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Abstract

We give the description of nonlinear nonautonomous ordinary differential equations of
order n with a so-called reducible linear part. The group classification of generalized
Emden-Fowler equations of the mentioned class is done. We have found such laws of
the variation of f(z) that the equation admits one, two, or tree one-parameter Lie
groups.

1. Introduction: the method of autonomization [1, 2]

Nonlinear nonautonomous equations with a reducible linear part form a wide class of
ordinary differential equations (ODE) that have both theoretical and applied significance.
We can write

n

n _ m _
(NLN Ay = Y- (k)akyw 9= B,y ™), e ORI, (11)
k=0

I = {z|, a < x < b}, where the corresponding linear equation

n n -
Loy =Y (k;) apy ™ =0,

k=0

can be reduced by the Kummer-Liouville ( KL) transformation
y=v(x)z, dt=u(r)dr, v, ueC”(I), ww#0, Verel, (1.2)

to the equation with constant coefficients

n

n
M,z = bz P (#) =0, b = const.
> ()b =0, n

Theorem 1.1. For the reduction of (1.1) to the nonlinear autonomous form

(NLA)z = Z (Z) bz () = aF (2,2 (t),...,2™), a = const,
k=0

by the KL transformation (1.2), it is necessary and sufficient that L,y = 0 is reducible
and the nonlinear part ® can be represented in the form:

y 1 /1 v 1 /1 AN
q)(x’y7yl’.”7y(m)):a,unvF [;’;(ED_E):lh?; -D - — AR
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1
where D = d/dz, (—D—
u v

/

1
(D - U) y, and u(x) and v(x) satisfy the equations

o'\ F
) y s the k-th iteration of differential expression

u VU

1u” 3 /u\? 3 3
—“———(3) Byt = Ay,

v(z) = Ju(x)| /2 exp (—/aldx) exp (b1 /udx)
respectively; Ay = as—a? —al, By =by—b?, i.e., (1.1) is invariant under a one-parameter

group with the generator

X = &y) e ), €)= n(ey) = Ly (1.4)
Ox dy u(z) uv
In this case, (1.1) assumes partial solutions of the kind
y = pv(x), by =aF(p,0,...,0). (1.5)
Theorem 1.2. 1) If the linear part L,y of the equation
(1.6)

l
N, (y) = Lny—l—ZfS(:U)yms =F(z), 1<mp<ma<...<my,
s=1

can be reduced by the KL transformation and, in addition, the following conditions

psu’t = fs(:z)vmsfl, ps = const,

are fulfilled, then equation (1.6) can be transformed to the equation

l
My (2) + ) ps2™ = v~ Ha(t)u™™(x(t)) F(2(t));
s=1

2) the equation

l
Loy + > fs(@)y™ =0,
s=1

corresponding (1.6) assumes the solutions of the form (1.5), where v(z) not only satisfies

to relation (1.3) but it is also a solution of the linear equation

(Lp — bpu™)v =0,

and p satisfies to the algebraic equation

l
bnp + Zpspms =0.
s=1
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2. The Emden-Fowler equation and the method of autonomization [3]

Let us consider the Emden-Fowler equation
a
Y+ —y +bx™ Yy =0,n #0, n# 1, m,a,b are parameters , (2.1)
x

which is used in mathematical physics, theoretical physics, and chemical physics. Equa-
tion (2.1) has interesting mathematical and physical properties, and it has been investi-
gated from various points of view. In this paper, we are interested in it from the point of
view of autonomization.

Proposition 2.1. 1) Equation (2.1) can be reduced to the autonomous form

(1—a)(n—1)—|—2(1+m)73+ (1—a)(n—1)+1+m|(1+m)
n—1 (n—1)2

zZ— z+b62"=0

by the transformation y = x(m/A=1) 5 gt — 2=1dz and has the invariant solutions

(1+m)/(1—n) (I —a)(n—1)+1+m](1+m)

y=pr ) (n—1)7 p+0p
2) (2.1) admits the one-parameter group w1 = e‘x, y; = e 20+tm/(=y "¢ js ¢
parameter, with the generator
o 1 0
X=o—+ tm, o

or  1-—n yay'
3. The generalized Emden-Fowler equation

We consider the group analysis and exact solutions of the equation
Y +ar@)y +ao@y + F@)y" =0, n#0, n#l (3.1)
Equation (3.1) can be reduced to the autonomous form
Z+bi1Z24+boz+cz" =0 (3.2)

by the KL transformation (1.3) under specific laws of variation of f(z).

We have found such laws of variation of f(x) that equation (3.1) admits one, two, or
three-parameter Lie groups. It can’t admit a larger number of pointwise symmetries.

We call the equation

'+ g(x)y" =0, (3:3)
a canonical generalized Emden-Fowler equation.
Equation (3.1) can always be reduced to the form (3.3) by a KL transformation.

Lemma 3.1. In order that (3.1) can be reduced to (3.2) by the KL transformation (1.3),
it is necessary and sufficient that the following equivalent conditions be satisfied:
1°. The kernel u(x) of transformation (1.3) satisfies the Kummer-Schwartz equation

" I\ 2
WS L,
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where § = b3 — 4bg is the discriminant of the characteristic equation > +bir +bg = 0, and

1
Ap(z) = ap — 1

y" + a1 (x)y + ap(z)y = 0. (3.4)

1
a? — §a’1 is the semiinvariant of the adjoint linear equation

The factor v(x) of transformation (1.2) has the form

v(z) = u(z)| % exp (—%/aldx) exp (:I:%bl/udm> . (3.5)

Here, the function f(x) can be represented in the form
f(z) = cu®(z)v'™"(z), ¢ = const.
2°. Equation (3.1) admits a one-parameter group Lie group with generator (1.4).

Theorem 3.1. All laws of variation f(x) in (3.1), admitting a one-parameter Lie group
with generator (1.4), have one of the following forms:

n+3 4 by(1—n) _nt3 bh1d-n)

:F
fi=F oy + Biye) ° 2V (agyr + Baye) D VUL 6y = (1B — azB1)?0;

g3 1—-n b 2Ays + By
= F*(Ay2 + B + Cy? ﬁex (:I: arctan),
f2 ( Ys Ya2y1 yl) p 9 \/——52 \/_—52y1

dy = B2 —4AC < 0;

I-n by
f3 (Oéyl + B?ﬂ) exp | + 20 ay + ,Byz ) 3 3

nts g b(l-n) _nd3pbion)

fi=Fay +By) 5t 3y, 2 2§ =a’>0;

1

_ 1-—
fo= oy P exp (2150 2) L h= 0, i= 12

where F' = exp (—/alda:), and y1, y2 = Y1 /Fyl_de generate the fundamental system

of solutions (FSS) of the linear equation (3.4).
Here, (3.1) assumes the exact solution

y=pv(z),  bop+cp" =0,
where v(x) satisfies relation (3.5).

Theorem 3.2. If f(x) is a factor of the nonlinear term of the equation (3.1), admitting
symmetry (1.4), then f(x) satisfies to one of the following equations:

" n+4f’2 n—1 ( C2n+1) 5, 2 ,)
i n+3f i3 alf (n+3(ao (n+3)2a1 oLl f+

+(n+3 boexp( aldx>fz_i§:O, b1 =0, n# —3;
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or the equation
n+4 f’2 n—1
n+3 f

n+7

o3 S;T; B3]+ exp| 2

f//

( —1—3)2a1 n+3 1

d
s J o 0 b £, n -3

(k: + 71L+§b1 ffn+3 exp (n+3 fald:x) d:x)

or the equation

alf (n+3<a02(n+1) 9 2 a’)f+

5 14 5 13
2(f/+2a1f)f”/—3f”2—12(a/1f+a1f/)f”+ (1_ 4_(@) f——|—8<1— 4_1)%> alf__|_

f? f
K > a? + 14d) — 4a0] f2+4 { — dapay + 2a1a} + (1 — 2%) aﬂ '+
{ apal| — 3a42 — 4aga? + (1 ;) ai + 2a1a1} f2=0, n=-3, b #0;
or f(z) = p(—2fa1dx), n=-3 b =0, ap #0; or f(z) = const, n = =3, by =
0, ai(x) =

4. The case f(x) = const =p
Consideer the equation

y' +ar(x)y +ao(x)y +py" =0, n# -3 (4.1)
If b1 = 0, we have

2(n+1) 2 2(1—n)
ap(x) = (n+3)2a% + . 3a’1 + kexp (3+—n /aldaz> , k= const,

or

on+1) , 2, [(n+3)byF 2D exp[2L) [ gy da]

() (n+3)2" n+3a1+q (k::l: i#;blfexp (n+3fa1d:n) d:n) "
b1 # 0. n # —3; ¢ = const.
Theorem 4.1. In order that the equation
y" + a1y +apy +py" =0, ay,a9 = const (4.2)

have the set of elementary exact solutions depending from one arbitrary constant (besides
ay = 0), it is sufficient that condition of its factorization,

(n+3)%ag = 2(n + 1)a? (4.3)

hold.
In fact, in this case, equations (4.2), (4.3) admit the factorization:

n+1 n+1 2
D k (n—l)/2> (D
( +n+3a1:F 2 4 +n+

301 + ky("_l)/2) y =0,

k=+\/-2p/(n+1).
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In this specific case (at n = 3) for some classes of anharmonic oscillators, the exact
solutions were obtained in [4] by the Kowalewsky-Painlevé asymptotic method.

Theorem 4.2. In order that the equation
y' +ai(z)y +py" =0, n#-3,

admit the group with generator (1.4), it is necessary and sufficient that the function ai(x)
satisfy the equation

4 2(n? — 1
(O LA Catun . B (4.4)

where (4.4) is integrated in elementary functions or quadratures (elliptic integrals). Equa-
tion (4.4) can be linearized by the method of the exact linearization (see [5]). Namely, by
the substitution A = a3, dt = a1(x)dx, it can be reduced to the form

dn . 4(n%-1) d

A A A= =2
+n—|—3 +(n—|—3)2 0. () dt

It possesses a one-parameter set of solutions

n+3 n+3
_ =_ 'Y 4.5
"= a et T i DE o (45)
and has a general solution of the following parameter kind:
a1 =s""Yer+sHY?, z=—(n+3) / s (e1 4 N7V 2ds + . (4.6)

Then it follows from the Chebyshev theorem (see [6])

Corollary 4.1. Equation (4.4), (4.6) (besides ¢; = 0, i.e., (4.5)) has elementary solutions
forn=4+1-4l, [ € Z.

Corollary 4.2. The equation
y' +ao(x)y +py" =0, n# -3,

1

admits pointwise Lie symmetries only for ag(x) = const, (by = 0) or ag(z) = OF )2
p

(b1 #0).
Corollary 4.3. The Painlevé equation

y' tay =y’

can’t be reduced to the autonomous kind by a KL transformation KL (it doesn’t admit
pointwise Lie symmetries).

Theorem 4.3. The Ermakov equation (Ermakov V.P., 1880; Pinney, 1951, see, for
example, [1, 5])

y" +ao(z)y +py > =0
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admits a three-dimensional Lie algebra with the generators

0 0 0 0
X = y?(ff:)a—m + y1(x)yy (ﬂf)ya—y, X3 = y%(fv)% + y2(w)yé(ﬂf)ya—y,

o 1 0
X — _ - / / _
2 =Yg+ 5 (s + yzyl)yay,
which has the commutators

[X17X2] == X17 [X27X3] = X37 [X37X1] — _2X27
and 1is isomorphic to the algebra sl(2, R) (type Gs VIII according to the classification of
Lie-Bianchi).

5. The special case n =2
Theorem 5.1. (see [7]). The equation
y' +ai(2)y +ao(z)y + f(z)y? =0 (5.1)

has only point symmetries of the kind

X = ¢(o) 5. + oy + (o) 5 6.2

where
775/ + al??é + aopte2 = 07
" / 2 / 1 " ,5/2 1 b
" — (2a} + a3 — 4ag)€’ — (a} + 2a1 2a0 | & = 4kno€ exp 5/ al F — ¢ dzx| ,
b1

m(z) = %(f/ —mtb), f(x)= k%% exp B / (a1 T ¢ ) dm} , k= const.

Lemma 5.1. The equation

1 " 1
" — (2ay + a? — 4ag)€’ — <a1 + 2(11 2a0> € = dkmo % exp (5 /aldx> , b1 =0,

can be reduced to the form
C///(S) _ 4k<75/2 (53)

by the transformation ¢ = u~'¢, ds = udzx, where

1u” 3 (u\?

————-|—] =A .

2 u 4 (u) o(@)
Lemma 5.2. FEquation (5.3) assumes an exact linearization by the transformation Z =
¢L, dt = ¢32ds, namely, 2" (t) + 4k = 0.

Theorem 5.2. Equation (5.1) can be reduced to the autonomous form

4 biz+byz4+c+kz2=0, c= T (bo 63265b4)
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by the substitution y = v(z)z + w(x), dt = u(z)dz,

u(x):%, v(x)zexp(/%dx), w = kexp (/md:c)/ ( /mdx>

and has the exact solutions

1/(by 3b
y = pv(z) + w(z), p=§<; 2;)

Theorem 5.3. If equation (5.1) admits a symmetry of the kind (5.2), then the function
f(x) satisfies to the system of equations

1 1 36
" / 2 2 4
o2 =21(p —p 5.4
O +ap —|—a0g0+2g0 2(0 a5 0L ) (5.4)
1 6 f* L f 6 o 2, 6.2\ o
570 - %F + or 17 - <CLO - %al - 5a1) + <b0 - 25b1) U, (55)
2/5
" f/°exp(—1/5 [ ardx) . (5.6)

ChF %bl ff2/5 exp(—1/5fa1d.%')dl‘

6
Corollary 5.1. Let a; = 0, ap = 0, and by = —b?. Equation (5.4)(5.6) takes the form

25
) 32 ! £ 43 112 594 12 1782 14
flv__&__f__F f ”__f_:(), (5.7)
5 f 10 f 25 f2 125 f3

Equation (5.7) admits solutions of the kind f(x) = A\z*, where u satisfies to the algebraic
equation

49p* + 49012 4 152502 4+ 1500 = 0,  {p = —5, —20/7, —15/7, 0}.

Theorem 5.4. FEquation (5.4)-(5.6) in respect of f(x) (at by = 0) has the following
general solution represented in the parameter form:

f(x) exp (2/a1dx> Yo = ky®/?, Yoyt = /w_g/th

f(x) = exp (2/a1da:> s = kP2, oyt = — (/ w_?’/th)_l :

2
wz—#ﬁ+qﬁ+qmm&

or

where F' = exp (—/aulx), and Y1, Yo = N /Fyl_de generate the FSS of the linear
equation (3.4).

Thus, even under the restriction b; = 0, the function f(x) can be expressed via elliptic
integrals. These expressions can be simplified in the case of pseudoelliptic integrals that
takes place for the discriminant A = 0. Namely,

A=+ - k:02 4ccz — 12k%c3 — 12kcicacs = 0.
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Let,

in particular, ¢; = ¢2 = ¢3 = 0. Then f(z) has one of the following forms:

f(z) = Xexp (—2/a1dx) 3/1_5 (/ exp (— /aldm) yl_Qda:> _15/7,
f(x) = Xexp (—Q/aldx) yl_5 (/ exp (— /alda:> yl_de> _20/7,

where y;(z) is a partial solution of equation (3.4).

Example. The equation y” + f(z)y?> = 0 can be reduced to the autonomous form for
f(z) = A= 18/7, flz) = Az =20/7 and f(z) = Az=>.
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