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Abstract We make comparison of the dynamics of the
diagonal and nondiagonal Bianchi IX models in the evolution
towards the cosmological singularity. Apart from the origi-
nal variables, we use the Hubble normalized ones commonly
applied in the examination of the dynamics of homogeneous
models. Applying the dynamical systems method leads to
the result that in both cases the continuous space of critical
points is higher dimensional and they are of the nonhyper-
bolic type. This is a generic feature of the dynamics of both
cases and seems to be independent on the choice of phase
space variables. The topologies of the corresponding critical
spaces are quite different. We conjecture that the nondiag-
onal case may carry a new type of chaos different from the
one specific to the usually examined diagonal one.

1 Introduction

According to the singularity theorems of General Relativ-
ity (GR), the evolution of an expanding universe is geodesi-
cally past-incomplete. The Belinskii, Khalatnikov and Lif-
shitz (BKL) [1,2] scenario predicts that on approach to a
space-like cosmological singularity the dynamics of gravi-
taional field simplifies as time derivatives in Einstein equa-
tions dominate over spatial derivatives (see [3] for numer-
ical support for BKL). In this regime the evolution of the
Universe becomes strongly non-linear and chaotic, compris-
ing expanding and contracting oscillatory phases around the
singular point. One believes that an imposition of quantum
rules onto this scenario may heal the singularity. Finding the
nonsingular quantum BKL scenario would mean solving, to
some extent, the generic cosmological singularity problem.
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Such a quantum theory could be used as a realistic model of
the very early Universe.

Quantization of the BKL scenario should be preceded
by the quantization of the Bianchi IX model. This seems
to be a reasonable strategy because the BKL scenario has
been obtained via analysis of the dynamics of the Bianchi
IX spacetime. The three metric on space of the Bianchi IX
model (in the synchronous reference system) is in general
nondiagonal for general matter models. However in the case
of vacuum or simple fluids it can be diagonalized during the
entire evolution of the system. We refer to these two cases as
nondiagonal and diagonal Bianchi IX models, respectively.
The best prototype for the BKL scenario is the nondiagonal
Bianchi IX model [2,4,5] corresponding to general matter
fields.

The quantization of the Bianchi IX model requires full
understanding of its classical dynamics in terms of variables
convenient for quantization procedure. Our recent paper [6]
has initiated such analysis. As far as we [7,8] and references
therein). The examination of the dynamics presented in [9]
of the nondiagonal case is mathematically satisfactory, but
seems to be too complicated to be used in any quantization
scheme.

Recent analysis indicate that the dynamics of the nondi-
agonal case has asymptotic regime near the singularity [10].
The dynamics of this regime looks similarly to the dynamics
of the diagonal case (devoid of asymptotic regime). How-
ever, the symmetry aspects of both set of equations defining
the corresponding dynamics are quite different, which leads
to the different topologies of the corresponding spaces of
solutions. The aim of this paper is the examination of these
differences in more details.

In this paper we use two quite different sets of variables
parameterizing the dynamics: original BKL type [4,5] and
quasi Hubble normalized [11]. Making use the scale invari-
ance of Einstein equations one can introduce variables which
divided by the Hubble parameter become scale invariant [12].
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The Hubble parameter, which in general spacetime is a geo-
metrical average of expansion rates in three space direc-
tions, becomes infinite approaching the singularity. Although
gravitational field variables like orthonormal frame variables
also diverge approaching singularity, normalized by Hubble
parameter remain finite and more useful for analytical analy-
sis [8,12], and they enabled successful numerical verification
[3].

However, original BKL variables and Hubble normal-
ized ones cannot be connected by canonical transformation.
In both cases, applying dynamical systems method enables
identification of the spaces of non-isolated critical (equilib-
rium) points, which are of nonhyperbolic type. Topologies
of these spaces are quite different, and making them explicit
constitutes one of the main results of this paper. Additional
result is expressing the asymptotic nondiagonal Bianchi IX
model in terms of non-divergent variables similar to the Hub-
ble normalized variables, thus enabling future more detailed
investigations.

Our paper is organized as follows: Sect. 2 concerns the
nondiagonal case. We introduce quasi Hubble normalized
variables, examine the asymptotic dynamics in these (and
BKL) variables, and identify the spaces of critical points of
the corresponding vector fields. The diagonal case is con-
sidered in Sect. 3, where we follow the steps of Sect. 2. The
numerical simulations of the dynamics is presented in Sect. 4.
We conclude in Sect. 5. Appendix A concerns the issue of an
effective form of the metric near the singularity. The choice
of quotient coordinates, presented in “Appendix B”, enables
making an extension of the interpretation of our results. We
present the relationship between the BKL and our new vari-
ables in “Appendix C”. Finally, we apply the Poincaré sphere
to deal with the space of critical points in finite region of phase
space in “Appendix D”.

2 The nondiagonal case

The general form of a line element of the nondiagonal
Bianchi IX model, in the synchronous reference system,
reads

ds2 = dt2 − γab(t)e
a
αe

b
βdx

αdxβ, (1)

where Latin indices a, b, . . . run from 1 to 3 and label the
frame vectors eaα , and Greek indices α, β, . . . take values
1, 2, 3 and concern space coordinates, and where γab is a
spatial metric.

It was shown in [1,2] that near the cosmological singular-
ity the general form of the metric γab should be considered.
Consequently, one cannot globally diagonalize the metric,
i.e. for all values of time. After making use of the Bianchi
identities, freedom in the rotation of the metric γab and frame
vectors eaα , one arrives at the well-defined, but complicated

system of equations specifying the dynamics of the nondiag-
onal Bianchi IX model [5]. Assuming that the anisotropy of
space may grow without bound, when approaching the singu-
larity, enables considerable simplification of the dynamics.
Finally, the asymptotic form (near the cosmological singular-
ity) of the dynamical equations of the nondiagonal Bianchi
IX model reads [4–6]:

d2 ln a

dτ 2 = b

a
− a2,

d2 ln b

dτ 2 = a2 − b

a
+ c

b
,

d2 ln c

dτ 2 = a2 − c

b
, (2)

where a, b, c are functions of time τ , satisfying the constraint

d ln a

dτ

d ln b

dτ
+ d ln a

dτ

d ln c

dτ
+ d ln b

dτ

d ln c

dτ

= a2 + b

a
+ c

b
, (3)

and where τ is connected with the cosmological time variable
t as follows

dt = √
γ dτ, (4)

(γ denotes the determinant of γab).
Turning the above dynamics into Hamiltonian dynamics,

one can examine qualitatively the mathematical structure of
the corresponding physical phase space by using the dynami-
cal systems method (DSM). It has been found that the critical
points of the system have the following properties: (i) define
a three-dimensional continuous subspace of R̄6 defined by
the relation a � b � c > 0, with a → 0 (see, Eq. (38) of
[6] for more details), and (ii) are of the nonhyperbolic type.

The property (i) was already found long time ago [5] with-
out using the DSM. The characteristic (ii) has been identified
recently [6]. The latter property means that getting insight
into the structure of the space of orbits near such critical set
requires further examination of the exact nonlinear dynam-
ics. So the results obtained from inearization of the dynamics
cannot be conclusive (see, e.g., [14]).

2.1 Quasi Hubble normalized variables

To make progress in understanding the structure of our crit-
ical set, we propose the parametrization of the dynamics by
an analog of the so-called Hubble-normalized (HN) variables
(�̃α, Ñα) (see, e.g., [11–13] and references therein). They
can be ascribed to the vacuum Bianchi type models in which
case the spatial metric can be taken to be diagonal. Assum-
ing a spacetime admitting a foliation M �→ � × R, where
� is spacelike, the line element of the spatially homogenous
Bianchi type model reads, following the original notation of
[11–13]:
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ds2 = −dt2 + g11(t) ω1 ⊗ ω1 + g22(t) ω2 ⊗ ω2

+g33(t) ω3 ⊗ ω3 , (5)

where the ωα’s are 1-forms on � invariant with respect to
the action of a simply transitive group of motions on the leaf
and subject to

dω1 = −n̂1 ω2 ∧ ω3, dω2 = −n̂2 ω3 ∧ ω1,

dω1 = −n̂3 ω1 ∧ ω2, (6)

where n̂α are structure constants of the corresponding Lie
algebra. In case of the Bianchi IX model n̂α = 1.

Within this framework one can define the expansion θ and
the shear σα

β :

θ := −tr(k) , σα
β := −kα

β + 1

3
tr(k) δα

β

= diag(σ1, σ2.σ3), (7)

where kαβ is the second fundamental form associated with
hypersurfaces {t = const.} and σα fulfill �ασα = 0. The
Hubble variable H is proportional to the expansion H = θ/3
and is related to changes of the spatial volume density via
d
√
g/dt = 3H

√
g, where g = detgαβ . One can also define

variables nα

nα = n̂β

g β
α√
g
. (8)

For the Bianchi IX model there exists a one-to-one cor-
respondence between the set of the definded above vari-
ables (H, σα, nα) (with �ασα = 0) and the standard ones
(gαβ, kαβ). In this setting one can introduce the Hubble
normalized (HN) variables (�̃α, Ñα) (here we use symbol
˜for distinguishing the original variables and our subsequent
ones), which are orthonormal frame variables σα and nα nor-
malized by the Hubble variable H :

�̃α := σα

H
, Ñα := nα

H
, (9)

These are dimensionless quantities which fully describe the
dynamics of the three-dimensional spacelike hypersurface�.
Near the singularity, where space curvature and expansion all
diverge, the HN variables remain finite, as dividing by diver-
gent Hubble variable H factors out the overall expansion.
Analysing dynamics of the Bianchi IX spacetimes near its
singularity in terms of HN variables brought a lot of impor-
tant and interesting results (see, e.g., [8,11] and references
therein).

Henceforth, it would be natural trying to formulate dynam-
ics of the non-diagonal Bianchi IX model in terms of the HN
variables. However there is the key difficulty laying in the
definition of those variables, formulated for diagonal met-
rics, in case of the general Bianchi IX spacetime described
by the metrics (1). This metrics is generally non-diagonal
globally, although it can be diagonalized at each separate

moment of time. According to [5] the exact 3-dimensional
metric γ̂ is given by

γ̂ = R̂−1�̂ R̂, (10)

where �̂ = diag(�1, �2, �3) and R̂ is an orthogonal matrix
(R̂T = R̂−1, det R̂ = 1). The matrix R̂ transforms the
3-dimensional metric tensor gαβ to the principal axes and
this rotation might be described in terms of Euler angles
(θ, ϕ, ψ): rotation, precession and pure rotation. In other
words R̂ = R̂θ R̂ϕ R̂ψ , where R̂θ , R̂ϕ and R̂ψ are standard
rotation matrices.

In the general case, the Euler angles (θ, ϕ, ψ) are time
dependent and describe the rotation with respect to the frame
vectors ea , which are fixed. In the asymptotic regime the
Euler angles become time independent, but �α stay being
functions of time.

One can diagonalize the metric γ̂ in the asymptotic regime
by using R̂γ̂ R̂−1 = �̂. Since R̂ is time independent there,
this diagonal form will exist until the gravitational system
approaches the singularity. In this regime, the line element
(1) can be presented as follows (see [1,2] for more details)

ds2 = dt2 −
(
a2e(1)

α e(1)
β + b2e(2)

α e(2)
β + c2e(3)

α e(3)
β

)
dxαdxβ,

(11)

where

a := �1, b := �2C
2 cos2 θ0,

c := �3C
4 sin2 θ0 cos2 θ0 sin2 ψ0, (12)

and where C is a constant of motion. The metric (11)
describes only the oscillatory modes devoid of the rotation.
Since a, b and c satisfy Eqs. (2)–(3), derived from the exact
system of equations with nondiagonal form of 3-metric, they
have encoded nondiagonal aspects of the metric, and the line
element:

g11 := a2, g22 := b2, g33 := c2, gαβ := 0 if α �= β,

(13)

may be interpreted as presenting an effective 3-metric. This
identification suggests that we have a sort of an effective
diagonal metric gαβ near the cosmological singularity, i.e.,
in the asymptotic region of spacetime.

The effective 3-metric (13) is used below to introduce
quasi-HN (qHN) variables. In this settings we define the new
variables (Nα,�α) as follows:

N1 := a2V, N2 := b2V, N3 := c2V, (14)

�1 := V
d

dτ
ln a − 1, �2 := V

d

dτ
ln b − 1,

�3 := V
d

dτ
ln c − 1, (15)
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where V = 3/ d
dτ

ln(abc), and where (a, b, c) satisfy Eqs.
(2) and (3). Thus, �1 + �2 + �3 = 0 identically, and N1 >

0, N2 > 0, N3 > 0 as abc → 0 near the singularity.
In what follows we will present similarities between the

set of defined above variables and original HN ones.
The second fundamental form kαβ associated with (13) is

defined to be

kαβ := −1

2

d

dt
gαβ = −1

2

1

abc

d

dτ
gαβ =: − 1

2v
ġαβ, (16)

where due to (4) we have

dt/dτ := √
g = abc =: v, (17)

and where g := det gαβ , so v is the spatial volume density.
If we take kα

β := gαγ kγβ , the trace of the matrix kαβ reads

tr(k) = kα
α = − 1

abc

( ȧ
a

+ ḃ

b
+ ċ

c

)
= −1

v

d

dτ
ln v. (18)

Defining the expansion θ by

θ := d

dt
ln

√
g = 1

v

d

dτ
ln v, (19)

we get θ := −tr(k). The volume changes according to
dv/dt = θ v. Following the considerations in [11,15], we
define the Hubble variable

H := θ

3
= 1

3v

d

dτ
ln v. (20)

Thus the variables defined in Eqs. (14) and (15) coincide
with Hubble normalized variables, namely:

�α := σα

H
= σ ᾱ

ᾱ

H
:=

( − kᾱ
ᾱ + 1

3 tr(k)
)

H
, (21)

where bared indices denote no summation convention, and
�1 + �2 + �3 = 0 identically. We also have

Nα := nα

H
, where nα := gᾱᾱ√

g
., (22)

directly corresponding to the definition (9) in our effective
3-metrics.

2.2 Dynamics

2.2.1 Finding the vector field

In what follows we derive the vector field corresponding to
(2)–(3) entirely in terms of the qHN variables. Acting with
d/dτ on (14) and making use of (2) leads to the following
set of equations

Ṅα = Nα

(
2πα − 1

3
N1

)
, α = 1, 2, 3. (23)

One can rewrite (15) as follows

�α + 1 = 3πα/ f, α = 1, 2, 3, (24)

where f := π1 + π2 + π3. Inserting (24) into (23) yields

Ṅα = Nα

3

(
2(�α + 1) f − N1

)
. (25)

Acting with d/dτ on both sides of (24) and using (2) gives

�̇1 = −N1

3
(4 + �1) + 3

f

√
N2

N1
, (26)

�̇2 = N1

3
(2 − �2) + 3

f

(√
N3

N2
−

√
N2

N1

)
, (27)

�̇3 = N1

3
(2 − �3) − 3

f

√
N3

N2
. (28)

Due to (B14), and �1 + �2 + �3 = 0, we have

f = 3�. (29)

Inserting (29) into (25)–(28), we finally obtain the follow-
ing vector field specifying the dynamics entirely in the qHN
variables:

Ṅ1 = 2�N1 (1 + �1) − N 2
1

3
, (30)

Ṅ2 = 2�N2 (1 + �2) − N1N2

3
, (31)

Ṅ3 = 2�N3(1 + �3) − N1N3

3
, (32)

�̇1 = N1

3
(−4 − �1) + 1

�

√
N2

N1
, (33)

�̇2 = N1

3
(2 − �2) + 1

�

(√
N3

N2
−

√
N2

N1

)
, (34)

�̇3 = N1

3
(2 − �3) − 1

�

√
N3

N2
, (35)

where �1 + �2 + �3 = 0. The variable � has to satisfy the
constraint (B23), which corresponds to the original constraint
(3). Taking into account the constraint yields the system of
equations:

Ṅ1 = − N1
2

3

−
N1(1 + �1)

(
N1 +

√
N1

2 − 4�
(√

N2
N1

+
√

N3
N2

))

�
, (36)

Ṅ2 = − N1N2

3

−
N2(1 + �2)

(
N1 +

√
N1

2 − 4�
(√

N2
N1

+
√

N3
N2

))

�
, (37)

Ṅ3 = − N1N3

3

123



Eur. Phys. J. C (2019) 79 :173 Page 5 of 12 173

−
N3(1 − �1 − �2)

(
N1 +

√
N1

2 − 4�
(√

N2
N1

+
√

N3
N2

))

�
,

(38)

�̇1 = 1

3
(−4 − �1)N1 −

2�

√
N2
N1

N1 +
√
N1

2 − 4�
(√

N2
N1

+
√

N3
N2

) , (39)

�̇2 = 1

3
(2 − �2)N1 +

2�
(√

N2
N1

−
√

N3
N2

)

N1 +
√
N1

2 − 4�
(√

N2
N1

+
√

N3
N2

) . (40)

where � := −3 + �1
2 + �1�2 + �2

2.

2.2.2 Critical points of the dynamics

Direct inspection of the system (36)–(40) leads to the follow-
ing identification of the set of the critical points:

SqHN := {(�1, �2, N1, N2, N3) | (N1 → 0, N2

→ 0, N3 → 0)} ⊂ R̄
6, (41)

in such a way that N3 
 N2 
 N1 and
√
N2/N1 
 N 2

1 →
0, and

√
N3/N2 
 √

N2/N1 → 0, which imply that
√
N3/N2 
 √

N2/N1 
 N 2
1 → 0. (42)

One can avoid taking the uncommon form of the lim-
its (42) by introducing new variables, which we consider in
“Appendix B”. However, this does not change the character
of critical points. They stay to be the nonhyperbolic ones. A
critical point is called a hyperbolic fixed point if all the eigen-
values of the Jacobian matrix of the linearized equations at
this point have nonzero real parts. Otherwise, it is called a
nonhyperbolic fixed point [14]. In the sequence we analyze
the Jacobian for the above system and determine character
of critical points.

2.2.3 The linearization of the vector field

One may verify, with some effort, that some elements of the
Jacobian J of the system (36)–(40), evaluated at any point of
SqHN , are diverging. This behavior comes from differenti-
ating square roots. However, when calculating characteristic
polynomial of the Jacobian J at any point those divergencies
cancel out due to relations (42) giving

P(λ) = −λ5, (43)

so the eigenvalues are (0, 0, 0, 0, 0). Owing to very compli-
cated form of the Jacobian matrix J and characteristic poly-
nomial, we exhibit only the result after embedding conditions
(42). Since the real parts of all eigenvalues of the Jacobian are
equal to zero, we are dealing with the nonhyperbolic critical
points.

Our system evolves asymptotically, as time goes to zero
(when the system approaches the cosmological singularity),
to the nonhyperbolic critical subspace with the coordinates
(�1, �2, N1, N2, N3) given by

(�1, �2, 0, 0, 0). (44)

Further analysis should be based on making use of the exact
form of our vector field.

3 The diagonal case

In what follows we demonstrate that the asymptotic forms of
the dynamics of the non-diagonal and diagonal Bianchi IX
model are quite different.

The dynamics of the diagonal Bianchi IX in asymptotic
regime near the singularity may be obtained from the asymp-
totic dynamics of non-diagonal model with zero rotation of
principal values �a of the three-dimensional metric tensor
γab around frame vectors ea . It means that the Euler angles
(θ, ϕ, ψ), describing the rotation with respect to the frame
vectors are fixed

(θ, ϕ, ψ) = (θ0, ϕ0, ψ0), (45)

so they are no longer the degrees of freedom of the system.
In that case the Einstein equations for the general Bianchi
IX model in the vicinity of singularity derived in [5] take the
following form:

(ln �1)
·· + �2

1 − (�2 − �3)
2 = 0, (46)

(ln �2)
·· + �2

2 − (�1 − �3)
2 = 0, (47)

(ln �3)
·· + �2

3 − (�1 − �2)
2 = 0, (48)

where we assumed that the total angular momentum of the
system vanishes, unlike in the general case, with rotation
frozen near the singularity but with non-zero total angu-
lar momentum. The constraint equation, coming from the
Bianchi identities, reads

((ln �1)
·)2 + ((ln �2)

·)2 + ((ln �3)
·)2 − ((ln �1�2�3)

·)2

+ 2(�2
1 + �2

2 + �2
3) − 4(�1�2 + �1�3 + �2�3) = 0.

(49)

For the comparison with (2)–(3), we rewrite (46)–(49) using
the notation: ã := �1, b̃ := �2, c̃ := �3 , and get

(ln ã)·· = (b̃ − c̃)2 − ã2, (50)

(ln b̃)·· = (c̃ − ã)2 − b̃2, (51)

(ln c̃)·· = (ã − b̃)2 − c̃2, (52)
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with the dynamical constraint:

((ln ã)·)2 + ((ln b̃)·)2 + ((ln c̃)·)2

−((ln ãb̃c̃)·)2 + 2(ã2 + b̃2 + c̃2)

−4(ãb̃ + ãc̃ + b̃c̃) = 0. (53)

The dynamics of the diagonal and nondiagonal cases are
quite different. Let us indicate just one aspect of this non-
equivalence. Namely, it is clear that Eqs. (50)–(53) are sym-
metric with respect to the permutations:

(ã, b̃, c̃) → (b̃, c̃, ã) → (c̃, ã, b̃), (54)

whereas Eqs. (2)–(3) do not have the corresponding symme-
try

(a, b, c) → (b, c, a) → (c, a, b). (55)

The difference results from the fact that Eqs. (2)–(3) has
been obtained by imposition onto the original set of equations
defining the nondiagonal dynamics (see, Eqs. (2.14)–(2.20)
in [5]) the condition

�1 � �2 � �3 , (56)

which implies Eq. (45).

3.1 Dynamical system analysis

Introducing the notation:

x1 := ln ã, x2 := ln b̃, x3 := ln c̃, p1 := ẋ1,

p2 := ẋ2, p3 := ẋ3, (57)

we rewrite the system (50)–(52) as follows

ẋ1 = p1, (58)

ẋ2 = p2, (59)

ẋ3 = p3, (60)

ṗ1 = (ex2 − ex3)2 − e2x1 , (61)

ṗ2 = (ex3 − ex1)2 − e2x2 , (62)

ṗ3 = (ex1 − ex2)2 − e2x3 , (63)

with the constraint corresponding to (53) in the form

p1 p2 + p1 p3 + p2 p3 − (e2x1 + e2x2 + e2x3)

+ 2(ex1+x2 + ex1+x3 + ex2+x3) = 0. (64)

It is easy to see that the critical points of the vector field
(58)–(63), satisfying (64), are defined by

S̃B0 := {(x1, x2, x3, p1, p2, p3)

∈ R̄
6 | (x1, x2, x3 → −∞) ∧ (p1 = 0 = p2 = p3)},

(65)

S̃B1 := {(x1, x2, x3, p1, p2, p3)

∈ R̄
6 | (x1 → −∞, x2 = x3) ∧ (p1 = 0 = p2 = p3)},

(66)

S̃B2 := {(x1, x2, x3, p1, p2, p3)

∈ R̄
6 | (x2 → −∞, x3 = x1) ∧ (p1 = 0 = p2 = p3)},

(67)

S̃B3 := {(x1, x2, x3, p1, p2, p3)

∈ R̄
6 | (x3 → −∞, x1 = x2) ∧ (p1 = 0 = p2 = p3)}.

(68)

There are no strong relations among x1, x2 and x3 in each
of the above sets, contrary to the nondiagonal case (see the
statement following Eq. (B9)).

One can solve the constraint equation (64) setting, e.g.

p3 = e2x1 + e2x2 + e2x3 − 2ex1+x2 − 2ex1+x3 − 2ex2+x3 − p1 p2

p1 + p2
,

(69)

which turns the vector field (58)–(63) into

ẋ1 = p1, (70)
ẋ2 = p2, (71)

ẋ3 = e2t x1 + e2x2 + e2x3 − 2ex1+x2 − 2ex1+x3 − 2ex2+x3 − p1 p2

p1 + p2
,

(72)
ṗ1 = (ex2 − ex3 )2 − e2x1 , (73)
ṗ2 = (ex3 − ex1 )2 − e2x2 . (74)

The above system has the same critical subspaces as the one
without the constraint built into it. The Jacobian associated
with the system (70)–(74) is found to be

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − 2ex1 (−ex1 +ex2 +ex3 )
p1+p2

−2e2x1 2ex1 (ex1 − ex3 )

0 0 − 2ex2 (ex1 −ex2 +ex3 )
p1+p2

2ex2 (ex2 − ex3 ) −2e2x2

0 0 − 2ex3 (ex1 +ex2 −ex3 )
p1+p2

2ex3 (−ex2 + ex3 ) 2ex3 (−ex1 + ex3 )

1 0 − (ex1 −ex2 )2+e2x3 −2ex3 (ex1 +ex2 )+p2
2

(p1+p2)2 0 0

0 1 − (ex1 −ex2 )2+e2x3 −2ex3 (ex1 +ex2 )+p2
1

(p1+p2)2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

T

The characteristic polynomial evaluated at the critical sub-
spaces reads:

P(λ) = −λ5. (75)

Hence, we can conclude that the character of the critical
hypersurfaces (65)–(68) is the nonhyperbolic one.
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3.2 Introducing the qHN variables

For the diagonal case we define the qHN variables (Mα,�α)

a follows:

M1 := ã2Ṽ , M2 := b̃2Ṽ , M3 := c̃2Ṽ , (76)

�1 := Ṽ
d

dτ
ln ã − 1, �2 := Ṽ

d

dτ
ln b̃ − 1,

�3 := Ṽ
d

dτ
ln c̃ − 1, (77)

where Ṽ := 3/ d
dτ

ln(ãb̃c̃), and Mα > 0,∀α, as near the

singularity ãb̃c̃ → 0.
Making use of (61)–(63) we can rewrite the constraint (64)

in the form:

p1 p2 + p1 p3 + p2 p3 − ( ṗ1 + ṗ2 + ṗ3) = 0. (78)

Using (77) and applying the analysis similar as in the nondi-
agonal case (B10)–(B14) we get:

p1 = �(1 + �1), p2 = �(1 + �2), p3 = �(1 + �3),

(79)

where � ∈ C1(R), and where �1 + �2 + �3 = 0 due to
(77).

Now, using (76) and (61)–(63) we arrive to the expres-
sions:

ṗ1 = �(−M1 + M2 + M3 − 2
√
M2M3), (80)

ṗ2 = �(M1 − M2 + M3 − 2
√
M1M3), (81)

ṗ3 = �(M1 + M2 − M3 − 2
√
M1M2). (82)

Inserting (79)–(82) into (78) leads to the following expres-
sion for the constraint in terms of the qHN variables:

� (� �123 − M123) = 0, (83)

where�123 := 3+�1�2+�1�3+�2�3 and M123 := M1+
M2+M3−2(

√
M1M2+√

M1M3+√
M2M3). Equation (83)

has two solutions: � = 0, and � = M123/�123.

3.3 The vector field

Acting with d/dτ on (76) and (77), and using the expres-
sions (79)–(82) leads, after some simple but lengthy rear-
rangements, to the following vector field:

Ṁ1 = 1

3
M1M123(6�0(1 + �1) − 1), (84)

Ṁ2 = 1

3
M2M123(6�0(1 + �2) − 1), (85)

Ṁ3 = 1

3
M3M123(6�0(1 + �3) − 1), (86)

�̇1 = −M1 + M2 + M3 − 2
√
M2M3 − 1

3
M123 (�1 + 1),

(87)

�̇2 = M1 − M2 + M3 − 2
√
M1M3 − 1

3
M123 (�2 + 1),

(88)

�̇3 = M1 + M2 − M3 − 2
√
M1M2 − 1

3
M123 (�3 + 1),

(89)

where �0 = 0 or �0 = 1/�123, and the identity �1 +
�2 + �3 = 0 must be satisfied. Equations (87)–(89) fulfill
this identically which shows self-consistence of the set (84)–
(89).

3.4 Critical points

The critical points of the system (84)–(89), satisfying (83),
define the set of critical hypersurfaces:

S0 := {(�1,�2,�3, M1, M2, M3)

×| M1 = 0 = M2 = M3} ⊂ R̄
6, (90)

S1 := {(�1,�2,�3, M1, M2, M3)

×| M1 = 0, M2 = M3} ⊂ R̄
6, (91)

S2 := {(�1,�2,�3, M1, M2, M3)

×| M2 = 0, M3 = M1} ⊂ R̄
6, (92)

S3 := {(�1,�2,�3, M1, M2, M3)

×| M3 = 0, M1 = M2} ⊂ R̄
6. (93)

The Jacobian associated with the vector field (84)–89),
satisfying (83), evaluated at any point of {S0, S1, S2, S3} has
diverging components arising from differentiating terms of
the type

√
M1M2 and in the limit M1 �→ 0 (or other M’s

going to zero). However, calculating characteristic polyno-
mial and taking the value of its coefficient at the critical sub-
spaces leads to the following result:

P(λ) = λ6. (94)

Hence, we can conclude that the character of the critical
hypersurfaces (90)–(93) is the nonhyperbolic one.

4 Numerical simulations of the dynamics

In this section we present the numerical simulations of both
evolutions, defined by Eqs. (2)–(3) and (50)–(53), to give
support to some assumptions of the preceding sections. The
numerical method we employed here is the same as described
in [10]. Our simulations concern the dynamics with the ini-
tial data satisfying the strong inequality defined by Eq. (56).
Since the product of the three scale factors is proportional to
the volume density of the space, decreasing volume means
evolution towards the singularity.

Figure 1a presents the plots of the directional scale fac-
tors corresponding to the dynamics of the nondiagonal case.
Taking the initial data satisfying (56) leads to the evolution
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(a) Numerical simulation of the
non-diagonal case asymptotically

described by the system of
equations (2).
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(b) Numerical simulation of the
diagonal case described by the
system of equations (46)-(48).

Fig. 1 Numerical simulations
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(a) Error in the Hamiltonian
constraint belonging to FIG. 1a.
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(b) Error in the Hamiltonian
constraint belonging to FIG. 1b.

Fig. 2 Error in the numerical simulations

towards the singularity that maintains this strong inequality.
This result gives support to the claim that this dynamics has
the special asymptotic regime. Further support can be found
in [10], where the simulations have been performed by using
the exact dynamics of the general Bianchi IX model filled
with a tilted pressureless fluid.

Figure 1b presents the evolution of the directional scale
factors of the diagonal case with almost the same initial data
as in the nondiagonal case.1 No special regime occurs in this

1 The initial data cannot be exactly the same as they must satisfy the
dynamical constraints defined by (3) and (53) which are different.

case. One can see the permutation symmetry of the relation
(54) during the evolution of the system, contrary to the non-
diagonal case. The permutation of the initial data leads to
the same solutions (recoloring the plots), which is consistent
with the permutation symmetry of the dynamics (50)–(53).

In fact, the permutation symmetry (54) was used to check
the correctness of the numerical simulations.

We were able to keep the numerical error in solving the
Hamiltonian constraints, (3) or (53), as low as the order of
10−16. This is illustrated in Fig. 2. Further increase of the
precision of calculations keeps the plots unchanged.
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5 Conclusions

Near the cosmological singularity, an evolution of the
Bianchi IX model is an infinite sequence of the so called
eras each of which consists of the Kasner type epochs [1]. In
the diagonal case, each epoch can be described, e.g., by the
relation �̃1 ∼ �̃2 > �̃3 (where ∼ means coupled) called an
oscillation.2 The dynamics of the nondiagonal model has
essentially different structure [4,5]: the oscillation of the
diagonal type, e.g., �1 ∼ �2 > �3 enters sooner or later
the relation �1 > �2 > �3, which turns into the strong rela-
tion �1 � �2 � �3. Finally, the system approaches the
singularity in a finite proper time.

The difference between the dynamics of the diagonal and
nondiagonal cases leads to different topological structures
of the corresponding sets of critical points. In the former
case, this set consists of three hypersurfaces in R̄

6 having
the same topology, Eqs. (91)–(93), and one set, Eq. (90),
with the simple topology of R̄3. In the latter case, the set of
critical points has sophisticated topology, defined by Eq. (41),
quite different from the diagonal case. Similar relationship
occurs between the critical sets expressed in term of the BKL
variables. However, in both cases the critical sets consist of
the nonhyperbolic type of critical points.

The nonhyberbolicity is expected to be directly linked with
the chaoticity of the dynamics of the Bianchi IX model. We
conjecture that due to the different topologies of the critical
spaces the chaoticity aspects of both cases can be different.
Further studies are required to get insight into this intriguing
issue.

Our main concern is the nonhyperbolicity of equilibrium
points in both diagonal and general cases. They do not define
a set of isolated points, but a three-dimensional continuous
space. Thus, our choice of phase space variables seems to be
unsatisfactory. We have already tried [6] to use the so-called
blowing up technic initiated by McGehee [19] to avoid this
obstacle, but with no success. More sophisticated approach
based on σ -process of algebraic geometry proposed in [7]
may bring some progress, but it leads to a noncanonical vari-
ables that we try to avoid. Another framework proposed for
the spacially inhomogeneous models [12], within Hubble-
normalized approach, can be probably specialized to the
homogeneous models. However, this formulation is again
a noncanonical one which we do not favour.

The way out seems to be giving up the insistence on deal-
ing entirely with canonical formulations and planning mak-
ing use of coherent states quantization methods (based on
phase space structure of the underlying system) that we have
recently applied to the diagonal Bianchi IX model [20,21].
In such a case making use of the results of [12] to elucidate

2 There can also occur small oscillations �̃1 ∼ �̃2 � �̃3, but they last
for a finite interval of time and can be ignored.

mathematical structure of the physical phase space specific
to the dynamics of the Bianchi IX model (in both considered
cases) would make sense. This is supposed to be the next step
of our investigation and the results of the present paper could
be used as a starting point. Another approach would be based
on modification of the definition of the Hubble-normalized
variables that we use in the present paper.

The fact that some critical points occur at infinity is not an
obstacle. The mapping of the set of critical points onto the
Poincaré sphere (considered, e.g., for the nondiagonal case,
in “Appendix C”) des not change the type of the criticality.
It stays to be of nonhyperbolic type. Thus, compactification
of phase space does not help.

It seems that the nonhyperbolicity of the equilibrium
points distributed in a continuous way in higher dimensional
space is a generic feature of the dynamics of the Bianchi IX
model and cannot be avoided. These properties may corre-
spond to mathematical structure [13,22] underlying chaotic
behaviour of considered dynamics (see, e.g., [23,24]), and
needs to be further examined.
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Appendix A: Quotient coordinates

In order to avoid defining critical surface in term of the lim-
its

√
N3/N2 
 √

N2/N1 
 N 2
1 → 0, one can introduce

quotient coordinates:

u := 1

N 2
1

√
N2

N1
, (A1)

v := 1

N 2
1

√
N3

N2
. (A2)

Then the system of equations (36)–(40) takes the following
form:

Ṅ1 = −N1
2

3
− N 2

1 (1 + �1)
(
1 + √

1 − 4(u + v)�
)

�
, (A3)
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u̇ = uN1
�0 + 3(4 + 5�1 − �2)

√
1 − 4(u + v)�

6�
, (A4)

v̇ = vN1
�0 + 3(4 + 5�1 + 2�2)

√
1 − 4(u + v)�

6�
,

(A5)

�̇1 = −1

3
(4 + �1)N1 − 2uN1�

1 + √
1 − 4(u + v)�

, (A6)

�̇2 = −1

3
(−2 + �2)N1 + 2(u − v)N1�

1 + √
1 − 4(u + v)�

, (A7)

where �0 = 15�1 + 4�1
2 − 3�2 + 4�1�2 + 4�2

2 and
� = −3 + �1

2 + �1�2 + �2
2. The left hand sides of Eqs.

(A3)–(A4) vanish for N1 = 0 = u = v.
The set of critical points of the vector field (A3)–(A7) is

easily found to be

S̃qHN := {(�1, �2, N1, u, v) | N1 = 0 = u = v} ⊂ R̄
5.

(A8)

The characteristic polynomial is P(λ) = −λ5. Thus, the
character of corresponding critical surface is nonhyperbolic.

One may speculate that S̃qHN corresponds to S0 of Eq.
(90) so the underlying dynamics of corresponding vector
fields have some common feature. One may further spec-
ulate that both S0 of Eqs. (90) and (A8) correspond to some
new form of chaoticity, whereas (91)–(93) are specific to the
well known attractor of the diagonal case.

Appendix B: Relationship between old and new variables

Let us rewrite Eqs. (2) as follows

q̇1 = π1, (B1)

q̇2 = π2, (B2)

q̇3 = π3, (B3)

π̇1 = − exp(2q1) + exp(q2 − q1), (B4)

π̇2 = exp(2q1) − exp(q2 − q1) + exp(q3 − q2), (B5)

π̇3 = exp(2q1) − exp(q3 − q2), (B6)

where q1 := ln a, q2 := ln b, q3 := ln c, π1 := q̇1, π2 :=
q̇2, π3 := q̇3 are new variables. Thus, the constraint (3)
reads

π1π2 + π1π3 + π2π3

= exp(2q1) + exp(q2 − q1) + exp(q3 − q2). (B7)

Making use of (B1)–(B6) one can present (B7) in the form

π1π2 + π1π3 + π2π3 = 4π̇1 + 3π̇2 + 2π̇3. (B8)

One can easily verify that the critical points of the dynami-
cal system (B1)–(B7) are of the nonhyperbolic type and coin-
cide with the set of critical points SB determined in [6]. Thus,

the set of critical points SB (in terms of qα and πα variables)
is given by

SB : = {(q1, q2, q3, π1, π2, π3) ∈ R̄
6

| (q1 → −∞, q2 − q1 → −∞, q3 − q2 → −∞)

∧(π1 = 0 = π2 = π3}, (B9)

where R̄ := R ∪ {−∞,+∞}. The infinities in (B9) should
be approached in such a way that q1 � q2 � q3, which
corresponds to a � b � c found in [5].

Now, we rewrite the vector field (B1)–(B7) in terms of the
qHN variables Nα and �α . Using (15) we get

�α = 3πα/(π1 + π2 + π3) − 1. (B10)

Equation (B10) can be presented in a matrix form as follows

⎡
⎣

�1 − 2 1 + �1 1 + �1

1 + �2 �2 − 2 1 + �2

1 + �3 1 + �3 �3 − 2

⎤
⎦

⎡
⎣

π1

π2

π3

⎤
⎦ =

⎡
⎣

0
0
0

⎤
⎦ . (B11)

One may verify that the determinant of the 3 × 3 matrix A
of the above equation reads: det (A) = 9 (�1 + �2 + �3) =
0, since �1 + �2 + �3 = 0. Thus, rank of A < 3. One
may easily check that all minors (Mk, k = 1, 2, 3) of the
2 × 2 submatrixes of the matrix A are of the form Mk =
±3(1 + �k). Since we cannot have 1 + �k = 0,∀k due
to �1 + �2 + �3 = 0, the rank of the A matrix equals 2.
Suppose we choose

B =
[

�1 − 2 1 + �1

1 + �2 �2 − 2

]
, (B12)

to play the role of a nonsingular submatrix of A. Since
det B = 3(1 + �3), the rank of B equals 2 if we have

1 + �3 �= 0. (B13)

Using Cramer’s rules we find the following solution to
(B11):

π1 = �(1 + �1), π2 = �(1 + �2) π3 = �(1 + �3),

(B14)

where we have redefined an arbitrary variable π3 = � ∈
C1(R) by taking π3 = �(1 + �3), which is allowed as
(1 + �3) �= 0. It is clear that one can get the solution (B14)
assuming that either 1 + �1 �= 0 or 1 + �2 �= 0, instead
of (B13). Therefore, our solution (B14) is independent on
the choice of the minor Mk connected with the matrix A of
(B11). We conclude that the general solution to the matrix
equation (B11) is defined by (B14).

Using (14) we obtain

Nα = 3 exp(2qα)/(π1 + π2 + π3), (B15)
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that leads to

exp(2q1) = N1(π1 + π2 + π3)/3, exp(q2 − q1)

= √
N2/N1, exp(q3 − q2) = √

N3/N2.

(B16)

Combining (B4)–(B6) we obtain

exp(2q1) = π̇1 + π̇2 + π̇3, exp(q2 − q1)

= 2π̇1 + π̇2 + π̇3, exp(q3 − q2) = π̇1 + π̇2.

(B17)

Comparing (B16) with (B17), and using the solution (B14),
we get

π̇1 + π̇2 + π̇3 = �N1, (B18)

2π̇1 + π̇2 + π̇3 = √
N2/N1, (B19)

π̇1 + π̇2 = √
N3/N2, (B20)

Which can be presented in a matrix form as follows:
⎡
⎣

1 1 1
2 1 1
1 1 0

⎤
⎦

⎡
⎣

π̇1

π̇2

π̇3

⎤
⎦ =

⎡
⎣

�N1√
N2/N1√
N3/N2

⎤
⎦ . (B21)

One may easily verify that determinant of the matrix defining
(B21) equals one, so the system has only one solution. It is
found to be:

π̇1 = √
N2/N1 − �̃, π̇2 = √

N3/N2 − √
N2/N1 + �̃,

π̇3 = −√
N3/N2 + �̃, (B22)

where �̃ := �N1.
An arbitrary variable � that occurs in (B14) and (B22)

can be fixed by the constraint (B8). It leads to the following
equation for �:

(3 + �1�2 + �1�3 + �2�3)�
2 − N1 �

−(√
N2/N1 + √

N3/N2
) = 0, (B23)

where �1 + �2 + �3 = 0.

Appendix C: The Poincaré type variables

Since examination of phase space at ‘infinite region’, (B9),
is difficult mathematically, we change coordinates of the
phase space to map the set of critical points (B9) onto a
finite region. We map the infinite space R̄

6 into a finite
Poincaré sphere, parameterized by Cartesian coordinates
(X1, X2, X3, P1, P2, P3), as follows:

x1 =: X1

1 − r
, (C1)

x2 =: X2

1 − r
, (C2)

x3 =: X3

1 − r
, (C3)

p1 =: P1

1 − r
, (C4)

p2 =: P2

1 − r
, (C5)

p3 =: P3

1 − r
, (C6)

where r2 = X2
1 + X2

2 + X2
3 + P2

1 + P2
2 + P2

3 , and where we
redefined the variables: xk := qk, pk := πk (k = 1, 2, 3)

to get the connection with the results of our previous paper
(see, Eq. (38) of [6]). We also rescale the time parameter
τ by defining the new time parameter T such that dT :=
dτ/(1−r). In these coordinates our phase space is contained
within a sphere of radius one – ‘infinities’ correspond to
r = 1.

If the mapping is canonical, we should have:

{Xl , Xk}x,p = 0 = {Pl , Pk}x,p, {Xl , Pk}x,p = δlk . (C7)

The map (C1)–(C6) is not canonical, because we have:

{Xk, Xl}x,p = (1 − r)g(a)(xk pl − xl pk), (C8)

{Pk, Pl}x,p = (1 − r) f (a)(xk pl − xl pk), (C9)

{Xk, Pl}x,p = (1 − r)2δkl

−(1 − r)
(
f (a)xkxl + g(a)pk pl

)
, (C10)

where a := r2/(1 − r)2, f (a) �= 0, g(a) �= 0. It is clear
that there is no chance to get (C7) for any r including the
limit r → 1.

The insertion of (C1)–(C6) into (B1)–(B6) gives:
(

X1

1 − r

)′
= 1

2
(−P1 + P2 + P3), (C11)

(
X2

1 − r

)′
= 1

2
(P1 − P2 + P3), (C12)

(
X3

1 − r

)′
= 1

2
(P1 + P2 − P3), (C13)

(
P1

1 − r

)′
= (1 − r)

(
2 exp

2X1

1 − r
− exp

X2 − X1

1 − r

)
,

(C14)(
P2

1 − r

)′
= (1 − r)

(
exp

X2 − X1

1 − r
− exp

X3 − X2

1 − r

)
,

(C15)(
P3

1 − r

)′
= (1 − r)

(
exp

X3 − X2

1 − r

)
, (C16)

where prime denotes derivative with respect to the new time
parameter T .

To find the fixed points we insert X ′
1 = 0 = X ′

2 = X ′
3 =

P ′
1 = P ′

2 = P ′
3 into (C11)–(C16) by using the elementary

formulas:

r ′ = d

dT
r = (

X1X
′
1 + X2X

′
2

+ X3X
′
3 + P1P

′
1 + P2P

′
2 + P3P

′
3

)
/r (C17)
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and, e.g.

d

dT

(
X1

1 − r

)
= X ′

1(1 − r) + X1r ′

(1 − r)2 . (C18)

After rearrangement of terms we finally get:

− P1 + P2 + P3 = 0, (C19)

P1 − P2 + P3 = 0, (C20)

P1 + P2 − P3 = 0, (C21)

2 exp
2X1

1 − r
− exp

X2 − X1

1 − r
= 0, (C22)

exp
X2 − X1

1 − r
− exp

X3 − X2

1 − r
= 0, (C23)

exp
X3 − X2

1 − r
= 0. (C24)

The solution to (C19)–(C21) reads: P1 = 0 = P2 = P3. The
equations (C22)–(C24) can be satisfied in the limit r �→ 1 if

lim
r→1− exp

2X1

1 − r
= 0 = lim

r→1− exp
X2 − X1

1 − r

= lim
r→1− exp

X3 − X2

1 − r
, (C25)

which leads to the condition: X3 < X2 < X1 < 0. There-
fore, the critical subspace is defined to be:

SP := {(X1, X2, X3, P1, P2, P3) | (X3 < X2 < X1 < 0)

∧ (P1 = 0 = P2 = P3)}. (C26)

It is not difficult to verify that the transformation (C1)–(C6)
does not map SB into SP .

It is clear that any point of SP , in the limit r → 1−, satisfies
the constraint (B7) which in the variables (C1)–(C6) has the
form:

1

2(1 − r)2 (P1P2 + P1P3 + P2P3)

− 1

4(1 − r)2 (P2
1 + P2

2 + P2
3 ) (C27)

− exp
2X1

1 − r
− exp

X2 − X1

1 − r
− exp

X3 − X2

1 − r
= 0.

(C28)

One can resolve (either manually or by symbolic compu-
tations) the nonlinear vector field (C11)–(C16) with respect
to the derivatives X ′

1, X
′
2, . . . , P

′
3, and find the correspond-

ing Jacobian. Its value at any point of the subspace SP (in the
limit r �→ 1) turns out to be a six dimensional zero matrix.
It means that linearization of the exact vector field, at the set
of critical points SP , cannot help in the understanding of the
mathematical structure of the space of orbits of considered
vector field. An examination of the nonlinearity cannot be
avoided. One may say, formally, that the set SP consists of
the nonhyperbolic type of fixed points.
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