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Kurzfassung

Titel der Arbeit: Suche nach einem schweren Eichboson im Zerfallskanal
W’→eν mit dem ATLAS-Experiment

Das bisher erfolgreichste Modell, um den Aufbau der Materie zu beschreiben
ist das Standardmodell der Teilchenphysik. Es beschreibt den Aufbau der Materie
durch Quarks und Leptonen und deren Wechselwirkung durch drei fundamentale
Kräfte: Die schwache Kraft, welche durch W- und Z-Bosonen vermittelt wird, die
starke Kraft, übermittelt durch Gluonen und die elektromagnetische Kraft, die
durch Photonen beschrieben wird. Zwar konnte es innerhalb des Standardmodells
erreicht werden, dass die schwache und elektromagnetische Kraft innerhalb der
elektro-schwachen Vereinheitlichung zusammen beschrieben werden, aber die große
Vereinheitlichung, unter Hinzunahme der starken Kraft, ist bisher noch nicht gelun-
gen. Theorien, die ein mögliches Modell einer solchen Vereinheitlichung bereitstellen,
werden als sogenannte große vereinheitlichte Theorien bezeichnet. Einige von
diesen Theorien sagen weitere, geladene, schwere Eichbosonen voraus, die auch als
W’-Bosonen bezeichnet werden.
In dieser Arbeit wird eine Suche nach solchen Bosonen, die in ein Elektron und
Neutrino zerfallen, präsentiert. Die dabei verwendeten Daten wurden mit dem
ATLAS-Experiment im Jahr 2012 bei einer Schwerpunktsenergie von

√
s = 8 TeV

aufgenommen und entsprechen einer integrierten Luminosität von 20 fb−1. Auf die
Daten werden bestimmte Selektionskriterien angewendet um sensitiv auf mögliche
W’-Bosonen zu sein. Für eine Untergrundabschätzung von echten Elektronen, die nur
auf Standardmodell Vorhersagen basiert, werden Monte Carlo Simulationen verwen-
det. Die verwendeten Monte Carlo Simulationen benutzen teilweise unterschiedliche
Arten der Detektorsimulation, welche eingehend miteinander verglichen werden.
Für den Untergrund, der durch falsch identifizierte Elektronen entsteht, wird eine
datenbasierte Methode vorgestellt. Verschiedene Verteilungen dieser Untergründe
werden mit den Daten verglichen und auf Unterschiede untersucht. Da keine
signifikanten Unterschiede zwischen den Daten und dem Untergrund festzustellen
sind, kann eine Ausschlussgrenze auf die Masse eines hypothetischen W’-Bosons
gesetzt werden. Dazu wird ein Bayesianischer Ansatz verwendet, mit welchem die
beobachtete und erwartete Ausschlussgrenze auf die Masse eines hypothetischen
W’-Bosons auf 2.97 TeV bestimmt werden konnte.
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1. Introduction

From the year one scientists are on the search for “whatever binds the world’s inner-
most core together” [1]. The present model to describe the elementalary structure
of matter is the Standard Model of particle physics. It does not only describe the
fundamental particles, but also the interaction between them, including three of the
four fundamental forces. Different predictions of the Standard Model are tested ex-
perimentally with very high precision and so far no significant differences were found.
Although the Standard Model is very successful, it leaves some open questions, e.g. a
description of the gravitational interaction or dark matter. Another open issue, that
is not solved by the Standard Model, is the unification of the three forces, that are
described by the Standard Model. Although it has been achieved to unify the electro-
magnetic and the weak force within the Standard Model, the great unification, that
would include also the strong interaction, is not yet provided. Some of the theories,
which try this unification, also called Grand Unified Theories (GUTs), predict new
particles and (or) interactions at high energy scales. With the Large-Hadron-Collider
(LHC), a proton-proton collider, it is possible to reach those high energies and search
for physics beyond the Standard Model.
This thesis presents a search of a new, heavy, charged vector boson. Different theories
predict such a vector boson, also referred as W’-boson. Some of them predict that the
W’-boson couples different to quarks than to leptons, others, that it couples different
to different generations, whereas this thesis focuses on a model that predicts a W’-
boson with the same couplings as the Standard Model W-boson, but higher masses.
The analysed data, that are used to perform the search, were taken with the ATLAS-
detector from proton-proton collision at an invariant mass of

√
s = 8 TeV. The focus

is set on the process, where the hypothetical W’-boson decays into an electron and
a neutrino. In order to have a precise background estimation from Standard Model
processes, Monte-Carlo simulations and also a data-driven method are used. No evi-
dence for a W’-boson is found and therefore a limit on the mass of this hypothetical
new vector boson is set.
In chapter 2 of the thesis, the theoretical fundamentals of the Standard Model and
theories beyond it are shortly introduced. The third chapter provides an overview of
the ATLAS-detector and relevant components for this analysis. It follows a chapter,
which explains the reconstruction of electrons and missing transverse energy, the mea-
surable quantity correspondent to the energy of the neutrino. Chapter 5 describes the
criteria used to reduce the background. An explanation of Monte-Carlo simulations
for the relevant processes is given in chapter 6, together with a comparison of two
different methods of the detector simulation. In chapter 7 it is explained how the
background of real electrons is estimated by using Monte-Carlo simulations and it
is also described how the background from objects that fake electrons is estimated

3



1. Introduction

by using a data driven-method. In the same chapter the comparison of data and
total background is shown as well. Since no significant difference between data and
background is found, in chapter 8 it is described how to set a limit on the mass of a
hypothetical W’-boson.
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2. Theoretical motivation

In the first section of this chapter an overview of the current Standard Model of particle
physics is given, which describes the fundamental particles and their interactions. In
section 2.2 the basic principles of processes, which occur at proton-proton collisions,
are explained and section 2.3 gives a short summary of theories beyond the Standard
Model, focusing on the so-called Sequential Standard Model (SSM).
In this thesis natural units are used, which means that ~ and c is set to one and
therefore masses and momenta are given in units of energy, electron volts (eV).

2.1. The Standard Model of particle physics

At the moment the Standard Model of particle physics is the best known model to
describe the structure of matter. Basically the known matter consists of two different
sorts of elementary point like particles: leptons and quarks. Both of these particles
belong to the family of fermions and thus have a half-integral spins. The interactions
of these elementary particles are described with 3 fundamental forces: the electromag-
netic, the weak and the strong force. The gravitational interaction is not described in
the Standard Model, but for subatomic scales its strength is negligible compared with
the other interactions. The three interactions described by the Standard Model are
mediated through the exchange of a further fundamental group of particles, namely
the gauge bosons, which carry an integral spin.
The photon (γ) acts as the carrier particle of the electromagnetic interaction and cou-
ples to the electric charge, but is itself uncharged. The range of the electromagnetic
interaction is infinite but decreases with the distance, since the photon is a massless
particle.
The weak interaction is mediated by three different gauge bosons: the electri-
cally neutral Z-boson and the charged W±-bosons, which couple to the third com-
ponent of the weak isospin T3. All three gauge bosons have a very high mass
(mw ≈ 80.4 GeV, mZ ≈ 91.2 GeV) leading to a short lifetime and such to a short
range of interaction.
The strong interaction is mediated by 8 different gluons, which couple to the so-called
color charge. These color charge can be defined by three different colors: red, green,
and blue as well as the correspondent anticolors. The gluons carry themselves color
charge, which leads to self-coupling, meaning that gluons can couple to other gluons.
Although the gluons are massless, the self-coupling leads to a very short interaction
range. In table 2.1 an overview of all gauge bosons of the Standard Model is given.

The six leptons can be divided into three different families. Each family consists
of a charged lepton and a corresponding neutrino, which does not have any electric,

5



2. Theoretical motivation

Interaction Boson Mass [GeV] couples to rel. strength
strong gluon (g) 0 color charge (r, g, b) 1

electromagnetic photon (γ) 0 electric charge (e) 10−2

weak
W± ≈ 80.4

weak isospin (T3) 10−6

Z ≈ 90.2

Table 2.1.: Overview of the interactions and gauge bosons of the Standard Model of
particle physics [2].

.

Generation Name T3 el. charge Mass

1.
electron (e−) -1/2 -1 ≈ 0.5 MeV

electron neutrino (νe) +1/2 0 < 2 eV

2.
muon (µ−) -1/2 -1 ≈ 106 MeV

muon neutrino (νµ) +1/2 0 < 0.19 MeV

3.
tau (τ−) -1/2 -1 ≈ 1777 MeV

tau neutrino (ντ ) +1/2 0 < 18.2 MeV

Table 2.2.: Overview of the three lepton families of the Standard Model. Given are
the name, the third component of the isospin T3, the charge and the masses [4].

but a weak charge. The charged leptons, electron (e), muon (µ) and tau (τ) can
couple to the electromagnetic interaction as well as to the weak interaction, whereas
the neutrinos only interact through the weak interaction. An overview of the leptons
and their properties can be seen in table 2.2. The table shows that the mass of the
charged particles increases with the family number.
In the Standard Model the neutrinos have no mass, although it is shown, for example
with neutrino oscillation experiments, that they have a very small mass [3]. In addi-
tion to the shown leptons in the table, for each particle exists an antiparticle, which
has the same mass but opposite (additive) quantum number.
Also the quarks can be split into three families, each containing two different flavored

quarks. In table 2.3 all three families are shown together with the electric charge, the
third component of the weak isospin and the mass. It can be seen that each family
consists of a “up-type” quark with charge 2/3 and a “down-type” quark with charge
-1/3. The masses increase with the family number but an explanation why this mass
hierarchy is given as it is, is one question, the Standard Model provides no answer.
Since the quarks carry charge color, they participate in the strong interaction. Quarks
do not exist as free particles but as color neutral bound states, which can be split
into two different groups: mesons, which contain one quark and one antiquark, and
baryons, containing three quarks with three different colors. Baryons and mesons
together are called hadrons.
Furthermore the heavy fermions are unstable and decay via the weak interaction into
lighter fermions. The outcome of this is that the only known stable particles consist of
the lightest fermions, but it is possible to produce the heavy one artificial, for example

6



2.1. The Standard Model of particle physics

Generation Name T3 el. charge Mass

1.
up u +1/2 +2/3 ≈ 2.3 MeV

down d -1/2 -1/3 ≈ 4.8 MeV

2.
charme c +1/2 +2/3 ≈ 1.3 GeV
strange s -1/2 -1/3 ≈ 95 MeV

3.
top t +1/2 +2/3 ≈ 173.1 GeV

bottom b -1/2 -1/3 ≈ 4.2 GeV

Table 2.3.: Overview of the three quark families of the Standard Model. Given are
the name, the third component of the isospin T3, the charge and the masses. The
values are taken from [4]

in accelerator experiments.
The Standard Model can be described as a gauge-invariant quantum field theory.

The fermions are represented in such a theory by (dirac)-spinors (ψ), which are four-
component column vectors and satisfy the Dirac equation for a free fermion:

(iγµ∂µ −m)ψ = 0 , (2.1)

where γµ are the gamma matrices. This equation basically describes the dynamics
of a free fermion. Using the Euler-Lagrange formalism the correspondent Lagrangian
density, or short Lagrangian, is given by:

L = ψ̄(iγµ∂µ −m)ψ , (2.2)

where ψ̄ = ψ†γ0. If the field ψ is invariant under a symmetry then it can be trans-
formed as (for the case of a U(1) symmetry):

ψ = eiθ(x)ψ , (2.3)

where θ(x) is a real phase. This transformation is called global if θ(x) is constant
for all x and local if θ(x) depends on x. The Dirac Lagrangian from equation 2.2 is
invariant under global transformations but not under local transformation. Neverthe-
less it is possible to make the Lagrangian also invariant under local transformation by
introducing a, ore in general case more than one, new vector field Aµ. For the case of
the U(1) symmetry, this new vector field corresponds to the field representation of a
photon. In principle this means, that the requirement of the Lagrangian, to be invari-
ant under local transformation, generates new vector fields, which can be identified as
the interactions described before. A beautiful characteristic of this formalism is, that
the number of generators of the symmetry group, used for the local transformation,
corresponds to the number of particles mediating the interaction. For example the
number of generators for the SU(3), which describes the strong interaction, is eight,
which is the same number of existent gluons. Therefore the underlying gauge symme-
try of the Standard model is a SU(2)× U(1)× SU(3). The first part, SU(2)× U(1)
describes the combination of the electromagnetic and weak interaction leading to four
gauge bosons, γ, Z and W±. The second part SU(3) describes the strong interaction
with eight different gluons.

7



2. Theoretical motivation

2.1.1. Feynman Formalism

From the Lagrangian it is possible to derive the so-called Feynman rules [5]. These
rules specify how to calculate the amplitude of a process, in which all the dynamical
information is given. The reaction rate or cross-section can then be calculated by
the usage of Fermi‘s golden Rule, which states that the probability of a process to
happen is given by the product of the squared amplitude and the phase space. The
phase space is thereby a purely kinematic factor, dependent on the energy, mass and
momentum of the participants.
The Feynman rules can be visualized in so-called Feynman graphs. In such Feynman
graphs the particles are represented by straight lines. Points, where three or more lines
intersect are called vertices and lines connecting one vertex with another are called
propagators. In figure 2.1 an annihilation of an electron-pair into a virtual photon is
shown, which then decays into a muon-antimuon pair. In this case the propagator is
a virtual one, because the photon has to “carry a mass“ which is not the case for real
photons. In this thesis the time axis is chosen to be the abscissa and the spacelike
axis is the ordinate.
Particles are marked with arrows along the time axis. while antiparticles are marked

with arrows against the time axis. At each of the two vertices an interaction takes place
with an amplitude, which is proportional to the square root of the coupling constant.
In this case it is an electromagnetic interaction leading to an overall amplitude, which
is proportional to

√
αem×

√
αem = αem. In general the amplitude of a process can be

expressed as a series expansion of the coupling constant:

A =
∑
i

αiAi (2.4)

where Ai indicates the sum of all contributing graphs to the order of O(αi). The
graphs contributing to the lowest order of O(αi) are called leading order (LO), the
second lowest order, next to leading order (NLO) and so on. Some contributing NLO
graphs for the electron positron annihilation are given in figure 2.2. The top left of
the figure shows an example of a so-called vertex correction, where a photon, emitted
from the muon, is absorbed by the antimuon. The top right and bottom left show an
example of real corrections, where the top right shows the final state radiation (FSR)

e+

e−

γ

µ+

µ−

Figure 2.1.: Annihilation of an electron-positron pair into a photon, which then
decays into a muon-antimuon pair.
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2.1. The Standard Model of particle physics

and the bottom left the initial state radiation (ISR). An example of a (fermion) loop
correction is given in the bottom, where the virtual photon decays into an fermion-
antifermion pair which then again annihilates to a γ∗.
In principle the number of corrections is infinite, but higher order corrections have
less influence since the terms, contributing to the amplitude will decrease with higher
exponents of α.

e−

e+

µ+

µ−

γ
γ∗

γ∗
e−

e+

µ+

µ−

γ

γ∗
γ∗γ∗

e−

e+

γ

µ+

µ−
µ−

µ+
e−

e+

f

f̄

Figure 2.2.: Some of the Feynman graphs contributing to the NLO correction of the
process e+e− → γ∗ → µ+µ−. The top left shows a vertex correction, the top right
is an example of FSR, the bottom left is an example of ISR and the bottom right a
fermion loop correction.

2.1.2. The electroweak interaction

In the beginning of particle physics the electromagnetic and the weak interaction
were considered separately. An unification of this theories was then given by Gashow,
Salam and Weinberg [6] which described the electromagnetic and weak interaction
as an manifestation of one fundamental interaction. It is based on the introduction
of the weak isospin (T) as a new quantum number. It is constructed in a way, that
the weak interaction only couples to the third component of the weak isospin. Taken
into account that the weak interaction only couples to left handed [7] 1 particles it is
possible to group the left handed fermions in doublets with T = 1/2 and T3 = ±1/2
and the right handed into an isospin singlet with T = 0 and T3 = 0. The connection
between the weak and the electromagnetic interaction is done by introducing the weak
hyper charge (Y ). This hypercharge is connected with the electromagnetic charge (Q)

1The handedness is given by the chirality of the particles, which is the same as the helicity, the
projection of the spin to the momentum, for massless particles.
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2. Theoretical motivation

via the Gell-Mann-Nishijima formula [8]:

Q = T3 +
1

2
Y (2.5)

The isospin operators Ti = σi/2, where σi are the Pauli matrices, generate together
with the hypercharge the underlying SU(2) × U(1) group [9]. The isospin operators
are associated with three bosonic vector fields W a

µ , a = 1, 2, 3 and the hypercharge
with a singlet field Bµ. With the requirement of gauge invariance the Lagrangian can
be formulated as:

L = −1

4
W a
µνW

µν,a − 1

4
BµνB

µν +
∑
j

ψ̄Lj iγ
µDµψ

L
j +

∑
j,σ

ψ̄Rjσiγ
µDµψ

R
jσ , (2.6)

where ψL(R) is the left (right)-handed fermion field, j runs over the generations and
σ is the component of the doublet (e.g. flavour in case of quarks). Dµ is given by the
covariant derivative:

Dµ = ∂µ − ig2TaW
a
µ + ig1

Y

2
Bµ , (2.7)

which contains the coupling constants g2 for the weak interaction and g1 for the
electromagnetic interaction. The field strength tensors W a

µν and Bµν contain the
vector fields W a

µ , a = 1, 2, 3 and Bµ. An expression for the charged W bosons of the
weak interaction is given by a linear combination of W 1

µ and W 2
µ :

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ) . (2.8)

One property of the charged bosons W± is that interactions where they participate
can lead to a change of the quark flavour and change of the quark generation. A
theoretical description of this behavior is given by the CKM-Matrix formalism [4].
The square of the absolute elements of the CKM-matrix, |Vij|2, yield the probability
that a quark with flavour i transforms to a quark with flavour j under emission of a
W boson. This holds only for the case of a charged boson and not for neutral, e.g. Z,
bosons.
The connection between the Z boson, the photon and the electroweak vector fields is
given through the weak mixing angle θW :(

Zµ
Aµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
W 3
µ

Bµ

)
(2.9)

Since the SU(2) is a non-Albelian group it is possible that the different W a
µ vector

fields couple with each other and thus also a coupling between the W,Z and γ bosons
of the weak interaction is possible. The electroweak mixing angle is connected to the
electric charge by:

e = g · sin θW . (2.10)

10



2.1. The Standard Model of particle physics

The local gauge invariance requires the vector fields W a
µ to be massless. This is

contrast to the experimental observation, where the W and Z bosons have a mass in
the order of O(100 GeV). In order to solve this problem it is possible to spontaneous
break the SU(2)× U(1) symmetry by introducing a complex scalar doublet field:

Φ(x) =

(
φ+(x)
φ−(x)

)
. (2.11)

The coupling to the electroweak gauge fields is given by the Higgs Lagrangian:

LH = (DµΦ)+(DµΦ)− V (Φ) , (2.12)

with the Higgs potential:

V (Φ) = −µ2Φ+Φ +
λ

4
(Φ+Φ)2 , λ > 0 . (2.13)

This potential is constructed in a way that Φ has a degenerated ground state. By
choosing the ground state to be:

< Φ > =
1√
2

(
0
v

)
with v =

2µ√
λ
, λ > 0 (2.14)

the SU(2)×U(1) symmetry is spontaneously broken. Expanding Φ around the vacuum
expectation value, v, it follows:

Φ(x) ≈ 1√
2

(
0

v +H(x)

)
. (2.15)

H(x) is a neutral scalar field, which can be identified as the Higgs boson [10] with a
mass mH = µ

√
2. The Higgs boson was observed in July 2013 by ATLAS [11] and

CMS [12]. By insertion of this field into the Lagrangian it follows for the mass terms
of the bosons:

mγ = 0 mW =
1

2
vg2 (2.16)

mz =
1

2

√
g2

1 + g2
2v (2.17)

For the electroweak mixing angle it follows:

cos θW =
MW

MZ

. (2.18)

With this relation and equation 2.10 it is possible to check if the theory matches the
data. The value of the mixing angle is measured to sin2 θW = 0.233 ± 0.004(exp.) ±
0.005(theor.) [13] and so far there are no differences found to the theory prediction.
The masses of the fermions can be explained in a similar way by a Yukawa coupling [14]
to the scalar Higgs field.

11



2. Theoretical motivation

2.1.3. Strong interaction

The theoretical description of the strong interaction is given by the Quantum Chromo-
dynmaics (QCD). The underlying SU(3)C

2 has 8 generators, which can be represented
by the Gell-Mann matrices λ1, ..., λ8 [8]. They satisfy the commutation relations:[

λa, λb
]

= 2ifabcλc (2.19)

with fabc as fully antisymmetric structure constants [15]. Under the requirement of
local SU(3)C transformations it follows for the Lagrangian:

LQCD = −1

4
Gµν
a G

a
µν +

∑
f

q̄f (iγ
µDµ −mf )qf , (2.20)

with the covariant derivative:

Dµ = ∂µ − iαs
λa

2
Gµ
a(x) . (2.21)

Gµ
a represents thereby the eight different gluons. The index f of the sum runs over

all quark flavours and αs is the QCD coupling constant. In the first term of the
Lagrangian the field strength tensors

Gµν
a = ∂µGν

a − ∂νGµ
a + αsf

abcGµ
bG

ν
c (2.22)

are introduced and represent the self-coupling of gluons.
It is also possible for the QCD to visualize processes by Feynman graphs. Figure 2.3

shows in the top two leading order processes. On the top left side a qq̄ → g → qq̄
process is shown with quarks as in- and outgoing fermions and a gluon as propagator.
The top right side shows a gluon vertex, where three gluons couple with each other.
In the bottom of figure 2.3 two NLO corrections are shown, where on the left side a
fermion and on the right side a gluon loop is given.
By calculating such loop corrections, using the Feynman rules, divergent integrals of
the form

∫
d4k(1/k2), where k is the momentum can occur. In order to get these

divergences solved it is possible to use the principle of dimensional regularization [16].
The calculation of the integral is expanded to D = 4 + 2ε , ε > 0 dimensions, which
leads to a well-defined integral, that can be split in a divergent and a non divergent
part. The not divergent part has a momentum (q) dependence, whereas the divergent
part is momentum independent, but both parts have a dependency on an arbitrary
energy scale µ.
It is possible to absorb the divergent part of the integral into the coupling constant,
leading to a µ dependence. For the experiment this means that the measured coupling
constant is not the bare but the renormalized one.3

2C stands for color
3In the case of QED it can be said that it is not the bare charge which is measured but the screened

one due to virtual e+e− pairs (loop corrections).
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2.1. The Standard Model of particle physics
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Figure 2.3.: In (a) are two leading order QCD Feynman graphs shown, where on
the left side a qq̄ → g → qq̄ process is shown and the right side is an example for the
gluon gluon coupling. In (b) is on the left a NLO fermion loop correction and on the
right side a gluon loop correction shown.

The introduced scale µ is arbitrary and not physically motivated so that the measur-
able quantities, like the cross-section, have to be µ independent. This is given if every
loop correction on every order is taken into account, resulting in an infinite sum. If
this is done in a finite way the µ dependence does not vanish but will get lower as
more correction order are taken into account and can be interpreted as a theoretical
uncertainty.
Looking at the Q2 = −q2 dependence of αs it is given that αs is small for high Q2,
which corresponds to small distances. This is caused by the self-coupling of the glu-
ons and is also named “asymptotic freedom” because the quarks can act as quasi-free
particles and can be described perturbatively (in orders of αs). Going to lower en-
ergy scales (longer distances) αs increases rapidly. It other words this means, if it is
tried to separate two quarks from each other, the spent energy is transformed into
the production of a new quark-antiquark pair leading to color neutral hadrons. This
process is called hadronization and the fact that no free quarks are existent is called
confinement.
Since αs has such a Q2 dependence it is often referred as running coupling constant4.
The LO Q2-dependence of αs is given by:

αs(Q
2) =

αs(Q
2
0)

1− β1αs(Q2
0)

2π
ln(Q2/Q2

0)
, β1 =

2Nf − 33

6
, (2.23)

with Q0 as an energy scale, where αs is known and Nf as number of quarks with
masses m2

q < Q2. The factor β1 is given by the lowest order coefficient of the so-called

4This can be applied also to the masses of particles used in the renormalization process, leading to
a running mass. But in most time a given mass refers to the so-called pole mass, which is given
by the resonance in a, for example, scattering amplitude measurement.
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2. Theoretical motivation

Figure 2.4.: Schematic view of a pp-collision. The incoming protons are marked
with A and B. The parton distribution function of the protons is given by fa/A and
fb/B. The partons of the hard scattering process, a and b, interact with a cross-section
σ̂ [18].

β-function. The β-function predicts the energy scale dependence of αs. Equation 2.23
demonstrates the asymptotic freedom for Q2 →∞, where αs → 0 if Nf < 17. For Q2

values below ΛQCD ≈ 200 MeV [17] αs rises above 1. A typical energy scale for αs is
the one of the Z-mass: αs = 0.1184± 0.0059.

2.2. Phenomenology of proton-proton collisions

In the previous section it was explained that quarks cannot exist as free particles, they
form color neutral hadrons – mesons and baryons. The proton is one of these baryons,
it contains two u- and one d-quark. These, so-called valence quarks, interact through
gluons with each other, whereas the gluons can convert to quark-antiquark pairs which
again can annihilate into a gluon. The quarks produced due to this fluctuation are
called sea-quarks. Though the proton is not a particle consisting of three static quarks
but rather a dynamical formation of valence, sea-quarks and gluons. Gluons, valence
and sea- quarks are also called partons.

The LHC is a proton-proton collider and thus it is more complicated to interpret
the result of such a collision as it is for example for a e+ − e− collider. Not the
protons as whole collide but the partons out of the protons. The interaction of these
partons is also called hard scattering process. In figure 2.4 a schematic pp-collision
is shown. The incoming protons A and B contain the two partons a and b, which
carry a momentum of xaqA and xbqB, where qA/B is the momentum of the proton and
thus xa and xb can be interpreted as fraction of the proton momentum, carried by the
parton a, b. The probability to find partons with such an momentum fraction is given

14



2.2. Phenomenology of proton-proton collisions

q

q̄ q̄

q

Figure 2.5.: Schematic sketch of vacuum polarization inside the proton. The red
circle indicates the resolution corresponding to a certain Q2. On the left side of
the figure the resolution is not big enough to resolve the quarks from the vacuum
polarization, whereas on the right the Q2 is big enough to do so.

by the parton distribution function (PDF) of the protons, fa/A(xa) and fb/B(xb).
Furthermore σ̂ is the cross-section of the hard scattering process.
It was shown from S.Drell and T.-M. Yan by the factorisation theorem [19] that it is
possible to separate the proton proton cross-section into two parts: one perturbative
part for the hard scattering process σ̂ab→X(xa, xb) and the other (not perturbative)
part is given through the PDFs. This is leading to a cross-section:

σAB =
∑
a,b

∫
dxa

∫
dxbfa/A(xa)fb/B(xb)σ̂ab→X(xa, xb) . (2.24)

Interactions between partons of the protons, that do not participate in the hard
scattering process lead also to, typically low energetic, hadrons. The parts of a pp-
collision containing these hadrons is an so-called underlying event which contaminates
the hard process.

2.2.1. Parton distribution function

The parton distribution functions describe the momentum distribution inside a proton
(fP (x,Q2)). They are dependent on the Bjorken’s scale variable x, which is equivalent
to the fraction of the proton momentum carried by a parton if the transverse momen-
tum and rest masses is small. The Q2 dependence of the PDFs can be explained by
the higher spatial resolution which is gained with higher Q2. A schematic picture to
demonstrate this effect is shown in figure 2.5. It can be seen on the left side that
the resolution, marked by the red circle, is not high enough to resolve the vacuum
polarization. For a higher Q2 it is then possible to resolve a quark from the vacuum
polarization, shown on the right side of the figure.
If the PDFs are known at one scale it is possible to predict the evolution of the mo-

mentum dependence though the the so-called DGLAP-equations [20] [21] [22] . The
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2. Theoretical motivation

proton-proton cross-section can then be written as:

σAB =
∑
a,b

∫
dxa

∫
dxbfa/A(xa, µ

2
F )fb/B(xb, µ

2
F )σ̂ab→X(xa, xb) . (2.25)

with µF as factorization scale which can be understood as the transition from big
to small distances. The cross-section is in principle independent on the choice of
the scale since the scale dependence is compensated by coefficients of the DGLAP
equation, similar to αs described in section 2.1.3. If all corrections are taken into
account the scale dependence would vanish completely but since this is not possible,
due to limited calculation time, different choices of µF will lead to different PDFs,
which can be interpreted as a theoretic uncertainty.

Determination of Parton Distribution Functions

It is not possible to give a theoretical prediction of the PDFs over the whole x- range.
So the most common way is to determine these with fits to data including several free
parameters. For the parametrization a certain Q2 scale has to be chosen, which is
often in the order of O(1 GeV2). Using the DGLAP equations the scale dependence
of the ansatz can be evolved. Then it is possible to use, for example, a cross-section
measurement of the Drell-Yan process (pp → Z/γ∗ + X → e+e− + X) to determine
the parameters of a PDF by evolving it to the scale of the Z pole mass.
The fitting is done with a convolution of the PDF and the partonic amplitude from
the hard scattering process. If the amplitude includes LO (NLO,NNLO) calculations
than the resulting PDF is also referred to as LO (NLO,NNLO). For this fitting data
from several experiments are used in order to get a precise measurement of the PDF
parameters over a large x and Q2 range. One of the precisest measurements for
predominantly low x were done by H1 [23] and ZEUS [24]. For higher x ranges fixed
target experiments lead with DIS5 measurements to precise results [25]. Since it
depends on which parametrization is chosen for the PDFs it exists different sets of
PDFs. Often used PDFs are provided by MSTW [26] or CTEQ [27].
The fitting procedure leads also to an uncertainty due to data uncertainties. Since
the single parameters of a PDF can be correlated with each other it is not possible to
propagate these parameter uncertainties to observable, for example the cross-section,
without any further regard. Therefore the fit parameters are transformed into an
orthogonal eigen basis using the Hessian approach [28]. Then the fit parameters can
be varied independently. This variations are done by shifting each parameter up and
down by a value corresponding to either 68% C.L6 or 90% C.L. leading to a set of
2n PDFs per confidence level, where n represents the number of fitparameter. With
these variations an uncertainty of, for example, the cross-section can be given due to
the PDF fit uncertainty.
In figure 2.6 the MSTW2008NNLO PDF for a proton is shown for different scales,

5Deep Inelastic Sattering
6Confidence Level
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Figure 2.6.: MSTW2008NNLO PDF times x as a function of x for Q2 = 10 GeV2

on the left side and Q2 = 104 GeV2 on the right side.

Q2 = 10 GeV2 and Q2 = 104 GeV2. In both plots it can be seen that for high values
of x the contribution of the valence quarks dominates, whereas for low x the sea-
part dominates. It is also shown that in case of the higher scale the contribution of
sea quarks increases because at this scale it is more probable to resolute the gluon
splitting.

2.2.2. Charged current Drell-Yan process

The charged current Drell-Yan process is the charged analog to the neutral Drell-Yan
process [19]. In this process a quark and an other flavoured antiquark annihilate into

a W bosons which then decays into a lepton and a neutrino: qiq̄j → W± → l±
(−)
νl .

In figure 2.7 the Feynman graph for the decay into a positron and neutrino is shown.
The cross-section of this process is given by [29]:

σ̂(qiq̄j → e+νe) =
G2
F |Vij|2
18π

M4
W

(ŝ−M2
W )2 +M2

WΓ2
W

, (2.26)

where G2
F is the Fermi constant, Vij an element of the CKM-matrix and ŝ the squared

center of mass energy of the incoming quarks. According to that, the cross-section
is a Breit-Wigner-distribution with the maximum at the value of the W - boson mass
and the width ΓW .
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qi

q̄j

W+

e+

νe

Figure 2.7.: Leading order Feynman graph for qiq̄j → e+νe.

The center of mass energy is also equal to the invariant mass of the positron and
neutrino:

√
ŝ = me+νe =

√
(pe+ + pνe)

2 , (2.27)

where p is the momentum four vectors of the positron or the neutrino. By usage of
the relation between the partonic center of mass energy and the center of mass energy
of the protons

ŝ = xqixq̄js (2.28)

it follows for the four momenta of the quarks:

pqi =

√
s

2


xqi
0
0
xqi

 , pq̄j =

√
s

2


xq̄j
0
0
−xq̄j

 . (2.29)

With this four momenta the so-called rapidity is given by:

ye+νe =
1

2
log

(
xqi
xq̄j

)
(2.30)

leading to:

xqi =
me+νe√

s
eye+νe , xq̄j =

me+νe√
s
e−ye+νe (2.31)

For a certain value of me+νe , for example the W -boson mass, different values of y cor-
respond to different values of x. In figure 2.8 the dependence between different (x,Q2)
pairs and the kinematic variables M (invariant mass) and y is shown for different
experiments. It can be seen that the DIS experiments are able to reach low Q2 values
compared to the LHC setup. The LHC can reach high values of x and Q2 leading to
high sensitivities for cross-section measurements above the Z-resonance.
Since neutrinos interact only via the weak force, they do not interact with the detec-

tor and therefor it is not possible to reconstruct their four momenta. Nevertheless it is
possible to determine the transverse component of the three momentum and the angle
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Figure 2.8.: Schematic plot to illustrate the kinematic coverage of LHC with a center
of mass proton energy of 7 TeV, HERA and fix target experiments. Shown is the x,Q2

plane together with different invariant masses and correspondent rapidity, y, values.

between the electron and the neutrino in the transverse plane. Therefore a variable is
defined which consists only of these measurable quantities and has information about
the invariant mass. It is called transverse mass and is defined as:

mT =
√

2peTp
νe
T (1− cos(φeν)) , (2.32)

where pT is the momentum of the electron or neutrino projected to the transverse
plane and φeν the angle between electron and neutrino also in the transverse plane.
The maximum of mT is the invariant mass and is reached if the angle between elec-
tron and neutrino is π (also called back-to-back decay). In figure 2.9 the transverse
mass is shown for a simulation of the described charged Drell-Yan process. The blue
distribution shows the typical rising behavior from low mT values up to the mass of
the W-boson(≈80 GeV). At this point the so-called Jacobian peak is visible, which
has a very sharp edge to higher mT values. Also added in the figure is in red a second
distribution, where the pT of the electron is smeared by 20% to illustrate the impact
of a detector resolution. It can be seen that also the Jacobian peak is “smeard” out,
leading to less events in the peak and more events in the low and high mT tails.
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Figure 2.9.: Transverse mass of the electron neutrino pair from a W+ decay. Shown
is a simulation in arbitrary units without any further smearing in blue and with a
smearing of 20% of the electron pT in red.

2.3. Models beyond the Standard Model

The Standard Model is at the moment the best theory to describe the structure of
matter and the interaction between the elementary particles but it contains also some
unresolved questions. One of these challenges is the unification of the electroweak and
the strong interaction. Considering that the Standard Model is based on symmetry
principles such an unification would also lead to symmetry breaking similar to the
electroweak interaction. This again implies the existence of new gauge bosons. The-
ories which try to do such an unification are called Grand Unified Theories (GUT).
The new gauge bosons are often referred as W’, for the charged bosons and Z’, for
the neutral bosons, whereas this thesis is focused on the charged bosons.
Some of the theories predict a very strongly suppressed leptonic decay. In this case
right-handed charged bosons W±

R can not decay into a right-handed neutrino νR be-
cause the neutrino is to too heavy for the decay WR → eνR [30]. Other theories,
so-called Kaluza-Klein models, which also provide models to include the gravitation,
predict new gauge bosons under inclusion of extra dimensions [31].

Sequential Standard Model (SSM)

This thesis focuses on the so-called sequential Standard Model [32] as a kind of bench-
mark model, but this analysis is also sensitive to other models, as long the theory
predicts a resonance-like excess above the Standard Model prediction. This model
predicts a charged W’ with spin 1 and the same couplings to the leptons as the SM
W-boson. The cross-section is therefore almost the same as it is for the SM W, except
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Figure 2.10.: Transverse mass distribution of simulated hypothetical SSM W’ bosons
with different pole masses. The ordinate is in logarithmic scale and shows arbitrary
units. No charge distinction is made.

the mass of the SM W boson, which has to be replaced by the mass of the W’ boson:

σ̂(qiq̄j → e+νe) =
G2
F |Vij|2
18π

M4
W ′

(ŝ−M2
W ′)

2 +M2
W ′Γ

2
W ′

. (2.33)

The width of the Breit-Wigner resonance can also be calculated using the Feynman
rules:

ΓW ′ =
αs
36

MW ′

sin2(θW )
. (2.34)

Figure 2.10 shows the transverse mass distribution of simulated SSM W’ bosons with
different pole masses up to 4 TeV. Different properties of the W’ are visible in this
plot.
First it can be seen that the cross-section is decreasing with higher pole masses result-
ing in a lower scaled distribution. Second it is shown that the width increases with
rising pole masses (see equation 2.34).
At last it is also visible that the low mT tail increases in relation to the peak. This

is given, because the complete cross-section is not only given by the part of the hard
process, also the hadronic cross-section, given by the PDFs gets more influence for
high pole masses. This is clarified by equation 2.28. Considering a 4 TeV W’ the
needed ŝ to produce that high masses is also 4 TeV. Taken into account that the
center of mass energy of the protons is 8 TeV, the product xqixqj has to be 1/2. The
probability to find quarks with that high x in a proton is given by the PDFs and can
be seen in figure 2.6. There it is visible that the probability is very low, leading to a
strong suppression of the production of 4 TeV W’ and an enriched low mT tail.
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2.4. Previous results

Up to now no evidence of new heavy charged W’ were found but exclusion limits on
the mass of a W’ were set. In table 2.4 current 95%C.L. mass exclusion limits are
shown for different experiments together with the integrated luminosity Lint

7 and the
center of mass energy

√
s.

The DØ and CDF experiments stationed at the Tevatron accelerator of the Fermilab
performed a search with pp̄-collision at

√
s = 1.96 TeV and an integrated luminosity

of 1 respectively 5.3 fb−1. They excluded a SSM W’ up to about 1 TeV [33] [34].
The current ATLAS mass limit of 2.5 TeV [35] is calculated with 4.7fb−1 of data at√
s = 7 TeV. The CMS collaboration has analysed the complete 20fb−1 of 8 TeV data

from 2012 leading to a mass limit of 3.35 TeV which is currently the highest mass
limit on a SSM W’.

Experiment Lint [fb−1]
√
s [TeV] observed limit [TeV]

ATLAS 2011 4.7 7 2.5
DØ2007 1 1.96 1

CDF 2010 5.3 1.96 1.12
CMS 2013 20 8 3.35

Table 2.4.: Recent mass limits for a SSM W’ from ATLAS [35], CDF [33], CMS [36]
and DØ [34]

7Integrated luminosity can be seen at this point as a measure of the amount of data taken.
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In the beginning, this chapter gives an overview of the Large Hadron Collider (LHC)
and the ATLAS experiment. Section 3.2 provides a more detailed description of the
ATLAS detector, by introducing the different components of the detector. In the end
a short introduction into the data processing and storing is provided.

3.1. The Large Hadron Collider

The Large Hadron Collider [37] is a hadron-hadron collider stained at CERN1 in
Geneva (Switzerland). It replaced the LEP2 , which was turned off in 2000, and is
build in the almost 27 km long tunnel.
Since the LHC accelerates two same charged particles it is not possible to use the
same beam pipe for both beams as it can be done at pp̄-colliders, e.g. Tevatron [38].
The advantage of using pp-collision is given by the higher instantaneous luminosity
of about 1034cm−2s−1. The colliding protons are bundled in bunches of about 1011

protons. These bunches have a time distance of 50 ns and are again grouped into
larger bunch trains with a much larger time distance compared with the bunches
itself. The actual colliding happens with a small crossing angle, to prevent too much
interactions along the beam pipe.
It is not possible to accelerate resting particles with a ring collider. Therefore a
pre-accelerator complex is needed. This is done in different stages, starting with
a linear accelerator (LINAC2) to bring the protons to 50 MeV. After the protons
passed the Proton-Synchrotron (PS) they have an energy of 25 GeV and reach the
Super Proton-Synchrotron (SPS), which accelerates them to 450 GeV. This energy is
enough to inject them afterwards in the LHC. In the year 2012 the LHC managed to
accelerate the protons to an energy of 4 TeV, which corresponds to a center of mass
energy of 8 TeV.

Luminosity

The instantaneous luminosity connects the event rate of an experiment with the coss-
section. It can be calculated with beam properties of the accelerator:

L =
nfN1N2

4πσxσy
, (3.1)

where n is the number of proton bunches per beam, f the circulation frequency, N1

and N2 the number of protons per bunch and σx and σy the transverse width of the

1Conseil Europén pour la Recherche Nucléaire
2Large Electron Positron
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Gaussian expected beam profile. These beam profile parameters are measured with
so-called “van-der-Meer-Scans” [39], where the beams are stepwise displaced against
each other. A measure of the total amount of data taken with an experiment is given
by the integration of the instantaneous luminosity over the whole data taking time
L =

∫
dtL . The data taking with pp-collisions at 8 TeV started in March 2012 and

ended in December 2012 leading to an integrated Luminosity of about 20 fb−1.

3.2. The ATLAS- experiment

The ATLAS-detector [40] is a multipurpose detector and designed to measure elec-
trons (positrons), photons, muons, τ -leptons and jets in a large kinematic range. It
consists of several components which are ordered cylindrical around the beam pipe.
An overview over the whole detector is given in figure 3.1. In the following the several
components are shortly introduced.

Figure 3.1.: Overview of the ATLAS-experiment. The different components are
marked in different colors. The overall weight of the experiment is about 7000 t [40].

3.2.1. Coordinate system

The origin of the coordinate system is the collision point. The z-axis points in beam
direction, the x-axis to the middle point of the accelerator and the y-axis in the up-
direction so that it originates a right handed coordinate system. The azimuth angle ϕ
lies in the x-y plane and measures the angle relative to the x-axis and covers a range
from −π to π. The polar angle θ measures relative to the z-axis. Instead of using the
polar angle it is common to use the pseudorapidity η = − ln(tan(θ/2)). For massless

particles the pseudorapidity is equal to the rapdidity y = 1
2

ln
(
E+pz
E−pz

)
.
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3.2. The ATLAS- experiment

The transverse momentum pT , the transverse energy ET and the missing transverse
energy3 Emiss

T are given in the x-y plane. At some points the variable ∆R is important,
in order to calculate distances in the η, ϕ-plane. It is defined as: ∆R =

√
∆η2 + ∆ϕ2.

3.2.2. Principal construction

The different components of the ATLAS-detector are build shell-like around the beam
pipe. The inner detector (ID) is nearest to the beam pipe. It contains a tracking
system, which itself consists out of three components and is infiltrated by a 2 T
strong magnetic field. With the tracking system it is possible to measure the vertex
and the momentum of charged particles.
The next following component in radial direction is the calorimeter system. It consists
of the electromagnetic liquid argon (LAr-) sampling calorimeter, which has a full ϕ
and a |η| coverage up to 3.2. Also a part of the calorimeter system is the hadronic
calorimeter (HCAL). Up to |η| = 1.7 a scintillator tile calorimeter is used and for the
handronic endcap region, 1.5 < |η| < 3.2, also LAr calorimeters are used. For the
following forward region (3.2 < |η| < 4.9) also a LAr calorimeter is used.
The whole calorimeter system is covered by toroid magnets [41] [42] [43]. They have
air-cores and generate fields with big deflecting forces. Together with three layers of
tracking chambers they build the muon-system [44]. The toroid system was decisive
for the rest of the construction. The airy, more open, construction minimises multi-
scattering and allows a precise momentum resolution (σ(pT )/pT ≈ 2.4% [45] for muons
in the region of the inner detector). This thesis is not focused on any muon properties,
therefore no further description of the muon detector components is given.
The rate of pp-collisions is about 1 GHz for an design luminosity of L = 1034cm−2s−1

but the rate how fast events can be recorded is only about 200 Hz. To provide such
an reduction of the rate, ATLAS has a three staged trigger system (see section 3.2.5).
The first stage, namely level-1 trigger (L1), uses only parts of detector information to
decide if an event should be further processed and reduces the rate to 75 kHz. The
following high level trigger (HLT), level-2 (L2) trigger and event filter (EF), reduce
the rate further to the needed 200 Hz.

3.2.3. Tracking system

For the investigation of physical processes a high momentum- and vertex resolution
is needed. If it is taken into account that the track density is very high at ATLAS,
a fine granularity is needed. The tracking system has three sub-components: The
pixel detector, the semi conductor tracker (SCT) and the transition radiation tracker
(TRT). An overview of the inner detector, another name for the tracking system, is
shown in figure 3.2. The solenoid magnet, which generates the magnetic field for
the momentum measurement with an resolution of σpT /pT =0.05%pT [GeV] ⊕ 1%, is

3Missing transverse energy is given by the absolute value of the missing transverse momentum
which is the negative vector sum of all reconstructed momenta: Emiss

T = |~pmiss
T | = | −∑i ~p

rec
T,i | .

A detailed description is given in section 4.3.
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Figure 3.2.: Cut-away view of the ATLAS inner detector [40].

5.3 m long and has a diameter of 2.5 m. The several sub-components are explained
in the following.

Pixel detector

The pixel detector is build next to the beam axis and covers a region of |η| <2.5.
The silicon pixel modules are arranged in layers, cylindrical around the beam axis
for central regions (|η| < 2.5) and perpendicular to the beam axis for endcap regions.
Every track crosses typically 3 of these layers. The purpose of the pixel detector is
the very precise measurement of the track, the reconstruction of the interaction point
(primary vertex) and secondary vertices from long living particles. The single pixels
have a size of 50 × 400 µm2 and reach a precision of 10 µm in R − ϕ and 115 µm
in z for central regions. The pixel layer nearest to the beam axis is called b-layer,
because it has the purpose to resolute the secondary vertices from B-hadron decays.
The pixel detector has the highest granularity of all detector components and about
80.4 million read-out channels.

Semi conductor tracker (SCT)

A further precision track detector is the silicon microstrip detector SCT, which also
covers the region |η| < 2.5. There are strips, which are orientated parallel to the beam
axis to measure the R−ϕ position, and stereostrips, which are arranged with a small
angle, to measure both coordinates. In the endcaps radially orientated sterostrips are
used. The reached precision in the central region for the R − ϕ plane is 17 µm and
580µm in z. It has 4 layers and about 6.3 million read-out channels.

Transition radiation tracker

The TRT covers a region of |η| < 2.0 and measures the intrinsic R− ϕ position with
a precision of 130µm. It is build with straw tubes, that have a diameter of 4 mm and
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3.2. The ATLAS- experiment

are orientated parallel to the beam-axis over a length of about 144 cm. The central
straws are divided in two parts, one with η < 0 and the other with η > 0, so that
only a left right information can be given. For endcap regions the straws are radial
orientated. Every track leaves about 36 hits in the TRT and the number of read-out
channels is about 351000.

3.2.4. Calorimeters

The calorimeters are build to measure the energy of the generated particles. Therefore
so-called sampling-calorimeters are used which contain alternating active and passive
material. In the dense, passive material the particles build showers, whose energy is
measured in the active material.
There are electromagnetic calorimeters and hadronic calorimeters. In electromagnetic
calorimeters, electromagnetic showers from electrons (positrons) and photons, are
build. The energy of the ingoing particle is divided between the daughter-particles up
to the point where the daughter-particles are stopped through ionization. A measure
of the exponential decreasing energy loss E(x) = E0e

−x/X0 is the radiation length,
which is material dependent.
For hadronic showers the absorption length λ describes the average length after which
it comes to inelastic scattering between hadrons and the detector material.
In figure 3.3 the calorimeter system of ATLAS is shown. It covers a region of |η| < 4.9
and combines different techniques.

An important property for an calorimeter is the energy resolution. For sampling

Figure 3.3.: Cut-away view of the ATLAS calorimeter [40].
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calorimeters the relative energy resolution can be split into three different parts:

σE
E

=
a√
E︸︷︷︸

1.

⊕ b

E︸︷︷︸
2.

⊕ c︸︷︷︸
3.

, (3.2)

where the first parts describes the sampling term, which rises with higher energy
due to statistical processes. The second part, also called noise term, results from
instrumental effects and the last term is given by calibration uncertainties, e.g. non-
linearities in photomultipliers, that has a constant energy dependence.

Electromagnetic calorimeter

The electromagnetic calorimeter is a liquid argon calorimeter, which uses lead as
absorber and has an accordion geometry to gain a complete and uniform ϕ coverage.
It is split in four different regions. The first part, the region with |η| < 1.475, is called
barrel calorimeter with an thickness of about 22X0. The region 1.375 < |η| < 3.2 is
covered by the endcap-calorimeter and is divided into the outer wheel (1.375 < |η| <
2.5) and the inner wheel 2.5 < |η| < 3.2. An additional part of the calorimeter covers
the forward region(FCAL), 3.2 < |η| < 4.9, of the detector.
The region up to |η| = 2.5 is separated in three layers. In figure 3.4 the three layers are
shown. The first has a very high granularity in η, to distinguish closeby particles, e.g.
two photons from a π0 decay. The second layer covers most radiation lengths compared
with the other layers and has a fine segmentation in η and φ to provide shower shape
measurements. The third layer is primarily used to give an estimate of the longitudinal
leakage of a shower into the following HCAL. In order to have an estimation of the
energy deposit in not instrumented regions a so-called presampler is build in front of
the first layer. The resolution, that can be reached is σE/E = 10%/

√
E GeV ⊕0.7 %.

Hadronic calorimeter

The hadronic calorimeter is also a sampling-calorimeter, but instead of lead, iron is
used as absorber and the active material is scintillating tiles. It is divided into three
different parts. The first is the tile barrel region up to |η| = 1.0, the second is the
extended barrel region with 0.8 < |η| < 1.7 and last is an additional liquid argon
calorimeter with a coverage of 1.5 < |η| < 3.2.

3.2.5. Trigger system

The trigger system can be divided into three stages. The first stage is the L1 trig-
ger [46], that is constructed to give very fast decisions (≈ 2.5 µs) if an event shall reach
the next trigger level or not. The full granularity of the electromagnetic calorimeter is
to fine to come within 2.5 µs to a trigger decision. Therefore the cells are grouped in so
called trigger towers, covering ∆η×∆ϕ ≈ 0.1×0.1. For an electromagnetic objects, it
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Figure 3.4.: Sketch of a module in the barrel region. The different layers and the
granularities in η-φ are well shown [40].

is searched for energy depositions above a certain threshold in two neighboring trigger
towers. If the energy deposition is above the threshold the region is called Region of
interest (RoI). During the time the L1 trigger needs to come to a decision, the whole
detector information is buffered and send together with the information of a RoI to
the L2 trigger.
The L2 trigger uses the full granularity of the calorimeter, but only in the RoIs. In
addition the L2 also takes the track information from the inner detector into account.
With this information reconstruction algorithms are used to select electrons or pho-
tons, e.g. require a matched track to an energy deposition for the case of an electron.
It takes the L2 trigger about 40 ms to come to a result. The rate is then already
reduced below 3.5 kHz.
The last reduction of the rate to the needed 200 Hz is done by the event filter. The
event filter uses the complete detector information and builds the complete event by
using further reconstruction algorithms (see chapter 3).
Based on the object signature, the events are divided in (data-)streams, like the
egamma-stream used in this analysis, which reduces the amount of data for the single
analysis. This means, for example, that events that passed the jet trigger requirements
are not saved in the electron stream if they not pass the electron trigger requirements.
The timing in this trigger chain is very important and is managed by the Timing,
Trigger, Control (TTC) system, which controls the timing signals an their synchronic-
ity for the detector devices. If all trigger level give a positive decision all information
of the different detector components is saved.
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3.2.6. Data acquisition and computing

As mentioned before the complete detector information has to be available during
the whole trigger decision chain. Therefore each detector component has a build-in
buffer where the data is stored during the processing time of the L1 trigger. If the L1
trigger gives a positive result the data is digitized and send to the data acquisition
(DAQ) system. There it is also saved in buffers and the L2 trigger can read out the
full detector information for the RoIs. After a positive decision of the L2 trigger, the
selected events are transferred to the event-building system, where the information
are merged to complete events and send to the event filter for a final decision.
An event saved after a positive trigger decision is in a RAW-data format and about
1.6 MB big. The reprocessing of the data is done by different levels of a Grid-system.
The principle behind Grid-computing is the usage of computing power all over the
world to manage the enormous amount of data produced at the LHC [47] [48].
The first step of reprocessing is done at the Tier-0 at CERN. There the first calibration
and reconstruction algorithms are applied to data. This leads to a data format called
Event Summary Data (ESD), which contains all tracks and the correspondent hits,
the single calorimeter cells, groups of such cells (clusters) and the information of the
muon system as well as combination of such objects. An event in ESD-format has
still 1 MB.
The ESD data is then send to the Tier-1 centers which provide the needed storage
and the possibility to reprocess the data again, e.g. for a new production of the ESD
with a new release of the reconstruction software.
A significant reduction of the size of data to about 100 kB is done by the creation of
Analysis Object Data (AOD), which only contain information of the physics objects
like electrons or jets. A further reduction is done by the creation of Derived Physics
Objects (DPD), which only contain the information needed for a specific analysis.
The DPDs are saved at the Tier-2 centers where they can be reached by all analysers
around the world. A special format of DPD, the D3PD, is used for this analysis,
where the information is stored in ROOT-Ntuples [49]. These can be stored at local
Tier-3 centers, like the maigrid in Mainz (germany), where the D3PD, used for this
analysis are stored. The data can also have additional requirements to reduce the
amount of data, e.g. in this analysis a requirement is set, that at least one electron
with an pT > 100 GeV is present in every event. ROOT [49] is a common used
analysis tool in particle physics, that provides methods for a statistical analysis and
the possibility to visualize data in graphs and histograms. In this thesis all shown
plots and calculations are made with ROOT if not otherwise described.
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This chapter gives an overview of the reconstruction, identification and calibration of
electrons, jets and missing transverse energy. The focus is set on central regions of
the detector.

4.1. Electron candidate reconstruction

The standard electron reconstruction algorithm, called egamma [50], starts with the
search of a cluster (an accumulation of calorimeter cells with energy deposition) in
the electromagnetic calorimeter. The cluster is then associated with a track from the
inner detector. For the search of an cluster a slinding-window algorithm is used. This
algorithm scans with a window of 3×5 cells, with the size of one cell ∆η × ∆ϕ =
0.025 × 0.025, the second calorimeter layer, searching for energy depositions above
2.5 GeV. These clusters are then associated with a track by extrapolating from the
last track point to the first layer of the calorimeter. This combination of track and
cluster builds an electron candidate. The association of a track with a cluster is a
strong criteria to distinguish between electron and photons, since photons themselves
do not leave any track information because they are neutral. If more tracks are
associated with a cluster, all are taken into account weighted with the distance to
the cluster center in the η,φ-plane of the second layer. The number of hits in the
SCT is thereby a quality attribute, because tracks without hits in the SCT have a
higher probability to origin from photon conversion. At this level no direct distinction
between real electrons and converted photons is made but the SCT hit information is
stored. This leads in fact to a high contamination of the real electron with converted
photons but ensures a high reconstruction efficiency. A rejection of the converted
photons is made on the identification level explained in section 4.1.1.
After the successful assignment of a track with a cluster the energy depositions are
new calculated with a bigger window of 3 × 7 cells in the barrel and 5 × 5 cells in
the endcap region. After different corrections, the four momentum of the electron
candidate is build with the track with the highest priority and the cluster energy.
For electrons with very low transverse momentum (O(1 GeV )) it is possible to improve
the reconstruction efficiency if the algorithm does not start with the cluster finding
but with the track finding. These algorithm are called soft algorithms.

4.1.1. Electron identification

The identification of electrons (EM-ID) is based on different variables containing in-
formation about the cluster shape and track information. It is divided in three stages,
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loose, medium, and tight [51], which have a signal efficiency of 90% for loose, 80% for
medium and 70% for tight for electrons with pT > 20 GeV [51]. In the following the
EM-IDs are explained in more detail with the variables used for the particular iden-
tification criteria. A summary of all cuts for the different stages is given in table 4.1.

“Loose“ identification

The first stage of electron identification is given by the loose identification. In order
to reduce the contribution from jets, which have typically high energy depositions
in the HCAL, it is cut on the ratio, Rhad, between the transverse energy in the
electromagnetic and the hadronic calorimeter. In addition a requirement is set on the
shape of the energy deposition in the first layer of the ECAL. For this the shower
width variable

wstot =

√∑
iEi(i− imax)2∑

iEi
(4.1)

is defined, where i is the number of strips and imax the strip with the shower maximum
in the first layer. Jets typically have broader showers than electrons, so that a cut on
wstot will also lead in a reduction of the jet background.
Furthermore jets often contain π0 mesons, which will decay dominantly into two
photons. This would lead to two neighboring high energy depositions in the first
layer. Therefore it is cut on Eratio = (E1st − E2nd)/(E1st + E2nd), which contains the
energy of the highest and second highest deposition of the strips. If the values of
Eratio are below a certain threshold it is more likely that the deposition originates
from an π0 decay.
Also restrictions on variables including the second layer of the ECAL are done, like
a requirement on the ratio Rη = E3×7/E7×7 with Ex×y as energy in a windows with
x×y cells. This cut ensures that no broad showers are selected, like hadronic showers.
Another shower shape variable, which is introduced for the same reason, is given by

wη,2 =

√∑
iEiη

2
i∑

iEi
−
(∑

iEiηi∑
iEi

)2

, (4.2)

where i is the strip index.
In addition to the restrictions on calorimeter variables, also requirements on track
properties are set. The matching between the reconstructed track and the cluster is
ensured by a cut on the distance (|∆η1|) between the impact point of the track in the
first ECAL layer and the η of the cluster. In addition the track has to have sufficient
number of hits in the pixel (NPix ≥ 1) and pixel+SCT (NSI ≥ 7) detector and it
is also required that the transverse distance between track and vertex (|d0|) is below
5 mm to ensure that the track is matched with the primary vertex.

“Medium“ identification

The medium requirements contain all cuts done in the loose identification. Addition-
ally the information of the third layer is included by restricting the ratio between
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the energy in the third layer and the complete cluster energy, if the pT is lower than
80 GeV. Furthermore a requirement is set on the ratio between TRT hits above a cer-
tain energy threshold and all TRT hits and also the track-cluster matching is tightened
as well the requirement of a hit in the first layer of the pixel detector.

”Tight“ identification

Also the tight identification imposes all medium cuts with a couple of more require-
ments. For example it is cut on a distance |∆ϕ| between the track and the cluster.
For the improvement of the track-cluster matching it is required that the measured
momentum from the track reconstruction matches with the cluster energy. The track
quality is enhanced by the demand of a minimum number of hits in the TRT detec-
tor. In addition electrons which are tagged as converted photons are also rejected as
mentioned in the beginning of section 4.1.

4.1.2. Electron energy calibration

The calibration of the calorimeter is not perfect and has η dependent miss-calibrations.
Therefore η dependent correction factors are applied in the form:

Etrue =
Emeas

1 + α(η)
, (4.3)

where Emeas is the measured energy and Etrue the true energy. The correction factors
are calculated by comparisons of simulations with data around the Z peak. The
difference between the peak of the simulation and data is measured by fitting the
invariant mass distribution of the simulation and data for different η bins. With these
differences the α(η) can be calculated. They are provided by the egamma analysis
group [52] and are applied by using the egamma Analysis tool kit.

4.2. Jet candidate reconstruction and calibration

For this analysis the jets play only a secondary role, namely for the calculation of the
missing transverse energy. Therefore only a short overview of the jet reconstruction
in ATLAS is given, a more detailed explanation can be found in [53].
The challenge of the reconstruction algorithm is to find all depositions, which con-
tribute to the jet, by ignoring all noise terms. This analysis uses jets which are based
on topological clusters. The principal of topological clustering is, to group neighbored
cells of the calorimeter with significant energies, compared to the noise. This is lead-
ing to variable number of cells per cluster, different to the sliding window algorithm
used for the electrons. After the initial building of a cluster, it is searched for local
maxima inside the cluster and if a maxima is found the cluster is split into separate
clusters.
These clusters are the starting point for the jet reconstruction algorithm anti kT [54],
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Detector component Explanation Cut variable
Loose identification

HCAL and ECAL Hadronoic leakage Rhad

1st ECAL layer if f1 > 0.005 : f1 = E1/E
absolute shower width wstot
π0 suppression Eratio

2nd ECAL layer Ratio of energy in 3 × 7 to 7 × 7
cells

Rη

Lateral shower width wη,2
Tracking system Matching between track and clus-

ter in the 1st ECAL layer
|∆η1| < 0.015

Transverse distance between
track and vertex

|d0| < 5 mm

Pixel detector Number of hits in pixel+SCT NSI ≥ 7
Number of pixel hits NPix ≥ 1

Medium identification (including loose)
3rd ECAL layer Ratio of energy in 3rd layer to

cluster energy
f3

Tracking system Matching between track and clus-
ter in the 1st ECAL layer

|∆η1| < 0.005

TRT Ratio between TRT above an en-
ergy threshold and all TRT hits

RTRT

Pixel detector Hit in the first pixel layer
Tight identification (including medium)

Tracking system Transverse distance between
track and vertex

|d0| < 5 mm

Ratio of cluster energy and track
momentum

E/p

Distance between track and clus-
ter

|∆ϕ|

Rejection of electrons tagged as
converted photons

TRT Minimum number of hits in TRT NTRT

Table 4.1.: Overview of the different electron identification criteria, loose, medium
and tight.
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that is used in this analysis. It starts with a definition of a distance between each
cluster, based on energy and the geometry of the cluster. In addition each cluster gets
an parameter assigned, that describes the distance to the beam axis. Starting with
the cluster with highest pT , the four momenta of the initial and the nearest cluster
are added and the distances are calculated new. This new object is then used to find
the next nearest cluster and again the four momenta are added and the distances are
re-calculated. This is done iteratively until the distance to next cluster is bigger than
the distance to the beam axis. Then the object is removed from the list and defined
as a jet. This procedure is done until no clusters are left.
Also for jets a recalibration has to be done due to different reasons. For example
the response for hadronic showers in the HCAL is smaller than for electromagnetic
showers1. In addition dead material2 can cause not detectable energy depositions.
Furthermore it is possible that parts of a shower escape the detector acceptance.
These corrections are done with a tool provided by the ATLAS Jet and Missing Et
Group3.

4.3. Missing transverse energy reconstruction and
calibration

As already mentioned in section 2.2.2 it is not possible to detect neutrinos with the
ATLAS-detector directly. Therefore this sections describes how the missing trans-
verse energy is reconstructed [56]. The reason why only the transverse component of
the missing energy can be reconstructed is given by the fact, that the longitudinal
momentum of the initial quarks is not known and therefore it can not be calculated
how much of the energy is missing. In the transverse plane the quarks have an almost
neglectable transverse momentum, so that the sum of pT from all reconstructed par-
ticles should be zero if no neutrino is present in the event4.
The reconstruction of the Emiss

T starts with the reconstructed objects like electrons,
jets and muons. These object are then associated to the cluster, from which they
were reconstructed and than mapped to the calorimeter cells used for the reconstruc-
tion. This mapping is done in the following order: electrons, photons, hadronically
decaying tau leptons, jets and muons. If one cell belongs to more than one object the
first association is taken, also called overlap removal. If one cell belongs to more than
one object of the same kind both are taken into account, weighted with a geometrical
weight5. Also included in this map are cells with no associated physic object, also

1Mostly due to not measurable energy losses caused by nuclear interactions
2Not instrumented material, where particles deposit their energy is called dead material.
3ApplyJetCalibration v. 00-03-05 [55]
4Also particles with a very high rapidity |η| > 4.9 are not included in the summation, but these

particles have also a very small pT .
5This geometrical weight is dependent on the ratio of cell energy to cluster energy, e.g. an electron,

where the energy of a cell contributes largest to the cluster energy, gets a higher weight than an
electron where the energy of the same cell has only a low contribution of the cluster energy.
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Figure 4.1.: Scheme of the Emiss
T reconstruction.

called CellOut or soft terms. The cells for each object are than grouped in so-called
MET REF xx variables, where xx denotes the different objects. In figure 4.1 the
scheme of the described reconstruction is shown. Pileup effects also the Emiss

T , espe-
cially the resolution, because energy depositions in the calorimeter from additional
proton collisions can contribute to the terms of the missing transverse energy [57]. In
order to reduce this effect, track information is used for inner detector regions, since
tracks, corresponding to an energy deposition in the calorimeter, can be associated
with the primary vertex.
In this analysis a tool, called MissingETUtility [58], is used to calculate the Emiss

T . It
provides the possibility to propagate uncertainties for the different physical objects
on the Emiss

T in a proper way.
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This chapter explains the requirements, that are made on selection criteria to get rid
of unwanted (background) events. The data shown here were detected 2012 with a
center of mass energy of

√
s = 8 TeV and an integrated luminosity of about 20 fb−1

at the ATLAS experiment. In figure 5.1 the sum of the integrated luminosity per
day is shown. The requirements which are done on electron- and Emiss

T -properties are
clarified for data.
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Figure 5.1.: Cumulative luminosity per day delivered to ATLAS (green) and recorded
by ATLAS(yellow) [59].

5.1. Quality criteria

In the beginning it is necessary to require that the detector is in a ”good condition”,
which means for example, that all devices operate well or the beam has stable prop-
erties. The following sections show how this is done and which quality criteria are
used.

Good run list

The so-called ”Good run list” (GRL) is a list provided by the Data Quality (DQ)
group of ATLAS and contains information about the status of the detector for different
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time periods of data taking. The time of data taking is divided into different periods
(months) which are then divided into different runs (hours). These runs are then
again divided into luminosity blocks (about two minutes). The decision if the data
taken in such a lumi block are in a good condition is based on data quality flags for
different detector components, which act basically like a traffic light. These flags are
used by the combined performance groups to determine which data is good for which
physics objects (electrons, photons, muons, ...). Therefore different good run lists
exist for different analysis. The GRL used in this analysis 1 provides a list of lumi
blocks, where everything is in good condition for all physic objects. The integrated
luminosity after applying the GRL is then 20.3 fb−1.

Rejecting of flawed or incomplete events

Additionally to the rejected lumi blocks from the GRL it is possible to refuse single
events due to problems in some detector devices. In detail this means, events are
rejected where an error flag was set for the Tile calorimeter. Furthermore it happened,
that for few runs some Tile calorimeter cells get overheated, so that events are refused,
where jets point to these cells and have a high energy deposition inside them. Other
effects, which lead to corrupt events are so-called noise bursts, which are temporal
high signals in some calorimeter cells, basically caused from electronic noise. These
noise bursts are important to refuse, because they can be misinterpreted as signals
from physical objects. Another incomplete event veto is included if parts of the event
are not recorded completely due to a TTC system restart.

5.2. Event selection

After the quality of the data is ensured, it is necessary to set some requirements on
event variables to get a further reduction of the background.

Trigger

To decrease the number of background events it is possible to require that a trigger
was fired for these events. In principle the use of an unprescaled 2 trigger is preferred,
in order to take all recorded events. In addition it is advisable to choose the trigger in
such a way that the W-resonance is included in the sample, in order to compare the
background estimate with the data in a well known kinematic region. Unfortunately
the lowest unprescaled trigger, which only requires “loose” identification criteria, is
the EF g 120 loose trigger. This trigger requires at least one photon like object with
an energy deposition in the electromagnetic calorimeter greater 120 GeV, so that the
W-resonance is not completely included in the sample.

1data12 8TeV.periodAllYear DetStatus-v58-pro14-01 DQDefects-

-00-00-33 PHYS StandardGRL All Good.xml
2A prescaled trigger only records every n-th event (dependent on pT threshold).
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With the knowledge of the trigger and the GRL it is possible to calculate the integrated
luminosity, which is done with a tool called ”ilumicalc tool” [60] and amounts 20.3 fb−1

with an uncertainty of 2.8 % [61].

Jet Cleaning

Since all reconstructed physical objects contribute to the calculation of Emiss
T , such as

jets, it is important that only events are used where all jets have well reconstructed
properties.

Vertex position

In order to ensure, that only particles from pp-collision are taken into account, it
is required, that there is at least one primary vertex 3 with an absolute z-position
smaller than 200 mm. Also this primary vertex should have more than 3 tracks.

5.3. Electron selection

In addition to the event based selection it is also possible to set further requirements
on electron properties.

Author

The so-called author cut provides, that only electrons which deposit their energy in
central regions of the calorimeter are taken into account (central electrons). This is
done via a bit mask called ”el author”, which has the value one or three for central
electrons. Additionally it is also required that a reconstructed track is matched to
this central deposition. Furthermore all ”soft”4 electrons are refused by this cut.

Cut on η

To ensure the correct electron identification, the η range of the electron candidates
is further narrowed down. Like mentioned before this analysis focuses on central
electrons, so that all candidates with |η| > 2.47 are cut away. Also the region 1.37 <
|η| < 1.52 is excluded, because of a drop in energy resolution in this region due to the
transition from barrel to endcap.

Object quality check

A further object quality (OQ) check can be done using a bit mask (32 bits) for each
electron. This bit mask holds information for every cluster cell. If there are any

3Primary vertex is the one with the highest sum of pT for the outgoing particles.
4”Soft” basically means electrons with pT smaller than 15 GeV
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5. Selection

problems with one of the cells, the corresponding bit is set to 1 and the electron
candidate is refused in the selection.

Track

To reduce background from electron candidates, that do not originate from a primary
vertex, it is required that the smallest distance (measured in the x-y plane) between
the extrapolated track and the reconstructed position of the primary vertex is below
1 mm. In addition it is required, that the distance along the beam axis is smaller
than 5 mm.

pT cut

Like mentioned before it is not possible to keep the W-resonance in the sample due
to the used trigger. Since the trigger has a ”turn-on” effect, which means that it has
not reached its full efficiency at 120 GeV, the pT cut is set to 125 GeV. The pT is
calculated out of the scale corrected energy and a corrected η. This corrected η is
either the track η if more than 4 hits in the pixel detector and SCT exist or the cluster
η if this is not the case. The exact calculation of pT is given by:

pT =
Ecorr

cosh(ηcorr)
. (5.1)

Electron ID

Another requirement for background reduction and better assurance of the quality of
the selected electron candidates is the insistence of an electron identification criteria
(see chapter 4). In this analysis a medium identification is required, which has a
efficiency of about 70% to 80% for real electrons and a background reduction efficiency
of about 95% [50].

Isolation

To reduce the background from fake electrons, like jets, it is possible to set an re-
quirement on the isolation variable Etcone20. This variable is build by the sum of all
energy deposition in cone of ∆R < 0.2 around the central deposition of the electron
candidate (excluding the central part of the electron) as it is shown in 5.2. Since
it can happen that energy from a soft process is deposit in this cone, a correction
for this effect is applied. Also the central energy deposition from the electron can
leak into the surrounding cone. Therefor a further correction is applied using the
CaloIsolationCorrections tool [62]. For this analysis the cut value on the cor-
rected Etcone20 variable is pT dependent so that the efficiency for real electrons does
not drop below 90%.

40



5.4. Selection based on kinematic event properties

Figure 5.2.: Illustration of the calculation of the EtCone variable. Shown here is a
cone size of ∆R <0.4 [63].

Trigger matching

To ensure that the electron candidate, which passed the selection up to this point is,
the one, which fired the trigger a matching between the trigger object and the selected
electron candidate is made. For this matching a ∆ R =

√
∆η2 + ∆φ2 < 0.15

between the selected electron candidate and the trigger object is required. Since the
used trigger is a photon trigger, the trigger objects have no track information, which
is the reason why the cluster variables are used for this matching.

Additional electron veto

After the electron selection events are refused where a second, isolated, medium elec-
tron with an pT >20 GeV is present. This cut is mostly to reduce background where
more than one high pT electron can occur, with simultaneously high Emiss

T .

5.4. Selection based on kinematic event properties

Emiss
T cut

Another cut is made if events have a reconstructed and calibrated Emiss
T smaller than

125 GeV. This cut value is chosen symmetric to the electron pT cut (see section 5.3),
since the transverse momentum distribution of the neutrino is expected to be sym-
metric to the one of the electron.
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mt cut

The last requirement set is a cut on the transverse mass, which should be above
252 GeV. This cut is chosen because it is not expected to find any new physics below
this mT and also because the high pT and Emiss

T cut distort the shape in lower mass
regions.

The impact of the single cuts can be seen in table 5.1 where the number of
events, which pass the single cuts are shown. The percentage values refer to the
amount of events before one cut. This table shows that only very view events have
bad quality, since the quality cuts only refuse less than 1% of events per cut. The
majority of events are refused by some of the electron cuts like the requirement of
a medium electron or the isolation, which shows that up to these cuts some of the
electron candidates are likely to be fakes (for example from jets). Also the Emiss

T -cut
leads to a high number of refused events, which are mostly events with an Z decay,
where no high Emiss

T values are expected, since the Z mostly decays in charged
leptons.

Cut Number of events passed fraction [%]

Event cuts

trigger 29406310 78.2
Vertex pos. 29398232 100.0
Hot Tile Error 29398231 100.0
Jet Cleaning 29303331 99.7
Tile Error 29303328 100.0
LAr Error 29241030 99.8
TTC restart 29241004 100.0
Tile trip 29241002 100.0

Electron cuts

Author 29236007 100.0
η cut 29208730 99.9
OQ-check 29206664 100.0
Track 28964325 99.2
pT cut 20104586 69.4
Electron ID 1485184 7.4
Isolation 712120 47.9
Trigger match 711950 100.0
Add. electron veto 671470 94.3

Event kinematic cuts

EmissT cut 25853 3.9
mT cut 13086 51

Table 5.1.: Impact of the selection on the number of events, which pass the single
cuts. The column, fraction, shows the part of events which passes the cut compared
to the previous number of events.
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6. Monte-Carlo simulation

For an analysis it is essential to compare the results of the experiment with theory
predictions. In order to get these, Monte-Carlo simulations are used. The generation
of such Monte-Carlo (MC) (pseudo-)data can be done in three stages, which are
described in this chapter: The generation of the processes, the detector simulation
and the transformation of detector signals to a storable format. The reconstruction
can then be done in the exact same way as it is done for data. It is also described
how small differences between data and simulation are corrected. Furthermore a
comparison between two different methods for the interaction with the detector is
given.

6.1. Generation of events

The generation of events can be split into different steps. It starts with the cross-
section calculation of the hard process, like the charged Drell-Yan process. This
cross-section is convoluted with the parton density functions, as it can be seen in
equation 2.24 in section 2.2 and therefore dependent which PDF is used. This con-
voluted cross- section is then used by random generators to calculate the four vectors
of the outgoing particles. It is also possible to apply kinematic requirements on the
outgoing particles (also called event filters). The generation of the cross-section can
be done on LO, like it is done by PYTHIA8 [64], or at NLO. Often the NLO generators,
e.g. PowHeg [65] or MC@NLO [66], are specialized on the calculation of the NLO matrix
elements and do not provide a calculation of the outgoing particles and have to be
combined with other generators. Interferences between NLO and LO Fenyman dia-
grams are handled by some generators by providing weights (mcevt weight) for each
event. The value of this weight is either 1 or -1, which, in the sum of the events,
is leading to the fact, that parts of the events cancel out in order to care about the
interferences.
The electromagnetic FSR mentioned in chapter 2.2 is simulated by the usage of
PHOTOS [67]. The colored incoming and outgoing particles can radiate gluons. These
gluons can split again, into a qq̄-pair, which also can radiate further gluons, leading
to an so-called parton shower. This showering can be simulated iteratively up to the
energy scale, where the perturbation breaks down. For NLO generators it is impor-
tant to match the QCD final or initial state radiation with the matrix element of the
NLO generator, which itself also includes Feynman diagrams for QCD initial and final
state radiation. The transition between the still color charged particles of the parton
showers to color neutral particles is described by hadronization models, which can be
different for different generators. Also the outgoing particles of the underlying event,
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6. Monte-Carlo simulation

mentioned in section 2.2, have to be simulated by the event generator. Many of the
generated particles are not stable and therefore also the decay of these particles has to
be simulated. After that, the four vectors of the particles can be given to the detector
simulation.

6.2. Simulation of detector response

The generation of events described in the previous section is independent from the
detector. The next step is the simulation of the interaction between the generated
particles and the detector. To do this in a precise way it is necessary to have a very
detailed model of the detector. In principle the response of every detector component
has to be simulated which can be very time consuming, especially for the calorime-
ters. Since many Monte-Carlo samples are needed for the ATLAS collaboration it is
feasible to use approximations for some of the detector responses. In this analysis two
different methods of simulating the calorimeter response are used: One is using a full
and detailed simulation of all interactions in the calorimeter and the other one uses
parameterizations of shower shapes.

Full simulation

A full detector simulation is done with GEANT 4 [68]. This software package simu-
lates the transition of particles getting through all of the detector material, including
interactions with it and secondary particles from these interactions. Not only the
interaction with the material has to be taken into account but also the interaction
with the magnetic field is important. Detector inefficiencies, like dead channels or
misalignments are also included in the simulation. The resulting signals from the
detector components are then treated the same way as i is done for data. This has
the advantage, that the same selection algorithms can be used for data and MC. Also
added to the event information of the simulation are the so-called truth properties
of the generated events, which are the properties without the detector simulation.
As mentioned before a disadvantage of the full simulation is the big amount of time
needed to simulate the shower development in the calorimeters.

Fast simulation

A fast detector simulation, which does not simulate all interactions between the
generated particles and the detector material is the so-called Atlfast-II [69] simu-
lation. This simulation uses the full (GEANT 4) track simulation but a fast simulation
(FastCaloSim [70]) for the calorimeters. For this kind of simulation some simplifica-
tions are made: The geometry of the calorimeter cells is described as cuboids in η, φ
and r. The development of the particle showers in the calorimeters is replaced by a pa-
rameterization of the longitudinal and lateral shower shape. The longitudinal shower
development is parametrized as a function of the shower depth for different particle
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energies and η including fluctuations and correlations between the calibrated energy
response and the longitudinal shower depth. The lateral shower is parametrized with
a radial symmetric function centered on the expected impact point of the particle
without fluctuations and correlations. Furthermore only three types of particles are
parametrized: photons, electrons (positrons) and charged pions (used for all hadrons).
The time reduction by using this kind of simulation is an order of magnitude com-
pared to the full simulation, which is a strong argument to use the fast simulation
even if it is less accurate. Since the output of the fast simulation is in the same format
as the full simulation, it is possible to combine the different simulated MC samples.

6.3. Monte-Carlo samples used

Background Monte-Carlo samples

As mentioned before, Monte-Carlo simulations can be used to simulate pseudo data
and compare them with data. The samples used for this analysis are listed in table
6.1. This list shows the samples from background processes, which will be discussed
in detail in chapter 7.1 as well as the signal samples used for a hypothetical W’ (SSM).
The W, Z and tt background MCs are simulated with PowHeg+Pythia8 at NLO and
the CT10 PDFs [27]. The diboson background samples are generated with SHERPA [71]
which is a LO generator and also with the CT10 PDFs. For the Wt and single top
s-channel background samples it is used a combination of: MC@NLO for generating
events at NLO, JIMMY [72] for modeling multi-particle scattering and HERWIG [73]
for simulating particle showers. The single top t-channel process is simulated with
AcerMC [74] together with PYTHIA8 on LO and the CTEQ6L1 PDF [75]. The same
PDF is used for the Wγ samples along with a combination of different generators:
ALPGEN [76] (LO) for the hard process and JIMMY and HERWIG for multi-particle
scattering and particle showers.
As described in chapter 6.1, the W and Z Monte-Carlo samples are generated in dif-
ferent mass windows of the W or Z to have enough statistic over the whole mass
spectrum. Additionally samples are added, which are filtered by different pT thresh-
olds during the event generation. It has to be taken into account that these samples
have a filter efficiency.
In order to compare distributions from the simulation with data, it is necessary to
weight the simulated distribution to the data luminosity. This is done by multiplying
a weight to the resulting distributions of each sample which is given by:

w =
σεfilt
Ngen

, (6.1)

with σ as cross-section of the simulated process, εfilt the filter efficiency and Ngen the
number of generated events, which are also given in table 6.1. In the following this
weight is called luminosity weight. Table 6.1 shows also the correspondent luminosity
of each sample, that is given by dividing the number of generated events with the
product of cross-section, branching ratio and filter efficiency.
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Process Nevt [k] σBεfilt [pb] Lint [fb−1] Process Nevt [k] σBεfilt [pb] Lint [fb−1]

W → τν Z → τν

W+ → τν 3999 6.89·103 0.58 Z → ττ 5000 1.11·103 4.5

W− → τν 2995 4.79·103 0.63 Z(250, 400)→ ττ 20 5.4·10−1 36

W+(200, 500)→ τν 45 2.51 18 Z(400, 600)→ ττ 20 8.9·10−2 220

W−(200, 500)→ τν 45 1.45 31 Z(600, 800)→ ττ 20 1.5·10−2 1300

W+(500, 1500)→ τν 45 7.6·10−2 590 Z(800, 1000)→ ττ 20 3.7·10−3 5300

W−(500, 1500)→ τν 45 3.4·10−2 1300 Z(1000, 1250)→ ττ 20 1.2·10−3 15000

W+(1500, 2500)→ τν 45 3.2·10−4 140000 Z(1250, 1500)→ ττ 20 3.5·10−4 56000

W−(1500, 2500)→ τν 45 9.9·10−5 450000 Z(1500, 1750)→ ττ 20 1.1·10−4 180000

W+(2500, 3000)→ τν 45 4.3·10−6 10000000 Z(1750, 2000)→ ττ 20 3.8·10−5 520000

W−(2500, 3000)→ τν 45 1.4·10−6 31000000 Z(2000, 2250)→ ττ 20 1.3·10−5 1400000

W+(3000, 3500)→ τν 45 5.5·10−7 81000000 Z(2250, 2500)→ ττ 20 5.2·10−6 3800000

W−(3000, 3500)→ τν 45 2.1·10−7 210000000 Z(2500, 2750)→ ττ 20 2.0·10−6 9900000

W+(> 3500)→ τν 45 7.7·10−8 580000000 Z(2750, 3000)→ ττ 20 7.8·10−7 25000000

W−(> 3500)→ τν 45 3.4·10−8 1300000000 Z(> 3000)→ ττ 20 5.0·10−7 40000000

Inclusive and mass binned W → eν Inclusive and mass binned Z → ee

W+ → eν 22993 6.89·103 3.3 Z → ee 9995 1.11·103 9

W− → eν 16999 4.79·103 3.5 Z(250, 400)→ ee 100 5.4·10−1 180

W+(200, 500)→ eν 45 2.51 18 Z(400, 600)→ ee 100 8.9·10−2 1100

W−(200, 500)→ eν 45 1.45 31 Z(600, 800)→ ee 100 1.5·10−2 6600

W+(500, 1500)→ eν 45 7.6·10−2 590 Z(800, 1000)→ ee 100 3.7·10−3 27000

W−(500, 1500)→ eν 45 3.4·10−2 1300 Z(1000, 1250)→ ee 100 1.2·10−3 77000

W+(1500, 2500)→ eν 45 3.2·10−4 140000 Z(1250, 1500)→ ee 100 3.5·10−4 280000

W−(1500, 2500)→ eν 45 9.9·10−5 450000 Z(1500, 1750)→ ee 100 1.1·10−4 890000

W+(2500, 3000)→ eν 45 4.3·10−6 10000000 Z(1750, 2000)→ ee 100 3.8·10−5 2600000

W−(2500, 3000)→ eν 45 1.4·10−6 31000000 Z(2000, 2250)→ ee 100 1.3·10−5 7200000

W+(3000, 3500)→ eν 45 5.5·10−7 81000000 Z(2250, 2500)→ ee 100 5.2·10−6 19000000

W−(3000, 3500)→ eν 45 2.1·10−7 210000000 Z(2500, 2750)→ ee 100 2.0·10−6 50000000

W+(> 3500)→ eν 45 7.7·10−8 580000000 Z(2750, 3000)→ ee 100 7.8·10−7 130000000

W−(> 3500)→ eν 45 3.4·10−8 1300000000 Z(> 3000)→ ee 100 5.0·10−7 200000000

pT binned W → eν pT binned Z → ee

W+(100, 150)→ eν 400 1.38·101 28.9 Z(100, 150)→ ee 1398 8.25 170

W−(100, 150)→ eν 500 1.32·101 37.8 Z(150, 200)→ ee 299 1.31 230

W+(150, 200)→ eν 100 2.16 46.2 Z(200, 300)→ ee 100 4.1·10−1 240

W−(150, 200)→ eν 100 2.08 48.2 Z(> 300)→ ee 20 6.7·10−2 300

W+(200, 300)→ eν 50 6.6·10−1 75

W−(200, 300)→ eν 50 6.3·10−1 78

W+(> 300)→ eν 10 1.1·10−1 88.6

W−(> 300)→ eν 10 9.9·10−2 100.5

Diboson Top

WW → ``νν 2700 5.50 490 tt̄→ `X 14968 1.14·102 130

WZ → ```ν 2700 9.75 280 s-channel t→ Wτν 200 5.6·10−1 350

ZZ → ```` 1800 8.74 210 Wt→ X 1000 2.07·101 48

ZZ → ``νν 900 4.9·10−1 1800 t-channel t→ τX 293 8.58 34

V V → ττqq 200 1.70 120 s-channel t→ Weν 200 5.6·10−1 350
V V → τνqq 1000 9.56 100 t-channel t→ eX 300 8.59 35
V V → eeqq 200 1.70 120
V V → eνqq 890 9.56 93

Wγ

Wγ + 0p 14296 7.21·101 200

Wγ + 1p 5394 2.67·101 200

Wγ + 2p 2899 1.16·101 250
Wγ + 3p 860 4.48 190

Table 6.1.: Monte-Carlo samples used for the background estimation. The number in
braces indicate the boson mass range, respectively pT range of the electron (in GeV) in
which the samples are produced. The samples without any requirements on the mass
or pT are called inclusive. The label +xp (for the Wγ samples) indicates, that the
sample was produced requiring x additional partons in the final state. All listed W-
boson samples are simulated with the fast simulation. In addition also full simulated
W+-boson samples for the mass bins: 200 GeV-500 GeV, 2500 GeV-3000 GeV and
>3500 GeV are used in this analysis for comparisons.
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Signal Monte-Carlo samples

In order to have a description of a hypothetical (SSM) W’-boson, signal samples are
produced. On the one hand there is a sample for a SSM W’ with a pole mass of 3 TeV,
shown in table 6.2 and on the other hand there is a so-called flat sample. This sample
is not simulated for a dedicated pole mass but flat up to 4 TeV. It is possible to get the
mass distribution for W’ signals with certain pole masses by applying a reweighting
function. This function has dependencies of the pole mass, which is intended to
generate, and the mass of the flat sample. The exact mathematical function can be
found in the appendix A.1. For each event the flat invariant mass is given together
with the polemass one wants to have into this function and the resulting number is
applied to the event as a weight. The signal samples which are used in this analysis
are listed in table 6.2, where also the number of generated events, the cross-section
and the kind of simulation is given. A further reweighting to the data luminosity is
of course also needed if any comparisons with data are made.

Mass Generator
[GeV ] Γ [GeV] B(W ′ → `ν) Nevt [k] σB [pb] Lint [fb−1] Simulation

Flat 1646 2.525E+01 22 AFII
3000 106.46 0.0818 180 3.870E-03 16000 Fast Sim
3000 106.46 0.0818 180 3.870E-03 16000 Full Sim

Table 6.2.: Monte-Carlo signal samples used in this analysis. Beside the number of
generated events, cross-section and correspondent luminosity also the kind of detector
simulation, that is used, is shown.

6.4. Corrections applied to simulation

In order to correct small differences between the Monte-Carlo simulation and data,
some correction (scale) factors are applied.

k-factor

As described before, the events are generated at LO or NLO. To get the process in the
next higher order so-called k-factors are applied. These k-factors are the ratio of the
NLO (NNLO) cross-section and the LO (NLO) cross-section. They are calculated for
QCD and electro-weak interaction separately. For most of the Monte-Carlo samples
used, this factor is applied inclusive (not in dependence of any kinematic variable).
For the signal (pp → W ′ → XeνX) and the W Monte-Carlo a k-factor is applied to
each event depending on the generated mass and charge of the W (W’) boson. The
values of the k-factors for the W background sample are in the range of about 1.05
to 1.10.
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6. Monte-Carlo simulation

Energy smearing

The detector resolution is underestimated in the simulation, so that a further smearing
of the electron energy is applied. This smearing is done by calculating a random
variable following a normal distribution with the detector resolution as width, which
is then applied to the energy of the electron. This correction factor is applied to all
simulated processes and has a value of a few percent.

Vertex z position reweighting

For data the z position of the primary vertex is in principle a normal distribution
around zero. It is not possible to simulate this with the same width of the normal
distribution without knowing the exact number 1. To correct these differences an
event weight is applied in such a way, that the vertex z position distribution from the
simulation matches the one from data. The weights are provided by a tool from the
ATLAS- collaboration [52]. A comparison of the vertex z position for data and MC
is shown in figure 6.1. Here the Monte-Carlo simulation includes all simulated back-
grounds (shown in table 6.1). As the figure shows, the distribution follows a Gaussian
like shape for data and MC having a different width without the re-weighting, but
this is fixed after weights are applied. The effect of the re-weighting on the selection
described in chapter 5 is only 0.03%.
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Figure 6.1.: Comparison of vertex z position between data and Monte-Carlo simula-
tion after the selection. Left: Without applied weights. Right: With applied weights

PileUp-reweighting

Since the protons are bundled in bunches, it can happen that more than one pp-
collision happens per bunch crossing, which is also called in-time-pileup. A good

1The Monte-Carlos are typically generated before data taking
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Figure 6.2.: Comparison of average interactions of bunch crossing (µ) between data
and Monte-Carlo simulation after the selection. Left: with applied weights. Right:
without applied weights

variable to measure this, is the number of primary vertices Nvtx. It is also possible
that signals from previous bunch crossings occur in later ones, leading to the so-called
out of time pileup, which can be quantified by the number of interactions averaged over
one bunch train and a luminosity block (µ). Both variables are strongly dependent
on the setup of the accelerator and the detector. Initially the Monte-Carlo samples
are generated with a generic function, that is not well adjusted to data because the
simulation takes place before or while data taking. The pileup weights, which are then
applied to MC, are provided by a tool from ATLAS (“Extended PileUp Reweighting
Tool” [77]) and are optimized to reweight the µ distribution in such a way that it
agrees with the one from data. In figure 6.2 the unweighted µ distribution is shown
on the left side, where it can be seen that the generic MC function does not match
to the data distribution. The reweighted MC distribution compared to data is shown
on the right side and it is visible that the agreement between data and MC is much
better.
A comparison of the Nvtx distributions between data and MC with and without
weights is shown in figure 6.3. Also here the reweighting leads to a much better
agreement between data and MC.

Trigger scale factors

Differences in the trigger efficiency are corrected by applying a pT and η dependent
scale factor. These scale factors are provided by the egamma working group and are
also used for the official W’ analysis. The method used to calculate this scale factors
is the so-called “tag and probe” method. The idea of this method is to “tag” one
electron by applying very tight cuts and almost no requirements on a second electron
(“probe”) except a cut on the invariant mass of the “tag and probe“ pair to be within
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Figure 6.3.: Comparison of number of primary vertices (Nvtx) between data and
Monte-Carlo simulation after the selection. Left: with applied weights. Right: with-
out applied weights

the Z peak region (e.g. 80-100 GeV). This invariant mass cut makes it possible to
be more sure that the ”probe” electron is an actual electron (the second one from
the Z decay), without applying any identification cuts. Then the efficiency can be
calculated by simply dividing the amount of probe events after the trigger cut by the
events before the trigger cut. The actual influence of this scale factor on the selected
number of events is in the order of 0.05 %.

Reconstruction scale factor

Corrections due to differences in the reconstruction are applied by using the egamma

analysis toolkit. Basically these corrections are the ratio between the reconstruc-
tion efficiency of MC and the reconstruction efficiency of data in bins of η and pT .
Overall this has an effect of about 0.5 %.

Identification and isolation scale factors

One other scale factor is applied for discrepancies in the identification and the isolation
efficiency of the electron. This is also done in a pT and η dependent way using the
“tag and probe“ method and has a 1.8 % overall effect.
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6.5. Comparison of fast and full simulated
Monte-Carlo samples

In this analysis the pT and mass binned W Monte-Carlo samples are generated with the
fast simulation, whereas the inclusive (not mass or pT binned) samples are generated
with full simulation. To ensure the compatibility between the two kinds of simulation
a comparison of fast and full simulated signal and background samples is made. The
following sections will focus on the comparison of the W’ 3 TeV signal sample to
investigate differences at very high pT , whereby this differences are also visible for the
investigated background samples.
In order to ensure, that the differences only occur from the differences in the detector
simulation, kinematic variables were compared on generator level. Exemplary the pT
distribution on generator level is shown in figure 6.4 on the left side, where it is visible
that there are no differences on generator level.
In order to find differences after the selection, table 6.3 shows a comparison of the
number of selected events after each cut for the fast and full simulated W’ 3 TeV
signal sample. Additional to the cuts that were made on data (see chapter 5.2), truth
cuts on the mass generated signal samples are applied, which only keep events where
the generated W’ decays into an electron and not a µ or τ lepton. The differences
before the isolation cut are at most 0.1 %. After the isolation cut the differences
grow to about 0.5 % and rise after the Emiss

T cut further to ≈ 0.7%. The influence of
the Emiss

T cut is clarified in figure 6.4 on the right side, where the missing transverse
energy is shown with all cuts before the Emiss

T cut applied. The visible differences for
Emiss
T values below 125 GeV and above 1.5 TeV leads to differences shown in table 6.3.
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Figure 6.4.: Comparison of the pT distribution of a W’ 3 TeV signal sample between
AtlfastII (blue) and full simulation (red). Left: pT distribution on truth level. Right:
Emiss
T after reconstruction and selection.
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6. Monte-Carlo simulation

Cut Fast Full differences [%]
gen. 180003 180001 0.00
with truth cuts 60518 60517 0.00
trigger 44708 44690 0.04
Vertex pos. 44396 44352 0.10
Jet Cleaning 44263 44271 −0.02
Tile Error 44263 44271 −0.02
LAr Error 44263 44271 −0.02
TTC restart 44263 44271 −0.02
Tile trip 44243 44257 −0.03
η cut 43740 43737 0.01
OQ-check 43710 43712 −0.00
Track 42542 42529 0.03
pT cut 40924 40928 −0.01
Electron id 39344 39304 0.10
Isolation 38616 38434 0.47
Trigger match 38614 38433 0.47
Add. electron veto 38595 38406 0.49
Emiss
T cut 37667 37402 0.71

Table 6.3.: Impact of the cuts on number of events for the fast and full simulated
W’ 3 TeV sample.

6.5.1. Comparison of shower shape variables

Since the electron identification, described in chapter 4.1.1, cuts on several shower
shapes, a comparison between fast and full simulation shower shape variables is done.
Exemplary the Rη distributions for the W’ 3 TeV signal samples and the mass binned
(200 GeV < m(W+) < 500 GeV) W+ background sample are shown in figure 6.5.
For both samples it can be seen that fast and full simulation have a peak at about
0.97. Additionally the fast simulation has a second peak at about 0.95, which is not
present for the full simulation. This peak occurs due to a high η dependence of Rη

for the fast simulation. This is shown figure 6.6 where Rη of the W’ 3 TeV sample
is shown for different pT and η bins. For |η| < 0.8 the fast distribution has only a
small shift to lower values, but for higher η values this shift grows. Comparison of
additional shower shape variables are shown in appendix A.1 and appendix A.2.

However, these differences have no large impact on the selection, as it can be seen
in table 6.3, where the difference after the electron identification cut is only about
0.1 %. The reason for the small influence is given by the cut values for the single
shower shape variables, which are dependent on pT and η of the electron, but always
below the regions of big differences between the fast and full simulation. For Rη

this cut is, for instance, always below 0.9 which clearly is out of the region of big
discrepancies.
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Figure 6.5.: Comparison of Rη between AtlfastII (blue) and Full simulation (red) of
the W’ 3 TeV (left) and W+(2500 GeV< m(W+) < 3000 GeV) sample (right).
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Figure 6.6.: Comparison of Rη between AtlfastII (blue) and Full simulation (red)
of the W ′ (3 TeV) signal sample in different η and pT bins. Top left: |η| < 0.8;
0.0 GeV< pT <250 GeV. Top right: 0.8< |η| <1.37; 0.0 GeV< pT <250 GeV.
Bottom left: 1.52< |η| <2.01; 0.0 GeV< pT <250 GeV Bottom right: 1.52< |η| <2.01;
250.0 GeV< pT <1000 GeV
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6. Monte-Carlo simulation

6.5.2. Isolation comparison

To investigate the differences in selected number of events after the isolation cut,
figure 6.7 shows the distribution of the uncorrected (corrected) isolation variable Et-
cone20 on the left (right) panel. The distributions show real electrons from the W’
decay, which pass the selection up to the isolation cut. Again both distributions show
a shift between fast and full simulation. The reason for the double peak structure for
the uncorrected distribution is given by a high pT and η dependence, which is also
visible in figure 6.8. There, the mean of the isolation distribution for several pT bins
is shown. Also it is shown, that the fast simulation has a weaker pT dependence than
the full simulation, which then leads to an overcorrection of the corrected isolation,
that shows that the isolation correction is optimized for the full simulation.
Differences in the efficiency of the isolation cut are shown in figure 6.9. Efficiency
in this context, is the ratio of events before the isolation cut and after the isolation
cut as a function of the truth pT (right panel) or η (left panel). The truth values are
chosen here in order to be sensitive only for the isolation differences but not for any
differences in η or pT . It can be seen that the efficiency is approximately flat in pT
and always above 96 %, for which the cut was tuned to, and only small differences
(<3 %) between fast and full simulation are visible, with respect to the statistical
uncertainties. The η dependence of the efficiency shows also a mainly flat behavior,
except for the crack region at about |η| = 1.47 due to some bin migrations and the
endcap region (|η| > 1.52) where the fast simulation drops to efficiencies beneath
95 %, which is not visible for the full simulation. These differences are caused by the
isolation discrepancies, that are larger for this η region as for the other regions.
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Figure 6.7.: Comparison of uncorrected (left) and corrected (right) ET,Cone20 of the
W’ 3 TeV sample between AtlfastII (blue) and full simulation (red).

54



6.5. Comparison of fast and full simulated Monte-Carlo samples

M
e

a
n

 o
f 

Is
o

la
ti
o

n
 [

G
e

V
]

0

5

10

15

20

25

30

35

WPrimeM3000Fast

WPrimeM3000Full

 [GeV]
T

p
0 500 1000 1500 2000 2500 3000

F
u

ll/
F

a
s
t

0.6
0.8

1
1.2
1.4

M
e

a
n

 o
f 

Is
o

la
ti
o

n
 [

G
e

V
]

­8

­6

­4

­2

0

2

4

6

WPrimeM3000Fast

WPrimeM3000Full

 [GeV]
T

p
0 500 1000 1500 2000 2500 3000

F
u

ll/
F

a
s
t

­4
­2
0
2
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6. Monte-Carlo simulation

The idea is to correct the isolation value of the fast simulation in order to agree
with the full simulation. Therefore the pT dependence of the uncorrected isolation is
fitted for fast and full simulation in four bins of |η| with a linear fit of the form:

y = ax+ b . (6.2)

The function to correct the isolation is then given by:

Isofull = Isofast + n · pT + C , (6.3)

(6.4)

where n = afull − afast and C = bfull − bfast are so-called fudge factors. The results
of the fits are shown in figure 6.10.
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Figure 6.10.: Mean of the ET,Cone20 distribution as a function of pT in four bins of η
with an linear fit applied. Top left: |η| <0.8. Top right: 0.8< |η| <1.37. Bottom left:
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There it is also visible, that the average discrepancies between fast and full sim-
ulation grow for higher η regions. The used fit ranges are varied for the different η
bins and are chosen to get sufficient entries in each pT bin. In table 6.4 the calculated
fudge factors are listed. After the fudge factors are applied to the fast simulation,

η-region n C
|η| <0.8 0.0022 0.5
0.8< |η| <1.37 -0.0023 1.5
1.52< |η| <2.01 -0.0047 1.1
2.00< |η| <2.47 -0.012 -0.1

Table 6.4.: Calculated fudge factors for different bins of η.

the isolation distribution for fast and full is in better agreement as it is shown in fig-
ure 6.11, even though the fudge factor only corrects the shift in the distributions and
not the shape differences, which still can be seen in the corrected isolation variable.
Also the pT dependent isolation of the fast simulation matches better with the full
simulation, as displayed in figure 6.12.
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Figure 6.11.: Comparison of uncorrected (left) and corrected (right) ET,Cone20 of
the W’ 3 TeV sample between AtlfastII (blue) and Full simulation (red) with applied
fudge factors.
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Figure 6.12.: Comparison of uncorrected (left) and corrected (right) ET,Cone20 as a
function of pT for the W’ 3 TeV sample between AtlfastII (blue) and Full simulation
(red) with applied fudge factors.

To check if the fudge factors also work for the other background samples, figure 6.13
shows the isolation for the W+(2500 GeV< m(W+) < 3000 GeV) sample with and
without fudge factors. It can be seen that the differences decrease, as well.
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Figure 6.13.: Comparison of ET,Cone20 for the W+(2500 GeV< m(W+) < 3000 GeV)
sample between AtlfastII (blue) and Full simulation (red). Left: without fudge factors.
Right: with fudge factors.
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6.5.3. Resolution comparison

A further comparison is made for the resolution. Therefore the normalized energy
difference between reconstructed and generated energy (Etruth−Erec

Etruth
) of an electron is

calculated as a function of the truth energy. This is shown in the right (left) plot
in figure 6.14 for the full (fast) simulation. The sharp edge seen between the first
and second Etruth bin is due to the pT cut of 125 GeV. The distribution as function
of Etruth−Erec

Etruth
has its maximum at zero and falls to both sides. In order to extract

the resolution out of these two dimensional histograms, each Etruth bin is projected
to the y-axis, and the (arithmetic) mean and standard deviation is calculated. This
standard deviation is then taken as the energy resolution. The result is shown in
figure 6.15. The comparison shows, that the resolution is slightly bigger for the fast
simulation. Also added in this figure is the systematic up and down variation of the
energy smearing, described in section 6.4. It can be seen that the differences are
covered by the uncertainty and therefore no further corrections are applied.
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as function of truth energy

for the full (fast) simulated W’ 3 TeV signal sample.
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Figure 6.15.: Comparison of the resolution as function of truth energy of the W ′

3 TeV signal sample between AtlfastII (blue) and Full simulation (red), including
systematic uncertainties from the smearing of the electron energy.

In summary, the comparison between fast and full simulated Monte-Carlo samples
shows differences in shower shape variables, isolation and resolution. The impact of
these discrepancies on the selection is below 1%, because the cuts on the variables,
where differences occur, are outside the range of the differences. Nevertheless dif-
ferences in the isolation are corrected by using fudge factors and thus forcing the
isolation of the fast simulation to agree with isolation of the full simulation. Absolute
differences in the resolution of about 0.35% are covered by the systematic uncertainty
of the electron energy smearing and are therefore not corrected.
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7. Background estimation

In every search for new physics the ultimate goal would be to have no background.
This is unfortunately not possible since there are processes, that have the same signa-
ture in the detector than the one which is searched for. Also misidentification of jets
as electrons can lead to selected events, that do not origin from any signal process.
Therefore it is very important to estimate this background as precise as possible.
This chapter describes the background from real electrons, meaning background from
processes that leave similar signatures in the detector as a hypothetical W’, and also
so called fake background, which is the background from objects misidentified as
electrons.

7.1. Background from real electrons

The background from real electrons is estimated with Monte-Carlo simulations, which
were described in chapter 6. In the following sections an enumeration of the differ-
ent processes is given, which lead to electrons, that can pass the selection. It is also
possible, that the high Emiss

T , needed to pass the selection is “faked” from high en-
ergy particles which leave the detector acceptance and therefore leave no measurable
energy in the calorimeters. For the real electron background only events are taken
into account, where real electron from W bosons1 occur. This is done by using the
generator information, where the parent information of the electrons is given.

W background

The biggest background source is given by the SM W decay, because the electron
and neutrino of a W decay leave the same signature in the detector as a hypothetical
W’ boson and thus can pass the selection cuts. Not only the electron decay channel
from the W can contribute to the background, also the τ lepton channel, where the τ
decays within the detector to a high energetic electron.
Since this is one of the largest backgrounds a precise description over a wide energy
range is needed. To achieve this the Monte-Carlo samples used, are produced for
different mass and pT bins, as mentioned in section 6.3. The difficulty is, to avoid
double counting. Applying cuts on pT and the mass of the W boson on generator
level, it is possible to gain more statistic, without double counting any events. Fig-
ure 7.1 illustrates the cuts used on mass and pT , whereas “bulk sample” means the
inclusive sample. After selection and reweighting to the data luminosity it is possible
to gain complete distributions by stitching (adding) the samples together, which is

1Also events with a W decay to a tau lepton are considered, if the tau lepton decays into a electron.
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Figure 7.1.: Illustration of truth cuts, applied to W and Z Monte-Carlo samples to
avoid double counting.

exemplarily shown in figure 7.2. There the stitched mT distribution is shown for some
(not all) W Monte-Carlos.
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Figure 7.2.: Transverse mass spectrum for mass and pT binned W background sam-
ples to illustrate stitching of the samples. Due to clarity reasons only the samples
used for the decay into electrons are shown.

Diboson background

Events where two W bosons, two Z bosons or one W and one Z boson occur, are so
called diboson events. The production processes, that can lead to such an event are
shown in figure 7.3. The bosons can decay into electrons, which leads to events with
up to four electrons. It is possible that some of this electrons deposit their energy
in insensitive detector regions and are not reconstructed, thus faking Emiss

T . Given
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7.1. Background from real electrons

one identified electron with high pT , that passes the selection, the event contributes
to the background. In addition events have to be taken into account where only one
W decays leptonically and the other boson hadronically, which will also lead to the
same signature as the signal signature. Also events where the boson decays into a τ
lepton can contribute to the background, as it is possible for the τ leptons to decay
into electrons. In figure 7.4 the different mT distributions are shown for the leptonic
decay channel of the WW, WZ and ZZ samples (here without the cut on mT ). It
can be seen that the dominant background of this three is the WW background. The
other two are suppressed because the Z decay into two electrons is suppressed by the
veto of events with more than one electron, that has a pT above 20 GeV. The sharp
edge in the distribution, visible at about 250 GeV, occur due to the high pT and Emiss

T

cut.

q

q̄ q̄

q
V1 q

q̄

V

V2

V1V2

V2

V1

Figure 7.3.: Leading order diboson production for t-,u- and s-channel;
V, V1, V2 = W,Z, γ. The s-channel contains only WWγ and WWZ vertices [78].
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Figure 7.4.: Transverse mass distribution of the leptonically decaying diboson back-
ground split in WW, WZ and ZZ contribution.
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Top backgrounds

Another background source is given by events with top decays, since the top quark
decays nearly to 100 % into a bottom quark under emission of a W boson. In principle
the top production can occur in pairs or in single top events. In case of the top pair
production it is possible, that only one electron from a W from a top decay passes
the selection and the other one does not trigger the electron veto, so that these events
contribute to the background, if the W from the other top decays hadronically or
leaves the detector acceptance. The single top production can be split into three
different, leading order processes, that are shown in figure 7.5. In the s-channel the
incoming quark-antiquark pair annihilates trough a W boson into a top-antibottom
pair (or antitop-bottom pair). In the t-channel an incoming bottom quark transforms
into a top quark by emitting a W boson, which is absorbed from an antiquark. In
the Wt channel an incoming bottom quark absorbs a gluon and then decays into a
W and top (Wt s-channel) or the bottom quark and the gluon interact over a top
propagator to a W boson and top (Wt t-channel). Background contributions from
the s- and t-channel occur due to the top decay into a W and b-quark, where the
electron from the W boson can pass the selection. For the Wt-channel it is either
directly the electron from the W boson, which passes the selection or the electron
from the W boson, that comes from the top quark. In both cases only events can pass
the selection, where only one identified, high pT electron occurs in the event, since
the electron veto cut would refuse events with more than one electron.
In order to have NLO contributions included, the generator used for the tt̄ samples is
MC@NLO which makes it important to use an additional event weight (mcevt weight)
in order to take cancelations between LO and NLO into account as it is described in
section 6.1.
In figure 7.6 the mT distribution of all top backgrounds is shown. It can be seen that
the tt̄ background has the largest contribution, due to its higher cross-section (see
table 6.3). The next highest top background is the single top Wt background, since
in this channel a W is produced directly, where the electrons from the W can pass the
selection. The two remaining top backgrounds have nearly no events above 252 GeV
because the cross-section of these decays is rather low compared with the other top
backgrounds. In addition no direct produced W is present in these decays, leading to
mostly low pT electrons, that are rejected by the pT cut.
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Figure 7.5.: Single top production processes in leading order. (1) s-channel. (2)
t-channel. (3) Wt production

64



7.1. Background from real electrons

 [GeV]T m

210
3

10 410

e
v
e
n
ts

­210

­110

1

10

210 Single Top s­chan. background

Single Top t­chan. background

 backgroundtt

Wt background

Figure 7.6.: Transverse mass distribution for top background split into different
production processes. Shown is the tt̄, single top s- and t-channel and single top Wt
production.

Wγ background

Another contribution is given by the Wγ background. In principle there are two
different generated processes for this background. On the one hand there is the initial
state radiation of a photon from a quark, that annihilates with another quark to a
W boson, on the other hand a W boson from a quark-antiquark annihilation can
also radiate a photon. These two processes are not included in the W background
estimation. The samples are generated with 4 different event filters. These filters
only pass events with zero, one, two and three additional jets. This is another way to
apply a filter for enhancing the statistics of the background.

Z background

Additional background is given through the neutral Drell-Yan process, which is the
same as the charged Drell-Yan process, except that the propagator is a Z and not a
W and the decay particles are two charged leptons. If one of these electrons from
the Z is not reconstructed, thus faking Emiss

T , and the other one passes the selection,
the event can contribute to the background. Not only the decay to electrons, also
the decay to τ leptons is simulated, since one of the τ leptons can decay hadronically
and the other one leptonically leading to an electron which can pass the selection.
Nevertheless the contribution from the Z background is in the order of 1% compared
to the other backgrounds.
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7.2. Background from fake electrons

This section explains how the background from fake electrons is obtained using the
(data-driven) matrix method. This background arises mostly due to jets which are
misidentified as electrons and pass the selection, e.g. jets from multi-jet events or
from top decays without real electrons. Also electrons from converted photons can
contribute to this background. In the following this background will be called QCD-
background, since it mostly derives from QCD processes. In principle it is conceivable
that this background can also be estimated using Monte-Carlo simulations as it is
done for the real electron background, but the simulation of the shower shape variables
which are needed to identify these objects is very difficult due to the complexity of
the hadronization. In addition this background is largely suppressed by the selection,
which leads to very low statistic and a good description becomes even more difficult.

7.2.1. Description of the matrix method

The aim of the method is, to get an estimation of fake electrons, that pass the selection.
The idea on how to obtain this number is to loosen some of the identification cuts for
the signal selection and measure the rate for these looser objects to pass the signal
selection. This rate gives a handle on the fake contribution after the signal selection.
The matrix method provides a connection between the ”true” number of real electrons
(NR) and the ”true” number of fakes (NF ) and the measurable quantities from a loose
selection (NL) and a tight selection (NT ) via equation 7.1.(

NT

NL

)
=

(
εR εF

1− εR 1− εF

)(
NR

NF

)
(7.1)

The vector on the right hand side of the equation describes the inaccessible truth
quantities. The vector on the left hand side contains the measurable quantities NL

and NT , where L indicates ”pass loose but not tight” selection or short ”loose fail
tight” and T indicates all object, that pass the tight selection.
The entries in the matrix are called real efficiency (εR) and fake rate (εF ) and denote
the probability for a real (fake) electron to pass from loose to tight and are given by:

εF =
N fake
tight

N fake
loose

, εR =
N real
tight

N real
loose

, (7.2)

here Nloose contains all objects that pass loose.
The interesting part for the QCD background is given in the first line of the matrix:

NT = εRNR + εFNF , (7.3)

where the first part is from the real electron contribution in the tight selection and
the second part correspondents to the part from fakes. By inverting the matrix an
equation for the truth variables is given by:(

NR

NF

)
=

1

εR(1− εF )− εF (1− εR)

(
1− εF −εF
εR − 1 εR

)(
NT

NL

)
. (7.4)
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For the number of fake electrons, that pass the selection it follows then by insertion:

εFNF =
εF

εR − εF
(εR(NL +NT )−NT ) (7.5)

which only contains measurable quantities.
For the loose selection all objects have to fulfill the signal selection except for the
medium++ id and the isolation criteria. Instead, only loose++ without a cut on
track match is required, which is similar to the criteria the trigger requires. The tight
selection is the same as the signal selection.

7.2.2. Fake rate estimation

The fake rate is the probability for fake electrons to pass from the loose criteria to
the tight criteria. Since, for reasons stated before, no Monte-Carlo simulations of
fake electrons are available, a determination on data is done. In order to get a fake
enriched sample (QCD control region) different cuts are applied:

� Suppress events from W decays:

→ Emiss
T < 25 GeV

� Suppress events from Z decays:

→ |mee−mZ | > 20 GeV for electron pairs with loose++ ID and pT >20 GeV

→ only one medium++ electron with pT >20 GeV

� Electrons have to have matched jets 2 : ∆R <0.1

� All additional cuts are the same as in the signal selection except the Emiss
T and

mT cut, which are not applied in order to get enough statistics

The ”real” electron contamination after applying these cuts is obtained from MC and
is for the loose selection about 4% and for the tight selection up to 50%, depending
on η and pT . This contribution is subtracted for the calculation of the fake rate.
The MC corrected fake rate can be seen as a function of η in figure 7.7. It is visible
that the fake rate is not constant overall ranges of η. For barrel regions, |η| < 1.37
the fake rate is quite constant except a small drop in the bin before the transition
region. For the endcap region three regions of different fake rates are visible. The
first starting after the transition regions up to |η| = 2.01 shows also a rather flat
behavior in η and comparable values as the fake rates for the barrel region, since
the detector conditions are almost the same for these regions. Above |η| = 2.01 the
region is no longer covered by the transition radiation detector, which leads to more
fake electrons. A further increase in the fake rates is visible in the last |η| bin because
this region is additionally not covered by the most inner pixel detector. Therefore
four different |η| bins are chosen: One for the barrel region (|η| < 1.37) and three

2The jet algorithm used, is the anti kT clustering algorithm, that is described in section 4.2.

67



7. Background estimation

for endcap regions (1.52 < |η| < 2.01, 2.01 < |η| < 2.37 and 2.37 < |η| < 2.47),
because within these bins the fake rate has an almost flat behavior in |η|. The pT
dependence for the several η bins is shown in figure 7.8, where it can be seen that
there is a decreasing behavior for higher values of pT . The binning shown in this
figure is also the binning which is used when the fake rates are applied to determine
the QCD background.
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Figure 7.7.: Fake rate as a function of η determined from fake enriched data sample.
Red lines indicate the chosen η binning.
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Figure 7.8.: Fake rate as a function of pT for several η bins; determined a from fake
enriched data sample.
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7.2. Background from fake electrons

7.2.3. Real efficiency estimation

The real efficiency is obtained by counting real electron candidates, that pass the loose
selection or the tight selection (see equation 7.1). In order to make sure that only
real electrons are used, the real efficiency is estimated with W Monte-Carlos and it
is required that every reconstructed electron, that passes the selection has a matched
real electron from the generated process without the detector simulation. For this
matching it is required that ∆R < 0.1. The real efficiency as a function of η can be
seen in figure 7.9. The red lines indicate the bins used in η, which are the same as for
the fake rate. The pT dependence is given in figure 7.10 for two of the four η bins, the
other two can be found in the appendix A.3. The drop in the real efficiency at about
230 GeV in some η bins is mostly caused due to the stitching of different W samples,
where one sample runs out of statistics. Also the highest pT bin of the lowest η bin
has a high drop with large uncertainties due to low statistics. Despite of that, the
real efficiency lies always between 92%-98%. These values show that the identification
criteria, used in the analysis have a high efficiency, so that only maximal 8% of real
electrons are rejected by the selection cuts.
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Figure 7.9.: Real efficiency as a function of η determined from W Monte-Carlo
samples. Red lines indicate the chosen η binning.
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Figure 7.10.: Real efficiency as a function of pT for two of the four η bins; determined
from W Monte-Carlo samples.
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7.2.4. Systematic variations for the fake rates

A main systematic uncertainty in the QCD estimate is expected to come from the
choice of the fake enriched data sample. Therefore the fake rates are estimated with
different variations of the cuts, used for the QCD-control region. One variation is
a different Emiss

T cut, where the up (down) variation is done with a cut value of 35
GeV (20 GeV). Another variation is done for the Z mass window cut, where the
cut is loosened (tightened) to 10 GeV (30 GeV) or completely left out. Also the
veto cut, if more than one medium++ electron occurs in the event is switched off
as a variation. The results for the fake rates can be seen in figure 7.11, where the
default/variation ratio as function of pT is shown for all chosen η bins. It can be seen,
that the Emiss

T variation is with up to 22% for the last pT and η bin dominant and
all other variations are negligible. Also the statistical error of the fake rate plays an
important role, especially for high pT . Therefore only the Emiss

T variations and the
statistical error are taken into account for the investigation of the impact on the QCD
background.
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Figure 7.11.: Ratio of the default fake rate and the systematic variations as a function
of pT for different bins in η.
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7.2.5. Estimation of the QCD mT -distribution

To get the final mT -distribution of the QCD background the calculated fake rate and
real efficiencies are applied as a weight to the ”loose not tight” candidates and the
”tight” candidates from the main selection. These weights are given by:

wL =
εF εR
εR − εF

, wT =
εF (εR − 1)

εR − εF
(7.6)

In figure 7.12 the final QCD mT distribution is shown (in a logarithmic mT binning).
The distribution shows the typical falling behavior for increasing masses up to about
1 TeV where it runs out of statistics. For masses of about 250 GeV a sharp edge is
visible in the spectrum, due to the pT and Emiss

T cut of 125 GeV. These cuts lead also
to the effect, that the slope of the distribution is getting smaller with respect to the
slope at higher mT .
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Figure 7.12.: QCD background using the matrix method.

7.2.6. Extrapolation to higher mT

The mT distribution of the QCD background showed in figure 7.12 runs out of statis-
tics at about 1 TeV. It is necessary to have a background prediction for even higher
masses in order to compare data with background. To achieve this an extrapolation
to higher mT is done by fitting the mT distribution. The functions used to fit the
spectrum are on the one hand a power law function (equation 7.7) as a generic func-
tion to describe falling distributions and on the other hand a so called dijet-function,
see equation 7.8. The dijet-function is an empirical function, which is found to give a
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Figure 7.13.: Fit probability of converged fits used for the extrapolation of the
QCD-background.

good description of QCD background [79].

Power law: f1(mT ) = axb (7.7)

Dijet function: f2(mT ) = e−axb+c log x (7.8)

The fit method used is the χ2-method but it has to be taken into account that it
is only a valid method if there is enough statistics inside every bin. Since the QCD
distribution has the weights from equation 7.6 applied, the events on the y-axis of
the distribution are not integer number of events. Therefore a second distribution,
filled with the integer values of events, is chosen to decide which binning has to be
chosen to have sufficient (more than 10 entries) statistic in every bin. This binning is
then applied to the weighted distribution. Not only the fit functions are varied, also
the fit range is varied from 395 GeV to 555 GeV for the lower border of the fit and
for the upper border of the fit the range is varied from 827 GeV to 1155 GeV, which
results in 33 converged fits. To ensure that the converged fits lead to a reasonable
description of the QCD-background, the probability of the fits is shown figure 7.13,
where it is visible, that most fits have values between 70% and 90%. The mean of
all fits, with the standard deviation as uncertainty is shown in figure 7.14. It can be
seen that for mT values between about 375 GeV and 900 GeV the mean of the fits
is in good agreement with the distribution, below this range the QCD-distribution
levels off due to the pT and Emiss

T cut. The uncertainty band (red band in the plot)
is between 400 GeV and 700 GeV very narrow, since the intersection of all the fits
lies in this region, so that the variance is very small. For higher values the single fits
start to spread as it is reflected in the growing of the error of the mean. The final
extrapolated distribution is given by stitching the pure distribution without fit with
the mean of the fits at 850 GeV.
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Figure 7.14.: Fitted mT distribution with lower fit range variation from 395 GeV to
555 GeV and upper fit range variation from 827 GeV to 1155 GeV and two different
fit functions.

7.3. Background uncertainties

This section focuses on the estimation of systematic uncertainties of the backgrounds
described before. In the following, the influence of the systematic uncertainties are
investigated for integrated numbers of events, where the integration starts at certain
lower bounds (mmin

T ). The reason, to choose these mmin
T thresholds is given by the

search strategy, which will be explained in chapter 8.

7.3.1. Systematic uncertainties for real electron background

For the simulated background the dominant uncertainties are given by the uncertain-
ties of the correction factors (described in section 6.4) and calibration (see chapter 4)
applied to the simulation. In the following an estimation of these uncertainties is
described for all single corrections.

Jet energy scale and resolution uncertainty

The jet energy calibration, which is described in section 4.2, can be varied by diver-
sifying the nuisance parameter within their uncertainties. The jet calibration tool
provides a method to get the quadratic sum of the relative uncertainties of the nui-
sance parameters (αjet). This factor is then used to estimate an up and a down
variation in a symmetric way as it is shown in equation 7.9. For both, the impact on
the final background distribution is investigated and the larger deviation is taken as
systematic uncertainty.

Ejet
up
down

= Ejet
calib.(1± αjet) (7.9)
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Since the jet energy resolution agrees for MC and data within the uncertainty a
smearing is only applied for estimating the systematic uncertainty. This is done with
a tool called ApplyJetResolutionSmearing [80]. The impact on the background
distribution is then taken as systematic uncertainty.
Since the jets are not used directly, these variations only effect the Emiss

T calculation
leading to a contribution to the final background uncertainty below 3%.

Electron energy scale and resolution uncertainty

The differences between MC and data in the electron energy scale are handled by
rescaling the electron energies in MC as described in section 4.1.2. The egammaAnal-
ysis tool, which is used for the energy scaling, also provides methods to vary these
scales within their uncertainties. These variations were done separately for all sources
of uncertainties. These sources are: the statistical uncertainty of the energy scale,
the method, how the energy scale is determined, statistical uncertainties due to the
presampler energy scale and material uncertainties. The impact of all these variations
on the background is estimated and added in quadrature.
Also the smearing of the electron energy resolution (described in section 4.1.2) is
varied up and down by one σ of the uncertainty, whereas the larger effect for the
background distribution is taken as uncertainty.

Electron efficiency uncertainty

Also the scale factors for differences in the efficiencies (reconstruction, trigger and
identification plus isolation) are varied up and down with their one σ uncertain-
ties. The uncertainties are given mainly through a background determination, that
is needed to determine the efficiencies. Again here for each efficiency variation the
influence on the background is calculated and then the bigger of each efficiency is
taken as systematic uncertainty.

Pileup uncertainties

In order to investigate the uncertainty of the pileup weight, the difference between
the distribution with and without applied weight is taken as conservative estimate of
the systematic uncertainty.

k-factor uncertainties

A further systematic uncertainty is given by the calculation of the k-factors. One
part of the uncertainty is given by the PDF used to calculate the NLO and NNLO
QCD cross-sections. The default PDF used for the NLO cross-section is CT10 NLO
as described in section 6.3, for the NNLO cross-section the default is MSTW 2008
NNLO [26]. For the systematic uncertainties different NNLO cross-sections are taken
into account. In addition, the uncertainty of the strong coupling constant, αs, is
taken into account and also variations of the renormalization scale are added. All
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7.3. Background uncertainties

these uncertainties are calculated as a function of the W mass and the envelope of all
variations is taken as the systematic uncertainty3. The final uncertainties are in the
order of 3% for masses up to 1 TeV and grow for masses above 4 TeV up to about
25%.

Top cross-section uncertainties

The cross-section used to reweight the top Monte-Carlo samples to luminosity (shown
in table 6.1 of section 6.3) do also have uncertainties, which are propagated to see the
influence on the background. The relative uncertainties of the cross-section are given
in table 7.1. It can be seen that the largest uncertainty is given, with about 7%, by
the Wt process. In principle, these uncertainties are calculated as described for the
k-factors namely by including αs uncertainties and different PDFs.4. The impact of
the cross-section uncertainty onto the background is determined by varying the mT

distribution up and down using these uncertainties and calculate the integrated num-
ber. The bigger difference to the default integral is taken as systematic uncertainty
leading to a relative systematic of up to 1%.

background cross-sec. uncertainty

tt̄ +5.3%
−5.8% [82]

single top s-chan. ±3.9% [83]

single top t-chan. +3.9%
−2.2% [82]

Wt ±6.8% [84]

Table 7.1.: Relative cross-section uncertainty of the used top samples.

7.3.2. Systematic uncertainties for fake electron background

In addition to the uncertainties on the real electron background it is also necessary
to have an estimation of the QCD-background uncertainty. To get this estimate the
final extrapolated QCD-distribution (see section 7.2.6) is taken and integrated for
different mmin

T values. The uncertainty on the integrated number can be split into
two parts: One for the region below the stitching point (850 GeV), that consists only
of statistical uncertainties and one above the stitching point, that is only caused by
the fitting, described before.
Further systematic uncertainties are resulting from the variations of the fake rate
(described in section 7.2.4). This results in an additional distribution for each fake
rate variation, which is shown in figure 7.15. The bottom plot in figure 7.15 shows the

3A detailed presentation, how this uncertainties are calculated is given in a talk in the W’ analysis
group [81]

4A more detailed description of how these uncertainties are calculated can be found in the references
given in the table
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Figure 7.15.: QCD background with different fake rates for Emiss
T variations. Also

shown is the impact of the statistical fluctuation of the fake rates.

ratio between the fake rate variations and the default method. The variations lead
to a difference to the default method of up to 10% for the Emiss

T variations and up to
5% for the statistical variations. All four variations are also fitted and extrapolated
independently as it was done for the default one. Then the integrated numbers (with
different mmin

T thresholds) are calculated for all variations and the up and down
variations are summed quadratic. In table 7.2 the integrated numbers for different
mmin
T values are given together with the statistical and systematic uncertainties from

the fit and the fake rate variations. The labels “sysup” and “sysdown” indicate the up
and down variation using the different distributions for the fake rate variation and
“systot

up ” and “systot
down” are the quadratic sum of the fit systematic and the up or down

variation. An additional systematic uncertainty is applied due to differences between
the default QCD-background and a QCD-background using a different method. The
background done with the different method is provided by the ATLAS W’ group [35].
This method, called inverse id, is based on inverting an identification cut to get a
fake enriched template (also called QCD template). To remove the remaining part
from real electrons, the inverted selection is also applied to the MC background and
then subtracted from the QCD template. This subtracted template gives only the
shape of the QCD background, the scale is calculated via a two component fit, which
means that the template is compared together with the whole MC background to
the data distribution. By varying the backgrounds within their uncertainties the
best fitting scale factor is calculated. A comparison of the mT and the η distribution
between the inverse id method and the matrix method is given in figure 7.16 . The η
distribution shows small differences for barrel regions which are growing for higher η
values. For the mT distribution the inverse id method seems to lead to a less falling
behavior in mT compared with the matrix method. These differences are mostly
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7.3. Background uncertainties

mmin
T [GeV ] NQCD stat [%] sysfit [%] sysup [%] sysdown [%] systot

up [%] systot
down [%]

252 779 1.1 0.0 4.3 2.5 4.4 2.7
336 314 1.6 0.0 5.6 2.9 5.8 3.3
399 138 2.2 0.0 6.9 3.7 7.2 4.3
502 42 3.8 0.0 8.3 4.6 9.1 6.0
564 22 5.2 0.1 8.7 4.9 10.1 7.1
843 1.9 4.3 1.0 8.7 9.8 9.8 10.7
946 0.9 0.0 1.5 9.6 12.8 9.7 12.9

1002 0.7 0.0 1.7 10.0 14.6 10.1 14.7
1416 0.08 0.0 3.0 14.3 27.4 14.6 27.5

Table 7.2.: Number of integrated events for different mmin
T . The uncertainties are

split into statistical uncertainties (stat.), uncertainties due to fit variations (sys. Fit)
and uncertainties due to different QCD background estimates (sys Up and sys Down).
The last two columns are the quadratic added uncertainties.

due to the fact, that the inverse id is not tuned to any pT or η dependence, whereas
the matrix method estimates the fake rates in bins of η and pT . For the integrated
distribution the matrix method leads to an about 35% higher background which is
added as further systematic.
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Figure 7.16.: Comparison of the QCD-background estimated with the fake factor
method (FF) and the inverse id method(II) [35]. On the left panel the η distributions
are compared and on the right panel the mT distributions.

In summary, table 7.3 shows the integrated numbers of the QCD-background to-
gether with the statistical and systematic uncertainties as well as the uncertainty due
to differences to the inverse id method. It should be pointed out that for mmin

T above
843 GeV only the extrapolation is taken to get the integrated number of events and
there the statistical error, as it is defined here, goes down to zero.
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7. Background estimation

mmin
T [GeV ] QCD background

252 779 ± 9 (stat)+275
−273 (sys)

336 314 ± 5 (stat)+111
−110 (sys)

399 138 ± 3 (stat)+49
−49 (sys)

502 42 ± 2 (stat)+16
−15 (sys)

564 22 ± 1 (stat)+8
−8 (sys)

843 1.9 ± 0.1 (stat)+0.7
−0.7 (sys)

946 0.9 ± 0.0 (stat)+0.3
−0.4 (sys)

1002 0.7 ± 0.0 (stat)+0.2
−0.3 (sys)

1416 0.08 ± 0.00 (stat)+0.03
−0.04 (sys)

Table 7.3.: Estimated QCD contribution and uncertainties for different mmin
T .

7.3.3. Comparison of all backgrounds and their uncertainties

The impact of the systematic uncertainties on the final integrated number of back-
ground events is shown in table 7.4. The numbers shown here are the relative dif-
ference of a certain source of uncertainty to the default number of integrated back-
ground events. The column labeled with “scale factor” is the quadratic sum of the
reconstruction, trigger and identification plus isolation efficiency uncertainty. On the
experimental side it is noticeable that the energy scale uncertainty is with up to about
4% the highest systematic uncertainty. The jet resolution and energy scale uncertainty

mmin
T [GeV]

Source 252 336 399 502 564 843 946 1002 1416

Scale factor 2.3% 2.4% 2.4% 2.4% 2.4% 2.4% 2.3% 2.3% 2.4%
Resolution 0.1% 0.3% 0.6% 0.5% 0.3% 1.3% 0.6% 0.7% 1.1%

Energy scale 2.7% 3.2% 3.5% 3.8% 3% 3.5% 3.6% 3.4% 3.5%
Jet resolution 0.3% 0.2% 0.2% 0.1% 0.0% 0.1% 0.1% 0.2% 0.9%

Jet scale 0.9% 0.3% 0.4% 0.4% 0.3% 0.7% 0.3% 0.7% 0.9%
Pileup 1% 0.7% 0.1% 0.3% 0.6% 0.6% 0.4% 1.1% 3.8%
QCD 2.1% 2.1% 1.8% 1.5% 1.3% 0.8% 0.7% 0.6% 0.7%

All exp. 4.4% 4.5% 4.7% 4.8% 4.1% 4.6% 4.4% 4.4% 6%

MC stats 0.95% 1.3% 1.4% 1.1% 1.1% 2.2% 3.1% 3.6% 8.6%
k-factor 3.4% 3.2% 3.2% 4.1% 4.7% 7.2% 7.8% 7.9% 9.3%

top cross-sec. 1.0% 0.8% 0.7% 0.5% 0.4% 0.2% 0.0% 0.0% 0.0%

All added 5.7% 5.8% 5.9% 6.4% 6.4% 8.9% 9.7% 10.1% 14.0%

Table 7.4.: Overview of all systematic uncertainties on background level. The shown
numbers are relative to the complete background, including all simulated background
as well as QCD background.
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7.3. Background uncertainties

have only a small (up to 1%) contribution to the experimental uncertainty.
On the theory side the largest contribution is given by the k-factor uncertainty with
values of up to 9.3 %. The top cross-section uncertainty decreases for higher mmin

T

since it is just a constant up or down variation of the mT distribution. The influence
of the statistical uncertainty is on the order of 1% for low mmin

T values which rises
to about 9% for the last mmin

T bin. All added up quadratic, it can be seen that the
systematic uncertainty is in the order of 6%, which rises with mT up to 14%. In
figure 7.17 the uncertainties are shown as a function of mmin

T . It can be seen that the
MC statistic uncertainty and the k-factor uncertainty do have a strong dependence of
mmin
T , whereas the other sources of systematic uncertainties are almost flat in mmin

T .
The final numbers of integrated background events split into the different sources can
be seen in table 7.5. Added in this table are also the final uncertainties. It can be
seen that the W background has the largest contribution to the background for all
mmin
T values. The next higher background is the top background which falls very

rapid with increasing the mmin
T threshold. The QCD background has the third largest

contribution to the integrated number of events followed by the Wγ background. The
lowest contribution is given by the Z background, which is highly suppressed due to
the electron veto.
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mmin
T NW Ntop NQCD

252 10007 ± 783 (77.1%) 1501 ± 110 (11.6%) 779 ± 275 (6.0%)
336 4072 ± 319 (75.9%) 601 ± 48 (11.2%) 314 ± 111 (5.8%)
399 2094 ± 168 (76.9%) 262 ± 21 (9.6%) 138 ± 50 (5.1%)
502 821 ± 79 (78.3%) 76 ± 7 (7.3%) 42 ± 15 (4.0%)
564 494 ± 51 (78.4%) 40 ± 4 (6.3%) 22 ± 8 (3.5%)
843 75 ± 11 (80.6%) 2 ± 1 (1.6%) 1.9 ± 0.7 (2.1%)
946 42 ± 7 (80.2%) 0.03 ± 0.17 (0.1%) 0.9 ± 0.4 (1.8%)

1002 31 ± 5 (79.0%) 0.0 ±0.0 (0.0%) 0.7 ± 0.3 (1.7%)
1416 3.9 ± 0.9 (77.7%) 0.0 ±0.0 (0.0%) 0.08 ± 0.04 (1.6%)

mmin
T Ndiboson NWγ NZ

252 448 ± 19 (3.5%) 206 ± 12 (1.6%) 42 ± 8 (0.3%)
336 251 ± 11 (4.7%) 110 ± 7 (2.1%) 23 ± 5 (0.4%)
399 151 ± 7 (5.5%) 65 ± 5 (2.4%) 13 ± 3 (0.5%)
502 75 ± 4 (7.1%) 29 ± 3 (2.8%) 5 ± 1 (0.5%)
564 52 ± 4 (8.2%) 21 ± 2 (3.3%) 2 ± 1 (0.4%)
843 12 ± 2 (12.9%) 3 ± 1 (2.7%) 0.1 ± 0.2 (0.1%)
946 8 ± 2 (15.1%) 2 ± 1 (2.8%) 0.03 ± 0.01 (0.1%)

1002 7 ± 2 (17.1%) 0.9 ± 0.4 (2.2%) 0.0 ± 0.0 (0.0%)
1416 0.7 ± 0.3 (14.3%) 0.3 ± 0.3 (6.5%) 0.0 ± 0.0 (0.0%)

Table 7.5.: Overview of integrated backgrounds for different lower integration borders
(mmin

T ). The number in braces show the relative contribution compared to the total
background. The uncertainties shown include all systematic uncertainties, that are
described in section 7.3.
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7.4. Kinematic distributions

7.4. Kinematic distributions

In this section the background distributions are compared with data. The following
plots contain all recorded data from 2012 with an integrated luminosity of 20.3 fb−1.
The background is split into the different processes described in section 7.1 and is
shown in the plots as stacked histograms, which means, that every background is
added up on the previous one. The lower panel will show the ratio between data and
background, to illustrate the differences. The uncertainties shown there are only in-
cluding the statistical uncertainties from data and Monte-Carlo simulation. It is also
important to mention that at this point only events are taken into account, where the
transverse mass is below 500 GeV (“blinding“). This mT region contains only back-
ground events and no new physics is expected there. Significant differences between
background and data, in this mT region, are more likely to come from miscalibrations,
mismodeling of the simulation or mistakes done in the analysis. It is important to
have such a check and to be sure that the background estimation leads to reasonable
agreement with the data, because otherwise differences between background and data
in high mT regions can be interpreted as new physics, but are in reality only caused
by other sources, e.g. mismodeling of the simulated background. Furthermore the
kinematic distributions are investigated with and without an mT cut of 252 GeV.

7.4.1. Resolution and binning

It is important to choose a binning, that is not smaller than the resolution and ensures
enough statistic in each bin over a large range. Therefore an investigation of the
resolution for the three quantities (pT , Emiss

T and mT ), sensible to new physics, is
done. At the left panel of figure 7.18 the relative electron pT resolution is shown
and at the right panel, the relative Emiss

T resolution. The resolution is determined
using W Monte-Carlo simulations. It can be seen that the resolution of the transverse
momentum is about 1.9% at 120 GeV and increases to about 1.6% at 500 GeV, where
it remains constant. The pT resolution is getting better for higher values, because
the energy resolution increases with higher energies. The large uncertainties for bins
between 500 GeV to about 800 GeV are caused by low statistics from the W Monte-
Carlos samples in this region.
The Emiss

T resolution, shown at the right of figure 7.18, starts with a resolution of
about 9% at 120 GeV and increases rapidly to about 2% at 2 TeV. The increase
in the resolution is also here caused by the increasing energy resolution with higher
energies.
The resolution of the transverse mass is given by a combination of the electron pT
and Emiss

T resolution. In figure 7.19 the mT resolution is shown for truth transverse
masses from 250 GeV to 4 TeV. It can be seen that it starts at about 5% and increases
to resolutions of 2% at 2 TeV. At this point the constant term of the resolution (see
equation 6.15) dominates.
The binning, that is later chosen for the pT , Emiss

T and mT distributions is provided
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Figure 7.18.: Left: Relative pT resolution as a function of the truth transverse mo-
mentum. Right: Relative Emiss

T resolution as a function of the truth Emiss
T (transverse

momentum of the neutrino on generator level). The resolution is determined using
the W Monte-Carlo simulations.
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Figure 7.19.: Relative mT resolution as a function of the truth transverse mass. The
resolution is determined using the W Monte-Carlo simulations.

by the ATLAS W’ group. It is a logarithmic binning, so that the relative width5

of each bin stays the same, but the absolute width enlarges with higher values to
ensure sufficient statistic in each bin. The relative bin width of the pT , Emiss

T and mT

distribution is about 5.5%. Compared to the lowest electron pT resolution, shown in
figure 7.18, this is quite sufficient, but compared to the the Emiss

T resolution this is to
small for Emiss

T values below 500 GeV. Nevertheless the Emiss
T binning is not changed

for this thesis, in order to have comparable distributions with other members of the
W’ group. The comparison of the relative bin width with the mT resolution shows,
that the resolution is better over the whole range.

5The relative bin with is the bin width, normalized to the bin center: xi,max − xi,min/xi,center,
where xi is the i-th bin of the particular distribution.
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7.4. Kinematic distributions

7.4.2. Angular properties of the selected electron

The angular information of the selected electron, given by ϕ, is shown with and
without mT cut in figure 7.20 . The ϕ distributions show an overall flat behavior for
data as well as for background. Visible spikes in the W background distribution, for
example at about -0.2, arise from low statistics of the inclusive W → τν sample. The
ratio, shown in the bottom, shows good agreement between data and background,
within the given statistical fluctuations.
The η distributions, which are given in figure 7.21, show most events in the barrel
region (|η| < 1.37). For the endcap region (1.52 < |η| < 2.47) the shape shows a
falling behavior. Also visible is the transition region at 1.37 < |η| < 1.52, that
is cut away for data and background. The falling behavior of the η distribution in
endcap regions is caused by the non-linear η dependence of θ:

θ(η) = 2 tan−1 (e−η) (7.10)

This dependence is shown in the appendix A.4. It is visible, that for barrel regions of
η the dependence is approximate linear. For endcap regions, bins in η include only a
very small θ range. Thus taken into account, it results, that a falling behavior in η
does not imply the same behavior in θ. The comparison between data and background
shows no sizable differences, with respect to the statistical fluctuations. [h]
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Figure 7.20.: Comparison of the electron ϕ distribution between data and back-
ground without (left panel) and with (right panel) minimal mT cut, as well as their
ratios.
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Figure 7.21.: Comparison of the electron η distribution between data and back-
ground without (left panel) and with (right panel) minimal mT cut, as well as their
ratios.

7.4.3. Transverse momentum

In figure 7.22 the pT distributions of the selected electrons are shown in the logarithmic
binning, explained in section 7.4.1. In both distributions (with and without mT cut)
the spectrum starts at 125 GeV, correspondent to the pT cut. The first bin has
fewer events than the second, because the first bin does not align with the cut. From
125 GeV on the typical strongly falling shape is visible.
It can be seen on the top left panel, that the background starts to diverge from data
at about 300 GeV. This discrepancies decrease if the mT cut is applied, as it is shown
on the top right panel. In order to get a better understanding the events, that are cut
away with the mT cut, an inverse of this cut is done. The resulting pT distribution for
these events is shown in in the bottom panel of figure 7.22. It can be seen, that the
agreement between data and background drops down to 40% beyond 400 GeV. This
leads to the suspicion that the pT dependence is not well described in the Monte-Carlo
simulation for the mT region below 252 GeV. In order to clarify the properties of the
W bosons, contributing to this low mT region, the pWT of the W bosons is estimated
by:

pWT =

∣∣∣∣Emiss
T

(
cos(ϕν)
sin(ϕν)

)
+ peT

(
cos(ϕe)
sin(ϕe)

)∣∣∣∣ (7.11)

=
√

(Emiss
T )2 + p2

T + 2Emiss
T pT cos(ϕν − ϕe) , (7.12)

where ϕe is the azimuth angle of the electron and ϕν the reconstructed azimuth angle
of the missing transverse energy. In figure 7.23 the pWT distribution is shown without
the mT cut on the top left panel and with mT cut on the top right panel. It can
be seen that there is a peak in the distribution without mT cut at 252 GeV, which
vanishes if the mT cut is applied. This means that there are basically two types of W
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Figure 7.22.: Comparison of the electron pT distribution between data and back-
ground without (top left panel) mT cut, with mT > 252 GeV cut (top right panel)
and with mT < 252 GeV cut (bottom panel); as well as their ratios.

bosons which contribute to the distributions without mT cut: On the one hand there
are heavy W bosons with masses above 252 GeV, that decay into an electron and
a neutrino with a pT >125 GeV and thus pass the selection. These W bosons have
only a small boost in the transverse plain and thus populate mostly the region up to
a pWT = 252 GeV. On the other hand there are light W bosons, with masses below
252 GeV but a strongly boost in the transverse plain. These W bosons are visible
above a pWT of 252 GeV and cause a very sharp rising edge. By applying the mT cut
the strong boosted W bosons with low masses are cut away, which is visible at the
top right panel of figure 7.23.
The ratio between data and background shows for the distribution without mT cut
a significant drop at pWT values above 600 GeV. To investigate this region of high
disagreement further, the bottom panel of figure 7.23 shows the pWT distribution with
the inverse mT cut. As expected most low pWT W bosons are cut away but also here it
can be seen that the difference between data and background increases above 600 GeV.
With the appliance of the mT cut these disagreements degrease, with respect to the
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7. Background estimation

statistical uncertainty, as it is shown in the ratio at the top right panel of figure 7.23.
It has to be taken into account that all shown distributions are only including events
with transverse masses below 500 GeV but higher mT contribute mostly to the low
pWT region, as it was shown for the pWT distributions.
A reason for this visible discrepancies in the pWT spectrum can be the modeling of
transverse momentum of the W boson in the Monte-Carlo simulation. A proper
simulation is very complicated. Studies within the W’ group show that there are
significant differences between different generators and also other analysis groups, e.g.
Z’ analysis group discovered differences between generators for the pZT distribution [85].
An additional contribution to the discrepancies in the pWT distribution could be given
by the diboson background, that has a less falling shape compared with the other
backgrounds. Currently ongoing studies, for example comparisons between different
generators of the diboson background, show first indications that there are differences
in the pWT distribution for different generators.
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Figure 7.23.: Comparison of the W boson pWT distribution between data and back-
ground without mT cut (top left panel), with mT > 252 GeV cut (top right panel)
and with mT < 252 GeV cut (bottom panel); as well as their ratios.
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7.4.4. Kinematic properties based on event variables

The Emiss
T distributions, shown in figure 7.24, on the right panel without mT cut and

on the left panel with mT cut, show a very similar shape as the pT distribution of
the electron, since the kinematic properties of the dominant W background predicts
the same transverse momentum dependence for the electron and the neutrino. The
agreement between data and background is better than for the pT distribution. There
is a region at about 400 GeV where the background overestimates the data but this
can also be a statistical fluctuation. The angle between the selected electron and the
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Figure 7.24.: Comparison of the Emiss
T distribution between data and background

without (left panel) and with (right panel) minimal mT cut, as well as their ratios.

azimuthal angle of the reconstructed missing energy is shown in figure 7.25, again
without mT cut on the left panel and with mT cut on the right panel. In the former
it is visible, that the W bosons with an mT below 252 GeV are well distinguishable
from the ones above 252 GeV. The W bosons above 252 GeV prefer to have small
transverse boost, as it was shown before, which results in a back-to-back decay of the
electron and neutrino. The W bosons below 252 GeV are highly boosted, which is
leading to a small angle between the electron and the neutrino. After applying the mT

cut all strongly boosted, low mT , W bosons are cut away as it is shown in figure 7.25
on the right panel. The data-background comparison shows, that the background is
in good agreement with data.
The blinded mT distribution without mT cut is shown in figure 7.26. The distribution

can be split in two parts, one above 252 GeV and one below. The sharp edge at this
point is given by the pT and Emiss

T cut, because at this point the W boson, produced
at rest in the transverse plain, can decay into an electron and neutrino, that have
pT above 125 GeV. From this point on the distribution shows the typical strongly
decreasing behavior for off shell W production. Below 252 GeV the “remains” of the
Jacobian W peak at about 80 GeV are visible. As mentioned before these W bosons
have to have a strong transverse boost so that the pT and Emiss

T threshold can be
passed, which is leading to a strong suppression. The comparison of background and
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Figure 7.25.: Comparison of the ∆ϕeν distribution between data and background
without (left panel) and with (right panel) minimal mT cut, as well as their ratios.

data shows for regions above 252 GeV good agreement, whereas for low mT regions
statistical fluctuations dominate but within these no systematic trends occur.
In conclusion it is shown that in most investigated distributions no significant dif-
ferences between background and data occur. Sizable deviations were visible in the
pT distributions from the electron and W boson, that are probably caused by a mis-
modeling of the pWT in the simulation. These differences are reduced if events below
mT = 252 GeV are cut away. Therefore the blinding is removed in the following and
a search in high mT regions for differences between data and background due to new
physics is performed.
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Figure 7.26.: Comparison of the mT distribution between data and background, as
well as their ratio.
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8. Limit setting

In this chapter the kinematic distributions are presented without the restriction ob
events with an mT <500 GeV. The most relevant distribution is the transverse mass
since signals forming a W’ would appear in data as an excess above the background.
Since no excess of new physics is found, it is explained how an exclusion limit on the
mass of an hypothetical SSM W’ is calculated.

8.1. Unblinded kinematic distributions

In order to look for differences between the background prediction and data, the un-
blinded transverse mass distribution is shown in figure 8.1. In the bottom of the
figure the ratio between data and background is shown together with the systematic
uncertainties. These uncertainties include all sources described in section 7.3. It can
be seen, that the ratio of data and background is in good agreement up to about
580 GeV. At this point the data drops about 20% below the background estimation
which corresponds to a 3 σ deviation if only the statistical uncertainty of the data is
taken into account. Since this strong difference only appears in this bin, it is expected
to be a statisticalal fluctuation. For the next three bins a falling behavior can be seen
in the ratio, that is likely to be caused from the differences in the pT spectrum of the
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Figure 8.1.: Comparison of the mT distribution between data and background, as
well as their ratio. The red band, shown in the ratio, includes all systematic uncer-
tainties described in section 7.3.3.
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Figure 8.2.: Comparison of the electron pT (Emiss
T ) distribution between data and

background on the left (right) panel, as well as their ratios.

electron, as discussed in section 7.4.3. In addition the plot contains also hypothetical
W’ signals with three different pole masses. In the data distribution it can be seen,
that there are 5 events in the highest mT bin at about 1.5 TeV. An event display of
one of these events with mT =1551.46 GeV is shown in the appendix A.6.
The unblinded electron pT distribution can be seen on the left side of figure 8.2 with
only statistical uncertainties. The differences between data and background start to
increase at about 300 GeV, which shows that even with the applied mT cut, the
differences between data and background are not completely gone for high pT . The
pT dependence of the diboson background shows also a different shape at high pT ,
compared to the other backgrounds, as it was seen for the blinded distribution with
mT < 252 GeV.
In the right of figure 8.2 the unblinded Emiss

T distribution is shown. It can be seen
that also for Emiss

T the data-background differences start to rise at about 300 GeV,
whereas here the effect is not as big as for the pT distribution. In addition it is also a
significant drop of data at about 400 GeV visible, that can lead to the outlier in the
mT distribution at about 600 GeV mentioned before.
Nevertheless the discrepancies between data and background, visible in the final mT

distribution, are all covered by the systematic uncertainties (except the bin at about
580 GeV). It has to be taken into account, that the systematic uncertainties are
correlated, so that it is not possible to very the bins independent within these uncer-
tainties. The comparisons between data and background for η, φ, ∆ϕeν and pWT are
shown without a blinding in the appendix A.5, where it can be seen that no significant
differences between data and background occur. With the absence of a significant dif-
ference between data and background, in the following sections it is explained, how
an exclusion limit is set on the mass of an hypothetical (SSM) W’ boson.
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8.2. Principle of Bayesian limits

8.2. Principle of Bayesian limits

Since no significant difference between data and background was found it is possible
to set a limit on the cross-section times branching ratio (σB) for different masses of a
hypothetical W’. Overall 16 different hypothetical W’ pole masses are chosen and for
each a limit on σB is calculated. In this analysis a Bayesian approach [86] is chosen. In
principle this method is based on a “counting experiment“. This is done by counting
the observed number of events (Nobs) and the number of expected background events
(Nbg) with mT > mmin

T . These mmin
T values were provided by the official W’ analysis

group and are optimized to lead to best limits on σB for each different W’ pole mass
if only the background estimation is taken into account. Therefore every W’ pole
mass has a mmin

T assigned. For the limit calculation the expected number of events is
needed. This is given by:

Nexp = Nsig +Nbg , (8.1)

where Nsig is the number of signal events and can be expressed trough the luminosity
(Lint), the signal efficiency (εsig) and the product of cross-section times branching
ratio (σB):

Nsig = εsigLintσB . (8.2)

The signal efficiency is the fraction of signal events that fall within the detector ac-
ceptance, pass the event selection and have mT > mmin

T .
Using Poisson statistics, it is possible with this information to calculate the proba-
bility, also called likelihood [87], to observe Nobs events given a number of expected
events:

L(Nobs|Nexp) =
(Nexp)

Nobse−Nexp

Nobs!
(8.3)

⇔ L(Nobs|Nexp) =
(εsigLintσB +Nbg)

Nobse−(εsigLintσB+Nbg)

Nobs!
=: L(Nobs|σB) (8.4)

The only unknown variable in the likelihood is the signal strength σB on which the
limit will be set. Therefore the parameters, that have to be determined, are the
number of observed events and the number of background events, that are given by
counting data, respectively background events with the different mmin

T thresholds, the
signal efficiency and the luminosity. Since all of the parameters, except Nobs, have
systematic uncertainties, it is important to include these into the likelihood. This
is done by introducing nuisance parameters θi for each of these parameters. These
nuisance parameters are here chosen to follow a Gaussian pdf1:

gi(θi) =
1√

2πσi
e
− (θi−θ̄i)

2

2σ2
i (8.5)

1probability density function

91



8. Limit setting

where θ̄i is the central value of the parameter and σi is the uncertainty assigned to
that parameter. For example the luminosity would have a central value of 20.3 fb−1

with an uncertainty of 2.8%. Multiplying the pdfs of N different nuisance parameters
to the likelihood, it follows:

Ln(Nobs|σB, θ1, ..., θN) = L(Nobs|σB)
∏
i

gi(θi) (8.6)

This dependency on the nuisance parameters θi is then integrated out (with numerical
procedures) leading to a new likelihood:

LB(Nobs|σB) =

∫
dθ1...dθNL(Nobs|σB, θ1, ..., θN) . (8.7)

In this analysis three different nuisance parameters are taken into account, one for
Lint, one for εsig and one for Nbg.
The central question of the limit setting is: How strong can a signal (σB) be, under
the condition to be consistent with the number of observed events. To obtain this it is
necessary to have the probability to get Nexp events under the condition of Nobs events,
which is also called posterior probability. Bayes theorem [88] provides an answer for
this:

P (B|A) =
P (A|B)P (B)

P (A)
. (8.8)

In words this theorem says, that the probability of B under the condition of A is given
by the probability of A under the condition of B multiplied with the probability of B
divided by the probability of A. In terms of limit setting it yields:

P (A|B) =̂LB(Nobs|σB) . (8.9)

Furthermore a probability of the data being true is needed (P (A)) which is here set
to one. The corresponding probability to P (B) is the probability of the expectation
to be true, which is also called prior (Pprior(σB)). For this analysis the prior is chosen
to be constant in order to be consistent with other analyses [89] but it has to be
taken into account that different priors can lead to different results. Summarizing,
the posterior probability is given by:

Ppost(σB|Nobs) = NLB(Nobs|σB)Pprior(σB) , (8.10)

where N is a normalization constant defined as:∫ ∞
0

Ppost(σB|Nobs)d(σB) = 1 . (8.11)

With the posterior probability it is possible to calculate a limit on σB by integration:

CLbayes =

∫ σB

0

Ppost((σB)′|Nobs)d(σB)′ , (8.12)

where CLbayes is the predefined credibility level, which is chosen to 95% for this
analysis. In other words this means that a σB found this way is with a probability of
95% consistent with the expected number of events.
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8.3. Signal efficiency estimation

8.3. Signal efficiency estimation

One input parameter needed for the limit setting is the signal efficiency. It is calculated
by dividing the number of events, that pass the selection and have a mT > mmin

T by
the generated number of signal events for each different W’ pole mass. The formula
is given by:

εeff =
Nrec

Ngen

, (8.13)

where Ngen is calculated by the complete integral of the mT distribution for the
different W’ pole masses and Nrec is the integrated mT distribution with the mmin

T

cut assigned to the W’ pole mass.

To get these numbers and mT distributions for several W’ pole masses, the flat sig-
nal Monte-Carlo sample is used as it is mentioned in section 6.3. The sample is only
generated up to a mass of 4 TeV. In figure 8.3 the mT distributions2 of two W’ bosons
with different pole masses are shown. The left panel shows a W’ with a pole mass of
1000 GeV and the right panel with 3750 GeV. For both plots the truth distribution
(without any detector simulation) as well as the reconstructed distribution (with de-
tector simulation) are shown. In addition each plot shows the ratio of reconstructed
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Figure 8.3.: Left: mT distributions of a simulated W’ signal with a pole mass of
1000 GeV. Right: mT distribution of a simulated W’ signal with a pole mass of
3750 GeV. Both plots include the distribution without any detector simulation (truth
distribution) as well as the one from the simulated detector response (reconstructed
distribution). In addition, below both plots the ratio of the truth and the recon-
structed distribution is given as a function of mT .

2The distributions are scaled to data luminosity.
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8. Limit setting

and truth events. For the distribution of the W’ boson with a pole mass of 1000 GeV
the Jacobian peak at about 1000 GeV can be seen. For the reconstructed distribution,
this peak is smeared due to the detector resolution, as described in section 2.2.2. The
sharp edge in the reconstructed distribution at 252 GeV is caused by the pT and Emiss

T

of the selection. The reason that the ratio has an increasing behavior in mT is given
by bin migration: It happens that events generated in certain mT bin migrate to a
neighboring bin due to the detector resolution. In principle it is equally probable for
an event to migrate to lower or higher mT , but in a strong falling spectrum migrations
to lower bins are less visible than migration to higher bins, which leads overall to a
different slope for the reconstructed distribution.
The distribution on the right panel of figure 8.3 shows an high low mass tail, as ex-
plained in section 2.3. For this pole mass it is also visible that the high mT tail of the
Jacobian peak, above 4 TeV, is not simulated.
This cutoff has an small effect on the integrated numbers, used for the signal efficiency
calculation, if the W’ pole mass is low. To get an estimate of the impact on the highest
(4000 GeV) and and second highest (3750 GeV) pole mass, the signal efficiency of the
2500 GeV sample is calculated two times with different maximal integration borders.
First the integration border is set directly to the pole mass of 2500 GeV, to see the
effect of cutting away the complete high mass tail. Another signal efficiency is esti-
mated for a maximal integration border of 2750 GeV to see the effect of cutting away
the tail 250 GeV above the pole mass. Former signal efficiency leads to a difference
of about 5% to the default case and second to a difference of about 1%. Therefore it
is decided to exclude the last two pole masses for the limit calculation, leading to the
highest pole mass used of 3500 GeV.
Sixteen different pole masses are taken into account for the limit setting. The correc-
tions, mentioned in section 6.4, also have to be applied. Most of the corrections are
done, due to correct differences between Monte-Carlo and data, and thus only applied
to the reconstructed mT distribution, except the pileup weight, the k-factor and the
mc event weight which is also applied to the generated mT distributions. Since the
mc event has no mass dependence these corrections will cancel if building the ratio :

εsig =

∫ 8 TeV

mminT
Nreco(mT )k(mT )wpileup(mT )wmc eventwreco(mT )dmT∫ 8 TeV

0
Ntruth(mT )k(mT )wpileup(mT )wmc eventdmT

(8.14)

=

∫ 8 TeV

mminT
Nreco(mT )k(mT )wpileup(mT )wreco(mT )dmT∫ 8 TeV

0
Ntruth(mT )wpileup(mT )k(mT )dmT

, (8.15)

where wreco stands for the weights due to differences in reconstruction, selection effi-
ciencies and energy scale variations.
As explained in detail for the background (see section 7.3) all these corrections have
uncertainties, which also lead to an uncertainty for the signal efficiency. In order to
calculate this uncertainty, the mT distribution is calculated by using the up and down
varied3 weight. These varied mT distributions are then integrated and divided by the

3The variations are given by the 68%C.L. uncertainty
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8.3. Signal efficiency estimation

mW ′ [GeV]
300 400 500 600 750 1000 1250 1500 1750

mmin
T [GeV]

252 336 399 502 564 843 946 1002 1416
Scale factor 2.9 2.5 2.3 3.1 2.3 2.2 2.2 2.4 2.2
Resolution 0.4 0.2 0.4 0.2 0.1 0.4 0.3 0.2 0.3

Energy scale 3.4 2.6 1.8 1.9 1.2 2 1.1 0.8 1.8
Jet resolution 0.2 0.1 0.2 0.1 0.1 0.2 0.2 0.1 0.1

Jet Scale 0.5 0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.1
Pileup 1.9 1.1 0.4 2.0 0.4 0.1 0.4 1.0 0.3

All exp. 4.9 3.8 3.0 4.1 2.6 3.0 2.6 2.7 2.9
MC stats 2.2 2.0 1.9 2.0 1.7 1.9 1.6 1.4 1.7
k-factor 0.4 0.6 0.5 0.5 0.3 1.2 0.9 1.5 2.4

All added 5.4 4.3 3.6 4.6 3.1 3.7 3.1 3.4 4.1

mW ′ [GeV]
2000 2250 2500 2750 3000 3250 3500

mmin
T [GeV]

1416 1416 1416 1416 1416 1416 1416
Scale factor 2.2 2.2 2.2 2.2 2.3 2.2 2.4
Resolution 0.2 0.2 0.1 0.1 0.0 0.0 0.1

Energy scale 1.0 1 0.7 0.8 0.8 0.9 1.0
Jet resolution 0.0 0.1 0.0 0.0 0.0 0.0 0.0

Jet Scale 0.0 0.1 0.0 0.0 0.1 0.0 0.1
Pileup 0.1 0.2 0.2 0.5 0.6 0.1 1.0

All exp. 2.4 2.4 2.3 2.4 2.4 2.3 2.7
MC stats 1.4 1.3 1.2 1.2 1.1 1.0 1.0
k-factor 2.7 3.9 6.6 13.0 21.0 31.0 38.0

All added 3.9 4.8 7.1 13.0 21.0 31.0 38.0

Table 8.1.: Signal efficiency uncertainties for different W’ pole masses and mmin
T

values. The shown uncertainty sources are the same as for background, except for the
top cross-section uncertainty, which cancels by building the ratio. The uncertainties
are shown relative to the default value in %.

number of generated events. The higher deviation from the default is then taken as
systematic uncertainty for the signal efficiency.
An overview over all estimated relative systematic uncertainties is shown in table 8.1
and graphically in figure 8.4. It can be seen that on the experimental side the largest
contributions are given by the scale factor uncertainty4 and the electron energy scale
uncertainty. On the theory side it can be seen that the k-factor uncertainty is only
about 0.38% for low W’ pole masses and rises with the W’ pole mass to about 38%.
This very large increase of the uncertainty is caused by the fact, that the integration
from mmin

T is only done for the distribution of the reconstructed events and not for
the generated ones.

To clarify this, figure 8.5 shows the ratio of the k-factor up, respectively down vari-
ation and the default case, for a W’ pole mass of 1000 GeV on the left panel and a

4Scale factor uncertainties include uncertainties from reconstruction, trigger and identification plus
isolation scale factors, as it is described for the background uncertainties in section 7.3.3.
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Figure 8.4.: Relative systematic uncertainties of the signal efficiency for different
generated pole masses of a hypothetical W’.
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8.3. Signal efficiency estimation

pole mass of 3500 GeV on the right panel. Also shown in these plots is the integration
border mmin

T from which the reconstructed distribution is integrated. In order to un-
derstand the rise of the efficiency uncertainty due to the k-factor variation it is helpful
to look at numerator and denominator of the signal efficiency separated. For low pole
masses most of the events lay in small mT regions, where the k-factor uncertainty is
small (< 10%). The k-factor variations lead therefore only to small variations of the
numerator and denominator. Going now to higher pole masses the peak of the mT

distribution will also shift, leading to bigger variation of the numerator and denomina-
tor due to higher k-factor uncertainties. With bigger pole masses also the integration
border mmin

T shifts, so that the relative variation of the numerator is slightly bigger
than the one of the denominator, as shown in figure 8.6. There, the relative change
between default and variation is shown for the numerator and denominator as a func-
tion of the W’ pole masses. It can be seen that the differences between numerator
and denominator grow slightly up to 2000 GeV due to the change of the mmin

T cut.
At his point the numerator rises very strongly, whereas the denominator stays more
about the same. The mmin

T does not change anymore for pole masses above 1750 GeV,
but as it was explained before, a further rising of the pole mass leads to a low mT

dominated distribution. Since the numerator is not sensitive to this low mT region,
due to the mmin

T threshold, the difference between default and varied nominator rises
strongly. The denominator is sensitive to the low mT regions so that the k-factor vari-
ation leads to a small effect compared to the default denominator. In conclusion this
shows that the numerator of the signal efficiency diverges from the denominator due
to the k-factor uncertainty, leading to a high uncertainty on the signal efficiency for
high pole masses. The resulting calculated signal efficiencies, with the uncertainties
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the varied one due to the k-factor uncertainties as a function of W’ pole masses.
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Figure 8.7.: Signal efficiency as a function of W’ pole mass. The shown error bars
include statistical and systematic uncertainties.

mentioned before, can be seen in table 8.2 and graphically, as a function of the W’
pole masses, in figure 8.7.

In the table also the resulting number of signal events, used for the numerator of
the efficiency calculation, are shown. It can be seen for mW ′ below 1750 GeV, that
the signal efficiency fluctuates between 20-50%, due to the changes of the mmin

T . For
the W’ masses of constant mmin

T , above 1750 GeV, the signal efficiency decreases to
about 12% due to the fact that for this high W’ pole masses the low mass region,
below the mmin

T cut is highly populated and such not contributing to the numerator
of the efficiency.

mW ′ (mmin
T ) [GeV] εsig Nsig Nbg Nobs

300(252) 0.234 ± 0.013 7.62·105 ± 4.4·104 12982 ± 723 13050
400(336) 0.326 ± 0.014 3.66·105 ± 1.7·104 5369 ± 307 5287
500(399) 0.382 ± 0.014 1.82·105 ± 6.6·103 2722 ± 161 2633
600(502) 0.337 ± 0.016 7.92·104 ± 4.0·103 1048 ± 67 967
750(564) 0.434 ± 0.014 4.01·104 ± 1.3·103 630 ± 40 532
1000(843) 0.331 ± 0.012 8.71·103 ± 326 93 ± 8 81
1250(946) 0.427 ± 0.013 3.76·103 ± 118 52 ± 5 43
1500(1002) 0.503 ± 0.017 1.68·103 ± 60 39 ± 4 34
1750(1416) 0.335 ± 0.014 445 ± 18 5 ± 0.7 5
2000(1416) 0.403 ± 0.016 223 ± 9 5 ± 0.7 5
2250(1416) 0.413 ± 0.023 102 ± 5 5 ± 0.7 5
2500(1416) 0.389 ± 0.028 44.5± 3.2 5 ± 0.7 5
2750(1416) 0.333 ± 0.043 19.3± 2.5 5 ± 0.7 5
3000(1416) 0.251 ± 0.053 8.0± 1.7 5 ± 0.7 5
3250(1416) 0.177 ± 0.054 3.4± 1.1 5 ± 0.7 5
3500(1416) 0.122 ± 0.046 1.6± 0.6 5 ± 0.7 5

Table 8.2.: Input parameter for limit setting with uncertainties.
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8.4. Limit calculation

8.4. Limit calculation

All parameters used for the limit setting are shown with their uncertainties in table 8.2,
except the luminosity, which is 20.3 fb−1 with an uncertainty of 2.8%. With these
parameters the calculation of the posterior probability, see equation 8.10, is performed.
This is done using the official W’ limit setting tool, that was used before, to produce
results with 2011 data [89]. This tool provides the calculation of a limit on σB for each
W’ mass, based on the Bayesian approach explained in section 8.2. In the following
the functionality of the tool is explained a bit more in detail.
The first step is the calculation of the likelihood LB as defined in equation 8.7. Since
the likelihood is a function of σB, a σB range and step size is defined to sample
the likelihood. Each σB value is used together with the other input parameters
to calculate one value of the likelihood function. As it was mentioned before, the
uncertainties are treated as a Gaussian distribution with the mean as the parameter
value and the standard deviation as the systematic uncertainty of the input parameter.
In the tool this is done by multiplying the default input parameter, for example the
signal efficiency, with a random number, that follows a Gaussian shape with mean
one and the systematic uncertainty as standard deviation. The resulting likelihood
values with these ”smeared“ input parameters is calculated multiple times and the
mean value is taken as one point of the likelihood. This procedure is done for all σB
in the ”sampling range“ resulting in a smooth function. In order to have the posterior
probability, the likelihood values are simply multiplied by the prior probability (see
equation 8.10), which is in the case of an flat prior, one.
An example for a resulting posterior probability function can be seen in figure 8.8,
where the posterior is shown as a function of σB for a W’ pole mass of 2750 GeV.
It can be seen that it has a Gaussian like shape with the mean at zero, since the
data is in this mT region in good agreement with the background and such there is
no much ”room” for a signal. The 95% C.L. limit on σB can then be calculated by
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Figure 8.8.: Posterior probability as a function of σB for a W’ pole mass of 2750 GeV.
The shown label, σflat,SBL95%CL , indicates that the 95%C.L. on σB is estimated with a flat
prior and uncertainties for the Signal efficiency, Background and Luminosity (SBL).
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8. Limit setting

integrating from 0 to higher σB, until the point where the integrated area is at 95%
of the complete area under the function. For the shown example this is the case at
1.01 fb−1. This value is then the final limit on σB for one W’ pole mass and can
be done for all other W’ pole masses in an analog way. If this procedure is done by
using the number of observed events from data, the resulting limit is called observed
limit. In order to have a comparison with a limit where only background estimations
are included, a so called expected limit is calculated. In principle this is done exactly
the same way as described before, except that for the number of observed events, the
number of expected background events is used. To estimate the uncertainty of the
limit on σB, ”toy Monte-Carlos“ are used. They are obtained by calculating a random
number following a Poisson distribution, where the mean is given by the ”smeared“
number of expected background events. In this context ”smeared“ means again the
multiplication of the default number of background events with a random variable
following a Gaussian distribution with mean one and the background uncertainty as
standard deviation. Altogether 1000 ”toy Monte-Carlos“ are calculated for each W’
pole mass and the mean of the resulting limit on σB is taken as default value together
with the one and two σ errors as uncertainty.
In figure 8.9 the final expected and observed limits on σB are shown together with the
one and two σ variations of the expected limit for all used W’ pole masses. Added in
this figure is also the theory prediction cross-section for a sequential standard model
W’. It can be seen that for values between 600 GeV and about 1250 GeV the observed
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Figure 8.9.: Limit on σB as function of mW ′ . The expected limit (only through SM
background predictions) is shown as well as the observed limit given by data input.
The theory of a hypothetical W’ SSM is also shown.
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8.4. Limit calculation

limit is lower as the expected limit but still inside the 2σ band of the expected limit,
except the point at a pole mass of 600 GeV. The reason for that is given by the
differences seen in the mT distribution starting at about 560 GeV (figure 8.1). Above
W’ pole masses of 1250 GeV, background and data are in good agreement but it
has to be taken into account that there is almost no data left for these high mmin

T

thresholds. Furthermore a strongly rising behavior of the limit distribution can be
seen for pole masses above 3250 GeV, which is mainly caused from the rise of the
efficiency uncertainty due to the high k-factor uncertainty and such this behavior can
be seen for expected and observed limit.
In summary no significant differences between expected and observed limit can be
seen. Therefore it is possible to set an exclusion limit to the mass of the SSM W’
boson. This can be done by calculating the intersection point of the theory curve
and the expected or observed limit curve, which leads to an observed and expected
exclusion of a sequential standard model W’ up to an mass of 2.97 TeV, with a
credibility level of 95%.

8.4.1. Comparison with other results and outlook

The latest public ATLAS W’ mass limit is done with 2011 data at
√
s = 7 TeV and an

integrated luminosity of about 5 fb−1. The resulting limit excludes SSM W’-bosons,
for the electron decay channel, below 2.5 TeV [89]. Comparing this result with the
calculated limit of this analysis, using 2012 data with

√
s = 8 TeV and 20 fb−1, the

mass limit is about 470 GeV higher due to the higher luminosity and center of mass
energy.
Compared with the latest limit from the CMS experiment, 3.35 TeV 5, including all
data from 2012 with

√
s = 8 TeV, the limit of this analysis is about 380 GeV lower.

This is not expected, since the beam conditions during the data taking time were
the same and thus the amount of data collected. In order to test if the estimated
systematic uncertainties are the reason of the discrepancy, a new calculation of the
expected limit is done without taking any systematic uncertainty into account. The
blue line in figure 8.10 shows the result. It can be seen that it has lower values for
low pole masses compared to the expected limit including all systematic uncertainties
(black line), due to the background uncertainty for low pole masses. For the highest
pole mass of 3500 GeV the difference between the limit without systematic uncertainty
and default is about an order of magnitude. The reason why this difference is this
high, even though the systematic uncertainty is ”only“ 35%, is given by the non-
linear behavior of the limit on σB as a function of the signal efficiency uncertainty, as
it is shown in figure 8.11 for a pole mass of 3500 GeV. It can be seen that the limit
on σB has an almost exponential increase for uncertainties above 25%. However,
the intersection point between SSM-theory and expected limit without uncertainties
changes only a little, leading to a mass limit of 3.01 TeV. So the uncertainties do not
explain the difference to the result of the CMS-experiment.

5Only electron channel
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Figure 8.10.: Different expected limits on σB as function of the W’ pole mass. Also
shown is the NNLO theory cross-section for a hypothetical (SSM) W’. The black curve
shows the expected limit including all systematic uncertainties. The blue line shows
the exclusion limit without including any systematic uncertainty. The same is shown
for the purple and green line, wheres for these limits a different set of mmin

T values is
used.
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Figure 8.11.: Expected limit on σB as function of the signal efficiency uncertainty.

On selection level the CMS analysis uses an additional cut on the ratio peT/E
miss
T ,

because it is expected that the momentum of the neutrino and the electron is balanced
in the transverse plane. Additionally, CMS cuts also on ∆ϕeν , which is also not done
in this analysis. These two cuts would further reduce the background, mainly the
QCD-background. This would lead to a statistical problem for the data-driven QCD-
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8.4. Limit calculation

background estimation6 where a jet enriched control region is needed. Therefore these
two cuts are not used for this analysis.
CMS uses also a Bayesian approach with the same method. The optimization of
the mmin

T is in both analysis done to lead to the best expected limit on σB, as it is
described in the publication of CMS including 3.7 fb−1 of data collected in 2012 [90].
When comparing these optimized mmin

T thresholds it is noticeable that for this analysis
the highest mmin

T threshold is at 1416 GeV and for the CMS analysis it is at about
2500 GeV. There are known problems with this optimization of the mmin

T , that are
used in this analysis and which are provided by the ATLAS W’ group. In order to
study the impact of changing the mmin

T border, the the expected limit is recalculated
using recently re-optimized mmin

T thresholds from the muon-channel analysis group 7.
The resulting expected limit on σB as function of the W’ pole masses is also shown
in 8.10. Again the limits are shown with systematic uncertainties (green line) and
without (blue line). For the case without uncertainties it can be seen that the mass
limit is increased to 3.13 TeV compared to the limit with the other mmin

T threshold and
no uncertainty. If the uncertainties are taken into account the limit on σB increases
strongly (green line), due to the k-factor uncertainty, which is higher using the mmin

T

thresholds from the muon-channel. Therefore the resulting mass exclusion limit is
only at 3.01 TeV. It has to be taken into account, that CMS does not apply a k-factor
uncertainty 8 to the signal efficiency, since the uncertainty of the signal events for
a W’ with a pole mass of 3 TeV and an mmin

T threshold of 1.5 TeV is only about
3% [90], which is significant lower than the 21% uncertainty for a 3 TeV W’ with an
mmin
T of 1.4 TeV, shown in table 8.2. Therefore it is expected that the difference in

the mmin
T optimization and the not including k-factor uncertainty is the main reason

of the difference in the mass exclusion limit.
At the moment the LHC and the ATLAS experiment are going to be upgraded. The
goal is to start data taking in the beginning of 2015, with

√
s = 13 − 14 TeV. In

figure 8.12 the ratio of the qq̄-luminosity with 7 TeV and 14 TeV is shown as function
of mass. Considering a mass of 1 TeV, it can be seen that the qq̄-luminosity, and thus
the cross-section9, will rise about a factor of five. This means, that it is possible to
observe five times more events at a mass of 1 TeV, when increasing

√
s from 7 TeV

to 14 TeV by recording the same amount of data. The ratio of the gluon-gluon
luminosity, also given in figure 8.12, shows, that the cross-section for processes from
gluon-gluon annihilation will rise with an approximate factor of 12. Therefore the tt̄-
background and to some degree also the QCD-background will increase stronger for
higher

√
s than the other backgrounds, since these two background can be produced

via gg-annihilation, whereas the others can not. That is why it might be important

6CMS uses Monte-Carlo simulation for the QCD-background and therefore are able to apply these
cuts.

7A list of these thresholds is given in the appendix A.1
8Referring to the publication [90] they only include electron and Emiss

T energy scale and resolution
uncertainties.

9If only processes with quark and antiquarks in the initial state are considered, like the W-boson
production.
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Figure 8.12.: Quark antiquark, as well as gluon-gluon luminosity with 7 TeV divided
by the luminosity with 14 TeV as a function of mass [91].

to apply further selection criteria to reduce top and QCD-background.
The impact of a higher center of mass energy on the mass limit is investigated via

simulations [92]. It is shown, that the expected mass limit of a hypothetical SSM
Z’ (the neutral partner of the SSM W’) can be increased from currently 2.79 TeV
(
√
s = 8 TeV [93],

∫
L=20 fb−1) to 6.5 TeV, assuming a center of mass energy of√

s = 14 TeV and an integrated luminosity of 300 fb−1.
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9. Conclusion

At the moment the Standard Model of particle physics is the best description for the
fundamental structure of matter. It also describes the interaction between the ele-
mentary constituents of particles. Predictions, that are based on the Standard Model
(SM), are tested to high precision and so far no deviation is found. However, the stan-
dard model leaves some open questions. One of these open questions is the unification
of the strong force with the other two forces, analogue to the electro-weak unification.
Some of these theories predict new, heavy, charged gauge bosons beyond the, up to
now investigated, energy scale. Regarding to the “sequential standard model” (SSM)
this charged boson has the same charge, spin and other quantum numbers as the SM
W boson, except of a higher mass. It is also predicted to have the same couplings as
the W-bosons, but a potential interference between the W and the hypothetical W’
is not taken into account in this theory.
This thesis presented a search of a W’-boson by looking for resonance-like differ-
ences between SM background and data in the transverse mass distribution. The
analysed data, from proton-proton collisions, were taken with the ATLAS-detector
at
√
s = 8 TeV and an integrated luminosity of 20 fb−1. The focus was set on the

decay of a hypothetical W’ into an electron and neutrino. The background of Stan-
dard Model processes was split into two different sources. On the one hand there is
background from real electrons, that was determined with Monte-Carlo simulations
and on the other hand there is background from other objects, e.g. jets, that fake
electrons and thus pass the selection, which was estimated by using the data-driven
matrix method.
The Monte-Carlo samples used were produced with two different methods of detector
simulation. Samples using these different methods were compared and differences in
the shower shape, isolation and resolution were found. The impact of differences in
the shower shape on the selection were about 0.1% and therefore neglectable for this
analysis. Differences in the isolation were minimized by applying correction factors.
Differences in the resolution were covered by systematic variations of one simulation
and therefore no further corrections were applied.
A detailed comparison between data and background estimation was performed and
no significant differences were observed. Therefore an exclusion limit on cross-section
times branching ratio (σB) of a SSM W’ was set for several W’ pole masses, using a
Bayesian method. For each pole mass the number of observed and background events
where calculated by integration from a certain mT thresholds (mmin

T ). Comparing
these numbers with the number of expected (signal + background)events, a limit on
σB, with a 95% C.L., was set for each investigated W’ pole mass. The resulting
observed and expected mass limit is 2.97 TeV. Compared to previous ATLAS results,
done with

√
s = 7 TeV data and an integrated luminosity of 4.7 fb−1 [89], the limit
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9. Conclusion

was increased about 470 GeV due to the higher center of mass energy and luminosity.
The comparison with results from CMS [36] shows that the mass limit, estimated in
this thesis, is about 300 GeV lower for the electron channel. This differences can
probably be reduced to some improvements of the analysis, that are listed in the fol-
lowing.
It might be necessary to re-optimize the mmin

T thresholds, used for the integration to
calculate the number of observed and background events. It was shown, that a differ-
ent set of mmin

T thresholds leads to better results, if no systematic uncertainty is taken
into account. Including the systematic uncertainties, the limit on σB gets significant
higher for high pole masses, leading to a lower mass exclusion limit. Therefore it is
to consider if it might be necessary to use a complete different method for the limit
setting, which is not as sensitive to the uncertainties as the method presented in this
thesis.
Additional room for improvements, that do not directly influence the mass exclusion
limit, was seen in the pWT distribution. It has been shown that there are differ-
ences between background and data in the shape of the transverse momentum of
the reconstructed W-boson, which are most likely caused by mismodelings in the
W Monte-Carlo samples. Also the background from diboson events seem to have a
wrong modeling of the transverse momentum. Currently ongoing studies give first
indications that there are differences in the pT shape for different generators. A fur-
ther improvement can be achieved if the background distributions are extrapolated
with fits to higher mT , not to suffer from low statistics of the Monte-Carlo samples.
Also a different method for the estimation of the fake rates, needed for the QCD-
background, would be good, in order to have an estimate of the uncertainty due to
different methods.

Currently an upgrade of the LHC and the ATLAS-detector is in progress. It is
planned to start data taking in 2015 with a center of mass energy of 13 to 14 TeV.
With these energies it is possible to reach higher cross-sections and thus populate
higher transverse masses. Due to a different behavior for the gg- and qq̄ luminosity for
higher

√
s it might be necessary to introduce additional selection criteria to reduce the

tt̄-background. Nevertheless due to higher reachable transverse masses the exclusion
limit will increase significantly or a new heavy, charged vector boson will be found.
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A. Appendix

In order to get transverse mass distributions for a W’ with a certain pole mass out
of the flat simulated distribution, weights (frew(mflat,mpole)) are used, which can be
calculated in the following way.

w =
1 · 10−12

(m2
flat −m2

pole)
2 + (m2

pole · Γ)2
, (A.1)

with: Γ = 0.0095 · (3 + (1 + 0.5 ·mrel) · (1−mrel)
2) , (A.2)

with: mrel =

(
174.3 GeV

mpole

)2

(A.3)

mnorm
flat =

mrel

8000
(A.4)

⇒ frew(mflat,mpole) =

m
norm
flat < 0.0375 : w

121.88 exp (13·mnormflat )

mnorm
flat > 0.0375 : w

exp (18.5·mnormflat −1.4 log (mnormflat ))

(A.5)

with: mnorm
flat = mflat/8000 , (A.6)

where mpole is the pole mass of the W’ and mflat the mass of the flat sample.
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Figure A.1.: Comparison of ηS2 and f3 between fast simulation and full simulation
for the W’ (3 TeV) signal sample.
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Figure A.2.: Comparison of ws tot and ∆η between fast simulation and full simulation
for the W’ (3 TeV) signal sample.
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Figure A.3.: Real efficiency as a function of pT for two of the four η bins; determined
from W Monte-Carlo samples.
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Figure A.5.: Comparison of data and background distributions for different kine-
matic distributions, as well as their ratios.

m(W ′) 300 400 500 600 750 1000 1250 1500 1750
mmin
T 267 336 423 502 597 796 1002 1191 1337

m(W ′) 2000 2250 2500 2750 3000 3250 3500
mmin
T 1337 1783 1783 1783 1888 1888 1783

Table A.1.: Re-optimized mmin
T thresholds from the analyse group of the muon chan-

nel.
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Figure A.6.: Event display of an event with mT = 1551.46 GeV, created with ATLANTIS [94]. All tracks above 5 GeV
are shown. It can be seen that the electron (track marked in blue) has an high energy deposition in the electromagnetic
calorimeter. The missing transverse energy is visible at the opposite direction. Also it can be seen that the decay of the
W-boson is not exact back to back, which indicates a boost of the W-boson. Due to momentum conversation also a recoil
jet (marked as a white cone) occurs.
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mW ′ [GeV] observed limit [pb] exp. limit -2σ [pb] exp. limit -1σ [pb] exp. limit [pb] exp. Limit +1σ [pb] exp. Limit +2σ [pb]
300 3.59·10−1 1.97·10−1 2.65·10−1 3.42·10−1 4.50·10−1 5.98·10−1

400 9.74·10−2 5.99·10−2 7.99·10−2 1.05·10−1 1.40·10−1 1.81·10−1

500 4.07·10−2 2.64·10−2 3.59·10−2 4.78·10−2 6.30·10−2 8.26·10−2

600 1.64·10−2 1.32·10−2 1.78·10−2 2.34·10−2 3.08·10−2 4.06·10−2

750 6.00·10−3 6.55·10−3 8.77·10−3 1.14·10−2 1.51·10−2 1.98·10−2

1000 2.90·10−3 2.24·10−3 3.00·10−3 4.04·10−3 5.42·10−3 7.03·10−3

1250 1.52·10−3 1.24·10−3 1.65·10−3 2.19·10−3 2.98·10−3 4.03·10−3

1500 0.13·10−4 8.93·10−4 1.19·10−3 1.59·10−3 2.20·10−3 2.90·10−3

1750 9.58·10−4 5.17·10−4 7.05·10−4 9.58·10−4 1.27·10−3 1.80·10−3

2000 7.96·10−4 4.30·10−4 5.86·10−4 7.96·10−4 1.06·10−3 1.49·10−3

2250 7.78·10−4 4.20·10−4 5.73·10−4 7.79·10−4 1.03·10−3 1.46·10−3

2500 8.34·10−4 4.50·10−4 6.14·10−4 8.34·10−4 1.11·10−3 1.57·10−3

2750 1.01·10−3 5.43·10−4 7.42·10−4 1.01·10−3 1.34·10−3 1.92·10−3

3000 1.49·10−3 7.94·10−4 1.09·10−3 1.49·10−3 2.01·10−3 2.90·10−3

3250 3.43·10−3 1.84·10−3 2.54·10−3 3.62·10−3 5.53·10−3 8.35·10−3

3500 3.09·10−2 1.56·10−2 2.05·10−2 3.38·10−2 6.28·10−2 9.86·10−2

Table A.2.: Observed and expected limit on σB. Also added is the one and two σ uncertainty of the expected limit.
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