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1. METHODS

The aim of this work is to show that the Mandelstam
representation holds to every finite order of perturba-
tion theory under the condition that no anomalous
vertex thresholds exist. We shall use induction
procedure, considering at each stage the leading singu-
larity of a Feynman graph . Its two-dimensional
curve of singularity X will be divided into a number
of parts on each of which the singularity is either
wholly present or wholly absent on the physical sheet.
It will then be shown to be wholly absent. The only
exception to this part of the real section of X lying
in the overlap of two cuts which must be singular
in the inappropriate sense (defined below ) to give
the boundary of the relevant Mandelstam spectral
function. A simple example in which one considers
more than one component of X would be the case
in which it consists of two irreducible algebraic
curves. Another example comes later.

2. BEHAVIOUR OF SINGULARITIES

If a point of X is singular, the w«-hypercontour
discussed by Eden is pinched between two halves of a
locally cone-shaped portion of the surface of singu-
larities. As one moves around on X, the vertex of
the cone moves, dragging the hypercontour with it.
The only way that one can change from singularity to
non-singularity is for the pinch to fall off an “edge”’ of
the hypercontour. This corresponds to a point where
some of the a’s are zero and all «’s have coincidences,
that is, an effective (same values of the «’s) inter-
section of 2 with a lower order singularity. Such
points can only form a set of dimension zero on X
so that at first sight they could always be avoided.

However, we must not leave the physical sheet and
so must not cross the normal threshold cuts. In
going around the cuts we may be forced to go through
a lower order singularity. This is what happens in
Tarski’s fourth order singular case (Fig. 1) with the
anomalous threshold cuts. Avoiding the cut A4 A’
in going from I to II forces us to go through the anoma-
lous threshold singularity at 4’.

All this is just a simple illustration of the continuity
theorem.

3. THE INDUCTION PROCEDURE

We impose the condition of no anomalous thresholds
to start the induction off. The way it proceeds is
not quite trivial. It is necessary to be sure that the
behaviour of a singularity is not different from the
case in which it is the leading singularity.

In considering this problem we have to think about
the distortions of the a-hypercontour. The gener-
alization of an end-point is an edge in which a number
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Fig. 1 Impossibility of avoiding threshold singularity because
of pinched a-hypercontour.
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Fig. 2 Deformation of a-hypercontour and possible occur-
rence of irrelevant singularity.

of a’s must be kept zero. The permissible distortions
are then arbitrary in the sub-space of non-zero o’s
for that edge. Away from an edge it is completely
arbitrary. Thus the edge gets distorted as it would
when it is a leading singularity. But there may be
intrusions into the relevant sub-space due to the con-
tour being forced in from an interior point (Fig. 2).
These could give extra singularities but, since they are
not true edges where the pinch can fall off, they are
irrelevant for us. Thus the induction procedure is
indeed possible.

4. REALITY CONDITIONS

Symanzik has shown that there is a region in which
the denominator of the Feynman function does not
vanish and so the function is real. As we continue
from this region the reality ceases to hold but there
remains an important connection between behaviour
at complex conjugate points. This implies that for
the complex parts of X the two complex conjugate
halves behave in a similar way. It implies also that
for the real section there are only two distinct limits
corresponding to the same or opposite signs for the
imaginary parts of the two relevant variables z; and

Z, 2 Which variables (out of s,, and u) are relevant

is determined by which two give the overlapping cuts
at the point in question. If there are not two over-
lapping cuts, then all limits give the same behaviour.

5. THE CUTS

According to our induction hypothesis we have only
the normal threshold cut. As far as possible we shall
just go around any cuts we meet as we move around
on X. A simple example of the difficulty that may
arise is provided by Fig. 3. Our way out of Region I
is blocked in each direction by a cut. To get to II
we follow some such path as ACB (Fig. 3). We must
cross two cuts to reach Region III, and at C we can
cross the real section and so recross the two previous
(dashed) cuts. Finally we circumnavigate S;, and
arrive at II. From A to C we have left the physical
sheet but at the end of our journey we are back on it
again. Our only worry is that between A and C
we might have encountered dangerous singularities
whose presence in an unphysical sheet is not covered
immediately by our induction procedure.

Actually this point is all right. We need not go
far into the unphysical sheet and will in fact skim
along close to the real section. Thus only singularities
which almost appear on the physical sheet will worry
us, i.e., only lower order real curves I' which are
singular when a limit is taken in an inappropriate
sense 2. It is easy to see that these must have negative
slope (see appendix) and so, since they must reach X
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Fig. 3 Method of by-passing cuts which occur when moving
along the curve of singularities X.
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at an effective intersection, only the arc BC is really
dangerous. However it may be made as short as
we please to avoid trouble. Therefore all is well.

In this way we can cross cuts until we come to the
normal threshold itself. It is easy to show that it
cannot have a finite effective intersection and so the
worst case is shown in Fig. 4, where a double point
at infinity has been put in to make it as hard as
possible. If I'; and I', join up somewhere on the
right then we can link up these complex surfaces there
outside the cut. However if they do not, then there
is no simple way of relating the parts of ~ connected
to I'y to those connected to I',. In this case we
must take these two parts of X and treat them
separately.
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Fig. 4 The worst configurations.

6. NON-SINGULARITY

We now have a number of pieces of £ and we wish
to show that they are non-singular. Consider the
line s = real constant <0. A point P; of each piece
lies on such a line. However, Symanzik and Eden
have proven normal dispersion relations in ¢ for such
values. Therefore each point P; cannot be complex
or outside the normal cuts. However in the cuts
it follows from wunitarity that the only singularities
are those given by normal thresholds. Therefore
the P; are non-singular and so each piece of X is also
non-singular.

This completes the proof.
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Fig. 5 A five-legged diagram.

7. HIGHER ORDER PROCESSES

The observation that the graph in Fig. 5 has singu-
larities corresponding to the contraction shown in
Fig. 6, and that the latter has singularities for
(p1+12)% (p3+pa)® complex, shows that the simplest
generalizations of the Mandelstam representation to
higher order processes are not true in perturbation
theory.

(P,+P,)

(P+P,)

Fig. 6 Contracted diagram for the graph of Fig. 5.
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8. UNITARITY

Mr. Lardner (St. John’s College, Cambridge) has
been able to show that the contributions to the scatter-
ing amplitude arising from three- and four-particle
intermediate states in the unitarity condition are con-
sistent with the Mandelstam representation under the
condition that the corresponding production ampli-
tudes have single variable analyticity in a cut plane.

APPENDIX

On the induction hypothesis the complex surface
sprouting from I is non-singular. Therefore I' is
non-singular in its appropriate limits. It must stay
in the crossed cuts, otherwise it is non-singular in both
limits. If it has a turning point as in Fig. 7 the in-
appropriate limit on AB is just obtained by crossing
from II through the cut, and since II is non-singular
this limit is non-singular. Thus I' must be a convex
curve and have negative slope.
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Fig. 7 The I'-curve.

LIST OF REFERENCES AND NOTES

1. By leading singularity we mean the curve associated with coincidences in each integration over a Feynman variable. See, e.g.,
Polkinghorne. J. C., and Screaton, G. R., Nuovo Cimento 15, (1960) or the preceding talk.

2. See in particular the remarks of Eden in the preceding talk in the material following Eq. (5.6). We call the behaviour of such a
singularity when extended into the complex domain in this way ‘appropriate.”” The opposite behaviour would be

“ inappropriate.”

3. The induction hypothesis forbids these to be singular in an appropriate sense.

DISCUSSION

J. G. TAYLOR: Where do the anomalous thresholds
show up in this? Can one see that easily?

POLKINGHORNE : The main trouble is that an inter-
section with normal thresholds is going to be at
infinity. Now, if you have anomalous thresholds,
the effective intersection will be at a finite point. This
just happens to spoil the argument because you do
not have room to manoeuvre.

OPPENHEIMER : I would like to ask a question on
what is probably a forbidden topic. Have you gained
from this any insight into generalizations of the
Mandelstam representation ?

POLKINGHORNE : If we have, say, the five-point
function and we think of a five-point loop, among
its contractions is the graph shown in Fig. 6 where
you short-circuit two of the lines. This is a vertex
function in which one of the external masses is repre-
sented by (P,-+P,)* and another one by (P;-+P,)>
and the last one by P3. -If we use these two variables
in describing the five-point function, there exist
complex singularities. So, certainly, the simplest
generalization of the Mandelstam representation
would not apply to the five-point function.

Epen : It is clear that the multiple integral for the
five-point loop is going to be very complicated. The
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domain of integration is no longer real but is complex
as has been indicated. The question one would
really like to know is just what influence causality,
unitarity, and Lorentz invariance have upon the general
structure of an N-fold representation of a multiple
Feynman integral. In the case of the four-point

function, the condition of causality contained in the
m*—ie implies that the spectral function is non-zero
only in a real domain on the boundary of the physical
sheet, and the interesting question is just what simple
(or complicated) property of the higher functions
contains the concept of causality.

A GENERALIZED UNITARITY RELATION

R. E. Cutkosky ®

Carnegie Institute of Technology, Pittsburgh, Pennsylvania

Last year at the Ninth International Conference
on High Energy Physics, Landau » presented some
new theorems on singularities of perturbation theory
amplitudes. He showed that when we discuss a
particular singularity, we only need to look at a
“gskeleton > of the Feynman graph, a reduced
graph.”” (See Fig. 1). The circles, which are the
vertices of the reduced graphs, stand for any arbitrarily
complicated subgraphs. Landau showed that a
singularity is obtained when all the lines of a reduced
graph correspond to particles which are simultaneously
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Fig. 1 Example of  reduced graph.”

(*) A. P. Sloan Foundation Fellow.

on the mass shell, and in addition satisfy certain
geometrical relations. Each of the reduced graphs
shown could arise from the same Feynman graph, and
correspond to different singularitiecs cf the same
amplitude.

When we analyze these singularities further, we
find that they are sometimes poles, and sometimes
branch points. The residue of a pole is, of course,
obtained by considering the subgraphs for the case
that the lines leading into them represent particles
which satisfy Landau’s condition. When the singu-
larity is a branch point, the discontinuity of the
amplitude across the branch cut is obtained by an
equally simple prescription. For each line of the
Feynman graph which also appears explicitly in the
reduced graph, the Feynman propagator is replaced
by a delta function. In other words, the particles
which correspond to the lines of the reduced graph are
always taken to be on the mass shell. This prescrip-
tion, when it is applied to a reduced graph like that
on the top of Fig. 1, is equivalent to the familiar
unitarity property of the S-matrix.

This theorem will perhaps be a little clearer after
we outline a brief proof. The main idea of the proof
is that we rewrite the Feynman integral in terms of the



