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ABSTRACT

Anti-de Sitter Black Holes in Supergravity. (August 2006)

Zhiwei Chong, B.S., Fudan University, Shanghai, China

Chair of Advisory Committee: Dr. Christopher Pope

In this dissertation, we systematically construct non-extremal charged rotating

anti-de Sitter black hole solutions in four, five and seven dimensions. In four di-

mensions, we first obtain the rotating Kerr-Taub-NUT metric with four independent

charges, as solutions of N = 2 supergravity coupled to three abelian vector multiplets

by the solution generating technique. Then we generalise the four-dimensional rotat-

ing solutions to the solutions of gauged N = 4 supergravity with charges set pairwise

equal. In five dimensions, the most general charged rotating black hole solution has

three charge and two rotation parameters. We obtain several special cases of the gen-

eral solution. To be specific, we obtain the first example of a non-extremal rotating

black hole solution with two independent rotation parameters, which has two charge

parameters set equal and the third vanishing. In another example, we obtain the non-

extremal charged rotating black hole solution with three charge parameters set equal

and non-equal rotation parameters. We are also able to construct the single-charge

solution with two independent rotation parameters. In seven dimensions, we obtain

the solution for non-extremal charged rotating black holes in gauged supergravity, in

the case where the three rotation parameters are set equal. There are two indepen-

dent charges, corresponding to gauge fields in the U(1) × U(1) abelian subgroup of

the SO(5) gauge group.
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CHAPTER I

INTRODUCTION

A. Fundamental Problems in Black Hole Physics

A black hole is an object in the theory of general relativity, that represents the

end-point of gravitational collapse. It is “black” because nothing, not even light,

can escape from it. It is not merely a mathematical solution in the theory of general

relativity, it is an object of study in experimental astrophysics as well. The black hole

as a classical object has already been very fascinating; the “baldness” of black holes

or “no-hair” theorem of four dimensional black holes, the separability of the Klein-

Gordon and Dirac equations in the Kerr metric, etc. It became even more fascinating

after Hawking discovered in 1974 that a black hole is not really black; it can radiate.

Since then, the black hole has become a fundamental object of study in theoretical

physics. There are several puzzles, which are so fundamental and important that it

is generally believed that a proper understanding of these will shed new light on the

understanding of both gravitational and quantum physics, leading to the hope that

one day these two fundamental theories can be reconciled to produce a consistent

unified theory of matter and quantum gravity.

Before the discovery of Hawking radiation, there was already a puzzle called the

entropy problem. When matter is thrown into a black hole, the only effect is an

increase in the mass and the area of the event horizon of the black hole, after it

settles down to a stationary state. If one does not associate an entropy with a black

hole, one will risk the violation of the second law of thermodynamics. Bekenstein

 The journal model is Nuclear Physics B.
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solved this problem by attributing an entropy to a black hole, proportional to the

area of the event horizon, so that the total entropy of the matter and the black hole

does not decrease. This is not the end of the story. Now that there is an entropy

associated with a black hole, it is natural to ask what the microscopic foundation

of the black hole is, i.e. how to understand the entropy from the point of view of

statistical mechanics. This is the core of the entropy problem. A four-dimensional

black hole is characterised by just its mass, charge and angular momentum. This is

the so called “no-hair theorem”. Now the problem is what are the microscopic states

associated with the black hole entropy? This problem was answered ten years ago in

the framework of string theory, for certain extremal and near extremal black holes

which will be discussed later.

Given a black hole with fixed entropy and energy, there is a temperature asso-

ciated with it, assuming thermodynamics is valid. If a black hole absorbs matter

with a given absorption cross section, it must also radiate with a rate proportional

to that absorption cross section to achieve thermal equilibrium. This is not possible

for a classical black hole. Hawking showed that black hole radiation is possible, by

taking into account the vacuum fluctuation of the matter fields in the background of

the black hole. One of the particles created by the fluctuation at the event horizon

falls toward the inside of the horizon, while the other particle escapes to infinity, as

is observed as radiation. This is the Hawking radiation.

The vacuum fluctuation of the matter fields in the black hole background nicely

explains the temperature of the black hole and the expected radiation from it. How-

ever, this introduces another problem, i.e. the information paradox. A black hole

continues evaporating through Hawking radiation until we are left only with the ra-

diation. In this process, whatever initially makes the black hole is transformed into

the radiation, which retains no information about where it comes from. This violates
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the unitarity of quantum theory and is called the information paradox.

Black hole physics nicely knits together the fundamental theories, i.e. general

relativity, quantum physics and thermodynamics, and raises intriguing paradoxes.

Progress in solving these problems will yield new insights in the understanding of

Nature at a fundamental level. String theory is a promising theory of quantum gravity

and a candidate for the unification of all the known interactions, so in principle the

problems related with black holes have a good chance to be explained in the framework

of string theory. Indeed string theory partially meets this expectation.

B. Counting Black Hole Microstates in String Theory

String theory has successfully answered the question of the origin of entropy for

certain ∗ black holes. It reproduces the black hole entropy by counting the number

of the string states that are in one to one correspondence with the microstates of

a black hole. [1, 2, 3] are excellent reviews †. Note that it is still not known what

the precise nature of the microstates of a black hole is, but through the one to one

correspondence, the number of black hole microstates is indirectly counted as the

number of the string states. Basically, the string states and black hole involved in

the discussion are two descriptions of the same object, in two distinct limits. On the

one hand, we can count the number of string states, while on the other hand, we can

calculate the entropy of the black hole. The outcome is that both calculations match

precisely for certain class of black holes. To achieve this, three problems need to be

answered. The first question is what string states are involved and how to count the

number. The second is what kind of black hole is involved in the discussion. The

∗It will be shown below that the black hole involved is supersymmetric and mul-
tiply charged in supergravity theory.

†The author benefited greatly from these reviews in preparation for Chapter I.
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third is what guarantees the one to one correspondence between the string states and

the black hole microstates from one limit to the other.

To make the presentation concrete, it may be helpful to digress a little into the

concept of string coupling g and two kinds of charges in string theory, i.e. NS-NS and

R-R charges. When a string is quantized in flat spacetime, not merely is the dimension

of the spacetime is determined, but an infinite tower of states corresponding to the

spectrum of particles is created by the oscillations of the string. Within this spectrum,

the massless particles are of special interest; the massless spin one particle is the gauge

field, the massless spin two particle is the graviton and a massless scalar field called

dilaton, whose asymptotic value at infinity determines the string coupling g. This

string coupling g plays a central role in understanding the NS-NS and R-R charges

(both electric and magnetic) in string theory. It is also important for understanding

the correspondence between black holes and string states. The two kinds of charges

in string theory are distinguished by the different ways they couple to the dilaton.

This difference in the coupling results in different masses for the solitons which carry

each kind of charge. Because string theory lives in higher spacetime dimensions than

four, these solitons are higher dimensional extended objects surrounded by horizons,

including strings, membranes and p-branes. To be precise, the mass of an extremal

soliton with one unit of electric NS-NS charge is of order one, the mass of a soliton

with one unit of magnetic NS-NS charge is of order 1/g2, while with one unit of R-R

charge (either electric or magnetic) is of order 1/g. So when the string coupling g is

very small, the R-R charged solitons and magnetic NS-NS charged solitons are both

very massive [2]. These basic facts are crucial in the argument of the correspondence

between string states and black holes.

One of the two limits mentioned above is the weak coupling limit, i.e. g → 0.

Before we try to answer the first question, we first argue that there does exist a
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description in this weak coupling limit. The gravitational field produced by the

charged solitons is proportional to GM , where G is Newton’s constant and M is the

mass of the solitons discussed in the previous paragraph. Noting the fact that G is

proportional to g2, one sees that the spacetime becomes flat for both the NS-NS and

R-R charged solitons in the weak coupling limit g → 0. This shows that there does exit

a nonsingular description of these solitons in the weak coupling limit. It turns out that

the electrically charged NS-NS solitons are described by perturbative string states,

due to the fact that a fundamental string couples with NS-NS charge and thence

carries NS-NS charge. For the flat spacetime description of R-R charged solitons, it

is a different matter. Strings do not carry R-R charges, because strings do not couple

to the potential, but rather to the field strength of an R-R charge. One therefore

cannot expect R-R charged solitons to be described by the usual perturbative string

states. This is where D-branes enter the picture. It turns out that the appropriate

flat spacetime description of the R-R charged solitons is via D-branes. A D-brane is

an extended object in string theory, on which open strings can end. The ends of the

open strings can move freely on the D-branes and the open string states describe the

dynamics of the D-branes. The point is that in the D-brane picture the number of

string states with R-R charge can be counted, just as the number of usual perturbative

string states can be counted for NS-NS charged solitons.

The other end of the limit is at strong coupling. In this limit the charged solitons

are described by the geometry of black holes. Because of Hawking radiation, non-

extremal black holes or black branes are not stable, and so most attention has been

focused on extreme charged black holes. Furthermore, since for a singly charged black

hole the horizon becomes singular ∗ when the extremal limit is taken, one is forced

∗This singularity prevents one from quantizing the solitons.
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to consider multiply charged black holes. The reason for this singularity is that the

dilaton diverges at the inner horizon and in the extremal limit the outer and inner

horizon coalesce. For multiply charged black holes, more fields are turned on, and the

dilaton is now regular at the horizon. This regular extremal black hole is what we

are interested in, and it can be regarded as the strong coupling limit of bound states

of D-branes.

To relate the string-state description at weak coupling with the black hole de-

scription at strong coupling, and to make possible the counting of string states to

reproduce the black hole entropy, we still lack a mechanism to establish a one to one

correspondence between string states and black hole microstates. This is made pos-

sible by supersymmetry. With supersymmetry the number of supersymmetric states

is topologically invariant, and it does not vary when the string coupling goes from

weak to strong. Each supersymmetric state with a given charge in the weak coupling

limit is described by a black hole with the same charge at strong coupling. There are

many string states carrying the same charge, and all of them are described by the

same black hole at strong coupling, so we can identify the number of supersymmetric

string states in weak coupling with the number of microstates for the black hole at

strong coupling. In this manner string theory succeeds in reproducing the entropy

calculated from the metric of the multiply charged black hole, and it accounts for the

origin of the black hole microstates∗.

As a concrete example and also the first success in counting black hole mir-

crostates, we will sketch how this was achieved by Strominger and Vafa [4] nearly

ten years ago. On the one hand, in the strong coupling limit the black hole involved

∗We still have no idea about what the nature of black hole microstates is at strong
coupling, we only know that they evolve from supersymmetric string states at weak
coupling.
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is constructed in a five dimensional supergravity theory obtained by compactifying

ten dimensional type IIB supergravity on a compact five dimensional manifold. It

is charged under two separate U(1) gauge fields such that it is supersymmetric and

regular in the extremal limit. On the other hand, at weak coupling the black hole is

described by intersecting D-branes wrapped on the compact five dimensional man-

ifold. The resulting 1+1 dimensional gauge field theory describing the intersection

is complicated. Nevertheless, the number of supersymmetric states can be counted.

Because of supersymmetry we are assured that all these supersymmetric states are

described by the same black hole in the strong coupling limit, and that the number

of black hole microstates is the same as the number of supersymetric states at weak

coupling. It turns out that for large charge the number of supersymmetric states is

just the exponential of the black hole entropy. Progress in this vein has also been

achieved for near-extremal black holes [5] and a correspondence principle [6] has been

established for any black hole entropy counting. Although the exact numerical co-

efficient does not coincide for the calculations on each side, the mass and charge

dependence are the same, and the difference in the numerical coefficient is close to

unity. Further striking progress is in the reproduction [3] of the Hawking radiation

rate and absorption cross-section of black holes in the weak coupling D-brane models.

This success in deriving black hole absorption cross-section is not merely a valuable

extension beyond the explanation of the black hole entropy, similar comparison made

for black three branes plays a significant role in leading to the acclaimed AdS/CFT

correspondence, which will be discussed later.
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C. From Black Branes to AdS/CFT Correspondence

Owing to the complexity of the 1+1 dimensional gauge theory for intersecting D-

branes, Klebanov [2] investigated a parallel D-brane system, which is simpler than

the intersecting D-brane system. There is a better understanding of the gauge theory

living on the world volume of the D-brane, leading to the hope of obtaining more

examples of counting the microstates for the corresponding black object. The D-

brane system under investigation is N coincident D3-branes, on which a U(N) gauge

field theory lives. The strong coupling description of this D-brane system is an R-R

charged black 3-brane. The entropy at strong coupling is obtained from the met-

ric of the black 3-brane, which is regular everywhere∗. This entropy is compared

with that calculated from the U(N) supersymmetric gauge field theory heated to the

same temperature as that of the black brane. It turned out that both calculations

agree up to a numerical factor of 4/3,† and remarkably they give the same temper-

ature dependence. Deriving the absorption cross-sections for massless particles is a

natural step beyond the derivation of the entropy, as was done for black holes. Kle-

banov et. al. also calculated the absorption cross-sections in the D-brane picture,

using the Dirac-Born-Infield action for coincident D-branes coupled to massless bulk

fields. Remarkably the two calculations agree exactly in the low energy limit. The

absorption cross-section is related to the imaginary part of the two point correlation

function in the supersymmetric Yang-Mills theory on the world volume of coincident

D-branes. The effort to explain this agreement and other considerations, culminated

in the conjecture of the AdS/CFT correspondence, which was formulated explicitly

∗This is due to the fact that dilaton is constant everywhere in the black 3-brane
solution. All other black brane solutions do not have this nice property.

†This constant factor 4/3 was later explained as a prediction of strongly coupled
gauge theory at finite temperature.
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by Maldacena in [7]. This had led to a new era in the study of string theory.

According to the AdS/CFT correspondence, string theory in AdS space is dual

to a conformal field theory on the conformal boundary of AdS space. The study of

AdS black holes should therefore help understanding the non-perturbative structure

of field theories by studying the supergravity solutions. To be specific, the Hawking-

Page phase transition of AdS Schwarzschild black holes can be interpreted as a ther-

mal phase transition from confinement to deconfinement in the dual D = 4, N = 2

super Yang-Mills theory, and the thermodynamics of large Schwarzschild black holes

in AdS5 space matches the thermodynamics of the gauge theory, up to a constant

[8]. This work revived the interest in studying AdS black holes in the context of

AdS/CFT correspondence. Significant progress in this direction was achieved with

the construction of the five-dimensional rotating AdS black hole in Einstein gravity

[9]. Shortly a generalisation to arbitrary dimensions is given by [10, 11]. These work

provide the foundation to the construction of AdS black hole solution in five and

seven dimensions, which will be discussed below.

This correspondence should in principle help to understand the problems in both

black hole physics and the gauge field theory. However, there is only a qualitative,

but not a quantitative, understanding of black hole physics, because one does not

know how to compute in strongly coupled gauge theories. For example, one does not

know how to reproduce the entropy of a Schwarzschild-AdS black hole from calcula-

tions on the gauge field theory side. One way to circumvent this problem is to look at

supersymmetric black holes, because with supersymmetry one may go safely from the

weakly coupled theory to the strongly coupled theory∗. This is the direct motivation

∗To be more precise, black holes preserving some amount of supersymmetry cor-
respond to an expansion around nonzero vacuum expectation values of certain CFT
operators.
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for seeking further supersymetric black hole solutions in gauged supergravity. Be-

cause the AdS5/CFT4 correspondence is better understood than AdS4/CFT3, much

work was focused on five-dimensional supersymmetric black holes. In this line, [12]

obtained BPS black holes in U(1) gauged five-dimensional supergravity by solving

the Killing spinor equations, but the solution has a naked singularity. To avoid this

problem one can either look for rotating supersymmetric black holes, or for non-

extremal solutions. The rotating supersymmetric solution found in [13] does have

a regular horizon instead of the naked singularity of the static solution, but it has

closed time-like curves(CTC’s) outside the horizon. Significant progress in the con-

struction of supersymmetric black holes was made by Gutowski and Reall [14, 15],

who obtained a regular supersymmetric black hole without CTC in five dimensional

gauged supergravity, using a method related to the so called algebraic Killing spinor∗.

This work triggered an interest in finding non-extremal black holes in five dimensional

gauged supergravity.

D. AdS Black Hole Solutions in Supergravity

After collecting higher dimensional black hole solutions in both asymptotically flat

and anti de Sitter spacetimes in Chapter II, We study four dimensional non-extremal

charged Kerr-Taub-NUT solution in ungauged and gauged supergravities [16]. In the

ungauged case, we obtain Kerr-Taub-NUT solution with four independent charges,

as solutions of N = 2 supergravity coupled to three abelian vector multiplets. This

is done by reducing the theory along the time direction to three dimensions, where

∗In this approach one assumes the existence of Killing spinor and then explore the
constraints imposed on the geometry by supersymmetry. It is powerful, and exact
solutions can be obtained. This approach also helps in finding supersymmetric black
ring solutions, which have horizons of the topology S2 × S1. For new black hole
solutions in higher dimensions, see the recent review by Horowitz [17].
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it has an O(4, 4) global symmetry. Applied to the reduction of the uncharged Kerr

metric, O(1, 1)4 ⊂ O(4, 4) transformations generate new solutions that correspond,

after lifting back to four dimensions, to the introduction of four independent elec-

tromagnetic charges. In the case where these charges are set pairwise equal, we

then generalise the four-dimensional rotating Kerr-Taub-NUT to solutions of gauged

N = 4 supergravity, with mass, angular momentum and two independent electro-

magnetic charges. The dilaton and axion fields are non-constant. The solutions in

gauged supergravity provide new gravitational backgrounds for a further study of the

AdS4/CFT3 correspondence at non-zero temperature.

Generally black holes in five dimensional gauged supergravity can have two inde-

pendent angular momenta and three independent charges. However, it is too difficult

to find the most general solution, and in fact this still remains an open problem.

There has, however, been much progress in the past year toward our final goal. The

first progress in obtaining non-extremal AdS black holes with three equal charges and

equal angular momenta was made by Cvetic, Lu and Pope in [18]. Shortly after, it

was generalized to a solution with three independent charges [19]. It was a challenge

to find solutions with two independent angular momenta, because a solution with two

rotations depends intrinsically on two coordinate variables rather than one, and so

the equations of motion are partial differential equations, which makes the problem

much more involved. The first example with two independent angular momenta was

discovered in [20], which has three charges with a certain constraint among them.

Major progress was made in [21], where a solution with two rotations and three equal

charges was obtained. This solution makes possible the comparison between the en-

tropy of supersymmetric five-dimensional AdS black holes and that calculated from

the counting of microstates in the D-brane models involving giant gravitons in the

very recent paper [22]. In Chapter IV, we will present the details in constructing
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these five-dimensional charged rotating AdS black hole solutions.

In Chapter V, we obtain the solution for non-extremal charged rotating black

holes in seven-dimensional gauged supergravity [23], in the case where the three ro-

tation parameters are set equal. There are two independent charges, corresponding

to gauge fields in the U(1) × U(1) abelian subgroup of the SO(5) gauge group. A

new feature in these solutions, not seen previously in lower-dimensional examples,

is that the first-order “odd-dimensional self-duality” equation for the 4-form field

strength plays a non-trivial rôle. Our results are of significance for the AdS7/CFT6

correspondence in M-theory. We conclude this dissertation in Chapter VI.
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CHAPTER II

SOME PRELIMINARIES

A. Introduction

The construction of charged AdS black hole solutions in gauged supergravity in vari-

ous dimensions is based on two recent developments. One is the construction of AdS

black hole solution in all dimensions in pure Einstein gravity [9, 10, 11], and the other

is the systematic construction of charged asymptotically flat black hole solutions in

ungauged supergravity obtained by solution generating techniques [24]. Both of the

two developments are based on the construction of higher dimensional asymptotically

flat black hole solutions in pure Einstein gravity [25].

In the following, firstly I will present the asymptotically flat black hole solu-

tions in higher dimensions [25]. For the anti-de Sitter black holes, I will present the

five-dimensional solution [9], which is the first anti-de Sitter black hole solution in a

dimension higher than four, and its generalisation to all dimensions [10]. As for the

charged black hole solutions in ungauged supergravities, the four-dimensional Kerr-

Taub-NUT metrics are constructed in Chapter III, the seven-dimensional charged ro-

tating black solutions are constructed in Chapter V, and the general five -dimensional

charged rotating black hole solutions [26] are presented in Appendix A.

B. Black Hole Solutions in Higher Dimensions

There are two reasons to study higher dimensional black holes [1]. The first one comes

from string theory. String theory, which is widely accepted as a promising candidate

for the theory of quantum gravity, predicts that the spacetime dimension is higher

than four. The second reason is for the understanding of black hole physics itself.



14

There are some nice properties such as “no hair theorem” for four-dimensional black

holes. It is of interest to see if these properties survive in higher dimensions than

four.

Originally the rotating Kerr black hole solution in four dimensions was found in

the so called Kerr-Schild form, and so was its generalisation [25] to higher dimensions

in asymptotically flat spacetimes. In the Kerr-Schild form the full metric can be

expressed as a sum of a flat space-time metric, which is in a special coordinate system,

and a vector squared.

ds2 = gµνdx
µdxν = ηµνdx

µdxν +
2M

U
(kµdx

µ)2 , (2.1)

where the vector kµ is null and geodesic with respect to both the flat space metric

ηµν and the full metric gµν .

Odd and even dimensions have separate solutions. For even dimensions D =

2n ≥ 4, in flat spacetime coordinates xi, yi, z, t (i = 1, · · ·n− 1), the null vector is

k = kµdx
µ = dt+

n−1∑
i=1

r(xidxi + yidyi) + ai(xidyi − yidxi)

r2 + a2
i

+
zdz

r
, (2.2)

with

U =
1

r

(
1−

n−1∑
i=1

a2
i (x2

i + y2
i )

(r2 + a2
i )

2

) n−1∏
j=1

(r2 + a2
j) , (2.3)

and
n−1∑
i=1

x2
i + y2

i

r2 + a2
i

+
z2

r2
= 1 . (2.4)

where ai are (n − 1) independent rotation parameters in (n − 1) orthogonal spatial

2-planes.

In odd spacetime dimensions D = 2n + 1, there is no z coordinate, and so the

terms involving z are omitted. U is then 1/r times the right-hand side of equation

(2.3).
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Cvetic and Youm [26] used these solutions to obtain charged black hole solutions

in ungauged supergravity theories in various dimensions by using the solution gener-

ating techniques [24]. Recently Gibbons et. al generalised these asymptotically flat

black holes in pure Einstein gravity to asymptotically anti-de Sitter black holes in all

dimensions [10].

C. AdS Black Hole Solutions in Higher Dimensions

It is of interest to briefly retrace the history of four-dimensional black hole solution

before I present the higher dimensional AdS black hole solutions. The Schwarzschild-

like non-rotating black hole in asymptotically Anti de-Sitter space was found shortly

after the discovery of Schwarzschild black hole. It took more than fifty years to

discover the rotating, asymptotically flat Kerr black holes in four dimensions. The

rotating AdS black hole solution in four dimensions was originally discovered as a

“pure geometric curiosity” by Carter [27] in an attempt to rederive the Kerr solution

based on some assumptions on separability.

Due to AdS/CFT correspondence in string theory, there is more and more interest

in higher dimensional AdS black holes. The first example of this kind is the black

hole solution with two independent rotation parameters in five dimensions obtained

by Hawking et.al [9].

1. AdS Black Holes in Five Dimensions

The metric for the two parameter five-dimensional rotating black hole is given by

ds2 = −∆

ρ2
(dt− a sin2 θ

Ξa
dφ− b cos2 θ

Ξb
dψ)2 +

∆θ sin2 θ

ρ2
(adt− (r2 + a2)

Ξa
dφ)2

+
∆θ cos2 θ

ρ2
(bdt− (r2 + b2)

Ξb
dψ)2 +

ρ2

∆
dr2 +

ρ2

∆θ

dθ2 (2.5)
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+
(1 + r2g2)

r2ρ2

(
abdt− b(r2 + a2) sin2 θ

Ξa
dφ− a(r2 + b2) cos2 θ

Ξb
dψ

)2

,

where

∆ =
1

r2
(r2 + a2)(r2 + b2)(1 + r2g2)− 2M ;

∆θ =
(
1− a2g2 cos2 θ − b2g2 sin2 θ

)
; (2.6)

ρ2 =
(
r2 + a2 cos2 θ + b2 sin2 θ

)
;

Ξa = (1− a2g2); Ξb = (1− b2g2).

After some coordinate transformations, this metric can be put into a very nice form

[28]

ds2 = (x+ y)
(dx2

4X
+
dy2

4Y

)
− X

x(x+ y)
(dt+ y dφ)2 +

Y

y(x+ y)
(dt− x dφ)2

+
a2b2

xy

(
dt− xydχ− (x− y)dφ

)2

, (2.7)

where

X = (1 + g2x)(x+ a2)(x+ b2)− 2Mx

= g2x3 + (1 + (a2 + b2)g2)x2 + (a2 + b2 + a2b2g2 − 2M)x+ a2b2 ,

Y = −(1− g2y)(a2 − y)(b2 − y) + 2Ly

= g2y3 − (1 + (a2 + b2)g2)y2 + (a2 + b2 + a2b2g2 + 2L)y − a2b2 . (2.8)

2. Anti-de Sitter Black Holes in All Dimensions

Higher dimensional Kerr-de Sitter metrics [10] are obtained by natural generalisations

to the previously known D = 4 and D = 5 Kerr-de Sitter metrics casted in Kerr-

Schild form. Note that odd and even dimensions have separate solutions. We copied

the result from [10] in the following.
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We begin by introducing n = [D/2] coordinates µi, which are subject to the

constraint
n∑
i=1

µ2
i = 1 , (2.9)

together with N = [(D−1)/2] azimuthal angular coordinates φi, the radial coordinate

r, and the time coordinate t. When the total spacetime dimension D is odd, D =

2n + 1 = 2N + 1, there are n azimuthal coordinates φi, each with period 2π. If D

is even, D = 2n = 2N + 2, there are only N = (n − 1) azimuthal coordinates φi,

which we take to be (φ1, φ2, . . . , φn−1). When D is odd, all the µi lie in the interval

0 ≤ µi ≤ 1, whereas when D is even, the µi all lie in this interval except µn, for which

−1 ≤ µn ≤ 1.

The Kerr-de Sitter metrics ds2 satisfy the Einstein equation

Rµν = (D − 1)λ gµν . (2.10)

We first make the definitions

W ≡
n∑
i=1

µ2
i

1 + λ a2
i

, F ≡ r2

1− λ r2

n∑
i=1

µ2
i

r2 + a2
i

. (2.11)

In D = 2n+ 1 dimensions the Kerr-de Sitter metrics are given by

ds2 = ds̄2 +
2M

U
(kµ dx

µ)2 , (2.12)

where the de Sitter metric ds̄2, the null one-form kµ, and the function U are given by

ds̄2 = −W (1− λ r2) dt2 + F dr2 +
n∑
i=1

r2 + a2
i

1 + λ a2
i

(dµ2
i + µ2

i dφ
2
i )

+
λ

W (1− λ r2)

( n∑
i=1

(r2 + a2
i )µi dµi

1 + λ a2
i

)2

, (2.13)

kµ dx
µ = W dt+ F dr −

n∑
i=1

ai µ
2
i

1 + λ a2
i

dφi , (2.14)
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U =
n∑
i=1

µ2
i

r2 + a2
i

n∏
j=1

(r2 + a2
j) . (2.15)

Note that the null vector corresponding to the null one-form is

kµ ∂µ = − 1

1− λ r2

∂

∂t
+

∂

∂r
−

n∑
i=1

ai
r2 + a2

i

∂

∂φi
. (2.16)

In D = 2n dimensions, the Kerr-de Sitter metrics are given by

ds2 = ds̄2 +
2M

U
(kµ dx

µ)2 , (2.17)

where the de Sitter metric ds̄2, the null vector kµ, and the function U are now given

by

ds̄2 = −W (1− λ r2) dt2 + F dr2 +
n∑
i=1

r2 + a2
i

1 + λ a2
i

dµ2
i +

n−1∑
i=1

r2 + a2
i

1 + λ a2
i

µ2
i dφ

2
i

+
λ

W (1− λ r2)

( n∑
i=1

(r2 + a2
i )µi dµi

1 + λ a2
i

)2

, (2.18)

kµ dx
µ = W dt+ F dr −

n−1∑
i=1

ai µ
2
i

1 + λ a2
i

dφi , (2.19)

U = r
n∑
i=1

µ2
i

r2 + a2
i

n−1∏
j=1

(r2 + a2
j) . (2.20)

In this even-dimensional case, where there is no azimuthal coordinate φn, there is also

no associated rotation parameter, and so an = 0. In this case kµ is given by

kµ ∂µ = − 1

1− λ r2

∂

∂t
+

∂

∂r
−

n−1∑
i=1

ai
r2 + a2

i

∂

∂φi
. (2.21)

The vector field kµ is tangent to a null-geodesic congruence in both even and odd

dimensions.

These higher dimensional anti-de Sitter black hole solutions, especially those in

five and seven dimensions, together with the charged asymptotically flat black holes

in ungauged supergravities, which will be presented in the related chapters, provide
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the foundations for the search of charged rotating anti-de Sitter black hole solutions

in gauged supergravities.
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CHAPTER III

CHARGED KERR-TAUB-NUT SOLUTION IN FOUR DIMENSIONAL GAUGED

AND UNGAUGED SUPERGRAVITIES

A. Introduction ∗

Rotating charged black hole solutions of ungauged supergravity play an important

role in the microscopic study of black hole entropy. It turns out that the microscopic

properties can be addressed quantitatively not only for BPS black holes, but also for

black holes that are close to extremality. (For a recent review see [3], and references

therein.) The prerequisite for these studies is to obtain explicit black hole solutions

on the supergravity side. These solutions are typically characterised by multiple

electromagnetic charges, in addition to the mass and angular momenta. In four

dimensions, such explicit non-extremal solutions, specified by their mass, angular

momentum parameter and four charges, were found in [29]. The explicit metric and

scalar fields for four-dimensional four-charge rotating black holes were obtained in

[29]. Unfortunately, the explicit form of the four gauge potentials for this solution

was not given explicitly in [29]. These solutions of ungauged supergravity all provide

gravitational backgrounds for the microscopic study of black hole entropy within the

string theory framework.

By contrast, black holes in gauged supergravity provide gravitational backgrounds

that are relevant to the AdS/CFT correspondence. In particular, such non-extremal

solutions play an important role in the study of the dual field theory at non-zero tem-

perature. (An early study of the implications of static charged AdS black holes [30] in

∗Reprinted from Nuclear Physics B, Vol 717, Z. W. Chong, M. Cvetic, H. Lu and
C. N. Pope, Charged rotating black holes in four-dimensional gauged and ungauged
supergravities, Pages 246-271, Copyright 2005, with permission from Elsevier.
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the dual theory was carried out in [31, 32]. For recent related work see [33, 34, 35] and

references therein.) However, the explicit form of charged AdS black hole solutions

that are also rotating has remained elusive until recently. In four dimensions, there

should exist rotating black hole solutions in gauged N = 8 supergravity with four

independent electromagnetic charges. Until now, the only known solutions of this

type were the Kerr-Newman-AdS black holes [27, 36], which correspond to setting

the four electromagnetic charges equal.

One of the purposes of this chapter is first to construct the complete and explicit

form of the general rotating black holes of four-dimensional ungauged supergravity,

with four independent electromagnetic charges. They can be viewed as solutions in

ungauged N = 2 supergravity coupled to three vector multiplets, which in turn can

be embedded in N = 8 maximal supergravity. We employ a solution-generating

technique in which the N = 2 theory is reduced to three dimensions on the time

direction, where it has an O(4, 4) global symmetry. By acting on the reduction of the

uncharged Kerr solution with an O(1, 1)4 ⊂ O(4, 4) subgroup of the global symmetry,

we obtain a new solution that lifts back to a solution of the four-dimensional theory

with four independent electromagnetic charges. In this formulation, two of the U(1)

charges are electric and two are magnetic. By obtaining the explicit form of the four

U(1) gauge potentials, as well as the other fields, we therefore complete the results in

[29], where the metric and scalar fields were found. We then apply the same generating

technique to generalise these results by the inclusion also of the NUT parameter.

The second goal of this chapter is to obtain charged rotating black hole solutions

in four-dimensional gauged supergravity. We have been able to do this in the case

where the four charges of the ungauged theory are first set pairwise equal. With this

restriction, we are able to conjecture, and then explicitly verify, the expression for the

two-charge rotating black hole solutions of N = 4 gauged supergravity. The solutions
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have varying dilaton and axion fields.

This chapter is organized as follows. In Section B we describe the solution-

generating technique for constructing charged rotating black holes of four-dimensional

ungauged supergravity. In fact the procedure can be used to introduce four indepen-

dent charges in any Ricci-flat four dimensional metric admitting a timelike Killing

vector. In Section C we present the explicit form of the four-charge rotating black

hole solution, generated from the Plebanski metric, in which in addition to the Kerr

metric the NUT parameter is non-zero, and give its specialisation to the case where

the charges are set pairwise equal. In Section D we present the generalisation of this

latter case to a solution in N = 4 gauged supergravity. We conclude this chapter in

Section E.

B. Charge-Generating Procedure

In this section, we set up the basic formalism for generating four-dimensional con-

figurations carrying 4 independent charges, that are solutions of ungauged N = 2

supergravity coupled to three vector multiplets. This theory, and hence also its so-

lutions, can be consistently embedded in four-dimensional N = 8 supergravity. The

procedure involves starting with an uncharged four-dimensional solution that has a

timelike Killing vector ∂/∂t, and reducing it to three dimensions on the t direction.

The reduction of the N = 2 theory itself yields a three-dimensional theory with an

O(4, 4) global symmetry, after all the three-dimensional vector fields have been du-

alised to axions. By acting with an O(1, 1)4 subgroup of O(4, 4) on the dimensionally

reduced solution, we generate new solutions involving four parameters δi character-

ising the O(1, 1)4 transformation. Upon undualising the transformed dualised axions

back to vectors again, and lifting back to D = 4, we thereby arrive at supergravity
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solutions carrying 4 electromagnetic charges, parameterised by the δi.

In this section, we shall present the three-dimensional results for the reduction

and O(1, 1)4 transformation of a general four-dimensional uncharged solution with a

timelike Killing vector ∂/∂t. One cannot abstractly “undualise” the three-dimensional

scalars that originate from vectors in D = 4 (or from the Kaluza-Klein vector),

since dualisation is intrinsically a non-local procedure. However, once one has an

explicit solution, the process of undualisation can be implemented explicitly. Thus,

in subsequent sections we shall apply these results to particular cases, and implement

the complete and explicit construction of the charged four-dimensional solutions. (A

solution-generating technique of the type we are using here was first employed in [37],

to obtain electrically charged rotating black holes in ungauged supergravity.) As we

shall see later, our solutions will carry two electric and two magnetic charges.

1. O(4, 4) Symmetry of the Reduced D = 3 Theory

The four-dimensional Lagrangian for the bosonic sector of the N = 2 supergravity

coupled to three vector multiplets can be written as∗

L4 = R ∗1l− 1
2
∗dϕi ∧ dϕi − 1

2
e2ϕi ∗dχi ∧ dχi − 1

2
e−ϕ1

(
eϕ2−ϕ3 ∗F̂(2)1 ∧ F̂(2)1

+eϕ2+ϕ3 ∗F̂(2)2 ∧ F̂(2)2 + e−ϕ2+ϕ3 ∗F̂1
(2) ∧ F̂1

(2) + e−ϕ2−ϕ3 ∗F̂2
(2) ∧ F̂2

(2)

)
−χ1 (F̂(2)1 ∧ F̂1

(2) + F̂(2)2 ∧ F̂2
(2)) , (3.1)

∗Our conventions for dualisation are that a p-form ω with components defined
by ω = 1/p!ωi1···ip dx

i1 ∧ · · · ∧ dxip has dual ∗ω with components (∗ω)ii···iD−p =
1/p! εi1···iD−pji···jp ω

j1···jp .
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where the index i labelling the dilatons ϕi and axions χi ranges over 1 ≤ i ≤ 3. The

four field strengths can be written in terms of potentials as

F̂(2)1 = dÂ(1)1 − χ2 dÂ2
(1) ,

F̂(2)2 = dÂ(1)2 + χ2 dÂ1
(1) − χ3 dÂ(1)1 + χ2 χ3 dÂ2

(1) ,

F̂1
(2) = dÂ1

(1) + χ3 dÂ2
(1) ,

F̂2
(2) = dÂ2

(1) . (3.2)

Note that we are placing hats on the four-dimensional field strength and gauge po-

tentials, to distinguish them from the three-dimensional fields. The four-dimensional

theory can be obtained from six-dimensions, by reducing the bosonic string action

L6 = R ∗1l− 1
2
e−

√
2φ ∗F(3) ∧ F(3) (3.3)

on T 2. Thus the four-dimensional Lagrangian itself has an O(2, 2) ∼ SL(2, R) ×

SL(2, R) global symmetry, which enlarges at the level of the equations of motion

to include a third SL(2, R) factor when electric/magnetic S-duality transformations

are included. We are going to reduce it one stage further, to D = 3. If left in its

raw form, the three-dimensional Lagrangian would have an O(3, 3) global symmetry.

However, if the 1-form potentials in D = 3 are dualised to axions (so that there are

only dilatons and axions, plus the metric, in D = 3), then as is well known, the global

symmetry will be enhanced to O(4, 4). The reduction from D = 4 to D = 3 will be

performed on the time coordinate. This will imply that the coset parameterised by

the dilatons and axions will not be O(4, 4)/(O(4)×O(4)), as would be the case for a

spacelike reduction, but instead O(4, 4)/O(4, C).

To proceed, we first reduce the fields in the Lagrangian (3.1), according to the

standard Kaluza-Klein reduction scheme adapted to the case of a timelike reduction.
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Thus we write the following reduction ansätze for the metric and for 1-form potentials:

dŝ2
4 = −eϕ4 (dt+ B(1))

2 + e−ϕ4 ds2
3 , (3.4)

Â(1) = A(1) + A(0) (dt+ B(1)) . (3.5)

The field strengths reduce according to the rule

F̂(2) = F2 + F1 ∧ (dt+ B(1)) . (3.6)

In order to abbreviate the description, we shall directly present the fully-dualised

form of the three-dimensional Lagrangian that results from reducing (3.1) according

to this scheme, and then indicate afterwards how the three-dimensional fields are re-

lated to the four-dimensional ones. We find that the fully-dualised three-dimensional

Lagrangian can be written as

e−1 L3 = R− 1
2
(∂ϕi)

2 − 1
2
e2ϕ1 (∂χ1)

2 − 1
2
e2ϕ2 (∂χ2)

2 − 1
2
e3ϕ1 (∂χ3)

2

−1
2
e−2ϕ4 (∂χ4 + σ1 ∂ψ1 + σ2 ∂ψ2 + σ3 ∂ψ3 + σ4 ∂ψ4)

2

+1
2
e−ϕ1+ϕ2−ϕ3−ϕ4 (∂σ1 − χ2 ∂σ4)

2

+1
2
e−ϕ1+ϕ2+ϕ3−ϕ4 (∂σ2 + χ2 ∂σ3 − χ3 ∂σ1 + χ2 χ3 ∂σ4)

2

+1
2
e−ϕ1−ϕ2+ϕ3−ϕ4 (∂σ3 + χ3 ∂σ4)

2 + 1
2
e−ϕ1−ϕ2−ϕ3−ϕ4 (∂σ4)

2

+1
2
eϕ1−ϕ2+ϕ3−ϕ4 (∂ψ1 + χ3 ∂ψ2 − χ1 ∂σ3 − χ1 χ3 ∂σ4)

2

+1
2
eϕ1−ϕ2−ϕ3−ϕ4 (∂ψ2 − χ1 ∂σ4)

2

+1
2
eϕ1+ϕ2−ϕ3−ϕ4 (∂ψ3 − χ2 ∂ψ2 − χ1 ∂σ1 + χ1 χ2 ∂σ4)

2

+1
2
eϕ1+ϕ2+ϕ3−ϕ4 (∂ψ4 + χ2 ∂ψ1 − χ3 ∂ψ3 − χ1 ∂σ2 + χ2 χ3 ∂ψ2

−χ1 χ2 ∂σ3 + χ1 χ3 ∂σ1 − χ1 χ2 χ3 ∂σ4)
2 , (3.7)

where now the i index ranges over 1 ≤ i ≤ 4. Note that the last eight terms have
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the non-standard sign for their kinetic terms, in consequence of the timelike reduc-

tion, and the subsequent dualisations in a Euclidean-signature metric. The axion χ4

corresponds to the dual of the Kaluza-Klein vector B(1) in (3.4); the axions σi corre-

spond to the components A(0) (as in (3.5)) of the reductions of the 4 four-dimensional

potentials, in the order (A(1)1, A(1)2,A1
(1),A2

(1)); and the axions ψi correspond to the

dualisations of the three-dimensional 1-forms A(1) in (3.5), taken in the same order as

the σi.

In detail, the dualisations are performed as follows.∗ The field strength G(2) =

dB(1) for the Kaluza-Klein 1-form is replaced by

e2ϕ4 ∗G(2) = dχ4 + σ1 dψ1 + σ2 dψ2 + σ3 dψ3 + σ4 dψ4 . (3.8)

The four field strengths coming from the four field strengths in four dimensions are

replaced by

−e−ϕ1+ϕ2−ϕ3+ϕ4 ∗F(2)1 = dψ1 + χ3 dψ2 − χ1 dσ3 − χ1 χ3 dσ4 ,

−e−ϕ1+ϕ2+ϕ3+ϕ4 ∗F(2)2 = dψ2 − χ1 dσ4 ,

−e−ϕ1−ϕ2+ϕ3+ϕ4 ∗F1
(2) = dψ3 − χ2 dψ2 − χ1 dσ1 + χ1 χ2 dσ4 ,

−e−ϕ1−ϕ2−ϕ3+ϕ4 ∗F2
(2) = dψ4 + χ2 dψ1 − χ3 dψ3 − χ1 dσ2 + χ2 χ3 dψ2

−χ1 χ2 dσ3 + χ1 χ3 dσ1 − χ1 χ2 χ3 dσ4 . (3.9)

The Lagrangian (3.7) can be re-expressed as

L3 = R ∗1l− 1
2
∗dϕi ∧ dϕi − 1

2

12∑
α=1

ηα e
~aα·~ϕ ∗Fα ∧ Fα , (3.10)

where each of the twelve 1-form field strengths Fα can be read off by comparison with

∗These results are obtained by applying the standard procedure of introducing the
dual potential as a Lagrange muliplier for the Bianchi identity of the original field
strength.
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the twelve axion kinetic terms in (3.7). Likewise, the corresponding dilaton vector

~aα can be read off from the dilatonic prefactor of each axion kinetic term, and the

coefficients ηα = ±1 can be read off from the signs of the kinetic terms. One can then

easily see that, as in the constructions in [38], we have

dFα = 1
2
fαβγ F

β ∧ F γ . (3.11)

Introducing generators Eα and defining F ≡ FαEα, one can express (3.11) as dF =

F ∧ F , where

[Eα, Eβ] = fγαβ Eγ . (3.12)

As in the discussions in [38], the Eα are easily seen to be the positive-root generators

of the global symmetry group O(4, 4). We also introduce the four Cartan generators

~H, which satisfy

[ ~H,Eα] = ~aαEα . (3.13)

In an obvious notation, we may label the twelve positive-root generators by

Eα = (Eχ1 , Eχ2 , . . . , Eσ1 , Eσ2 , . . . , Eψ1 , Eψ2 , . . .) . (3.14)

The simple root generators are (Eχ1 , Eχ2 , Eχ3 , Eσ4). The non-vanishing commutators

are given by

[Eσ1 , Eψ1 ] = Eχ4 , [Eσ2 , Eψ2 ] = Eχ4 , [Eσ3 , Eψ3 ] = Eχ4 , [Eσ4 , Eψ4 ] = Eχ4 , (3.15)

[Eχ2 , Eσ4 ] = −Eσ1 , [Eχ2 , Eσ3 ] = Eσ2 , [Eχ3 , Eσ1 ] = −Eσ2 , [Eχ3 , Eσ4 ] = Eσ3 ,

[Eχ3 , Eψ2 ] = Eψ1 , [Eχ1 , Eσ3 ] = −Eψ1 , [Eχ1 , Eσ4 ] = −Eψ2 , [Eχ2 , Eψ2 ] = −Eψ3 ,

[Eχ1 , Eσ1 ] = −Eψ3 , [Eχ2 , Eψ1 ] = Eψ4 , [Eχ3 , Eψ3 ] = −Eψ4 , [Eχ1 , Eσ2 ] = −Eψ4 .
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Following [38] we now define a Borel-gauge coset representative V as follows:

V = e
1
2
~ϕ· ~H Uχ Uσ Uψ , (3.16)

where

Uχ = eχ1 Eχ1 eχ2 Eχ2 eχ3 Eχ3 eχ4 Eχ4 ,

Uσ = eσ1 Eσ1 eσ2 Eσ2 eσ3 Eσ3 eσ4 Eσ4 ,

Uψ = eψ1 Eψ1 eψ2 Eψ2 eψ3 Eψ3 eψ4 Eψ4 . (3.17)

A straightforward calculation shows that if we define U ≡ Uχ Uσ Uψ then

dU U−1 = F =
∑
α

FαEα , (3.18)

and we also have

dV V−1 = 1
2
d~ϕ · ~H +

∑
α

e
1
2
~aα·~ϕ FαEα . (3.19)

Defining

M≡ VT η V , (3.20)

it can be seen that the fully-dualised three-dimensional Lagrangian (3.7) can be writ-

ten as

e−1 L3 = R− 1
8
tr(∂M−1 ∂M) . (3.21)

This makes the O(4, 4) global symmetry manifest. Note that the constant matrix η

in (3.20) is chosen so that the required distribution of positive and negative signs in

the kinetic terms in (3.7) is obtained. Specifically, η is preserved under an O(4, C)

subgroup of O(4, 4) matrices K:

KT η K = η . (3.22)

(If we had instead performed a spacelike reduction to D = 3, so that all the kinetic
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terms were of the standard sign, we would take η = 1l, and the subgroup of O(4, 4)

matrices satisfying KT K = 1l would be O(4)×O(4).)

In order to generate the 4-charge solution, we shall act on the dimensional reduc-

tion of the uncharged Kerr black hole with an O(1, 1)4 subgroup of O(4, 4). Specifi-

cally, we shall take the O(1, 1)4 generators to be

λ1 = Eψ1 + ET
ψ1
, λ2 = Eσ2 + ET

σ2
,

λ3 = Eψ3 + ET
ψ3
, λ4 = Eσ4 + ET

σ4
, (3.23)

and the O(1, 1)4 matrix

Λ ≡ eδi λi (3.24)

will be used to act on V by right multiplication. In principle, we can calculate the

resulting transformations of the fields from

V ′ = OV Λ , (3.25)

where O is an O(4, C) compensating transformation that restores the coset represen-

tative to the Borel gauge as in (3.16). In practice, the drawback to this approach is

that finding the required compensating transformation can be rather tricky. Instead,

we can calculate the field transformations using

M′ = ΛT MΛ , (3.26)

which avoids the need to find the compensating transformation. The price to be

paid for this is that M is a much more complicated matrix than V . However, by

using an explicit realisation for the O(4, 4) matrices, the problem is easily tractable

by computer.
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2. O(1, 1)4 Transformation of a Reduced Uncharged Solution

When we implement the solution-generating procedure, our starting point in all cases

will be an uncharged four-dimensional solution of the ungauged N = 2 supergravity

coupled to three vector multiplets, whose bosonic equations of motion are described

by the Lagrangian (3.1). More specifically, in all our examples the starting point

will be a solution of pure four-dimensional gravity, i.e. a Ricci-flat metric, admitting

a timelike Killing vector ∂/∂t. After reduction on the t direction, it follows that

the only non-trivial three-dimensional fields will be the 3-metric ds2
3, the Kaluza-

Klein vector B(1) and the Kaluza-Klein scalar ϕ4. The Kaluza-Klein vector is then

dualised to an axion, χ4, using (3.8). In view of the fact that all the scalars σi and ψi

(associated with the reduction of the 4 four-dimensional vector fields) are zero in the

starting configuration, the dualisation of B(1) at this stage is therefore simply given

by

e2ϕ4 ∗dB(1) = dχ4 . (3.27)

We now implement the O(1, 1)4 transformations, as described in section B, taking

as our starting point a three-dimensional configuration where only ds2
3, ϕ4 and χ4 are

non-trivial. For convenience, we shall denote these starting expressions for ϕ4 and χ4

by ϕ̃4 and χ̃4, and then we denote the final expressions for all the O(1, 1)4-transformed

fields by their symbols without tildes. (Since the three-dimensional metric is inert

under O(4, 4) transformations, we don’t need to introduce a tilde on the starting ds2
3.)

The starting coset representative V is therefore given by

V = e
1
2
ϕ̃4H4 eχ̃4 Eχ4 . (3.28)

Constructing M = VT η V , and acting with the O(1, 1)4 matrix Λ as in (3.26), we

can obtain the transformed three-dimensional solution. Our results for the three-
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dimensional fields after O(1, 1)4 transformation are as follows:

σ1 =
χ̃4

(
h1(c234s1 − c1s234 e

ϕ̃4) + c1s1s1234 χ̃
2
4

)
W 2

,

σ2 =
c2

s2

− c2h1h3h4 + (c134s2 − c2s134 e
ϕ̃4) s134 χ̃

2
4

s2W 2
,

σ3 =
χ̃4

(
h3(c124s3 − c3S124 e

ϕ̃4) + c3s3s1234 χ̃
2
4

)
W 2

,

σ4 =
c4

s3

− c4h1h2h3 + (c123s4 − c4s123 e
ϕ̃4) s123 χ̃

2
4

s4W 2
,

ψ1 =
c1

s1

− c1h2h3h4 + (c234s1 − c1s234 e
ϕ̃4) s234 χ̃

2
4

s1W 2
,

ψ2 = −
χ̃4

(
h2(c134s2 − c2s134 e

ϕ̃4) + c2s2s1234 χ̃
2
4

)
W 2

,

ψ3 =
c3

s3

− c3h1h2h4 + (c124s3 − c3s124 e
ϕ̃4) s124 χ̃

2
4

s3W 2
,

ψ4 = −
χ̃4

(
h4(c123s4 − c4s123 e

ϕ̃4) + c4s4s1234 χ̃
2
4

)
W 2

,

eϕ1 =
h1h3 + s2

13χ̃
2
4

W
, eϕ2 =

h2h3 + s2
23χ̃

2
4

W
,

eϕ3 =
h1h2 + s2

12χ̃
2
4

W
, eϕ4 =

eϕ̃4

W
, χ1 =

(c13s24 − c24s13)χ̃4

h1h3 + s2
13χ̃

2
4

,

χ2 =
(c14s23 − c23s14)χ̃4

h2h3 + s2
23χ̃

2
4

, χ3 =
(c12s34 − c34s12)χ̃4

h1h2 + s2
12χ̃

2
4

,

χ4 =
χ̃4

W 2(h1h2 + s2
12χ̃

2
4)

{
h1h2

[
c1234(1 + s2

2 + s2
4) + s1234(1 + s2

2 + s2
4)e

2ϕ̃4

−
(
c1234(s

2
2 + s2

4) + s1234(2 + s2
2 + s2

4)
)
eϕ̃4

]
+ s1234s

2
12(1 + s2

2 + s2
4)χ̃

4
4

+s12χ
2
4

[
c12(c12s34 + c34s12)(1 + s2

2 + s2
4)−

(
(c1234s12(s

2
2 + s2

4)

+s34(s
2
1 + s2

2 + 5s2
12 + s4

2 + 3s2
1s

4
2 + s2

1s
2
4 + s2

24 + 3s2
124)

)
eϕ̃4

+2s1234s12(1 + s2
2 + s2

4)e
2ϕ̃4

]}
, (3.29)

where

hi = c2
i − s2

i e
ϕ̃4 , ci1···in = cosh δi · · · cosh δin , si1···in = sinh δi · · · sinh δin ,
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W 2 = h1h2h3h4 + χ̃2
4

(
2c1234s1234 − (s2

123 + s2
124 + s2

134 + s2
234 + 4s2

1234) e
ϕ̃4

+2s2
1234e

2ϕ̃4

)
+ s1234χ̃

4
4 . (3.30)

C. 4-Charge Rotating NUT Solution in Ungauged Supergravity

In this section, we implement the procedure described in section B to generate the

solution for a 4-charge rotating black hole in four dimensions. Our starting point,

therefore, is simply the four-dimensional Plebanski [39, 40] solution, namely

ds2
4 = − ∆̃r

a2(r2 + u2)
[adt+u2 dφ]2 +

∆̃u

a2(r2 + u2)
[adt−r2 dφ]2 +(r2 +u2)

(dr2

∆̃r

+
du2

∆̃u

)
,

(3.31)

where the functions ∆̃r and ∆̃u are given by

∆̃r = a2 + r2 − 2mr , ∆̃u = a2 − u2 + 2` r . (3.32)

Here m is the mass, ` is the NUT parameter, and a is the rotation parameter.

Recasting it in the form (3.4), we can read off the reduced three-dimensional

metric, Kaluza-Klein vector and Kaluza-Klein scalar. After dualisation, using (3.27),

the Kaluza-Klein 1-form B(1) becomes the axion χ̃4.

All the other axions and dilatons in the three-dimensional theory described by

(3.7) are zero. Note that, in line with the notation of section 1, we have placed tildes

on the starting expressions for the fields ϕ̃4 and χ̃4. The post-transformation fields

are then written without tildes.

After the O(1, 1)4 transformation, the fields are given by (3.29). Before lifting

the solution back to four dimensions, we must dualise the transformed axions ψi

and χ4 back to 1-form potentials, so that we can retrace the reduction steps. After

performing the dualisations in three dimensions, we find that in three dimensions the
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4-charge solution is given by

χ1 =
2 (c24 s13 − c13 s24) (` r − mu)

r1 r3 + u1 u3

, χ2 =
2 (c14 s23 − c23 s14) (` r − mu)

r2 r3 + u2 u3

,

χ3 =
2 (c34 s12 − c12 s34) (` r − mu)

r1 r2 + u1 u2

, eϕ1 =
r1 r3 + u1 u3

W
,

eϕ2 =
r2 r3 + u2 u3

W
, eϕ3 =

r1 r2 + u1 u2

W
, eϕ4 =

r r0 + uu0

W
,

σ1 =
2

W 2
(` r − mu) [c1 s234 (r0 r1 + u0 u1) − s1 c234 (r r1 + uu1)],

σ3 =
2

W 2
(` r − mu) [c3 s124 (r0 r3 + u0 u3) − s3 c124 (r r3 + uu3)],

σ2 =
2

W 2

[
c2 s2

(
mr1 r3 r4 + ` u1 u3 u4 + r u (` r + mu) + 4 `m r u (s2

1 + s2
3 + s2

4)

+ 4 `m (` r + mu)(s2
13 + s2

14 + s2
34) + 16 `2 m2 s2

134

)
+ 2 (` r − mu)2

(
c134 s134 (c2

2 + s2
2) − c2 s2 (s2

13 + s2
14 + s2

34 + 2 s2
134)

)]
σ4 =

2

W 2

[
c4 s4

(
mr1 r2 r3 + ` u1 u2 u3 + r u (` r + mu) + 4 `m r u (s2

1 + s2
2 + s2

3)

+ 4 `m (` r + mu)(s2
12 + s2

13 + s2
23) + 16 `2 m2 s2

123

)
+ 2 (` r − mu)2

(
c123 s123 (c2

4 + s2
4) − c4 s4 (s2

12 + s2
13 + s2

23 + 2 s2
123)

)]
B(1) =

2

a ρ̄

[
c1234

(
` u (a2 + r2) + mr(a2 − u2)

)
− s1234

(
` u0 (a2 + r2) + mr0 (a2 − u2) + 4 `m (` r − mu)

)]
dφ,

A(1)1 =
2 c1 s1

a ρ̄
[ a2 (` r − mu)− r u (mr0 + ` u0) ]dφ,

A1
(1) =

2 c3 s3

a ρ̄
[ a2 (` r − mu)− r u (mr0 + ` u0) ]dφ,

A(1)2 =
2

a ρ̄

[
s2 c134

(
r u (` r −mu) + a2 (mr + ` u)

)
−c2 s134

(
r0 u0 (` r −mu) + a2 (mr0 + ` u0)

)]
dφ,

A2
(1) =

2

a ρ̄

[
s4 c123

(
r u (` r −mu) + a2 (mr + ` u)

)
−c4 s123

(
r0 u0 (` r −mu) + a2 (mr0 + ` u0)

)]
dφ . (3.33)



34

with the definitions

r0 = r − 2m, u0 = r − 2 ` , ρ̄ = r r0 + uu0 , (3.34)

and

W 2 = r1 r2 r3 r4 + u1 u2 u3 u4 + 2u2 r2 + 2 r u (` r + mu)(s2
1 + s2

2 + s2
3 + s2

4)

− 4 (` r − mu)2(s2
123 + s2

124 + s2
134 + s2

234 + 2 s2
1234 − 2 c1234 s1234)

+ 8m` r u (s2
12 + s2

13 + s2
14 + s2

23 + s2
24 + s2

34)

+ 8m`(mu+ ` r) (s2
123 + s2

124 + s2
134 + s2

234) + 32m2 `2 s2
1234 (3.35)

The final step is to lift this three-dimensional solution back to D = 4, using the

Kaluza-Klein reduction rules (3.4) and (3.5). Thus the four-dimensional metric for

the 4-charge rotating black hole solution is given by

ds2
4 = − ρ̄

W
(dt + B(1))

2 + W
(dr2

∆r

+
du2

∆u

+
∆r ∆u

a2 ρ̄
dφ2

)
, (3.36)

and the 4 four-dimensional gauge potentials are given in terms of the three-dimensional

expressions in (3.33) by

Â(1)1 = (A(1)1 + σ1 B(1)) + σ1 dt ,

Â(1)2 = (A(1)2 + σ2 B(1)) + σ2 dt ,

Â1
(1) = (A1

(1) + σ3 B(1)) + σ3 dt ,

Â2
(1) = (A2

(1) + σ4 B(1)) + σ4 dt . (3.37)

The dilatons (ϕ1, ϕ2, ϕ3) and axions (χ1, χ2, χ3) are simply given by their three-

dimensional expressions in (3.33).
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D. Charged Rotating Black Holes in Gauged Supergravity

A simple special case arises if we set the two electric charges equal, by taking δ4 = δ2,

and also set the two magnetic charges equal, by taking δ3 = δ1. In this section, we

look for generalisations of the charged rotating black holes to the case of gauged four-

dimensional supergravity. Since there is no longer a solution-generating technique

for deriving the solutions in the gauged theories, we instead resort to a technique of

“inspired guesswork,” followed by brute-force verification that the equations of motion

are satisfied. The verification is purely mechanical, but the process of guessing, or

making an ansatz, for the form of the gauged solution is not so straightforward.

In fact, so far we have succeeded in guessing the form of the gauged solution only

in the case that the four charges are set pairwise equal. Thus in this section, we

shall present our results for the gauged generalisation of the pairwise-equal ungauged

solutions obtained in section C.

The easiest way to discuss the solution is by simply augmenting the bosonic

Lagrangian (3.1) by the subtraction of the scalar potential that arises in the gauged

supergravity. For the discussion of the solutions with pairwise-equal charges, which

we are considering here, we can take the scalar potential to be that of the N = 4

gauged SO(4) theory, namely

V = −g2

3∑
i=1

(2 coshϕi + χ2
i e

ϕi) . (3.38)

with ϕ2 = ϕ3 = χ2 = χ3 = 0. The two electromagnetic charges in our pairwise-equal

solution will then be carried by fields in U(1) subgroups of the two SU(2) factors in

SO(4) ∼ SU(2)× SU(2). Thus we may consider the bosonic Lagrangian

L4 = R ∗1l− 1
2
∗dϕ1 ∧ dϕ1 − 1

2
e2ϕ1 ∗dχ1 ∧ dχ1 − 1

2
e−ϕ1 (∗F(2)1 ∧ F(2)1 + ∗F(2)2 ∧ F(2)2)
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−1
2
χ1 (F(2)1 ∧ F(2)1 + F(2)2 ∧ F(2)2)− g2 (4 + 2 coshϕ1 + eϕ1 χ2

1) ∗1l . (3.39)

It should be emphasised that the Lagrangian (3.39) is not, as it stands, the

bosonic sector of any supergravity theory. First of all, we have included only the

U(1) × U(1) subset of the SU(2) × SU(2) gauge fields of SO(4)-gauged N = 4

supergravity. This abelian truncation is consistent as a bosonic trunction, but not as

a supersymmetric truncation. Secondly, even if we included all the SU(2) × SU(2)

gauge fields in (3.39), the Lagrangian would still not be the bosonic sector of the

SO(4)-gauged N = 4 supergravity. The gauge fields of one of the SU(2) factors

would have had to have been dualised prior to turning on the gauging, in order to

get a supersymmetrisable theory. Since bare potentials appear in the expressions for

the field strengths in the non-abelian gauged theory, dualisation can no longer be

performed.

The upshot of the above discussion is that for the purposes of conjecturing,

and then verifying, a solution of the gauged theory, it suffices to work with the

generalisations of the ungauged solutions with two pair-wise equal charges, which

is obtained from (3.36) by puting δ4 = δ2 and δ3 = δ1, and look at the equations

of motion following from Lagrangian (3.39). Having successfully obtained charged

rotating black-hole solutions, we can, if we wish, dualise one of the two field strengths.

In this dualised form, the black hole can be directly viewed as a solution within SO(4)-

gauged N = 4 supergravity, with the non-zero gauge fields of the solution residing

within a U(1)×U(1) subgroup of SU(2)×SU(2). It is this dualised formulation that

one would need to use if one wanted to test the supersymmetry of the solution.

By studying the form of the known Kerr-Newman-AdS black hole, as well that

of the pairwise-equal charge solution, which is obtained from (3.36) by puting δ4 =

δ2 and δ3 = δ1, we have been able to conjecture the form of the rotating black
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hole solution of gauged supergravity with two pair-wise equal charges. Verifying the

correctness of the conjecture is then a mechanical procedure, which we have performed

using Mathematica. Our solution takes the form

ds2
4 = − ∆r

a2 W
[adt+ u1 u2 dφ]2 +

∆u

a2 W
[adt− r1 r2 dφ]2 +W

(dr2

∆r

+
du2

∆u

)
, (3.40)

where

∆r = ∆̃r + g2 r1 r2 (r1 r2 + a2) , ∆u = ∆̃u + g2 u1 u2 (u1 u2 − a2) ,

W = r1 r2 + u1 u2 , ri = r + 2ms2
i , ui = u+ 2` s2

i , (3.41)

and si = sinh δi. The remaining fields are given by

eϕ1 =
r2

1 + u2
1

W
, χ1 =

2(s2
1 − s2

2) (` r −mu)

r2
1 + u2

1

,

A(1)1 =
2
√

2s1 c1

aW

{
mu1 [adt− r1 r2 dφ]− ` r1 [adt+ u1 u2 dφ]

}
,

A(1)2 =
2
√

2s2 c2

aW

{
` u1 [adt− r1 r2 dφ] +mr1 [adt+ u1 u2 dφ]

}
. (3.42)

The ungauged case is, of course, obtained by setting g = 0. The verification of our

conjectured result for g 6= 0 is straightforward; we used Mathematica to check that

the equations of motion following from (3.39) are indeed satisfied.

If the two charge parameters are set equal, δ1 = δ2, then one has ϕ1 = χ1 = 0

and the solution reduces to the charged AdS-Kerr-Taub-NUT solution of Einstein-

Maxwell theory with a cosmological constant, as given in [39, 40].

E. Conclusions

In this chapter we have presented new charged rotating solutions of four-dimensional

ungauged and gauged supergravities. Our new ungauged solutions can be viewed

as being embedded within N = 2 supergravity coupled to three vector multiplets.
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This is itself, of course, embedded within N = 8 supergravity. We first constructed

the general ungauged Kerr-Taub-NUT solution with four independent charges. We

did this by employing a solution-generating technique, which involved reducing the

four-dimensional theory on the time direction and then acting with global symmetry

generators O(1, 1)4 ⊂ O(4, 4) to introduce the charges.

For the charged Kerr-Taub-NUT solution, we were able to conjecture the gener-

alisations of the above ungauged solutions to the case of gauged supergravity, after

making the specialisation that the four charges are set pairwise equal. We verified

the correctness of our conjectured solutions by explicitly confirming that all the equa-

tions of motion are satisfied. These solutions are most appropriately viewed as being

embedded in SO(4)-gauged N = 4 supergravity.

The four-dimensional charged Kerr-Taub-NUT solution that we obtained in this

chapter provide new gravitational backgrounds for four-dimensional vacua in com-

pactified string theory. In particular, the non-extreme Kerr-Taub-NUT solution of

gauged supergravity provide asymptotically AdS backgrounds that are characterised

by their mass, angular momentum and two pair-wise equal charges (implying that

they can be viewed as solutions in N = 4 gauged supergravity). The gauged solutions

should provide new information on the dual three-dimensional conformal field theory

at non-zero temperature.
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CHAPTER IV

CHARGED ROTATING BLACK HOLES IN FIVE DIMENSIONAL GAUGED

SUPERGRAVITY

A. Introduction

Charged black holes with non-zero cosmological constant provide important gravita-

tional backgrounds for testing the AdS/CFT correspondence [1, 2]. In particular, for

charged black holes in the anti-de Sitter background, the black hole charge plays the

role of the R-charge [3] in dual field theory. In addition, the thermodynamic stability

as well as analogs of the Hawking-Page phase transition for such configurations shed

light [3, 4, 5] on the phase structure of the strongly coupled dual field theory.

Because the AdS5/CFT4 correspondence is better understood than AdS4/CFT3,

much work was focused on five dimensional black holes. First examples of non-

extremal charged black holes in five dimensions, as solutions of a gauged supergravity

theory, were obtained in [6]. An important generalisation of static charged black

holes is to allow for the rotation. General five-dimensional rotating charged black

holes with two non-equal rotation parameters in the zero cosmological constant back-

ground were obtained in [9] by employing generating techniques associated with the

underlying non-compact duality symmetries. Five-dimensional uncharged rotating

black holes with non-zero cosmological constant, the five-dimensional Kerr-de Sitter

metrics, were obtained a few years ago in [10]. In addition, certain five-dimensional

extremal charged rotating solutions with non-zero cosmological constant have been

found [11, 12, 13].

Constructing non-extremal charged rotating black hole solutions in gauged super-

gravity is quite a complicated problem. This is because, unlike the case of ungauged
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supergravity, there are no known solution-generating techniques that could be used

to add charges to the already-known neutral rotating black hole solutions. Due to

this complication in the constructions of rotating black hole solutions in gauged su-

pergravity, though the four-dimensional charged rotating black hole solutions with

non-zero cosmological constant, the Kerr-Newman-de Sitter metrics, were found long

ago [27], analogs of five-dimensional solutions have only been constructed in several

special cases.

In the first special case [19], the problem was simplified greatly by taking the a

priori independent rotation parameters of the orthogonal 2-planes in the transverse

space to be equal. This reduces the problem to studying cohomogeneity-1 metrics,

with non-trivial coordinate dependence on only the radial variable, rather than met-

rics of cohomogeneity 2. In section B, we will present these results obtained by

constructing a general class of non-extremal charged rotating black hole solutions in

the five-dimensional U(1)3 gauged theory of N = 2 supergravity coupled to two vec-

tor multiplets. They are the general non-extremal solutions of this dilatonic theory,

with three independent electric charges, subject to the specialisation that the two

angular momenta in the orthogonal 4-space are set equal. These 3-charge solutions

are important for probing fully the microscopic degrees of freedom associated with

the three R-charges in the dual N = 4 CFT on the boundary, without the loss of

information that would be inherent if the three charges were set equal.

In section C, we construct new non-extremal rotating black hole solutions in

SO(6) gauged five-dimensional supergravity. Our solutions are the first such examples

in which the two rotation parameters are independently specifiable, rather than being

set equal. The black holes carry charges for all three of the gauge fields in the U(1)3

subgroup of SO(6), albeit with only one independent charge parameter.

In section D, we construct the general solution for charged rotating black holes
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in five-dimensional minimal gauged supergravity, with unequal angular momenta and

three equal charge parameters, by a process involving a considerable amount of trial

and error, followed by an explicit verification that the equations of motion are satis-

fied.

Finally, we obtain another independent class of new rotating non-extremal black

hole solutions with just one non-vanishing charge.

B. Charged Black Holes with Equal Rotation Parameters in U(1)3 Gauged N = 2

Supergravity

The 3-charge solutions are generalisations to the gauged theory of the 3-charge spin-

ning black hole solutions (with two rotation parameters set equal) of the correspond-

ing five dimensional ungauged supergravity, obtained in [26]. They also, of course,

specialise to the previously constructed results in [18] if one sets the three electric

charges equal, under which circumstance the two dilatonic scalars decouple and be-

come constant.

The bosonic sector of the five-dimensional N = 2 gauged supergravity coupled

to two vector multiplets is described by the Lagrangian

e−1 L = R− 1
2
∂~ϕ2 − 1

4

3∑
i=1

X−2
i (F i)

2 − λ
3∑
i=1

X−1
i + 1

24
εijk ε

µνρσλF i
µν F

j
ρσ A

k
λ , (4.1)

where ~ϕ = (ϕ1, ϕ2), and

X1 = e
− 1√

6
ϕ1− 1√

2
ϕ2 , X2 = e

− 1√
6
ϕ1+ 1√

2
ϕ2 , X3 = e

2√
6
ϕ1 . (4.2)

The gauge-coupling constant g is related to λ by λ = −g2.

The solutions that we have obtained are as follows:

ds2
5 = −Y − f3

R2
dt2 +

r2 R

Y
dr2 +RdΩ2

3 +
f1 −R3

R2
(sin2 θdφ+ cos2 θdψ)2
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−2f2

R2
dt (sin2 θdφ+ cos2 θdψ) , (4.3)

Ai =
µ

r2 Hi

(
si ci dt+ ` (ci sj sk − si cj ck) (sin2 θdφ+ cos2 θdψ)

)
, (4.4)

Xi =
R

r2 Hi

, i = 1, 2, 3 (4.5)

where

R ≡ r2 (
3∏
i=1

Hi)
1
3 , Hi ≡ 1 +

µ s2
i

r2
,

dΩ2
3 = dθ2 + sin2 θdφ2 + cos2 θdψ2 , (4.6)

and si and ci are shorthand notations for

si ≡ sinh δi , ci ≡ cosh δi , i = 1, 2, 3 . (4.7)

Note that in the expressions (4.4) for the vector potentials Ai, the triplet indices

(i, j, k) are all unequal: (i 6= j 6= k 6= i). The functions (f1, f2, f3, Y ) are given by

f1 = R3 + µ `2 r2 + µ2 `2
[
2
( ∏

i

ci −
∏
i

si

) ∏
j

sj −
∑
i<j

s2
i s

2
j

]
,

f2 = γ ` λR3 + µ `
( ∏

i

ci −
∏
i

si

)
r2 + µ2 `

∏
i

si ,

f3 = γ2 `2 λ2 R3 + µ `2 λ
[
2γ

( ∏
i

ci −
∏
i

si

)
− Σ

]
r2 (4.8)

+µ `2 − λΣµ2 `2
[
2
( ∏

i

ci −
∏
i

si

) ∏
j

sj −
∑
i<j

s2
i s

2
j

]
+ 2λ γ µ2 `2

∏
i

si ,

Y = f3 − λΣR3 + r4 − µ r2 ,

where

Σ ≡ 1 + γ2 `2 λ . (4.9)

It is helpful to note that
√
−g takes a simple form, namely

√
−g = r R sin θ cos θ.

In order to make the global structure of the metrics more apparent, it is conve-
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nient to rewrite the metric (4.3) in terms of left-invariant 1-forms σi on S3. Defining

σ1 = cos ψ̃ dθ̃ + sin ψ̃ sin θ̃ dφ̃ ,

σ2 = − sin ψ̃ dθ̃ + cos ψ̃ sin θ̃ dφ̃ ,

σ3 = dψ̃ + cos θ̃ dφ̃ , (4.10)

where

ψ − φ = φ̃ , ψ + φ = ψ̃ , θ = 1
2
θ̃ , (4.11)

we find that (4.3) can be rewritten as

ds2
5 = −RY

f1

dt2 +
r2 R

Y
dr2 + 1

4
R (σ2

1 + σ2
2) +

f1

4R2
(σ3 −

2f2

f1

dt)2 , (4.12)

whilst the vector potentials in (4.4) become

Ai =
µ

r2 Hi

(
si ci dt+ 1

2
` (ci sj sk − si cj ck)σ3

)
. (4.13)

C. Five-Dimensional Black Holes in Gauged Supergravity with Independent Rota-

tion Parameters ∗

To avoid loosing information that would be inherent if the two rotation parame-

ters are set equal, we construct non-extremal rotating black hole solutions in SO(6)

gauged five-dimensional supergravity in which the two rotation parameters are inde-

pendently specifiable. Before we construct the solution with two independent rotation

parameters, we first show how we obtain a solution with one rotation parameter. The

reason that we present this solution is that we benefited from the construction of it

in obtaining the solution with two independent rotation parameters.

∗Reprinted excerpt with permission from Z. W. Chong, M. Cvetic, H. Lu and
C. N. Pope, Physical Review D, Vol 72, Pages 041901(R), 2005, Copyright 2005 by
the American Physical Society.
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1. Charged Solution with 1-Rotation

The Kerr-de Sitter solutions with one rotation in five dimensions in [9] is

ds2 = (−V0 − 2m

ρ2
(dt − a sin2 θ dφ)2

+
sin2 θ

ρ2
(a dt − ( a2 + r2 + 2ms2) dφ)2

+
ρ2

V0 − 2m
dr2 + ρ2 dθ2 + r2 cos2 θ dψ2 (4.14)

ρ2 = r2 + a2 cos2 θ, V0 = a2 + r2 . (4.15)

The charged ungauged solution [26], with two of the three charge parameters set

equal and the third vanishing, can be written in a similar form that is comparable

with (4.15)

ds2 = H− 4
3

(
− V0 − 2m

ρ2
(dt − a sin2 θ dφ)2

+
sin2 θ

ρ2
(a dt − ( a2 + r2 + 2ms2) dφ)2

)
+H

2
3

( ρ2

V0 − 2m
dr2 + ρ2 dθ2 + r2 cos2 θ dψ2

)
(4.16)

H =
ρ̃2

ρ2
, ρ̃2 = r2 + a2 cos2 θ + 2ms2 ,

ρ2 = r2 + a2 cos2 θ, V0 = a2 + r2 . (4.17)

A1 = A2 =
2ms c

ρ̃2
( dt − a sin2 θ dφ ), A3 =

2mas2

ρ2
cos2 θ dψ. (4.18)

Comparing with the solution in (4.15), we propose the following ansatz with only one

function V (r) to be determined

ds2 = H− 4
3

(
− V (r)− 2m

ρ2
(dt− a sin2 θdφ)2

+
∆θ sin2 θ

ρ2
(a dt− (a2 + r2 + 2ms2)dφ)2

)
+H

2
3

( ρ2

V (r) − 2m
dr2 +

ρ2

∆θ

dθ2 + r2 cos2 θ dψ2
)

(4.19)



45

After plugging this ansatz into the equations of motion derived from the Larangian

of minimal gauged supergravity, we were able to determine V (r) to be

V (r) = a2 + r2 + g2 ( r2 + 2ms2 )( r2 + a2 + 2ms2 ) (4.20)

with ∆θ = 1 − a2g2 cos2 θ. It is helpful to observe that the difference between V0 in

(4.18) and V (r) in (4.20) is the following replacement

r2 → r2 + 2ms2 (4.21)

This observation helps a lot in obtaining the following solution with two rotation

parameters, because we believe that we only need to make this replacement in proper

places in finding gauged solutions with two rotations.

2. Charged Solutions with Two Rotation Parameters

We construct this solution by casting the two limiting cases, i.e. the five-dimensional

Kerr-de Sitter solution and the charged solution in ungauged supergravity, into a

specific form and then conjecture a solution that interpolates between them followed

by a direct verification that the conjectured solution does solve the equations of

motion. The observation in (4.21) plays a key role in making the conjecture.

The rotating black hole metrics in ungauged supergravity are charged under the

U(1)3 Cartan subgroup of SO(6). The two rotation parameters can be specified

independently. The relevant part of the supergravity Lagrangian that describes these

solutions is given by

e−1 L = R− 1
2
∂~ϕ2 − 1

4

3∑
i=1

X−2
i (F i)

2
+ 1

24
εijk ε

µνρσλF i
µν F

j
ρσ A

k
λ , (4.22)
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where ~ϕ = (ϕ1, ϕ2), and

X1 = e
− 1√

6
ϕ1− 1√

2
ϕ2 , X2 = e

− 1√
6
ϕ1+ 1√

2
ϕ2 , X3 = e

2√
6
ϕ1 . (4.23)

The complete metrics of charged black hole solution are given in [26]. In this section,

unlike the general solution with three independent charge parameters s1, s2 and s3,

we consider a special case with s1 = s2 ≡ s, s3 = 0. where si ≡ sinh δi, ci ≡ cosh δi .

We then cast the charged solution with two independent rotation parameters in

ungauged supergravity into the form that is comparable with the metrics found in [9]

ds2 = H− 4
3

[
− X

ρ2
(dt− a sin2 θ

dφ

Ξa
− b cos2 θ

dψ

Ξb
)2

+
C

ρ2
(
ab

f3

dt− b

f2

sin2 θ
dφ

Ξa
− a

f1

cos2 θ
dψ

Ξb
)2

+
Z sin2 θ

ρ2
(
a

f3

dt− 1

f2

dφ

Ξa
)2 +

W cos2 θ

ρ2
(
b

f3

dt− 1

f1

dψ

Ξb
)2

]
+H

2
3 (
ρ2

X
dr2 +

ρ2

∆θ

dθ2 ) ,

(4.24)

with ρ and ρ̃ defined by

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, ρ̃2 = ρ2 + 2ms2 . (4.25)

The gauge potentials and scalar fields for the charged solution are given by

A1 = A2 =
2ms c

ρ̃2
(dt − a sin2 θ

dφ

Ξa
− b cos2 θ

dψ

Ξb
)

A3 =
2ms2

ρ2
(b sin2 θ

dφ

Ξa
+ a cos2 θ

dψ

Ξb
)

X1 = X2 = H− 1
3 , X3 = H

2
3 . (4.26)

All other functions in the metric are given in the Table I. The left column is for Kerr-

de Sitter metrics, and the right one is for the charged ungauged solution. We were

able to make a conjecture of the functions listed in the table so that they interpolate
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Table I. Comparison between Kerr-de Sitter and charged black hole solutions in un-

gauged supergravity in five dimensions

Kerr de Sitter Black Hole Metrics Charged Black Hole Metrics in

Ungauged Supergravity

H = 1 H = ρ̃2/ρ2

f1 = a2 + r2 f1 = a2 + r2

f2 = b2 + r2 f2 = b2 + r2

f3 = (a2 + r2)(b2 + r2) f3 = (a2 +r2)(b2 +r2)+2mr2s2

∆θ = 1− a2 g2 cos2 θ − b2 g2 sin2 θ ∆θ = 1

X = 1
r2

(a2 +r2)(b2 +r2)−2m+g2(a2 +r2)(b2 +r2) X = 1
r2

(a2 + r2)(b2 + r2)− 2m

C = f1 f2(X + 2m) C = f1f2(X + 2m− 4m2s4/ρ2)

Z = −b2C + f2 f3
r2

[f3 − g2r2(a2 − b2)(a2 + r2) cos2 θ] Z = −b2 C + f2 f3
r2

f3

W = −a2C+ f1 f3
r2

[f3 + g2 r2 (a2− b2)(b2 + r2) sin2 θ] W = −a2C + f1f3
r2

f3

Ξa = 1− a2g2 Ξa = 1

Ξb = 1− b2g2 Ξb = 1
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between the left and the right column. We verified that the following indeed solves

the equations of motion derived from the Larangian of SO(6) gauged five-dimensional

supergravity

e−1 L = R− 1
2
∂~ϕ2 − 1

4

3∑
i=1

X−2
i (F i)

2
+ 4g2

3∑
i=1

X−1
i + 1

24
εijk ε

µνρσλF i
µν F

j
ρσ A

k
λ , (4.27)

where ~ϕ = (ϕ1, ϕ2), and

X1 = e
− 1√

6
ϕ1− 1√

2
ϕ2 , X2 = e

− 1√
6
ϕ1+ 1√

2
ϕ2 , X3 = e

2√
6
ϕ1 . (4.28)

The metric, gauge potentials and scalar fields have the same form as (4.24) and (4.26),

but the functions listed in the table are replaced by

H = ρ̃2/ρ2, ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, ρ̃2 = ρ2 + 2ms2 ,

f1 = a2 + r2, f2 = b2 + r2, f3 = (a2 + r2)(b2 + r2) + 2mr2 s2;

∆θ = 1− a2 g2 cos2 θ − b2 g2 sin2 θ,

X =
1

r2
(a2 + r2)(b2 + r2)− 2m+ g2(a2 + r2 + 2ms2)(b2 + r2 + 2ms2) ,(4.29)

C = f1 f2(X + 2m − 4m2 s4/ρ2),

Z = −b2 C +
f2 f3

r2
[f3 − g2 r2 (a2 − b2)(a2 + r2 + 2ms2) cos2 θ],

W = −a2 C +
f1 f3

r2
[f3 + g2 r2 (a2 − b2)(b2 + r2 + 2ms2) sin2 θ] ,

Ξa = 1− a2g2 , Ξb = 1− b2g2 ,

We noticed that the difference of the functions X,Z and W from those for Kerr-de

Sitter metrics by [9] is the replacement (4.21)

In this section, we have constructed non-extremal black hole solutions in five-

dimensional SO(6) gauged supergravity. The solutions go beyond what has been

found previously, by having unequal values for the angular momenta in the two orthog-

onal 2-planes in the transverse space. This means that the metrics are considerably
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more complicated, since they are of cohomogeneity 2, rather than the cohomogeneity

1 of all the previously known examples.

The conserved angular momenta and charges are calculated in [21]. The energy

is obtained by integrating the first law of thermodynamics. Using these results the

BPS limits are taken to obtain supersymmetric backgrounds. In general, the BPS so-

lutions have closed timelike curves outside a Killing horizon, and hence they describe

“naked time machines”. However, for a special choice of the relation between the

mass and the rotation parameters, we obtain a completely regular black hole, with

neither CTCs nor singularities outside the event horizon. Since the two rotation para-

meters still remain as free parameters, these black hole solutions provide a continuous

supersymmetric interpolation between certain previously obtained equal-rotation so-

lutions. The new solutions provide the first examples of supersymmetric black holes

in gauged supergravity in which there are independent rotation parameters. It is also

found that, in another special case, a solution describing a completely non-singular

soliton.

D. Another Example with Independent Rotation Parameters ∗

Though our final goal is to find a general solution that has three independent charge

parameters and two non-equal rotation parameters, we are still unable to achieve

this. However, we succeeded in obtaining another special case with two independent

rotation parameters, in which the three charge parameters are set equal. In this

section, we will show the details of how this solution was obtained.

Our strategy is to employ the property of Kerr-Schild form of black hole metrics.

∗Reprinted excerpt with permission from Z. W. Chong, M. Cvetic, H. Lu and
C. N. Pope, Physical Review Letters, Vol 95, Pages 161301, 2005, Copyright 2005 by
the American Physical Society.
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In Kerr-Schild form, the metric can be written as a sum of two parts, one is simply

the metric for flat spacetimes, if the black hole is asymptotically flat, or the metric for

Anti-de Sitter spacetimes, if the solution is asymptotically AdS. And the other is a

null vector squared, which depends on mass and charge parameters of the black hole

solution. We were not able to put the general charged solution into the Kerr-Schild

form described above, however we managed to put the charged solution in ungauged

supergravity with three equal charge parameters and two independent rotations into

a Kerr-Schild-like form, then we may focus our attention on the part that depends

on mass and charge parameters, which is supposed to be modified for the gauged

supergravity solutions. In the generalisation to gauged supergravity solutions, we may

simply replace the metric for the flat spacetimes by the metric for AdS spacetimes,

and then figure out the necessary modification in the part that is dependent on mass

and charge parameters so that the equations of motion derived from the Larangian

of gauged supergravity can be solved.

In the following, we will first show that the solution with independent rotation

parameters and charge parameters satisfying s1 = s2 ≡ s, s3 = 0 in ungauged super-

gravity, which is the solution (4.29) with vanishing gauge coupling parameter g, can

be put into a Kerr-Schild-like form after a series of coordinate transformations. Then

we show the simple structure of inverse metric of solution (4.29) after similar coordi-

nate transformations, though we were not able to put it into a Kerr-Schild-like form.

We find that the structure of the inverse metric is quite simple. This encourages us to

study the structure of the inverse metric in ungauged supergravity with three equal

charge parameters, i.e. s1 = s2 = s3 ≡ s and two independent rotation parameters

after a series of much more complicated coordinate transformations than those done

before and some redefinition of coordinate. The structure is simple enough that it

enables us to find the generalisation in gauged supergravity.
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1. Kerr-Schild-Like Form of Charged Black Hole Metrics in Ungauged Supergravity

As an exercise, we show that the charged rotating black hole metrics with s1 = s2 ≡

s, s3 = 0, a 6= b, which can be obtained from (4.29) with vanishing gauge coupling

constant g, can be put in a Kerr-Schild-like from, which have extra warp factors. One

can check the following vector is null in the solution

kµdx
µ = dt +

r2 ρ̃2

∆
dr − a sin2 θ dφ − b cos2 θ dψ,

kµ∂µ = H
1
3 (∂r −

f3

∆
∂t −

a r2
b

∆
∂φ −

b r2
a

∆
∂ψ).

r2
a = r2 + a2, r2

b = r2 + b2,

f3 = r2
a r

2
b + 2M r2 s2, ∆ = r2

a r
2
b − 2M r2,

H = ρ̃2/ρ2, ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, ρ̃2 = ρ2 + 2M s2.(4.30)

Perform the following coordinate transformations that is related to the congruence of

the null vector

dt→ dt − 2M r2 f3

r2
a r

2
b ∆

dr − 2M s2

ρ̃2
(a sin2 θ dφ − b cos2 θ dψ),

dφ→ H−1 dφ − 2 aM r2

r2
a ∆

dr, dψ → H−1 dψ − 2 bM r2

r2
b ∆

dr. (4.31)

The solution then can be put into a Kerr-Schild-like form

ds2 = H− 4
3 (−dt2 + r2

a sin2 θ dφ2 + r2
b cos2 θ dψ2) + H

2
3 (
r2 ρ2

r2
a r

2
b

dr2 + ρ2 dθ2)

+ H− 4
3 (dt +

r2 ρ̃2

∆
dr − a sin2 θ dφ − b cos2 θ dψ)2

A1 = A2 =
2M sc

ρ̃2
(dt − a sin2 θ dφ − b cos2 θ dψ) − 4 a bM2 r2

r2
a r

2
b ∆

s c dr,

A3 =
2M s2

ρ̃2
(b sin2 θ dφ + a cos2 θ dψ)− 2 a bM r2

r2
a r

2
b ∆

dr) (4.32)
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Note that if H = 1 the first line of the metric is just flat space, the second line is the

null vector squared.

2. Simplicity of the Inverse Metric for Gauged Solution

Though the solution (4.29) can not be put into a Kerr-Schild-like form, we find that

its inverse metric is surprisingly simple and the mass and charge dependent terms

can be separated in a neat way. One can check that the following vector is null for

the solution (4.29)

kµdx
µ = dt +

r2 ρ̃2

∆
dr − a sin2 θ

Ξa
dφ − b cos2 θ

Ξb
dψ,

kµ∂µ = H
1
3 (∂r −

f3

∆
∂t −

aΞa r
2
b

∆
∂φ −

bΞb r
2
a

∆
∂ψ).

r2
a = r2 + a2, r2

b = r2 + b2,

r̃2
a = r2 + a2 + q, r̃2

b = r2 + b2 + q, q = 2M s2,

Ξa = 1 − a2 g2, Ξb = 1 − b2 g2,

∆r = 1 + g2 r2, ∆θ = 1 − a2 g2 cos2 θ − b2 g2 sin2 θ,

f3 = r2
a r

2
b + q r2, ∆ = r2

a r
2
b − 2M r2 + g2 r2 r̃2

a r̃
2
b ,

H = ρ̃2/ρ2, ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, ρ̃2 = ρ2 + q. (4.33)

The congruence of the null vector is defined by

dt = −H
1
3
f3

∆
dλ, dr = H

1
3 dλ, dθ = 0,

dφ = −aΞa r
2
b

∆
H

1
3 dλ, dψ = −bΞb r

2
a

∆
H

1
3 dλ, (4.34)

Then one perform the coordinate transformations

dt→ dv − f3

∆
dr, dφ→ dφ − aΞa r

2
b

∆
dr, dψ → dψ − bΞb r

2
a

∆
dr, (4.35)
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After making this coordinate transformation, we were not able to put it in a

Kerr-Schild-like form. However, we find that that the inverse of the transformed

metric is surprisingly simple

∂s′2 = H− 4
3

[
∂s2

AdS + ρ−2 [ (−2M + q g2 (a2 + b2 + 2 r2 + q) )∂2
r + 2 q ∂v ∂r]

]
,

A1 = A2 =
2M sc

ρ̃2
(dt − a sin2 θ

Ξa
dφ − b cos2 θ

Ξb
dψ) − 2M sc

r2

∆
dr,

A3 =
2M s2

ρ2
(
b sin2 θ

Ξa
dφ +

a cos2 θ

Ξb
) − 2M s2 a b

∆
dr. (4.36)

In this way, we successfully separate the involved part of the pure AdS space,

and the mass and charge dependent terms are grouped in a relatively simple form.

Encouraged by this, we will make proper coordinate transformations to the solution in

ungauged supergravity with three equal charges and independent rotation parameters,

hoping to separate the charge and mass dependent part from that of the flat spacetime.

3. Inverse Metric for 3-Equal-Charge Solution and Its Gauged Generalisation

Though it is not easy to put the 3-equal-charge, unequal angular momenta charged

black hole solution into Kerr-Schild form, it is encouraging to find that the inverse

metric is quite simple and one can easily locate the place to be modified when going to

the gauged solution. One finds that the following vector is null, which is the starting

point of a series of coordinate transformations

kµ dx
µ = dt +

r r̃ ρ̃2

∆
dr − α sin2 θ dφ − β cos2 θ dψ,

kµ ∂µ = −f3

∆
∂t +

r̃

r
∂r − α

f2

∆
∂φ − β

f1

∆
∂ψ,

α = a c − b s, β = b c − a s,

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, ρ̃2 = ρ2 + 2M s2,

r2
a = r2 + a2, r2

b = r2 + b2,
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r̃2
a = r2 + a2 + 2M s2, r̃2

b = r2 + b2 + 2M s2,

r̃2 = r̃2
a − α2 = r̃2

b − β2,

f1 = r̃2
a + 2M sc

α

β
, f2 = r̃2

b + 2M sc
β

α
,

f3 = r̃2
a r̃

2
b + 2M scα β, ∆ = r2

a r
2
b − 2M r2, (4.37)

This null vector defines the congruence

dt = −f3

∆
dλ, dr =

r̃

r
dλ, dφ = −α f2

∆
dλ, dψ = −β f1

∆
dλ. (4.38)

Then performing the following coordinate transformation

dt→ dv − f3

∆
dR, dφ→ dφ− α

f2

∆
dR, dψ → dψ − β

f1

∆
dR (4.39)

with dR ≡ h dr, h = r
r̃
. This redefinition of radial coordinate plays a key role in

eliminating c’s and s’. The “good” coordinate is R. The null vector becomes very

simple

kµ dx
µ = dt − α sin2 θ dφ − β cos2 θ dψ, kµ ∂µ = ∂R. (4.40)

It is more helpful to look at the inverse metric instead of the metric itself

∂s2 = ∂s2
R5 −

2m

ρ̂2
∂2
R +

q

R2 ρ̂2
[(q + 2αβ)∂2

R + 2∂R(αβ ∂v + β ∂φ + α ∂ψ)]

A1 = A2 = A3 =
q

ρ̂2
(dv − α sin2 θ dφ − β cos2 θ dψ),

ρ̂2 = R2 + α2 cos2 θ + β2 sin2 θ,

q = 2M sc, m =
√
M2 + q2. (4.41)

Here I have ignored the trivial r-component of the gauge potential.

To go to the gauged extension the result is surprisingly (disappointingly) sim-

ple, though the process to find it involved with ten unknown r-dependent functions,
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solving only for three constants, among which one is just a redefinition of the mass

parameter.

∂s2 = ∂s2
AdS5

− 2m

ρ̂2
∂2
R +

q

R2 ρ̂2
[(q + 2αβ)∂2

R + 2 ∂R (αβ ∂v + β Ξa∂φ + αΞb∂ψ)]

A1 = A2 = A3 =
q

ρ̂2
(dv − α sin2 θ

dφ

Ξa
− β cos2 θ

dψ)

Ξb
,

ρ̂2 = R2 + α2 cos2 θ + β2 sin2 θ,

q = 2M sc, m =
√
M2 + q2. (4.42)

In one word it is as simple as

dφ→ dφ

Ξa
, dψ → dψ

Ξb
, ∂φ → Ξa ∂φ, ∂ψ → Ξb ∂ψ. (4.43)

and the flat R5 is replaced by AdS5.

4. The Solution in Boyer-Linquist Form

For the purpose to simplify the analysis of the event horizons and the causal struc-

ture of the metrics, it is useful to write the metric in the so called Boyer-Lindquist

Coordinates, in which there are no cross-terms between dr and the other coordinate

differentials. The Lagrangian of minimal gauged five-dimensional supergravity is

L = (R + 12g2) ∗1l− 1
2
∗F ∧ F +

1

3
√

3
F ∧ F ∧ A , (4.44)

where F = dA, and g is assumed to be positive, without loss of generality.

In terms of Boyer-Lindquist type coordinates xµ = (t, r, θ, φ, ψ) that are asymp-

totically static (i.e. the coordinate frame is non-rotating at infinity), we find that the

metric and gauge potential for our new rotating solutions can be expressed as

ds2 = −∆θ [(1 + g2r2)ρ2dt+ 2qν] dt

Ξa Ξb ρ2
+

2q νω

ρ2
+
f

ρ4

(∆θ dt

ΞaΞb
− ω

)2

+
ρ2dr2

∆r

+
ρ2dθ2

∆θ
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+
r2 + a2

Ξa
sin2 θdφ2 +

r2 + b2

Ξb
cos2 θdψ2 , (4.45)

A =

√
3q

ρ2

(∆θ dt

Ξa Ξb
− ω

)
, (4.46)

where

ν = b sin2 θdφ+ a cos2 θdψ ,

ω = a sin2 θ
dφ

Ξa
+ b cos2 θ

dψ

Ξb
,

∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ ,

∆r =
(r2 + a2)(r2 + b2)(1 + g2r2) + q2 + 2abq

r2
− 2m,

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ ,

Ξa = 1− a2g2 , Ξb = 1− b2g2 ,

f = 2mρ2 − q2 + 2abqg2ρ2 . (4.47)

A straightforward calculation shows that these configurations solve the equations of

motion of minimal gauged five-dimensional supergravity.

Rotating black hole solutions in five-dimensional gauged supergravity provide

backgrounds whose AdS/CFT duals describe four-dimensional field theories in the

rotating Einstein universe on the boundary of anti-de Sitter spacetime. With the

general solutions in minimal gauged supergravity that we have now found, this aspect

of the AdS/CFT correspondence can be studied in a framework that also allows one

to take a BPS or near-BPS limit, where the mapping from the bulk to the boundary

is better controlled. In particular, it is of great interest to provide the microscopic

interpretation from the boundary CFT for the entropy of the supersymmetric black

holes with two general rotations [42, 43].
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E. Single-Charge Black Holes

1. Single-Charge Black Holes with One Rotation

In this section we obtain another new solution describing a non-extremal rotating

black hole in gauged five-dimensional supergravity. In this case, just one of the two

rotation parameters is non-zero, and only one of the three gauge fields in the U(1)3

subgroup of SO(6) is turned on. This solution is therefore not a special case of any

other previously-obtained solutions.

The ungauged solution with 1-charge and 1-rotation can be written as

ds2 = −H− 2
3
Y0(r)

ρ̂2
(cdt− a sin2 θ dφ)2

+H
1
3

(sin2 θ

ρ̂2
(adt− c(a2 + r2)dφ)2

+
ρ2

Y0(r)
dr2 + ρ2dθ2 + r2 cos2 θdψ2

)
(4.48)

H =
ρ̃2

ρ2
, Y0(r) = a2 + r2 − 2m, ρ̂2 = r2 + a2 cos2 θ + s2(a2 + r2). (4.49)

A1 =
2ms

ρ̃2
(cdt− a sin2 θ). (4.50)

Then we try the following ansatz

ds2 = −H− 2
3
Y (r)

F (r, θ)
( c dt − a sin2 θ dφ )2

+ H
1
3

(∆θ sin2 θ

F (r, θ)
(f1(r)dt− c f2(r)dφ)2 +

ρ2

Y (r)
dr2 +

ρ2

∆θ

dθ2 + r2 cos2 θdψ2
)

(4.51)

We notice the fact that the determinant of the metric for charged black holes in

gauged supergravity remains the same as that for the charged solutions in ungauged

supergravity. We use this fact to reduce the number of unknown functions in the

metric ansatz (4.51) before we go to equations of motion derived from the Lagrangian

for minimal gauged supergravity. To be specific, we find that the function F (r, θ) can
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be expressed as

F (r, θ) = c2 f2(r) − a sin2 θ f1(r). (4.52)

This helps to avoid solving partial differential equations. Instead, the task is reduced

to finding the three functions f1(r), f2(r) and Y (r), all of which depend only on one

coordinate r. We were able to determine these three functions after we substitute the

ansatz (4.51) into the equations of motion. They can be determined up to a constant

w

f1 =
a

w
(1− w s2 g2 (a2 + r2)), f2 = w (a2 + r2),

Y = (a2 + r2)(1 + g2 r2) − 2mf1 / a,

∆θ = 1 − a2 g2 cos2 θ, Ξ = 1− a2 g2. (4.53)

where again c = cosh δ, s = sinh δ, and the constant w, which satisfies c2w2−s2wΞ =

1, is given by

w =
Ξ s2 +

√
4(1 + s2) + Ξ2 s4

2(1 + s2)
. (4.54)

The gauge potentials and scalar fields are given by

A1 =
2ms

√
w

ρ̃2
(c dt − a sin2 θ

dφ

wΞ
) , A2 = A3 = 0 ,

X1 = H− 2
3 , X2 = X3 = H

1
3 . (4.55)

The conserved angular momentum, charge and energy are calculated in [21]. The

BPS limit is also studied. In this case, there are no regular supersymmetric black

holes or solitons, but rather, the BPS solutions describe backgrounds with closed

timelike curves outside a Killing horizon.
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2. Single-Charge Black Holes with Independent Rotations

In this subsection, we extend this previous result by obtaining the general solution

for a five-dimensional rotating black hole with arbitrary rotation parameters a and

b, in the case that just one of the three U(1) gauge fields carries a charge. In some

sense this can be viewed as the most general “basic” solution. Our approach to

constructing this solution involves first recasting the metrics into a form that leads

eventually to a rather simple presentation of the result. We also find that the same

type of transformation, applied to previously-known cases, leads to rather simple

expressions in those cases too.

In the following, we first introduce our general ansatz for the types of metric we

shall consider. Then, we give our specific results for the general single-charge rotating

black holes. In an appendix, we show how all previously-known rotating black holes

in five-dimensional gauged supergravity fit elegantly within the formulation that we

have adopted. In addition, we show that the general 3-charge solution in ungauged

five-dimensional supergravity, which was constructed in [26], also has a very simple

expression when written in this formalism.

The bosonic sector of the relevant N = 2 theory can be derived from the La-

grangian

e−1 L = R− 1
2
∂~ϕ2− 1

4

3∑
i=1

X−2
i (F i)

2
+4g2

3∑
i=1

X−1
i + 1

24
|εijk| εµνρσλF i

µν F
j
ρσ A

k
λ , (4.56)

where ~ϕ = (ϕ1, ϕ2), and

X1 = e
− 1√

6
ϕ1− 1√

2
ϕ2 , X2 = e

− 1√
6
ϕ1+ 1√

2
ϕ2 , X3 = e

2√
6
ϕ1 . (4.57)

All the solutions that we shall consider, comprising the new general single-charge

rotating black holes, and also the previously-known solutions with two equal charges
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[20] or three equal charges [21], as well as the general solutions in the ungauged theory

with three unequal charges [26, 24], can all be cast in a simple manner within the

following formalism. We write the metrics as

ds2
5 = (H1H2H3)

1/3 (x+ y) dŝ2
5 ,

dŝ2
5 = −Φ (dt+A)2 + ds2

4 , (4.58)

with the scalars and gauge potentials given by

Xi = H−1
i (H1H2H3)

1/3 ,

A1 =
2m

x+ y
H−1

1 {s1c1dt+ s1c2c3[abdχ+ (y − a2 − b2)dσ]

+c1s2s3(abdσ − ydχ)} , , (4.59)

with A2 and A3 given by cyclically permuting the subscripts on the right-hand side.

The functions Hi are given by

Hi = 1 +
2ms2

i

x+ y
, (4.60)

and we are using the shorthand notation

si = sinh δi , ci = cosh δi , (4.61)

where δi are the charge parameters. The four-dimensional base metric in (4.58) takes

the form

ds2
4 =

(dx2

4X
+
dy2

4Y

)
+
U

G

(
dχ− Z

U
dσ

)2

+
XY

U
dσ2 , (4.62)

where X is a function of x, Y is a function of y, and G, U and Z are functions of

both x and y. The “Kaluza-Klein” 1-form A appearing in (4.58) lives purely in the
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four-dimensional base space, and takes the form

A = f1 dσ + f2 dχ . (4.63)

The functions f1 and f2 depend only on x and y, as does Φ, which is given by

Φ =
G

(x+ y)3 H1 H2 H3

. (4.64)

The inverse of the metric dŝ2
5 is given by

( ∂

∂ŝ5

)2

= − 1

Φ

( ∂
∂t

)2

+ 4X
( ∂

∂x

)2

+ 4Y
( ∂

∂y

)2

+
G

U

( ∂

∂χ
− f2

∂

∂t

)2

+
1

UXY

(
U
∂

∂σ
+ Z

∂

∂χ
− (f1 U + f2 Z)

∂

∂t

)2

. (4.65)

Since there is no solution-generating technique for deriving charged black holes

from neutral black holes in gauged supergravity (unlike the situation in ungauged

supergravity), there is really no way other than a combination of guesswork, followed

by explicit verification, for obtaining the charged solutions. We were led to write the

ansatz for the metric, gauge potentials and scalar fields in the manner we have pre-

sented above by considering all the previously-obtained examples. The specific results

for the new general single-charged rotating black holes, which we shall present below,

were obtained by making a detailed comparison of various known cases, transformed

into the format of the ansatz above, and then making a conjecture for the form of

the solution. Finally, we substituted this into the equations of motion following from

(4.56), to verify that it was indeed a solution. In doing this, we made extensive use

of the Mathematica algebraic computing language.

Our new results for the general single-charge rotating black hole in five-dimensional

gauged N = 2 supergravity are as follows. Taking δ2 = δ3 = 0, and writing δ1 = δ,
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we find

X = (x+ a2)(x+ b2)− 2mx+ g2(x+ a2)(x+ b2)[x+ 2ms2 − (a2 + b2)s2 + 2absc] ,

Y = −(a2 − y)(b2 − y)[1− g2(y + (a2 + b2)s2 − 2absc)] ,

G = (x+ y)(x+ y − 2m) + g2(x+ y)2 (x− y + a2 + b2)H ,

U = yX − xY + s2W , Z = ab(X + Y ) + scW ,

W = −2g2m(a2 − y)(b2 − y)x+ g4(x+ a2)(x+ b2)(a2 − y)(b2 − y)(x+ y + 2ms2) ,

Φ =
G

(x+ y)3 H
,

A = s (xdχ+ abdσ) + c [abdχ− (x+ a2 + b2)dσ]

+
1

G

[
− s (x+ y − 2m)(xdχ+ abdσ)− c (x+ y)[abdχ− (x+ a2 + b2 − 2m)dσ]

+g2(x+ a2)(x+ b2)(x+ y + 2ms2)(cdσ − sdχ)
]
. (4.66)

The gauge potentials in (4.59) reduce to A2 = A3 = 0 and

A1 =
2ms

x+ y + 2ms2
[cdt+ abdχ+ (y − a2 − b2)dσ] , (4.67)

and the Hi functions are given by H2 = H3 = 1 and

H1 ≡ H = 1 +
2ms2

x+ y
. (4.68)

The solution we have presented here has four non-trivial parameters, namely m,

δ, a and b (with s = sinh δ, c = cosh δ), which characterise the mass, charge and two

angular momenta respectively.

F. Discussion

In this chapter, we present the details of how we obtained the new solutions with spe-

cific charge configurations and independent rotation parameters. Unlike in ungauged
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supergravity, where there is a solution generating technique by employing the global

symmetry of the theory, the difficulty in constructing new solutions in gauged super-

gravity lies in the fact that there is no systematic method of finding new solutions.

Each case requires specific insights to find the answer. Though we succeed in finding

solutions for several special cases, we are still trying to obtain the general solution

with three independent charges and two rotation parameters.
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CHAPTER V

CHARGED ROTATING BLACK HOLES IN SEVEN

DIMENSIONAL GAUGED SUPERGRAVITY

A. Introduction ∗

Charged black holes in gauged supergravities provide gravitational backgrounds of

importance in the study of the AdS/CFT correspondence. Non-extremal black hole

solutions are relevant for studying the dual field theory at non-zero temperature. This

has been discussed extensively for static AdS black holes in, for example, [30, 31, 32].

See also [33, 34, 35], for recent related work. For non-extremal charged rotating black

holes in gauged supergravities, little has been known until recently. In [18, 19] the

first examples of non-extremal rotating charged AdS black holes in five-dimensional

N = 4 gauged supergravity were obtained, in the special case where the two angular

momenta Ji are set equal. These solutions are characterised by their mass, three

electromagnetic charges, and the angular momentum parameter J = J1 = J2. By

taking appropriate limits, one obtains the various supersymmetric charged rotating

D = 5 black holes obtained in [14, 15, 13]. If instead the charges are set to zero,

the solutions reduce to the rotating AdS5 black hole constructed in [9], with J1 =

J2. In four dimensions, the charged Kerr-Newman-AdS black hole solution of the

Einstein-Maxwell system with a cosmological constant has long been known [27, 36].

This can be viewed as a solution in gauged N = 8 supergravity, in which the four

electromagnetic fields in the U(1)4 abelian subgroup of the SO(8) gauge group are

set equal. Recently, a more general class of non-extremal charged rotating solutions

∗Reprinted from Physics Letters B, Vol 626, Z. W. Chong, M. Cvetic, H. Lu and
C. N. Pope, Non-extremal charged rotating black holes in seven-dimensional gauged
supergravity, Pages 215-222, Copyright 2005, with permission from Elsevier.



65

in the four-dimensional gauged theory were constructed, in which the four electric

charges are set pairwise equal [16].

Another case of interest from the AdS/CFT perspective is non-extremal charged

rotating black holes in seven-dimensional gauged supergravity, and this forms the

subject of the present chapter. The maximally-supersymmetric theory has N = 4

supersymmetry, and the gauge group is SO(5) [44]. It was shown in [45, 46] that this

theory can be obtained as a consistent reduction of eleven-dimensional supergravity

on S4. A convenient presentation of the Lagrangian for the bosonic sector, in the

conventions we shall be using, appears in [47]. The theory is capable of supporting

black holes carrying two independent electric charges, carried by gauge fields in the

U(1) × U(1) abelian subgroup of the full SO(5) gauge group. For the purposes of

discussing the solutions, it therefore suffices to perform a (consistent) truncation of

the full supergravity theory to the relevant sector, in which all except the U(1) ×

U(1) subgroup of gauge fields are set to zero. The fields retained in the consistent

truncation comprise the metric, two dilatons, the U(1) × U(1) gauge fields and a

4-form field strength that satisfies an odd-dimensional self-duality equation. The

equations of motion can be derived from the Lagrangian

L7 = R ∗1l− 1
2
∗dϕi ∧ dϕi − 1

2

2∑
i=1

X−2
i ∗F i

(2) ∧ F i
(2) − 1

2
(X1 X2)

2 ∗F(4) ∧ F(4)

+2g2 [(X1 X2)
−4 − 8X1 X2 − 4X−1

1 X−2
2 − 4X−2

1 X−1
2 ]

−g F(4) ∧ A(3) + F 1
(2) ∧ F 2

(2) ∧ A(3) , (5.1)

where

F i
(2) = dAi(1) , F(4) = dA(3) ,

X1 = e
− 1√

2
ϕ1−

1√
10

ϕ2
, X2 = e

1√
2
ϕ1−

1√
10

ϕ2
, (5.2)
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together with a first-order “odd-dimensional self-duality” equation to be imposed

after the variation of the Lagrangian. This condition is most conveniently stated by

introducing an additional 2-form potential A(2), which can be gauged away in the

gauged theory, and defining

F(3) = dA(2) − 1
2
A1

(1) ∧ dA2
(1) − 1

2
A2

(1) ∧ dA1
(1) . (5.3)

The odd-dimensional self-duality equation then reads∗

(X1 X2)
2 ∗F(4) = −2g A(3) − F(3) . (5.4)

This is a first integral of the equation of motion for A(3) that follows directly from

(5.1). (Note that one can alternatively write a Lagrangian that yields the equations of

motion directly, with no need for an additional constraint. See, for example, [44, 47].)

The fact that the 3-form A(3) satisfies the odd-dimensional self-duality equation

presents an interesting new challenge when constructing the charged rotating solu-

tions in the gauged seven-dimensional supergravity. The trickiest part of finding

charged rotating solutions in any of the gauged supergravities is that one has little a

priori guidance as to how the dimensionless quantity a g enters the solution, where a

is the rotation parameter and g the gauge coupling constant. In the cases that have

been constructed previously, in five dimensions [18, 19] and in four dimensions [16],

the gauge coupling constant appeared always quadratically in the relevant equations

of motion, and thus the dimensionless product entered the solutions in the combina-

tion a2 g2. In seven dimensions, by contrast, the gauge coupling constant g appears

linearly in the odd-dimensional self-duality equation (5.4), and so in turn the solution

∗Note that if g 6= 0, one can absorb A2 by making a gauge transformation of A(3).
If, on the other hand, g = 0, then (5.4) just becomes the defining equation for F(3) as
the dual of F(4). When g = 0 one can equivalently work either with A(3), or with A(2)

in a dual formulation of the theory.
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involves linear powers of the product a g. This considerably complicates the task of

parameterising possible forms for the solution, in the process of formulating a conjec-

ture and then verifying that it works. It is intriguing that having found the charged

rotating black hole, we have the rather uncommon situation of obtaining a solution

of seven-dimensional gauged supergravity in which the odd-dimensional self-duality

equation (5.4) is satisfied in a non-trivial way.

In the following sections, we shall construct non-extremal charged rotating black-

hole solutions in the seven-dimensional gauged supergravity. In our approach, we

begin with the previously-known charged rotating solutions in the ungauged theory.

Then, we formulate a conjecture for the generalisation to the gauged theory, and

verify it by an explicit checking of all the equations of motion. The charged solutions

in the ungauged supergravity were constructed (with the full complement of three

independent rotation parameters) in [48]. In order to give a uniform presentation of

our results, and also to eliminate some typographical errors that arose in [48], we

begin in section B by rederiving the charged rotating black holes in the ungauged

seven-dimensional supergravity, in the special case we are addressing in this chapter

where the three angular momenta are set equal. Then, in section C, we formulate

our conjectured generalisation to the gauged supergravity theory, and verify that it

does indeed satisfy the equations of motion. As well as obtaining the non-extremal

solutions with two independent charges, we also present a somewhat simpler form

of the metric in the special case where the two charges are set equal. In section

D, we discuss the BPS limit, showing how supersymmetric rotating black hole solu-

tions in seven-dimensional gauged supergravity arise for a suitable restriction of the

parameters. The chapter ends with conclusions in section E.
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B. Charged Rotating Black Holes in the Ungauged Theory

Charged solutions in ungauged supergravity can be obtained from uncharged ones

by making use of global symmetries of the theory, employed as solution-generating

transformations. In the present case, one way of doing this is to recognise that in

the ungauged (g = 0) limit, the seven-dimensional theory described by (5.1) can

be obtained as the dimensional reduction of the eight-dimensional “bosonic string”

theory described by

L8 = R̂ ∗̂1l− 1
2
∗̂dϕ ∧ dϕ− 1

2
e
− 2√

3
ϕ ∗̂F̂(3) ∧ F̂(3) . (5.5)

This yields the seven-dimensional theory in a formulation in which the 4-form F(4) has

been dualised to the 3-form F(3) (see footnote 1). The strategy for introducing charges

is then to begin with an uncharged, Ricci-flat solution in seven dimensions, take its

product with a circle, and hence obtain a Ricci-flat solution of the eight-dimensional

theory. Next, one performs a Lorentz transformation in the (t, z) plane, with Lorentz

boost parameter δ1, where

t −→ t cosh δ1 + z sinh δ1 , z −→ z cosh δ1 + t sinh δ1 , (5.6)

where z is the circle coordinate of the eighth dimension. Upon reduction to D = 7 on

the Lorentz-transformed circle coordinate z, one obtains a seven-dimensional solution

in which the Kaluza-Klein vector carries an electric charge. The next step is to use the

discrete Z2 subgroup of the seven-dimensional global symmetry group that exchanges

the Kaluza-Klein and winding vectors. This allows one to repeat the lifting, Lorentz

boosting and reduction steps, with a second boost parameter δ2, thereby ending up

with a seven-dimensional solution where each of the Kaluza-Klein and winding vectors

carries an electric charge.
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In principle we can apply this charge-generating procedure starting from any

Ricci-flat metric in seven dimensions. In our present case, we take as our starting

point the generalisation of the rotating Kerr black hole to seven dimensions, obtained

by Myers and Perry [25]. The most general such solution has three independent

rotation parameters in the three orthogonal 2-planes of its six-dimensional transverse

space. For reasons of simplicity, we restrict attention to the case where the three

rotation parameters are set equal.

The uncharged seven-dimensional rotating black hole, with the three rotation

parameters set equal, can be written as

ds2
7 = −dt2 +

2m

ρ4
(dt− a σ)2 +

ρ4 dr2

V − 2m
+ ρ2 (dΣ2

2 + σ2) , (5.7)

where

ρ2 ≡ (r2 + a2) , V ≡ 1

r2
(r2 + a2)3 , (5.8)

dΣ2
2 is the standard Fubini-Study metric on CP 2, and σ is the connection on the U(1)

fibre over CP 2 whose total bundle is the unit 5-sphere. Thus we may write [49]

dΣ2
2 = dξ2 + 1

4
sin2 ξ (σ2

1 + σ2
2) + 1

4
sin2 ξ cos2 ξ σ2

3 ,

σ = dτ + 1
2
sin2 ξ σ3 , (5.9)

where σi denotes a set of left-invariant 1-forms on SU(2), satisfying dσi = −1
2
εijk σj ∧

σk. Note that we have

dσ = 2J , (5.10)

where J is the Kähler form on CP 2.

After implementing the sequence of steps described above in order to introduce

electric charges, we find that the charged rotating non-extremal seven-dimensional
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black holes are given by

ds2
7 = (H1 H2)

1/5
[
− ρ4 − 2m

ρ4 H1 H2

dt2 − 4ma

ρ4 H1 H2

dt σ +
2ma2

ρ4 H1 H2

(
1− 2ms2

1 s
2
2

ρ4

)
σ2

+ρ2 (dΣ2
2 + σ2) +

ρ4 dr2

V − 2m

]
,

A1
(1) =

2ms1

ρ4 H1

(c1 dt− a c2 σ) , A2
(1) =

2ms2

ρ4 H2

(c2 dt− a c1 σ) ,

A(2) =
mas1 s2

ρ4

( 1

H1

+
1

H2

)
dt ∧ σ ,

Xi = (H1 H2)
2/5 H−1

i , (5.11)

where

Hi = 1 +
2ms2

i

ρ4
, (5.12)

and we have defined

si ≡ sinh δi , ci ≡ cosh δi . (5.13)

(A different solution-generating technique, making use of global symmetries of

the three-dimensional theory obtained by dimensional reduction, was used in [48] to

construct rotating charged black holes in D-dimensional supergravities for 4 ≤ D ≤ 9,

with 2 independent charges and [(D−1)/2] independent angular momenta. When the

three angular momenta in the D = 7 solution are set equal, the situation considered

in [48] reduces to the one we have considered in this chapter.∗)

Note that the 3-form F(3) = dA(2) − 1
2
A1

(1) ∧ dA2
(1) − 1

2
A2

(1) ∧ dA1
(1) can be dualised

to the 4-form F(4) = dA(3), in which case one has

A(3) =
2mas1 s2

r2 + a2
σ ∧ J (5.14)

in place of the expression for A(2) in (5.11).

∗The general solution in [48] (eq. (12) of [48]) has a few typographical errors: a term
2N `2

i µ
2
i in the metric coefficient for dφ2

i should be 2N ∆ `2
i µ

2
i , the 2-form potential

components Bφi φj should be set to zero, and the quantity mr in Bt φi should be N .
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C. Charged Rotating Black Holes in the Gauged Theory

In this section, we construct non-extremal charged rotating solutions in the gauged

seven-dimensional supergravity theory. Note that the global symmetries that al-

lowed us to generate charged solutions from uncharged ones are broken in the gauged

theory, and so there is no longer a procedure available that delivers the charged so-

lutions by mechanical means. Instead, we have constructed the charged solutions

by means of “educated guesswork,” followed by an explicit verification that all the

seven-dimensional equations of motion are indeed satisfied. In order to conjecture

the form of the solution, we have made extensive use of previously-known limiting

cases, including, especially, the charged solutions of the ungauged theory, which we

described in the previous section.

We find that the charged and rotating non-extremal black hole solution of the

seven-dimensional gauged supergravity is given by∗

ds2
7 = (H1H2)

1/5
[
− Y dt2

f1 Ξ2
−

+
ρ4 dρ2

Y
+

f1

ρ4 H1H2 Ξ2

(
σ − 2f2

f1

dt
)2

+
ρ2

Ξ
dΣ2

2

]
,

Ai(1) =
2msi
ρ4 ΞHi

(αi dt+ βi σ) ,

A(2) =
mas1 s2

ρ4 Ξ2
−

( 1

H1

+
1

H2

)
dt ∧ σ , A(3) =

2mas1 s2

ρ2 Ξ Ξ−
σ ∧ J ,

Xi = (H1H2)
2/5 H−1

i , Hi = 1 +
2ms2

i

ρ4
, ρ2 = r2 + a2 ,

α1 = c1 − 1
2
(1− Ξ2

+)(c1 − c2) , α2 = c2 + 1
2
(1− Ξ2

+)(c1 − c2) ,

β1 = −aα2 , β2 = −aα1 ,

∗It should be emphasised that in the solution (5.15), A(3) is the potential for the
fundamental field F(4) = dA(3) in the gauged supergravity, while, as discussed in
footnote 1, A(2) is a term that could, if one wished, be viewed as being absorbed into
A(3) via a gauge transformation of A(3). It happens to be convenient to present it in
the form we have done; we are not saying that A(2) is an independent fundamental
field.
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Ξ± = 1± a g , Ξ = 1− a2 g2 = Ξ− Ξ+ , (5.15)

where the functions f1, f2 and Y are given by

f1 = Ξ ρ6 H1H2−
4Ξ2

+ m
2 a2 s2

1 s
2
2

ρ4
+ 1

2
ma2

[
4Ξ2

++2c1 c2 (1−Ξ4
+)+(1−Ξ2

+)2 (c2
1+c

2
2)

]
,

f2 = −1
2
g Ξ+ ρ

6 H1H2+
1
4
ma

[
2(1+Ξ4

+) c1 c2+(1−Ξ4
+) (c2

1+c
2
2)

]
,

Y = g2 ρ8 H1H2+Ξ ρ6+ 1
2
ma2

[
4Ξ2

++2(1−Ξ4
+) c1 c2+(1−Ξ2

+)2(c2
1+c

2
2)

]
−1

2
mρ2

[
4Ξ+2a2g2(6+8ag+3a2g2) c1 c2−a2g2(2+ag)(2+3ag)(c2

1+c
2
2)

]
. (5.16)

It is a purely mechanical exercise, which we performed with the aid of Mathe-

matica, to verify that this configuration indeed satisfies the equations of motion of

seven-dimensional gauged supergravity, following from (5.1) together with the odd-

dimensional self-duality equation (5.4). Note that as mentioned in the introduction,

unlike the charged rotating AdS black holes in D = 5 and D = 4, the metric in

D = 7 depends on odd powers of g as well as even powers, in consequence of the

odd-dimensional self-duality equation.

If one specialises to the case where the two charges are set equal, the solution

may be written in a somewhat simpler form, as

ds2
7 = H2/5

[
− V −2m

ρ4 H2 Ξ2
(dt−a σ)2+

1

r2 H2 Ξ2
(h1 dt−h2 σ)2+

ρ4 dr2

V −2m
+
ρ2

Ξ
dΣ2

2

]
,

A1
(1) = A2

(1) =
2ms c

ρ4 H Ξ
(dt−a σ) ,

A(2) =
2ms2 a

ρ4 H Ξ2
−
dt∧σ ,

A(3) =
2mas2

Ξ Ξ− (r2+a2)
σ∧J , (5.17)

where

V =
1

r2

(
(r2+a2)3 (1+g2 r2)+2g m (2g r4+3a2 g r2 −2a3) s2+4g2 m2 s4

)
,
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h1 = −a+g r2 H+
2a2 g ms2

ρ4
, h2 = −a2−r2 H+

2a3 g ms2

ρ4
,

H = 1+
2ms2

ρ4
, ρ2 = r2+a2 , s ≡ sinh δ , c ≡ cosh δ , (5.18)

D. The Supersymmetric Limit

The charged rotating black hole solutions in seven-dimensional gauged supergravity

that we have derived in this chapter are in general non-extremal, with the mass and

the electric charges freely specifiable. It is of interest also to study the extremal limit,

in which one obtains supersymmetric BPS black hole solutions. For simplicity, we

shall just present the results for the case where the two electric charges are set equal

here.

The criterion for supersymmetry is that there should exist supersymmetry para-

meters ε such that the supersymmetry variations of the spin-3
2

and spin-1
2

fields ψµ

and λi in the gauged supergravity theory should vanish. This is most easily checked

by looking at the integrability condition for the spin-3
2

field, and by looking directly

at the transformation rule for the spin-1
2

field. This latter, in the case where the

electric charges are set equal, takes the form

δλi = −1
4
Γµ εX−1 ∂µX+ i

40
X−1 Fµν Γµν ε− 1

480
X2 Fµνρσ Γµνρσ ε+ 1

5
g (X−X−4) ε .

(5.19)

By studying the eigenvalues of the matrix that acts on ε, we find that there can exist

Killing spinors if the parameter δ satisfies

tanh δ =
±1

1+a g
, (5.20)
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which implies that

s ≡ sinh δ =
±1√
Ξ2

+−1
, c ≡ cosh δ =

Ξ+√
Ξ2

+−1
. (5.21)

Specifically, we find that the 8×8 matrix has two zero eigenvalues if equation (5.20)

holds.

Our results for supersymmetric black holes reduce to previously-known cases if

we specialise to g = 0 or a = 0. In either of these cases, we find that the number

of zero eigenvalues increases to four, with the BPS condition (5.20) reducing now to

the familiar one that the “extremality parameter” is given by δ → ±∞ and m → 0

with m sinh2 δ fixed in the BPS limit. Thus we see that, as is the case also in four

dimensions, BPS rotating black holes in gauged supergravity have only one half of

the supersymmetry that occurs if either the rotation or the gauge coupling is set to

zero.

It is not uncommon, for certain ranges of the parameters, for a rotating black

hole to have naked closed timelike curves (CTCs). In our solution, with the two

charges set equal, it is easy to see that

H−2/5 g00 =
( 4f 2

2

ρ4H2Ξ2
− Y

Ξ2
−

) 1

f1

=
2m(1−(Ξ2

+−1)s2)−Ξ2
+ρ

4

Ξ2H2ρ4
. (5.22)

The horizon is located at the outer root of Y = 0. The absence of CTCs requires

that f1 > 0, and so a necessary condition for no naked CTCs is that on the horizon,

the expression on the second line be non-negative. This can be satisfied if s2 < s2
0 ≡

1/(Ξ2
+−1), provided that m is sufficiently large. However, in the BPS limit, where

s = s0, the metric will necessarily have naked CTCs. (In fact recently an alternative

supersymmetric limit of our seven-dimensional non-extremal black hole solution has
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been found, which does include a regular black hole with no CTCs or singularities on

or outside the event horizon [41].)

E. Conclusions

In this chapter, we have constructed non-extremal charged rotating black hole solu-

tions in seven-dimensional gauged supergravity. The solutions carry two independent

charges, associated with gauge fields in the U(1)×U(1) abelian subgroup of the SO(5)

gauge group. In order to simplify the problem we set the three angular momenta of

a generic rotating black hole equal. An interesting new feature that arises in seven

dimensions is that the 4-form field F(4), which is also non-zero when the two electric

charges are both non-vanishing, satisfies a first-order “odd-dimensional self-duality”

equation. This implies that the structure of the solutions is considerably more com-

plicated than in previous examples that were studied in four and in five dimensions.

As well as obtaining the non-extremal black hole solutions, we also considered their

BPS limits, showing that one can obtain supersymmetric rotating black hole solutions

of seven-dimensional gauged supergravity.

The results presented in this chapter are of significance for the AdS7/CFT6 cor-

respondence in M-theory.
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CHAPTER VI

CONCLUSIONS

In this dissertation, we systematically construct non-extremal charged rotating anti-

de Sitter black hole solutions in four, five and seven dimensions. In four dimensions,

after we obtain rotating Kerr-Taub-NUT metric with four independent charges, as

solutions of N = 2 supergravity coupled to three abelian vector multiplets by the

solution generating technique, we then generalise the four-dimensional rotating solu-

tions to the solutions of gauged N = 4 supergravity with charges set pairwise equal.

The four-dimensional charged Kerr-Taub-NUT solution that we obtained in chapter

III provide new gravitational backgrounds for four-dimensional vacua in compactified

string theory. In particular, the non-extreme Kerr-Taub-NUT solution of gauged su-

pergravity provide asymptotically AdS backgrounds that are characterised by their

mass, angular momentum and two pair-wise equal charges (implying that they can be

viewed as solutions in N = 4 gauged supergravity). The gauged solutions should pro-

vide new information on the dual three-dimensional conformal field theory at non-zero

temperature.

In five dimensions, the most general charged rotating black hole solution has three

charge and two rotation parameters. In chapter IV we obtain several special cases

of the general solution. To be specific, we obtain the first example of non-extremal

rotating black hole solution with two independent rotation parameters, which has

two charge parameters set equal and the third vanishing. In another example, we

obtain the non-extremal charged rotating black hole solution with three charge pa-

rameters set equal and non-equal rotation parameters. We are also able to construct

the single-charge solution with two independent rotation parameters. Rotating black

hole solutions in five-dimensional gauged supergravity provide backgrounds whose
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AdS/CFT duals describe four-dimensional field theories in the rotating Einstein uni-

verse on the boundary of anti-de Sitter spacetime. With the general solutions in

minimal gauged supergravity that we have now found, this aspect of the AdS/CFT

correspondence can be studied in a framework that also allows one to take a BPS

or near-BPS limit, where the mapping from the bulk to the boundary is better con-

trolled. In particular, it is of great interest to provide the microscopic interpretation

from the boundary CFT for the entropy of the supersymmetric black holes with two

general rotations [42, 43].

In seven dimensions, We obtain the solution for non-extremal charged rotating

black holes in gauged supergravity, in the case where the three rotation parameters

are set equal. There are two independent charges, corresponding to gauge fields in

the U(1)×U(1) abelian subgroup of the SO(5) gauge group. The results presented

in chapter V are of significance for the AdS7/CFT6 correspondence in M-theory.
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APPENDIX A

PREVIOUSLY-KNOWN ROTATING BLACK HOLES

In this appendix we present the previously-known rotating black hole solutions of

five-dimensional supergravity, using the formalism that we have introduced in Chapter

IV. These amount to three cases. The first is the case found in [20] with two charges

set equal and the third related to this, in gaugedN = 2 supergravity. The second case,

obtained in [21], is where all three charges are equal in N = 2 gauged supergravity;

this can be viewed also as the general solution in minimal gauged supergravity. The

third case is the general solution in ungauged N = 2 supergravity, with three unequal

charges, which was obtained in [24, 26]. All three of these cases can be represented

elegantly within the formulation of Chapter IV, and thus to present them we need

only specify the various functions and gauge potentials.

CASE 1: Two equal charges in gauged supergravity

In this solution, obtained in [20], we have δ1 = δ2 = δ, with δ3 = 0. In the

ungauged theory, this choice of charge parameters would imply that two of the three

physical conserved charges were equal and non-vanishing, whilst the third vanished.

As was shown in [20], in the case of the solution in gauged supergravity the third

physical charge is actually non-vanishing too, with a value related to those of the

other two. We find that in the formalism of Chapter IV, this solution is given by

X = (x+a2)(x+b2)−2mx+g2(x+a2+2ms2)(x+b2+2ms2)x ,

Y = −(a2−y)(b2−y)(1−g2 y) ,

G = (x+y)(x+y−2m)+g2(x+y)2 (x−y+a2+b2+2ms2)H ,
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U = yX−xY , Z = ab(X+Y ) ,

Φ =
G

(x+y)3 H2
,

A = abdχ−(x+a2+b2+2ms2)dσ

+
1

G

[
−(x+y+2ms2)[abdχ−(x+a2+b2−2m)dσ]

+g2(x+a2+2ms2)(x+b2+2ms2)(x+y+2ms2)dσ
]
. (A.1)

That the gauge potentials in (4.59) reduce to

A1 = A2 =
2msc

x+y+2ms2
[dt+abdχ+(y−a2−b2)dσ] ,

A3 =
2ms2

x+y
(abdσ−ydχ) , (A.2)

and the functions Hi reduce to H3 = 1, and

H1 = H2 = H = 1+
2ms2

x+y
. (A.3)

CASE 2: Three equal charges in gauged supergravity

This solution, obtained in [21], which can also be viewed as the general rotating

black hole solution in five-dimensional minimal gauged supegravity, corresponds in

the formalism of Chapter IV to taking δ1 = δ2 = δ3 = δ. We find that it then takes

the form

X = (x+a2)(x+b2)−2mx

+g2(x+a2+2ms2)(x+b2+2ms2)[x+2ms2−(a2+b2)s2+2absc] ,

Y = −(a2−y)(b2−y)[1−g2(y+(a2+b2)s2−2absc)] ,

G = (x+y)(x+y−2m)+g2(x+y)2 (x−y+a2+b2+2ms2)H2 ,

U = yX−xY +s2W , Z = ab(X+Y )+scW ,
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W = −2g2m(a2−y)(b2−y)[x(c2+s2)+(a2+b2)s2+2ms4]

+g4(x+a2+2ms2)(x+b2+2ms2)(a2−y)(b2−y)(x+y+2ms2) ,

Φ =
G

(x+y)3 H3
, (A.4)

A = s(xdχ+abdσ)+c[abdχ−(x+a2+b2+2ms2)dσ]+2ms3 dχ

+
H

G

[
−s(x+y−2m)(xdχ+abdσ)−c(x+y)[abdχ−(x+a2+b2−2m)dσ]

+g2(x+a2+2ms2)(x+b2+2ms2)(x+y+2ms2)(cdσ−sdχ)
]
.

The gauge potentials in (4.59) reduce to

A1 = A2 = A3 =
2msc

x+y+2ms2
{dt+c[abdχ+(y−a2−b2)dσ]+s(abdσ−ydχ)} , (A.5)

and the functions Hi are given by

H1 = H2 = H3 = H ≡ 1+
2ms2

x+y
. (A.6)

CASE 3: Three unequal charges in ungauged supergravity

This solution was first obtained in [26], by applying a solution-generating proce-

dure to add charges to the neutral five-dimensional rotating black hole of Myers and

Perry [25]. We find that in the formulation of Chapter IV, it takes the simple form

X = (x+a2)(x+b2)−2mx , Y = −(a2−y)(b2−y) ,

G = (x+y)(x+y−2m) , U = yX−xY , Z = ab(X+Y ) ,

Φ =
G

(x+y)3 H1H2H3

,

A =
2mc1c2c3

G
[(a2+b2−y)dσ−abdχ]− 2ms1s2s3

x+y
(abdσ−ydχ) . (A.7)
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