
C
ER

N
-T

H
ES

IS
-2

01
3-

29
1

//
20

13

Measurement of prompt charm

production and the decay

D0 → K+π−π+π− at LHCb

by

Thomas R. Hampson

A thesis submitted to the University of Bristol for the

degree of Doctor of Philosophy

in the

Faculty of Science

School of Physics

June 2013

file:t.r.hampson@bristol.ac.uk
http://www.bristol.ac.uk/science/
http://www.phy.bris.ac.uk/


Abstract

Prompt charm production in pp collisions at a centre-of-mass energy of 7 TeV is measured

with the decay D0 → K−π+π−π+, using an integrated luminosity of 15.0 nb−1 collected

by the LHCb detector at CERN. The measurement is carried out in two-dimensional

bins of D0 rapidity and transverse momentum in the region 2.0 < y < 4.5 and 0 < pT <

8 GeV/c. The results are found to have excellent agreement with those measured using

the decay D0 → K−π+.

With 1.0 fb−1 of integrated luminosity, the time dependent ratio of D0 → K+π−π+π− to

D0 → K−π+π−π+ decays is used to determine the ratio of doubly Cabibbo suppressed

to Cabibbo favoured decay rates

r2
D = (0.341± 0.017± 0.006) %

where the first uncertainty is statistical and the second is systematic. This is a previously

unmeasured quantity, and can be used to measure the branching fraction of the doubly

Cabibbo suppressed decay D0 → K+π−π+π−

B
(
D0 → K+π−π+π−

)
via DCS = (2.75± 0.14± 0.05± 0.07)× 10−4

where the final uncertainty is from the branching fraction of the Cabibbo favoured

decay D0 → K−π+π−π+. In addition, the no-mixing hypothesis is excluded with a

probability that corresponds to 2.8 standard deviations, and the time-integrated mixing

rate is measured as RM = (0.04± 0.88)× 10−4.



Declaration of authorship

I, Thomas Hampson, declare that the work in this dissertation was carried out in accor-

dance with the requirements of the University’s Regulations and Code of Practice for

Research Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the candi-

date’s own work. Work done in collaboration with, or with the assistance of, others, is

indicated as such. Any views expressed in the dissertation are those of the author.

Signed:

Date:

ii



Acknowledgements

I would like to take this opportunity to thank a few of the people who have helped me

over the past few years. Without them, I don’t think any of this work would have been

possible.

Firstly, I would like to thank Jonas Rademacker for his excellent supervision. Jonas

provided me with countless opportunities, was always full of new ideas, and was always

there to help me out and answer my questions.

Thank you to Nick Brook, Matt Coombes, and Anatoly Solomin for all their help with

my work on the RICH alignment selection. I particularly enjoyed all of the long dis-

cussions with Anatoly. Thank you also to Chris Jones for helping me with the RICH

reconstruction software.

Thank you for the hard work of the members of the K3π task force; Philip Hunt, Paras

Naik, Andrew Powell, and Jonas. It took a while, but we finally measured those cross-

sections!

A big thank you to Vava Gligorov who helped me understand the trigger software, and

whose encouragement led to the four-body charm trigger. Thank you to Patrick Spradlin

for writing the two-body part of the trigger algorithm.

Thanks to Sam Harnew who took over a large part of the analysis that forms Chapter 5.

We will publish it eventually...

Thank you to the friends I made in Bristol and at CERN for making the last four years

unforgettable. There are too many of you to list here.

Thank you to all of my family, especially my parents, for their continuing love and

support.

Finally, thank you to Cathryn for putting up with my long absences, and for keeping

me fed while I was writing up. I could not have done this without you.

iii



Author’s contribution

Much of the work presented in this thesis was carried out with the assistance of members

of the Bristol particle physics group, and other members of the LHCb collaboration. The

following list outlines the Author’s specific contributions.

• Chapter 3: event selection algorithm.

• Chapter 4: event selection, yield extraction, fiducial acceptance and reconstruc-

tion/selection efficiency calculations, many of the systematic uncertainties (yield

extraction, fiducial acceptance, selection/reconstruction efficiency, Dalitz model,

multiple candidates, peaking background, and the final combination of all uncer-

tainties), and the calculation of the cross-sections, as well as the comparison with

the other decay mode.

• Chapter 5: trigger, event selection, yield extraction, secondary background correc-

tion, and the systematic uncertainties.

iv



Contents

Abstract i

Declaration of authorship ii

Acknowledgements iii

Author’s contribution iv

Introduction 1

1 The Standard Model 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Quantum electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Quantum chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Electroweak interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 The Higgs mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Quark mixing and the CKM matrix . . . . . . . . . . . . . . . . . . . . . 13

1.6.1 CP violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6.2 The unitarity triangle . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Mixing in multi-body D decays . . . . . . . . . . . . . . . . . . . . . . . . 17

2 The LHCb detector 23

2.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 LHCb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Vertex locator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Particle ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 Ring imaging Cherenkov detectors . . . . . . . . . . . . . . . . . . 31

2.2.4 Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.5 Dipole magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.6 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.7 Muon chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.8 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.9 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Event selection for RICH mirror alignment 47

v



Contents vi

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Alignment method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Prompt charm production in pp collisions at
√
s = 7 TeV 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Charm production mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Analysis strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Event selection using a genetic algorithm . . . . . . . . . . . . . . . . . . 61

4.4.1 Selection variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.2 Event selection optimisation . . . . . . . . . . . . . . . . . . . . . . 64

4.4.3 Final selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Yield extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Efficiency corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.1 Fiducial acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.2 Trigger efficiency and effective luminosity . . . . . . . . . . . . . . 75

4.6.3 Reconstruction and selection efficiency . . . . . . . . . . . . . . . . 76

4.6.4 PID efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Systematic uncertainties and correction factors . . . . . . . . . . . . . . . 78

4.7.1 Yield extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7.2 Fiducial acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7.3 Selection and reconstruction efficiency . . . . . . . . . . . . . . . . 81

4.7.4 PID efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7.5 Dalitz model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7.6 Tracking efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7.7 Integrated luminosity . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7.8 Branching fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7.9 Monte Carlo association failure . . . . . . . . . . . . . . . . . . . . 84

4.7.10 Cut variable distributions . . . . . . . . . . . . . . . . . . . . . . . 86

4.7.11 Multiple candidates . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7.12 Peaking background . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.8.1 Comparison with D0 → K−π+ . . . . . . . . . . . . . . . . . . . . 94

4.8.2 Comparison with theoretical predictions . . . . . . . . . . . . . . . 96

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Search for D0 −D0 oscillations and a measurement of the doubly
Cabibbo suppressed decay D0 → K+π−π+π− 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Analysis strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.1 L0 and HLT1 requirements . . . . . . . . . . . . . . . . . . . . . . 102

5.3.2 HLT2 selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Yield extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



Contents vii

5.6 Corrections to the lifetime distribution . . . . . . . . . . . . . . . . . . . . 111

5.6.1 Secondary background . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6.2 Peaking background . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7 Fitting the lifetime distribution . . . . . . . . . . . . . . . . . . . . . . . . 120

5.8 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.8.1 Secondary background . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.8.2 Peaking background . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.8.3 Signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.8.4 Dalitz model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.8.5 Branching fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Conclusions 130

A Charm cross-section fits in (y, pT) bins 133

B Mass and log10(IPχ2) fits in bins of D0 lifetime 143

Bibliography 156



Introduction

The Standard Model of particle physics represents one of the greatest achievements of

modern science. It aims to fully describe the fundamental particles that make up the

Universe, and the laws that govern their interactions. The LHCb detector is one of

the four main experimental machines placed at intersection points around the Large

Hadron Collider at CERN. It has been designed to exploit the exceptional b and c quark

production rate of the LHC to study heavy flavour physics with unprecedented precision,

and has already recorded some of the largest samples of b− and c−meson decays to date.

In this thesis, the production of D mesons is studied using the decay to the final state

K3π. The same final state is used, along with its charge-conjugate, to investigateD0−D0

oscillations, and perform a first measurement of the ratio of doubly Cabibbo suppressed

to Cabibbo favoured decay rates. A discussion of the alignment of the LHCb RICH

mirrors is also given, for which an event selection is developed. The alignment plays

a vital role in the performance of RICH particle identification, which is crucial for the

measurements presented here.

Chapter 1 begins with a brief introduction to the Standard Model, before introducing

the mixing formalism for multi-body decays of D0 mesons, which is relevant later in the

thesis. Chapter 2 outlines the LHCb detector, including all of the various sub-detectors.

In Chapter 3, the method used to align the LHCb RICH mirror segments is outlined,

before a selection algorithm, designed to speed up the procedure, is discussed.

Chapter 4 describes an analysis which measures the production of promptly produced

charm mesons, using some of the earliest LHCb data recorded with a centre-of-mass

energy of 7 TeV (with additional figures in Appendix A). Chapter 5 describes a time

1



Introduction 2

dependent analysis which uses the full 2011 dataset to search for neutral charm meson

oscillations, and measure the ratio of doubly Cabibbo suppressed to Cabibbo favoured

decay rates for D→ K3π decays. Additional figures relevant to this chapter are placed

in Appendix B.



Chapter 1

The Standard Model

1.1 Introduction

The Standard Model (SM) of particle physics is a mathematical description of the fun-

damental matter particles and their interactions. Within the SM there are twelve spin-1
2

matter particles (fermions), divided into two groups: quarks and leptons. For each of

the quarks and leptons there is a corresponding antiquark or antilepton. Three forces

describe the interactions between fermions: the weak force; the strong force; and elec-

tromagnetism. The interactions between fermions are transmitted via the exchange of

spin-1 force mediators (bosons), but only if the fermions posses the type of charge as-

sociated with the given force. The strong interaction is mediated by gluons, which act

on “colour” charge; the electromagnetic force is mediated by the photon, which acts on

electric charge; and the weak force is mediated by the W± and Z0 bosons, which act on

“weak isospin” and “weak hypercharge”. Quarks carry all three types of charge, so they

can take part in all three interactions. The charged leptons can interact via the weak

or electromagnetic interactions, and the neutrinos interact only weakly. A summary of

the fundamental particles is shown in Figure 1.1.

The SM also predicts the existence of the spin-0 “Higgs” boson, which is required for

electroweak symmetry breaking, and gives mass to the fermions via their interactions

with the Higgs field (called Yukawa interactions). Recently, both the CMS and ATLAS

3
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4 CP-violation in the Standard Model and beyond
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Figure 1.1.: The fundamental particles of the Standard Model, sorted according to family,
generation and mass.

1.1.1. The fundamental particles

The SM consists of 12 spin 1/2 fermions and their antiparticles, 12 vector gauge bosons,

and 1 as-yet-unmeasured scalar boson, summarised in Figure 1.1. The fermions are

pointlike as to current resolution they show no sign of internal structure. The gauge

bosons are mediators of the forces which act upon the fermions, leading to the inter-

actions and rich structure of the SM which continues to accommodate the processes

observed in HEP experiments.

1.1.2. The fundamental forces

The fundamental forces described by the Standard Model operate in different sectors,

and act upon subgroups of the fermions by way of exchange of virtual (gauge) bosons.

The SM consists of two sectors, electro-weak and strong (QCD), in which the different

forces act. The following subsections summarise these sectors.

Figure 1.1: Fundamental particles of the Standard Model, showing their masses, electric
charges, and spins [1]. Masses of the u−, d− and s−quarks are “current quark mass”
estimates, while the c− and b−quark masses are “running” masses. Values are taken
from [2].

collaborations reported observations of a neutral boson with a mass of ∼ 125 GeV/c2,

consistent with a SM Higgs boson [3, 4].

The dynamics of the fundamental particles within the SM are described in terms of their

kinetic and potential energy by the SM Lagrangian1

LSM = LEW + LQCD + LHiggs−Yukawa. (1.1)

The Lagrangian is invariant under certain local transformations, or gauge transforma-

tions, resulting in the conservation of certain charges carried by the particles (following

Noether’s theorem). Transformations between different gauges are represented by a

mathematical group, the generators of which correspond to gauge fields that are needed

to ensure gauge invariance. It is the quanta of these fields that represent the gauge

bosons.

1Here, the word “Lagrangian” actually refers to the Lagrangian density.
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The SM Lagrangian is invariant under local gauge transformations of the symmetry

group

SU(3)C ⊗ SU(2)I ⊗U(1)Y (1.2)

where SU(3)C is the symmetry group for the strong interaction, and SU(2)I ⊗ U(1)Y is

the symmetry group of the electroweak interaction. This results in the conservation of

the charges C (colour), I (weak isospin), and Y (weak hypercharge). Since the electric

charge is derived from the weak hypercharge and the third component of weak isospin,

Q = Y + I3, it is also conserved.

A brief description of the mathematical theory of the SM (including each of the terms in

Equation 1.1) is presented below. A more detailed account can be found in Reference [5],

for example.

1.2 Quantum electrodynamics

Quantum ElectroDynamics (QED) is the relativistic Quantum Field Theory (QFT) that

describes the interactions between photons and charged spin-1
2 fermions. It can be shown

that all of electrodynamics is generated by requiring that the free Dirac Lagrangian is

invariant under local phase (or “gauge”) transformations.

Free fermions are described by the Dirac Lagrangian2

L = iψ̄γµ∂µψ −mψ̄ψ (1.3)

where ψ is the Dirac spinor that describes the free fermion field, m is the fermion mass,

and γµ are the gamma matrices. The Dirac Lagrangian is invariant under the global

gauge transformation

ψ −→ eiθψ (1.4)

where θ is any real number. If θ is a function of space-time, Equation 1.4 becomes the

local gauge transformation

ψ −→ eiθ(x)ψ (1.5)

2In this chapter we use the “natural units” c = ~ = 1.
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under which the Dirac Lagrangian picks up an extra term of the form

ψ̄γµψ∂µθ (x) . (1.6)

In other words, the Lagrangian is not invariant under local gauge transformations. How-

ever, invariance can be restored by introducing a gauge field, Aµ, to the Lagrangian so

that

L = iψ̄γµ∂µψ −mψ̄ψ + qψ̄γµψAµ (1.7)

where Aµ transforms under local gauge transformations as

Aµ −→ Aµ +
1

q
∂µψ (x) . (1.8)

The last term in Equation 1.7 represents the interaction between the fermion current

ψ̄γµψ and the gauge field Aµ with the coupling strength q.

Finally, a “free” term for the gauge field is added to complete the electromagnetic

Lagrangian:

LEM = iψ̄γµ∂µψ −mψ̄ψ + qψ̄γµψAµ −
1

4
FµνFµν (1.9)

where Fµν ≡ ∂µAν − ∂νAµ is the electromagnetic field tensor. Note that a mass term

for the gauge field, m2
AAµA

µ, is not included because it is not invariant under the local

gauge transformation (Equation 1.8). This leads to the conclusion that the gauge field

must be massless.

1.3 Quantum chromodynamics

Quantum ChromoDynamics (QCD) is the QFT that describes strong interactions be-

tween quarks and gluons, and is responsible for binding quarks into hadrons, as well

as holding protons and neutrons together within the nucleus. Gluons act on “colour”

charge, of which there are three types: “red”, “green”, and “blue”. Gluons themselves

carry colour charge, which gives rise to gluon self-interactions. Similarly to QED, the

dynamics of the strong force can be shown to result from requiring local gauge invariance.
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The Dirac Lagrangian for one particular quark flavour is

L =
(
iψ̄rγ

µ∂µψr −mψ̄rψr
)

+
(
iψ̄gγ

µ∂µψg −mψ̄gψg
)

+
(
iψ̄bγ

µ∂µψb −mψ̄bψb
)

(1.10)

which can be written more compactly as

L = iψ̄γµ∂µψ −mψ̄ψ. (1.11)

This is the same as the free fermion Lagrangian in Equation 1.3, except that now ψ is

a three component vector of Dirac spinors:

ψ ≡




ψr

ψg

ψb



, ψ̄ =

(
ψ̄r ψ̄g ψ̄b

)
, (1.12)

one for each colour charge. The three-component Lagrangian is invariant under the

global transformation

ψ −→ eiHψ (1.13)

where H is a 3× 3 Hermitian matrix which can be written as

H = θ I + λ · a. (1.14)

Here θ is a real number, I is the 3× 3 identity matrix and

λ · a ≡ λ1a1 + · · ·+ λ8a8 (1.15)

where a1, · · · , a8 are real numbers, and λ1, · · · , λ8 are the Gell-Mann matrices. The

gauge transformation can be split into two parts, eiH = eiθeiλ·a, the first of which is a

phase transformation that was discussed for QED. Demanding that the Dirac Lagrangian

be invariant under the local gauge transformation

ψ −→ eiqλ·φ(x) where φ (x) ≡ a (x)

q
(1.16)
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requires an extra term (underlined):

L = iψ̄γµ∂µψ −mψ̄ψ −
(
qψ̄γµλψ

)
·Gµ (1.17)

that accounts for the colour interaction between the quarks and the eight gauge (gluon)

fields Gµ, with a coupling strength q. Finally, the free gluon Lagrangian is added to

give the complete QCD Lagrangian3:

LQCD = iψ̄γµ∂µψ −mψ̄ψ −
(
qψ̄γµλψ

)
·Gµ −

1

4
GµνGµν (1.18)

where the gluon field strength tensor is

Gµν = ∂µGν − ∂νGµ − q (Gµ ×Gν) . (1.19)

Here, each of the eight components, i, of the “cross product” is given by

(Gµ ×Gν)i =
8∑

j,k=1

fijkG
µ
jG

ν
k (1.20)

where fijk are the SU(3) structure constants. The additional term in the field strength

tensor accounts for gluon self-interactions with a coupling strength q, the same as be-

tween quarks and gluons. The coupling constant is more often referred to in terms of

αs, defined as

αs =
q

4π
. (1.21)

Self-interaction occurs because gluons posses a colour charge, unlike in the case of QED

where the photon is chargeless.

In QED, the electric charge of a particle is screened by the polarisation of surrounding

virtual particle/antiparticle pairs. This leads to a coupling strength that depends on

the energy scale of the interaction - at high energies an interacting particle is able

to penetrate through the cloud of virtual particles to feel more of the bare electric

charge. The same is true for QCD: virtual quark/antiquark pairs produced near a

bare quark will screen the colour charge. However, gluon self-interactions introduce an

3There are actually six versions of this Lagrangian: one for each of the different quark flavours.
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“antiscreening” effect which outweighs the screening from the quark/antiquark pairs.

Therefore, for QCD, at higher energies the coupling strength decreases. This gives rise

to two interesting phenomena: confinement and asymptotic freedom.

Confinement is a physical phenomenon that prevents the existence of isolated colour

charges; quarks can only bind together in colourless combinations to form hadrons. As

the separation between two quarks increases, αs increases until it becomes energetically

more favourable to produce a new quark-antiquark pair. The new quarks will form

colourless combinations with the original pair; a process referred to as “hadronisation”

(or “fragmentation”). At high energies (or small distances), the size of the coupling

constant decreases and the quarks behave more like free particles. This is known as

asymptotic freedom.

1.4 Electroweak interactions

The weak force is the only fundamental interaction that violates parity. The W± bosons

couple only to left-handed fermion states, while the Z0 boson couples to left- and right-

handed states with different strengths.

Under SU(2) (the symmetry group of the weak interaction), the left-handed fermions

form doublets

ψL =



νL

lL


 ,



uL

d′L


 (1.22)

while the right-handed fermions form singlets

ψR = lR , uR , dR. (1.23)

Here, the prime on the down-type quark represents the flavour eigenstate, which is

different to the mass eigenstate (see Section 1.6).
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The ElectroWeak (EW) interaction is the unification of the weak force and electromag-

netism [6], with the symmetry group

SU(2)I ⊗U(1)Y, (1.24)

which gives rise to three weak isospin bosons (Wα
µ ) and one weak hypercharge boson

(Bµ). After requiring local gauge invariance and introducing a gauge invariant kinetic

term for the bosons, the EW Lagrangian4 is given by

LEW = ψ̄Rγ
µ

(
∂µ − igY

YR

2
Bµ

)
ψR (1.25)

+ ψ̄Lγ
µ

(
∂µ − igY

YL

2
Bµ − igW

σα

2
Wα
µ

)
ψL (1.26)

− 1

4
Wα
µνW

αµν − 1

4
BµνB

µν (1.27)

where gY is the weak hypercharge coupling constant, gW is the weak isospin coupling

constant, YL,R are the weak hypercharges of the left- and right-handed fermions, and σα

are the Pauli matrices. The field strength tensors are given by

Wα
µν = ∂µW

α
ν − ∂αWα

µ + gWεαβγW
β
µW

γ
µ (1.28)

and

Bµν = ∂µBν − ∂νBµ (1.29)

where εαβγ are the SU(2) structure constants. Note that because right-handed fermion

fields are invariant under local SU(2)I transformations, they do not couple to the Wα
µ

gauge fields, whereas the left-handed fermion fields interact with both the Wα
µ and Bµ

gauge fields (this is parity violation).

As with the QED and QCD Lagrangians, local gauge invariance requires that the gauge

fields are massless. However, observations have shown that all of the electroweak bosons

except for the photon are massive [7, 8]. Furthermore, it is not possible to simply add

a mass terms of the form

mψψ̄ = m
(
ψ̄LψR + ψ̄RψL

)
(1.30)

4Note that this is for one generation only.
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for the fermion fields because it is not invariant under an SU(2)I local gauge transfor-

mation.

1.5 The Higgs mechanism

The masses of the EW gauge bosons are explained by their interaction with the Higgs

field, which is a weak isospin doublet of scalar fields,

φ =



φ+

φ0


 =



φ1 + iφ2

φ3 + iφ4


 (1.31)

and which has a potential of the form

V
(
φ†φ
)

= −µ2
(
φ†φ
)

+
λ
(
φ†φ
)2

2
. (1.32)

If µ2 < 0 then the minimum of the potential trivially corresponds to φ = 0. However,

for µ2 > 0 the minimum of the potential occurs at

φ†φ =
µ2

2λ
≡
(
v√
2

)2

. (1.33)

Here, the vacuum is said to be degenerate (i.e. there are an infinite number of states

with the same minimum potential). The vacuum expectation value is chosen to be

〈φ〉0 =
1√
2




0

v


 (1.34)

which breaks the SU(2)I ⊗ U(1)Y symmetry while leaving the U(1)QED symmetry un-

broken (spontaneous symmetry breaking). Expanding around this vacuum expectation

values gives

φ =
1√
2




0

v +H


 (1.35)

where H, which is the excitation of the Higgs field from the vacuum expectation value, is

the Higgs boson. Here, we have chosen φ1 = φ2 = φ4 = 0 in the ground state. Using this
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particular gauge (the “unitary” gauge [9]) leaves only one scalar degree of freedom (the

Higgs field), while the other three degrees of freedom act as longitudinal polarisation

components of the three massive weak bosons. Without this choice of gauge, we would

be left with non-existent, massless “Goldstone” bosons [10].

The Lagrangian that describes the kinematics of the Higgs field, and its interaction with

the EW gauge fields is given by

LHiggs = (Dµφ)† (Dµφ)− V
(
φ†φ
)

(1.36)

where the covariant derivative, Dµ, is defined as

Dµ ≡ ∂µ − igY

Y

2
Bµ − igW

σα

2
Wα
µ . (1.37)

EW symmetry breaking leads to the consequence that the photon is massless while the

weak gauge bosons acquire the masses

mW =
vgW

2
and mZ =

mW

cos θW
(1.38)

where θW is the Weinberg angle, given by tan θW = gY/gW. The physical weak boson

states (and the photon) are related to the massless states by:



Zµ

Aµ


 =




cos θW sin θW

− sin θW cos θW






W 3
µ

Bµ


 (1.39)

and 

W+
µ

W−µ


 =




1 i

1 −i






W 1
µ

W 2
µ


 . (1.40)

In the SM, fermion fields acquire their masses via Yukawa interactions with the Higgs

field. For each fermion field, the Yukawa Lagrangian is of the form

LYukawa = c
(
ψ̄LφψR + ψ̄Rφ

†ψL

)
(1.41)
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where c is the Yukawa coupling (different for each fermion state) and φ is given by

Equation 1.35. This leads to fermion masses of

m =
cv√

2
, (1.42)

but because the Yukawa couplings are not known, the masses are not predicted by the

SM.

1.6 Quark mixing and the CKM matrix

The Yukawa coupling terms for all three quark generations can be written as

LqYukawa = −
(

1 +
H

v

)(
d̄
′
LM

′
dd
′
R + ū′LM

′
uu
′
R

)
+ h.c. (1.43)

where u′R,L and d′R,L are up- and down-type quark flavour space vectors; and M ′u and

M ′d are complex 3×3 flavour space matrices that allow mixing of different quark flavour

states. In order to obtain the physical quark states (mass eigenstates), the matrices

must be diagonalised:

M ′u = S†uLMuSuR , M ′d = S†dLMdSdR (1.44)

where S are unitary matrices, Mu = diag (mu,mc,mt), and Md = diag (md,ms,mb).

For left-handed quarks, the transformations from the weak states to the mass states are

given by

uiL −→ SijuLu
j
L and diL −→ SijdLd

j
L. (1.45)

Note that because the matrices S are unitary, the transformations have no effect on

neutral current interactions: d̄idi −→ d̄iSd (Sd)
† di ≡ d̄idi. Therefore flavour changing

neutral currents do not exist at the tree level within the SM. Charged current interactions
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transform as

uiLγ
µdiL −→ uiLγ

µ
(
SuL (SdL)†

)
diL (1.46)

diLγ
µuiL −→ diLγ

µ
(
SdL (SuL)†

)
uiL (1.47)

where
(
SuL (SdL)†

)
≡ VCKM is the Cabibbo-Kobayashi-Maskawa (CKM) matrix, given

by

VCKM =




Vud Vuc Vub

Vcd Vcs Vcb

Vtd Vts Vtb




(1.48)

which is a mixing matrix that relates the weak flavour eigenstates to the mass eigenstates:




d′

s′

b′




=




Vud Vuc Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b



. (1.49)

Each element Vij represents the coupling strength for a quark transition from state i

to state j. Diagonal elements are all close to one, while the off diagonal terms, which

represent transitions between different generations, are small.

The CKM matrix can be parameterised in many different ways. One example is the

Wolfenstein parameterisation [11]

VCKM =




1− 1
2λ

2 λ λ3A (ρ− iη)

−λ 1− 1
2λ

2 λ2A

λ3A (1− ρ− iη) −λ2A 1




+O
(
λ4
)

+ · · · (1.50)

where

λ =
|Vus|√

|Vus|2 + |Vud|2
, Aλ2 =

∣∣∣∣
Vcb
Vus

∣∣∣∣ , Aλ3 (ρ+ iη) = V ∗ub. (1.51)

The parameter λ may also be written in terms of the Cabibbo angle, λ = sin θC ' 0.23.

In the Wolfenstein parameterisation, the complex phase responsible for CP violation is

represented by iη.
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1.6.1 CP violation

The invariance of physics under the exchange of particles for antiparticles (charge con-

jugation), and the reversal of spatial coordinates (parity flipping), is referred to as CP

symmetry. While CP is conserved by electromagnetic and strong interactions, the sym-

metry is violated in weak interactions. In the SM, CP violation is accommodated by a

complex phase in the CKM matrix, leading to Vij 6= V ∗ij . In other words, the Yukawa

Lagrangian is not invariant under CP transformations. There are three different types

of CP violation:

1. CP violation in decay (referred to as “direct CP violation”). This occurs when

the amplitude for a decay and its CP conjugate have different magnitudes, and is

present in both charged and neutral decays.

2. CP violation in mixing (or “indirect CP violation”). The mass eigenstates of a

neutral meson may be written in terms of the flavour eigenstates:

|P1〉 = p
∣∣P 0
〉

+ q
∣∣∣P 0
〉

(1.52)

|P2〉 = p
∣∣P 0
〉
− q

∣∣∣P 0
〉

(1.53)

where p and q are complex numbers that satisfy |p|2 + |q|2 = 1. If p and q are

the same then the mass eigenstates are CP eigenstates. CP violation occurs if

|q/p| 6= 1, when the mass eigenstates are not CP eigenstates.

3. CP violation in the interference between mixing and decay.

1.6.2 The unitarity triangle

The unitarity of the CKM matrix leads to six the constraints
∑
k

VikV
∗
jk = 0 for i 6= j,

which can be represented as triangles on the complex plane (called unitarity triangles).

In particular, the condition

V ∗ubVud + V ∗cbVcd + V ∗tbVtd = 0 (1.54)
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2
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2 /2
)
V

∗
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cb

| V
tdλ |V

cb |

γ β

α

Figure 1.1: The Unitarity triangle with sides normalised to VcdV
∗
cb. The magnitudes of

the sides are shown in terms of the Wolfenstein parameters.

Up to O(λ3) in the Wolfenstein parametrisation, only Vub and Vtd are complex. Hence

only decays involving b → u and d → t transitions violate CP at this order. Dividing

each element of the matrix by its modulus gives:



1 1 e−iγ

1 1 1
e−iβ 1 1


 . (1.49)

This result directly relates the complex phases of the CKM matrix in the O(λ3) Wolfen-

stein parametrisation to the convention-independent angles of the UT. The angle α is

then simply the phase which completes unitarity: α ≡ π − β − γ.

1.5.5 Current Constraints on the Unitarity Triangle Parame-
ters

One of the principal goals of flavour physics is to over-constrain the UT and test for

any violations from unitarity. Any discrepancy from this SM prediction would be a

clear signature for the existence of New Physics (NP). To perform such tests, precise

measurements are required of all the UT parameters, i.e. the magnitudes of the rele-

vant matrix elements and the internal angles α, β and γ.

Table 1.1 lists the current world averages for the magnitudes of the relevant CKM

elements. As shown in Fig. 1.2, the measurements of |Vub| and |Vtd| impose direct con-

straints upon the apex of the UT within the complex plane. |Vub| fixes limits within

rings centred about (0,0), while in principle |Vtd| constrains the apex yet further with

limits within rings centred about (1,0). An additional constraint upon the apex of the

UT comes from the determination of the parameter εK , which characterises indirect

CP-violation in the K0 system. This imposes a limit through a hyperbolic-shaped

confidence region.

Figure 1.2: The unitarity triangle in the Wolfenstein parameterisation [12]. The lengths
of the sides are normalised to VcdV

∗
cb.

results in a triangle with angles

α ≡ arg

(
− VtdV

∗
tb

VudV
∗
ub

)
, β ≡ arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
, γ ≡ arg

(
−VudV

∗
ub

VcdV
∗
cb

)
, (1.55)

and which is referred to as the unitarity triangle (shown in Figure 1.2) because all of the

sides are of the same order (λ3)5. One of the main goals of the LHCb experiment is to

perform a precise measurement of the angle γ, in order to test the unitarity of the CKM

matrix. Any deviation from unitarity would provide clear evidence for physics beyond

the SM.

It is possible to measure γ by considering the interference between B−→ D0K− and

B− → D0K− decays (and of course between their charge conjugates), where the D0

decays via the mode D0→ K±π∓π+π− [12, 13]. The functional forms of the decay rates

are

Γ
(
B−→

(
K−π+π−π+

)
D
K−
)
∝ 1 + (rBrD)2 + 2RDrBrD cos (δB − δD − γ) (1.56)

Γ
(
B−→

(
K+π−π+π−

)
D
K−
)
∝ r2

B + r2
D + 2RDrBrD cos (δB + δD − γ) (1.57)

where rB is the ratio of magnitudes of the two B decays and δB is the strong phase

difference between the B decays. The parameters rD, δD and RD relate to the decay

5Triangles resulting from four of the other conditions have very unequal sides, making CP violation
measurements very difficult. The other remaining condition results in a triangle that coincides with the
unitarity triangle up to O

(
λ3
)
.
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of the D, and are discussed in Section 1.7. Measurements of the D parameters provide

constraints vital for the extraction of the CP violating phase γ.

1.7 Mixing in multi-body D decays

This section follows the derivation found in [14]. The mass eigenstates of the neutral D

meson can be written in terms of the flavour eigenstates as follows:

|D1〉 = p
∣∣D0

〉
+ q

∣∣D0
〉

(1.58)

|D2〉 = p
∣∣D0

〉
− q

∣∣D0
〉
.

The time evolution of these states is governed by the Schrödinger equation, resulting in

|D1(t)〉 = p
∣∣D0(t)

〉
+ q

∣∣D0(t)
〉

= e−iM1t− 1
2

Γ1t
[
p
∣∣D0

〉
+ q

∣∣D0
〉 ]

(1.59)

|D2(t)〉 = p
∣∣D0(t)

〉
− q

∣∣D0(t)
〉

= e−iM2t− 1
2

Γ2t
[
p
∣∣D0

〉
− q

∣∣D0
〉 ]

where M1,2 and Γ1,2 are the masses and widths of the mass eigenstates D1,2. This can

be rearranged to give

∣∣D0(t)
〉

= f+(t)
∣∣D0

〉
+
q

p
f−(t)

∣∣D0
〉

(1.60)

∣∣D0(t)
〉

=
p

q
f−(t)

∣∣D0
〉

+ f+(t)
∣∣D0

〉
(1.61)

where f+(t) and f−(t) are defined as

f+(t) = e−iMt− 1
2

Γt cos

(
1

2
∆Mt− i

4
∆Γt

)
(1.62)

f−(t) = e−iMt− 1
2

Γti sin

(
1

2
∆Mt− i

4
∆Γt

)
. (1.63)

Here

M =
M1 +M2

2
and Γ =

Γ1 + Γ2

2
(1.64)
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s

u

d̄

W −

(a)

c

u u

d̄
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ū

W −

u

c̄

(b)

Figure 1.3: Feynman diagrams for (a) Cabibbo favoured and (b) doubly Cabibbo sup-
pressed D→ K3π decays (showing only the resonant part of the decay, for example
D→ a+1 (1260)K−). The DCS decay is heavily suppressed compared to the CF decay
because each of the weak vertices introduces a factor of λ.

are the average mass and width of the two mass eigenstates, while

∆M = M2 −M1 and ∆Γ = Γ2 − Γ1 (1.65)

are their differences.

The four probability amplitudes,

A(p) =
〈
fp

∣∣∣Ĥ
∣∣∣D0

〉
Ā(p) =

〈
f̄p

∣∣∣Ĥ
∣∣∣D0

〉
(1.66)

B(p) =
〈
fp

∣∣∣Ĥ
∣∣∣D0

〉
B̄(p) =

〈
f̄p

∣∣∣Ĥ
∣∣∣D0

〉

are defined, where fp and f̄p are CP conjugate final states, and p parameterises the

five-dimensional space that is accessible by the four-body final state. We choose Ā(p)

to represent the Doubly Cabibbo Suppressed (DCS) decay D0 → K−π+π−π+, which

means B̄(p) is the Cabibbo Favoured (CF) decay D0 → K−π+π−π+ (see Figure 1.3).

Using Equations 1.60, 1.61 and 1.66, the amplitudes for flavour eigenstates (with the

flavour “tagged” at time t = 0) decaying to given final states are given by
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〈
fp

∣∣∣Ĥ
∣∣∣D0(t)

〉
= f+(t)A(p) +

q

p
f−(t)B(p) (1.67)

〈
f̄p

∣∣∣Ĥ
∣∣∣D0(t)

〉
= f+(t)B̄(p) +

q

p
f−(t)Ā(p) (1.68)

〈
f̄p

∣∣∣Ĥ
∣∣∣D0(t)

〉
= f+(t)Ā(p) +

p

q
f−(t)B̄(p) (1.69)

〈
fp

∣∣∣Ĥ
∣∣∣D0(t)

〉
= f+(t)B(p) +

p

q
f−(t)A(p). (1.70)

Measurable quantities are given by squaring the above amplitudes and integrating over

phase space. Decay rates will therefore be given in terms of the following expressions

∫
A(p)A∗(p)dp = A2

∫
Ā(p)Ā∗(p)dp = Ā2

∫
B(p)B∗(p)dp = B2

∫
B̄(p)B̄∗(p)dp = B̄2 (1.71)

∫
A(p)B∗(p)dp = ABRDe−iδD

∫
Ā(p)B̄∗(p)dp = ĀB̄R̄De−iδ̄D

where RD is the “coherence factor” and δD is the average strong phase difference between

the DCS and CF modes. The coherence factor takes a value between 0 and 1 and

describes the degree of coherence between the two different amplitudes. If the decay

proceeds via a single resonance the coherence factor will be high.

It is convenient to introduce the following definitions

∣∣∣∣
q

p

∣∣∣∣ ≡ rcp , arg

(
q

p

)
≡ φcp , x =

∆M

Γ
, y =

∆Γ

2Γ
(1.72)

where the complex numbers p and q are used to parameterise CP violation in the D

sector, and x and y are dimensionless mixing parameters.

Substituting Equations 1.71 and 1.72 into Equations 1.67–1.70, followed by squaring,

and then integrating over phase space results in the rates
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Γ (D0(t)→ fp) =
1

2
B2e−Γt

{
r2
D (cosh yΓt+ cosxΓt) + r2

cp (cosh yΓt− cosxΓt)

+ 2RDrDrcp
[

cos(δD + φcp) sinh(yΓt)− sin(δD + φcp) sin(xΓt)
]}

Γ
(
D0(t)→ f̄p

)
=

1

2
B̄2e−Γt

{
(cosh yΓt+ cosxΓt) + r̄2

Dr
2
cp (cosh yΓt− cosxΓt)

+ 2R̄Dr̄Drcp
[

cos(−(δ̄D − φcp)) sinh(yΓt)− sin(−(δ̄D − φcp)) sin(xΓt)
]}

Γ
(
D0(t)→ f̄p

)
=

1

2
B̄2e−Γt

{
r̄2
D (cosh yΓt+ cosxΓt) +

1

r2
cp

(cosh yΓt− cosxΓt)

+ 2R̄D
r̄D
rcp

[
cos(δ̄D − φcp) sinh(yΓt)− sin(δ̄D − φcp) sin(xΓt)

]}

Γ
(
D0(t)→ fp

)
=

1

2
B2e−Γt

{
(cosh yΓt+ cosxΓt) +

r2
D

r2
cp

(cosh yΓt− cosxΓt)

+ 2RD
rD
rcp

[
cos(−(δD + φcp)) sinh(yΓt)− sin(−(δD + φcp)) sin(xΓt)

]}
.

Here rD = A/B and r̄D = Ā/B̄, so r2
D is the ratio of DCS to CF decay rates. Using a

second order Taylor expansion for t, the rates can be approximated as

Γ (D0(t)→ fp) '1

2
B2e−Γt

(
r2
D + rcprDRDy

′
β+

Γt+

[(
r2
cp − r2

D

)

4
x2 +

(
r2
cp + r2

D

)

4
y2

]
(Γt)2

)

Γ
(
D0(t)→ f̄p

)
'1

2
B̄2e−Γt

(
1 + rcpr̄DR̄Dy

′
β−Γt+

[(
1 + r2

cpr̄
2
D

)

4
y2 −

(
1− r2

cpr̄
2
D

)

4
x2

]
(Γt)2

)

Γ
(
D0(t)→ f̄p

)
'1

2
B̄2e−Γt


r̄2

D +
r̄D
rcp

R̄Dy
′
β̄+

Γt+




(
1
r2
cp
− r̄2

D

)

4
x2 +

(
1
r2
cp

+ r̄2
D

)

4
y2


 (Γt)2




Γ
(
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where y′β = y cos(β) − x sin(β) is the mixing parameter rotated by β. The four values

of β are

β+ = δD + φcp β̄+ = δ̄D − φcp (1.73)

β− = −δ̄D + φcp β̄− = −δD − φcp (1.74)

Assuming no CP violation in the D sector leads to

rD = r̄D , δ̄D = δD , RD = R̄D , rcp = 1 , φCP = 0 , β+ = β̄+ , β− = β̄− ,

which results in the two rate equations (the CP conjugates are identical now),

Γ (D0(t)→ fp) '1

2
B2e−Γt

(
r2
D + rDRDy

′
+Γt+

[
(1− r2
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4
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4
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(
D0(t)→ fp
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2
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(
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[
(1 + r2
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4
y2 − (1− r2

D)

4
x2

]
(Γt)2

)
.

Another second order Taylor expansion for t gives

Γ (D0(t)→ fp) '1

2
B2e−Γt

(
r2
D + rDRDy

′
+Γt+

x2 + y2

4
(Γt)2

)
(1.75)

Γ
(
D0(t)→ f̄p

)
'1

2
B2e−Γt

(
1 + rDRDy

′
−Γt+

y2 − x2

4
(Γt)2

)
. (1.76)

Here y′± = y cos(δD) ∓ x sin(δD), is the mixing parameter rotated by the strong phase.

The rate in Equation 1.75 is referred to as the Wrong Sign (WS) rate, while Equation 1.76

is referred to as the Right Sign (RS) rate. The first term in the WS rate equation is due

to DCS decays and the last term is due to the D0 oscillating to a D0 before decaying
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which is a previously unmeasured quantity. Combining this result with the branching1326

fraction for CF decays gives the branching fraction of D0 → K+π−π+π− via DCS1327

decays:1328

B
�
D0 → K+π−π+π−

�
via DCS = (2.75 ± 0.16) × 10−4. (5.21)

To measure the D0-D0 mixing significance, the WS/RS distribution is fit with two1329

different functions (shown in Figure 5.11(b)). Each fit minimises the same χ2 as in1330

Equation 5.18, but with the removal of the penalty terms for the mixing parameters x1331

and y, and with different forms of R (ti). For the no-mixing hypothesis, the form is1332

R (ti) = A (5.22)

while for the the mixing hypothesis, it takes the form1333

R (ti) = A + Bt + Ct2. (5.23)

The χ2/Ndof is 6.9/9 for the mixing hypothesis and 17.5/7 for the no-mixing hypothesis.1334

This corresponds to a p-value of 0.0052 for the no-mixing hypothesis, which means that1335

it is excluded at 2.8 standard deviations.1336
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Figure 1.4: A D0 may decay directly via the DCS process, or it may first oscillate to a
D0 and decay via the CF process.

via the CF process (see Figure 1.4). The second term is due to interference between the

two paths.

The time dependent WS/RS ratio, R(t), is obtained by dividing Equation 1.75 by Equa-

tion 1.76 and performing another second order Taylor expansion for t:

R(t) =
Γ (D0(t)→ fp)

Γ
(
D0(t)→ f̄p

) ' r2
D + rDRDy

′
+Γt+

x2 + y2

4
(Γt)2 . (1.77)

The third term is often referred to as the rate of mixing (but divided by two), RM =

x2+y2

2 , which is independent of the D0 decay mode. It is important to note that rD, RD

and δD (from y′+ = y cos (δD)− x sin (δD)) are the same as the parameters that appear

in Equation 1.56. For any two body final state RD = 1, while for any CP self-conjugate

final state δD = 0 and rD = 1 (in the absence of direct CP violation).



Chapter 2

The LHCb detector

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [15], located at the CERN laboratory near Geneva,

is the most powerful particle accelerator on Earth. At depths ranging between 45 m and

170 m, it is housed in the tunnel that was once home to the Large Electron Positron

(LEP) collider, straddling the Swiss-French border with a 27 km circumference.

At the start of the LHC injector chain is a cylinder of hydrogen gas which acts as a

source of protons, produced by ionising the gas. The protons are fed into the LINear

ACcelerator 2 (LINAC2) where they reach an energy of 50 MeV before they are injected

into the Proton Synchrotron Booster (PSB). Once the protons reach an energy of 1.4 GeV

they are fed into the Proton Synchrotron (PS) followed by the Super Proton Synchrotron

(SPS) where they are accelerated to energies of 25 GeV and 450 GeV respectively. They

are then injected into the LHC in two counter rotating beams, where they are steered and

accelerated by a total of 1232 superconducting dipole magnets up to a maximum energy

of 7 TeV per beam. The protons complete their long journey when they are brought

to collide at one of the four intersection points where the two beam lines cross. It is

at these intersection points that the four main LHC experiments are placed to record

the remains of the collisions: two general purpose detectors, ATLAS [16] and CMS [17];

ALICE [18], which is designed to study collisions between relativistic heavy ions; and

23
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Figure 2.1: The CERN accelerator complex.

LHCb [19], an experiment dedicated to exploring the field of heavy flavour physics. A

pictorial representation of the CERN accelerator complex is shown in Figure 2.1.

Although the maximum design centre-of-mass energy of the LHC is 14 TeV, data recorded

during 2010 and 2011 was produced with a centre-of-mass energy of 7 TeV. For data

taken during 2012 the centre-of-mass energy was increased to 8 TeV.

2.2 LHCb

The Large Hadron Collider Beauty (LHCb) experiment is designed to take advantage of

the copious production of B mesons at the LHC. The production cross-section, σ(pp→

bb̄X), has been measured by LHCb as 75.3 ± 5.4 ± 13.0µb at
√
s = 7 TeV [20]. This
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different momenta interact. Consequently, B hadron production at the LHC has the

following characteristics:

• The b and b̄ pairs produced predominantely take trajectories closely correlated to

one another, forming acute angles in the laboratory system. This is demonstrated

in Fig. 3.2

• The resulting B hadrons are highly boosted, predominantly along the beam axis.

These two features influence the design of the LHCb experiment and, as a result, it has

taken the form a single-arm spectrometer. This geometry provides an angular forward

acceptance from ∼ 10 mrad to 300 (250) mrad in the bending (non-bending) plane. The

experiment aims to exclusively reconstruct B mesons that fall within this acceptance

cone and reliably tag their b-quark flavour. To do so, the experiment requires precision

measurements of particle mass, identification and decay time, in addition to a highly

efficient trigger. These measurements are performed utilising information gathered

by the experiment’s many sub-detectors. Fig. 3.4 shows how these sub-detectors are

arranged to form the LHCb spectrometer.
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Figure 3.2: Angles formed with respect to
the beam axis by b- and b̄-hadrons, simu-
lated with the PYTHIA software package.
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and 4 pp interactions per bunch crossing
as a function of the machine luminosity,
assuming a total inelastic cross section for
pp interactions of 80 mb.

3.3.1 Luminosity Considerations

Bunch crossings at the LHC’s nominal luminosity of ∼ 1034 cm−2s−1 typically involve

more than one inelastic proton-proton interation. Although a large number of bb̄-pairs

are subsequently produced, the track and vertex multiplicities in such scenarios are far

Figure 2.2: Pythia simulation of the
angles formed with respect to the
beam axis by hadrons created from bb
pairs.
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3.3.1 Luminosity Considerations

Bunch crossings at the LHC’s nominal luminosity of ∼ 1034 cm−2s−1 typically involve

more than one inelastic proton-proton interation. Although a large number of bb̄-pairs

are subsequently produced, the track and vertex multiplicities in such scenarios are far

Figure 2.3: Probabilities of different
numbers of inelastic pp collisions per
bunch crossing as a function of lumi-
nosity.

can be compared with a value of 1.3µb as measured by CDF1 in pp collisions at
√
s =

1.96 TeV [21].

Because bb pairs are produced predominantly with highly correlated trajectories and are

so highly boosted at LHC energies, the resulting B hadrons typically travel close to the

beam axis in a common direction (demonstrated in Figure 2.2, where Pythia [22] is

used to simulate pp collisions at the LHC design energy of 14 TeV). To take advantage

of this, the LHCb detector is a single arm spectrometer with a small forward angular

acceptance of 10 mrad to 300 mrad in the horizontal plane and 10 mrad to 250 mrad in

the vertical plane.

The LHC is designed to collide protons with a peak luminosity of 1034 cm−2s−1. However,

at LHCb it is advantageous to run with a much lower luminosity of 2 × 1032 cm−2s−1,

which can be achieved by defocussing the beams. Figure 2.3 shows that, at this value,

the probability of having only one inelastic pp collision dominates the probabilities of

multiple interactions. This leads to a cleaner environment (or lower track multiplicity)

allowing for more precise reconstruction of multi-body decays. Additionally, a lower lu-

minosity reduces the radiation damage to the front end electronics, as well as the various

1A detector at the previous highest energy accelerator - the Tevatron.
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Figure 6.4: Luminosity levelling at LHCb. The red line is the instantaneous luminosity at
LHCb; the blue and black lines are the instantaneous luminosities recorded by ATLAS and
CMS respectively. The instantaneous luminosity of LHCb is approximately constant over
the fill, whereas the instantaneous luminosities of ATLAS and CMS decrease over time.

related to various beam parameters as follows:

µ =
Lσifv

nbνr

, (6.1)

where L is the instantaneous luminosity, σi is the total inelastic cross section, fv is the fraction

of p-p interactions that are visible, nb is the total number of bunches in the beam and νr

is the revolution frequency of the beam. Figure 6.5 shows the number of p-p interactions

as a function of the instantaneous luminosity; we have set σi to 80 mb and fv to 1. In the
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Figure 6.5: Probability of obtaining between 0 and 5 p-p interactions in a bunch crossing as
a function of instantaneous luminosity.

current running conditions µ is equal to 1.5–2, higher than the design value. A consequence

of this is that the subdetectors have been running at the limit of occupancy, and are ageing

at about double the expected speed. However the fact that the instantaneous luminosity is

also higher than design compensates for these drawbacks.

Figure 2.4: Luminosity levelling at LHCb. At LHCb the luminosity is kept constant,
unlike at ATLAS and CMS where the luminosity diminishes over the course of a fill.

sub-detectors. Despite these concerns, excellent sub-detector and trigger performance

meant it was possible to run with a luminosity of more than 3× 1032 cm−2s−1 for most

of the 2011 data taking period. The instantaneous luminosity at LHCb can be tuned

by altering the beam focus at the interaction point, allowing an approximately constant

luminosity throughout a single run (shown in Figure 2.4), or indeed throughout the life

of the detector.

The LHCb detector is comprised of many sub-detectors, each described in the following

sections. Figure 2.5 shows the layout of the sub-detectors.

2.2.1 Vertex locator

The LHCb VErtex LOcator (VELO) [23] is a silicon microstrip vertex detector designed

to provide precise track coordinate measurements close to the interaction region. This

allows reconstruction of both primary and secondary vertices, the latter being espe-

cially important for b− and c−hadrons which have characteristically long lifetimes. In

addition, the VELO is used to provide precise impact parameter measurements for all

charged tracks.

The VELO consists of two sets of 21 modules, located on either side of the beam line

(the layout of the modules is shown in Fgure 2.6). Some modules are placed to the left
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Figure 2.5: A side view of the LHCb detector.
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Figure 2.6: The layout of the VELO R (red) and φ (blue) sensors shown in the (x, z)
plane. A±2σ area around the nominal interaction point is shown in yellow. Lines drawn
at 390 mrad and 15 mrad represent the maximum and minimum angular coverage, while
the line at 60 mrad shows the average track angle in minimum bias events.

of the primary interaction point because of the uncertainty (∼ 5 cm) on its z coordinate.

Each module comprises two semicircular sensors (one R sensor and one φ sensor), each

approximately 300µm in thickness and with a diameter of 84 mm. The R sensors are

embedded with silicon in concentric semicircles centred on the beam axis, allowing for

determination of the r coordinates of track points. The orthogonal coordinates are

supplied by the φ sensors in which the silicon strips run radially out from the beam axis.

A hole in each sensor with a radius of 8 mm allows safe passage of the beam. Both types

of sensor are shown in Figure 2.7.

During LHC injection, the width of the beam increases significantly. Therefore it is

necessary to horizontally retract each half of the VELO by ∼ 3 cm to avoid damage

to the sensors. Once the beam is stable, the aperture reduces to ∼ 100µm and the

two halves are moved back together so that they overlap slightly in order to ensure

coverage of the full azimuthal acceptance and to aid with module alignment. A vacuum

is maintained within the VELO to minimise interactions before charged particles reach

the silicon microstrips.
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Figure 2.7: Schematic diagram of an R sensor (right) and a φ sensor (left).
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Figure 4. Primary vertex position resolution in real data. x is the horizontal coordinate, perpendicular to the
beam, and z is the coordinate parallel to the beam.

track fit residuals [8]. The misalignment of each sensor is of the order of a few µm in x and y
(perpendicular to the beam). The quality of the alignment is continuously monitored.

6 Physics performance

Primary vertices (PVs) are reconstructed by looking for tracks that point to a common point of
origin. The PV position resolution, shown in figure 4, was measured by dividing all tracks in each
event randomly into two groups, and computing the difference between the PV position recon-
structed with each of the two groups. The resolution improves greatly when there are many tracks
coming from the vertex. A typical primary vertex has 35-40 tracks. The PV resolution is slightly
worse in data than in simulation, but it is still very good.
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Figure 5. Impact parameter resolution in the direction of the x and y coordinates.

The impact parameter (IP) is the minimum distance between a track and the primary vertex.
Particles from decays of B- and D-mesons originate at displaced vertices, and thus tend to have a
greater IP. The IP resolution appears as a straight line when plotted against the inverse of the trans-
verse momentum (1/pT ), as shown in figure 5. The intercept with the y-axis, at infinite pT , depends
mainly on the single hit resolution. The slope is related to the amount of material in the detector
and the detector geometry, as the degradation of the resolution is mainly due to multiple scattering.
LHCb uses GEANT 4 [4] to simulate the flight of particles through the detector. The discrepancy
between data and simulation may be due to multiple scattering in the material. The total amount of
material has been verified at the 10 % level by using reconstructed hadronic interaction vertices in
the detector material. The discrepancy could potentially be due to errors in the multiple scattering
modelling or simplifications in the simulation material description. The origin of the discrepancy
for the PV resolution and for the IP resolution is likely to be the same. It is important for LHCb to
have an accurate IP measurement at both high and low pT , and the obtained resolution is excellent.
The momentum dependent slope is small because the sensitive area is close to the interaction point
and the amount of material is minimised.

7 Conclusion

The VELO is a small but complex detector with a number of unique features. It is operated in a
vacuum only 8 mm from the LHC beam. It is retracted when the beams are injected, and reinserted
to its data taking position after each successful beam fill has stabilised. The vacuum, cooling, high
voltage, low voltage and motion systems have functioned well. A large variety of quantities is
monitored to ensure the successful operation of the VELO. The first effects of radiation damage
have been observed, and the magnitude and qualitative features are in agreement with expectations.
The fine strip pitch gives the VELO a single hit resolution down to 4 µm, while the geometry of
the sensors and the low and well defined material budget give it a good momentum dependent
performance. The VELO is able to measure impact parameters with a resolution down to 11 µm
and has a good performance also for low-momentum tracks.
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(b)

Figure 2.8: Impact parameter resolution in the x−direction, as a function of (a) the
number of tracks coming from the primary vertex, and (b) the inverse of the track
transverse momentum.

2.2.1.1 Performance

The spatial resolution in the x−direction is shown in Figure 2.8 as a function of the

number of tracks coming from the primary vertex, and the inverse of track transverse

momentum. In the x− and y− directions, the best achieved impact parameter resolution

is ∼ 13µm, while in the z−direction it is ∼ 70µm. The resolution is ∼ 18% worse than

the Monte Carlo prediction.
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2.2.2 Particle ID

One essential design feature of the LHCb detector is its ability to distinguish different

final state charged particles. This is especially important for discriminating between

decays that are topologically equivalent but differ only by the species of their final state

charged particles. An example of particular importance to this thesis is the doubly

Cabibbo suppressed decay D0 → K+π−π+π−, for which the Cabibbo favoured decay

D0 → K−π+π−π+ is a major background.

Particle IDentification (PID) is achieved at LHCb by the use of two Ring Imaging

CHerenkov (RICH) detectors, a calorimeter system and a muon detector, designed to

cover all of the common charged particles (e, µ, π,K, p). Electrons are largely identified

by the calorimeter system, muons by the muon detector and charged hadrons by the

RICH detectors. The likelihoods for different particle species are formed by combining

the likelihoods from the various sub-detectors as follows [24]:

Le = LRICH
e LCALO

e LMUON
non−µ (2.1)

Lµ = LRICH
µ LCALO

non−eLMUON
µ (2.2)

Lh = LRICH
h LCALO

non−eLMUON
non−µ (2.3)

where h represents a charged hadron (π,K, p). Rather than using the absolute likelihood

values, it is more efficient to compute the relative difference between the hypotheses of

two particle types. For distinguishing between pions and kaons, the difference between

the logarithms of their likelihoods, or the Delta Log Likelihood (DLL), is defined as

∆ logL(K − π) ≡ logLK − logLπ (2.4)

Here, a positive DLL means that a particle is more likely to be a kaon than a pion, and

a negative DLL indicates the opposite.
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2.2.3 Ring imaging Cherenkov detectors

A charged particle traversing through a dielectric medium faster than the speed of light

in that medium will emit Cherenkov radiation at an angle, θC (called the Cherenkov

angle), relative to the particle’s direction of propagation. The Cherenkov angle is given

by

cos (θC) =
1

nβ
(2.5)

where n is the refractive index of the medium (also called the radiator) and β = v/c is

the velocity of the particle divided by the speed of light in a vacuum. Equation 2.5 is

easily written as

cos (θC) =
1

n

√
1 +

(
m

p

)2

(2.6)

where m and p are the mass and momentum of the particle. Here it becomes apparent

that knowledge of the refractive index of the radiator, along with measurements of

the particle’s momentum and the Cherenkov angle of its emitted radiation, enables

determination of its mass and, therefore, particle type. This is, in essence, the principle

employed by Cherenkov detectors. Figure 2.9(a) is a histogram showing the result of

combining every Cherenkov photon in one event with every track in the same event

(with some simple selection criteria), repeated for a few thousand events, using the

RICH1 sub-detector. Despite the large continuum of background, which results from

Cherenkov photons that are combined with the wrong tracks, kaon and proton peaks are

clearly observable. Calculating the average of all the mass values for each track results

in a much cleaner distribution (the proton peak is shown Figure 2.9(b)). Although this

method is not used for PID at LHCb, it demonstrates the ability to reconstruct particle

masses using the RICH detectors.

Hadron identification at LHCb is achieved primarily with two RICH detectors [25],

RICH1 and RICH2 (both shown in Figure 2.10). Three radiators are used to provide

discrimination between kaons and pions in the momentum range 1− 100 GeV/c. RICH1
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Figure 2.9: Mass of charged particles traversing through the RICH1 sub-detector. In (a)
all Cherenkov photons in an event are combined with all tracks passing through RICH1
and each entry represents one of these combinations. In (b) each entry represents the
average mass value for one track when combined with all Cherenkov photons.
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Figure 7: Schematic layout of the RICH2 detector
(seen from above).

emitted at the mid-point of the track
through the radiator, leading to some
smearing of the reconstructed angle.

2. Chromatic: the chromatic dispersion of
the radiators leads to a dependence of the
Cherenkov angle on the photon energy.

3. Pixel: due to the finite granularity of the
detector.

4. Tracking: due to errors in the recon-
structed track parameters.

These contributions are listed in Table 1
for each of the RICH radiators. The granu-
larity of the photon detectors has been chosen
as 2.5mm×2.5mm based on a comparison of
the pixel contribution with the other terms.
Reducing the pixel size would incur increased
cost with little benefit to Cherenkov angle pre-
cision.
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Figure 8: Refractive index of the radiator media
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Table 1: Some characteristics of the radiator ma-
terials used in the RICH system as determined from
the simulation (for visible light at STP); the lower
part lists the contributions to the resolution (from
emission-point, chromatic, pixel and tracking), the
total resolution per photoelectron and the mean
number of detected photoelectrons in the ring im-
age.

Material CF4 C4F10 Aerogel

L [cm] 167 85 5
n 1.0005 1.0014 1.03
θmax
c [mrad] 32 53 242

pthresh(π) [GeV] 4.4 2.6 0.6
pthresh(K) [GeV] 15.6 9.3 2.0

σemission
θ [mrad] 0.31 0.74 0.60

σchromatic
θ [mrad] 0.42 0.81 1.61

σpixel
θ [mrad] 0.18 0.83 0.78

σtrack
θ [mrad] 0.20 0.42 0.26

σtotal
θ [mrad] 0.58 1.45 2.00

Npe 18.4 32.7 6.6

2.3 Radiators

There are two radiators in RICH1. A 5 cm-
thick aerogel radiator with refractive index
n = 1.03 provides positive kaon identifica-
tion above 2 GeV/c and π−K separation up to
about 10 GeV/c. The useful wavelength range
of the Cherenkov light from aerogel is lim-
ited by Rayleigh scattering. The transmission
through a length L is proportional to e−CL/λ4

,
for wavelength λ, where C is the clarity co-
efficient. The value assumed in simulations

6

(b)

Figure 2.10: Schematic diagrams of the (a) RICH1 and (b) RICH2 sub-detectors.
RICH1 is shown from the side, while RICH2 is shown from above.

contains two radiators: silica aerogel for tracks with momenta up to ∼ 10 GeV/c, and

C4F10 gas for tracks up to ∼ 60 GeV/c. Higher momentum tracks (∼ 15 − 100 GeV/c)

are covered by RICH2 which contains CF4 gas as its radiator.

Each of the two RICH detectors incorporates a similar optical layout. Cherenkov photons

are focused into rings by spherical mirrors and reflected onto two flat mirror planes
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Figure 4.10: Schematic view of an HPD. Single photons are observed by production of a photo-
electron that is accelerated across an 18 kV potential and focused onto a silicon pixel sensor [90].

4.2.6 Calorimetry

The calorimetry system is designed to identify photons, electrons and hadrons as well as

to provide energy and position measurements. The system is comprised of the Scintillating

Pad Detector (SPD), Pre-Shower (PS), Electromagnetic Calorimeter (ECAL) and Hadron

Calorimeter (HCAL). Each detector employs polystyrene scintillating tiles that are sen-

sitive to the passage of charged particles. Neutral particles are indirectly observable

by the showers of charged particles produced from interactions with layers of lead or

iron absorber. The scintillation light is read out through wavelength-shifting fibres to

Photomultiplier Tubes (PMTs).

The SPD and PS scintillating layers are separated by a 14 mm-thick lead absorber,

equivalent to two radiation lengths (X0) or 0.1 interaction lengths (λI), and are used to

distinguish between electrons, photons and pions. Electrons produce a minimum ionising

particle (MIP) signal in the SPD and shower through to the PS. Photons are detectable

only by the shower after the absorber. Pions will not shower over this short interaction

length and produce a MIP signal in both scintillators.

The ECAL and HCAL are both designed to measure energy, following the “shashlik”

(Russian for “kebab”) model. Multiple alternating layers of scintillator and absorber detect

and contain the entire shower for the best energy estimate. The ECAL has a thickness

of 25 X0 (or 1.1λI), fully containing electromagnetic showers. The HCAL is the most

downstream detector and utilises thicker absorber layers (16 mm iron compared to 2 mm

lead in the ECAL), equivalent to 5.6λI. The energy resolutions for both calorimeters are

Figure 2.11: Schematic representation of one of the HPDs used in both of the RICH
detectors.

(one either side of the beam pipe). The photons are then reflected onto two arrays of

hexagonally close packed Hybrid Photon Detectors (HPDs) which are located outside of

the detector acceptance and surrounded by iron housings to shield them from the field

produced by the LHCb dipole magnet.

Photoelectrons are created when Cherenkov photons incident on the surface of an HPD

strike the photocathode. The photoelectrons are then accelerated by a high voltage of

∼ 18 kV through a vacuum onto a silicon pixel detector consisting of an array of 1024

pixels. This is shown schematically in Figure 2.11.

HPD hits are used to calculate Cherenkov angles with respect to reconstructed tracks

by using knowledge of the RICH optical layouts. RICH PID is then performed by com-

paring the reconstructed Cherenkov angle distribution with the expected distributions

for different particle species, by using either a “local” or “global” analysis. In the local

analysis the likelihood for different particle hypotheses is calculated for each track indi-

vidually. The majority of background photons come from neighbouring tracks. Using

the global technique is much more accurate because it accounts for this background.

Here all tracks in an event are examined simultaneously and a global likelihood is max-

imised by varying the all of the particles’ hypotheses. In LHCb the reconstruction uses
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Figure 16: Kaon identification efficiency and pion misidentification rate measured on data as
a function of track momentum. Two different ∆logL(K − π) requirements have been imposed
on the samples, resulting in the open and filled marker distributions, respectively
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5.5 Performance as a function of event multiplicity

The current running conditions2, with increased particle multiplicities, provide an insightful
glimpse of the RICH performance at high luminosity running.

2The LHCb RICH detector was designed to run with 0.6 interaction per bunch crossing. However the current
operating conditions have 1.6 interactions per bunch crossing.
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5.5 Performance as a function of event multiplicity

The current running conditions2, with increased particle multiplicities, provide an insightful
glimpse of the RICH performance at high luminosity running.

2The LHCb RICH detector was designed to run with 0.6 interaction per bunch crossing. However the current
operating conditions have 1.6 interactions per bunch crossing.
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Figure 2.12: Kaon identification efficiency (red), and pion misidentification rate (black),
shown for (a) real data and (b) Monte Carlo.

the global technique by default.

2.2.3.1 Performance

The kaon identification efficiency and pion misidentification rate are shown as a function

of momentum in Figure 2.12(a) for two different PID requirements. Over the momentum

range 2 < p < 100 GeV/c, for ∆ logL(K − π) > 0 (i.e. when the likelihood of the kaon

hypothesis is larger than that of the pion hypothesis), the kaon PID efficiency is ∼ 95%

and the pion misidentification rate is ∼ 10%. Over the same momentum range the kaon

PID efficiency drops to ∼ 85% for ∆ logL(K − π) > 5, but the pion misidentification

rate improves to ∼ 3%. The kaon PID efficiency and pion misidentification rates are

shown for Monte Carlo data in Figure 2.12(b).

2.2.4 Calorimeters

The LHCb calorimetry system [26] adopts the classical layout of an Electromagnet

Calorimeter (ECAL) followed by a Hadronic Calorimeter (HCAL). The calorimeters

are designed to measure the energy and location of photons, electrons and hadrons,

providing information for the Level-0 trigger and, ultimately, PID. Two additional sub-

detectors, the Scintillating Pad Detector (SPD) and Pre-Shower (PS) are placed before

the ECAL to help reject pion backgrounds for signal photons and electrons.
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Figure 6.21: Lateral segmentation of the SPD/PS and ECAL (left) and the HCAL (right). One
quarter of the detector front face is shown. In the left figure the cell dimensions are given for the
ECAL.

6.2.1 General detector structure

A classical structure of an electromagnetic calorimeter (ECAL) followed by a hadron calorimeter
(HCAL) has been adopted. The most demanding identification is that of electrons. Within the
bandwidth allocated to the electron trigger (cf. section 7.1.2) the electron Level 0 trigger is required
to reject 99% of the inelastic pp interactions while providing an enrichment factor of at least 15
in b events. This is accomplished through the selection of electrons of large transverse energy
ET . The rejection of a high background of charged pions requires longitudinal segmentation
of the electromagnetic shower detection, i.e. a preshower detector (PS) followed by the main
section of the ECAL. The choice of the lead thickness results from a compromise between
trigger performance and ultimate energy resolution [122]. The electron trigger must also reject a
background of π0’s with high ET . Such rejection is provided by the introduction, in front of the
PS, of a scintillator pad detector (SPD) plane used to select charged particles. A thin lead converter
is placed between SPD and PS detectors. At Level 0, the background to the electron trigger will
then be dominated by photon conversions in the upstream spectrometer material, which cannot
be identified at this stage. Optimal energy resolution requires the full containment of the showers
from high energy photons. For this reason, the thickness of ECAL was chosen to be 25 radiation
lengths [123]. On the other hand, the trigger requirements on the HCAL resolution do not impose
a stringent hadronic shower containment condition. Its thickness is therefore set to 5.6 interaction
lengths [124] due to space limitations.

The PS/SPD, ECAL and HCAL adopt a variable lateral segmentation (shown in figure 6.21)
since the hit density varies by two orders of magnitude over the calorimeter surface. A segmenta-
tion into three different sections has been chosen for the ECAL and projectively for the SPD/PS.
Given the dimensions of the hadronic showers, the HCAL is segmented into two zones with larger
cell sizes.

All calorimeters follow the same basic principle: scintillation light is transmitted to a Photo-
Multiplier (PMT) by wavelength-shifting (WLS) fibres. The single fibres for the SPD/PS cells are
read out using multianode photomultiplier tubes (MAPMT), while the fibre bunches in the ECAL
and HCAL modules require individual phototubes. In order to have a constant ET scale the gain in
the ECAL and HCAL phototubes is set in proportion to their distance from the beampipe. Since
the light yield delivered by the HCAL module is a factor 30 less than that of the ECAL, the HCAL
tubes operate at higher gain.
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Figure 2.13: Segmentation of the ECAL (left), and HCAL (right). The segmentation
of the SPD and PS are the same as the ECAL, but the dimensions are slightly smaller.
The black area is a gap for the beam pipe.
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where E is measured in GeV. The HCAL has only two regions of different segmentation,

with larger cell sizes, due to the dimensions of hadronic showers.

Figure 2.32: The internal structure of the LHCb HCAL and ECAL, showing
scintillator tiles, absorber plates and WLS readout fibres.

Before the start of proton-proton collisions at the LHC, initial calibration and time

alignment of the calorimeters was performed using cosmic rays [127]. The performance

of the calorimeter system during 2010 and early 2011 is summarised in reference [128].

Calibration of the ECAL is carried out using the π0 mass peak reconstructed from pairs

of photons and HCAL calibration is performed using a radioactive source scan (137Cs);

the procedures are detailed in reference [129]. Figure 2.33 shows the invariant mass

distributions of some resonances reconstructed from varying amounts of 2010 data using

calorimeter information.

2.2.10 Muon system

The muon system provides identification of penetrating muons from b-hadron decays for

the High Level Trigger and offline analysis, and for low-level trigger information [96].

Many of the studied CP-violating and rare decay modes at LHCb contain muons and

so the muon trigger is an important part of the trigger scheme. The inner acceptance

of the muon system is 20 (16) mrad in the bending (non-bending) plane and the outer

boundary is 306 (258) mrad. This matches the rest of the LHCb detector acceptance.

The muon system consists of detectors at station M1 before the calorimeters and

stations M2-M5 after; M1 is used primarily to provide an improved pT measurement

Figure 2.14: Internal structure of the HCAL (left), and ECAL (right). Scintillator tiles
and iron absorbers run parallel to the beam axis in the HCAL, while lead absorbers
and scintillator tiles are perpendicular to the beam axis in the ECAL.

Each of the four component sub-detectors is laterally segmented with a cell size that

increases with the distance from the beam pipe (see Figure 2.13) to account for the

varying particle multiplicity across the (x, y) plane (about two orders of magnitude).

Although the layout of the segments is identical for the SPD, PS and ECAL, their areas

differ slighty because of the projectivity of the LHCb detector.

The same basic principle is employed by each of the calorimeters: a charged particle

passing through a polystyrene scintillator emits light which is transferred via Wavelength

Shifting (WLS) fibres to Photo-Multiplier Tubes (PMT). In the case of the SPD and

PS, single fibres are connected to multianode PMTs for read out.

SPD and PS. The SPD and PS are two almost identical planes of scintillator pads,

separated by a 15 mm thick lead converter, equal to 2.5 radiation lengths (2.5X0). The
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role of the SPD is to detect charged particles, and when used together with the ECAL,

provides rejection of π0 and γ backgrounds to e− signal candidates. In addition, SPD

information is used by the Level-0 trigger to reject high multiplicity events. The PS is

designed to detect electromagnetic particles which shower in the lead plate (primarily e−

and γ because of their comparatively short interaction lengths) and is used in conjunction

with the ECAL to reject π± backgrounds to e− signal candidates.

ECAL. The ECAL is a shashlik2 calorimeter, comprising 66 layers, each of which

incorporates a 2 mm thick lead absorber and 4 mm thick scintillator tile. The total

thickness of the ECAL is 25X0 so that it can fully contain electromagnetic showers.

HCAL. The HCAL is formed of alternating layers of iron absorber and scintillator.

However, unlike the ECAL, the scintillator tiles and iron absorbers run parallel to the

beam axis instead of perpendicular to it, each with a length corresponding to the hadron

interaction length (λI) in steel. Adjacent tiles are separated in the lateral direction by

1 cm thick iron. The total thickness of the HCAL in the z direction corresponds to 5.6λI.

Figure 2.14 shows a comparison between the internal structures of the HCAL and ECAL

sub-detectors.

2.2.4.1 Performance

Using test beam data, the energy resolution of the ECAL is determined to be

σE
E

=
(8.5− 9.5) %√

E
⊕ 0.8%

where E is measured in GeV and ⊕ represents the sum in quadrature. For the HCAL,

the energy resolution is measured as

σE
E

=
(69± 5) %√

E
⊕ (9± 2) %.

2most likely named after a popular Russian kebab
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(a) (b)

Figure 2.15: Invariant mass plots for (a) η/ω→ π+π−π0 decays, and (b) D0→ K−π+π0

decays. Both are reconstructed with a π0 in the final state, making use of calorimeter
information.

Figure 2.15 shows invariant mass distributions which demonstrate the ability to recon-

struct particle masses using calorimeter information.

2.2.5 Dipole magnet

Charged particle momentum measurements at LHCb are facilitated by a warm dipole

magnet [27], consisting of two ∼ 25 ton saddle-shaped aluminium coils supported by a

∼ 1500 ton iron yoke (see Figure 2.16). The aperture of the magnet follows the full

LHCb acceptance of ±250 mrad vertically and ±300 mrad horizontally. An integrated

magnetic field of 4 Tm for tracks traversing 10 m provides opposite bending for positive

and negative particles in the horizontal plane, allowing ∼ 0.5% momentum resolution

for tracks up to 200 GeV/c.

2.2.6 Tracking

Tracking at LHCb is important not only for precise momentum measurements, but also

for providing tracks with which to associate Cherenkov rings and calorimeter clusters,

as well as providing precise impact parameter measurements for separating primary

and secondary vertices. It consists of the VELO (see Section 2.2.1) and the Tracker

Turicensis (TT) located before the magnet, and the Tracking stations, T1, T2 and T3,

placed after the magnet. Each of the stations T1-T3 comprise an Inner Tracker (IT) [28]
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Figure 4.1: Perspective view of the LHCb dipole magnet with its current and water connections
(units in mm). The interaction point lies behind the magnet.

coils with respect to the measured mechanical axis of the iron poles with tolerances of several
millimeters. As the main stress on the conductor is of thermal origin, the design choice was to
leave the pancakes of the coils free to slide upon their supports, with only one coil extremity kept
fixed on the symmetry axis, against the iron yoke, where electrical and hydraulic terminations
are located. Finite element models (TOSCA, ANSYS) have been extensively used to investigate
the coils support system with respect to the effect of the electromagnetic and thermal stresses
on the conductor, and the measured displacement of the coils during magnet operation matches
the predicted value quite well. After rolling the magnet into its nominal position, final precise
alignment of the yoke was carried out in order to follow the 3.6 mrad slope of the LHC machine
and its beam. The resolution of the alignment measurements was about 0.2 mm while the magnet
could be aligned to its nominal position with a precision of ±2 mm. Details of the measurements of
the dipole parameters are given in table 4.1. A perspective view of the magnet is given in figure 4.1.

The magnet is operated via the Magnet Control System that controls the power supply and
monitors a number of operational parameters (e.g. temperatures, voltages, water flow, mechanical
movements, etc.). A second, fully independent system, the Magnet Safety System (MSS), ensures
the safe operation and acts autonomously by enforcing a discharge of the magnet if critical param-
eters are outside the operating range. The magnet was put into operation and reached its nominal
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Figure 2.16: Perspective view of the dipole magnet used at LHCb, shown in front of
the collision point. Measurements are shown in mm.

and an Outer Tracker (OT) [29]. The TT and IT are collectively known as the Silicon

Tracker (ST) because they share the same silicon sensor technology.

ST. Each of the ST stations (the TT and the IT regions of T1-T3) is made from four

planes of silicon detectors consisting of microstrips with a pitch of 200µm. The outer two

layers contain vertical microstrips, while the second and third layers contain microstrips

rotated with stereo angles of +5◦ and −5◦ respectively, enabling determination of the

transverse components of a track’s geometry. Figure 2.17 shows a vertical layer of the IT

and the second plane of the TT, with a +5◦ rotation. The TT covers the full acceptance,

whereas the IT covers only about 2% of the total area of T1-T3.

OT. The OT is a drift tube detector which completes the coverage of the stations

T1-T3. The boundary with the IT is chosen to limit the occupancy to less than 10%

at the nominal LHCb luminosity. The four layers of each OT station follow the same

geometry as the IT with the inner two layers rotated by +5◦ and −5◦. To ensure a
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Figure 5.23: View of the four IT detector boxes arranged around the LHC beampipe.

Figure 5.24: Layout of an x detection layer in the second IT station.

IT detector modules

An exploded view of a detector module is shown in figure 5.25. The module consists of either one
or two silicon sensors that are connected via a pitch adapter to a front-end readout hybrid. The
sensor(s) and the readout hybrid are all glued onto a flat module support plate. Bias voltage is
provided to the sensor backplane from the strip side through n+ wells that are implanted in the n-
type silicon bulk. A small aluminium insert (minibalcony) that is embedded into the support plate
at the location of the readout hybrid provides the mechanical and thermal interface of the module
to the detector box.

Silicon sensors. Two types of silicon sensors of different thickness, but otherwise identical in
design, are used in the IT.17 They are single-sided p+-on-n sensors, 7.6 cm wide and 11 cm long,
and carry 384 readout strips with a strip pitch of 198 µm. The sensors for one-sensor modules
are 320 µm thick, those for two-sensor modules are 410 µm thick. As explained in section 5.2.4
below, these thicknesses were chosen to ensure sufficiently high signal-to-noise ratios for each
module type while minimising the material budget of the detector.

17The sensors were designed and produced by Hamamatsu Photonics K.K., Hamamatsu City, Japan.
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Figure 5.19: Layout of the third TT detection layer. Different readout sectors are indicated by
different shadings.

volume is continuously flushed with nitrogen to avoid condensation on the cold surfaces. To aid
track reconstruction algorithms, the four detection layers are arranged in two pairs, (x,u) and (v,x),
that are separated by approximately 27 cm along the LHC beam axis.

The layout of one of the detection layers is illustrated in figure 5.19. Its basic building block
is a half module that covers half the height of the LHCb acceptance. It consists of a row of seven
silicon sensors organized into either two or three readout sectors. The readout hybrids for all read-
out sectors are mounted at one end of the module. The regions above and below the LHC beampipe
are covered by one such half module each. The regions to the sides of the beampipe are covered
by rows of seven (for the first two detection layers) or eight (for the last two detection layers) 14-
sensor long full modules. These full modules cover the full height of the LHCb acceptance and are
assembled from two half modules that are joined together end-to-end. Adjacent modules within
a detection layer are staggered by about 1 cm in z and overlap by a few millimeters in x to avoid
acceptance gaps and to facilitate the relative alignment of the modules. In the u and v detection
layers, each module is individually rotated by the respective stereo angle.

A main advantage of this detector design is that all front-end hybrids and the infrastructure
for cooling and module supports are located above and below the active area of the detector, outside
of the acceptance of the experiment.

TT detector modules

The layout of a half module is illustrated in figure 5.20. It consists of a row of seven silicon sensors
with a stack of two or three readout hybrids at one end. For half modules close to the beampipe,
where the expected particle density is highest, the seven sensors are organized into three readout
sectors (4-2-1 type half modules).

For the other half modules, the sensors are organized into two readout sectors (4-3 type half
modules). In both cases, the first readout sector (L sector) is formed by the four sensors closest to
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(b)

Figure 2.17: Schematic diagrams of (a) one of the IT outer layers, and (b) the second
TT layer, with its +5◦ rotation.

Chapter 7 Track Reconstruction

7.1 Introduction

In the track reconstruction program the registered
hits of the VELO, the TT, the IT and the OT de-
tectors are combined to form particle trajectories
from the VELO to the calorimeters. The program
aims to find all tracks in the event which leave
sufficient detector hits, not only possible B-decay
products. After fitting the reconstructed trajec-
tory a track is represented by state vectors (x, y,
dx/dz, dy/dz, Q/p) which are specified at given
z-positions in the experiment.

The performance of the reconstruction is ex-
pressed using the following quantities:

• the efficiency of the track finding procedure
and the corresponding ghost rate;

• the precision of the reconstructed momentum
parameter;

• the precision of the reconstructed impact pa-
rameter;

• the precision of the track slopes in the RICH
detectors.

The first three items are most important for
the B-decay products, while the last item is also of
importance for all tracks which traverse the RICH
detectors and have a momentum high enough to
emit Cherenkov light.

Depending on their generated trajectories in-
side the spectrometer the following classes of tracks
are defined, illustrated in Fig. 7.1:

1. Long tracks: traverse the full tracking set-
up from the VELO to the T stations. They
are the most important set of tracks for B-
decay reconstruction.

2. Upstream tracks: traverse only the VELO
and TT stations. They are in general
lower momentum tracks that do not tra-
verse the magnet. However, they pass
through the RICH1 detector and may gen-
erate Cherenkov photons. They are there-
fore used to understand backgrounds in the
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Figure 7.1: A schematic illustration of the various
track types: long, upstream, downstream, VELO
and T tracks. For reference the main B-field com-
ponent (By) is plotted above as a function of the z
coordinate.

particle-identification algorithm of the RICH.
They may also be used for B-decay recon-
struction or tagging, although their momen-
tum resolution is rather poor.

3. Downstream tracks: traverse only the TT
and T stations. The most relevant cases are
the decay products of K0

S and Λ that decay
outside the VELO acceptance.1

4. VELO tracks: are measured in the VELO
only and are typically large angle or back-
ward tracks, useful for the primary vertex re-
construction.

5. T tracks: are only measured in the T sta-
tions. They are typically produced in sec-
ondary interactions, but are useful for the
global pattern recognition in RICH2.

1In B0 → J/ψ K0
S events in which the K0

S decay products

traverse the T stations, about 25% of the K0
S decays occur in

the VELO acceptance, 50% outside the VELO acceptance
but before the TT station, and 25% downstream of TT.

61

Figure 2.18: A schematic representation of the five different track types at LHCb.
Above, the y component of the magnetic field is shown as a function of z.

maximum drift time of 50 ns (the time taken for two proton bunch crossings), the tubes

contain a mixture of 70% argon and 30% carbon dioxide, and have an inner diameter of

4.9 mm.

Track types. At LHCb, the reconstruction software classifies tracks depending on

which sub-detectors they leave hits in (see Figure 2.18). The five track types are:
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Figure 2.19: Tracking efficiency measured with K0
S → π+π− decays as a function of

track transverse momentum.

• VELO tracks leave the fiducial acceptance after passing through the VELO and

are typically used for primary vertex reconstruction.

• Upstream tracks typically have low momenta and traverse the VELO and TT

before they are swept out of acceptance by the magnet.

• Long tracks travel through all of the tracking detectors, from the VELO to T3,

and consequently have the most precise momenta measurements.

• Downstream tracks only traverse the TT and the T stations. Since they are

not recorded by the VELO, these tracks are predominantly produced from decays

of long-lived neutral particles.

• T tracks pass through only the T stations.

2.2.6.1 Performance

Using the tag and probe method, the tracking efficiency is measured with K0
S→ π+π−

decays as a function of track transverse momentum. The resulting distribution for long

tracks is shown in Figure 2.19, where it is compared to the Monte Carlo prediction. The

tracking efficiency is above 95% for all tracks with a transverse momentum larger than

100 MeV/c.
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Figure 6.49: Front view of one quadrant of stations M2 and M3 showing the partitioning into
sectors. In one sector of each region a horizontal and a vertical strip are shown. The intersection
of a horizontal and a vertical strip defines a logical pad (see text). A Sector of region R1 (R2, R3,
R4) contains 8 (4, 4, 4) horizontal strips and 6 (12, 24, 24) vertical strips.

Table 6.7: Main MWPC parameters.

Parameter Design value

No. of gaps 4 (2 in M1)
Gas gap thickness 5 mm
Anode-cathode spacing 2.5 mm
Wire Gold-plated Tungsten 30 µm diameter
Wire spacing 2.0 mm
Wire length 250 to 310 mm
Wire mechanical tension 0.7 N
Total no. of wires ≈ 3 ·106

Operating voltage 2.5–2.8 kV
Gas mixture Ar / CO2 / CF4 (40:55:5)
Primary ionisation � 70 e−/cm
Gas Gain � 105 @ 2.65 kV
Gain uniformity ±20% typical
Charge/MIP (one gap) � 0.6 pC @ 2.65 kV

mixture Ar/CO2/CF4(40 : 55 : 5) was adopted. By OR-ing the signals from two adjacent gas
gaps the resulting double gap has an efficiency better than 95% in a 20 ns window at a gas gain of
G � 105. This gain is achieved at a voltage of 2600–2700 V [177]. Prototype tests with intense
beams (100 kHz/cm2) confirmed the prediction that space-charge effects are negligible at the rates
expected for the experiment [178].

The main parameters of the MWPC detectors are summarized in table 6.7. Detailed simu-
lations [179] based on GARFIELD [180] were performed to optimize the design and to establish
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Figure 2.20: One quarter of the M2 (or M3) station, shown from the front.

2.2.7 Muon chambers

Although it is not particularly relevant for this thesis, muon detection is vital for any

analyses which contain one or more muons in the final state. The most notable, perhaps,

is the search for the flavour changing neutral current decay B0
s→ µ+µ− [30]. Five muon

stations [31] (M1-M5) are used to provide reconstructed muon tracks for these analyses.

In addition, the muon stations are used to search for high transverse momentum tracks

for the Level-0 trigger. The M1 station is placed before the calorimeters, while the

stations M2-M5 are located after the calorimeter and are each separated by 80 cm iron

absorbers. The iron plates amount to a thickness of 20λI and are designed to remove

any hadronic background that exits the HCAL. Consequently, to penetrate through to

M5, muons must have a momentum of at least 6 GeV/c.

The muon chambers increase in size from M1 to M5 to maintain an acceptance of

±306 mrad in the horizontal plane and±258 mrad in the vertical plane. Each of the muon

chambers is divided into regions of different chamber and logical pad size, increasing in

size further from the beam pipe (see Figure 2.20). The M1, M2 and M3 stations have a

higher spatial resolution in the bending plane in order to precisely measure the trajectory

and transverse momentum of a muon candidate. M4 and M5 must simply identify any

tracks which penetrate the iron layers.
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All of the muon stations use Multi-Wire Proportional Chambers (MWPC), except for the

inner region (R1) of M1 (where the particle flux is too high) which employs triple-GEM

(Gas Electron Multiplier) detectors, chosen because of their higher radiation tolerance.

Both types of chamber use a mixture of Ar− CO2 − CF4 gas.

2.2.8 Trigger

The LHCb trigger system [32] is designed to reduce the 10 MHz rate of visible interactions

down to 3 kHz for offline storage. This is achieved by selecting events that contain tracks

with high transverse momentum (pT), high transverse energy (ET), and which have

large impact parameters with respect to the primary collision vertex. These are features

common to decays of both b− and c−hadrons, which have relatively large masses and

fly significant distances before decaying. The trigger system employs a Level-0 (L0)

hardware trigger to reduce the rate to about 1 MHz, followed by two stages of software

trigger, called the High Level Triggers (HLT1 and HLT2), which reduce the rate down

to 3 kHz.

2.2.8.1 Level-0 trigger

The L0 hardware trigger consists of separate parts: the calorimeters, and the muon

chambers. Information from each of these sub-detectors is fed into the L0 decision unit

(L0DU), which makes the final decision for each bunch crossing.

The calorimetry system identifies e−, γ, and charged hadron candidates by using infor-

mation from the SPD, PS, ECAL and HCAL. The ET of each candidate is calculated

by measuring the ET deposits in clusters of 2 × 2 cells. The highest ET value for each

particle species is recorded and given to the L0DU.

Muon tracks are located by searching for hits in the muon chambers that form straight

lines pointing back to the interaction point. The pT of muon candidates is calculated

using only the first two muon stations which yields a resolution of ∼ 20%. The two

highest-pT muons are recorded in each quadrant and sent to the L0DU.
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In addition, global event variables are used in the selection of events: a minimum re-

quirement on the total HCAL energy is imposed to ensure that only visible interactions

are selected, and an upper limit is placed on the number of SPD hits, which removes

events with excessively high track multiplicities in order to reduce the average processing

time per event.

2.2.8.2 High level trigger

The HLT is a two-stage software trigger in the form of a C++ application, with several

different trigger lines running in parallel for both HLT1 and HLT2. The HLT has access

to all data from the detector, so could in principle perform the full offline reconstruction.

However, timing constraints limit this. For example, there is no RICH reconstruction,

and a much faster track fitting algorithm is used which increases the tracking uncertainty

(lowers the momentum resolution) from 0.35% to ∼ 1%.

The job of HLT1 is to reconstruct particles using the VELO and tracking stations,

using L0 candidates as an input, and output events at a rate of 30 kHz. Of particular

importance for this thesis is the highly inclusive HLT1 1-track trigger line [33], which

accepts events that contain at least one track with high momentum, high pT, good track

fit quality and a large impact parameter with respect to the primary vertex, taking

advantage of the characteristics of b− and c−hadron decays.

In the HLT2 algorithms, tracks are combined to create composite particles. The ex-

ample most relevant for this thesis is the HLT2CharmHadD02HHHH trigger line (see

Section 5.3) which searches for D0→ hhhh candidates, where hhhh represents any neu-

tral combination of charged kaons or pions (with the exception of D0→ K+K+K−K−

which is kinematically forbidden). The 3 kHz output rate of HLT2 is divided evenly

between b−hadrons decaying to charged hadrons, b−hadrons decaying to leptons, and

decays of charm hadrons.
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2.2.9 Software

The bulk of the LHCb software (from event generation to physics analysis) is built

using the C++ Gaudi framework [34]. The software is split into two main parts: the

simulation phase (which includes digitisation), and the reconstruction phase, which is

identical for both Monte Carlo simulation and real data. The main stages are outlined

below.

Simulation. This is handled by the Gauss application, which is responsible for event

generation, and the subsequent decays of particles, as well as their interactions with

the detector material. Particle generation is provided by Pythia [22]. decays of b−

and c−hadrons are modelled using EvtGen [35], and final state radiation is simulated

with Photos [36]. Material interactions are simulated with Geant4 [37], along with

use of the Detector Description Database (DDDB) which contains the geometry of the

detector.

Digitisation. The digitisation phase is provided by Boole, which digitises the re-

sponse of the detector. Background from the LHC is included, as well as any imperfec-

tions and resolutions of the sub-detectors. Boole takes simulated events from Gauss

and outputs them in a format identical to that of real data read out of the LHCb

detector, except that Monte Carlo truth information is included.

Reconstruction. Brunel is responsible for the reconstruction of physics objects in-

cluding tracks, Cherenkov photons, and calorimeter clusters. As input, Brunel accepts

output from either Boole or the LHCb detector, and makes use of the DDDB, as well

as the Conditions Database (CondDB) which contains information such as calibration

and alignment parameters.

Analysis. The final stage in the reconstruction chain is the DaVinci application.

It creates objects like composite particles and decay chains, and supplies information

including kinematic and PID variables, which are necessary for event selection. DaVinci
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provides a wide range of algorithms useful for physics analyses, including a Monte Carlo

background categorisation tool (described below).

2.2.9.1 Background classification

When performing an analysis on a particular particle decay, it is useful to study po-

tential sources of background in detail. The Monte Carlo background categorisation

algorithm [38] provides classification of Monte Carlo simulated events and separates

them into different (mutually exclusive) categories. A reconstructed charged track and

a true Monte Carlo track are considered to be correctly matched if they share at least

70% of their sub-detector hits. The different background categories are summarised

below:

• Signal: All of the particles in the decay chain are correctly matched to Monte

Carlo particles with the same PIDs. Particles decaying via intermediate reso-

nances are also considered to be signal candidates, and are distinguished from

non-resonant decays. For example, the non-resonant decay D0 → K−π+π−π+

and the decay D0 → K∗0 (892) ρ0 → K−π+π−π+ are both signal decays to the

same final state.

• Fully reconstructed physics background: All reconstructed particles are cor-

rectly matched to Monte Carlo particles, except for the mother.

• Reflection: Any of the daughter particles is incorrectly identified. For exam-

ple, D0 → K+π−π+π− being incorrectly reconstructed as D0 → π+π−π+π−.

This background can be largely suppressed by imposing PID requirements on the

daughter particles and a tight mass window around the reconstructed D0 mass.

• Partially reconstructed physics background: A fragment of a decay has been

identified as signal. For example, a D0 → K−π+ decay reconstructed from a true

D0 → K−π+π−π+ decay. This background can also include reflections.
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• Low mass background: A special case of partially reconstructed physics back-

ground where there is no mis-identification, resulting in systematically low recon-

structed masses.

• Ghost background: At least one of the reconstructed final state particles has

no associated Monte Carlo particle.

• Primary vertex background: At least one of the reconstructed final state

particles comes directly from the primary collision vertex. This background is

suppressed by the use of impact parameter requirements.

• Badly reconstructed primary vertex: A special case of primary vertex back-

ground in which all of the reconstructed final state particles are from the primary

collision vertex.

• Pileup background: The final state reconstructed particles originate from more

than one primary collision vertex.

• bb̄ background: Background which is not in any of the categories above, with at

least one reconstructed final state particle with a mother that contains a b quark.

• cc̄ background: Background which is not in any of the categories above, with at

least one reconstructed final state particle with a mother that contains a c quark.

• uds background: Background that is not categorised by any of the above.



Chapter 3

Event selection for RICH mirror

alignment

3.1 Introduction

Good separation of different particle types is essential for distinguishing between topo-

logically equivalent decay modes whose final states differ only by particle type. Using the

derivations found in [12, 39], for small Cherenkov angles and large momenta (p� m),

Equation 2.6 can be approximated by
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For two charged particles with different masses but the same momenta, the difference
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2 − θ2

1 = − 1

n

∆
(
m2
)

p2
(3.2)

where ∆
(
m2
)

= m2
1−m2

2, is the difference between the squares of the masses of the two

particles. This can be rewritten as

∆θC · (θ1 + θ2) = − 1

n

∆
(
m2
)

p2
(3.3)

47
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where ∆θC = θ2 − θ1. For p� m, Equation 3.1 becomes

θC =

√
2

(
1− 1

n

)
'
√

2 (n− 1) (3.4)

where the approximation has been made for n− 1� 1. Therefore

(θ1 + θ2) = 2
√

2 (n− 1) (3.5)

which can be substituted into Equation 3.3 to give

∆θC =
1

2n
√

2 (n− 1)
· ∆

(
m2
)

p2
. (3.6)

Assuming the Cherenkov angles follow a Gaussian distribution with a width σθ, the

number of standard deviations separating two different particle species, each with mo-

mentum p, is given by

nσ =
∆θC

σθ
=

1

2nσθ
√

2 (n− 1)
· ∆

(
m2
)

p2
. (3.7)

Here, it is evident that the PID performance of the RICH detectors is dependent upon

the Cherenkov angle resolution. There are four sources that dominate the resolution:

• Emission point error: Because the spherical mirrors are tilted, the position of

the Cherenkov photons on the HPD plane depends on how far along the track

trajectory they are emitted. All photons are assumed to have been emitted at the

centre point of the track segment within the radiator. This leads to a smearing of

the reconstructed Cherenkov angle.

• Chromatic dispersion: The refractive index of the radiator (and therefore the

Cherenkov angle) varies with the wavelength of the Cherenkov photon. Since the

wavelength of an emitted photon is unknown, this leads to an uncertainty on the

Cherenkov angle.

• HPD resolution: The finite HPD pixel size limits the Cherenkov angle resolution.
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Table 3.1: The four main sources of Cherenkov angle uncertainty, shown for each of the
three RICH radiators. The refractive index of each of the radiators is shown at 0◦ C,
101.325 kPa and 400 nm.

σ(θC) (mrad) Aerogel C4F10 CF4

Emission point 0.4 0.8 0.2
Chromatic dispersion 2.1 0.9 0.5
HPD resolution 0.5 0.6 0.2
Tracking 0.4 0.4 0.4

Total 2.6 1.5 0.7

Refractive index 1.03 1.0014 1.0005

• Tracking resolution: Since the Cherenkov angle is measured with respect to a

charged track, uncertainty on the track direction leads to an uncertainty on the

measured Cherenkov angle.

Table 3.1 gives a summary of the effects of each of these sources in all three of the

RICH radiators, along with the total resolutions which is the sum in quadrature of the

individual contributions.

Because of their large size, each of the RICH mirror planes consists of an array of mirror

segments: the RICH1 mirrors consists of 4 spherical segments and 16 flat segments,

while the RICH2 mirrors comprise 56 spherical segments and 40 flat segments. The

segmentation and numbering scheme of the mirrors in the left-hand side of RICH2 is

shown in Figure 3.1. Imperfect alignment of a mirror segment will result in a discrepancy

between the trajectory of a track and the centre of its photon ring on the HPD plane

(illustrated in Figure 3.2). This leads to an error on the measured Cherenkov angle.

The goal of the mirror alignment is to reduce the uncertainty on the Cherenkov angle

measurement caused by misaligned mirror segments to less than 0.1 mrad, so that it is

small compared to the irreducible sources of error.

3.2 Alignment method

The RICH mirror segments are aligned with collision data, employing a method similar

to that developed by HERA-B [42]. A misalignment results in the displacement of a

Cherenkov ring with respect to the track trajectory (see Figure 3.3), leading to the



Event selection for RICH mirror alignment 50

27 26 25 24

19 18 17 16

11 10 9 8

3 2 1 0

22 21 2023

14 13 1215

6 5 47
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(b)

Figure 3.1: Mirror numbering convention for (a) the spherical mirror plane, and (b)
the flat mirror plane in the left-hand side of RICH2. The gap next to spherical mirror
12 is for the beam pipe.

a) b)

Figure 2: a) Schematic illustration of how rotational misalignment of a RICH
mirror (a RICH2 primary mirror rotated around y-axis in this example) causes
shift of the actual centre P � of the Cherenkov ring on the photon detector plane.
b) The expected Cherenkov angle projection θC and the reconstructed Cherenkov
angle θ, are displayed shifted by Θz and Θy. P marks position of the extrapolated
track projection calculated without corrections for the misalignment of the mirrors,
while P � is the actual (unknown) position of the centre of the ring. Cherenkov
angles θ are evaluated relative to P , and therefore, vary with φ.

The momentum of the track, p, is measured by the LHCb tracking stations.61

η is the refractive index of the radiator of the RICH detector traversed by the62

charged particle. We select high momentum tracks: in this limit the mass63

difference between pions and kaons becomes insignificant and the Cherenkov64

angle is said to reach saturation. At saturation all particles tend to the same65

value of θC. We can approximate all particles to be pions, thus the mass, m, is66

assumed to be that of a charged pion. Figure 3 shows the saturation of θC in67

the RICH1 gaseous radiator. An aligned system results in ∆θ being constant68

with φ. It can be seen from Fig. 2 that any small enough misalignment69

results in an approximately sinusoidal distribution of ∆θ against φ.70

Theoretically, to associate “Cherenkov angle” with a photon hit at the71

detector plane, we need to “reconstruct” the photon, i.e. to appropriately72

connect its point of emission, via two reflections, with the given hit. Analysis73

of MC events has shown [4] that to reduce noise from the photons falsely74

associated with a given track, only “unambiguous” hits should be chosen.75

An “unambiguous” hit yields reflection of the corresponding hypothetical76

photon off the same pair of mirrors even if assumed to be emitted at the77

4

Figure 3.2: The effect of a tilted mirror segment. A small tilt causes a shift of the
Cherenkov photon on the HPD plane, resulting in a translation of the photon ring [40].
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68 Chapter 5. RICH detectors

C

0

0

x

r y

Figure 5.2: An exaggerated misalignment between LHCb’s RICH and tracking systems is shown
projected on to the photon detector plane as a translation, θr, of the track away from the centre
of the Cherenkov ring (black dot → white dot). For a given Cherenkov photon, this translation
results in a change to the measured radius, ∆θ = θC − θ0, which is dependent on ring angle, φ.

where ψ is the opening angle of the right-angled triangle formed by θx and θy. Substituting

for Eqn. 5.3 gives:

(θ0 + ∆θ)2 = θ2
0 + θ2

r − 2θ0θr cos(φ + ψ)

θ2
0 + 2θ0∆θ + ∆θ2 = θ2

0 + θ2
r − 2θ0θr cos(φ + ψ)

∆θ +
1

2θ0

(∆θ2 − θ2
r) = −θr cos(φ + ψ) .

The cosine of the two summed angles can be expanded,

= −θr[cosφ cosψ − sinφ sinψ]

and using the trigonometric relations for the right-angled triangle (θx, θy, θr),

= −θr

�
θx

θr

cosφ− θy

θr

sinφ

�

= θy sinφ− θx cosφ .

For small misalignments, i.e. small θr and ∆θ, this equation may be reduced to:

∆θ ≈ θy sinφ− θx cosφ . (5.4)

5.4.2 Simulations

Misalignments of various components in the RICH system can be simulated within the

LHCb software framework (Section 4.2.8). This framework is modular, allowing any step to

Figure 3.3: A schematic representation of a Cherenkov ring misalignment. Here θC is
the reconstructed Cherenkov angle and θ0 is the expected Cherenkov angle. The ring is
displaced by θr from the reconstructed track trajectory (shown as an empty circle). θx
and θy are the horizontal and vertical displacements. The misalignment is exaggerated
for illustrative purposes. [41]

measured Cherenkov angle having a dependence on the azimuthal angle, φ, around the

ring. Starting with Figure 3.3 and using trigonometric identities, the difference between

the expected Cherenkov angle, θ0, and the measured Cherenkov angle, θC,

∆θ = θC − θ0 (3.8)

can be expressed in terms of φ, following the derivation in [41]. First, the relationship

between θ0, θC, and the displacement of the ring with respect to the track, θr, is given

by the cosine rule

θ2
C = θ2

0 + θ2
r − 2θ0θr cos (φ+ ψ) (3.9)

where ψ is the angle between θr and the line φ = 0. Inserting the expression from

Equation 3.8 gives

(θ0 + ∆θ)2 = θ2
0 + θ2

r − 2θ0θr cos (φ+ ψ) (3.10)

which, when rearranged, leads to

∆θ +
1

2θ0

(
∆θ2 − θ2

r

)
= −θr cos (φ+ ψ)

= −θr (cosφ cosψ − sinφ sinψ) . (3.11)
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Figure 3.4: ∆θ vs. φ histograms for one of the RICH1 mirror pairs (a) before and (b)
after mirror alignment [40].

Using the relations

cosψ =
θx
θr

and sinψ =
θy
θr
, (3.12)

Equation 3.11 can be written as

∆θ +
1

2θ0

(
∆θ2 − θ2

r

)
= −θr

(
θx
θr

cosφ− θy
θr

sinφ

)
= θy sinφ− θx cosφ. (3.13)

Making the assumption that misalignments are small, i.e. ∆θ, θr � θ0, Equation 3.13

becomes

∆θ = θy sinφ− θx cosφ. (3.14)

Here θx and θy represent the combined tilts of spherical and flat mirrors about the x and

y axes1. Such a distribution can be seen in Figure 3.4 for photons reflecting from one

spherical segment and one flat segment in RICH1, before and after mirror alignment,

using real collision data.

To measure misalignments of all of the individual mirror segments, a system of simul-

taneous equations is used [40], each of which represents a “mirror pair” (a pairing of

a spherical and a flat segment, for example, spherical mirror 12 and flat mirror 9 in

RICH2, referred to as mirror pair 1209). The list of mirror pairs is chosen so that each

flat mirror is paired with at least two spherical mirrors.

1θx and θy also incorporate “magnification coefficients” which relate the displacement of the
Cherenkov rings to physical mirror tilts.



Event selection for RICH mirror alignment 53

 [rad]φ
0 2 4 6

 [
ra

d
]

θ
∆

­0.005

­0.004

­0.003

­0.002

­0.001

0

0.001

0.002

0.003

0.004

0.005

(a)

 [rad]θ∆

­0.004 ­0.002 0 0.002 0.004

E
n

tr
ie

s
 /

 0
.0

0
0

2
 r

a
d

10

20

30

40

50

60

(b)

Figure 3.5: (a) A sinusoidal fit to the φ distribution of the ∆θ peak positions for RICH2
mirror pair 2218. (b) A fit to the φ slice between 162◦ and 180◦ degrees.

Each of the ∆θ vs. φ distributions (one per mirror pair) is divided into twenty slices

in φ. To find the ∆θ peak position of each φ slice, the ∆θ projections are fit with a

Gaussian signal component plus a first order polynomial background component. An

example is shown in Figure 3.5 for mirror pair 2218 in RICH2. Once all of the peak

positions are found, their φ distribution is fit with a sinusoidal function of the form

shown in Equation 3.14, allowing extraction of misalignment parameters.

To enable accurate estimation of the expected Cherenkov angle, θ0, only high momen-

tum tracks are used. This is because as momentum increases, the Cherenkov angle

values of different particle species tend towards the same saturation value. Therefore

all high momentum tracks can be assumed to be pions (Equation 3.4 shows that the

Cherenkov angle is independent of the particle mass at high momentum). In addition,

only “unambiguous” photons are used to populate the histograms. A photon is declared

unambiguous if the reconstruction results in it reflecting off the same pair of mirrors re-

gardless of how far along the track it is emitted. This is useful for removing background

from the ∆θ vs. φ histograms.

The alignment procedure is iterative: at the end of each iteration, the misalignment

parameters are entered into the CondDB. Subsequent iterations use the updated pa-

rameters from previous iterations. The procedure ends when all of the x and y tilt

corrections for every mirror pair are less than 0.1 mrad.
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3.3 Event selection

Because the photon population of the mirror pairs is very heavily biased towards the

mirrors closest to the beam axis (illustrated in Figure 3.6), to achieve adequate popu-

lations in all of the peripheral mirror pairs it is necessary to reconstruct ∼ 5M events

for alignment of the RICH2 mirrors. The mirror alignment employs an iterative proce-

dure, therefore the same ∼ 5M events need to be reconstructed several times (once per

iteration), using a significant amount of CPU time. An event selection that picks out

events with highly populated peripheral pairs is used to significantly reduce the number

of events needed to fewer than 100k for RICH2.

For each alignment histogram (∆θ vs. φ for a particular mirror pair), most of the twenty

φ bins must be populated sufficiently for successful convergence of the fitting procedure.

Testing reveals that each φ bin requires at least 300 entries, and that the fit can cope

with up to four insufficiently filled φ bins. Therefore, events are selected so that all φ

bins in all alignment histograms contain at least 300 entries. The selection procedure is

described in following text.

During the reconstruction of an event, if there are any photons within an alignment

histogram φ bin which is not already full enough (i.e. containing at least 300 entries),

the event is accepted. In general, events will contribute to many of the φ bins, so the

population of each φ bin in all of the alignment histograms is incremented appropriately

for any accepted events. If an event is found to contain no photons which add to any

of the empty (i.e. fewer than 300 entries) φ bins, that event is discarded and all of the

photons are ignored.

Because of the location of some of the mirror pairs, their φ distributions can be extremely

non-uniform (see Figure 3.5(a) for an example) and in some cases it is practically impos-

sible to reconstruct the number of events needed to fill all of the φ bins. However, the

mirror pairs used in the alignment procedure are chosen so that this problem is avoided.

After the selection there are enough sufficiently full φ bins for the fitting procedure to

successfully converge. Figure 3.7 shows the number of insufficiently filled φ bins for each
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mirror pair. The mirror pair using spherical mirror 2 and flat mirror 3 is not used in

the alignment procedure.

3.4 Conclusions

An event selection has been developed that selects events to more evenly populate the

mirror planes in the LHCb RICH detectors. It is used to reduce the number of events

required for the mirror alignment by a factor of ∼ 50, significantly speeding up the

procedure and saving valuable computing resources (RICH reconstruction for a typical

event lasts ∼ 1 s).

Using the alignment procedure on data collected in 2011, the Cherenkov angle resolution

for the gaseous radiator in RICH1 improves from 13.96 mrad to 1.60 mrad, while in

RICH2, the Cherenkov angle resolution is improved from 0.73 mrad to 0.63 mrad [40].

The resolutions measured with collision data are now very close to their Monte Carlo

predictions of 1.5 mrad for RICH1 and 0.6 mrad for RICH2 (in fact, the RICH2 resolution

is slightly better than the Monte Carlo prediction). This has resulted in excellent PID

performance [43].
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Figure 3.6: Population of mirror pairs in the left-hand side of RICH2, normalised to
the largest population. The title of each of the plots represents a spherical mirror
segment, and the y−axis labels show the flat mirror segments with which they are
paired. Spherical mirror 12 has the highest photon population because it is closest to
the beam pipe.
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Figure 3.7: Number of incompletely filled φ bins per histogram for the left-hand side
of RICH2. Green bars (or no bars) show mirror pairs with an acceptable number of
incompletely filled φ slices. Not all of the mirror pairs shown here are used in the
alignment procedure, including the pair containing spherical mirror 2 and flat mirror
3.



Chapter 4

Prompt charm production in pp

collisions at
√
s = 7 TeV

4.1 Introduction

This chapter describes the measurement of prompt D0 production1 using 15.0±0.5 nb−1

of low pileup pp collision data taken in 20102 with the LHCb detector at a centre of

mass energy of 7 TeV. The analysis is performed using the Cabibbo-favoured decay

mode D0 → K−π+π−π+ mainly as a systematic cross-check to the more abundant

D0 → K−π+ mode. Agreement between the two sets of results provides a powerful

validation of the analysis techniques used and demonstrates a good understanding of

the various efficiencies involved in the cross-section calculations.

Production of D0 mesons can occur either promptly or from the decays of b-hadrons

(referred to as “secondary” charm). “Prompt” D0 mesons may be produced either

directly in the pp collision or by the immediate decay of excited charm resonances. The

measurement of prompt D0 production is a means to test QCD predictions and can be

used to provide estimates of expected event yields for various future analyses.

1Throughout this chapter, unless otherwise stated, the charge conjugate modes are implied.
2The reason for the choice of dataset is explained in Section 4.6.2.
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Figure 4.1: Feynman diagrams illustrating the main charm production mechanisms at
the LHC: (a) gluon-gluon fusion, (b) qq̄ annihilation, (c) flavour excitation, and (d)
gluon splitting.

4.2 Charm production mechanisms

Three mechanisms contribute to charm production at the LHC:

• Flavour creation: This is a hard QCD scattering process which refers to two

lowest-order production diagrams; gluon-gluon fusion (Figure 4.1(a)), and qq̄ an-

nihilation (Figure 4.1(b)).

• Flavour excitation: This is a semi-hard process that corresponds to diagrams in

which a cc̄ pair is excited into the final state from the sea of quarks in the proton.

This happens when one of the partons from the other colliding proton undergoes

a hard QCD interaction with one of the c quarks (Figure 4.1(c)).

• Gluon splitting: A soft QCD process where the cc̄ pair is produced from the

splitting of a gluon (g→ cc̄) in either the initial or final state. Here, neither of the

charm quarks participate in a hard scattering (Figure 4.1(d)).

Measuring the production of charm over a large pT range is important for testing QCD

predictions because it helps with disentangling the contributions from each of the dif-

ferent production mechanisms. Heavy flavour production has been measured by other

proton and electron colliders, where significant discrepancies were found between the

data and Next-to-Leading-Order (NLO) QCD predictions (for an example, see the Teva-

tron Run I results [44]). Therefore, measurements of heavy flavour production at 7 TeV

provide an extremely useful tool for testing theoretical predictions. At the end of this

chapter, we compare our results with two different NLO QCD models, and reasonable

agreement is found, although there is not enough discriminating power to distinguish

between the two.
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4.3 Analysis strategy

The production cross-section of D0 mesons is measured in two-dimensional bins of ra-

pidity, y = 1
2 ln

(
E+pz
E−pz

)
, and transverse momentum, pT =

√
p2
x + p2

y, where the D0

momentum four-vector, (E, px, py, pz), is measured in the pp collision centre of mass

frame. The measurement is performed (where possible) in eight uniformly spaced trans-

verse momentum bins between 0 < pT < 8 GeV and five uniformly spaced rapidity bins

between 2.0 < y < 4.5, taking advantage of LHCb’s unique acceptance.

In each bin, i, the cross-section is measured using

σi
(
D0
)

=
Ni

(
D0 → K−π+π−π+

)

εi,tot · B (D0 → K−π+π−π+) · Lint
, (4.1)

whereNi

(
D0 → K−π+π−π+

)
is the yield of prompt charm decays, B

(
D0 → K−π+π−π+

)

is the branching fraction of the Cabibbo-favoured decay mode D0 → K−π+π−π+, Lint

is the integrated luminosity used for the measurement, and εi,tot is a product of the

components, given by

εi,tot = εi,acc · εi,trig|acc · εi,sel|trig · εi,PID|sel . (4.2)

Here

• εi,acc is the efficiency for all four final state tracks to be within the fiducial accep-

tance of the LHCb detector

• εi,trig|acc is the efficiency for the trigger to fire on the event given that the final

state tracks are within the fiducial acceptance

• εi,sel|trig is the efficiency for the event to pass all selection and reconstruction criteria

given that the event is triggered on

• εi,PID|sel is the efficiency for all four final state tracks to pass particle identification

(PID) requirements given that the D0 candidate is reconstructed and that the

event passes all selection criteria.
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The trigger efficiency is taken as uniform across all analysis bins (i.e. there is no y or

pT dependence - see Section 4.6.2) which makes it convenient to rewrite Equation 4.1 as

σi
(
D0
)

=
Ni

(
D0 → K−π+π−π+

)

εi,acc · εi,sel|trig · εi,PID|sel · B (D0 → K−π+π−π+) · Leff
, (4.3)

where Leff ≡ Lintεtrig is an effective integrated luminosity, discussed in Section 4.6.2.

4.4 Event selection using a genetic algorithm

Reconstructing hadronic decays of D0 mesons is a big challenge in a hadronic environ-

ment, particularly when there are four tracks in the final state. Without a tight set of

selection criteria the combinatorial background alone is overwhelming and completely

buries any signal peak that may be present (see Figure 4.8(a)). However, choosing

selection criteria that are too strict will result in a very low signal yield.

The task of finding optimal selection criteria is complicated by the fact that many of the

kinematic variables used in the selection have non-trivial correlations. Cutting on one

variable distribution will affect the shape of others. Therefore it is important to consider

the point at which the variable distributions are cut simultaneously, not individually. For

the sake of significantly simplifying the efficiency calculations (including systematics and

correction factors), no multivariate technique is used. Instead we use a genetic algorithm

to optimise a set of one-dimensional selection cuts.

4.4.1 Selection variables

The variables used in the analysis are described in the following paragraphs.

Daughter track pT. Because the D0 mass is much larger than that of its decay

products, at least one daughter kaon or pion is expected to have a large transverse

momentum (here measured in the lab frame, perpendicular to the beam axis). By

ordering the four daughter pT and cutting on each in turn, much greater discriminating
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Figure 1.4: A D0 may decay directly via the DCS process, or it may first oscillate to a
D0 and decay via the CF process.

via the CF process (see Figure 1.4). The second term is due to interference between the

two paths.

The time dependent WS/RS ratio, R(t), is obtained by dividing Equation 1.75 by Equa-

tion 1.76 and performing another second order Taylor expansion for t:

R(t) =
Γ (D0(t) → fp)

Γ
�
D0(t) → f̄p

� � r2
D + rDRDy�+Γt +

x2 + y2

4
(Γt)2 . (1.77)

The third term is often referred to as the rate of mixing (but divided by two), RM =

x2+y2

2 , which is independent of the D0 decay mode. It is important to note that rD, RD

and δD (from y�+ = y cos (δD) − x sin (δD)) are the same as the parameters that appear

in Equation 1.56. For any two body final state RD = 1, while for any CP self-conjugate

final state δD = 0 and rD = 1 (in the absence of direct CP violation).
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Figure 4.2: A schematic representation of a D0 → K−π+ decay, where the D0 originates
from the primary vertex (represented by the star). The impact parameter of a pion
track with respect to the primary vertex is the perpendicular distance between the
primary vertex and the extrapolated track.

power is achieved compared with simply asserting that all daughters must have pT

greater than some value (which is equivalent to cutting on only the lowest daughter pT).

For example, a tighter cut can be applied to the track with the largest pT value than

the others with a smaller effect on the signal efficiency. Simulated distributions of the

three largest daughter pT variables are shown in Figure 4.3.

Track fit χ2/Ndof . All final state tracks are required to be reconstructed with an

upper limit on the track fit χ2 per degree of freedom.

Track clone distance. Occasionally, the tracking pattern recognition will reconstruct

multiple tracks using detector hits from just one particle. These “clone” tracks can result

in multiple reconstructed D0 → K−π+π−π+ decay candidates per event. The Kullback-

Liebler distance [45] (or clone distance) is essentially a measure of the difference in

information content between two tracks and is used to identify and remove clone tracks.

All tracks with a Kullback-Liebler distance > 5000 with respect to every other track

(i.e. not clone-like) are accepted. Additionally, tracks which are the best of a group of

all possible clones (based on the number of hits and the track fit χ2/Ndof) are accepted.

Daughter track IP χ2 with respect to the primary vertex (PV). Sometimes

referred to as the “impact parameter significance”, this variable is defined as the mag-

nitude of the impact parameter divided by its uncertainty. The impact parameter of

a particle with respect to the PV is defined as the distance between the PV and the
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trajectory of the particle at its point of closest approach to the PV (see Figure 4.2). One

characteristic of D0 mesons are their long lifetimes which result in significant distances

of flight from the PV. Consequently, the daughter tracks should not point back to the

PV and will have IP χ2s with respect to the PV that differ significantly from zero. As

with the daughter pT variables, the four daughters’ IP χ2s are ordered in each event

and used as separate variables in the selection (see Figure 4.4).

Track type. All tracks used in the analysis are “long” tracks (see Section 2.2.6).

Particle identification (PID). PID is provided at LHCb by combining track infor-

mation from the two RICH detectors, the calorimeters, and the muon system. This

information is used to form a global likelihood hypothesis for each particle type (e, µ,

π, K, p). Here we exploit the difference between the logarithm of the kaon and pion

likelihoods (logLK− logLπ) to distinguish between the two particle types. This variable

is used to suppress background from combinations of pions which are produced copi-

ously in the primary interaction, as well as significantly reducing any background from

misidentifying a pion as a kaon or vice-versa. Backgrounds with muons misidentified

as pions are ignored. This is because either they contain a neutrino in the final state

(specifically, the decay D0→ K−π+π−µ+νµ) and peak far from the mass of the D0 when

reconstructed as D0 → K−π+π−π+ decays, or the decays are flavour-changing neutral

current processes that are highly supressed in the SM (D0→ K−π+µ−µ+ for example).

D0 vertex χ2/Ndof . Used as a measure of the vertex quality, this variable is ex-

tremely powerful for suppressing combinatorial background. Low values are consistent

with all four daughter tracks emerging from a common decay vertex.

Daughter track maximum distance of closest approach (DoCA). Defined as

the largest distance of closest approach between any of the two daughter track combina-

tions. Like the D0 vertex χ2/Ndof , the DoCA is very effective at removing combinatorial

background.
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Flight distance (FD) χ2 with respect to the PV. This variable is defined as the

flight distance divided by its uncertainty. Because of the relatively long D0 lifetime,

requiring a signifcant D0 vertex separation from the PV is useful to remove any back-

ground originating from the PV. An upper limit of ln
(
FDχ2

)
< 10 is also applied to

remove reconstructed candidates with unphysical high lifetimes.

D0 lifetime τ . All decay candidates are require to have a positive lifetime.

Cosine of the direction angle (DIRA). The cosine of the angle between the re-

constructed D0 momentum vector and the vector of displacement from the PV to the

decay vertex. For a promptly produced D0 the value will be very close to one.

D0 log10(IPχ2). The D0 log10(IPχ2) is a useful parameter for distinguishing be-

tween prompt D0 decays and those from decays of b hadrons. Any D0 which was

produced promptly will have a low log10(IPχ2). The variable is used (along with the

invariant mass) to extract the yield of prompt charm decays (see Section 4.5).

4.4.2 Event selection optimisation

After a very loose selection (see the “Stripping” column in Table 4.2), variables (and

ranges) are carefully chosen to have minimal impact on both the fraction of secondary

charm and the distribution of the D0 pT (Table 4.1 shows the full list of chosen variables).

A genetic algorithm is then used to optimise an event selection using these variables

within the given ranges. Because the cross-section is measured all the way down to the

bins between 0 < pT < 1 GeV, it is important that none of the selection cuts remove

the events with small D0 pT values. Additionally, the use of any variables significantly

correlated with the D0 log10(IPχ2) is avoided where possible because this variable is

used later to discriminate between prompt and secondary decays. In some cases (for

example the cut of FDχ2 > 16) only very loose cuts are applied in the stripping selection

to minimise biasing effects. Simulated distributions of the ten variables chosen for the

optimisation are shown in Figures 4.3, 4.4 and 4.5 where one can see clear differences
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Figure 4.3: Normalised distributions of (a) the second smallest, (b) second largest, and
(c) largest D0 daughter pT for signal (blue) and inclusive cc̄ reconstructed Monte Carlo
decay candidates. Note that the normalisation takes into account any entries outside
of the histogram range.

between signal and background shapes. Here we use a sample of Monte Carlo simulated

signal events to model the signal distributions and a sample of inclusive cc̄3 Monte Carlo

events to model the background.

The optimisation ranges of the three ordered D0 daughter pT variables are chosen so

that any resulting cuts will have only a small impact on the pT distribution of the D0.

For the upper ranges, two-dimensional Monte Carlo signal distributions of D0 pT vs.

the D0 daughter pT variables are examined and values are chosen so that the majority

of low D0 pT events remain, even if the upper limits were used in the selection (see

Figure 4.6).

Similarly, the optimisation ranges of the four ordered D0 daughter IPχ2s and the D0

DIRA are chosen to have a minimal impact on the D0 log10(IPχ2). Two dimensional

distributions of D0 log10(IPχ2) vs. D0 DIRA are shown for prompt and secondary

3A sample of Monte Carlo data that contains at least one charmed hadron pair per event.
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Figure 4.4: Normalised distributions of (a) the smallest, (b) second smallest, (c) sec-
ond largest, and (d) largest D0 daughter IPχ2 for signal (blue) and inclusive cc̄ recon-
structed Monte Carlo decay candidates. Note that the normalisation takes into account
any entries outside of the histogram range.

decays in Figure 4.7. Here, the upper limit is chosen so that the majority of both

prompt and secondary events remain, in order to help with the yield extraction. The

same procedure is applied to the D0 daughter IPχ2s.

Table 4.1: Variables used in the genetic algorithm optimisation, shown with the lower
and upper allowed limits, as well as the resolution used by the algorithm.

Variable name Lower limit Upper Limit Resolution

D0 vertex χ2/Ndof 0.0 20.0 1.0
DoCA 0.20 0.50 0.01
DIRA 0.99950 0.99980 0.00001

h± smallest IP χ2 1.0 9.0 0.5
3rd largest IP χ2 1.0 16.0 0.5
2nd largest IP χ2 1.0 36.0 1.0
largest IP χ2 2.0 80.0 2.0
3rd largest pT 250.0 GeV/c 300.0 GeV/c 10.0 GeV/c
2nd largest pT 250.0 GeV/c 350.0 GeV/c 10.0 GeV/c
largest pT 250.0 GeV/c 400.0 GeV/c 10.0 GeV/c

To train the selection a sample of Monte Carlo signal events is used, along with a sample
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Figure 4.5: Normalised distributions of (a) the D0 vertex χ2/Ndof , (b) the D0 daughter
maximum DoCA, and (c) the D0 DIRA for signal (blue) and inclusive cc̄ reconstructed
Monte Carlo decay candidates. Note that the normalisation takes into account any
entries outside of the histogram range.
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Figure 4.6: Monte Carlo signal distributions of D0 pT vs. (a) second largest and
(b) largest D0 daughter track pt. To avoid loss of low D0 pT events, upper limits of
350 MeV/c and 400 MeV/c are chosen for the optimisation.
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Figure 4.7: Monte Carlo distributions of D0 log10(IPχ2) vs. D0 DIRA for (a) prompt
and (b) secondary D0 decays. An upper limit of 0.99980 is chosen for the optimisation
so that the majority of both prompt and secondary decays remain.

of inclusive cc̄ (the same samples used to produce Figures 4.3, 4.4 and 4.5). Both are

passed through the same reconstruction software as the real data. The genetic algorithm

used to optimise the selection cuts is described in the following text.

Initialisation

To begin, each member of a starting population of twenty cut sets is assigned a random

value for each of the ten cut variables. The random values are chosen to be within

the predefined variable ranges. Each variable can be thought of as a “gene”. The

resolution of the variables can be seen in Figures 4.3, 4.4 and 4.5), although the ranges

are somewhat smaller than depicted. Table 4.1 shows the ranges and resolutions used

for each variable.

Reproduction

The population is then split into ten random pairs, each of which is made to “reproduce”

twice so that the population doubles in size. Each of the genes in an “offspring” cut set

has an equal probability of inheritance from either parent.
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Mutation

To avoid stagnation all offspring genes then have a 10% probability of “mutating” to a

new random value. This prevents the algorithm from becoming stuck in a local minimum.

Natural selection

Each member of the population represents a set of selection criteria. The criteria are

tested using Monte Carlo simulated signal and background data, using the signal signif-

icance
(

signal√
signal+background

)
as the figure of merit. The entire population (offspring and

parents) is then ordered by the signal significance and the half that perform the worst

are terminated.

Convergence

The whole process (from reproduction to natural selection) is repeated for as many

generations as required (the number depends on how many cut variables are used, as

well as the resolution of each of them). In this case the number of required generations

was found to be around 100 by closely observing the output and looking for any further

improvements. To ensure convergence the algorithm is left to run for 1000.

4.4.3 Final selection criteria

The final list of selection criteria can be found in Table 4.2, where the optimised variable

cuts are shown (along with the clone distance cut and high cut on the D0 FD χ2) in

the “Offline” column.

4.5 Yield extraction

The yield of prompt D0 mesons is extracted in each of the (y, pT) bins by performing an

unbinned maximum likelihood fit to the two dimensional mass - log10(IPχ2) plane. We

use the log10(IPχ2) variable to discriminate between the prompt signal and secondary
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Table 4.2: Selection criteria used to isolate D0 → K−π+π−π+ signal candidates. The
symbol h± is used to represent either a pion or kaon daughter track. The “Stripping”
column lists a set of very loose criteria applied prior to the analysis, and the “Offline”
column lists the cuts which are optimised using a genetic algorithm, along with the clone
distance and ln

(
FDχ2

)
criteria. If four values are present, the first is a requirement

for all of the daughter tracks, the second is required of at least three of the daughter
tracks, the third of at least two of the daughter tracks, and the final requirement is
only necessary for one of the daughter tracks.

Variable name Stripping Offline

h± Track χ2/Ndof < 5 —
Track type Long —
Clone distance — > 5000 or “best clone”
IP χ2 > 1 > 1.5, 6, 9, 16
pT > 250 MeV/c > —, 300, 350, 400 MeV/c
|~p| > 3 GeV/c —

K− log (LK/Lπ) > 0 —

π± log (LK/Lπ) < 5 —

D0 Vertex χ2/Ndof < 20 < 3
hihj pair DoCA < 0.5 mm < 0.21 mm

FD χ2 > 16 —
Signed FD > 0 mm —
τ > 0 ps —
ln
(
FDχ2

)
— < 10

DIRA — > 0.99979
Mass window |m−mPDG| < 75 MeV/c2 —
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Figure 4.8: Invariant mass distribution of reconstructed D0 → K−π+π−π+ candidates
after (a) the stripping selection and (b) the full selection.

background. The PDF used for the fit is a sum of three two-dimensional components:

prompt signal, secondary background, and combinatorial background. In the mass pro-

jection, the prompt signal and secondary background are described by a common Crystal
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Ball4 [46] function, and the combinatorial background is modelled by a first order poly-

nomial. The Crystal Ball function is useful for fitting the signal invariant mass shape

because it accounts for the radiative tail. In the log10(IPχ2) projection, each of the

three components is described by an asymmetric Gaussian with exponential tails. This

function is defined as

P (x) ∝





exp
(
ρ2
L
2 + x−µ

σ(1−ε)ρL
)

if x−µ
σ(1−ε) < −ρL

exp
(
ρ2
R
2 −

x−µ
σ(1+ε)ρR

)
if x−µ

σ(1+ε) > ρR

exp
(
− (x−µ)2

2σ2(1−ε)2

)
if − ρL < x−µ

σ(1−ε) < 0

exp
(
− (x−µ)2

2σ2(1+ε)2

)
if 0 < x−µ

σ(1+ε) < ρR

(4.4)

where µ is the mean of the distribution, σ is the width, ε is an asymmetry parameter, and

ρL and ρR are the number of σ from the left or right of the mean where the exponential

behaviour begins. When −ρL < x < ρR the form is reduced to an asymmetric Gaussian.

For the secondary and combinatorial background log10(IPχ2) fits, the PDF is reduced

to its symmetric form (i.e. the conditions ε = 0 and ρL = ρR = ρ are imposed). The

function is chosen because it describes the Monte Carlo signal, and data background

(from the D0 mass sidebands) very well. Examples can be seen in Figure 4.10.

Many of the (pT, y) bins contain only a small number of events (∼ 100). Therefore, in

order to improve fit stability, some fit parameters are shared between neighbouring bins,

which are grouped into big bins with the boundaries shown in Figure 4.9. The individual

(pT, y) bins within a big bin are fit simultaneously, sharing parameters that are expected

to vary slowly with pT and y (ε, ρL and ρR for the prompt component of the log10(IPχ2)

distribution, ρ for both the secondary and background components of the log10(IPχ2)

distribution, the Crystal Ball tail parameters for the invariant mass distribution, and

the fraction of secondary charm events
(

secondary
prompt+secondary

)
, while leaving all others free

to float in each of the small bins.

4Named after the Crystal Ball Collaboration, this function consists of a Gaussian with a power-law
tail.
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In order to set initial values for the fit parameters used in the two-dimensional fit,

initially a series of one-dimensional fits are performed. First, the log10(IPχ2) distribu-

tions of both prompt and secondary Monte Carlo signal decays are fit individually (see

Figure 4.10(a)). Then the log10(IPχ2) distribution of data taken from the D0 mass

sidebands (mKπππ > 1895 MeV/c2 or mKπππ < 1835 MeV/c2) is fit (see Figure 4.10(b)).

Finally, the one-dimensional invariant mass distribution is fit. Once all of the param-

eters have been seeded, some are fixed (ε, σ, ρL and ρR for the prompt log10(IPχ2)

distribution, and σ, ρ and µ for the secondary log10(IPχ2) distribution) to improve

the fit stability. Finally the two-dimensional fits to the mass - log10(IPχ2) plane are

performed to extract the prompt charm yields (see Table 4.3 for the yields in each bin).

Projections of the two-dimensional fit are shown for a fit to the full (pT, y) range in

Figure 4.11. Fits for all of the analysis bins are shown in Appendix A, and the χ2 per

degree of freedom of the mass and log10(IPχ2) projections for each bin are shown in

Tables 4.4 and 4.5.

To test the fitter a toy study is performed using Monte Carlo with a range of secondary

fractions: 10%, 6%, 3% and 0%. No bias is found in any of the fit parameters, and the

measured secondary fractions agree well with their simulated values [47].

A systematic uncertainty that accounts for both the two-dimensional fit method, and

the choice of signal and background PDFs is detailed in Section 4.7.1.

Table 4.3: Prompt yields of D0 → Kπππ signal events in the data, shown with statis-
tical uncertainties.

pt y
(GeV/c) (2.0, 2.5) (2.5, 3.0) (3.0, 3.5) (3.5, 4.0) (4.0, 4.5)

(0, 1) — — 47.8± 12.6 39.2± 13.6 —
(1, 2) — 61.4± 17.3 157.8± 24.8 136.6± 23.1 —
(2, 3) 21.1± 4.7 190.6± 18.8 400.6± 30.7 242.0± 26.6 77.5± 15.4
(3, 4) 35.2± 6.1 323.3± 22.7 446.8± 27.2 295.5± 23.7 30.8± 7.2
(4, 5) 59.8± 7.9 276.6± 18.3 310.4± 20.5 201.5± 16.6 31.7± 6.7
(5, 6) 44.3± 7.4 210.8± 15.5 201.7± 16.2 100.2± 11.5 16.1± 4.6
(6, 7) 37.6± 6.3 115.6± 11.3 104.8± 10.9 59.5± 8.8 12.8± 3.5
(7, 8) 35.4± 5.9 79.1± 9.4 71.5± 8.7 33.1± 6.1 2.7± 1.6
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Figure 4.9: Grouping of bins for the simultaneous fits. Boundaries between the big bins
are shown by thick solid lines, while the boundaries between the individual bins are
shown with dashed lines. The hashing shows bins which are not used in the analysis.
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Figure 4.10: Fits to the log10(IPχ2) distributions for (a) Monte Carlo and (b) data
sidebands to extract parameters to be used in the two-dimensional mass - log10(IPχ2)
fit. In (a) the solid line represents a fit to the prompt signal (shown with circular points)
and the dashed line shows a fit to the secondary background (shown with square points).
The secondary Monte Carlo data and fit line are both scaled by a factor of five.

4.6 Efficiency corrections

To provide a more realistic representation of the four-body phase space, all MC sig-

nal events are re-weighted so that the daughter four-momenta more closely match the

distributions predicted by the Mark III amplitude model [48].
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Figure 4.11: (a) Mass and (b) log10(IPχ2) projections of the two-dimensional fit to the
data for the full (pT, y) range. The solid red line in (a) represents the contribution from
D0 signal decays (either prompt or secondary), combinatorial background is shown
in dashed blue in both (a) and (b), and the prompt and secondary D0 log10(IPχ2)
contributions are shown in (b) by red solid and dashed lines respectively.

Table 4.4: Fit χ2 per degree of freedom for the mass projection in each of the bins.

pt y
(GeV/c) (2.0, 2.5) (2.5, 3.0) (3.0, 3.5) (3.5, 4.0) (4.0, 4.5)

(0, 1) — — 1.46 1.87 —
(1, 2) — 1.74 1.51 1.63 —
(2, 3) 0.33 1.11 2.04 1.11 1.45
(3, 4) 0.26 1.78 1.24 1.37 0.88
(4, 5) 0.29 0.79 1.05 0.95 0.47
(5, 6) 0.29 0.40 0.87 0.99 0.31
(6, 7) 0.23 0.32 0.41 0.59 0.10
(7, 8) 0.15 0.86 0.25 0.32 0.03

4.6.1 Fiducial acceptance

To measure the efficiencies of the detector acceptance, εi,acc, a sample of generator-

level signal Monte Carlo events is used (events which have not been passed through the

detector simulation and reconstruction phases). For each (y, pT) bin we sum the weights

of events in which all D0 daughters are within the fiducial volume and divide by the

sum of weights for all events. The resulting efficiencies are shown in Table 4.6.
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Table 4.5: Fit χ2 per degree of freedom for the log10(IPχ2) projection in each of the
bins.

pt y
(GeV/c) (2.0, 2.5) (2.5, 3.0) (3.0, 3.5) (3.5, 4.0) (4.0, 4.5)

(0, 1) — — 0.66 0.45 —
(1, 2) — 0.41 1.00 1.33 —
(2, 3) 0.16 0.57 1.36 0.82 0.79
(3, 4) 0.27 0.86 0.70 0.61 0.68
(4, 5) 0.46 0.62 1.77 0.87 0.33
(5, 6) 0.36 0.76 0.86 0.74 0.10
(6, 7) 0.18 0.73 0.37 0.49 0.09
(7, 8) 0.32 0.33 0.55 0.27 0.06

Table 4.6: The fraction of events with all daughters within fiducial acceptance. For
simplicity, binomial errors are used.

pt y
(GeV/c) (2.0, 2.5) (2.5, 3.0) (3.0, 3.5) (3.5, 4.0) (4.0, 4.5)

(0, 1) 0.667± 0.007 0.910± 0.005 0.924± 0.005 0.746± 0.008 0.499± 0.008
(1, 2) 0.747± 0.006 0.952± 0.004 0.946± 0.004 0.868± 0.007 0.663± 0.009
(2, 3) 0.834± 0.007 0.976± 0.003 0.973± 0.004 0.945± 0.006 0.801± 0.012
(3, 4) 0.881± 0.009 0.997± 0.002 0.997± 0.002 0.980± 0.005 0.893± 0.014
(4, 5) 0.954± 0.008 1.000± 0.001 0.994± 0.004 0.985± 0.007 0.946± 0.015
(5, 6) 0.960± 0.010 1.000± 0.001 0.994± 0.006 0.989± 0.009 0.995± 0.006
(6, 7) 0.991± 0.006 1.000± 0.000 0.992± 0.007 0.988± 0.012 0.936± 0.030
(7, 8) 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

4.6.2 Trigger efficiency and effective luminosity

The data used in this analysis were collected in May 2010 when pileup5 was low. Two

trigger configurations were used, both employing “micro-bias” triggers6 which accept

events leaving track segments in either the VELO or the tracking stations. In the first

configuration, all events that pass the micro-bias triggers are accepted. An integrated

luminosity of (1.87± 0.07) nb−1 was collected with an efficiency of εtrig = 100% for

events within the detector acceptance. In the second configuration, rate limits and

prescales were applied to the mico-bias triggers in order to suppress the data rate. Here,

(13.09± 0.46) nb−1 were collected but with an effective efficiency (determined using the

known prescale and rate limits) of εtrig = (23.99± 0.19) %. It then follows that the total

effective integrated luminosity is the sum over the different trigger configurations (T):

5The average number of pp collisons per event.
6So-named because of their almost non-existent biasing effects, these triggers have an efficiency of

100% on the reconstructed signal decays.
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Leff =
∑

T

εT
trig LT

int (4.5)

= (5.01± 0.18) nb−1.

Because the trigger selects all signal events within the fiducial volume, no contribution

to the systematic uncertainty is introduced. Increasing the sample size would require

the use of data selected by non-trivial trigger configurations, which would not select

100% of the signal events, and determination of the trigger efficiency would introduce

a systematic uncertainty (mainly because of the difficulty in simulating the hardware

trigger). Since the total systematic uncertainty is already larger than the statistical

uncertainty in almost all of the (y, pT) bins, we use only data which were triggered by

the micro-bias triggers.

4.6.3 Reconstruction and selection efficiency

The reconstruction and selection efficiency in each (y, pT) bin, εi,sel|trig, is measured

using a sample of Monte Carlo data which use the full event and detector simulation.

In each bin the efficiency is calculated as

εi,sel|trig =
Ni,sel

Ni,gen
(4.6)

where Ni,sel is the sum of weights of events which pass all selection and reconstruction

criteria (excluding PID requirements) and Ni,gen is the sum of weights of events which

are generated with all daughters within the fiducial volume. The reconstruction and

selection efficiency in each (y, pT) can be found in Table 4.7.

4.6.4 PID efficiency

Because the PID variable log (LK/Lπ) is not particularly well described by the Monte

Carlo simulation, the efficiencies, εi,PID|sel, are determined using data. Calibration
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Table 4.7: Efficiency of reconstruction and selection for events with all daughters inside
the fiducial volume, shown as percentages.

pt y
(GeV/c) (2.0, 2.5) (2.5, 3.0) (3.0, 3.5) (3.5, 4.0) (4.0, 4.5)

(0, 1) — 0.01± 0.00 0.08± 0.00 0.07± 0.00 0.02± 0.00
(1, 2) — 0.12± 0.00 0.51± 0.00 0.40± 0.00 0.13± 0.00
(2, 3) 0.06± 0.00 0.96± 0.00 2.08± 0.01 1.93± 0.01 0.54± 0.00
(3, 4) 0.35± 0.00 2.89± 0.01 5.02± 0.02 4.25± 0.02 1.55± 0.01
(4, 5) 1.17± 0.01 5.12± 0.03 7.82± 0.05 6.95± 0.06 2.58± 0.03
(5, 6) 1.57± 0.01 7.22± 0.06 10.65± 0.10 9.31± 0.10 3.01± 0.04
(6, 7) 3.16± 0.03 9.66± 0.11 11.89± 0.15 10.52± 0.16 3.17± 0.07
(7, 8) 4.03± 0.06 10.68± 0.15 13.31± 0.23 11.97± 0.24 2.22± 0.06

samples of pion and kaon tracks are obtained from reconstructing K0
S → π+π− and

φ→ K+K− decays respectively. Each K0
S is reconstructed without any PID require-

ment on the pion tracks. Background suppression is achieved in the case of the φ decay

by requiring just one of the daughter kaons to have a tight PID requirement, thus halv-

ing the available sample size. For consistency, both decay channels are reconstructed

from the same 14.96 nb−1 of collision data as used in the D0 yield extraction.

To extract the signal log (LK/Lπ) distributions, the sPlot [49] technique is used, exploit-

ing the different shapes of the signal and background distributions in invariant mass. It

is then possible to determine the identification and misidentification rates for pions and

kaons for a given PID requirement.

To determine the overall PID efficiency for the D0 decays, one must have knowledge of

both the dependance of the PID selection upon the daughter track kinematics (|~p| and η),

and the correlations between the kinematic variables of the daughter tracks. The former

is achieved with the calibration samples of pions and kaons. The latter are determined

using a signal Monte Carlo sample to model the daughter track distributions. In reality,

since the samples are finite, these dependancies are measured in bins of daughter track

|~p| and η. So for each D0 (y, pT) bin, the efficiency is determined using

εPID|sel =

n∑

α,β,γ,δ=1

εα1 · εβ2 · εγ3 · εδ4 · fαβγδ1234 (4.7)
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where εωk represents the PID efficiency within the kinematic bin ω for daughter track k,

n is the total number of kinematics bins, and f is the fraction of events with daughters

that lie within the given kinematic bins.

The following kinematic constraints are applied to both the calibration and D0 data

samples:

• 2 < |~p| < 100 GeV/c,

• 2 < η < 5,

• pT < 5 GeV.

Additionally, a few of the daughter track (|~p| , η) bins are vetoed because they do not

contain enough events in the calibration samples to calculated an efficiency.

The resulting PID efficiencies are shown in Table 4.8.

Table 4.8: Efficiency of the PID selection for events passing reconstruction and selection
criteria, shown with statistical uncertainties only. For simplicity, binomial errors are
used.

pt y
(GeV/c) (2.0, 2.5) (2.5, 3.0) (3.0, 3.5) (3.5, 4.0) (4.0, 4.5)

(0, 1) — 0.821± 0.002 0.787± 0.001 0.761± 0.001 0.761± 0.002
(1, 2) 0.859± 0.006 0.824± 0.001 0.810± 0.000 0.791± 0.000 0.771± 0.001
(2, 3) 0.858± 0.001 0.847± 0.000 0.842± 0.000 0.820± 0.000 0.762± 0.001
(3, 4) 0.873± 0.001 0.868± 0.000 0.866± 0.000 0.836± 0.000 0.752± 0.001
(4, 5) 0.889± 0.001 0.886± 0.000 0.883± 0.000 0.845± 0.000 0.743± 0.001
(5, 6) 0.902± 0.001 0.898± 0.000 0.891± 0.000 0.839± 0.001 0.727± 0.001
(6, 7) 0.916± 0.001 0.908± 0.001 0.890± 0.001 0.836± 0.001 0.748± 0.002
(7, 8) 0.921± 0.001 0.916± 0.001 0.895± 0.001 0.835± 0.001 0.732± 0.003

4.7 Systematic uncertainties and correction factors

4.7.1 Yield extraction

To estimate the systematic uncertainty arising from the yield extraction we perform two

alternative fits for each (pT, y) bin.
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The first alternative yield extraction procedure is identical to the method detailed in

Section 4.5 except that different PDFs are used to describe the data. For the mass

projection we use a common Gaussian for the prompt signal and secondary background,

and a first order polynomial for the combinatorial background. For the log10(IPχ2)

projection, a separate “Bukin” PDF is used for each of the components. The Bukin

PDF is defined as

P (x) ∝ exp


− ln 2




ln
(

1 + 2ξ
√
ξ2 + 1 x−µ

σ
√

2 ln 2

)

ln
(

1 + 2ξ2 − 2ξ
√
ξ2 + 1

)




2

 (4.8)

for x1 < x < x2 and

P (x) ∝ exp


 ξ

√
ξ2 + 1 (x− xi)

√
2 ln 2

σ
(√

ξ2 + 1− ξ
)2

ln
(√

ξ2 + 1 + ξ
) + ρi

(
x− xi
µ− xi

)2

− ln 2


 (4.9)

with ρi = ρ1 and xi = x1 when x < x1, and ρi = ρ2, and xi = x2 when x > x2. Here x1

and x2 are defined as

x1,2 = µ+ σ
√

2 ln 2

(
ξ√
ξ2 + 1

∓ 1

)
. (4.10)

The free parameters µ and σ are the position and width of the peak, ρ1 and ρ2 are left

and right exponential tail parameters, and ξ parameterises the asymmetry. Examples

of the Bukin PDF can be seen in Figure 4.12. Projections of the two-dimensional fit to

the mass–log10(IPχ2) plane are shown in Figure 4.13 for the full (y, pT) range.

The second alternative yield extraction procedure involves the use of binned background

subtraction to produce a signal distribution for the log10(IPχ2) variable, instead of

performing a two-dimensional fit. Signal and background PDFs (a Gaussian and a

first order polynomial, respectively) are fitted to the invariant mass distribution. The

background log10(IPχ2) shape is taken from the invariant mass sidebands, defined as

1790 < mKπππ < 1835 MeV/c2 and 1895 < mKπππ < 1940 MeV/c2. This shape is scaled
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Figure 4.12: Bukin PDF fits to the log10(IPχ2) distributions for (a) Monte Carlo and
(b) data sidebands to extract parameters to be used in the two-dimensional mass -
log10(IPχ2) fit. In (a) the solid line represents a fit to the prompt signal (shown with
circular points) and the dashed line shows a fit to the secondary background (shown
with square points). The secondary Monte Carlo data and fit line are both scaled by a
factor of five.
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Figure 4.13: (a) Mass and (b) log10(IPχ2) projections of the two-dimensional fit to
the data for the full (pT, y) range, using the alternative PDFs. The solid red line in
(a) represents the contribution from D0 signal decays (either prompt or secondary),
combinatorial background is shown in dashed blue in both (a) and (b), and the prompt
and secondary D0 log10(IPχ2) contributions are shown in (b) by red solid and dashed
lines respectively.

to match the background yield under the signal peak (three standard deviations either

side of the measured mass peak) and is then subtracted from the log10(IPχ2) distribution

underneath the same peak, leaving an unfolded prompt and secondary log10(IPχ2)

distribution. This is fitted with Bukin PDFs (one for prompt and one for secondary) to

extract a fraction of prompt charm decays.

The largest absolute yield difference between the main fit result and each of the two

alternative yield extractions is used as a systematic uncertainty for the yield extraction
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procedure. Table 4.9 shows the uncertainties in each of the (pT, y) bins.

Table 4.9: Systematic uncertainties arising from the yield extraction procedure, shown
as percentages.

pt y
(GeV/c) (2.0, 2.5) (2.5, 3.0) (3.0, 3.5) (3.5, 4.0) (4.0, 4.5)

(0, 1) — — 11.63 35.49 —
(1, 2) — 19.66 2.60 8.24 —
(2, 3) 6.38 2.51 8.71 11.90 27.50
(3, 4) 6.90 2.81 6.02 9.53 19.95
(4, 5) 16.37 8.90 8.16 2.40 4.06
(5, 6) 11.34 7.33 8.92 1.04 25.08
(6, 7) 9.09 12.13 6.66 1.04 26.07
(7, 8) 6.98 3.99 14.16 5.48 19.13

4.7.2 Fiducial acceptance

Since the Monte Carlo sample used to measure the detector efficiencies is inevitably

finite, there is a statistical uncertainty associated with the calculation (which is binomial

in nature and can be reduced by increasing the Monte Carlo sample size). This is taken

as a systematic uncertainty, shown in (pT, y) bins, in Table 4.10.

Table 4.10: Systematic uncertainties arising from the limited Monte Carlo statistics
available for the fiducial acceptance study, shown as percentages.

pt y
(GeV/c) (2.0, 2.5) (2.5, 3.0) (3.0, 3.5) (3.5, 4.0) (4.0, 4.5)

(0, 1) — — 0.54 1.04 —
(1, 2) — 0.38 0.42 0.77 —
(2, 3) 0.89 0.35 0.41 0.65 1.45
(3, 4) 1.01 0.18 0.19 0.54 1.61
(4, 5) 0.85 0.10 0.37 0.75 1.63
(5, 6) 1.06 0.12 0.57 0.88 0.60
(6, 7) 0.65 0.00 0.75 1.26 3.21
(7, 8) 0.00 0.00 0.00 0.00 0.00

4.7.3 Selection and reconstruction efficiency

Identically to the fiducial acceptance systematic, a binomial uncertainty is calculated

based on the number of Monte Carlo events used to study the selection and reconstruc-

tion efficiency in each (pT, y) bin. These are shown in Table 4.11.
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Table 4.11: Systematic uncertainties arising from the limited number of Monte Carlo
events available for the reconstruction and selection efficiency calculation, shown as
percentages.

pt y
(GeV/c) (2.0, 2.5) (2.5, 3.0) (3.0, 3.5) (3.5, 4.0) (4.0, 4.5)

(0, 1) — — 0.27 0.30 —
(1, 2) — 0.24 0.26 0.29 —
(2, 3) 0.31 0.33 0.35 0.40 0.47
(3, 4) 0.42 0.45 0.50 0.56 0.69
(4, 5) 0.58 0.63 0.68 0.80 1.01
(5, 6) 0.80 0.84 0.94 1.12 1.46
(6, 7) 1.04 1.12 1.26 1.54 2.09
(7, 8) 1.39 1.45 1.71 2.03 2.89

4.7.4 PID efficiency

To asses the systematic uncertainty originating from the PID efficiency determination,

a Monte Carlo simulated calibration sample is used. The entire PID calibration proce-

dure (discussed in Section 4.6.4) is repeated, using the Monte Carlo calibration sample

instead of the real data, to produce distributions of efficiencies as a function of a cut

on log (LK/Lπ) for each of the daughter tracks. These distributions are then compared

with the true distributions from a Monte Carlo signal sample. The largest difference

between the two distributions within ±5 of the log (LK/Lπ) cut used is taken as the

systematic uncertainty. The uncertainties from the four tracks are added in quadrature.

In addition there is a statistical uncertainty resulting from the finite size of the Monte

Carlo and calibration samples used to calculate the PID efficiencies. This is added in

quadrature with the other uncertainty. The combined systematics for all bins can be

found in Table 4.12.

4.7.5 Dalitz model

Each of the amplitudes and phases of the resonances in the Mark III D0 → K−π+π−π+

Dalitz model (the model we use is shown in Table 4.13) are varied randomly to pro-

duce ten random variations of the amplitude model. Each amplitude is multiplied by

a uniformly generated random number between 0.5 and 2.0, and the phases are chosen
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Table 4.12: Systematic uncertainties arising from the PID efficiency determination,
shown as percentages.

pt y
(GeV/c) (2.0, 2.5) (2.5, 3.0) (3.0, 3.5) (3.5, 4.0) (4.0, 4.5)

(0, 1) — — 9.27 11.45 —
(1, 2) — 7.72 6.09 6.18 —
(2, 3) 10.17 7.35 5.82 4.19 7.84
(3, 4) 9.99 5.77 3.20 3.45 7.56
(4, 5) 8.36 2.93 1.87 2.97 10.07
(5, 6) 6.03 2.92 2.84 4.18 11.99
(6, 7) 4.24 3.00 3.56 6.98 11.65
(7, 8) 4.32 2.34 6.13 7.94 11.91

Table 4.13: The implementation of the Mark III amplitude model used to re-weight
Monte Carlo signal events.

Decay chain Fraction Amplitude Phase

non-resonant 0.22 0.97 2.07
D0 → a+

1 (1260)K−, a+
1 (1260)→ ρ0(770)π+ 0.47 1.0 0.0

D0 → K−1 (1270)π+,K−1 (1270)→ ρ0(770)K− 0.032 0.13 0.71

D0 → K−1 (1270)π+,K−1 (1270)→ K∗0(1430)π− 0.021 0.57 3.85

D0 → K−1 (1270)π+,K−1 (1270)→ K∗0(892)π− 0.013 0.040 0.1

D0 → K∗0(892)π+π− 0.13 0.93 6.21
D0 → ρ0(770)K−π+ 0.088 0.5464 2.84

D0 → K∗0(892)ρ0(770) 0.29 0.1232 1.69

D0(D − wave)→ K∗0(892)ρ0(770) 0.13 0.1963 1.96

randomly between 0 and 2π. This produces a much more significant range of variation

than one would expect, leading to a conservative systematic uncertainty.

The product of the fiducial acceptance, selection, reconstruction, and PID efficiencies

is calculated for each of the ten variations and the standard deviation is taken as the

systematic uncertainty due to the Dalitz model. The resulting uncertainties for each

(pT, y) bin are shown in Table 4.14.

4.7.6 Tracking efficiency

Using results from previous measurements [20, 50] a fully correlated uncertainty of 3%

per track is applied, resulting in an overall systematic uncertainty of 12% for the tracking

efficiency.
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Table 4.14: Systematic uncertainties resulting from the Dalitz model implementation
in the Monte Carlo simulation.

pt y
(GeV/c) (2.0, 2.5) (2.5, 3.0) (3.0, 3.5) (3.5, 4.0) (4.0, 4.5)

(0, 1) — — 8.77 10.98 —
(1, 2) — 1.79 3.35 2.61 —
(2, 3) 6.99 3.40 2.11 2.44 2.82
(3, 4) 3.61 2.72 2.06 1.63 1.28
(4, 5) 3.93 1.76 2.17 3.34 2.84
(5, 6) 3.21 2.02 2.67 2.25 3.44
(6, 7) 3.50 1.17 1.50 1.69 8.17
(7, 8) 4.49 2.27 2.72 3.35 3.88

4.7.7 Integrated luminosity

The uncertainty on the measurement of the integrated luminosity is determined to be

3.5% [51].

4.7.8 Branching fraction

The branching fraction value is taken from the PDG to be B(D0 → K−π+π−π+) =
(
8.07+0.21

−0.19

)
% [52]. The average of the asymmetric errors is used as a systematic uncer-

tainty.

4.7.9 Monte Carlo association failure

Occasionally the algorithm responsible for associating reconstructed tracks with MC

particles will fail to identify a signal candidate and incorrectly classify it as a background

event. This results in a small undercount for the number of MC signal candidates passing

reconstruction and selection, which must be corrected for when calculating the cross-

sections. The MC association failure rate is calculated using

F =
NF

NF +NT
(4.11)

and has an uncertainty
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Figure 4.14: Invariant mass distribution for MC events which have been categorised
as combinatorial background. The peak arises from signal candidates which fail MC
association.

σF =
1

(NT +NF )2

√
N2
Fσ

2
NT

+N2
Tσ

2
NF
. (4.12)

Here, NT is the number of truth-matched signal candidates and NF is the number

of signal candidates which fail MC association. After all reconstruction and selection

requirements, NT = 20067 ± 142 within the full (pT, y) range. To measure the number

of association failures within the same MC sample, data identified as combinatorial

background are fitted with the same signal and background PDFs used for the yield

extraction (see Figure 4.14). The signal component of the fit yields NF = 696 ± 52.

Inserting the numbers into Equations 4.11 and 4.12 gives F = (3.25± 0.24) %. To

correct the results, cross-sections are multiplied by a factor of (1−F ). The uncertainty

σF is used as a systematic uncertainty.

The value of F is calculated separately in every (pT, y) bin used in the analysis to check

for any pT or y dependence. The values show good consistency with the global value,

therefore only the global value is used.
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Figure 4.15: MC association failure rate calculated separately in each analysis bin.
The blue band represents the value calculated for the entire (pT, y) range along with
its uncertainty.

4.7.10 Cut variable distributions

The efficiency of reconstruction and selection is calculated using Monte Carlo data,

therefore any differences between the Monte Carlo and real data selection variable dis-

tributions need to be identified and corrected for. All variables that are used as selection

criteria (see Table 4.2 for the full list) are examined, after applying all of the selection

cuts except on the variable under examination, by comparing Monte Carlo signal distri-

butions with sideband-subtracted data distributions. The majority of the variables do

not lead to correction factors because either their Monte Carlo and real data distributions

are similar enough or a cut is placed far enough from the peak of the distributions, both

resulting in negligible differences between Monte Carlo and data efficiencies. Examples

of these variables can be seen in Figure 4.16.

The stripping cuts placed on all of the daughter IPχ2 variables, as well as the largest of

the daughter track fit χ2/Ndof variables, prevent a direct determination of the efficiency

for the real data. Instead, Monte Carlo and data distributions of those variables are

fit with first order polynomials, which are extrapolated into the regions removed by the

stripping cuts (see Figure 4.17 for examples). The ratio of efficiencies, εdata/εMC , can
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Figure 4.16: Distributions of (a) the second largest daughter track fit χ2/Ndof and (b)
the second smallest daughter track pT. Both figures show distributions from signal
Monte Carlo (green), real data after background subtraction (black) and background
(red). The blue line indicates where a cut is placed.

then be determined. For each variable the fit is performed within three different ranges.

The median of the εdata/εMC ratios (which is very similar to the mean in each case)

is used as a correction factor to the selection efficiency and the difference between the

smallest and largest of the εdata/εMC ratios is used as a systematic uncertainty.

In the case of the smallest of the daughter momenta and the daughter pT variables, the

stripping cut is too tight to allow either of the techniques described above. Instead, the

ratio of the real data to Monte Carlo distributions (both normalised) is plotted for each

of the two variables up to the cut value and the resulting distributions are fit with first

order polynomials (see Figure 4.18), which are extrapolated into the regions removed

by the cuts. The Monte Carlo distributions without the cuts applied are then multi-

plied in each bin by the value of the fitted polynomial in the centre of the same bin

to produce a simulated distribution for the real data. The correction factor εdata/εMC

is then determined for each variable by measuring the fraction of the data and Monte

Carlo distributions either side of the cut. A systematic uncertainty is calculated by

varying the slope of the fitted polynomial within its errors. A summary of all correction

factors and systematic uncertainties arising from differences between data and Monte

Carlo distributions is shown in Table 4.15. The total correction factor is simply the

product of all individual correction factors. Correlations between variables are taken

into account when calculating the total systematic uncertainty using Pearson’s correla-

tion coefficient [53], which gives a measurement of the linear correlation between two
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Figure 4.17: The largest daughter track fit χ2/Ndof variable distribution shown for
Monte Carlo signal events (green) and sideband-subtracted data (black) in three dif-
ferent ranges. First order polynomial fits are shown in dark green (Monte Carlo) and
grey (real data).

variables.

4.7.11 Multiple candidates

Assuming that if one c quark from a cc pair is within fiducial acceptance then the other

will be also, the probability for an event with a reconstructed D0 → K−π+π−π+ signal

decay to contain another reconstructed D0 → K−π+π−π+ signal decay can be estimated

by

εacc · εsel|trig · εPID|sel · f
(
c→ D0

)
· B(D0 → K−π+π−π+). (4.13)

Here f
(
c→ D0

)
is the probability for a charm quark to hadronise into a D0. At en-

ergies near the Υ (4S) resonance, f
(
c→ D0

)
= 0.565 ± 0.032 [54]. For the sake of this
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Figure 4.18: Ratio of normalised data and Monte Carlo distributions as a function of
(a) the lowest daughter track momentum, and (b) the lowest daughter track pT. The
grey lines show first order polynomial fits to the distributions.

Table 4.15: Correction factors to the selection efficiency and their corresponding system-
atic uncertainties. Uncertainties are quoted as absolute uncertainties on the correction
factors.

Variable name Correction factor Systematic uncertainty

D0 vertex χ2/Ndof 0.8828 0.0586
DoCA 0.9532 0.0234
DIRA 0.9684 0.0158

h± smallest IP χ2 1.0113 0.0222
3rd largest IP χ2 0.9772 0.0160
2nd largest IP χ2 0.9915 0.0055
largest IP χ2 0.9944 0.0019
largest track fit χ2/Ndof 0.9906 0.0107
smallest pT 0.9849 0.0051
smallest |~p| 0.9912 0.0041

Total 0.7678 0.0880

calculation we will assume that this value is the same at
√
s = 7 TeV. Over the ranges

0 < pT < 8 GeV and 2.0 < y < 4.5, the efficiencies εacc, εsel|trig and εPID|sel are measured

using Monte Carlo in the same way as described in Section 4.6. Their values are 0.857,

0.010 and 0.888 respectively. Combining all of these numbers with the branching frac-

tion one obtains a probability of 0.035% for an event to contain two reconstructed signal

candidates. Neglecting events which contain more than two reconstructed signal can-

didates, this corresponds to an expected average of 1.00035 candidates per event (note

that the assumption that f
(
c→ D0

)
= 0.565 at 7 TeV makes this a rough estimate,

although there is evidence [55, 56] that fragmentation functions are independent of the

collision energy). The number of candidates per event in the Monte Carlo signal sample

is measured as 1.00065 ± 0.00017 which is close to the estimate. Since the deviation
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from one is so small it is neglected in the cross-section measurements.

For the collision data the signal candidate multiplicity is calculated using

M =
cs − cb
es − eb

(4.14)

with an uncertainty

σM =

√
cs + cb
es − eb

(4.15)

where cs and cb are the number of candidates inside signal and background search

windows, and es and eb are the number of events inside the same windows. The search

windows are defined in the D0 invariant mass distribution so that their total widths are

the same and the number of signal events inside the background window is negligible.

Because the background shape is assumed to be linear, we are effectively performing a

linear background subtraction. Using Equations 4.14 and 4.15 the candidate multiplicity

in the collision data sample is calculated to be 1.04044±0.04052. The value is used as a

correction factor to the cross-section calculation and the error is treated as a systematic

uncertainty.

The value of M is calculated in each individual (pT, y) bin to check for any pT or y

dependance. The result (shown in Figure 4.19) shows that there are no obvious trends.

Consequently the correction factor is applied uniformly to all analysis bins.

4.7.12 Peaking background

To assess any contribution to the signal yields arising from background which peaks in

the invariant mass distributions, a sample of inclusive cc̄ Monte Carlo events is passed

through the same reconstruction and selection algorithms as the data and signal Monte

Carlo. Any background that passes all selection criteria and contributes towards the

fitted signal yield needs to be taken into account when extracting the final corrected

yields. The invariant mass distributions of signal and different categories of background



Prompt charm production in pp collisions at
√
s = 7 TeV 91

small bin
0 5 10 15 20 25 30 35 40

m
u

lt
ip

le
 c

a
n

d
id

a
te

 c
o

rr
e

c
ti

o
n

 f
a

c
to

r

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 4.19: Multiple candidate correction factor for each small (pT, y) bin. The global
value calculated for all data within 0 < pT < 8 GeV and 2.0 < y < 4.5 is shown with
its uncertainty as the solid blue band.

are shown in Figure 4.20. The only type of background event that appears to peak

anywhere in the distribution is classified as “low mass” background (see Section 2.2.9.1)

which appears to collect around the same location as the left tail of the signal peak. Fits

to the invariant mass distribution with and without the sources of potentially peaking

background are performed using the same signal and background PDFs as for the yield

extraction. The fit finds 2404±69 “signal” candidates before including the peaking back-

ground (consistent with the 2395 true signal events in the sample) and 2488± 97 after.

Within uncertainty the difference is consistent with the 55 low mass background events

shown in Figure 4.20(b). The fitted distributions are shown in Figure 4.21 where one can

see that the difference is largely attributable to a more prominent tail in the Crystal Ball

function which is consistent with the distribution of the low mass background events.

Studying the low mass background events in more detail reveals that only two of the

55 events are true background events. These are the decays D0→ K∗0 (892) η where

K∗0 (892)→ K−π+ and η→ π+π−γ, and D0→ K−π+η′ where η′→ ρ0γ. The other

53 are D0 → K−π+π−π+ decays where one or more photons have been emitted in the

final state, which have been wrongly identified as background. Because the efficiency of

reconstruction and selection is computed with these events classified as background, it

is an underestimate. Therefore a correction factor is applied to compensate.
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Figure 4.20: Stacked histograms for invariant mass distributions from reconstructed
inclusive cc̄ Monte Carlo data. Signal (blue), combinatorial background (violet) and
potentially peaking background (cyan) are shown in (a). The potentially peaking back-
ground is further split into categories in (b), showing low mass background (blue),
reflections (red) and partially reconstructed physics background (green).

Based on this study the correction factor is calculated using

P =
Ns +Nb

Ns
(4.16)

where Ns is the number of correctly identified signal events and Nb is the number of

signal events categorised as low mass background. Assuming that the uncertainty on

Ns,b is simply
√
Ns,b, the uncertainty on P is given by

σP =

√
Nb (Ns +Nb)

N3
s

. (4.17)

Inserting the numbers into Equations 4.16 and 4.17, one obtains a correction factor of

1.022 with a systematic uncertainty of 0.003.

4.7.13 Summary

A summary of all systematic uncertainties and correction factors can be found in Ta-

ble 4.16.
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Figure 4.21: Fits to the reconstructed D0 invariant mass distributions from inclusive cc̄
Monte Carlo data without (a) and with (b) the events classified as potentially peaking
background. The dashed green line shows the signal component of the fit.

Table 4.16: Correction factors and systematic uncertainties for the cross section mea-
surement. The correction factors are shown here as multiplicative corrections to the
cross sections. The top section of the table shows the systematics that are calculated
separately for individual (pT, y) bins. The other two sections show systematic uncer-
tainties that are applied globally.

Measurement Correction factor Systematic uncertainty (%)

Yield extraction — 1.04− 35.49
Fiducial acceptance — 0.00− 3.21
Selection/reconstruction efficiency — 0.24− 2.89
PID — 1.87− 11.99
Dalitz model — 1.17− 10.98

Multiple Candidates 0.961 2.74
MC association 0.966 0.25
Peaking background 0.978 0.31
MC variable distributions 1.302 11.46

Tracking efficiency — 12.00
Integrated luminosity — 3.50
Branching ratio — 2.47

4.8 Results

Starting with Equation 4.3 and inserting all of the correction factors one obtains

σi
(
D0
)

=
Ni

(
D0 → K−π+π−π+

)

εi,acc · εi,sel|trig · εi,PID|sel · B (D0 → K−π+π−π+) · Leff
· (1− F )

P ·M · C . (4.18)

This formula is used to calculate the cross-section in each of the (pT, y) bins which

contain a sufficient number of signal events (bins with a statistical error larger than the
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Figure 4.22: Pull distribution for the comparison between the cross-section results for
the modes D0 → K−π+ and D0 → K−π+π−π+. The blue line is a Gaussian fit to the
pulls with a mean of −0.007± 0.162 and a width of 0.929± 0.114. The χ2/Ndof of the
fit is 0.165.

measured yield are removed from the analysis). The cross-section results can be found

in Table 4.17

4.8.1 Comparison with D0 → K−π+

The cross-section results are compared with the values obtained with the higher statistics

mode D0 → K−π+ by producing a pull distribution. The difference between the two

cross-section values in each (pT, y) bin is divided by the total uncorrelated error for

that bin. The total uncorrelated error is defined as the sum under quadrature of the

statistical uncertainties from each analysis, as well as the bin-uncorrelated systematic

uncertainties (listed for the D0 → K−π+π−π+ analyses in the top section of Table 4.16).

The distribution for all of the bins in which there is a cross-section measurement in both

analyses is shown in Figure 4.22. A Gaussian fit to this distribution yields a mean of

−0.007± 0.162 and a width of 0.929± 0.114, with a χ2 per degree of freedom of 0.165,

showing excellent agreement between the two analyses. Pulls in individual (y, pT) bins

are shown in Figure 4.23.
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Figure 4.23: Two dimensional pull distribution comparing the D0 → K−π+ results
with the D0 → K−π+π−π+ in each of the (y, pT) bins.

4.8.2 Comparison with theoretical predictions

The cross-section results are compared with NLO theoretical predictions calculated with

the Generalized Mass Variable Flavour Number Scheme (GMVFNS) [57] and the Fixed

Order Next to Leading Logarithm (FONNL) approach [58, 59]. The comparisons are

shown in Figure 4.24.

In addition, the measurements are compared to different tunes of Pythia [22, 60]. These

comparisons are shown in Figure 4.25.

4.9 Conclusions

Using 15.0 nb−1 of pp collision data collected with the LHCb detector at an energy

of
√
s = 7 TeV, the production cross-section of prompt D0 mesons is measured with

D0 → K−π+π−π+ decays in two-dimensional (y, pT) bins, in the range 2.0 < y < 4.5

and 0 < pT < 8 GeV/c. In the majority of bins, the systematic uncertainty dominates.

The cross-section results are compared to those obtained using the more abundant mode

D0 → K−π+, and excellent agreement is found. This is a powerful cross check which

validates the analysis techniques and demonstrates that track reconstruction efficiencies

are well understood.
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Figure 4.24: Differential cross-section results, compared with theoretical predictions.
To display the results on one plot, the different rapidity ranges are scaled by factors of
10−m (the values of m are shown next to the rapidity ranges). The grey shaded regions
represent the theoretical uncertainties associated with the GMVFNS predictions. Data
points in the first pT bin belong to the bins 3.0 < y < 3.5 and 3.5 < y < 4.0.

Cross-section measurements can be used to test QCD predictions. The LHCb detec-

tor provides unique access to high rapidity and low pT regions, where the other LHC

experiments are unable to make measurements. Here we compare the results with theo-

retical predictions using two different NLO approaches. The predictions show reasonable

agreement with the measurements, with the data points generally lying between the two

different approaches. The results are also compared with different Monte Carlo predic-

tions, and are found to agree best with the LHCb tune of Pythia.
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Figure 4.25: Differential cross-section results, compared with different Monte Carlo
predictions. To display the results on one plot, the different rapidity ranges are scaled
by factors of 10−m (the values of m are shown next to the rapidity ranges). Data points
in the first pT bin belong to the bins 3.0 < y < 3.5 and 3.5 < y < 4.0.



Chapter 5

Search for D0 −D0 oscillations

and a measurement of the doubly

Cabibbo suppressed decay

D0→ K+π−π+π−

5.1 Introduction

Flavour mixing in neutral mesons occurs because their mass eigenstates are different

to their flavour eigenstates. Mixing in down-type neutral mesons is a well established

phenomenon, first discovered in 1956 in the neutral kaon system [61]. Since then it

has also been observed with B0 [62] and B0
s [63] mesons. The first observation of

D0 − D0 oscillations has only very recently been reported [64], using the WS decay

D0 → K+π−. In the most recent measurement by the Belle collaboration involving

the decay D0 → K+π−π+π− [65], only a time-integrated analysis is carried out. More

recently, the BABAR collaboration has used D0 → K+π−π+π− decays to measure the

time-integrated mixing rate [66], RM , using the formalism shown in Section 1.7. Here

we use the WS decay D0 → K+π−π+π− to perform a time dependent analysis with

1.0 fb−1 of data collected in 2011 with the LHCb detector at an energy
√
s = 7 TeV.

99
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Figure 5.1: Feynman diagram for the strong decay D∗+ → D0π+.

Amongst the results presented are: a first measurement of the ratio of DCS/CF decay

rates, the significance of D0 −D0 oscillations, and a measurement of RM .

5.2 Analysis strategy

Measuring the ratio of WS/RSD→ K3π decays as a function of theD0 decay time allows

the extraction of physical parameters that appear in Equation 1.77. Any deviation of the

time dependent ratio from a zeroth order polynomial would be clear indication of D0−D0

oscillations. However, the initial flavour of the D must be known in order to distinguish

between WS and RS decays. The flavour of the D is determined by reconstructing strong

decays of the excited resonant state D∗(2010)±. The charge of the pion “tags” the flavour

of the D (see Figure 5.1). Because the mass difference ∆m = mD∗(2010)+ −mD0 is so

close to the pion mass (∆m = 145.421±0.010 MeV/c2 [52]), the pion is always produced

with a low momentum and is referred to as a “slow pion”, or π±s .

Separating the sample of D→ K3π events into their four categories (WS or RS decays

from either a D0 or D0), one can construct the ratios of event yields with the same

initial state but different final states

ND0→K+π−π+π−

ND0→K−π+π−π+

=
1

R (t)
· εK+π−

εK−π+

· εRS

εWS
(5.1)

and

ND0→K−π+π−π+

ND0→K+π−π+π−
=

1

R (t)
· εK−π+

εK+π−
· εRS

εWS
(5.2)
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where R (t) is the time dependent ratio of WS to RS decay rates,
εK+π−
εK−π+

is the ratio of

the detection efficiencies of K+π− and K−π+, and εRS
εWS

accounts for any difference in

detection asymmetry due to the resonant substructure of WS and RS decays, leading to

subtle differences in the kinematics of the daughters1. The detection asymmetry ratio

can be eliminated by multiplying Equations 5.1 and 5.2, leaving

ND0→K+π−π+π−

ND0→K−π+π−π+

× ND0→K−π+π−π+

ND0→K+π−π+π−
=

1

R (t)2 ·
(
εRS

εWS

)2

. (5.3)

Deviations of εRS
εWS

from one are expected to be very small (considered in Section 5.8.4).

Therefore setting εRS
εWS

= 1 and rearranging Equation 5.3 gives

R (t) =

√
ND0→K+π−π+π−

ND0→K−π+π−π+

× ND0→K−π+π−π+

ND0→K+π−π+π−
, (5.4)

which means R (t) can be extracted from data simply by measuring the yields while

ignoring any efficiencies. Note that the D∗+−D∗− production asymmetry and π+
s −π−s

detection asymmetry do not appear in Equation 5.1 (and Equation 5.2) because the

numerator and denominator both contain the same D flavour.

This analysis is performed by measuring the WS/RS ratio, R (t), in bins of lifetime and

fitting the resulting lifetime distribution to extract the physical parameters. In addition,

the significance of D0 −D0 oscillations is measured by comparing the results of fitting

the data with two different models: a mixing hypothesis and a no-mixing hypothesis.

The lifetime bin boundaries are chosen by using a toy Monte Carlo study so that each

bin contains at least 100 WS signal events of each D flavour. The binning can be seen

in Figure 5.7, for example, and the boundaries are listed in Table 5.3.

1Even if the differences are large in the D0 rest frame, they become small in the centre-of-mass frame
because of the boost of the D0.
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5.3 Trigger

5.3.1 L0 and HLT1 requirements

All candidates are required to contain at least one track that has been selected by the

HLT1 1-track line [33]. This HLT1 line accepts events that contain at least one high-pT

track with a large IP with respect to the PV, and which pass any of the L0 triggers (i.e.

there is no specific L0 requirement).

5.3.2 HLT2 selection

All reconstructed D → K3π candidates are required to have been triggered by the

HLT2CharmHadD02HHHH trigger line. This trigger algorithm is designed to recon-

struct D∗(2010)+ → D0π+
s candidates where the D0 decays to any neutral combina-

tion of four charged kaons and pions (except for the kinematically forbidden decay

D0→ K−K+K−K+). The standard HLT2 track reconstruction requires tracks to have

pT > 500 MeV/c and |~p| > 5 GeV/c. This is very inefficient for four-body D decays,

and affects the five-dimensional Dalitz space in a non-uniform way. For this reason,

the HLT2CharmHadD02HHHH line takes advantage of a “second loop” to recover low

momentum tracks discarded by the HLT2 track reconstruction. First, every possible

two-body track combination is formed with the standard HLT2 tracks, and a set of

strict criteria are applied (for example, good track fit χ2 and high IPχ2). Then two

more tracks are added to the combination to form a reconstructed D0, followed by an-

other pion for the D∗ decay, before the final set of criteria are applied. These extra

tracks are taken either from the standard HLT2 track reconstruction or the second loop

reconstruction. The second loop tracks benefit the selection in two ways:

1. D0 candidates with one or two low momentum daughter tracks are recovered,

which increases the efficiency of the trigger and more uniformly populates the five-

dimensional Dalitz space. This has been studied in detail for the D+→ h+h−h+

HLT2 algorithm [67].



Search for D0-D0 oscillations 103

2. The addition of the pion to form the D∗ part of the decay chain is only made

possible by using the low momentum tracks from the second reconstruction loop.

This is because the mass of the D∗ is so close to the mass of the D0 that the D∗

daughter pion is always produced with a low momentum.

Table 5.1: Selection criteria used in the HLT2CharmHadD02HHHH trigger line.

Variable name two-body four-body/D∗

h± Track χ2/Ndof < 3 < 5
IP χ2 > 10.0 > 1.7
pT > 500 MeV/c > 250 MeV/c
|~p| > 5 GeV/c > 2 GeV/c∑
pT > 2 GeV/c > 2 GeV/c

D∗ ∆m — < 180 MeV/c2

πs pT — > 300 MeV/c
|~p| — > 3 GeV/c

D0 Vertex χ2/Ndof — < 20
hihj pair DoCA < 0.1 mm < 0.5 mm

FD > 3 mm —
FD χ2 > 40 > 100
IPχ2 — < 25
DIRA > 0.9995
Mass window |m−mPDG| < 65 MeV/c2 —
mcorrected < 3.5 GeV/c2 < 3.5 GeV/c2

GEC Ntracks < 110

The selection criteria are shown for both the two-body and four-body stages of the

trigger algorithm in Table 5.1. The variables used are largely the same as in Section 4.4,

with a few additions:

• the scalar sum of the daughter track transverse momenta;

• the corrected mass2, which approximately accounts for the missing daughters at

the two-body combination stage [68];

• an upper limit is placed on the measured ∆m to control the rate of the trigger, but

which is far enough from the signal peak to have no effect on the signal efficiency;

• a Global Event Cut (GEC) is placed on the number of forward tracks in the event

in order to remove high multiplicity events which take a long time to process.

2defined as mcorrected =
√
m2 + |pmiss

T |2 +
∣∣pmiss

T

∣∣, where pmiss
T is the missing momentum of the trigger

candidate, transverse to the direction of flight
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Because of the high charm production rate, this requirement is chosen to be fairly

strict to reduce the rate of the trigger, instead of using a pre-scale.

Of the events selected by the HLT1 1-track line, the HLT2 line is 68% efficient for the

offline selected D0→ K+K−π+π− Monte Carlo sample used for testing.

5.4 Event selection

A good event selection is of vital importance to provide background rejection, especially

for the WS decay mode, which has a branching fraction ∼ 300 times smaller than the

RS mode. A genetic algorithm is used to optimise the selection criteria, as described

in Section 4.4 but with a few differences. Firstly, since no selection efficiencies need to

be measured, the variable ranges are completely relaxed, allowing the algorithm more

freedom to choose a solution. Secondly, because the stripping selection (see Table 5.2)

is much tighter than in the case of the cross-section measurement, more data (both

signal and background) is required for the optimisation. Finally, a few more variables

are added because of the longer decay chain (now that the D0 is reconstructed from a

D∗ decay), and to increase discriminating power between signal and background (the

full list can be found in Table 5.2).

Optimisation is performed using a sample of 10 million Monte Carlo signal events to

model the signal distributions, while the background distributions are taken directly

from the D0 mass sidebands of ∼ 37 pb−1 of collision data collected in 2010 at an energy

√
s = 7 TeV. The sidebands begin at 35 MeV/c2 either side of the D0 mass, and are

30 MeV/c2 wide. After the stripping selection is applied, ∼ 30k signal and ∼ 120k

background candidates remain. Although there will be a small fraction of signal decays

within the data sidebands, the only effect will be a sub-optimal event selection (i.e. there

will be no bias to the analysis results, only the sensitivity will be affected).

The signal significance, signal√
signal+background

, is used as the figure of merit for the optimisa-

tion. It is vital that the numbers of signal and background events are scaled so that their

ratio matches that found in data. To find the ratio of signal and background yields, a
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two-dimensional fit to the mD0 vs. ∆m distribution is performed on a sample (∼ 10%)

of the 2010 dataset. The data are fitted with a PDF consisting of the following four

components:

• Signal: Events that peak in both the mD0 and ∆m projections.

• Random πs background: Events that peak in the mD0 projection but not

the ∆m projection. These are true D0s which have been paired with random

background pions to produce a false D∗ vertex.

• Fake D0 background: Events that peak only in the ∆m projection. These are

predominantly events where two of the D0 daughter tracks have been misidentified.

• Combinatorial background: Events which peak in neither the D0 projection

nor the ∆m projection.

The signal distribution in the mD0 projection is modelled by the sum of a Gaussian

and a Crystal Ball function, where the two functions share a common mean. A similar

function is used to model the signal distribution in the ∆m projection, except that the

Crystal Ball tail is on the opposite (right-hand) side. Background in the mD0 projection

is described by a first order polynomial, while the background in the ∆m projection is

modelled by the RooDstD0BG PDF, defined as

P (∆m) ∝





(
1− e−

∆m−∆m0
C

)(
∆m
∆m0

)A
+B

(
∆m
∆m0

− 1
)

if ∆m > ∆m0

0 if ∆m < ∆m0

(5.5)

where A, B and C are free parameters, and ∆m0 is the threshold mass, which should

be equal to the pion mass, although it is allowed to float in the fit.

The result of the fit3, with all components, is shown in Figure 5.2. The fitted yields of

signal and background are used to scale the number of signal and background events

used in the optimisation so that the ratio of signal to background is consistent with the

3Note that the fit performed here is for the purpose of the event selection optimisation. The main fit
procedure used for the signal yield extraction is detailed in Section 5.5.
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Figure 5.2: (a) mD0 and (b) ∆m projections of the two-dimensional fit to 2010 collision
data. The total PDF is represented by the solid red line. Dashed lines show the
four individual components: signal (black), random πs background (blue), fake D0

background (magenta), and combinatorial background (cyan).

ratio measured using the collision data. A further factor of 0.323% is used to scale the

number of signal events, which is the ratio of WS to RS branching fractions [52]. This

allows optimisation for the WS mode, instead of the RS mode, and forces the genetic

algorithm to choose a much tighter set of criteria. The list of selection criteria chosen

by the genetic algorithm can be found in Table 5.2.

Table 5.2: D0 → K−π+π−π+ selection criteria used in the stripping selection, and in
the genetic algorithm selection.

Variable name Stripping Genetic algorithm

h± Track χ2/Ndof < 4 —
IP χ2 > 3.0, —, —, 30 > 3.1, 6, 8, 35
pT > 350 MeV/c > 360, 450, 620, 800 MeV/c
|~p| > 3 GeV/c > 3.1, 3.2, 4.2, 4.8 GeV/c

K− log (LK/Lπ) > 0 —

π± log (LK/Lπ) < 3 —

D∗ Vertex χ2/Ndof < 20 < 8.5
DoCA < 0.22 mm < 0.15 mm
pT > 3 GeV/c —

πs pT > 120 MeV/c > 180 MeV/c

D0 Vertex χ2/Ndof < 10 < 2
hihj pair DoCA < 0.12 mm < 0.10 mm

pT > 3.0 GeV/c > 3.1 GeV/c
FD χ2 > 48 > 56
IPχ2 < 30 —
DIRA > 0.99980 > 0.99997
Mass window |m−mPDG| < 65 MeV/c2 —

In addition to the genetic algorithm, further selection requirements are imposed. Charm

mesons that originate from decays of b−hadrons, instead of the primary vertex, are likely
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Figure 5.3: Two dimensional ∆m vs. m plane for wrong sign events (a) before and
(b) after the double misidentification veto and tightened PID cuts for the 2011 dataset.
The colour axis is capped at 50 entries per bin to improve the contrast between bins
with lower populations.

to have a biasing effect on the measured time dependent ratio R (t). To minimise the

impact of this so-called “secondary background”, a tighter cut is placed on the D0

log10(IPχ2) (see Section 5.6.1 for more details).

A RS decay may be wrongly identified as a WS decay if the kaon is misidentified as

a pion and one of the pions is misidentified as a kaon (called a double mis-ID). This

is the predominant source of peaking background in the ∆m projection, and without

any suppression it overwhelms the WS signal peak. The majority of double mis-IDs

are removed by imposing tighter PID requirements on the three D0 daughter pions

(log (LK/Lπ) < 0), as well as vetoing any candidates that lie within a 24 MeV/c2 window

about the D0 mass peak when the mass hypothesis of the kaon is swapped with any of

the three pions (discussed in Section 5.6.2). A Monte Carlo study reveals that the veto

leaves only 0.68% of double- mis-IDs and is 70% efficient for signal events. Figure 5.3

shows the ∆m vs. m plane before and after the tighter PID requirements and the double

mis-ID veto. After the requirements, the double mis-ID component (which peaks in ∆m

but not mD0) is no longer visible.

Finally, for the small number of events that contain multiple signal candidates, all can-

didates in each event are discarded except the one with the lowest D0 vertex χ2/Ndof

(or the lowest D∗ vertex χ2/Ndof if the candidates share the same D0 vertex).
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Figure 5.4: Monte Carlo ∆m distributions for (a) D0 lifetimes below 0.8 ps and (b)
above 0.8 ps. Prompt charm decays are shown in red and secondary charm decays are
shown in blue.

5.5 Yield extraction

After the selection, the data is split into the four different decays in order to measure

the double ratio shown in Equation 5.4. To measure the yield of each decay mode, we

perform a one-dimensional unbinned maximum likelihood fit to the ∆m distributions,

after making a 24 MeV/c2 mass window (slightly larger than 3σ) cut about the D0 mass.

The mass window requirement removes more of the double mis-ID events, as well as a

large proportion of the combinatorial background.

To improve the resolution of the ∆m peak, the Decay Tree Fitter (DTF) algorithm is

used, which is similar to software used by the BABAR collaboration [69]. Instead of

first reconstructing the D0, followed by the D∗, the DTF algorithm takes into account

the whole decay chain and fits all of the parameters (vertex positions, momenta and

decay lengths) simultaneously, with the added constraint that the D∗ must originate

from a primary vertex. While this significantly improves the ∆m resolution, because

of the primary vertex constraint, ∆m values from secondary decays are systematically

shifted to lower values, especially at large values of measured D0 lifetime4. This so-called

“secondary shoulder” is shown in Figure 5.4 for Monte Carlo signal events.

The ∆m signal distribution is modelled by the sum of a Johnson function [70] and three

Gaussians, each with independent means and widths. The Johnson function is defined

as

4The lifetime of the D0 is always measured as if it originated from a primary vertex.
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J (∆m) ∝
exp

(
−1

2

[
γ + δ sinh−1

(
∆m−µ
σ

)])

√
1 +

(
∆m−µ
σ

)2
(5.6)

where γ, δ, µ and σ are floating parameters. The background is modelled with

B (∆m) ∝
(

(∆m−∆m0) + a (∆m−∆m0)2
)b

(5.7)

where the parameters a and b are allowed to float, but ∆m0 is fixed to the pion mass.

Peaking background is ignored in the fit, and is instead treated as a systematic uncer-

tainty (see Section 5.6.2). The signal and background PDFs can be seen in Figures 5.5

and 5.6.

Because the RS samples are completely dominated by signal events, the tails of the

signal make it difficult to fit the background component. Conversely in the WS samples,

because the WS signal peak is so small, it is difficult to constrain the tails of the signal

shape. Therefore, we fit each of the four samples simultaneously, sharing all parameters

of the signal and background PDFs, but allowing the yields of signal and background to

float. This means that the signal shape is well constrained from the RS samples, and the

WS samples help to constrain the background shape. The ratios of components within

the signal PDF (the Johnson function and the three Gaussians) are also shared between

the four different samples, so that the total signal PDF remains the same for each decay

mode.

First, the entire dataset in the range 0.5τ < t < 10.0τ is fit5, where τ = 0.4101 ps is

the mean D0 lifetime [52] (fits to the RS and WS modes can be found in Figures 5.5

and 5.6). Then the fit is repeated in each of the τ bins (shown in Appendix B). All of the

parameters of the Gaussian that peaks furthest to the right are Gaussian constrained

to their values from the fit to the total data sample (including the mean, width and

signal fraction) to improve the stability of the fits in each of the lifetime bins. The

parameters of the other two Gaussians are allowed to float to account for the variation

of the secondary shoulder. A list of measured signal yields for the four different decays

5Below 0.5τ the detector acceptance is too low, and above 10.0τ there are too few events.
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Figure 5.5: Fits for the RS decay modes D0 → K−π+π−π+ (top left), and D0 →
K+π−π+π− (top right). The total PDF is shown in solid red. The dashed lines
represent the background (cyan), the total signal component (black) and the three
individual Gaussian signal components (green). Underneath each of the fits is the
corresponding pull distribution.
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Figure 5.6: Fits for the WS decay modes D0 → K+π−π+π− (top left), and D0 →
K−π+π−π+ (top right), shown above their pull distributions.
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Figure 5.7: The measured WS/RS ratio as a function of D0 lifetime.

modes is shown in Table 5.3. The yields are used to produce the time dependent WS/RS

ratio R (t), using Equation 5.4, which is shown in Figure 5.7.

Table 5.3: Signal yields for the four different decay modes in bins of D0 lifetime. The
yields from the fit to the entire lifetime range are shown at the bottom.

t/τ range RS D0 WS D0 RS D0 WS D0

(0.50, 1.25) 164781± 426 651± 38 169832± 432 557± 37
(1.25, 1.70) 224304± 508 732± 47 233499± 520 850± 47
(1.70, 2.15) 193502± 475 801± 46 200327± 484 736± 45
(2.15, 2.60) 138839± 402 587± 40 144707± 411 530± 39
(2.60, 3.05) 93917± 334 405± 34 98334± 342 367± 32
(3.05, 3.50) 61406± 287 195± 27 64385± 295 288± 28
(3.50, 3.95) 39051± 218 148± 22 41004± 224 168± 22
(3.95, 4.40) 25121± 178 83± 17 25964± 182 121± 19
(4.40, 5.12) 22364± 164 126± 18 23271± 168 114± 18
(5.12, 10.00) 20026± 155 90± 17 20830± 158 100± 18

(0.50, 10.00) 983091± 1288 3818± 106 1021931± 1322 3825± 104

5.6 Corrections to the lifetime distribution

During the signal yield extraction, peaking background and contamination from sec-

ondary D decays are ignored, both of which are potential sources of bias. To account

for this, the lifetime distribution of the measured WS/RS ratio must be corrected. A

measurement of the expected number of peaking background events is used to correct
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the value of the ratio in each lifetime bin, while the secondary contamination correction

is applied to the PDF used to fit the lifetime dependence of the WS/RS ratio. Both

procedures are described in the following sections.

5.6.1 Secondary background

Because the D0 lifetime is computed with respect to the primary vertex, any that orig-

inate from decays of b−hadrons will have incorrectly measured lifetimes. This may

introduce a bias to the time dependent WS/RS ratio. Without any correction, the

measured ratio of WS/RS can be written as [71]

Rm (t) =
NWS (t) +NWS

B (t)

NRS (t) +NRS
B (t)

(5.8)

= R (t)

[
1 + fRSB (t)

(
RB (t)

R (t)

)]
(5.9)

= R (t) [1−∆B (t)] (5.10)

where NWS (t) and NRS (t) are the time dependent number of promptly produced WS

and RS decays, NWS
B (t) and NRS

B (t) are the number of WS and RS decays originating

from a secondary vertex, R (t) = NWS(t)
NRS(t)

is the time dependent ratio of prompt charm

decays (the value we are ultimately interested in), RB (t) =
NWS
B (t)

NRS
B (t)

is the time dependent

ratio of secondary charm decays,

fRSB (t) =
NRS
B (t)

NRS (t) +NRS
B (t)

(5.11)

is the time dependent secondary fraction in the RS sample, and

∆B (t) = fRSB (t)

(
1− RB (t)

R (t)

)
(5.12)

is the time dependent bias, arising from the secondary contamination. Calculation of

RB (t) involves measuring the secondary fraction in WS decays, which is incredibly

difficult because of the level of background. However, it is possible to bound ∆B (t) on

both sides, without RB (t).
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Because the reconstructed D0 lifetime for secondary events is always an overestimation,

at time t the value of RB (t) must be within the range of values of R (t) up to time t. It

follows that

Rmin (t) ≤ RB (t) ≤ Rmax (t) (5.13)

where Rmin (t) and Rmax (t) are the minimum and maximum values of R (t) up to time t.

Multiplying Equation 5.13 by
fRSB (t)

R(t) and rearranging gives

fRSB (t)

[
1− Rmax (t)

R (t)

]
≤ ∆B (t) ≤ fRSB (t)

[
1− Rmin (t)

R (t)

]
. (5.14)

We take the upper limit as the systematic correction to the measured ratio.

To calculate fRSB (t), we use the D0 log10(IPχ2) variable to measure the yield of prompt

and secondary events in each of the lifetime bins. The sPlot technique is used to extract

the signal log10(IPχ2) distributions from unbinned maximum likelihood fits to the ∆m

distribution of all RS events (both flavours) in each lifetime bin, before the tighter

log10(IPχ2) cut is applied. The resulting distributions are fit with two components, one

for the prompt contribution, and one for the secondary contribution.

The prompt component is modelled with a sum of two bifurcated Gaussians6, each with

a common mean. Because prompt charm mesons originate from the primary vertex (by

definition), it can be assumed that their log10(IPχ2) distribution does not depend on

the D0 lifetime. Therefore all of the bifurcated Gaussian parameters are fixed from a

fit to the log10(IPχ2) distribution in the first D0 lifetime bin (Figure 5.9(a)), in which

the secondary fraction is assumed to be negligible. This assumption is considered in

Section 5.8.1.

The secondary component is modelled as follows. A sample of B+ → D0π+ events is

reconstructed, and selected with the same criteria as for the prompt sample (except for

the removal of cut on the D0 IPχ2). An unbinned maximum likelihood fit is performed

on the B+ invariant mass distribution of the whole sample, with three components:

• a Gaussian for the signal

6A bifurcated Gaussian has a different width either side of the peak.
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Figure 5.8: Fit to the B+ → D0π+ invariant mass spectrum. The total PDF is shown
by the solid red line. The dashed lines represent: signal (black), partially reconstructed
physics background (magenta), and combinatorial background (cyan).

• an exponential function for partially reconstructed physics background (see Sec-

tion 2.2.9.1)

• a first order polynomial for combinatorial background.

The fit is shown in Figure 5.8. All of the shape parameters are then fixed, before

fitting the B+ mass distribution in each lifetime bin, again using the sPlot technique to

extract the signal D0 log10(IPχ2) distributions. A single bifurcated Gaussian is used

to fit the resulting secondary log10(IPχ2) distributions. Unlike the prompt log10(IPχ2)

distribution, we expect the secondary distribution to shift to the right in the high D0

lifetime bins.

Finally, using the prompt log10(IPχ2) shape (fixed from the first lifetime bin), and the

secondary shapes (fixed from the fits to the B+ → D0π+ data), the secondary fraction

(fRSB ) can be measured in each lifetime bin by floating the yields of the prompt and

secondary components, using Equation 5.11, with an uncertainty

σB =
1

(
NRS +NRS

B

)2
√(

NRS
B

)2
σ2
NRS + (NRS)2 σ2

NRS
B

. (5.15)
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Figure 5.9: An example of the log10(IPχ2) fits used to extract the fraction of secondary
decays in lifetime bin 3.50 < t/τ < 3.95. (a) shows a fit to data in the first lifetime
bin, which is used to model the prompt shape; (b) is a fit to B+ → D0π+ events in the
bin 3.50 < t/τ < 3.95, used as the secondary shape; and (c) is the fit to measure the
secondary fraction in the RS D∗ sample, using the fit parameters from (a) and (b), but
allowing the prompt and secondary yields to float.

The fit to the log10(IPχ2) distribution in the first lifetime bin of the D∗ sample is shown

in Figure 5.9(a), followed by an example fit to the log10(IPχ2) distribution from the

B+ → D0π+ sample in one of the higher lifetime bins (3.50 < t/τ < 3.95). These two

fits provide the shape parameters for a fit to the log10(IPχ2) distribution in the range

3.50 < t/τ < 3.95 (see Figure 5.9(c)). The resulting secondary fractions for all lifetime

bins are shown in Figure 5.10(a). All fits in bins of lifetime including the B+ mass fits,

the secondary log10(IPχ2) fits, and the log10(IPχ2) fits for the D∗ sample, can be found

in Appendix B.

In order to minimise the secondary correction, ∆B, a tighter cut is placed on the D0

log10(IPχ2) variable to remove a significant fraction of secondary events. However, cut-

ting too tightly will result in the loss of a large fraction of prompt events too, increasing

the fractional statistical uncertainty. To find the optimum value, the total fractional
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Figure 5.10: Measured secondary fractions (a) before, and (b) after the tighter
log10(IPχ2) cut.
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Figure 5.11: The total uncertainty arising from the statistical uncertainty due to the
number of WS events, and the systematic uncertainty due to secondary contamination,
as a function of a cut on the D0 log10(IPχ2). The units on the vertical axis arbitrary.

uncertainty is estimated for a large range of possible cut values, for the highest lifetime

bin, considering only the secondary systematic and assuming the statistical uncertainty

is dominated by the number of WS events. The resulting distribution, shown in Fig-

ure 5.11, reveals that the cut should be tightened to D0 log10(IPχ2) < 1.0. The tighter

cut is applied before the final yields are extracted.

The final values of fRSB , shown in Figure 5.10(b), are used to modify the χ2 of the

lifetime fit (see Section 5.7 for details).
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Figure 5.12: Normalised (a) mD0 and (b) ∆m distributions of Monte Carlo signal
(black) and double mis-ID events (green). The double mis-ID distribution is scaled by
a factor of ten in the mD0 distribution so that it is more easily visible.

5.6.2 Peaking background

The dominant source of peaking background in the ∆m distribution of WS events arises

from RS events in which two of the D0 daughters are misidentified. If the kaon is mis-

taken for a pion, and one of the pions of opposite charge is misidentified as a kaon, a RS

decay will be incorrectly reconstructed as a WS candidate, and vice versa. Although the

mis-ID rate is low, and consequently the double mis-ID is even lower, the RS branching

fraction is two orders of magnitude higher than the WS branching fraction, so double

mis-ID background cannot be ignored when measuring the WS signal yield. The back-

ground has an almost flat distribution in mD0 but peaks in ∆m (see Figure 5.12), which

is the variable used in the yield extraction.

The double mis-ID distributions are simulated using a sample of Monte Carlo D0 →

K−π+π−π+ signal events. First the kaon energy is recalculated under the pion mass

hypothesis, then the energy of one of the pions is recomputed under the kaon mass

hypothesis, and finally the invariant mass of the D0 is determined. This is shown

over a much wider mass range in Figure 5.13(b). To study the effect of single mis-ID

background, D0→ K+K−π+π− and D0→ π+π−π+π− Monte Carlo signal decays are

used. In each case one daughter track mass hypothesis is changed before recalculating

the D0 invariant mass, in order to simulate a single mis-ID. The resulting distributions

are shown in Figure 5.13(a).

To minimise the double mis-ID background, three steps are taken:
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Figure 5.13: Normalised invariant mass distributions, shown over a wide mass range,
when misidentifying (a) two daughter tracks, and (b) one daughter track. The
green line shows the effect of swapping the hypothesis of a kaon and a pion, using
D0 → K−π+π−π+ Monte Carlo signal decays. The red and blue lines represent
D0 → K+K−π+π− and D0 → π+π−π+π− Monte Carlo signal decays that are re-
constructed as D0 → K−π+π−π+ decays. In both plots the D0 → K−π+π−π+ signal
distribution is shown in black, and the mis-ID distributions are scaled by a factor of
ten so they are more easily visible.

1. PID requirements on each of the three D0 daughter pions is made more strict.

This reduces the probability of a pion being misidentified as a kaon, and therefore

reduces the double mis-ID probability.

2. D0 candidates are deliberately doubly misidentified and vetoed if their recon-

structed D0 mass lies within a 24 MeV/c2 window of the nominal D0 mass. By

swapping the mass hypotheses of a kaon and a pion, signal events become very

broadly distributed in D0 invariant mass, whereas double mis-ID background

events peak very sharply (which is exactly opposite to how they are both dis-

tributed before the mass hypothesis switch). Therefore, the veto is extremely

efficient at removing double mis-ID background while retaining the majority of

signal events. The efficiencies are measured as 0.68% for the background and 70%

for the signal, using Monte Carlo events.

3. A tight D0 mass window of ±24 MeV/c2 (slightly larger than 3σ) is imposed before

the yields are extracted from the fits to the ∆m distributions. This removes

approximately 60% of the remaining double mis-ID background, and all of the

single mis-ID background, which peaks far from the mass of the D0.
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Figure 5.14: (a) A fit to determine the number of mis-ID events in the second bin of
the WS sample. (b) The expected number of mis-ID events remaining in each lifetime
bin, after all of the selection criteria.

Although the majority of double mis-ID events are removed, a small fraction remain

in the WS sample (the remaining fraction in the RS sample from doubly misidentified

WS decays can be safely neglected). Because they are ignored in the ∆m fits, they are

accounted for by applying a correction factor to the measured number of WS events in

each lifetime bin.

To measure the expected number of double mis-ID events, we use events (after the

tightened PID criteria are applied) from the right-hand side of the WS D0 mass dis-

tribution (mD0 > 1900.0 MeV/c2). This is far enough from the D0 peak to contain a

negligible number of signal events. The ∆m distribution for these events is fit with

the background PDF (Equation 5.7), while excluding the data in the peak region,

143.0 < ∆m < 149.0 MeV/c2, from the fit. An example fit is shown in Figure 5.14(a),

where the peaking background is much wider than the signal peak, as expected (compare

to Figure 5.6). The number of events is then calculated by subtracting the integral of

the PDF from the number of entries in the histogram. This number is multiplied by

0.68% (the veto background rejection efficiency), and scaled to take account of the mass

window cut, assuming the mis-IDs are flatly distributed in the mD0 distribution. The

process is repeated in each of the lifetime bins.

The number of expected double mis-ID events in each of the lifetime bins is shown in

Figure 5.14(b). This number is used to correct the ratio of WS/RS events in each bin

using
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NWS

NRS
=
NWS
m

NRS
− NmisID

NRS
(5.16)

where NWS
m is the number of measured WS events, and NmisID is the number of expected

mis-ID events remaining after all selection criteria. The uncertainty is propagated from

the uncertainty on the integral of the PDF, and is added in quadrature with the statistical

uncertainty. The corrections are found to be between 0.2% and 0.8%.

5.7 Fitting the lifetime distribution

Once the WS/RS ratio is measured in each of the ten lifetime bins, a fit to the lifetime

distribution is performed by minimising the following χ2

χ2 =
∑

i

(
ri −R (ti) [1−∆B (ti)]

σi

)2

+ χ2
B + χ2

x,y (5.17)

where ri and σi are the measured value and uncertainty of the mis-ID corrected WS/RS

ratio in lifetime bin i, and ∆B is the secondary background correction factor, given by

the upper limit of Equation 5.14. The penalty term χ2
B comes from constraining the

measured secondary fractions within their uncertainties,

χ2
B =

∑

i

(
fRSB (ti)− f iB

σB (ti)

)2

(5.18)

where fRSB (ti) is the RS secondary fraction measured in lifetime bin i, with an un-

certainty σB, and f iB are fit parameters. The second penalty term, χ2
x,y, arises from

constraining the mixing parameters x and y to their PDG values [72], and is given by

χ2
x,y =

(
∆x ∆y

)



1
σ2
x

ρx,y
σxσy

ρx,y
σxσy

1
σ2
y







∆x

∆y


 (5.19)

where

∆x = x− xPDG , ∆y = y − yPDG (5.20)
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Figure 5.15: Acceptance as a function of D0 lifetime, measured with RS events. The
vertical scale is not important because it cancels in the expression for R (ti).

and

ρ (x, y) =
cov (x, y)

σxσy
. (5.21)

The uncertainties and correlations are taken from the Heavy Flavour Averaging Group

(HFAG) [73].

R (ti) is the WS/RS ratio integrated over lifetime bin i. Because the decay time accep-

tance is not flat, and we have to assume that the D0 lifetime distributions are different

for WS and RS decays, R (ti) is given by the expression

R (ti) =

∫
ti
R′ (t)A (t) e−Γtdt∫
ti
A (t) e−Γtdt

. (5.22)

Here Γ = 1/τ , A (t) is the decay time acceptance, and R′ (t) is given by

R′ (t) = r2
D + rDbΓt+

x2 + y2

4
(Γt)2 (5.23)

where rD and b are allowed to float in the fit. The decay time acceptance is measured

by dividing the RS lifetime distribution by e−Γt, and is shown in Figure 5.15. Note

that the vertical scale is not important because it is a constant term that cancels in

Equation 5.22.
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In total, there are 14 fit parameters: rD, b, x, y, and the ten secondary fractions, f iB.

Only rD and b are allowed to float fully, while x, y, and f iB are Gaussian constrained.

To measure the D0-D0 mixing significance, the WS/RS lifetime distribution is fit with

two different functions. Each fit minimises the same χ2 as in Equation 5.17, but with

the removal of the penalty terms for the mixing parameters x and y, and with different

forms of R′ (t). For the no-mixing hypothesis, the form is

R′ (t) = A (5.24)

while for the mixing hypothesis, it takes the form

R′ (t) = A+BΓt+ C (Γt)2 . (5.25)

5.8 Systematic uncertainties

Because of the efficiency cancellations in the double ratio (Equation 5.4), there are

very few sources of systematic uncertainty. We have identified three potential sources of

uncertainty which may affect the time dependence of the WS/RS ratio. These are uncer-

tainties that may arise from the corrections described in Section 5.6, and an uncertainty

from the choice of signal PDF. In addition, we consider two sources of uncertainty that

will have an effect on the measurement of the branching fraction of D0 → K+π−π+π−

via the DCS amplitude. These are differences between the resonant substructure of DCS

and CF decays, and the uncertainty on the branching fraction of D0 → K−π+π−π+.

5.8.1 Secondary background

When measuring the fraction of secondary events in each of the bins, the prompt compo-

nent of the log10(IPχ2) distribution is assumed to be independent of the D0 lifetime. To

test this assumption, the fits are repeated while floating the prompt component shape

parameters. The resulting secondary fractions are compared to those measured with
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Figure 5.16: Secondary background fractions measured with (red) and without (black)
floating the prompt component shape parameters.

those measured using a constant prompt shape in Figure 5.16. Although the agreement

between the two sets of results is good, the fractions measured using floating prompt

shape parameters are systematically lower. This may be expected because the prompt

shape is free to overlap more with the secondary shape, and reduce the size of the

secondary component.

To calculate the size of the uncertainty arising from secondary background, the fit to

the WS/RS lifetime distribution is performed both with and without the secondary

background correction. The difference between the fit results are used as the systematic

uncertainties, which are found to be 0.05% of the measured value of rD, and 2.74% of

the value of b. Note that because the maximum value of ∆B is used in the correction

factor, the systematic uncertainty is conservative.

5.8.2 Peaking background

To asses the systematic uncertainties for rD and b, the fit to the lifetime distribution is

performed both with and without the correction for peaking background. The differences

between the two results are used as the systematic uncertainties, and are measured as

0.21% of rD, and 1.52% of b.



Search for D0-D0 oscillations 124

5.8.3 Signal model

Because the PDF used to describe the signal component of the ∆m fit is fairly arbi-

trary, we test the robustness of the signal yield extraction by removing one of the three

Gaussians from the model and repeating the analysis to extract the parameters rD and

b. The differences between the fit results are 0.56% for rD, and 66.0% for b.

5.8.4 Dalitz model

Because the amplitude model of the DCS decayD0 → K+π−π+π− is presently unknown,

we cannot assume that the distribution of events over the five-dimensional phase space

is the same for CF and DCS events. Therefore, a systematic uncertainty is calculated

for the y−intercept (r2
D) of the R (t) distribution. Unlike the secondary contamination,

the size of the systematic is expected to decrease as a function of D0 lifetime. This is

because, at later times the WS events are more likely to have come from an oscillation,

followed by a CF decay. Therefore, at later times, the phase space distributions of RS

and WS events will become more similar.

To calculate the uncertainty, the Mark III Dalitz model [48] is used, along with ten

random variations of it. For each of the variations, the amplitudes of the resonances are

multiplied by a uniformly generated random number between 0 and 2, and their phases

are chosen at random between 0 and 2π. The ratio

εM
gen

εv
gen

· ε
M
sel

εv
sel

(5.26)

is measured for each of the ten random variations, where εM
gen and εM

sel are the generator

level and selection efficiencies measured using the Mark III model, and εv
gen and εv

gen are

the efficiencies measured using one of the random variations of the model.

The standard deviation of the ten values is 1.4%, which is used as a systematic un-

certainty on r2
D, and subsequently, the DCS branching fraction. The large variation of

randomly generated models means that the systematic uncertainty is conservative.
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Table 5.4: Summary of systematic uncertainties, shown as percentages. The statistical
uncertainty is shown for comparison.

Source of uncertainty rD r2
D b

Secondary correction 0.05 0.10 2.74
Peaking background 0.21 0.43 1.52
∆m fit model 0.56 1.12 66.0
Dalitz model — 1.43 —

Total 0.60 1.90 66.0

Statistical 2.54 5.08 81.5

Table 5.5: Results of the fit to the time dependent WS/RS ratio, including all correc-
tions.

Parameter result (%)

rD 5.842± 0.149
b −0.1800± 0.1467
x 0.6180± 0.1868
y 0.7444± 0.1191

5.8.5 Branching fraction

Converting the measured value of r2
D into a DCS branching fraction requires mul-

tiplication by the CF branching fraction. The value is taken from the PDG to be

B(D0 → K−π+π−π+) =
(
8.07+0.21

−0.19

)
% [52]. The average of the asymmetric errors gives

an uncertainty of 2.5%.

5.8.6 Summary

A summary of the systematic uncertainties can be found in Table 5.5. The branching

fraction uncertainty of 2.5% is quoted separately to the other sources of systematic

uncertainty.

5.9 Results

The fit to the time dependent WS/RS ratio using Equation 5.23 in the χ2 is shown in

Figure 5.17(a). Results are shown in Table 5.4, and the correlation matrix can be found
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Table 5.6: Correlations between the fit parameters for the WS/RS lifetime distribution
fit.

rD b x y

rD 1.000 0.895 0.204 0.152
b 0.895 1.000 0.370 0.276
x 0.204 0.370 1.000 −0.055
y 0.152 0.276 −0.055 1.000
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Figure 5.17: (a) The fit to the WS/RS ratio as a function of D0 lifetime, performed
to extract the parameters rD and b. (b) The data is fit with the mixing hypothesis
(solid red line), and the no-mixing hypothesis (dashed red line) to measure the mixing
significance.

in Table 5.6. Squaring rD gives the ratio of DCS to CF decay rates:

r2
D = (0.341± 0.017± 0.006) %

where the first uncertainty is statistical and the second is systematic. This is a previously

unmeasured quantity, and can be used to calculate the branching fraction of D0 →

K+π−π+π− via DCS decays:

B
(
D0 → K+π−π+π−

)
via DCS = (2.75± 0.14± 0.05± 0.07)× 10−4

where the first uncertainty is statistical, the second is systematic, and the third is from

the uncertainty on the branching fraction of the CF decay D0 → K−π+π−π+. Including

the systematic uncertainty, the value of b = (−0.180± 0.147± 0.119) %. Discussion of

this parameter is left until Section 5.10.

To measure the significance of D0−D0 oscillations, the parameters x and y are removed

from the χ2 and Equation 5.23 is replaced by either Equation 5.24 for the no-mixing
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hypothesis, or Equation 5.25 for the mixing hypothesis. Both fits are shown in Fig-

ure 5.17(b). The χ2/Ndof is 6.9/9 for the mixing hypothesis and 17.5/7 for the no-mixing

hypothesis. This corresponds to a p-value of 0.0052 for the no-mixing hypothesis, which

means that it is excluded at 2.8 standard deviations. The parameter C is often referred

to as the mixing rate (but divided by two), RM , which is measured as

RM = (0.04± 0.88)× 10−4.

5.10 Conclusions

To summarise, with 1.0 fb−1 of data collected by the LHCb detector in 2011, we measure

the ratio of DCS/CF decay rates as

r2
D = (0.341± 0.017 (stat)± 0.006 (syst)) %

and when combining with the world average value of B(D0 → K−π+π−π+) =
(
8.07+0.21

−0.19

)
% [52],

this gives

B
(
D0 → K+π−π+π−

)
via DCS = (2.75± 0.14 (stat)± 0.05 (syst)± 0.07 (B))× 10−4.

For each measurement the uncertainty is dominated by its statistical component. The

analysis is systematically very robust because of the efficiency cancellations in the double

ratio (Equation 5.4). Any remaining systematics have been calculated in a conservative

way. When the analysis is updated with the full 2012 data set, the statistical and

systematic uncertainties will be comparable, so a much more detailed treatment will be

required.

The parameter b appears in the first order term in the time dependent WS/RS rate

equation. Referring back to Equation 1.77 reveals that

b = RDy
′
+ with y′+ = y cos (δD)− x sin (δD) . (5.27)
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Although it is possible to extract a constraint for the coherence factor, RD, and average

strong phase, δD, significant further work is required. This is because the coherence fac-

tor and strong phase are only meaningful when the efficiency over the five-dimensional

phase space is flat. Therefore, events need to be re-weighted in a way that compensates

for the Dalitz space bias introduced in the many stages of event selection. Only then

can a combination be made with the most recent result, measured by the CLEO collab-

oration [74]. Furthermore, re-weighting events to flatten the Dalitz space efficiency will

remove the need for a Dalitz model systematic. These parameters will provide valuable

constraints when measuring the CP violating phase γ using B−→ DK− decays.

Using WS D0 → K+π−π+π− decays, the no-mixing hypothesis is excluded at 2.8

Gaussian standard deviations. In light of the recent D0 → K+π− measurement [64],

this is expected to increase significantly when the full 2012 data set is added, which

will increase the sample size by a factor of almost four. The mixing rate is mea-

sured as RM = (0.04± 0.88) × 10−4. This result is consistent with the most recent

D0 → K+π−π+π− measurement reported by the BABAR collaboration [66], RM =
(
1.9+1.6
−1.5 (stat)± 0.2 (syst)

)
× 10−4, although it suggests a smaller value. The measure-

ment is also consistent with the world average [73] of RM = (0.476± 0.152) × 10−4,

which combines results from a wide range of different D0 decay modes. A comparison

of these results is shown in Figure 5.18
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Figure 5.18: A comparison of RM results from BABAR and LHCb, both using the decay
mode D0 → K+π−π+π−. The world average combines results from many different
decay modes, and does not include the two D0 → K+π−π+π− results shown here.



Chapter 6

Conclusions

Flavour physics provides a mechanism for precision tests of the SM with high sensitivity

to physics beyond the SM, including mass scales beyond those directly accessible via

production at the LHC. Neutral charm mesons are up-type neutral mesons, and could

be affected by new physics in a different way to the neutral B and K meson systems.

Furthermore, because B mesons decay predominantly to charm, the study of charm

mesons provides vital input for the study of CP violation in B decays.

The LHCb experiment has been designed to exploit the copious production of heavy

flavour hadrons provided by the LHC. In this thesis, an optimisation of the LHCb RICH

optical alignment is presented, which is vital for obtaining large, clean data samples

needed for precision flavour physics. The RICH detector is particularly important for

distinguishing between kaons and pions, which is essential for separating the DCS decay

D0 → K+π−π+π− from the CF mode D0 → K−π+π−π+, which has a branching

fraction ∼ 300 times larger, as measured in this thesis. Using a time-dependent analysis,

charm meson mixing is confirmed at 2.8σ, and a mechanism is set up for measuring the

coherence factor and average strong phase between the decays D0→ K±π∓π+π−, which

are key inputs for a precision measurement of the CKM angle γ usingB−→ DK− decays.

The mode D0 → K−π+π−π+ is also used to measure the D0 production cross section

at LHC energies. Using the LHCb detector allows measurements up to a rapidity of 4.5,

and down to pT < 1 GeV/c; ranges that are not accessible to the other LHC experiments.

130
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Alignment of the RICH mirrors plays a crucial role in their Cherenkov angle resolution,

which has a significant effect on the PID performance. The alignment procedure has been

used on data collected in 2011 to improve the resolution from 13.96 mrad to 1.60 mrad

in RICH1, and from 0.73 mrad to 0.63 mrad in RICH2. The resolutions are now very

close to their Monte Carlo predicted limits. An event selection has been used to select

events that populate the outer regions of the RICH mirror planes, in order to reduce

the number of events required for the alignment procedure. A reduction factor of ∼ 50

is achieved.

Production of promptly produced D0 mesons is measured using 15.0 nb−1 of pp collisions

with a centre-of-mass energy of
√
s = 7 TeV, collected by the LHCb detector in 2010. The

cross-section is measured in two-dimensional bins of (y, pT) in the range 2.0 < y < 4.5

and 0 < pT < 8 GeV/c. The decay mode D0 → K−π+π−π+ is used, and results are

compared with those obtained using the much more abundant mode D0 → K−π+.

Excellent agreement is found, which gives confidence in the analysis techniques used,

and demonstrates a well understood track reconstruction efficiency. The results are also

compared with NLO QCD predictions, which are found to have reasonable agreement.

Now that data has been collected with a higher energy of
√
s = 8 TeV, there is the

potential for new cross-section measurements, which would provide a further testing

ground for QCD predictions.

With 1.0 fb−1 of data collected in 2011, a time dependent analysis is performed using

∼ 7500 wrong sign D→ K3π decays and ∼ 2 M right sign D→ K3π decays. The ratio

of DCS/CF decay rates is measured as

r2
D = (0.341± 0.017 (stat)± 0.006 (syst)) %

which is a previously unmeasured quantity. When combining with the world average

value of B(D0 → K−π+π−π+) =
(
8.07+0.21

−0.19

)
% [52], this gives

B
(
D0 → K+π−π+π−

)
via DCS = (2.75± 0.14 (stat)± 0.05 (syst)± 0.07 (B))× 10−4.

Both measurements are limited by their statistical uncertainties. A future analysis using



Conclusions 132

both the 2011 and 2012 datasets is expected to increase the sample size by a factor of

almost four.

In addition, the time dependent ratio of wrong sign to right sign decays is used to

measure the significance of D0 −D0 oscillations. The no-mixing hypothesis is excluded

at 2.8 Gaussian standard deviations, and using the mixing hypothesis the mixing rate

is measured as RM = (0.04± 0.88)× 10−4, which is independent of the D0 decay mode.

This is consistent with the world average [73] of RM = (0.476± 0.152)×10−4. Updating

the analysis with the 2012 dataset is an exciting prospect, especially in light of the recent

9.1σ observation of D0 −D0 oscillations using D0→ K+π− decays [64].



Appendix A

Charm cross-section fits in (y, pT)

bins

Contained within this Appendix are the projections of fits used to extract the yields for

the measurement of the prompt charm production-cross section (see Chapter 4). The fits

to data within each (y, pT) bin are grouped with their “big bins” (see Figure 4.9). For

each bin the fits to Monte Carlo prompt and secondary log10(IPχ2) distributions, along

with the fit to the log10(IPχ2) distribution of data taken from the D0 mass sideband

are shown. These fits are used to set initial parameter values (some of which are then

fixed) for the two-dimensional fit to the D0 mass - log10(IPχ2) plane. Projections of

the two-dimensional fit are also shown.
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Figure A.1: Fits to the log10(IPχ2) distributions of (a) prompt and secondary Monte
Carlo, and (b) data mass sidebands; and the (c) mass, and (d) log10(IPχ2) projections
of the two-dimensional fit to data, in the bin 2.5 < y < 3.0 and 1 < pT < 2 GeV/c. In (a)
the solid red line is a fit to the prompt Monte Carlo (circular markers), and the dashed
red line is a fit to the secondary Monte Carlo (square markers), which has been scaled
by a factor of five. In (c) the red line represents the prompt signal and secondary
background components, and the blue dashed line is the combinatorial background
component. In (d) the prompt signal component is a solid red line, the secondary
background component is a red dashed line and the combinatorial background is shown
as a blue dashed line.
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Figure A.2: Fits to the log10(IPχ2) distributions of (a) prompt (red solid line and
circular markers) and secondary Monte Carlo (red dashed line and square markers,
scaled by a factor of five), and (b) data mass sidebands for bins between 3.0 < y < 4.0
and 0 < pT < 2 GeV/c.
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Figure A.3: The (a) mass, and (b) log10(IPχ2) projections of the two-dimensional fit
to data for bins between 3.0 < y < 4.0 and 0 < pT < 2 GeV/c. The solid red line in
(a) represents the contribution from D0 signal decays (either prompt or secondary),
combinatorial background is shown in dashed blue in both (a) and (b), and the prompt
and secondary D0 log10(IPχ2) contributions are shown in (b) by red solid and dashed
lines respectively.
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Figure A.4: Fits to the log10(IPχ2) distributions of (a) prompt (red solid line and
circular markers) and secondary Monte Carlo (red dashed line and square markers,
scaled by a factor of five), and (b) data mass sidebands for bins between 2.0 < y < 3.0
and 2 < pT < 4 GeV/c.
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Figure A.5: The (a) mass, and (b) log10(IPχ2) projections of the two-dimensional fit
to data for bins between 2.0 < y < 3.0 and 2 < pT < 4 GeV/c. The solid red line in
(a) represents the contribution from D0 signal decays (either prompt or secondary),
combinatorial background is shown in dashed blue in both (a) and (b), and the prompt
and secondary D0 log10(IPχ2) contributions are shown in (b) by red solid and dashed
lines respectively.
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Figure A.6: Fits to the log10(IPχ2) distributions of (a) prompt (red solid line and
circular markers) and secondary Monte Carlo (red dashed line and square markers,
scaled by a factor of five), and (b) data mass sidebands for bins between 3.0 < y < 3.5
and 2 < pT < 4 GeV/c.
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Figure A.7: The (a) mass, and (b) log10(IPχ2) projections of the two-dimensional fit
to data for bins between 3.0 < y < 3.5 and 2 < pT < 4 GeV/c. The solid red line in
(a) represents the contribution from D0 signal decays (either prompt or secondary),
combinatorial background is shown in dashed blue in both (a) and (b), and the prompt
and secondary D0 log10(IPχ2) contributions are shown in (b) by red solid and dashed
lines respectively.
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Figure A.8: Fits to the log10(IPχ2) distributions of (a) prompt (red solid line and
circular markers) and secondary Monte Carlo (red dashed line and square markers,
scaled by a factor of five), and (b) data mass sidebands for bins between 3.5 < y < 4.5
and 2 < pT < 4 GeV/c.
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Figure A.9: The (a) mass, and (b) log10(IPχ2) projections of the two-dimensional fit
to data for bins between 3.5 < y < 4.5 and 2 < pT < 4 GeV/c. The solid red line in
(a) represents the contribution from D0 signal decays (either prompt or secondary),
combinatorial background is shown in dashed blue in both (a) and (b), and the prompt
and secondary D0 log10(IPχ2) contributions are shown in (b) by red solid and dashed
lines respectively.
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Figure A.10: Fits to the log10(IPχ2) distributions of (a) prompt (red solid line and
circular markers) and secondary Monte Carlo (red dashed line and square markers,
scaled by a factor of five), and (b) data mass sidebands for bins between 2.0 < y < 3.0
and 4 < pT < 8 GeV/c.
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Figure A.11: The (a) mass, and (b) log10(IPχ2) projections of the two-dimensional fit
to data for bins between 2.0 < y < 3.0 and 4 < pT < 8 GeV/c. The solid red line in
(a) represents the contribution from D0 signal decays (either prompt or secondary),
combinatorial background is shown in dashed blue in both (a) and (b), and the prompt
and secondary D0 log10(IPχ2) contributions are shown in (b) by red solid and dashed
lines respectively.
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Figure A.12: Fits to the log10(IPχ2) distributions of (a) prompt (red solid line and
circular markers) and secondary Monte Carlo (red dashed line and square markers,
scaled by a factor of five), and (b) data mass sidebands for bins between 3.0 < y < 3.5
and 4 < pT < 8 GeV/c.

)2 (MeV/c
πππKm

1.8 1.85 1.9

3
10×

 )
2

E
v
e

n
ts

 /
 (

 3
 M

e
V

/c

0

10

20

30

40

50

60

)2 (MeV/c
πππKm

1.8 1.85 1.9

3
10×

 )
2

E
v
e

n
ts

 /
 (

 3
 M

e
V

/c

0

5

10

15

20

25

30

35

40

45

)2 (MeV/c
πππKm

1.8 1.85 1.9

3
10×

 )
2

E
v
e

n
ts

 /
 (

 3
 M

e
V

/c

0

5

10

15

20

25

30

)2 (MeV/c
πππKm

1.8 1.85 1.9

3
10×

 )
2

E
v
e

n
ts

 /
 (

 3
 M

e
V

/c

0

2

4

6

8

10

12

14

16

18

(a)

)2χ(IP
10

log
­2 0 2 4

E
v
e

n
ts

 /
 (

 0
.1

 )

0

5

10

15

20

25

30

35

40

45

)2χ(IP
10

log
­2 0 2 4

E
v
e

n
ts

 /
 (

 0
.1

 )

0

5

10

15

20

25

30

)2χ(IP
10

log
­2 0 2 4

E
v
e

n
ts

 /
 (

 0
.1

 )

0

2

4

6

8

10

12

14

16

18

)2χ(IP
10

log
­2 0 2 4

E
v
e

n
ts

 /
 (

 0
.1

 )

0

2

4

6

8

10

12

14

16

(b)

Figure A.13: The (a) mass, and (b) log10(IPχ2) projections of the two-dimensional fit
to data for bins between 3.0 < y < 3.5 and 4 < pT < 8 GeV/c. The solid red line in
(a) represents the contribution from D0 signal decays (either prompt or secondary),
combinatorial background is shown in dashed blue in both (a) and (b), and the prompt
and secondary D0 log10(IPχ2) contributions are shown in (b) by red solid and dashed
lines respectively.
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Figure A.14: Fits to the log10(IPχ2) distributions of (a) prompt (red solid line and
circular markers) and secondary Monte Carlo (red dashed line and square markers,
scaled by a factor of five), and (b) data mass sidebands for bins between 3.5 < y < 4.5
and 4 < pT < 8 GeV/c.
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Figure A.15: The (a) mass, and (b) log10(IPχ2) projections of the two-dimensional fit
to data for bins between 3.5 < y < 4.5 and 4 < pT < 8 GeV/c. The solid red line in
(a) represents the contribution from D0 signal decays (either prompt or secondary),
combinatorial background is shown in dashed blue in both (a) and (b), and the prompt
and secondary D0 log10(IPχ2) contributions are shown in (b) by red solid and dashed
lines respectively.



Appendix B

Mass and log10(IPχ2) fits in bins

of D0 lifetime

This Appendix contains material relevant to Chapter 5. Each of the Figures contains

plots in different bins of D0 lifetime. They are arranged so that the lifetime increases

form left to right and from top to bottom, as one would expect.

Figures B.1 – B.8 show the fits to ∆m distributions used to extract the yields of the

four different decay modes, along with their pull distributions.

Figure B.9 shows fits to the B+ invariant mass in individual lifetime bins (the pulls are

in Figure B.10). These are use to extract signal distributions using the sPlot technique.

The resulting log10(IPχ2) distributions are shown in Figure B.11, each of which is fit

with a bifurcated Gaussian.

Figure B.12 shows the log10(IPχ2) distributions obtained from using the sPlot technique

on the D∗ sample. The prompt shape is modelled by the sum of two bifurcated Gaussians

with common means, and is fixed from a fit to the first lifetime bin, assuming a 0%

secondary fraction. Using this shape, and the secondary shapes (fixed after the fits to

the B+ → D0π+ sample), the secondary fraction in each lifetime bin is measured by

floating the yields of the prompt and secondary components.
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Figure B.1: RS D0 fits in bins of lifetime. The dashed lines represent the signal (black)
and background (cyan) components.
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Figure B.2: RS D0 pulls distributions in lifetime bins.
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Figure B.3: WS D0 fits in lifetime bins. The dashed lines represent the signal (black)
and background (cyan) components.
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Figure B.4: WS D0 pulls in lifetime bins.
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Figure B.5: RS D0 fits in lifetime bins. The dashed lines represent the signal (black)
and background (cyan) components.
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Figure B.6: RS D0 pulls in lifetime bins.
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Figure B.7: WS D0 fits in lifetime bins. The dashed lines represent the signal (black)
and background (cyan) components.
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Figure B.8: WS D0 pulls in lifetime bins.
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Figure B.9: Fits to the B+ mass in lifetime bins. The dashed lines represent sig-
nal (black), partially reconstructed physics background (magenta), and combinatorial
background (cyan) components.
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Figure B.10: Pulls for the B+ fits in bins of D0 lifetime.
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Figure B.11: Secondary log10(IPχ2) distributions, each fit with a bifurcated Gaussian.
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Figure B.12: Fits to the log10(IPχ2) distributions from the D∗ sample in bins of D0

lifetime. The solid red line shows the total PDF. The dashed lines show the prompt
(red) and secondary (blue) components.



Bibliography

[1] C. Fitzpatrick, A measurement of the CP -violating phase φs in the decay

B0
s → J/ψφ. PhD thesis, Edinburgh University, Edinburgh, 2012.

[2] Particle Data Group Collaboration, C. Amsler et al., “Particle physics

summary tables,” Phys. Lett. B667 (2008) 31 – 100.

[3] CMS Collaboration, S. Chatrchyan et al., “Observation of a new boson at a mass

of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B716 (2012)

30–61, arXiv:1207.7235 [hep-ex].

[4] ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the

search for the Standard Model Higgs boson with the ATLAS detector at the

LHC,” Phys. Lett. B716 (2012) 1 – 29, arXiv:1207.7214 [hep-ex].

[5] D. Griffiths, Introduction to elementary particles. John Wiley & Sons, 1987.

[6] S. Weinberg, “A model of leptons,” Phys. Rev. Lett. 19 (1967) 1264–1266.

[7] UA1 Collaboration, G. Arnison et al., “Experimental observation of isolated large

transverse energy electrons with associated missing energy at
√
s = 540 GeV,”

Phys. Lett. B122 (1983) no. 1, 103 – 116.

[8] UA1 Collaboration, G. Arnison et al., “Experimental observation of lepton pairs

of invariant mass around 95 GeV/c2 at the CERN SPS collider,” Phys. Lett.

B126 (1983) no. 5, 398 – 410.

[9] S. Weinberg, “General theory of broken local symmetries,” Phys. Rev. D7 (1973)

1068–1082.

[10] J. Goldstone, “Field theories with superconductor solutions,” Il Nuovo Cimento

19 (1961) no. 1, 154–164.

[11] L. Wolfenstein, “Parametrization of the Kobayashi-Maskawa matrix,” Phys. Rev.

Lett. 51 (1983) 1945–1947.

[12] A. Powell, Measuring the CKM Angle γ with B± → DK± Decays at LHCb and a

Determination of the D → Kπππ Coherence Factor at CLEO-c. PhD thesis,

Oxford University, Oxford, 2009.

156

http://dx.doi.org/10.1016/j.physletb.2008.07.024
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://dx.doi.org/10.1016/0370-2693(83)91177-2
http://dx.doi.org/10.1016/0370-2693(83)90188-0
http://dx.doi.org/10.1016/0370-2693(83)90188-0
http://dx.doi.org/10.1103/PhysRevD.7.1068
http://dx.doi.org/10.1103/PhysRevD.7.1068
http://dx.doi.org/10.1007/BF02812722
http://dx.doi.org/10.1007/BF02812722
http://dx.doi.org/10.1103/PhysRevLett.51.1945
http://dx.doi.org/10.1103/PhysRevLett.51.1945


Bibliography 157

[13] D. Atwood and A. Soni, “Role of a charm factory in extracting CKM-phase

information via B→ DK,” Phys. Rev. D68 (2003) 033003.

[14] S. Harnew, J. Rademacker, and T. Hampson, “D mixing formalism for multi-body

final states,” Tech. Rep. CERN-LHCb-INT-2012-024, CERN, Geneva, 2012.

[15] L. Evans and P. Bryant, “LHC machine,” JINST 3 (2008) S08001.

[16] ATLAS Collaboration, G. Aad et al., “The ATLAS experiment at the CERN

Large Hadron Collider,” JINST 3 (2008) S08003.

[17] CMS Collaboration, S. Chatrchyan et al., “The CMS experiment at the CERN

LHC,” JINST 3 (2008) S08004.

[18] ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN

LHC,” JINST 3 (2008) S08002.

[19] LHCb Collaboration, A. A. Alves et al., “The LHCb Detector at the LHC,”

JINST 3 (2008) S08005.

[20] LHCb Collaboration, R. Aaij et al., “Measurement of σ(pp→ bb̄X) at
√
s = 7

TeV in the forward region,” Phys. Lett. B694 (2010) 209–216, arXiv:1009.2731

[hep-ex].

[21] CDF Collaboration, T. Aaltonen et al., “Measurement of the b-hadron

production cross section using decays to µ−D0x final states in pp collisions at
√
s = 1.96 TeV,” Phys. Rev. D79 (2009) 092003.

[22] T. Sjostrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics and Manual,”

JHEP 0605 (2006) 026, arXiv:hep-ph/0603175 [hep-ph].

[23] LHCb Collaboration, LHCb VELO (VErtex LOcator): Technical Design Report.

CERN, Geneva, 2001.

[24] LHCb Collaboration, LHCb reoptimized detector design and performance:

Technical Design Report. CERN, Geneva, 2003.

[25] LHCb Collaboration, LHCb RICH: Technical Design Report. CERN, Geneva,

2000.

[26] LHCb Collaboration, LHCb calorimeters: Technical Design Report. CERN,

Geneva, 2000.

[27] LHCb Collaboration, LHCb magnet: Technical Design Report. CERN, Geneva,

2000.

[28] LHCb Collaboration, LHCb inner tracker: Technical Design Report. CERN,

Geneva, 2002.

http://dx.doi.org/10.1103/PhysRevD.68.033003
http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://dx.doi.org/10.1088/1748-0221/3/08/S08005
http://dx.doi.org/10.1016/j.physletb.2010.10.010
http://arxiv.org/abs/1009.2731
http://arxiv.org/abs/1009.2731
http://dx.doi.org/10.1103/PhysRevD.79.092003
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175


Bibliography 158

[29] LHCb Collaboration, LHCb outer tracker: Technical Design Report. CERN,

Geneva, 2001.

[30] LHCb Collaboration, R. Aaij et al., “First evidence for the decay B0
s→ µ+µ− ,”

arXiv:1211.2674 [hep-ex].

[31] LHCb Collaboration, LHCb muon system: Technical Design Report. CERN,

Geneva, 2001.

[32] LHCb Collaboration, LHCb trigger system: Technical Design Report. CERN,

Geneva, 2003.

[33] V. V. Gligorov, “A single track HLT1 trigger,” Tech. Rep. LHCb-PUB-2011-003,

CERN, Geneva, 2011.

[34] G. Barrand et al., “GAUDI - A software architecture and framework for building

HEP data processing applications,” Comput.Phys.Commun. 140 (2001) 45–55.

[35] D. Lange, “The EvtGen particle decay simulation package,” Nucl. Instrum. Meth.

A462 (2001) 152–155.

[36] P. Golonka and Z. Was, “PHOTOS Monte Carlo: a precision tool for QED

corrections in Z and W decays,” Eur. Phys. J. C45 (2006) 97–107.

[37] GEANT4 Collaboration, S. Agostinelli et al., “GEANT4 - a simulation toolkit,”

Nucl. Instrum. Meth. A506 (2003) no. 3, 250 – 303.

[38] V. V. Gligorov, “Reconstruction of the channel B0
d → D+π− and background

classification at LHCb (revised),” Tech. Rep. LHCb-2007-044, CERN, Geneva,

2007.

[39] J. Rademacker, Evaluation of the LHCb RICH detectors and a measurement of

the CKM angle γ. PhD thesis, Oxford University, Oxford, 2001.

[40] N. Brook, M. Coombes, T. Hampson, and A. Solomin, “The software framework

and method for the alignment of the LHCb RICH optical system using

proton-proton collisions,” Tech. Rep. CERN-LHCb-INT-2013-007, CERN,

Geneva, 2013.

[41] C. G. Blanks, V 0 production ratios at LHCb and the alignment of its RICH

detectors. PhD thesis, Imperial College, London, 2011.

[42] A. Gorisek, P. Krizan, S. Korpar, and M. Staric, “Alignment of the HERA-B

RICH optical system with data,” Nucl. Instrum. Meth. A433 (1999) 408–412.

[43] M. Adinolfi et al., “Performance of the LHCb RICH detector at the LHC,”

arXiv:1211.6759 [physics.ins-det].

http://arxiv.org/abs/1211.2674
http://dx.doi.org/10.1016/S0010-4655(01)00254-5
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
http://dx.doi.org/10.1140/epjc/s2005-02396-4
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(99)00327-7
http://arxiv.org/abs/1211.6759


Bibliography 159

[44] CDF Collaboration, D. Acosta et al., “Measurement of the B+ total cross section

and B+ differential cross section dσ/dpT in pp collisions at
√
s = 1.8 TeV,” Phys.

Rev. D65 (2002) 052005.

[45] M. Needham, “Clone track identification using the Kullback-Liebler distance,”.

CERN-LHCB-2008-002.

[46] T. Skwarnicki, A study of the radiative cascade transitions between the

upsilon-prime and upsilon resonances. PhD thesis, Institute of Nuclear Physics,

Krakow, 1986. DESY-F31-86-02, Appendix E.

[47] T. Bauer et al., “Prompt charm production in pp collisions at
√
s = 7 TeV in 2010

data: Λ+
c .” LHCb-ANA-2011-018-Lambdac, 2011.

[48] Mark-III Collaboration, J. Adler et al., “Resonant substructure in K−π+π+π−

decays of D0 mesons,” Phys. Rev. Lett. 64 (1990) 2615–2618.

[49] M. Pivk and F. R. Le Diberder, “sPlot: a statistical tool to unfold data

distributions,” Nucl. Instrum. Meth. A555 (2005) 356–369,

arXiv:physics/0402083.

[50] LHCb Collaboration, R. Aaij et al., “Prompt K0
S production in pp collisions at

√
s = 0.9 TeV,” Phys. Lett. B693 (2010) 69–80, arXiv:1008.3105 [hep-ex].

[51] Y. Amhis, V. Balagura, C. Barschel, M. Ferro-Luzzi, P. Hopchev, S. Oggero,

R. Matev, B. Pietrzyk, J. Panman, and S. Redford, “Absolute luminosity

measurements at
√
s = 7 TeV,” Tech. Rep. CERN-LHCb-INT-2011-018, CERN,

Geneva, 2011.

[52] Particle Data Group Collaboration, K. Nakamura et al., “Review of particle

physics,” J. Phys. G37 (2010) 075021.

[53] R. J. Barlow, Statistics: a guide to the use of statistical methods in the physical

sciences. John Wiley & Sons, 1989.

[54] Particle Data Group Collaboration, C. Amsler et al., “Review of particle

physics,” Phys. Lett. B667 (2008) 1–. and 2009 partial update for the 2010

edition.

[55] CDF Collaboration, T. Affolder et al., “Measurement of b-quark fragmentation

fractions in pp collisions at
√
s = 1.8 TeV,” Phys. Rev. Lett. 84 (2000) 1663–1668.

[56] ZEUS Collaboration, S. Chekanov et al., “Measurement of charm fragmentation

ratios and fractions in photoproduction at HERA,” Eur. Phys. J. C44 (2005)

351–366. http://eprints.gla.ac.uk/28317/.

[57] B. A. Kniehl, G. Kramer, I. Schienbein, and H. Spiesberger, “Inclusive

Charmed-Meson Production at the CERN LHC,” arXiv:1202.0439 [hep-ph].

http://dx.doi.org/10.1103/PhysRevD.65.052005
http://dx.doi.org/10.1103/PhysRevD.65.052005
http://dx.doi.org/10.1103/PhysRevLett.64.2615
http://dx.doi.org/10.1016/j.nima.2005.08.106
http://arxiv.org/abs/physics/0402083
http://dx.doi.org/10.1016/j.physletb.2010.08.055
http://arxiv.org/abs/1008.3105
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1103/PhysRevLett.84.1663
http://eprints.gla.ac.uk/28317/
http://arxiv.org/abs/1202.0439


Bibliography 160

[58] M. Cacciari, S. Frixione, M. Mangano, M. Nason, and G. Ridolfi, “private

communication,” (2010) .

[59] M. Cacciari, M. Greco, and P. Nason, “The pT spectrum in heavy-flavour

hadroproduction,” JHEP 05 (1998) 007, arXiv:hep-ph/9803400.

[60] P. Z. Skands, “Tuning Monte Carlo generators: The Perugia tunes,” Phys.Rev.

D82 (2010) 074018, arXiv:1005.3457 [hep-ph].

[61] K. Lande, E. T. Booth, J. Impeduglia, L. M. Lederman, and W. Chinowsky,

“Observation of long-lived neutral V particles,” Phys. Rev. 103 (1956) 1901–1904.

[62] ARGUS Collaboration, H. Albrecht et al., “Observation of B0 −B0 mixing,”

Phys. Lett. B192 (1987) no. 1-2, 245 – 252.

[63] CDF Collaboration, A. Abulencia et al., “Observation of B0
s −B0

s oscillations,”

Phys. Rev. Lett. 97 (2006) 242003.

[64] LHCb Collaboration, R. Aaij et al., “Observation of D0 −D0 oscillations,”

arXiv:1211.1230 [hep-ex].

[65] Belle Collaboration, X. C. Tian et al., “Measurement of the wrong-sign decays

D0→ K+π−π0 and D0 → K+π−π+π−, and search for CP violation,” Phys. Rev.

Lett. 95 (2005) 231801.

[66] BABAR Collaboration, B. Aubert et al., “Search for D0 −D0 mixing in the

decays D0 → K+π−π+π−,” arXiv:hep-ex/0607090 [hep-ex].

[67] S. Amato et al., “HLT2 open charm triggers, 2010-2011,” Tech. Rep.

CERN-LHCb-INT-2011-031, CERN, Geneva, 2011.

[68] M. Williams, V. V. Gligorov, C. Thomas, H. Dijkstra, J. Nardulli, and

P. Spradlin, “The HLT2 topological lines,” Tech. Rep.

CERN-LHCb-PUB-2011-002, CERN, Geneva, 2011.

[69] W. D. Hulsbergen, “Decay chain fitting with a kalman filter,” Nucl. Instrum.

Meth. 552 (2005) no. 3, 566 – 575.

[70] N. L. Johnson, “Systems of frequency curves generated by methods of

translation,” Biometrika 36 (1949) 149 – 176.

[71] S. Bachman, M. Bessner, R. Borchardt, A. Di Canto, J. Marks, U. Uwer, and

A. Weiden, “Measurement of D0 − D̄0 oscillations with “wrong-sign”

D∗+ → D0(→ K + π−)π+ decays.” LHCb-ANA-2012-088, 2012.

[72] Particle Data Group Collaboration, J. Beringer et al., “Review of particle

phyiscs,” Phys. Rev. D86 (2012) 010001.

http://arxiv.org/abs/hep-ph/9803400
http://dx.doi.org/10.1103/PhysRevD.82.074018
http://dx.doi.org/10.1103/PhysRevD.82.074018
http://arxiv.org/abs/1005.3457
http://dx.doi.org/10.1103/PhysRev.103.1901
http://dx.doi.org/10.1016/0370-2693(87)91177-4
http://dx.doi.org/10.1103/PhysRevLett.97.242003
http://arxiv.org/abs/1211.1230
http://dx.doi.org/10.1103/PhysRevLett.95.231801
http://dx.doi.org/10.1103/PhysRevLett.95.231801
http://arxiv.org/abs/hep-ex/0607090
http://dx.doi.org/10.1016/j.nima.2005.06.078
http://dx.doi.org/10.1016/j.nima.2005.06.078


Bibliography 161

[73] Heavy Flavour Averaging Group, “D mixing results allowing for CPV,” 2012.

www.slac.stanford.edu/xorg/hfag/charm/March12/results_mix+cpv.html.

[74] CLEO Collaboration, N. Lowrey et al., “Determination of the D0→ K−π+π0

and D0 → K−π+π−π+ coherence factors and average strong-phase differences

using quantum-correlated measurements,” Phys. Rev. D80 (2009) 031105.

www.slac.stanford.edu/xorg/hfag/charm/March12/results_mix+cpv.html
http://dx.doi.org/10.1103/PhysRevD.80.031105

