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Abstract We consider a thick brane model using two interacting scalar fields in
7D and 8D gravity. Using a special choice of potential energy, we obtain numer-
ically regular asymptotically flat vacuum solutions. The possibility of obtaining
the similar solutions for an arbitrary number of extra spatial dimensions is being
estimated.
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1 Introduction

The idea about a multidimensional universe was suggested in the 1920s for uni-
fication of gravitational and electromagnetic interactions. But just in the 1980s,
a great deal of interest in multidimensional models has been renewed within the
framework of superstring theory. This theory pretends on unification all of the
fundamental interactions in one theory. Perhaps the most important problem of all
multidimensional theories consists in the unobservability of extra dimensions. To
solve this problem, on can get an idea that extra dimensions are compactified and
unobservable up to the Planck scales. Despite the numerous attempts for solving
the problem of compactification of extra dimensions, a satisfactory solution is not
found so far.

At the end of the 1990s, the idea about noncompact (infinite) extra dimen-
sions had been proposed [1; 2] (see also the earlier works [3; 4; 5; 6]). This is
the so-called brane model. In this model, matter is somehow confined (trapped)
on a 4D surface (brane). On the basis of this idea, new ways for solution of some
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old problems of high-energy physics (the problem of mass hierarchy, stability of
proton, etc.) were proposed. At the present time, the models of 4D-branes embed-
ded in 5D and 6D spaces [7], and also the crossing 5D-branes in 6D [8] are under
consideration.

It is assumed in the brane models that various types of matter (bosons, fermions,
gauge fields and so on) are localized on a hypersurface (brane) embedded into
external multidimensional space-time. However, in contrast to the multidimen-
sional Kaluza-Klein theory, the extra dimensions can be macroscopic ones and,
generally speaking, non-compact ones. Another important difference consists in
different behavior of gravitational and matter fields: if the former exists and prop-
agates in the bulk (i.e., in the external space), the matter fields are localized on the
brane, and they are 4D objects. However, at such an approach it is possible realiza-
tion of a situation when a multidimensional gravitational field can be also localized
on the brane [9; 10] (see also [11]), i.e., it becomes effectively four dimensional,
despite the fact that the extra dimensions can be macroscopic ones. The arising
effective 4D gravitational constant is defined not only by physics on the brane but
also as a result of presence of the extra dimensions. These effects can be directly
checked in experiments and observations both on small and cosmological scales
(see, e.g., Ref. [11]).

A special interest consists in consideration of various scalar fields within the
framework of brane world scenarios. The point is that scalar fields are widely
used in particle physics, astrophysics and cosmology [12]. Scalar fields were con-
sidered in different aspects within the framework of brane theory in Refs. [13; 14;
15; 16; 17; 18; 19] (for a review, see [20]). This interest to the scalar fields is also
being explained by relative simplicity of equations and solutions being obtained
with use of them. It allows to make qualitative analysis of equations and find suffi-
ciently clear physical interpretation of results by analogy to other fields of physics.

One of the main point at a consideration of the brane models is that the infinitely
thin brane models are under consideration in most cases. Certainly, it is absolutely
unsatisfactory from the physical point of view. The point is that obtaining of self-
consistent solutions of gravitational equations interacting with matter and describ-
ing a thick brane is not a simple mathematical problem. At the present time, the
following thick-brane solutions exist: in Ref. [21] such solutions were obtained as
monopole-like solutions. The set of gravitating scalar fields with non-trivial topo-
logical configuration far from the brane was considered. It was shown that such
solutions exist for co-dimension of the brane more or equal to 2. In Ref. [23] a
thick-brane solution in non-Riemannian generalization of the 5D Kaluza-Klein
theory was obtained. In that case the affine connection, except the Christoffel
symbols, has also the Weyl term which was being described by a scalar field. In
Refs. [24; 25] thick branes were obtained for a special form of scalar field poten-
tial. It has allowed to integrate once the field equations for the scalar field. It is
important for existence of these solutions that the potential of the scalar field is
unbounded from below, i.e., V (φ)→−∞ as φ →±∞.

In the light of the above, it is interesting to consider various types of the multi-
dimensional brane models with scalar fields, and to search for localized solutions
with finite energy for an arbitrary number of extra dimensions. One of possibil-
ities consists in a consideration of two nonlinear gravitating scalar fields which
can create a 4D brane in multidimensional space-times. From the physical point
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of view, there is the following situation: an interaction potential of these fields has
two local and two global minima. It means that there are two different vacuums.
The multidimensional space is filled by these scalar fields which are located in
that vacuum in which the scalar fields are in the local minimum. Therefore, there
is a defect in the form of the 4D brane on the background of this vacuum.

We have already investigated similar problems earlier: for the 5D case in
Ref. [26], for the 6D one in Ref. [27]. The obtained solutions show a possibil-
ity of localization of probe scalar fields on the brane.

A search of thick brane solutions is very complicated mathematical problem.
The authors know only three classes of such solutions: (a) the thick branes with
scalar field potentials unbounded from below [24; 25]; (b) the thick branes with
topologically non-trivial scalar fields [21; 22]; and (c) the thick branes with two
nonlinear scalar fields bounded from below [26; 27]. Thus the goal of our paper is
to extend the solutions from Refs. [26; 27] to higher dimensions. We do not con-
sider trapping of any matter on such branes. This problem should be considered
elsewhere.

2 General equations

In general case of D = 4 + n dimensional gravity the action can be written as
follows [28]:

S =
∫

dDx
√

Dg
[
−Mn+2

2
R+Lm

]
, (1)

where M is the fundamental mass scale and n is a number of extra dimensions.
As a source of matter fields Lm we chose two interacting scalar fields ϕ,χ with
the Lagrangian

Lm =
1
2

∂Aϕ∂
A

ϕ +
1
2

∂Aχ∂
A

χ−V (ϕ,χ), (2)

where the potential energy

V (ϕ,χ) =
Λ1

4
(
ϕ

2−m2
1
)2

+
Λ2

4
(
χ

2−m2
2
)2

+ϕ
2
χ

2−V0. (3)

(This potential energy was obtained in [29] at approximate modeling of a con-
densate of gauge field in the SU(3) Yang-Mills theory.) Here and further capi-
tal Latin indices run over A,B = 0,1,2,3, . . . ,D and small Greek indices α,β =
0,1,2,3 refer to four dimensions; Λ1,Λ2 are the self-coupling constants, m1,m2
are the masses of the scalar fields ϕ χ , respectively; V0 is an arbitrary constant
which will be chosen below from physical reasons.

Use of two fields ensures presence of two global minima of the potential (3) at
φ = 0,χ =±m2 and two local minima at χ = 0,φ =±m1 for values of the param-
eters Λ1,Λ2 used in the paper. The conditions for existence of the local minima
are: Λ1 > 0,m2

1 > Λ2m2
2/2, and for the global minima: Λ2 > 0,m2

2 > Λ1m2
1/2. The
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presence of these minima has allowed to find solutions localized on the brane for
5D and 6D cases in Refs. [26; 27] when the solutions have tended to one of the
local minima asymptotically.1

Variation of the action (1) with respect to the D-dimensional metric tensor gAB
gives the Einstein equations:

RA
B−

1
2

δ
A
B R =

1
Mn+2 T A

B , (4)

where RA
B and T A

B are the D-dimensional Ricci and the energy-momentum ten-
sors, respectively. The corresponding scalar field equations can be obtained from
(1) by its variation with respect to the field variables ϕ,χ . Then these equations
will be

1√
Dg

∂

∂xA

[√
Dg gAB ∂ (ϕ,χ)

∂xB

]
=− ∂V

∂ (ϕ,χ)
. (5)

3 7D case

In this case n = 3, and the metric can be chosen in the form [28]

ds2 = φ
2(r)ηαβ dxα dxβ −λ (r)(dr2 + r2dΩ

2
2 ), (6)

where ηαβ is a flat 4D spacetime metric, and the metric functions φ and λ

depend only on the extra coordinate r. dΩ 2
2 = dθ 2 + sin2

θdψ2 is an angular part
of the metric depending only on 6th and 7th coordinates.

Then, using (2), (4) and (6), one can get the system of gravitational equations
in the following form

3
(

2
φ ′′

φ
− φ ′

φ

λ ′

λ

)
+6

(
φ ′

φ

)2

+2

{
3

φ ′

φ

(r2λ )′

r2λ
+

(r2λ )′′

r2λ
− 1

4

[
(r2λ )′

r2λ

]2

− 1
2

λ ′

λ

(r2λ )′

r2λ
− 1

r2

}
=− 2λ

M5 T α
α , (7)

12
(

φ ′

φ

)2

+2

{
4

φ ′

φ

(r2λ )′

r2λ
+

1
4

[
(r2λ )′

r2λ

]2

− 1
r2

}
=− 2λ

M5 T r
r , (8)

4
(

2
φ ′′

φ
− φ ′

φ

λ ′

λ

)
+12

(
φ ′

φ

)2

+4
φ ′

φ

(r2λ )′

r2λ
+

(r2λ )′′

r2λ
− 1

2

[
(r2λ )′

r2λ

]2

1 Note here that there are the following vacuums for the potential (3): two true vacuums in
the global minima, two false vacuums in the local minima, one metastable vacuum in the local
maximum, and four metastable vacuums in the saddle points.
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−1
2

λ ′

λ

(r2λ )′

r2λ
=− 2λ

M5 T θ
θ , (9)

where a prime denotes differentiation with respect to r, and the corresponding
components of the energy–momentum tensor are:

T α
α = T θ

θ =
1

2λ

(
ϕ
′2 + χ

′2)+V (ϕ,χ), (10)

T r
r = − 1

2λ

(
ϕ
′2 + χ

′2)+V (ϕ,χ). (11)

Multiplying equation (9) by 3/4 and subtracting its from (7), and also sub-
tracting equation (8) from (9), we have

λ ′′

λ
− 3

5

(
λ ′

λ

)2

− 12
5

(
φ ′

φ

)2

+
4
5r

(
6

φ ′

φ
+

13
4

λ ′

λ

)
+

12
5

φ ′

φ

λ ′

λ

=−2
5

λ

[
1

2λ

(
ϕ
′2 + χ

′2)+V (ϕ,χ)
]
, (12)

8
(

φ ′′

φ
− φ ′

φ

λ ′

λ
− φ ′

rφ

)
+

λ ′′

λ
− 3

2

(
λ ′

λ

)2

− λ ′

rλ
=−2

(
ϕ
′2 + χ

′2) , (13)

where the following rescalings have been used r→ r/M5/2, ϕ →M5/2ϕ , χ →
M5/2χ , m1,2 → M5/2m1,2. For the 7D metric given by (6) the ϕ,χ scalar field
equations become

ϕ
′′+

(
2
r

+4
φ ′

φ
+

1
2

λ ′

λ

)
ϕ
′ = λϕ

[
2χ

2 +Λ1
(
ϕ

2−m2
1
)]

, (14)

χ
′′+

(
2
r

+4
φ ′

φ
+

1
2

λ ′

λ

)
χ
′ = λ χ

[
2ϕ

2 +Λ2
(
χ

2−m2
2
)]

. (15)

The system of equations (12)–(15) is a system of nonlinear equations with
solutions whose behavior depends essentially from values of the parameters m1,m2
and Λ1,Λ2. As it was shown in Refs. [26; 27], a problem of a search of regular
solutions for systems similar to (12)–(15) reduced to evaluation of eigenvalues of
the parameters m1,m2 at some values of the self-coupling constants Λ1,Λ2. Only
for these values of the parameters regular solutions with finite energy exist.

We will search for such regular solutions in a whole space. Because of the
fact that it is not possible to find analytical solutions, we search for a solution
numerically. In order to make a solution regular everywhere, let us consider a
solution near the brane, i.e., at r ≈ 0. We represent the solutions by a power series
in r:
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φ(r) ≈ φ0 +φ2
r2

2
, (16)

λ (r) ≈ λ0 +λ2
r2

2
, (17)

ϕ(r) ≈ ϕ0 +ϕ2
r2

2
, (18)

χ(r) ≈ χ0 + χ2
r2

2
, (19)

where the subscript 0 denotes a value of the function at r = 0, and the subscript
2 denotes a second derivative of the corresponding function at r = 0. Substitution
of these series into equations (12)–(15) gives the following values for φ2,λ2,ϕ2,χ2

λ2 =
1

15
λ

2
0 V (0), φ2 =− 2

15
φ0λ0V (0), (20)

ϕ2 =
1
3

λ0ϕ0
[
2χ

2
0 +Λ1

(
ϕ

2
0 −m2

1
)]

, (21)

χ2 =
1
3

λ0χ0
[
2ϕ

2
0 +Λ2

(
χ

2
0 −m2

2
)]

. (22)

Let us note here that, as it was shown by previous investigations [26; 27],
existence of regular solutions is possible when the field ϕ has a minimum at r =
0, and the field χ has a maximum, i.e., it is necessary to ensure the fulfilment
of inequalities ϕ2 > 0 and χ2 < 0. As follows from (21)–(22), these conditions
impose restrictions on the boundary conditions ϕ0,χ0 and values of the parameters
Λ1,Λ2.

Equations (12)–(15) cannot be solved analytically. But numerical analysis also
faces some difficulties. As it was shown by preliminary numerical analysis, regular
solutions exist not for all m1,2 but for some special values of these parameters.
This means that we have deal with a nonlinear eigenvalue problem. The functions
ϕ(r),χ(r) are eigenfunctions, and the parameters m1,2 are eigenvalues, and the
condition Λ1 6= Λ2 should be satisfied. In particular, we chose Λ1 = 0.1,Λ2 = 1.0.

3.1 Numerical solution

In this section we describe a method of numerical solution of equations (12)–(15)
in details. As it was mentioned above, the specific feature of the system of equa-
tions is that determining of the functions ϕ and χ is a nonlinear eigenvalue prob-
lem. Usually, numerical solution of one ordinary differential equation for a search
of eigenfunctions and eigenvalues is carrying out by the shooting method. The
essence of the method is to try to find (using a method of step-by-step approxima-
tion) some eigenvalue at which an eigenfunction is regular. For example, in such a
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way one can find a discrete energy spectrum of a particle in a 1D potential well of
an arbitrary shape. Unfortunately, this method does not work in a case when one
has a eigenvalues and eigenfunctions problem with two variables. It takes place in
our case: we have two eigenfunctions ϕ,χ and two eigenvalues m1,2.

We therefore will search for a numerical solution in the following way. Search-
ing for eigenvalues of equations (14)–(15), we only solve on each step either equa-
tion (14) or (15). Since there is also another function in this equation, its value is
being taken from a previous step. Having found (with some accuracy) some values
of the functions ϕ,χ and eigenvalues m1,2, one should insert them into the Ein-
stein equations (12)–(13) for determining the metric functions φ ,λ . Then these
functions should be inserted in one of field equations (14)–(15) which are being
solved as an eigenfunctions problem for the functions ϕ,χ and eigenvalues m1,2
once again. These iterations are being repeated necessary number of times for
obtaining of a solution in the range r ∈ [∆ ,r f ], where r f is some final point on the
axis r.

Note the most essential features of the method:

• One cannot start a numerical solution at r = 0 because of terms like y(r)/r in
equations (12)–(15), where y(r) is one of the functions φ ,ϕ,χ,λ . One there-
fore should start a numerical solution at r = ∆ 6= 0 using the following bound-
ary conditions

φ(∆) ≈ φ0 +φ2
∆ 2

2
, (23)

λ (∆) ≈ λ0 +λ2
∆ 2

2
, (24)

ϕ(∆) ≈ ϕ0 +ϕ2
∆ 2

2
, (25)

χ(∆) ≈ χ0 + χ2
∆ 2

2
. (26)

• One should not try to find a numerical solution for large r f because any numer-
ical method has some inaccuracy. This inaccuracy defines (by some unknown
way) the interval [∆ ,r f ] in which an exact solution differs insignificantly from
numerical one.

• An eigenvalues problem is very sensible to calculated eigenvalues. For exam-
ple, let us consider the equation

d2y(x)
dx2 = 2y(x)

[
y(x)2− e

]
. (27)

This equation, being considered as an eigenvalues problem with the eigenfunc-
tion y(x) and the eigenvalue e, has an exact solution y = tanh(x),e = 1. If one
solves this equation numerically with initial conditions which follow from the
exact solution



8 V. Dzhunushaliev et al.

Fig. 1 The scalar fields ϕ(r),χ(r) for the boundary conditions given in (30). The solid lines
correspond to the 7D case, the dashed lines correspond to the 8D case

Fig. 2 The metric functions φ(r),λ (r) for the boundary conditions given in (30). The solid lines
correspond to the 7D case, the dashed lines correspond to the 8D case

y(0) = 0, y′(0) = 1, (28)

then one can see that for x≈ 6 the numerical solution significantly differs from
the exact one.

Thus, we chose the following algorithm for numerical solution of equations (12)–
(15):

1. The choice of a zeroth approximation for the function ϕ(r) or χ(r).
2. Numerical solution of equation (14) or (15) by the shooting method with a

calculation of the functions ϕ(r) or χ(r), and m1 or m2.
3. Numerical solution of equation (15) or (14) by the shooting method with cal-

culation of the functions χ(r) or ϕ(r), and m2 or m1.
4. Reiteration of the steps 2 and 3 a necessary number of times.
5. Substitution of the functions ϕ(r) and χ(r) into the Einstein equations (12)

and (13) and their solution by usual numerical method.
6. Substitution of the functions φ(r) and λ (r) into equations (14) or (15) and

reiteration of the steps 2–5 a necessary number of times.
7. Check of the obtained solutions by solution of initial equations (12)–(15) by

using the parameters m1,2 which have been calculated on the steps 2–3.

For these calculations we use the program package Mathematica for numerical
solution of differential equations.

3.2 Results

Using the procedure described in the previous section, let us find a self-consistent
numerical solution of the system (12)–(15). We chose the following boundary
conditions at r = 0

ϕ0 =
√

3, ϕ
′
0 = 0,

χ0 =
√

0.6, χ
′
0 = 0,

φ0 = 1.0, φ
′
0 = 0, (29)

λ0 = 1.0, λ
′
0 = 0,

and Λ1 = 0.1,Λ2 = 1.0. The arbitrary constant V0 is being chosen as V0 =(Λ2/4)m4
2

for zeroing of the energy density as r → ∞.
In this case regular solutions exist at m1 ≈ 2.31505626 and m2 ≈ 3.08288116.

The obtained solutions are presented in Figs. 1 and 2. The corresponding plot for
the energy density is shown in Fig. 3. As one can see from the last figure, the
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Fig. 3 The energy density T 0
0 (r) from (10). The solid line corresponds to the 7D case, the dashed

line corresponds to the 8D case

energy density tends asymptotically to zero as r → ∞, i.e., the scalar fields are
trapped on the 4D-brane.

It is difficult to see an asymptotic behavior of the metric functions from Fig. 2.
To clarify this question, let us search for asymptotic solutions of equations (14)–
(15) in the form

ϕ = m1−δϕ, χ = δ χ, (30)

where δϕ,δ χ � 1 as r→∞. Such an asymptotic behavior of the fields means
that the solutions tend to the local minimum at ϕ = m1,χ = 0. Then the right hand
sides of equations (12)–(13) tend to zero, i.e., one has the following asymptotic
equations for the metric functions
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λ ′′

λ
− 3

5

(
λ ′

λ

)2

− 12
5

(
φ ′

φ

)2

+
4
5r

(
6

φ ′

φ
+

13
4

λ ′

λ

)
+

12
5

φ ′

φ

λ ′

λ
= 0, (31)

8
(

φ ′′

φ
− φ ′

φ

λ ′

λ
− φ ′

rφ

)
+

λ ′′

λ
− 3

2

(
λ ′

λ

)2

− λ ′

rλ
= 0. (32)

Let us search for solutions of these equations in the form

φ ≈ φ∞−
C1

rα
, (33)

λ ≈ λ∞ +
C2

rβ
. (34)

(The subscript “∞” indicates the asymptotic value of the variable, C1 > 0,C2 >
0 and α,β are some arbitrary constants.) One can check that in the case under
consideration α and β are equal to each other. Then we have from (31)–(32)

φ ≈ φ∞−
C1

r
, (35)

λ ≈ λ∞ +
C2

r
. (36)

Inserting these solutions in (14)–(15), and taking into account (29) we have

δϕ
′′+

2
r

δϕ
′ = 2λ∞Λ1m2

1δϕ, (37)

δ χ
′′+

2
r

δ χ
′ = λ∞

(
2m2

1−Λ2m2
2
)

δ χ (38)

with regular solutions

δϕ ≈Cϕ

exp
(
−

√
2λ∞Λ1m2

1 r
)

r
, (39)

δ χ ≈Cχ

exp
(
−

√
λ∞(2m2

1−Λ2m2
2) r

)
r

, (40)

where Cϕ ,Cχ are integration constants. Thus one can see from (29), (32), (33),
(38), and (39) that the asymptotic behavior corresponds to a 7D Minkowski space-
time with the scalar fields energy density equal to zero.

Now let us calculate the dimensionless brane tension. For this purpose we take
an integral over the extra space:

σ = 8π

∞∫
0

T 0
0 (r)r2

λ (r)3/2dr ≈ 5.

One can see that, despite the negative energy density near the brane, the tension
is positive because the energy density is positive as r → ∞.
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4 8D case

We now consider the 8D problem. For this case n = 4, and we chose the metric as
follows:

ds2 = φ
2(r)ηµν dxµ dxν

−λ (r)
{

dr2 + r2 [
dθ

2 + sin2
θ

(
dψ

2 + sin2
ψdξ

2)]} , (41)

here µ,ν = 0,1,2,3 refer to four dimensions; r,θ ,ψ,ξ are extra coordinates;
θ ,ψ,ξ are polar angles on a 3D sphere; ηµν = {+1,−1,−1,−1} is the 4D Minkowski
metric. Inserting the metric (41) in (4)–(5), one can obtain the following equations

4
(

φ ′′

φ
− λ ′φ

λφ
− φ ′

rφ

)
+

λ ′′

λ
− 3

2

(
λ ′

λ

)2

− λ ′

rλ
=−

[
ϕ
′2 + χ

′2
]
, (42)

λ ′′

λ
−2

(
φ ′

φ

)2

+
4
r

(
φ ′

φ
+

λ ′

λ

)
+2

φ ′λ ′

φλ
− 1

4

(
λ ′

λ

)2

=−1
3

λ

[
1

2λ

(
ϕ
′2 + χ

′2
)

+V
]
, (43)

2
φ ′2

φ 2 +2
φ ′λ ′

φλ
+4

φ ′

rφ
+

3
2

λ ′2

λ 2 +4
λ ′

rλ
=−1

3
λ

[
− 1

2λ

(
ϕ
′2 + χ

′2
)

+V
]
, (44)

ϕ
′′+

(
3
r

+4
φ ′

φ
+

λ ′

λ

)
ϕ = λϕ

[
2χ

2 +Λ1
(
ϕ

2−m2
1
)]

, (45)

χ
′′+

(
3
r

+4
φ ′

φ
+

λ ′

λ

)
χ = λ χ

[
2ϕ

2 +Λ2
(
χ

2−m2
2
)]

, (46)

where we have used the rescalings: r → r/M3, ϕ →M3ϕ , χ →M3χ , m1,2 →
M3m1,2.

We will search for solutions of this system by analogy with the 7D case. Using
the same boundary conditions (29), one can obtain the results presented in Figs. 1,
2 and 3.

It is interesting to estimate an asymptotic behavior of the solutions as r → ∞.
For this purpose let us search for a solution of equations (45)–(46) in the form
(30). Then the right hand sides of equations (42)–(44) tend to zero, and we will
search for solutions for the metric functions in the form (33)–(34). One can obtain
from (42)–(44) that α = β = 2, i.e., we have the following asymptotic behavior of
the metric functions

φ ≈ φ∞−
C1

r2 , (47)

λ ≈ λ∞ +
C2

r2 . (48)

Inserting these solutions in (45)–(46), and taking into account (29) we have
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δϕ
′′+

3
r

δϕ
′ = 2λ∞Λ1m2

1δϕ, (49)

δ χ
′′+

3
r

δ χ
′ = λ∞

(
2m2

1−Λ2m2
2
)

δ χ (50)

with regular solutions

δϕ ≈Cϕ

exp
(
−

√
2λ∞Λ1m2

1 r
)

r3/2 , (51)

δ χ ≈Cχ

exp
(
−

√
λ∞(2m2

1−Λ2m2
2) r

)
r3/2 , (52)

where Cϕ ,Cχ are integration constants. Thus one can see from (29), (47), (48),
(51) and (52) that, similar to the 7D case, the asymptotic behavior corresponds to
a 8D Minkowski spacetime with the zero energy density of scalar fields.

Calculating the brane tension for this case, one can find

σ = 8π

∞∫
0

T 0
0 (r)r3

λ (r)2dr ≈ 6.75,

i.e., one also has a positive brane tension as in the 7D case.



Thick brane in 7D and 8D spacetimes 13

5 Arbitrary number of extra spatial dimensions

The numerical regular solutions obtained for the 7D and 8D cases allows us to
hope that similar solutions can exist and for an arbitrary number of n extra spatial
dimensions. Unfortunately, one cannot obtain numerical solutions for an arbitrary
n because of the fact that it is not possible to eliminate n from the equations.
However, we can estimate a possibility that such solutions exist. Let us use for
this purpose the Einstein equations obtained in Ref. [28] for the generalized D-
dimensional metric

ds2 = φ
2(r)ηαβ (xν)dxα dxβ −λ (r)

(
dr2 + r2dΩ

2
n−1

)
, (53)

where dΩ 2
n−1 is the solid angle for the (n−1) sphere. It is convenient to rewrite

the Einstein equations from [28] in the form

3
(

2
φ ′′

φ
− φ ′

φ

λ ′

λ

)
+6

(φ ′)2

φ 2 +(n−1)

×
[

3
φ ′

φ

(
λ ′

λ
+

2
r

)
+

λ ′′

λ
− 1

2
λ ′

λ

(
λ ′

λ
− 6

r

)
+

n−4
4

λ ′

λ

(
λ ′

λ
+

4
r

)]
=− 2λ

Mn+2 T α
α , (54)

12
(φ ′)2

(φ)2 +(n−1)
[

4
φ ′

φ

(
λ ′

λ
+

2
r

)
+

n−2
4

λ ′

λ

(
λ ′

λ
+

4
r

)]
=− 2λ

Mn+2 T r
r , (55)

4
(

2
φ ′′

φ
− φ ′

φ

λ ′

λ

)
+12

(φ ′)2

φ 2 +(n−2)

×
[

4
φ ′

φ

(
λ ′

λ
+

2
r

)
+

λ ′′

λ
− 1

2
λ ′

λ

(
λ ′

λ
− 6

r

)
+

n−5
4

λ ′

λ

(
λ ′

λ
+

4
r

)]
=− 2λ

Mn+2 T θ
θ , (56)

and the scalar field equations are:

ϕ
′′+

(
n−1

r
+4

φ ′

φ
+

n−2
2

λ ′

λ

)
ϕ = λϕ

[
2χ

2 +Λ1
(
ϕ

2−m2
1
)]

, (57)

χ
′′+

(
n−1

r
+4

φ ′

φ
+

n−2
2

λ ′

λ

)
χ = λ χ

[
2ϕ

2 +Λ2
(
χ

2−m2
2
)]

. (58)

As one can see from equations (54)–(56), the left hand sides could be regular
at r = 0 if the boundary conditions λ ′(0) = 0,φ ′(0) = 0 are hold true. Just these
conditions for the metric functions were used by us at consideration of the 5D [26]
and 6D [27] cases, and also the 7D and the 8D problems in this paper. Apparently,
the situation remains the same and for a case of an arbitrary number of n extra
spatial dimensions.
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On the other hand, consideration of an asymptotic behavior of the metric func-
tions φ ,λ for the 7D and 8D cases shows that their behavior can be described for
the arbitrary n > 6 in the following form

φ ≈ φ∞−
C1

rn−6 , (59)

λ ≈ λ∞ +
C2

rn−6 . (60)

Such a behavior corresponds to fast transition of the solutions to a Minkowski
spacetime. At the same time, an asymptotic behavior of the scalar fields can be
described as follows:

ϕ ≈ m1−Cϕ

exp
(
−

√
2λ∞Λ1m2

1 r
)

r(n−1)/2 , (61)

χ ≈Cχ

exp
(
−

√
λ∞(2m2

1−Λ2m2
2) r

)
r(n−1)/2 . (62)

So we have the regular solutions for an arbitrary n both near zero and as r→∞.
Note that it is possible to expand the solutions near zero in a Taylor series (see
(16)–(19)) and to obtain solutions with any necessary accuracy. One might expect
that these solutions can be joined smoothly, and they would be regular in the entire
range 0≤ r < ∞.

6 Conclusions

We have shown that two gravitating nonlinearly interacting scalar fields can form a
4-dimensional thick brane configuration in 7D and 8D spacetimes. Consideration
of the problem has turned into investigation of the system of ordinary differen-
tial equations. It was shown that the regular solutions with the finite energy den-
sity exist only for some values of the masses of the scalar fields m1,m2 at some
self-coupling constants Λ1,Λ2 which are given above. That is, the problem of a
search of eigenvalues of the parameters m1,m2 for the system of nonlinear equa-
tions (4)–(5) was solved. The regular solutions with an asymptotically flat metric
φ(∞) = φ∞,λ (∞) = λ∞ and with the zero energy density of the matter fields at
m1 ≈ 2.31505626 and m2 ≈ 3.08288116 (for the 7D case) and m1 ≈ 2.25005 and
m2 ≈ 3.115 (for the 8D case) were obtained. In both cases the solutions start with
the boundary conditions (29) with subsequent transition to the local minimum of
the potential (3).

A numerical analysis shows that the solutions exist because the potential V (ϕ,χ)
has the local minimum. Our attempts to find a solution tending to the global min-
imum as r → ∞ were unsuccessful. The possible reason is the Derrick’s theorem
[30] which forbids an existence of static regular solutions with finite energy for
scalar fields in dimensions more than 2. At numerical solution (on the step 4) we
obtain a solution which is regular both in 7D and 8D spacetimes. At first sight this
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solution seems to be forbidden by the Derrick’s theorem. But a more careful anal-
ysis shows that the obtained solution avoids the conditions of the given theorem
because the scalar fields asymptotically tend to the local minimum but not to the
global one.

Let us discuss a question about stability of the obtained solutions. If one con-
sider these fields as classical ones, then it is possible to test the stability by the
following way: (a) first of all, one can investigate small perturbations by a stan-
dard method; (b) then one should investigate large perturbations; (c) following
which it is necessary to consider a behavior of this solution after quantizing of the
scalar fields. In the last case the quantum fields can tunnel from a region of the
local minimum (the false vacuum) to a region of the global minimum (the true
vacuum). But in this case, apparently, the solution should decay into some waves
because existence of a static solution with scalar fields tending asymptotically to
a global minimum is forbidden by the Derrick’s theorem.

But situation can turn out to be more interesting: the point is that in Ref. [29]
there are some arguments in favour that the scalar fields, considered in this paper,
are a quantum non-perturbative condensate of a SU(3) gauge field. Briefly these
arguments consist in the following: components of the SU(3) gauge field can be
divided in some natural way onto two parts. The first group contains those com-
ponents which belong to a subgroup SU(2) ∈ SU(3). The remaining components
belong to a factor space SU(3)/SU(2). Non-perturbative quantization is being
carried out by the following approximate way: it is supposed that 2-point Green
functions can be expressed via the scalar fields. The first field ϕ describes 2-point
Green functions for SU(2) components of a gauge potential, and the second scalar
field χ describes 2-point Green functions for SU(3)/SU(2) components of the
gauge potential. It is supposed further that 4-point Green functions can be obtained
as some bilinear combination of the 2-point Green functions. Consequently, the
Lagrangian of the SU(3) gauge field takes the form (2).

At such an interpretation, a question about stability of the obtained thick brane
solution becomes rather nontrivial problem. In this case the obtained solution
describes some defect in a spacetime filled by a condensate of the gauge field.
A question about stability demands a non-perturbative quantized consideration of
the SU(3) gauge field with Green functions depending on time. The problem is that
the suggested in Ref. [29] approximate method of description of Green functions
can be used only for a static case.

Finally, in Sect. 5 we have discussed a possibility of obtaining of thick brane
solutions with an arbitrary number of n extra spatial dimensions. It was shown for
an arbitrary n that there are regular solutions near zero and as r → ∞. It allows to
hope for existence of solutions which smoothly join these regions.

All the results obtained in [26] for the 5D case and in [27] for the 6D case, and
also in this paper, allow us to speak about principle possibility of localization of
the scalar fields with the potential (3) on a brane in any dimensions. One has every
reason to suppose that existence of similar regular solutions is possible for models
with greater number of extra dimensions. In the future we suppose investigation
of models with an arbitrary number of extra dimensions in studying this question.
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