free field case (quadratic potential) at late times, whose behavior
was that of the usual cold dark matter model and consequently the SFDM enjoys the
same advantages at cosmic scale as the standard lambda cold dark matter model.

Because the SFDM requires the existence of a fundamental scalar field for its
reliability, it is natural to consider that this scenario fits very well within unification
theory scenarios and braneworld models [23]. This by itself is a good enough reason to
consider the SFDM as an alternative powerful model. However, once at cosmic scales
the model matches with observations, it is necessary to study the predictions of the
model at structure scales. In this sense there have been several results indicating that
the model is good also at galactic scales and here we briefly summarize such results.

The fully general relativistic version of the model has stationary solutions that
explain the flatness of galactic rotation curves assuming the scalar field was real [24].
These solutions were static and difficult to generalize to more interesting cases, which
determined that the time-independence of the space-time had to be relaxed and then
scalar field dark matter halos were proposed to be gigantic Oscillatons, that is, time
dependent fully relativistic real scalar field solutions to the Einstein-Klein-Gordon
system of equations [2, 5].

The Newtonian version of the idea is the fluid dark matter made of scalar fields,
which was proposed as an alternative galactic dark matter model [25, 26]. These
models assume a static gravitational potential and consider the scalar field halos are
in dynamical equilibrium.

The newest step is related to the dynamics and formation of such configurations,
and devoted mainly to determine the stability and fate of dark matter fluctuations.
Assuming the halos are the result of the evolution of an initial fluctuation, there is
no way out of writing the set of equations driving the Newtonian version of self-
gravitating scalar fields, the Schrödinger-Poisson (SP) system of equations, for fully
time dependent wave functions and gravitational potential:

i∂tΨ = − 1

2
∇2Ψ + UΨ + ΛN |Ψ|2Ψ, (7)

∇2U = |Ψ|2,

which is the low energy-weak field limit of the EKG system of equations, where Ψ
is the Newtonian version of the scalar field φ above, U is the gravitational potential
sourced by the density of probability and ΛN is again a constant related to the mean
field approximation considering a two-particle interaction correction. The SP system is
expected to determine the nonlinear evolution at local scales of fluctuations within the
SFDM model after the turnaround point. This system of equations also becomes an
eigenvalue problem when a harmonic time dependence is assumed Ψ = eiωtψ(r). Such
solutions can also be found with zero nodes (ground states) and with many nodes. The
only stable ones are those corresponding to ground states, and the process of decay
is only thought to be that of the gravitational cooling, conducted by the emission of
scalar field [28, 29]. In Fig. 2a, branches of ground state solutions for various values of
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ΛN are shown, and in Fig. 2b we show the attractor behavior of configurations which
at initial time assume wave function profiles that do not correspond to ground states.
That is, ground state equilibrium configurations appear as the late time fate of quite
arbitrary initial density profiles. In the plot, the initial over-density fluctuations are
assumed to be spherically symmetric.
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Figure 2. (a) Equilibrium configurations for ground state solutions and various
values of ΛN . The mass is defined by M =

R

|Ψ|2d3x. Again, the parameter
is the central value of the wave function. (b) Attractor behavior for various
other configurations that cool down and approach an equilibrium ground state
configuration. In fact the two configurations shown, are initially two excited state
configurations with one and three nodes. The evolution is calculated by solving
the full time dependent SP system of equations (7) using numerical methods (see
[26, 27, 28] for details).

An advantage of the SP system versus the EKG is that it is easy to calculate
expectation values of observable operators. In particular, it is important to calculate
the total energy ET = K+W+I and the virial relation 2K+W+3I = 0, whereK,W, I
are the expectation values of the kinetic, gravitational and self-interaction operators
respectively. It has been shown that equilibrium configurations are virialized, and
thus arbitrary fluctuations tend toward virialized states.

3.2. Spherical collapse

When the SFDM is assumed to evolve according to the SP system, it is interesting
to estimate the virialization time scales depending on the mass of a given initial
fluctuation. In this direction relevant results have been found, for instance: it was
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shown that when the evolution of a structure of galactic mass is followed after the
turnaround point, it quickly virializes and tends toward a stationary ground state
equilibrium solution of the SP system of equations, whereas one of the mass of a
supercluster would still be relaxing at the present time [26]; the condition is that
the mass of the boson (m ∼ 10−23eV) determines the dynamical time scales of
the structures [22]. Thus, at the moment the pieces of the model seem to match
both, at cosmic and at local scales. Recently, in [28] it was shown that the scalar
field gravitational collapse tolerates the introduction of a self-interaction term in
the potential, which makes the model to seem quite like a self-gravitating Bose-
Condensate at zero temperature. This is so because the Schrödinger equation is the
Gross-Pitaevskii equation (the mean field approximation of a Bose Condensate) with
a gravitational potential due to the density of probability itself.

3.3. Axial collapse

In [30] it was shown also using numerical evolutions, that spherically symmetric ground
state equilibrium solutions of the SP system are stable also against non-spherical
perturbations, and moreover, that equilibrium configurations play the role of late-
time attractors for initially quite general axisymmetric initial density profiles and not
only spherical as shown in [28]. In Fig. 3 we show the evolution of two different initial
configurations made of a ground state ψeq plus an arbitrary contribution δψ, where

δψ = Ae−x2/σ2

x−z2/σ2

z , x, z are the radial and axial cylindrical coordinates respectively,
and the sigmas are the widths along the two different coordinates of the perturbation
profile δψ. The parameters used to generate Fig. 3 are σx = 1, σz = 1.5 for two
different amplitudes A = 0.1, 0.2. The increase of the mass due to the perturbation
is 5% and 9% respectively. Under such conditions, the configuration is not spherical,
and instead it shows a considerable integrated difference between the density along
z and along x: S =

∫

ρ(0, z)dz −
∫

ρ(x, 0)dx, where ρ = |Ψ|2. Such non-sphericity
weighted with the central density is also shown in Fig. 3. The evolution of the two
configurations indicates in a M vs ρ plot, that the configurations approach ground
state equilibrium configurations (the continuous line in the up-left plot) the set of
equilibrium configurations shown in Fig. 2a. This result is the analog of the spherical
collapse attractor behavior shown in Fig. 2b. Also shown is the virial relation, where
it is evident that the configuration starts oscillating around a virialized state.

3.4. Collision of two structures

Once there is a code that solves the fully time-dependent SP system with axial
symmetry, it is natural to investigate the interaction between two structures. It
was found that under the condition of positive total energy E > 0, the system can
show a solitonic behavior. In Fig. 4, one of such cases is presented. Under the
opposite condition (E < 0) the two blobs collide and form a single structure. When
desired, it is possible to add linear momentum along (for example) z to a configuration
through the application of the operator e−pzψeq on the wave function of an equilibrium
configuration.

The impact of this result might be an explanation for the unusual behavior of
dark matter observed in the 1E0657-558 cluster merger [31, 32].

The relaxation process of the collapse is well known to happen through the
emission of scalar field, a process called gravitational cooling, and was discovered
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Figure 3. Evolution of two axially symmetric initial data made of an equilibrium
configuration plus a non-spherical Gaussian like profile for ΛN = 0. Left: we
show that the initial axially symmetric configurations evolve toward spherical
equilibrium configurations (points in the solid line) through the emission of scalar
field. Right: the non-sphericity is shown for both simulations. Bottom: we show
the value of the expression 2K +W ; as it oscillates around zero with a decreasing
amplitude we conclude that the system approaches a virialized state.

VII Mexican School on Gravitation and Mathematical Physics IOP Publishing
Journal of Physics: Conference Series 91 (2007) 012003 doi:10.1088/1742-6596/91/1/012003

9



 0

 10

 20

x

-20
-10

 0
 10

 20

z

 0

 0.5

 1

ρ

 0

 10

x

-10

 0

 10

z

 0

 0.5

 1

 1.5

 2

 2.5

 3

ρ

 0

 10

 20

x

-20
-10

 0
 10

 20

z

 0

 0.5

 1

 1.5

ρ

Figure 4. Density |Ψ|2 along the head-on axis of collision at initial, mid and
after-collision times. These configurations correspond to ΛN = 0.2 and an initial
momentum along the head-on axis pz = 3.0; the configurations are initially located
in the positions (x,±15). The solitonic behavior is evident and happens under
the condition of having an unbounded system with ET = K +W + I > 0, see [33]
for further details about this type of behavior.

to happen for spherically symmetric configurations [29, 28]. In the present case of
axial symmetry, also scalar field is ejected, however it is not yet understood why the
system becomes spherical and what would the process be. It has to be explored the
possibility of extracting the amount of energy in gravitational radiation emitted in the
process of relaxation.

4. Final comments

The main question about the existence of boson stars is related to the material a BS
would be made of. What could the origin of the bosonic matter possibly be and how it
is related to the cosmological parameters, are questions that might be answered in the
next years. At the present time, it seems tempting to propose definitive observational
tests to show either that boson stars exist or not.

On the other hand, the scalar field dark matter seems to pass test after test, and
at the moment the simplest way of verifying that galactic halos are made of scalar
fields involve the oscillations of equilibrium configurations, which are fingerprints of
a particular configuration with a given mass. These oscillations produce particular
motion on test particles [4], which for the case of dust and stars in galactic halos made
of scalar field should be an indication of the potential existence of galactic scalar field
dark matter.

Three main conclusions are in turn: 1) Boson Stars are not discarded as black
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hole candidates, 2) scalar field dark matter halos should present signals at galactic
scales through the peculiar motion of test particles, 3) the apparent solitonic behavior
of the Bullet Cluster collision [31, 32] is an indication that dark matter dissipates
less momentum than luminous matter, and the condensate presented here shows this
property.

What scalar fields in gravity have in common is an important bound on
predictability: the mass of the boson fixes the spatial and time scale. The models
containing scalar fields consider the mass of the boson and the self-interaction
coefficient (or other coefficients of the scalar field potential) as free parameters and
therefore one expects that once one of these parameters is fixed by some observations
the models will be very restricted and the predictions very clear. As shown here, the
only approach to a prediction in the Newtonian case is due to the ultra light nature of
the boson mass, which is restricted through the mass power spectrum of structures.
In the strong field case (BS case) there are no solid predictions, because there is no
preferred scalar field mass suggested by an observation and at the moment one is
restricted to study a case where a BS can mimic a black hole without restriction on
the parameters of the scalar field potential.
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[26] F. S. Guzmán and L. A. Ureña-López, Phys. Rev. D 68, 024023 (2003). ArXiV: astro-
ph/0303440.
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