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1. M E T H O D S 

The a im of this work is to show tha t the M a n d e l s t a m 
representa t ion holds t o every finite order of pe r tu rba 
t ion theory unde r the condi t ion tha t n o anoma lous 
vertex thresholds exist. W e shall use induct ion 
p rocedure , consider ing at each stage the leading singu
larity of a F e y n m a n g raph 1 } . Its two-dimensional 
curve of singularity I will be divided in to a n u m b e r 
of pa r t s on each of which the singulari ty is either 
wholly present or wholly absent on the physical sheet. 
I t will then be shown to be wholly absent . The only 
exception to this pa r t of the real section of I lying 
in the over lap of two cuts which mus t be singular 
in the inappropr ia te sense (defined below 2 ) ) t o give 
the b o u n d a r y of the relevant M a n d e l s t a m spectral 
function. A simple example in which one considers 
m o r e t h a n one c o m p o n e n t of I would be the case 
in which it consists of two irreducible algebraic 
curves. A n o t h e r example comes later. 

2 . B E H A V I O U R O F S I N G U L A R I T I E S 

If a po in t of I is singular, the a -hypercontour 
discussed by E d e n is p inched between two halves of a 
locally cone-shaped por t ion of the surface of singu
larities. As one moves a r o u n d on I9 the vertex of 
the cone moves , dragging the hypercon tour wi th it. 
The only way tha t one can change from singulari ty to 
non-singular i ty is for the p inch to fall off an " e d g e " of 
the hypercon tour . This cor responds to a po in t where 
some of the a ' s are zero and all a ' s h a v e coincidences, 
t ha t is, an effective (same values of the a 's) inter
section of I with a lower order singularity. Such 
points can only form a set of d imension zero on I 
so tha t at first sight they could always be avoided. 

However , we mus t no t leave the physical sheet and 
so m u s t no t cross the n o r m a l th reshold cuts . In 
going a r o u n d the cuts we m a y be forced to go t h r o u g h 
a lower order singularity. This is wha t happens in 
Tarsk i ' s four th order singular case (Fig. 1) wi th the 
anoma lous threshold cuts . Avoid ing the cut A A' 
in going from I to I I forces us to go t h r o u g h the a n o m a 
lous th reshold singulari ty at A'. 

All this is jus t a simple i l lustrat ion of the cont inui ty 
theorem. 

3 . T H E I N D U C T I O N P R O C E D U R E 

W e impose the condi t ion of no a n o m a l o u s thresholds 
to s tar t the induct ion off. The way it proceeds is 
no t quite trivial. I t is necessary to be sure tha t the 
behav iour of a singulari ty is no t different f rom the 
case in which it is the leading singularity. 

In consider ing this p r o b l e m we have to th ink a b o u t 
the dis tor t ions of the a -hypercontour . The gener
al izat ion of an end-poin t is an edge in which a n u m b e r 

Fig. 1 Impossibility of avoiding threshold singularity because 
of pinched a-hypercontour. 
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Fig. 2 Deformation of a-hypercontour and possible occur
rence of irrelevant singularity. 

of oc's must be kept zero. The permissible distort ions 
are then arbi t rary in the sub-space of non-zero oc's 
for tha t edge. Away from an edge it is completely 
arbitrary. Thus the edge gets distorted as it would 
when it is a leading singularity. But there may be 
intrusions into the relevant sub-space due to the con
tour being forced in from an interior point (Fig. 2). 
These could give extra singularities but , since they are 
not true edges where the pinch can fall off, they are 
irrelevant for us. Thus the induct ion procedure is 
indeed possible. 

4 . R E A L I T Y C O N D I T I O N S 

Symanzik has shown tha t there is a region in which 
the denominator of the Feynman function does no t 
vanish and so the function is real. As we continue 
from this region the reality ceases to hold but there 
remains an impor tan t connect ion between behaviour 
at complex conjugate points . This implies that for 
the complex par ts of I the two complex conjugate 
halves behave in a similar way. It implies also that 
for the real section there are only two distinct limits 
corresponding to the same or opposite signs for the 
imaginary par ts of the two relevant variables z1 and 
z2

 2 ) . Which variables (out of s,t, and u) are relevant 

is determined by which two give the overlapping cuts 
at the point in question. If there are no t two over
lapping cuts, then all limits give the same behaviour. 

5. T H E C U T S 

According to our induct ion hypothesis we have only 
the no rma l threshold cut. As far as possible we shall 
jus t go a round any cuts we meet as we move a round 
on I . A simple example of the difficulty that may 
arise is provided by Fig. 3. Our way out of Region I 
is blocked in each direction by a cut. T o get to II 
we follow some such pa th as A C B (Fig. 3). We must 
cross two cuts to reach Region I I I , and at C we can 
cross the real section and so recross the two previous 
(dashed) cuts. Finally we circumnavigate Sl9 and 
arrive at I I . F r o m A to C we have left the physical 
sheet bu t at the end of our journey we are back on it 
again. Our only worry is tha t between A and C 
we might have encountered dangerous singularities 
whose presence in an unphysical sheet is no t covered 
immediately by our induct ion procedure . 

Actually this point is all right. We need not go 
far into the unphysical sheet and will in fact skim 
along close to the real section. Thus only singularities 
which almost appear on the physical sheet will worry 
us, i.e., only lower order real curves r which are 
singular when a limit is taken in an inappropr ia te 
sense 3 ) . I t is easy to see tha t these must have negative 
slope (see appendix) and so, since they must reach I 

Fig. 3 Method of by-passing cuts which occur when moving 
along the curve of singularities U. 
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at an effective intersect ion, only the arc B C is really 
dangerous . However it m a y be m a d e as shor t as 
we please to avoid t rouble . Therefore all is well. 

In this way we can cross cuts unti l we come to the 
n o r m a l threshold itself. I t is easy to show tha t it 
c anno t have a finite effective intersect ion and so the 
wors t case is shown in Fig. 4, where a double po in t 
a t infinity has been p u t in t o m a k e it as ha rd as 
possible. If rt and T2 j o in u p somewhere on the 
right then we can link u p these complex surfaces there 
outside the cut . However if they do not , then there 
is no simple way of relat ing the par t s of I connected 
to r\ t o those connected to r2. I n this case we 
mus t t ake these two par t s of I and t reat t hem 
separately. 

Fig. 4 The worst configurations. 

6. N O N - S I N G U L A R I T Y 

W e n o w have a n u m b e r of pieces of I and we wish 
to show tha t they are non-s ingular . Consider the 
line s = real cons tan t < 0. A po in t Pt of each piece 
lies on such a line. However , Symanzik and Eden 
have p roven n o r m a l dispersion relat ions in t for such 
values. Therefore each poin t Pt c anno t be complex 
or outside the n o r m a l cuts . However in the cuts 
it follows f rom uni tar i ty tha t the only singularities 
are those given by n o r m a l thresholds . Therefore 
the Pt a re non-s ingular and so each piece of I is also 
non-singular . 

This completes the proof. 

Fig. 5 A five-legged diagram. 

7. H I G H E R O R D E R P R O C E S S E S 

The observa t ion tha t the g r aph in Fig. 5 has singu
larities cor responding t o the con t rac t ion shown in 
Fig. 6, and tha t the lat ter has singularities for 
CPi + Pi)2> (j?3 + P A ) 2 complex, shows tha t the simplest 
general izat ions of the M a n d e l s t a m representa t ion to 
higher order processes are no t t rue in pe r tu rba t ion 
theory . 

Fig. 6 Contracted diagram for the graph of Fig. 5. 
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8 . U N I T A R I T Y 

Mr. Lardner (St. J o h n ' s College, Cambr idge) has 
been able to show tha t the con t r ibu t ions to the scatter
ing ampl i tude arising f rom three- and four-part icle 
in termediate states in the uni tar i ty condi t ion are con
sistent wi th the M a n d e l s t a m representa t ion under the 
condi t ion tha t the co r respond ing p roduc t ion ampl i 
tudes have single var iable analytici ty in a cut p lane . 

A P P E N D I X 

On the induct ion hypothesis the complex surface 
sprout ing from J 1 ' is non-s ingular . Therefore r is 
non-singular in its app rop r i a t e l imits. It mus t stay 
in the crossed cuts , otherwise it is non-s ingular in b o t h 
limits. If it has a tu rn ing po in t as in Fig. 7 the in
appropr ia te limit on A B is jus t ob ta ined by crossing 
from II th rough the cut , a n d since II is non-s ingular 
this limit is non-s ingular . T h u s r mus t be a convex 
curve and have negative s lope. Fig. 7 The T-curve. 

LIST OF REFERENCES AND NOTES 

1. By leading singularity we mean the curve associated with coincidences in each integration over a Feynman variable. See, e.g., 
Polkinghorne. J. C , and Screaton, G. R., Nuovo Cimento 15, (1960) or the preceding talk. 

2. See in particular the remarks of Eden in the preceding talk in the material following Eq. (5.6). We call the behaviour of such a 
singularity when extended into the complex domain in this way "appropriate." The opposite behaviour would be 
" inappropriate." 

3. The induction hypothesis forbids these to be singular in an appropriate sense. 

D I S C U S S I O N 

J. G . T A Y L O R : Where d o the a n o m a l o u s thresholds 
show up in this ? C a n one see t ha t easily ? 

P O L K I N G H O R N E : The m a i n t roub le is t h a t an inter
section with no rma l th resholds is going to be at 
infinity. N o w , if you have a n o m a l o u s thresholds , 
the effective intersect ion will be a t a finite poin t . This 
just happens to spoil the a rgumen t because you do 
not have r o o m to manoeuvre . 

O P P E N H E I M E R : I wou ld like to ask a quest ion on 
what is p robab ly a forb idden topic . H a v e you gained 
from this any insight in to general izat ions of the 
Mande l s t am represen ta t ion ? 

P O L K I N G H O R N E : If we have, say, the five-point 
function and we th ink of a five-point l oop , a m o n g 
its cont rac t ions is the g r a p h shown in Fig. 6 where 
you short-circuit two of the lines. This is a vertex 
function in which one of the external masses is repre
sented by (P1+P2)2 a n d ano the r one by (P3+P4)2 

a n d the last one by Pj. If we use these two variables 
in describing the five-point function, there exist 
complex singularities. So, certainly, the simplest 
general izat ion of the M a n d e l s t a m representa t ion 
would n o t apply to the five-point function. 

E D E N : I t is clear t ha t the mul t ip le integral for the 
five-point l oop is going to be very complicated. The 
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domain of integrat ion is no longer real bu t is complex 
as has been indicated. The question one would 
really like to know is jus t what influence causality, 
unitari ty, and Lorentz in variance have u p o n the general 
s tructure of an JV-fold representat ion of a multiple 
Feynman integral. In the case of the four-point 

function, the condit ion of causality contained in the 
m2—w implies tha t the spectral function is non-zero 
only in a real domain on the boundary of the physical 
sheet, and the interesting question is just what simple 
(or complicated) proper ty of the higher functions 
contains the concept of causality. 

A GENERALIZED UNITARITY RELATION 

R. E. Cutkosky (*> 

Carnegie Institute of Technology, Pittsburgh, Pennsylvania 

Last year at the Nin th Internat ional Conference 
on High Energy Physics, Landau 1 } presented some 
new theorems on singularities of per turba t ion theory 
ampli tudes. He showed tha t when we discuss a 
par t icular singularity, we only need to look at a 
" s k e l e t o n " of the Feynman graph, a " r e d u c e d 
g r a p h . " (See Fig. 1). The circles, which are the 
vertices of the reduced graphs, s tand for any arbitrarily 
complicated subgraphs. Landau showed tha t a 
singularity is obtained when all the lines of a reduced 
graph correspond to particles which are simultaneously 

b c 
Fig. 1 Example of " reduced graph." 

on the mass shell, and in addit ion satisfy certain 
geometrical relations. Each of the reduced graphs 
shown could arise from the same Feynman graph, and 
correspond to different singularities cf the same 
ampli tude. 

When we analyze these singularities further, we 
find tha t they are sometimes poles, and sometimes 
branch points . The residue of a pole is, of course, 
obtained by considering the subgraphs for the case 
tha t the lines leading into them represent particles 
which satisfy Landau ' s condit ion. When the singu
larity is a b ranch point , the discontinuity of the 
ampli tude across the b ranch cut is obtained by an 
equally simple prescription. F o r each line of the 
Feynman graph which also appears explicitly in the 
reduced graph, the Feynman p ropaga to r is replaced 
by a delta function. In other words , the particles 
which correspond to the lines of the reduced graph are 
always taken to be on the mass shell. This prescrip
tion, when it is applied to a reduced graph like tha t 
on the top of Fig. 1, is equivalent to the familiar 
unitari ty proper ty of the S-matrix. 

This theorem will perhaps be a little clearer after 
we outline a brief proof. The main idea of the proof 
is tha t we rewrite the Feynman integral in terms of the 

<*) A, P. Sloan Foundation Fellow. 


