PHYSICAL REVIEW D 101, 076023 (2020)

Direct reduction of multiloop multiscale scattering amplitudes
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We propose an alternative approach based on series representation to directly reduce multiloop
multiscale scattering amplitude into set of freely chosen master integrals. And this approach avoid
complicated calculations of inverse matrix and dimension shift for tensor reduction calculation. During this
procedure we further utilize the Feynman parameterization to calculate the coefficients of series
representation and obtain the form factors. Conventional methodologies are used only for scalar vacuum
bubble integrals to finalize the result in series representation form. Finally, we elaborate our approach by
presenting the reduction of a typical two-loop amplitude for W boson production.

DOI: 10.1103/PhysRevD.101.076023

I. INTRODUCTION

The CERN Large Hadron Collider (LHC) is the most
accurate experiment on the elementary particle physics at
present, and the next generation lepton colliders have been
proposed aiming at higher accuracy. They all demand the
high precision theoretical predictions to include higher
orders of either electroweak or QCD corrections [1].
However, the higher order corrections may become seri-
ously challenging due to the evaluation of the multiloop
Feynman diagrams, which usually can be decomposed into
several steps of calculations. And practically one of the
most difficult calculations is to reduce the loop amplitude
into linear combination of master integrals.

For the one-loop amplitude many different reduction
algorithms have been developed after decades of effort. The
Passarino-Veltman reduction algorithm [2-5] has been
widely used in enormous number of investigations on
the next-to-leading order (NLO) effects for the Standard
Model (SM) processes and some new physics processes.
Later the implementation of unitarity algorithm [6—13] on
the one-loop amplitude provided very interesting and
inspiring prospect on the amplitude structure. Meanwhile
the algorithm based on unitarity also presents excellent
numerical efficiency. Consequently, by implementing these
modern reduction algorithms the SM NLO calculations
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have been automated [14—20]. Other methods can be found
from [21-26].

At the multiloop level in the consideration of efficiency
the amplitude has to be reduced into linear combination of
finite number of master integrals [27], which can be further
calculated analytically or numerically. In contrast to the
one-loop case, the achievement of multiloop reduction
conventionally includes two separate steps, i.e., the tensor
reduction and the scalar integral reduction using integration
by part (IBP) identities [28].

First the tensor reduction is used to isolate the loop
momenta from fermion chains, polarization vectors or
product of them, which will be factorized out of the loop
integral to construct the form factors. Specifically one of
the conventional approaches is the projection method
[29,30] that has been commonly used in the calculations
of high order QCD corrections to the Higgs production
[31-33] and the vector boson productions [34,35]. The key
to the projection method is the projector basis relying on
the analytic inversion of projection matrix. However, for
some complicated scattering processes, e.g., the full next-
to-next-to-leading order QCD correction to single-top
production [36], the project matrix could become so big
that its inversion may seriously challenge the computation
resource. Another approach for tensor reduction is
Tarasov’s method [37] based on Schwinger parametrization
38,39]]. It can avoid irreducible numerator but shift the
space-time dimensions of obtained scalar integrals. Thus it
is inevitable to shift the dimensions of scalar integrals back
to the conventional D-dimension or the same dimension at
least. And this commonly needs to resolve the dimension
recurrence relations, which however is as difficult as the
matrix inversion in projection method. Besides another
popular approach is using IBP identities [40,41], which
however also confronts serious difficulties in the multiscale
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processes. During this modern age of evaluation, computa-
tional algebraic based algorithms [42—44] successfully
implemented on N =4 Yang-Mills theory and numerical
unitarity method for multigluon amplitudes [45-49].

Then after the successful tensor reduction the loop
amplitude becomes linear combination of scalar integrals,
whose number could be order O(10*) for complicated
processes. Consequently as the second step usually the IBP
reduction is introduced to reduce the scalar integrals into a
much smaller number of master integrals. The most popular
method for IBP reduction is Laporta algorithm [28], which
has been implemented by several codes [41,50-55].
Another interesting method [53,56] for IBP reduction
recently has been developed based on algebraic geometry.
Due to the fact that IBP reduction relies heavily on the IBP
relations the choice of master integral set cannot be
arbitrary, so the resulting reduction expressions may con-
front unacceptable inflation [57,58]. Therefore, to effi-
ciently evaluate the multiscale multiloop amplitude one
better keep the freedom to choose master integrals. And this
can be achieved by series representation [59], which in fact
can also be used to solve the tensor reduction as we will
show in the following.

In this paper, based on the series representation [59,60],
we propose an alternative reduction approach that can
directly reduce loop amplitude to master integrals so that
the complexity of tensor reduction and IBP reduction can
be relieved. In next section the main idea will be explained
in detail. Then its application on one typical two-loop
diagram of W boson production as an example will be
shown. Finally the conclusion is made.

II. AMPLITUDE REDUCTION

Recently, a series representation of the Feynman integral
has been proposed to reduce the scalar integrals into master
integrals [59] and to numerically evaluate the master
integrals [60]. It is very promising since it can be applied
to multiscale multileg integrals and has freedom to choose
master integrals. Intriguingly we find that the series
representation can also be directly implemented on the
loop amplitude, which in general can be written as

M :/DLqN({qJ j;l=11”l{)ll;‘e}e=1)7 (1)

where D"q = [/, d”q,. {q;}}_, are L loop momenta,
{k.}E_, are E external momenta and {D;}!_, are the
denominators of loop propagators. Numerator N({g; }]L:p
{k.}E_,) may contain fermion chains, polarization vectors
or both.

In order to obtain the expression of loop amplitude in
series representation, we first modify all the denominators,

1 1 1 1
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D, Pl—-m; D; P}I-ml+u

i

where P; = Q; + K; is the momentum of the ith propa-
gator. Q; and K; are defined as linear combinations of loop
momenta and external momenta, respectively. Therefore we
obtain the modified amplitude M (#), which depends on
auxiliary parameter #. The mass dimension of # is same as
the mass dimension of m?. With the help of the parameter 7,
any modified amplitude can be defined as series repre-
sentation. After the reduction the physical original ampli-
tude can be obtained in the limit of # — 0

M = lim M(y). (3)

n—0"

The modified loop amplitude can be decomposed as
linear combination of tensor integrals

M) =D N ed Gk SE)GE - (4)

H1--HR
£1. LR

where N, ./ ¢ ({k.}E_)) is the coefficient of tensor
integral.

a7, --q7,
Qi + Ki)? = mi + ]

(5)

IR L
Gfl...fk = [ D¥q

The summation is over all tensor structures in the given
amplitude. By using Feynman parametrization [61] for
tensor integrals, we can express the tensor integral as

) —1)M " » "

Hi-HR ( Vj

C _W/dejxj 6(1—Zx1>
=

=1

[R/2] (m)
I'(N, o I
((_z)m) [(M7! @ g)tm) Z(R=2m)0--- e
m=0
F -N"
x UJ~D/2+m-R (5 _ “7) , (6)

where N, =", v; and N™ =N, —m—LD/2. U and
F are the first and second Symanzik polynomials, respec-
tively. Here U and F are polynomials of Feynman param-
eters {x;}, and F can also include the masses and the scalar
products of the external momenta. # is the matrix of {x;}
and Z depends on the external momenta. m is defined as
“metric rank” to indicate the number of metric tensor
generated in each term of the summation in Eq. (6). The
explicit definitions of symbols in the square bracket can be
found in Ref. [61]. An important observation is that
auxiliary parameter 7 only appears in the last bracket.
By using Taylor series for # — co one can obtain
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FP
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Now it can be seen that the exponent p in F” is a non-
negative number, so that the difficulty of dealing with

fraction polynomial F~V "' can be avoided. By using direct
expansion F” can be expressed as the polynomial of {x;},
then all the tensor structures are only related to the external
momenta. Consequently the external momenta can be
attached to fermion chains or the polarization vectors to
generate the form factors. And the coefficients of form
factors become integrals on Feynman parameters {x;}, for
instance

=1

/dejxjf”é(l —Zx,> u-br, (8)
j=1

where D can be different from the space-time dimension D.
We can define an equivalence relation ~ between Feynman
parameter indices, such that

i~j if imD; =limD;. 9)

m;j—0 m/-—>0

Then we can divide the Feynman parameters index set
{i}r_, into X = 2L —1 equivalence classes [i|], ..., [ix].
For each equivalence class, we can insert one unit integral,

e.g.,
/dy15<y1 - xj> =1. (10)
Jeli]

Meanwhile because U can be constructed from the 1-tree
cut on the Feynman loop diagram [62], it can be found that
U only depends on {y;}. Then the parameters {x;} can be
integrated along with the inserted §-functions as

/ de 5(1 - Z) vor - | H (H (dxjx;,—l)>5<1 . Z) by

=1 je[im] =1

(s ) o5

je[i,,, pe[im]

X X
_ / I1 (dy 1L ) o "j>_1) x 5(1 - yz) u-br2, (11)
iz N D e, ) =

And finally the integrals on {y;} can be reconstructed as
vacuum bubble integrals, for instance at two-loop level
I(vac),D _ / qulquZ
V.U Vy —
e g7 + "5 + 11 [(q1 + q2)* + 1]
— (=i)D*N. / Yy y5 T dy, 5 dys
C(v) T(n) T(y)
x 5(1=y; =y, —y;)[(N, - D)U™P2. (12)

For the remaining scalar vacuum bubble integrals, we can

further implement the IBP reduction [41] to reduce / ,(,Tafz,f

to IET??I)’D and 179", Then we can implement the
dimension shift operation to reduce them to [ (IVTCI)D and

I EVfCO)D Finally the modified loop amplitude can be ex-

pressed as the series representation in terms of vacuum
bubble master integrals in D dimension. It is necessary to
emphasize that the IBP reduction and the dimension shift
operation are implemented only on the vacuum bubble
integrals, which are process independent and can be easily
prepared once for all.

|

Obviously now we have successfully achieved the tensor
reduction for loop amplitude. Finally we can rewrite the
modified loop amplitude as

M(n) = _C.F.. (13)
and
C; = PPN NN A IO (14)
p=0 j

where F, is the form factor and C, is the relevant coefficient.

m" is the maximum of the metric ranks of the terms that
(vac),

contribute to F;. And /] P represents the jth L-loop
vacuum bubble master integral. The series coefficient Ay,
only explicitly depends on linear independent kinematic
variables {s, ..., s,} and space-time dimension D. Since in
the following we will focus on one of the coefficients C; to
demonstrate the reduction procedure, for simplicity of the
formula, the index i dependence for A,; is suppressed.
Here we define tuple s = (s, ..., s;) and monomial
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ay

a: ..
=5

5 (15)

N

where @ = (ay, ..., @) is a t-tuple of non-negative integers.
|a| = ay + - - - + a, is the total degree of monomial s*. Then
Ay, can be written as

-A()pj = Z aOpaj(D)Sa’ (16)

ay,...ap
laj=dim(Aq,y;)/2

where dim(.Ay,;) is the mass dimension of Ay,;. And the
coefficient ay,,; depends only on D. For fixed ||, the total
number of terms in the ¢ summation is

ng = <|a|t+_t1_ 1). (17)

Then it can be obtained that
lal = p =wp (18)
by defining
wo =dim(C;)/2 = LD/2 + N, — m™*. (19)

In practice C; can be truncated to fixed order p, i.e.,

= (5 5

s AP ar
|a|=wo+p
x s°I3%P) 4 Oy —Po—1>). (20)

For the given amplitude one can choose a proper set of
modified master integrals {7 j(;y)}js.:1 as shown in Eq. (2).
Then by using Taylor series for # — oo one can obtain the
series representation of 1;(n),

7k(,1) LD/2 N, ZZA@J” ”I (vac D’ (21)

where N, is the summation of the exponent of propagators
for given I;(17). And the series coefficient A;,; can be
expressed as the linear combination of monomials,

Z akpaj(D)sa7 (22)

T

\a\:dim(Akpj)/Z

Akpj =

where the coefficient ay,,; depends only on D. Then we
can obtain

o = p = wy (23)

by defining

wy = dim(1;)/2 — LD/2 + N;. (24)

Similarly as C;, I can be truncated to fixed order p, i.e.,

5 Po
I dlm (Tx)/2=wy <§ E E akpa]

Lap
|a|=w+p

xwﬁf>+0mmw) (25)

If the modified master integral set has been properly
chosen, the reduction relation can be described by the linear
relation between C; and {I;}7_, as

Zi()ci + Ziljl + -+ ZiSjS - O, (26)

where Z;; is polynomial of 7, independent kinematic
variables {sy,...,s,} and D. In the following the index i
will be suppressed for simplicity. Since each term in
Eq. (26) has the same mass dimension, we can define

d° = dy + dim(C;) = d; + dim(I,)

where
d° —dim(C;) (k=0),
dy = dim(z,) = e (28)
d°'—dim(l;) (1<k<S).
Therefore, Z; can be written as
Z Zraga(D)os’, (29)

M<dk/2

where 1 is a f-tuple of non-negative integers. And Ay =
dy/2 — 12| is a non-negative integer. The unknown coef-
ficient z;,, depends only on D. For the expression of Z;,
the total number of terms in the A summation is

y (dk/zﬂ) (30)

t

In order to obtain the explicit expressions of {z, ;}, we
can substitute Egs. (20), (25), and (29) into Eq. (26) and
obtain

(35 5

Prmr?
70 I pl=pgtmin

_ D
Opopil 708”1 (ijC) )

+omw40:a (31)

where
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W}, (32)

Wmin = min{wo,
and

Po

Z Z akp(zjzkioll (33)

p=0 ap....ap
p2pl~dy /2-wy lal=wi+p

s
Opopj =
=0

with  1=p—-a and Ay=4d/2—|p|+|al. Since

n‘posPI(LV;C>'D are linear independent, their coefficients
6,,pj should be zero. Then we obtain a system of linear

equations

{6,,,; = 0}. (34)

The sets {0, ,;} and {2, ,} can be ordered by using certain
well order relation, e.g., lexicographical ordering, for
(po,p,j) and (k, A9, 1), respectively. And o, and x, can
be denoted as the uth and vth element in the corresponding
set. Then Eq. (34) can be transformed into the null space
problem

Mpp - My, 7 0

M M

ne,l1 Ne,Me Zn(

where the matrix element can be explicitly obtained by

do,

M,, = oz,
v

(36)

For given d*', the number of unknown coefficients n, =
[{z1s,1}| is fixed while the number of equations n, =
[{6,,.;}| depends on the truncation order p,. Therefore, if
d"" is large enough, by expanding C; and {I; }JS.:l to higher
order one can obtain enough equations (n, > n,) for the
solution of the null space.

Empirically the choice of d* can start from the mini-
mum of the allowed values,
d° = max{dim(C;), min{dim(7,), ..., dim(T5)}}.  (37)
If we could not find the nontrivial null space, the d** will be
increased by two. Once the nontrivial null space is found,
we can expand C; and {7‘,-}‘;:1 to higher order for more
equations to check the correctness and uniqueness of the

solution.
Finally the modified amplitude can be written as

- s
M) =D Calm)(n)F; (38)
i k=1

where Cj, = —Z;/Z;y is the reduction coefficient of
relevant I;(n) and F; for modified loop amplitude. In
the conventional approach the reduction coefficients could
be obtained by using tensor reduction and IBP reduction,
which could be very difficult as been reviewed in the
previous section. However, as we have shown above by
directly implementing series representation on modified
loop amplitude, the difficulties in both tensor reduction and
IBP reduction can be relieved. And the final reduction
relation for the original loop amplitude can be obtained by
taking the limit # — 07,

N s
M = lim M(n) = ZZ h%} CamI(n)Fi.  (39)
i k=117

n—0*

Although in order to achieve loop amplitude reduction this
set of master integrals themselves may not be convenient to
evaluate analytically or numerically, one may make further
apply reduction increasingly to the final set of master
integrals that can satisfy the requirement of evaluation.

III. EXAMPLE

In this section we take one typical two-loop diagram of
W boson production shown in Fig. 1 as an example to
demonstrate our approach. The diagram is plotted by using
JAXODRAW [63] based on AXODRAW [64]. Its relevant
modified amplitude can be written as

M) = [ apq,arq, IR 2] o)
where the denominators from loop propagators are
Dy = (g1 —q2—ki)* +m, (41)
D, = (g1 +ko)* + . (42)
Dy = (g2 + ky + ko)? +m, (43)
Ds = (q1)* +m, (44)
D = (2)* +m, (45)

u

W+

S

FIG. 1. One typical two-loop diagram for the process ud — W.
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and [i]={3,4,6} and [i3] = {1}. Then we can insert three
B unit integrals
Dy = (g1 = k)* +m. (46)

/d)’15<)71 — Xy — x5 —x7) = 1,

And to make a complete integral family for the two-

loop one-final-state amplitude we need additional one
denominator dyy8(y2 — X3 — x4 —x6) = 1,

Dy = (g2 +k)* +m. (47) / dy;8(y; — x;) = 1. (50)

For the reader’s convenience we also explicitly show the

numerator of the amplitude After integrating the x, ..., x7, the coefficient of ' can be
expressed by two-loop scalar vacuum bubble integrals. And
N(q1,qa, ki, ko, k3) it is known that at two-loop level there are two vacuum
4 bubble master integrals,
= () Satkarr e+
\/ESW g T I(vac),D :/ dDC]lquZ (51)
X (Js + do)#(k3) Praar” (Ho — dh)r“u(ky).  (48) ! lat + 443 + 1l(q1 + 2)* + 1]
By implementing the approach as mentioned in the pre- and
vious section, we can directly extract the only form factor D 1D
IgV;C) .D = / d qld LIZ . (52)
F1 = 0(ko)#(k3)Pru(ky). (49) g7 + 1][g3 + 1]
We can divide the Feynman parameter index set  In series representation the modified loop amplitude can be
{1,...,7} into three equivalence classes [i;]={2,5,7},  expressed as

A 2(N3 2 4712
M) = (\l/eiisw)f‘”D_4{_ 8(D—3)(D-2) §4D3D— 3D*+ 11D —6) llgim),o n (D-2) (D81;16D +12) 1§V§‘°) D
_4(D=3)(5D7 = 53D° +319D° — 638D" — 1844D* + 4552D° 4- 2528D + 3456) my, J(vac).D
6561D(D + 2) PR
_ (D =2)*(83D° = 724D — 976D" 4- 15968D* — 7600D* — 51904D — 27648) m3, e Vac b, (9< ) } (53)
17496D(D + 2) n

Finally for the matching procedure we choose 25 master integrals,

71(’7) = 70,1,1,0,0,1,1(’7)’ 72(’7) = 70,1,1,0,1.1,1(’7), 73(’7) = 70,0,1,0,1.0,1(’7), 74(’1) = 71,0,1.0,0.0,1('7)’

75(’7) = 71,0,1,0,1,0,1('])’ 76(’7) =1 10.1.0.1.1.0(1)- 77(’7) = 71,0,1,0,1.1,1(’7), 78(’1) = 71,0,1.0,1.2,0('7)’

79('7) = 71,0,2,0,1,0,1(77)’ 710(’1) = 70.0,1.0,1,1,1(’1)7 711('7) = 71.1,0,0.1,0.1(’7), 712('7) = 71,0,0,0,1,1,1('7),

713(’7) = 71,1,1,0,0,0,1('7)’ 714(’1) = 71,1,1,0,0,1,1(’1)7 715('7) = 71,1,1,0,1,0,1(77), 716(’7) = 71,1,1,0,1,1,1(77),

717(’7) = 71.1,1,0,1,2,0(’7% 718(’1) = 71,1,1,0,2,1,0(’1)7 719('7) = 72,0,1,0,0,0,1(77), 720(’7) = 72,0,1,0,1,1,0('7)’

L (n) = 71,—1 1o (1) In(n) = 71,0,1,—1,1,1,1(’1)’ Ls(n) = 71,0,1,—2,1,1,1(’1)7 Luy(n) = 71,1,1,—1,1,1,1(’1)7
725(’7) = 71,1,1,—2,1,1,1(’7), (54)

where

7uuuyuuu(’7)5/~ = (~1Dq~ldD~q2~ ~U7 (55)
1,V2,V3,V4,V5,V6,17 Dl{'DZZD§3DZ4D§5DgGDZ7/7

For simplicity, the factor (zegf})/ (\/ESW) is omitted in results. Then the coefficients between modified amplitude and master
integrals are
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_16(D-6)*(D-3)

Ci(n)= 9(D—-2) )
8((3D=32D+68)m}, —21(D—2)%))
Cz(’?) = 9(D—2) ,
€ ) = 8D =20D° + 156D~ 532D+ 648)
9(D-3)Dm3,
¢, ) = 32D ~20D" 23D +919D° 3466 + 3888)mi, —1(3D —8)(D* ~29D° +230D° ~ 782D +972)n)
9(D-3)(D—2)Dmj,
Cs(n) = _8((D*=8D3+16D*+24D —80) D, +1(D° = 15D* + 126D* — 576 D> 4 1352D — 1296)1))

9(D-3)(D-2)Dm3, '
Col )_8((D—4)(D—2)(2D3—39D2+204D—300)m%v+21(18D5—379D4+3121D3—12452D2+24084D—18128)11)
o= 9(D—4)(D—2)(3D—8)m3, ’
 128(D-3)(D—-2)mj,+81(2D*—27D*+162D* - 476D +536)n
N 9(D-3)(D-2) '
Cal) = 16(7D*—124D3+806D? —2220D +2192)n(4n—1m3,)

sU= 9(D—4)(D—-2)(3D—8)m3, ’
Con) 4(4(D3-8D*+38D —68)n> —21(3D*—45D*+218D —328)ym?, + (D —6) (D +2)m?,)

9 = )

9(D-3)(D-2)m%
8((D*—15D*+80D—147)(3D —8)(D—2)m?%,+21(2D* —=34D*+219D> - 610D +616)n)

Cuoln) = 9(D—3)(D-2)(3D—8)nt, ’

C;(n)

16(D —2)(m3,+2m)
C (77): ’
11 9m%v
8
9(D—-4)(D-3)*D(3D-8)m
+1D(15D° =326D*+2797D3 - 11752D%4-24052D — 19152)nm3, — 16(D —4)(D—3)*D(3D—8)m}, },
8((D—4)(D?*—=19D?+128D —236)m?%, —41(D*—19D3 +126D? — 348D +344)n)
9(D-4)(D-2)m3, '
8((3D*-32D+68)m3, +41(D*—12D+28)n)
Cia(n)= 9(D—2) )
64(2(D—2)m?% +1(2D*-15D+30)7)
Cis(n)= 9(D—2) )
16(=41(D?>—6D+10)ym3, + (D—5)(D=2)*n* =4(D =2)m?,)
C16(n): 9(D—2> 5
c ()74(D—6)(—m%v—41;7)((D+2)m%v—21(D—6)(D—3)17)
7= 9(D-3)(D-2) ’
32(D*-14D*+68D—104)n*
9(D-4)(D-3)(D-2)
8
C pu—
00 =553y (D=2 Dl |
—1(4D*— 137D +1259D% —4826D +6480)nym3, },
4
9(D-4)(D-3)(D-2)(3D-8)

+4(=22D%+454D* —3647D3 4 14094D* —26240D + 18912)7% + (3D —8) (D —6) (D —4) (D+2)m%, }.

Cia(n) = {3(3D—8)(D—4)(D*~29D* +230D> 782D +972)1*
w

Ci3(n)=

Cig(n)=

(6D —89D? 4+ 446D —648)m?, + 6(D* —29D3 +230D? — 782D +972)

Cao(n) = - {2(D~4)(D* 24D + 156D° ~ 280D + 48 )y
w
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8(D? — 14D? + 68D — 104) o) = — 8((D - 6)(D? — 8D + 20)m3%, + 21(D — 2)*n)
o(D — 2)m3, ’ 2= 9(D - 2)m?, ’
_16(D-2) 161((D? — 16D? + 80D — 136)n + 8im?,)

C 7] — T 5 2 > s
(1) om3, 9(D-2)

Coi(n) =

16(D —2)(m}, + 2i)
9m?,

Coan) = Cos(n) = —

(56)

By checking the asymptotic behavior of above master integrals at n — 0", we found that master integral
I5(n), To(1). 1,1 (7). T12(n7), vanish. Also some of the relevant coefficients of the master integrals, Cs() and Cis(n),
become zero in the limit. Then finally we found 19 nonvanishing master integrals and their relevant coefficients, the limits
of remaining nonvanishing coefficients are

16(D —6)*(D —3) 8(3D? —32D + 68)m3,

Ci(0)=- 9(D-2) ’ C2(0) = C14(0) = 9(D-2) )
C,(0) = 8(2D3 —20D* —23D% 4+ 919D? — 3466D + 3888) C5(0) = _8(D*—8D’ + 16D +24D - 80)
e 9(D -3)(D—2)Dm3, R 9(D-3)(D-2) ’

8(2D* — 39D + 204D —300) 128m3, 4(D—-6)(D+2)m3,
Co(0) = SGD=8) L Gl0)=Cis(0) =g Co(0) = Con(0) = =g o

8(D*—19D? + 128D — 236 64m}, 4(D—-6)(D+2)m|
Cn(0) =S P EEEIRTEE  c0) == 2 cpl0) =0 T

8(6D3 —89D? + 446D — 648 8(D? —14D* 4+ 68D — 104
C,o(0) = SOP 89D 44 ) o)=Y 68D 104)

9(D-3)(D-2)D 9(D —2)m},
_ 8(D-6)(D*-8D+20) _16(D-2) _ 128m},
Cy(0) = 9(D-2) ] Cy3(0) = W Cy(0) = m
16(D -2

C25(0) - - ( ) (57)

The explicit expressions of the coefficients are consistent
with the results in the conventional approach using FEYN-
CALC [65] and FIRE5 [52].

IV. CONCLUSIONS

In this paper, based on series representation we propose
an alternative reduction approach to directly reduce loop
amplitude into linear combination of master integrals and
extract the form factors meanwhile. This approach can
relieve the difficulties in tensor reduction and IBP reduction
for complicated scattering processes. This approach has

been demonstrated in one typical two-loop Feynman
diagram for the W boson production.
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